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Summary

Privacy protection is an important requirement in both everyday life and the Inter-
net. As the Internet is an open network, adversaries can observe and manipulate
data flowing over it. To ensure privacy in communications over open networks,
cryptographic protocols have been widely used, and thus, proposing such proto-
cols has become a popular research area. However, design of cryptographic proto-
cols is difficult and error-prone. Thus, verification of such protocols is a necessary
step before implementation. Formal analysis has shown its strength in proving or
disproving privacy properties of cryptographic protocols, contrary to informal ver-
ification of cryptographic protocols which is not suitable for finding subtle privacy
flaws.

To formally verify whether a protocol satisfies a property, there are usually three
steps: 1) formally model the protocol, 2) formalise the property and 3) decide
whether the formalised property is satisfied on the formal model. Depending on
the differences on the formalisms used to model the protocol and the property,
there are various formal approaches. Once a formal approach is chosen, that is,
the first and third steps are determined, one only needs to focus on the second step.
In this thesis, we use a formalism called the applied pi calculus. The applied pi
calculus provides an intuitive way to model cryptographic protocols. In addition,
the applied pi calculus is equipped with proof techniques for privacy properties
modelled as equivalences of processes. Furthermore, the verification of a protocol
modelled in the applied pi calculus is supported by an automatic verification tool
ProVerif.

Many privacy properties have been proposed, most of which are with respect to
an adversary controlling the network. Recently, a stronger privacy property was
identified in the e-voting domain. This privacy property assumes that the adversary
can perform extra actions, namely bribing or coercing voters, to obtain additional
information. To distinguish such strong privacy properties, we from here refer
to these as enforced privacy, capturing the idea that the system enforces privacy,
even if users try to reveal themselves due to bribery or coercion. Properties such
as receipt-freeness and coercion-resistance, have been formalised in e-voting, to
formally verify whether a protocol satisfies enforced privacy. The leading work
of formalising enforced privacy in the applied pi calculus is the DKR framework,
proposed by Delaune et al.

Following studies of enforced privacy in e-voting, protocols ensuring enforced pri-
vacy have also been proposed in other domains, e-auctions and e-health. However,
such protocols have not been formally analysed. Thus, we first formally define
enforced privacy in the e-auction and e-health domains. To validate the formal
definitions, we formally verify enforced privacy in a case study in each domain.
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First, we study the enforced privacy requirements in the e-auction and e-health
domains. In both, enforced privacy is important. In the e-auction domain, there
exists a type of auction, sealed-bid e-auction, where bidders seal their bids. In
such auctions, it is required that a bidder should not be able to prove his bid to a
coercer, so that malicious bidders cannot win with an unreasonable low price by
controlling other bidder’s bidding prices. In the e-health domain, it is required that
doctors should not be able to prove prescriptions of their patients to pharmaceutical
companies, to prevent pharmaceutical companies bribing or coercing doctors to
favour their medicine.

Second, we formally define enforced privacy properties in e-auctions and e-health.
To do so, we first study whether we could apply the formalisations in voting to
e-auctions and e-health. We found that we cannot directly adopt these existing
formalisations. The first reason is that classical privacy, on which enforced pri-
vacy is built on, differs from domain to domain. In e-voting, the voting result is
published. When the result is unanimous, the adversary knows every voter’s vote.
Consequently, DKR defines classical privacy property in voting as: The adversary
cannot detect any difference when two voters swap their votes. In effect, the defini-
tion uses a counter-balancing vote. In sealed-bid e-auction, a non-winning bidder’s
bid is not revealed. Thus, we do not need a counter-balancing bid. Classical pri-
vacy in e-auction can be defined, in a classical way, as: The adversary cannot
detect any difference when the bidder changes his bid. However, we do need a
higher bid, so that the target bid does not win. The second reason that we cannot
directly adopt the existing formalisations in e-voting to e-auctions and e-health,
is that the amount of information the adversary bribes or coerces differs. In e-
voting, each voter normally only votes once. Similarly, in sealed-bid e-auctions,
each bidder bids only once. However, in e-health, a doctor uses the same protocol
multiple times to prescribe medicine for patients. Classical privacy in e-health
requires that the adversary cannot detect any difference when two doctors swap
their prescriptions. This requirements focus on a specific session of a doctor. The
corresponding enforced privacy focuses on the specific session as well. That is, not
all the doctor’s information is revealed to the adversary. Therefore, we need to
model doctors only partially communicating with the adversary, contrasting with
in e-voting and e-auctions, voters/bidders fully communicating with the adversary.

Third, besides enforced privacy, we identify a new privacy property, independency
of privacy in e-health. Unlike e-voting and e-auction systems, where roles can be
naturally divided into two types: voters/bidders and authorities, e-health systems
involve much more roles: doctors, patients, pharmacists, medical administrations,
insurance companies. Some of these roles have access to sensitive data, for exam-
ple, pharmacists have access to prescriptions. However, these roles may not be
trustworthy, for example, the pharmacists may be bribed to reveal the link be-
tween a doctor and his prescriptions. To prevent this, it requires the pharmacist
be independent of a doctor’s privacy. To capture this requirement, we formally
define the property independency of prescribing-privacy. This property has also
been verified in a case study.

Based on the experience of domain-specific formalisation of enforced privacy, we
propose a formal framework, in which enforced privacy properties can be defined
in a domain-independent manner. Inspired by the demand that only part of the
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user process communicates with the adversary, we extend formalisation of bribery
and coercion in e-voting, to allow us to specify the shared information with the ad-
versary. This captures a variety of collaborations between users and the adversary.
Each enforced privacy property and independency privacy property is parametrised
with a collaboration specification. Specific enforced privacy and independency of
privacy properties can be expressed by instantiating the parameter.

Inspired by the requirement in e-health that a pharmacist should not be able
to help break a doctor’s privacy, we notice that third parties may influence a
target user’s privacy. Here, pharmacists, cooperate with the adversary to break
a target user’s privacy. In such cases, we say that third parties have negative
influence on the target user’s privacy. On the other hand, third parties may help
strengthen the target user’s privacy, by cooperating with the target user. We say
that third parties have positive influence. For instance, a voter can swap receipts
with a coerced voter, if the voter votes as the coercer wants, so that the coerced
voter can vote freely. We say that the third parties and the target user form a
coalition. A coalition can be specified in a similar way as the collaboration. The
difference is that in collaboration, we do not need to specify the behaviour of
the adversary because the adversary is modelled as the environment; in coalition,
both the third parties and the target user’s behaviour need to be specified. We
can formally define a coalition using a coalition specification. Correspondingly,
we formalise privacy properties parametrised with coalitions. As an additional
benefit, we can use coalitions to model various domain-specific classical privacy
properties. For instance, vote-privacy, where a counter-balancing voter is required,
can be considered as a coalition privacy with a coalition of the target voter and
a counter-balancing voter. Finally, we prove the relations between the privacy
properties defined in the formal framework.
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Introduction

In the physical world, privacy is assured by means such as locks and curtains.
Communication over the Internet introduces new privacy risks. For example, a
malicious user may spy on another user’s e-mails. As the usage of Internet-based
services continues to grow, privacy on the Internet is becoming more and more
important. This has led to a proliferation of privacy notions, including notions
focused on communication privacy and those focused on data-bases, etc. Recently,
a strong privacy notion has been proposed for e-voting. This new notion includes
the assumption that adversaries can bribe or coerce users. This thesis studies the
privacy effect of such an assumption in other domains and proposes a domain-
independent notion, using a formal approach.

In the introduction, we discuss the privacy issues and privacy requirements in
Internet-based services in Section 1.1. The approach that we use to address the
privacy issues is introduced in Section 1.2. Next, detailed research challenges are
presented in Section 1.3. Finally, we describe the organisation of the thesis in
Section 1.4.

1.1 Privacy and enforced privacy

Privacy has been considered as an important requirement in daily life. For in-
stance, curtains are used to keep people’s private life beyond the general public’s
observation. In some cases, privacy is even required by law. For example, the
U.S. HIPAA Privacy Rule (The Health Insurance Portability and Accountability
Act of 1996) states that a patient’s medical records are required to be confidential
in health care. Even in cases where privacy is not a legal requirement, privacy
may remain a desirable and marketable property. For instance, people may want
to publish an article anonymously to avoid problems, if the article is against a
group of people’s benefits. Consequently, in the analogous Internet-based activi-
ties, privacy protection is required as well. In addition, in order to attract users,
providers for Internet-based services where privacy is optional may offer privacy
as a distinguishing feature. For instance, privacy protection is an aimed feature in
the Internet search engine DuckDuckGo.

However, there have been more and more high-profile privacy incidents in Internet-
based services, such as, private messages sent between users and Bloomberg’s fi-
nancial terminals having leaked [6], a user’s activities being viewed by people who
should not be able to do so in facebook [4]. These incidents cause more and more
potential privacy breaking worries, for example, when a user posts a photo on face-
book, additional data, such as the time, date, and place are recorded, the user can

1
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be traced using the collected data by facebook [2]. In order to register a service, a
user often needs to provide personal information to the service provider. Normally
the requested information is used for the purpose of authenticating users or pro-
viding better services. However, this provides the service providers an opportunity
to know more than the user expected, from the collected data. For example,

• Google can track search terms via cookies and IP addresses, thus can build
a profile of you based on your gmail account and your search queries, for
example, who you are, where you go and what you do.

“We are moving to a Google that knows more about you.”

– Google CEO Eric Schmidt, 10 February 2005 [3]

• Mobile phone companies can log users locations and associations between
users’ credit card companies and other financial organisations [7].

• Internet service providers can log all transactions, monitor email, web ac-
cesses, etc. [5]

Even if the service providers are all trustworthy on not revealing privacy, sending
information over the Internet may also leak information due to eavesdroppers on
the Internet. If the transmitted information is not well protected, an observer on
the Internet can obtain private information of users. For example, by observing the
location attached to a service query “what is the nearest coffee shop”, the observer
knows the location of the user.

All these privacy concerns lead to research on how to develop systems satisfying a
desired privacy property. Various techniques have been applied to ensure privacy.
For instance,

• Laws and regulations exist to ensure privacy on an administrative level. For
example the European Union’s data protection directive (95/46/EC) regu-
lates the processing of personal data.

• Access control exists to ensure privacy in the sense that only authorised
roles can access protected data. Such an example is role-based access con-
trol [RCHS03].

• Cryptographic protocols have been employed to ensure privacy on commu-
nications over open networks (such as, the Internet). For example protocols
using zero-knowledge proofs, allow an individual to prove a statement with-
out revealing his secrets.

We observe that privacy controls focus on different interests. A breach of privacy
on any domain affects privacy in general. Hence, ensuring privacy requires that
privacy is assured on each individual domain.

For each domain, there are specific approaches towards ensuring privacy. And
in general, an approach used to ensure privacy in one domain does not translate
to another. For example, zero-knowledge proofs cannot be applied on laws. In
addition, for each domain, there are specific privacy requirements. For instance,
in cryptographic protocols:
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• Adversaries, observing and manipulating messages over open networks, need
to be considered. The use of computers and networks, in addition to facilitate
honest users, provides adversaries stronger computing ability and the ability
to control the networks.

• Privacy of encryption keys, which may not even be mentioned in some access
controls (such as laws), may be critical in cryptographic protocols.

• Moreover, data can be easily spread over networks. And once the data is
revealed, it is hardly possible to destroy it, as it may has been stored multiple
times by many users. Thus, privacy breach, such as revealing private data,
in the digital world may be more harmful than in the real world.

Therefore, domain specific expertise is required to design or evaluate specific pri-
vacy controls. In this thesis, we focus on privacy on the level of cryptographic
protocols.

To capture privacy requirements in cryptographic protocols, privacy properties are
proposed. In order to define a privacy property precisely, the adversary abilities
need to be defined first. The best known adversary model is the Dolev-Yao ad-
versary, who controls the whole network (observing, blocking, modifying, injecting
messages on the network). Depending on protected items in various domains, many
privacy properties have been defined, e.g., anonymity, untraceability, unlinkability,
etc. A common feature for such privacy properties is that they assume users want
to keep their information private. In other words, a system satisfies privacy under
the assumption that users honestly follow the system execution.

However, this assumption has been shown not suitable in some cases. For instance,
in e-voting, a voter may want to sell his vote to a vote-buyer. As vote-selling harms
the e-voting system, e-voting systems require that a voter should not be able to
prove his vote to others. In addition, a coercer may be able to force (using a gun
or a threat) a voter to vote a certain candidate or vote in a certain way. Hence,
e-voting systems also require coercion-resistance. Similar requirements have also
been identified in other domains. For instance, some e-auction systems require
that the adversary should not be able to coerce a non-winning bidder to show
his bid. In e-health, a doctor should not be able to prove his prescriptions to a
pharmaceutical company even with the help of pharmacists.

To capture these requirements, privacy properties have been proposed, for instance,
receipt-freeness in e-voting and e-auctions, coercion-resistance in e-voting.

• Receipt-freeness in e-voting: a voter should not have a receipt to prove his
vote to any vote-buyer;

• Receipt-freeness in sealed-bid e-auctions: a non-winning bidder should not
be able to prove his bid to other bidders;

• Coercion-resistance in e-voting: a coercer should not be able to coerce a voter
to vote in a certain way.

These properties all follow the same idea: If a system is designed in such a way
that a user can lie to the adversary about the target information, a vote or a bid,
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and the adversary cannot tell whether the user has lied, then the system satisfies
this type of privacy.

We call this type of privacy, where users are assumed to reveal information to the
adversary (by bribery/coercion or other methods), enforced privacy, meaning that
the system enforces privacy upon its users instead of users desiring privacy. En-
forced privacy properties have recently been identified. Compared to the classical
privacy properties where users do not cooperate with the adversary, research on
enforced privacy properties is less mature. This thesis focuses on enforced privacy.

1.2 Formal approach

As stated in the previous section, information sharing between users, which are
distributed over open networks, follows communication protocols. Communication
among users is open to interference by adversaries controlling the network. To
ensure security and privacy in communications over open networks, cryptography
is widely used in protocols. Hence, proposing cryptographic protocols has become
a popular research area.

However, equipping protocols with cryptography is not a guarantee for security or
privacy. In fact, the design of cryptographic protocols is notoriously difficult and
error-prone. For instance, the Needham-Schroeder protocol [NS78] was found to
allow the adversary to reuse an old and compromised session key [DS81]. An RFID
protocol [HM04] with an untraceability claim was found flawed [Avo05].

At the beginning, a claimed property of a protocol is empirically verified. Re-
searchers study a protocol in detail and decide whether the protocol satisfies a
claimed property. As flaws in cryptographic protocols are often subtle and counter-
intuitive, it is easy to make undetected mistakes in such informal verification. Thus,
informal analysis is too prone to error to reliably verify cryptographic protocols, es-
pecially when the protocols are getting more and more complex. Protocols tend to
involve increasing utilisation of cryptographic primitives and increasing concurrent
distributed programs which can be executed by a large population of agents.

As informal reasoning was getting less reliable and efficient, people turned to formal
approaches, a mathematically based technique, to help detect flaws. The use of
formal approaches was initiated by Dolev and Yao to analyse secrecy properties of
protocols. The main ideas are that

1. the adversary controls the whole network; and

2. encryptions are perfect, meaning that the adversary cannot undo an encryp-
tion and find the plain text.

Since the adversary controls the whole network, and communicated messages all
pass through the network, the adversary can be modelled as a buffer between users.
The messages from an honest user are considered to be sent to the adversary and the
messages received by an honest user are considered to be sent by the adversary. In
addition, the adversary can block, redirect and alter messages, and generate fresh
messages. Security properties and privacy properties of a protocol are modelled as
properties of such a model of the protocol.



1.3 Research questions 5

Formal verification has been successfully used in proving or disproving the satis-
faction of a claimed property. In several cases, formal verification found security or
privacy flaws in protocols which were thought to be secure or privacy-preserving,
e.g., see [Low96, CKS04, DKR09]. Therefore, before using a cryptographic proto-
col, formal verification is an important step.

To formally verify whether a protocol satisfies a property, there are usually three
steps:

1. formally model the protocol,

2. formalise the property, and

3. decide whether the formalised property is satisfied on the formal model.

Depending on the differences on the formalisms used to model the protocol and
the property, and verification algorithms used to decide whether a property is
satisfied on a formal model, there are various formal approaches. In general, in
the literature, the study of specification languages for modelling a protocol and its
properties, and verification algorithms is rather mature. In contrast to this, the
specification of privacy properties is still in its infancy. Formalisation of privacy
properties is not as standard as other properties, like security. New privacy notions
arise from time to time. In addition, privacy requirements differ from domain to
domain. Thus, we use an existing formalism, the applied pi calculus, and focus on
formalising privacy properties. The applied pi calculus provides an intuitive way
to model cryptographic protocols. In addition, the applied pi calculus is equipped
with proof techniques for privacy properties modelled as equivalences of processes.
Furthermore, the verification of a protocol modelled in the applied pi calculus is
supported by an automatic verification tool ProVerif. Moreover, a leading work in
formalising enforced privacy properties in e-voting, receipt-freeness and coercion-
resistance, uses the applied pi calculus. Therefore, in this thesis, we focus on
studying and formalising enforced privacy using the applied pi calculus, learning
from the formalisations of enforced privacy in e-voting.

1.3 Research questions

Current research on enforced privacy focuses on the e-voting domain. However,
bribery and coercion, in general, are domain independent. Thus, the adversary
can bribe or coerce users in any domain. Therefore, a natural question to ask is:
Are privacy requirements against bribery and coercion relevant in other domains?
If the answer is yes, then how do the requirements in other domains differ from
those in e-voting?

We answer these questions by studying enforced privacy requirements in e-voting,
e-auctions and e-health. We observe that enforced privacy is indeed required in
other domains. In e-auctions, it requires that a non-winning bidder should not be
able to prove his bid to a coercer; in e-health, it requires that a doctor should not
be able to prove his prescriptions to a pharmaceutical company.

Enforced privacy requirements differ in domains. Despite the difference in the pro-
tected items, privacy requirements may also differ in the way a user cooperates
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with the adversary. For example, in e-voting, the adversary may instruct a voter
to vote for a certain candidate, to vote the same as another voter (copy another’s
vote), to abstain etc. In general, theses instructions may also be given by the
adversary in e-auctions. However, in some sealed-bid auctions where each bidder
is required to submit a bid, the adversary, in order to achieve the goal of control-
ling the price, would not give the abstaining instruction to bidders. In e-health,
abstention is not a realistic instruction as well, since it conflicts the adversary’s
goal. In addition, privacy notions may differ for the various kinds of users. For
example, in e-voting, enforced privacy needs to be satisfied for all voters; in some
sealed bid e-auctions, enforced privacy only needs to be satisfied for non-winning
bidders. Finally, privacy requirements may differ in the influence of third parties.
In e-voting and e-auctions, in general, two roles are involved and one of them is
assumed to be honest. In e-health, many roles are involved, typically including:
doctors, patients, pharmacists, insurance companies, etc. Some of these roles are
in general not trustworthy, e.g., pharmacists. Thus, it is required that pharmacists
should not be able to help prove a doctor’s prescriptions.

Due to these differences in domains, formalisations of privacy properties in e-voting,
in general, cannot be directly adopted in other domains; for example, new privacy
properties taking pharmacists into consideration need to be formalised in e-health.

Since enforced privacy is required and the formalisation of privacy properties is
a necessary and important step in deciding whether a protocol satisfies such a
privacy requirement, a research question arises:

Research question 1: How should enforced privacy be formalised in the e-
auction and e-health domain?

Enforced privacy notions, e.g., receipt-freeness and coercion-resistance, have been
formalised in e-voting. The first piece of work is the formalisation of receipt-
freeness using the applied pi calculus. Later, following the direction of the applied
pi calculus, a general formal framework for enforced privacy in e-voting has been
developed – the DKR formal framework. Other formal frameworks, using other
formal approaches or focusing on variations of enforced privacy properties, have
also been developed in e-voting.

In e-auctions, enforced privacy properties have been discussed and protocols pre-
serving them have been proposed. However, these properties are not formalised,
protocols are not formally verified. Similarly, enforced privacy requirements can
be found in the e-health domain, but no formalisation has been developed. Thus,
a research task is to formally define enforced privacy in such domains. To do so,
we first want to see whether the existing formalisations in e-voting can be reused.
Among the few formal frameworks, we choose to follow the DKR formal framework,
due to the convenience of the applied pi calculus.

We observe that although the formal definitions of enforced privacy in e-voting
cannot be adopted due to the variety in classical privacy properties on which
enforced privacy is built, the formalisation of bribery and coercion can be reused
in general. Following the DKR style of defining the cooperation between bribed
or coerced users and the adversary, we formalise enforced privacy in e-auction and
e-health protocols in the applied pi calculus. This formalisation has been applied
to two case studies – a sealed-bid e-auction protocol proposed by Abe and Suzuki
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(AS02) and an e-health protocol proposed by de Decker et al. (DLV08).

It is not convenient to formalise enforced privacy in every domain where it is
required. And the formalisations in the three domains follow the same idea and
only differ in minor details. These lead us to consider the generalisation of formal
definitions for enforced privacy.

Research question 2: How can we develop a generic formal framework in which
we are able to define various enforced privacy notions?

We learn from the DKR framework in e-voting and are inspired by a formal frame-
work for defining generic classical privacy in the applied pi calculus. With the
help of the knowledge and experience of formalising enforced privacy in e-auctions
and e-health, we propose a formal framework. This framework presents a stan-
dard form of protocols which enables us to formalise privacy in a generic manner.
We notice that the formalisation of bribery and coercion in e-voting, e-auctions
and e-health are instances of various types of cooperation between users and the
adversary and cooperation is not limited to bribery and coercion. To be able to
formalise more types of cooperation, a generic way of modelling cooperating users
is proposed. By allowing a precise specification of which information has been
shared with the adversary, the formalisation of bribery, coercion and many other
types of cooperation can be instantiated.

In addition, in this formal framework, we formally define a classical privacy notion
– data privacy. This formal definition is domain-independent and covers many
privacy requirements. It serves as the foundational privacy notion on top of which
enforced privacy notions can be built. Using the formalisation of coercion, we are
able to formalise various enforced privacy properties.

However, since data privacy does not cover all classical privacy formalisations,
e.g., vote-privacy cannot be instantiated as data privacy, enforced privacy notions
based on data privacy inherently have the same limitation, e.g., receipt-freeness
defined in DKR framework cannot be instantiated. We observe that those classi-
cal privacy formalisations which cannot be instantiated as data privacy, normally
require certain behaviour of users who are not the target user, e.g., vote-privacy
requires a voter besides a target voter to counter balance the target voter’s vote,
bid-privacy requires a bidder who bids higher than the target bidder. We consider
that in these privacy formalisations, the target user needs third parties’ help. On
the other hand, third parties helping to break a target user’s privacy has been
formalised in e-health. A natural research direction is to formalise privacy and
enforced privacy which takes third parties’ influence into account.

Research question 3: How do we formally define privacy notions taking third
parties’ influence into account in our framework?

We notice that the influence of a third party can be positive and negative. The
positive influence includes both active help and passive help from third parties. In
some cases, although third parties do not actively help, they do assist to create an
environment in which privacy may be satisfied. The pharmacists in e-health can
be considered as instances of such negative third parties.

The negative influence of third parties is modelled as the third parties cooperating
with the adversary. Using the formalisation of cooperation between users and the
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adversary mentioned in the previous question, we are able to formalise the privacy
notions taking third parties’ negative influence into account. The positive influence
of third parties is modelled as a coalition of a target user and the third parties.
A coalition is formalised as a transformation of the original target user and third
party processes in the formal framework. Using the formalisation of coalition, we
are able to formalise the privacy notions taking third parties’ positive influence into
account. Finally, since many privacy notions have been formalised, we provide a
hierarchy of these privacy notions and prove the relations between them.

1.4 Thesis overview

The first research question is answered in Chapter 4 and Chapter 5. And the last
two research questions are answered in Chapter 6. The remaining part of the thesis
is organised as follows.

Chapter 2: Related work In this chapter, we discuss the adversary model, pri-
vacy notions and enforced privacy notions in the literature.

Chapter 3: Preliminaries In this chapter, we focus on the applied pi calculus.
We motivate the use of the applied pi calculus, briefly introduce the language,
and present how enforced privacy in e-voting is formalised in the applied pi
calculus.

Chapter 4: Enforced privacy in e-auctions This chapter focuses on enforced
privacy in the e-auction domain. We first briefly introduce e-auctions. Next,
privacy and enforced privacy requirements in e-auction systems are discussed.
Then, we formalise a classical privacy notion – bid-privacy for non-winning
bidders and an enforced privacy notion – receipt-freeness for non-winning
bidders in the applied pi calculus. Finally, a case study – the AS02 protocol
is introduced, modelled and analysed.
The main contribution of this chapter is the formalisation of enforced privacy
in e-auctions and the formal analysis of the AS02 e-auction protocol.
This chapter is based on work with Hugo Jonker and Jun Pang, published
in [FAST10].

Chapter 5: Enforced privacy in e-health This chapter focuses on enforced
privacy in the e-health domain. We briefly discuss privacy issues in e-health.
Differing from e-auctions and e-voting, where enforced privacy is well identi-
fied, there is only few work on enforced privacy in e-health. Thus, enforced
privacy in this domain remains a challenge. We contribute to this challenge in
formally defining privacy notions which capture the enforced privacy require-
ments. Enforced privacy for doctor’s prescription behaviour is formalised. In
addition, we formally define the privacy notions which capture the require-
ment to enforce a third party (pharmacist) to respect a target user’s privacy
or enforced privacy (doctor prescribing privacy). Finally, a case study is
performed to validate the formalisations of privacy notions. This case study
includes a description of the DLV08 e-health protocol, the formal modelling
of the protocol and the formal analysis. Few privacy flaws have been iden-
tified due to the ambiguous assumptions of the protocol and suggestions to



1.4 Thesis overview 9

address these flaws are proposed.
The main contribution of this chapter is as follows: 1) We formalised enforced
privacy in e-health; 2) identified and formalised independency of (enforced)
privacy in e-health; and 3) formally analysed the DLV08 e-health protocol.
This chapter is based on two published papers [FHIES11, ESORICS12].

Chapter 6: Enforced privacy in the presence of others In this chapter, we
generalise the domain specific enforced privacy. In addition, we take third
parties’ influence on a target user’s privacy into account. Two types of in-
fluences are considered: positive (helping to maintain privacy) and negative
(helping to break privacy). In order to formally define the above privacy in a
domain-independent manner, we propose a formal framework. In the frame-
work, a standard form of protocols is defined using the applied pi calculus.
Based on the standard form, a classical privacy notion – data privacy, is for-
mally defined which is used as the foundation of enforced privacy notions. In
addition, a formalisation of a variety of ways for cooperation between users
and the adversary is proposed. Using this formalisation, enforced privacy is
defined based on data privacy. The behaviour of third parties is formalised
in the formal framework as well: the negative behaviour is modelled as the
cooperation between the third parties and the adversary; the positive be-
haviour is modelled as a coalition between the third parties and the target
user. Using this formalisation, we formalise privacy notions with third party
influences in the framework. Finally, a hierarchy of enforced privacy proper-
ties is built to show the relations between these notions. The relations are
proved in the appendix.
The main contribution of this chapter is as follows: 1) We formalised collabo-
ration between users and the adversary and the collaboration between users,
in a formal framework. 2) We identified coalition privacy and formalised
them in the formal framework, as well as other (enforced) privacy properties.
3) Finally, we proved the relations between the formalised privacy properties.
This chapter is based on a paper with Hugo Jonker and Jun Pang published
in [ESORICS13].

Chapter 7: Conclusions and future remarks Finally, the thesis is concluded
in Chapter 7.
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Related work

This chapter is organised as follows. Section 2.1 introduces privacy properties
of cryptographic protocols previously proposed in the literature, and Section 2.2
discusses existing formalisations of these privacy properties.

2.1 Privacy properties of cryptographic protocols

In general, privacy hides the correspondence between users and the users’ items
(such as identities and votes) from the adversary. To define a privacy property,
first of all, we need to define the adversary ability. As 1) our main focus is privacy
of cryptographic protocols and 2) in such protocols, the use of the network is
essential, the adversary from which privacy is protected is from the network. Many
such adversary models exist, for instance, passive adversaries which only observe
the network, and active adversaries which also actively communicate with the
participants. Among those adversary models, the best-known is the Dolev-Yao
adversary.

Dolev-Yao adversary [DY83]. The adversary has the following abilities:

• Controlling the network: The adversary is able to eavesdrop, block and inject
messages on the network.

• Computational ability: The adversary can extract data from messages and
compose new messages from known data.

• Initiating data and sessions: The adversary can generate fresh data as needed
and can initiate a conversation with any user.

• Initial knowledge: The adversary has a set of initial knowledge containing
public information, such as public keys.

This adversary is considered as the strongest adversary controlling the whole net-
work [Cer01]. When a system satisfies privacy with respect to the Dolev-Yao
adversary, it also satisfies privacy with respect to weaker adversaries. Thus, in this
thesis, we only consider privacy properties with respect to the Dolev-Yao adver-
sary, that is, the variations of privacy properties due to weaker adversary models
are neglected.

We show privacy properties of cryptographic protocols in the rest of this section.
These properties are classified into two categories by whether the assumption that

11
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the adversary bribes or coerces users is made. Privacy properties without this
assumption, named classical privacy properties, are introduced in Section 2.1.1.
Privacy properties with the assumption, named enforced privacy properties, are
presented in Section 2.1.2.

2.1.1 Classical privacy properties

Classical privacy has been studied for long time [Cha85]. Classical privacy prop-
erties have been proposed for systems in various domains, such as, e-mail, digital
cash, e-voting, e-auction, RFID (radio-frequency identification), location based
services, etc. These properties can be distinguished by the protected items. Pro-
tected items naturally vary in domains. Even in the same domain, protected items
can be different. For example, in e-mail systems, three privacy properties are
distinguished:

• Sender anonymity: the adversary cannot identify the sender of a given mes-
sage [SD02].

• Recipient anonymity: the adversary cannot identify the recipient of a given
message [SD02].

• Relation anonymity: the adversary cannot link a sender to a receiver [PK00].

Variations of anonymity can be found in other systems, for instance, payment
anonymity, where the adversary cannot identify the initiator of a payment.

Another typical privacy property is untraceability – the adversary cannot tell
whether two choices (sending message A versus B, or voting for candidate C ver-
sus D) are made by the same user. This property was first proposed to capture
the requirement that a bank should not be able to trace payment records to the
same account [Cha88]. Later, this privacy property is showed to be highly desired
in location-based services [DDS11] and RFID systems [HMZH08, vMR08]. It has
been shown that anonymity and untraceability are not comparable with respect to
which one is stronger ([ACRR10])1.

In addition to the above mentioned privacy properties, a large number of other pri-
vacy properties have also been proposed [BMW03, CL01, HM08]. With the number
of properties increasing, different names were used to capture the same require-
ment, and the same name was used to capture different requirements by different
authors (for examples, see [BP11]). Pfitzmann et al. proposed terminology of pri-
vacy properties which distinguishes anonymity, unlinkability, unobservability and
pseudonymity [PK00].

• Anonymity is defined as not being identifiable within a set of subjects;

• Unlinkability is the state that two or more items are no more and no less
related after the adversary’s observation than they are related concerning
the adversary’s a-priori knowledge;

1Note that the authors of [ACRR10] use a different terminology for untraceability, namely
unlinkability.
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• Unobservability is defined as items being indistinguishable from any other
items;

• Pseudonymity is defined as the state of using a pseudonym as identity.

sender unobservability recipient unobservability

relation unobservability

sender anonymity recipient anonymity

relation anonymity

Figure 2.1: Relations between anonymity and unobservability [PK00].

The relations of these privacy properties are as follows: unlinkability is a sufficient
condition for anonymity, but not a necessary condition; unobservability implies
anonymity. In the context where sending and receiving of messages are the items
of interest, anonymity can be defined as unlinkability of an item and identifier of
a subject, and the relations between anonymity and unobservability are as shown
in Figure 2.1.

Note that other generalisations of privacy properties exist. For instance, Chothia
et al., distinguish player anonymity and choice anonymity as follows [COPD06].

• Player anonymity is defined as the adversary being unable to distinguish who
makes a particular choice (data or action).

• Choice anonymity is defined as the adversary being unable to distinguish
which choice a player made.

Differences between the various privacy properties are often subtle, since they are
used to capture similar requirements. In addition, due to the differences in context,
privacy properties are often not easy to compare. For example, some authors state
that anonymity and unlinkability are actually the same, while others distinguish
them [BP11]. Bohli and Pashalidis proposed a framework in which privacy prop-
erties are defined in a consistent and comparable manner [BP11]. This framework
considers systems having finite runs. Each run is uniquely associated with a user.
They modelled the correspondence between the runs and the set of its users as a
function f . Privacy aims to ensure properties of f . Privacy properties considered
in the framework describe potentially different degrees to which f remains hidden
from the adversary. The privacy properties are distinguished by the information
potentially revealed to the adversary:

• the set of user identifiers (Uf );

• the number of runs corresponding to each participant (Qf );

• the partition of runs that is induced by f (Pf );
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• the multiset of equivalence class sizes with respect to Pf (Cf ).

The following privacy properties are considered: strong anonymity (SA), strong
unlinkability with participation hiding (SUP), strong unlinkability with usage hid-
ing (SUU), weak unlinkability with participation hiding (WUP), weak unlinka-
bility with usage hiding (WUU), weak unlinkability (WU), pseudonymity (PS),
anonymity (AN), and weak anonymity (WA). The properties are defined in Ta-
ble 2.1. The relations between the privacy properties are shown in the hierarchy
in Figure 2.2.

privacy A system providing the property
property hides f except for

SA
SUP |Uf |
SUU Uf
WUP Cf
WUU Uf and Cf
WU Qf
PS Pf
AN Pf and Uf
WA Pf and Qf

Table 2.1: Definitions of privacy properties [BP11].

SA

SUP WUP PS

SUU WUU AN

WU WA

Figure 2.2: Relations of privacy properties [BP11].

2.1.2 Enforced privacy properties

A common feature of the above privacy properties is that users are assumed to
keep their information private. Recently, it has been identified that in some cases
users may reveal their private information due to bribery, blackmail or extortion,
and such revealing information is different from the revealing information by the
compromised users. Normally, compromised users are considered as part of the
adversary, as the adversary fully controls the compromised users. However, the
bribed or coerced users may lie to the adversary if it is possible. Thus, bribed or
coerced users are not fully trusted by the adversary.
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Privacy properties that account for revealing information from bribed or coerced
users (enforced privacy properties) are first proposed in e-voting. To prevent vote-
buying, a property named receipt-freeness is proposed [BT94]. An e-voting protocol
is receipt-free if a voter cannot prove his vote to a vote-buyer. Later, a stronger
property coercion-resistance is proposed to prevent coercion in e-voting [Oka97].
An e-voting protocol is coercion-resistant if a voter cannot be forced to vote in a
certain way. Coercion-resistance is stronger than receipt-freeness because a vote-
buyer is not assumed to interrupt the voting process, while a coercer can commu-
nicate with the voter during the voting process2. Inspired by the enforced privacy
properties in e-voting, similar properties are proposed in e-auctions [SM00, AS02].
In particular, in sealed-bid e-auctions, receipt-freeness for non-winning bidders is
required to prevent the adversary from trying to control the winning price of the
auction. Similar requirements have been found in the e-health domain, for exam-
ple, a doctor should not be able to prove his prescriptions to a pharmaceutical
company [dDLVV08].

2.2 Formalisations of privacy properties

In order to verify a claimed privacy property of a protocol, precise definitions of
the property are required. A privacy property can be defined in different manners.
For instance, we distinguish binary privacy from quantitative privacy.

• Binary privacy: A protocol either satisfies a privacy property or not.

• Quantitative privacy: It defines to which extent a protocol satisfies a claimed
privacy property. For example, sender anonymity can be quantified by
the number of participants from which the adversary cannot identify the
sender [Cha88].

Quantitative enforced privacy properties have been defined for e-voting in a formal
framework proposed by Jonker, Pang and Mauw – the JMP framework [JPM09].
In this framework, the enforced privacy property, coercion-resistance, is quantified
using the size of a candidate set. If a voter is coerced to vote a candidate in the
set, the voter can vote for another candidate in the set and lie to the adversary,
without the adversary detecting whether the voter lied. Many ways to quantify
privacy can be found [Cha88, RR98, BPS00]. How to quantify (enforced) privacy
is beyond our concern. This thesis focuses on the first category, binary privacy.

Definitions of a privacy property also vary depending on the verification techniques
used to prove the satisfaction of the definition. We distinguish directly proving a
privacy property from proving a privacy property in a symbolic model. Directly
proving (e.g., using game-based provable security) is normally achieved by showing
that the adversary cannot solve the underlying hard problem in order to break the
property, for example, integer factoring, discrete logarithm, 3-SAT, etc.

• Game-based provable security: A privacy property is defined as a game of
the adversary and a hypothetical challenger. The privacy property is sat-

2This relation is based on the formal definitions of the two properties proposed by Delaune et
al. [DKR09]. In informal definitions, the distinction between the two properties are not so clear.
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isfied if no polynomially bounded adversary has a non-negligible advantage
against the challenger in the game. Enforced privacy properties in e-voting
have been defined in this way: receipt-freeness for a specific voting proto-
col (Prêt à Voter) [KR11] and a generic coercion-resistance for the e-voting
domain [KTV10].

• Symbolic model: Typically, the Dolev-Yao assumption is adopted: Cryp-
tographic primitives are assumed to be perfect, e.g., the adversary cannot
undo an encryption; and messages are considered to be abstract, e.g., data
are expressed as symbols instead of bit-strings.

As verification in symbolic models is easier to carry out and is often supported by
tools. This thesis lies in the symbolic category.

In this category, formalisations of privacy properties vary depending on the used
formal models. For instance,

• using epistemic model [SS99, HO05]: Protocols are modelled as knowledge
of users and the adversary. Epistemic logic is used to reason about knowl-
edge. Privacy properties are formalised as epistemic formulas. Enforced
privacy property in e-voting have been formalised based on epistemic logic,
for instance, receipt-freeness by Jonker and Pieters [JP06] and a framework
for coercion-resistance proposed by Küsters and Truderung – the KT frame-
work [KT09].

• using process algebra: The behaviour of a system can be intuitively mod-
elled as a process. Privacy properties are typically modelled as relations of
processes.

Compared to epistemic logic, process algebra is better at modelling the behaviour
of protocols. Process algebras are designed for specifying concurrent systems, and
thus are very suitable to model e-services in which users are often highly dis-
tributed. In addition, process algebras are often equipped with proof techniques
for process equivalences and some of them are supported by automatic verification
tools. In this thesis, privacy properties are formalised using process algebra.

Many process algebras are used to model cryptographic protocols and formalise pri-
vacy properties, for example, CSP (communicating sequential processes) [Hoa78,
Sch96, SS96, OC02], spi calculus [AG97] and the applied pi calculus [AF01, KR05,
DKR09]. Enforced privacy properties were first formalised using the applied pi
calculus for a specific e-voting protocol [KR05]. Later, a framework for e-voting
was proposed using the applied pi calculus – the DKR framework [DKR09]. In
addition, enforced privacy properties for weighted voting were proposed using the
applied pi calculus as well – the DLL framework proposed by Dreier, Lafourcade
and Lakhnech [DLL12]. The formalisation using the applied pi calculus is rather
mature. Furthermore, compared to other process algebras, the applied pi calculus
provides an intuitive way to model cryptographic protocols. And the verification
of many properties is supported by the verification tool – ProVerif. Thus, in this
thesis, we use the applied pi calculus to model protocols and formalise enforced
privacy properties. In order to formalise enforced privacy properties, the cooper-
ation between users and the adversary needs to be formalised first. So far in the
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literature, the cooperation is only formalised in the context of e-voting as bribery
or coercion using the applied pi calculus. This formalisation is proposed in a frame-
work by Delaune, Kremer and Ryan – the DKR framework and is applied in many
formal definitions of enforced privacy properties [KR05, BHM08, DKR09, DLL12].
Thus, we follow the methodology of the DKR framework.

The DKR framework. In this framework, e-voting protocols are modelled as pro-
cesses in which voter processes and authority processes run in parallel, using the
applied pi calculus. To model the enforced privacy property – receipt-freeness, the
bribery of a voter is formalised as the voter forwarding all private information to
the adversary over a fresh channel. The process for a bribed voter is constructed
from the original voter process – whenever a private data is generated or read-in
in the original voter process, the data is sent to the adversary in the bribed voter
process. Receipt-freeness is defined as follows: an e-voting protocol is receipt-free
if there exists a process in which a voter can lie to the adversary and the ad-
versary cannot distinguish the process from the constructed process in which the
voter genuinely forwards information to the adversary. The coercion of a voter is
stronger: The adversary is able to communicate with the coerced voter during the
voting procedure. This is modelled by giving the adversary the ability to prepare
information for the coerced voter. The coerced voter process is constructed from
the original process in a similar way as constructing the bribed voter process. The
main difference is that in the coerced voter process, the voter reads in information
from the adversary over a particular channel if there exists information sending in
the original voter process, and sends the information prepared by the adversary
instead. Since the adversary prepares information for a coerced voter, the vote
may be decided by the adversary instead of the voter. Thus, coercion-resistance is
defined as: for any prepared information by the adversary (possibly empty) such
that the intended vote is a (no matter it is decided by the adversary or the voter),
there is a process in which the voter can vote for c, and the adversary cannot
distinguish the process from the process in which the voter genuinely shares in-
formation with the adversary and uses the information prepared by the adversary.
Detailed formalisations are introduced in the next chapter (Chapter 3).





3

Preliminaries

As stated in Chapter 1, the design of cryptographic protocols is error-prone and
formal verification has shown its strength in proving or disproving correctness of
cryptographic protocols. To verify whether a protocol satisfies a claimed property,
a necessary step is to specify the protocol. Therefore, in this chapter, we first
introduce a formal language for modelling protocols – the applied pi calculus – in
Section 3.1. Given a protocol modelled in the applied pi calculus, many properties
can be automatically verified using the tool ProVerif. Thus, we introduce ProVerif
in the next section (Section 3.2). As stated in Chapter 2, we focus on formalising
enforced privacy following the DKR formal framework of modelling bribery and
coercion. Thus, we show several definitions in the DKR framework in Section 3.3.

3.1 The applied pi calculus

The applied pi calculus is a language for modelling and analysing concurrent sys-
tems, in particular cryptographic protocols. The following briefly introduces its
syntax, semantics and equivalence relations. It is mainly based on [AF01, RS10].

3.1.1 Syntax

The calculus assumes an infinite set of names , which are used to model communi-
cation channels or other atomic data, an infinite set of variables , which are used
to model received messages, and a signature Σ consisting of a finite set of function
symbols , which are used to model cryptographic primitives. Each function sym-
bol has an arity. A function symbol with arity zero is a constant. Terms (which
are used to model messages) are defined as names, variables, or function symbols
applied to terms (see Figure 3.1).

M,N, T ::= terms

a, b, c, m, n, . . . names

x, y, z variables

f(M1, . . . ,Mℓ) function application

Figure 3.1: Terms in the applied pi calculus.

Example 3.1 (function symbols and terms). Typical function symbols are enc with
arity 2 for encryption, dec with arity 2 for decryption. The term for encrypting x
with a key k is enc(x, k).
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The applied pi calculus assumes a sort system for terms. Terms can be of a base
type (e.g., Key or a universal base type Data) or type Channel〈ω〉 where ω is a
type. A variable and a name can have any type. A function symbol can only be
applied to and return, terms of base type. Terms are assumed to be well-sorted
and substitutions preserve types.

Terms are often equipped with an equational theory E – a set of equations on
terms. The equational theory is normally used to capture features of cryptographic
primitives. The equivalence relation induced by E is denoted as =E.

Example 3.2 (equational theory). The behaviour of symmetrical encryption and
decryption can be captured by the following equation:

dec(enc(x, k), k) =E x,

where x, k are variables.

Systems are described as processes: plain processes and extended processes (see
Figure 3.2). In Figure 3.2, M,N are terms, n is a name, x is a variable and v

P ,Q,R ::= plain processes

0 null process

P | Q parallel composition

!P replication

νn.P name restriction

if M =E N then P else Q conditional

in(v, x).P message input

out(v,M).P message output

A,B,C ::= extended processes

P plain process

A | B parallel composition

νn.A name restriction

νx.A variable restriction

{M/x} active substitution

Figure 3.2: Processes in the applied pi calculus.

is a metavariable, standing either for a name or a variable. The null process 0
does nothing. The parallel composition P | Q represents the sub-process P and
the sub-process Q running in parallel. The replication !P represents an infinite
number of process P running in parallel. The name restriction νn.P bounds the
name n in the process P , which means the name n is secret to the adversary. The
conditional evaluation M =E N represents equality over the equational theory
rather than strict syntactic identity. The message input in(v, x).P reads a message
from channel v, and bounds the message to the variable x in the following process
P . The message output out(v,M).P sends the message M on the channel v, and
then runs the process P . Extended processes add restriction on variables and active
substitutions. The variable restriction νx.A bounds the variable x in the process
A. The active substitution {M/x} replaces variable x with term M in any process
that it contacts with.
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Example 3.3 (process and protocol). In a protocol, A generates a nonce m, en-
crypts the message with a secret key k, then sends the encrypted message to B.
The process modelling the behaviour of A is:

QA := νm.out(ch, enc(m, k)).

where ch is a public channel.
The process modelling the behaviour B is:

QB := in(ch, x).

The process Q models the complete protocol, composed of A and B.

Q := νk.(QA | QB).

Names and variables have scopes. A name is bound if it is under restriction. A
variable is bound by restrictions or inputs. Names and variables are free if they are
not delimited by restrictions or by inputs. The sets of free names, free variables,
bound names and bound variables of a process A are denoted as fn(A), fv(A), bn(A)
and bv(A), respectively. A term is ground when it does not contain variables. A
process is closed if it does not contain free variables.

Example 3.4 (scopes of names and variables). In Example 3.3, ch is a free name
representing a public channel. Name k is bound in process Q; name m is bound in
process QA. Variable x is bound in process QB.

A frame is defined as an extended process built up from 0 and active substitutions
by parallel composition and restrictions. The active substitutions in extended
processes allow us to map an extended process A to its frame frame(A) by replacing
every plain process in A with 0.

Example 3.5 (frame). The frame of the process νm.(out(ch, x)) | {m/x}), denoted
as frame(νm.(out(ch, x)) | {m/x})) is νm.({m/x}).

The domain of a frame B, denoted as domain(B), is the set of variables for which
the frame defines a substitution.

Example 3.6 (domain). The domain of the frame in Example 3.5, denoted as
domain(νm.({m/x})) is {x}.

A context C[ ] is defined as a process with a hole, which may be filled with any
process. An evaluation context is a context whose hole is not under a replication,
a condition, an input or an output.

Example 3.7 (context). Process νk.(QA | ) is and evaluation context. When we
fill the hole with process QB, we obtain the process in Example 3.3.

Finally, we abbreviate the process νn1 · · · νnn as νñ, abbreviate the process
νn1 · · · νni−1.νni+1. · · · .νnn as νñ/ni (erasing process νni from νñ), and abbreviate
{M1/x1} · · · {Mn/xn} as {M1/x1, · · · ,Mn/xn}.
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3.1.2 Operational semantics

The operational semantics of the applied pi calculus is defined by: 1) structural
equivalence (≡), 2) internal reduction (→), and 3) labelled reduction (

α
−→) of pro-

cesses.

1) Informally, two processes are structurally equivalent if they model the same
thing but differ in structure. Formally, structural equivalence of processes is the
smallest equivalence relation on extended process that is closed by α-conversion on
names and variables, by application of evaluation contexts as shown in Figure 3.3.

PAR− 0 A | 0 ≡ A
PAR− A A | (B | C) ≡ (A | B) | C
PAR− C A | B ≡ B | A
REPL !P ≡ P | !P
SUBST {M/x} | A ≡ {M/x} | A{M/x}
NEW− 0 νu.0 ≡ 0
NEW− C νu.νv.A ≡ νv.νu.A
NEW− PAR A | νv.B ≡ νv.(A | B) if v 6∈ fn(A) ∪ fv(A)
ALIAS νx.{M/x} ≡ 0
REWRITE {M/x} ≡ {N/x} if M =E N

Figure 3.3: Structural equivalence in the applied pi calculus.

2) Internal reduction is the smallest relation on extended processes closed under
structural equivalence, application of evaluation of contexts as shown in Figure 3.4.

COMM out(c, x).P | in(c, x).Q → P | Q
THEN if N =E N then P else Q → P
ELSE if M =E N then P else Q → Q

for ground terms M,N where M 6=E N

Figure 3.4: Internal reduction in the applied pi calculus.

3) The labelled reduction models the environment interacting with the processes.
It defines a relation A

α
−→ A′ as in Figure 3.5. The label α is either reading a term

from the process’s environment, or sending a name or a variable of base type to
the environment.

3.1.3 Equivalences

The applied pi calculus defines observational equivalence and labelled bisimilarity to
model the indistinguishability of two processes by the adversary. It is proved that
the two relations coincide [AF01, Liu11]. We mainly use the labelled bisimilarity
for the convenience of proofs. Labelled bisimilarity is based on static equivalence:
labelled bisimilarity compares the dynamic behaviour of processes, while static
equivalence compares their static states (as represented by their frames).
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IN in(c, x).P
in(c,M)
−−−−→ P{M/x}

OUT− ATOM out(c, v).P
out(c,v)
−−−−→ P

OPEN− ATOM
A

out(c,v)
−−−−→ A′ v 6= c

νv.A
νv.out(c,v)
−−−−−−→ A′

SCOPE
A

α
−→ A′ v does not occur in α

νv.A
α
−→ νv.A′

PAR
A

α
−→ A′ bv(α) ∪ fv(B) = bn(α) ∩ fn(B) = ∅

A | B
α
−→ A′ | B

STRUCT
A ≡ B B

α
−→ B′ A′ ≡ B′

A
α
−→ A′

Figure 3.5: Labelled reduction in the applied pi calculus.

Definition 3.8 (static equivalence). Two terms M and N are equal in the frame
B, written as (M =E N)B, iff there exists a set of restricted names ñ and a
substitution σ such that B ≡ νñ.σ, Mσ =E Nσ and ñ ∩ (fn(M) ∪ fn(N)) = ∅.

Closed frames B and B′ are statically equivalent, denoted as B ≈s B
′, if

(1) domain(B) = domain(B′);
(2) ∀ terms M,N : (M =E N)B iff (M =E N)B′.

Extended processes A, A′ are statically equivalent, denoted as A ≈s A′, if their
frames are statically equivalent: frame(A) ≈s frame(A′).

Example 3.9 (equivalence of frames [AF01]). The frame B and the frame B′, are
equivalent. However, the two frames are not equivalent to frame B′′, because the
adversary can discriminate B′′ by testing y =E f(x).

B := νM.{M/x} | νN.{N/y}
B′ := νM.({f(M)/x} | {g(M)/y})
B′′ := νM.({M/x} | {f(M)/y})

where f and g are two function symbols without equations.

Example 3.10 (static equivalence). Process {M/x} | Q1 is static equivalent to
process {M/x} | Q2 where Q1 and Q2 are two closed plain process, because the
frame of the two processes are the statically equivalent, i.e., {M/x} ≈s {M/x}.

Definition 3.11 (labelled bisimilarity). Labelled bisimilarity (≈ℓ) is the largest
symmetric relation R on closed extended processes, such that ARB implies:
(1) A ≈s B;
(2) if A → A′ then B →∗ B′ and A′ RB′ for some B′;
(3) if A

α
−→ A′ and fv(α) ⊆ domain(A) and bn(α) ∩ fn(B) = ∅; then B →∗ α

−→→∗ B′

and A′ RB′ for some B′, where * denotes zero or more.
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3.2 ProVerif

The verification of protocols modelled in the applied pi calculus is supported by
an automatic verification tool ProVerif [Bla01, Bla02, Bla04]. The tool has been
used to verify many secrecy, authentication and privacy properties, e.g., see [AB05,
ABF07, BC08].

ProVerif takes a protocol and a property modelled in the applied pi calculus as
input, returns a proof of correctness or flaws as output. A protocol modelled in
the applied pi calculus is translated to Horn clauses [Hor51]. The adversary’s
capabilities are modelled as Horn clauses as well. Using these clauses, verification
of secrecy and authentication is equivalent to determining whether a particular
state is reachable in the execution of the protocol.

Secrecy of a term is defined as the adversary cannot obtain the term by com-
municating with the protocol and/or applying cryptography on the output of the
protocol [AB05]. The secrecy property is modelled as a predicate in ProVerif: the
query of secrecy of term M is “attack:M” [Bla01]. ProVerif determines whether
the term M can be inferred from the Horn clauses representing the adversary
knowledge.

Authentication is captured by correspondence properties of events in processes: if
one event happens the other event must have happened [ABF07, Bla09]. Events
are tags which mark important stages reached by the protocol. Events have argu-
ments, which allow us to express relationships between the arguments of events.
A correspondence property is a formula of the form: f〈M〉  g〈N〉. That is, in
any process if event f〈M〉 has been executed then the event g〈N〉 must have been
previously executed and any relationship between M and N must be satisfied. To
capture stronger authentication where an injective relationship between executions
of participants is required, an injective correspondence property f〈M〉 inj g〈N〉
is defined: in any process if event f〈M〉 is executed, there is a distinct earlier
occurrence of the event g〈N〉 being executed and the relationship between M and
N is satisfied.

A correspondence property f〈M〉  g〈N〉 can be translated into a secrecy prop-
erty, thus can be verified in ProVerif [Bla02]. The translation is as follows: the
begin event “g〈N〉.P” is replaced with “if N = N ′ then 0 else P” and the end
event “f〈M〉.P ′” is replaced with “out(c, auth(M)).P ′”. For any closed term N ′,
if the modified process preserves the secrecy of auth(N ′), the process satisfies the
correspondence property. The intuition is that when the process does not execute
event g〈N〉, the event f〈M〉 cannot be executed, thus, the event f〈M〉 should be
secret. This intuition is reflected in the translated process: given a term N ′ as the
parameter of the end event,

• if N = N ′, the process stops, meaning that if the original process tries to
execute g〈N〉, since the begin event is executed, the secrecy of the end event
does not reflect the verification result of the correspondence property, thus
the process stops;

• when N ′ 6= N , the original process does not execute g〈N〉, if the correspon-
dence property is satisfied, the secrecy of f〈N ′〉 in the translated process
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should hold, if the translated process does not satisfy secrecy of f〈N ′〉, then
the trace in which the secrecy of f〈N ′〉 is flawed shows that the end event is
executed without the begin event being executed before, thus the correspon-
dence property is not satisfied.

The predicate to query non-injective correspondence property f〈M〉  g〈N〉 is
ev:f(M) ==> ev:g(N) and the predicate to query injective correspondence property
f〈M〉 inj g〈N〉 is evinj:f(M) ==> evinj:g(N).

Secrecy and authentication are properties expressed as predicates on system be-
haviours. However, not all properties can be expressed as predicates on system
behaviours. Many of such properties can be expressed as equivalences of pro-
cesses, for example, strong secrecy which is defined as the adversary’s inability
to distinguish when the secret changes. Therefore, in addition, ProVerif provides
automatic verification of labelled bisimilarity of two processes which differ only in
the choice of some terms [BAF08]. An operation “choice[M,N ]” is introduced to
model the different choices of a term in the two processes. Using this operation,
the two processes can be written as one process – a bi-process .

Example 3.12. To verify the equivalence

νa.νb.out(ch, a).out(ch, e) ≈ℓ νa.νb.out(ch, b).out(ch, d)

where ch is a public channel, e and d are two free names, we can query the following
bi-process in ProVerif:

P := νa.νb.out(ch, choice[a, b]).out(ch, choice[e, d]).

Using the first parameter of all “choice” operations in a bi-process P , we obtain
one side of the equivalence (denoted as fst(P)); using the second parameters, we
obtain the other side (denoted as snd(P)).

Example 3.13. For the bi-process in Example 3.12, using the first parameter to
replace each “choice” operation, we obtain νa.νb.out(ch, a).out(ch, e), which is the
left hand side of the equivalence in Example 3.12; using the second parameter to
replace each “choice” operation, we obtain νa.νb.out(ch, b).out(ch, d), which is the
right hand side of the equivalence.

Given a bi-process P , ProVerif determines whether fst(P) is labelled bisimilar to
snd(P). The fundamental idea is that ProVerif tries to prove that the executions of
the bi-process are uniform: when fst(P) can do a reduction to some Q1, it implies
that the bi-process can do a reduction to some bi-process Q , such that fst(Q) ≡ Q1

and symmetrically for snd(P) taking a reduction to Q2.

ProVerif uses slightly different notations. We use both the notions in ProVerif and
the applied pi calculus for the convenience of expression. The notations represent-
ing the same thing is presented in Table 3.1.
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Notations in ProVerif Notations in applied pi
Equational theory reduc /equation M = N. M =E N
Substitution let x = M in P P{M/x}
Defining process let P = · · · . P := · · ·
Generating names/variables new n/x νn/x

Table 3.1: Different notations in ProVerif and applied pi.

3.3 The DKR framework

ProVerif has been successfully used for helping analyse enforced privacy properties
which are formalised for specific e-voting protocols, using the applied pi calcu-
lus [KR05, BHM08]. The specific formalisations of enforced privacy have been
generalised in the DKR framework [DKR09]. We introduce some definitions in the
framework which are mentioned in this thesis.

In the framework, a voting protocol with nv of voters and nad of authorities is
modelled as Pvote := νchandata.(PK | Pv 1 | · · · | Pv nv

| Pad 1 | · · · | Padnad
) where

Pv i is an instance of a voter, Pad j is an instance of an authority, chandata is a set
of private channel names and data, and PK generates and distributes keys.

One requirement in e-voting is to protect the link between a voter and his vote.
This requirement is captured by the privacy property vote-privacy as in Defini-
tion 3.14. Since the final result of a voting is normally published, when voters vote
unanimously, every voter’s vote is revealed. To avoid such situation, in the formal-
isation of vote-privacy, two voters are modelled and they need to vote differently.

Definition 3.14 (vote-privacy [DKR09]). A voting protocol Pvote respects vote-
privacy if Cv [PvA{a/vote} | PvB{c/vote}] ≈ℓ Cv [PvA{c/vote} | PvB{a/vote}] for
all possible a and c.

In the definition, Cv [ ] := νchandata.(PK | Pv 1 | · · · | Pv nv−2 | | Pad 1 | · · · |
Padnad

), PvA{a/vote} is a voter process in which the voted candidate vote is a,
similarly, PvB{c/vote} is another voter process in which the voted candidate vote
is c. On the right-hand side, the two voter processes swap voted candidates.

On top of vote-privacy, two enforced privacy properties are formalised: receipt-
freeness and coercion-resistance. Receipt-freeness ensures that a voter cannot prove
his vote to a vote-buyer. Coercion-resistance is defined to capture the requirement
that a coercer should not be able to enforce a voter to vote in a certain way. In
order to formalise the two enforced privacy properties, the behaviour of a bribed
or coerced user needs to be formalised first.

The bribery of a voter is formalised as the voter forwarding all private information
to the adversary over a fresh channel. Formally, the bribed behaviour of voter Pv

is given by Pchc

v which is defined as follows:

Definition 3.15 (process P chc [DKR09]). Let P be a plain process and chc a fresh
channel name. P chc, the process that shares all of P ’s secrets, is defined as:

• 0chc =̂ 0,
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• (P | Q)chc =̂ P chc | Qchc,

• (νn.P )chc =̂ νn.out(chc, n).P chc when n is a name of base type,

• (νn.P )chc =̂ νn.P chc otherwise,

• (in(v, x).P )chc =̂ in(v, x).out(chc, x).P chc when x is a variable of base type,

• (in(v, x).P )chc =̂ in(v, x).P chc otherwise,

• (out(v,M).P )chc =̂ out(v,M).P chc,

• (!P )chc =̂ !P chc,

• (if M =E N then P else Q)chc =̂ if M =E N then P chc else Qchc.

Delaune et al. also define the process transformation A\out(chc,·), which can be
considered as the process A hides out(chc, ·) (the outputs on the channel chc).

Definition 3.16 (process A\out(chc,·) [DKR09]). Let A be an extended process. We
define the process A\out(chc,·) as νchc.(A |!in(chc, x)).

Using the above two definitions, receipt-freeness is defined as follows: There ex-
ists a process in which the bribed/coerced voter can lie to the adversary and the
adversary cannot tell whether the voter lied.

Definition 3.17 (receipt-freeness [DKR09]). A voting protocol Pvote is receipt-free
if there exists a closed plain process Pf such that

• Pf
\out(chc,·) ≈ℓ PvA{a/vote},

• Cv [PvA{c/vote}
chc | PvB{a/vote}] ≈ℓ Cv [Pf | PvB{c/vote}]

Process Pf is the process in which the voter lies to the adversary The first equiva-
lence shows the real behaviour of process Pf . The second equivalence shows that
the adversary cannot tell whether the voter lied.

The coercion of a voter is defined as that the adversary is able to communicate
with the coerced voter during the voting procedure. This is modelled by adding to
the bribery behaviour the ability for the adversary to prepare information for the
coerced voter to use. Formally, the coerced behaviour of Pv is given by Pv

cout ,cin

which is defined in Definition 3.18.

Definition 3.18 (process Pcout ,cin [DKR09]). Let P be a plain process and cout , cin
be channel names. We define Pcout ,cin as follows:

• 0cout ,cin =̂ 0,

• (P | Q)cout ,cin =̂ P cout ,cin | Qcout ,cin ,

• (νn.P )cout ,cin =̂ νn.out(cout , n).P
cout ,cin when n is a name of base type,

• (νn.P )cout ,cin =̂ νn.P cout ,cin otherwise,
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• (in(v, x).P )cout ,cin =̂ in(v, x).out(cout , x).P
cout ,cin when x is a variable of base

type,

• (in(v, x).P )cout ,cin =̂ in(v, x).P cout ,cin otherwise,

• (out(v,M).P )cout ,cin =̂ out(v,M).P cout ,cin ,

• (!P )cout ,cin =̂ !P cout ,cin ,

• (if M =E N then P else Q)cout ,cin =̂ if M =E N then P cout ,cin else Qcout ,cin .

Coercion-resistance is defined similarly to receipt-freeness. The difference is that in
coercion, the coerced voter’s vote may be decided by the adversary, since the adver-
sary may prepare information for the coerced voter. For the simplicity of modelling,
the adversary’s ability of providing information for the coerced voter is separated
from the ability to distinguish two processes. The adversary’s ability to provide
information is modelled as a context C[ ] := νcout .νcin .( | P) where P models
the adversary’s behaviour, cout and cin are the two communication channels be-
tween the adversary and the coerced voter. What the adversary wants the coerced
voter to vote is modelled by an equivalence Cv [C[PvA{?/vote}] | PvB{a/vote}] ≈ℓ

Cv [(PvA{c/vote})
chc | PvB{a/vote}]. The right side of the equivalence decides the

vote. On the left side, symbol “?” is used to represent any candidate, as no matter
what the symbol is replaced with, it does not affect the vote.

Definition 3.19 (coercion-resistance [DKR09]). A voting protocol Pvote satisfies
coercion-resistance if there exists a closed plain process Pf such that for any C[ ] :=
νcout .νcin .( | P) satisfying ñ∩ fn(C[ ]) = ∅ and Cv [C[PvA{?/vote}] | PvB{a/vote}]
≈ℓCv [(PvA{c/vote})

chc | PvB{a/vote}], we have

• C[Pf ]
\out(chc,·) ≈ℓ PvA{a/vote}

• Cv [C[PvB{?/vote}
cout ,cin ] | Pv j{a/vote}] ≈ℓ Cv [C[Pf ] | Pv j{c/vote}]

Intuitively, a protocol satisfies coercion-resistance, if for any successful coercion
(the coerced voter follows the adversary’s instructions and successfully votes the
candidate desired by the adversary), there exists a process Pf in which the coerced
voter can diverge from the coerced behaviour and vote a different candidate; in
addition, the adversary cannot tell whether the coerced voter genuinely follows his
instruction.
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Enforced privacy in e-auctions

Besides e-voting, enforced privacy requirements have also been identified in the
e-auction domain. Unlike in the e-voting domain, enforced privacy has not been
formally defined in e-auctions. In this chapter, we briefly introduce e-auctions, and
then discuss privacy and enforced privacy requirements in the e-auction domain.
Next we formalise privacy and enforced privacy in e-auctions. Finally we verify
the formalised privacy properties of an e-auction protocol in a case study.

4.1 Introduction to e-auctions

Auctions are ways to negotiate exchange of goods and services. We use e-auctions
to refer to auctions over the Internet. A typical (e-)auction works as follows: a
seller offers items to bid, then bidders submit bids, finally auctioneers decide the
winner. Compared to the traditional auctions, where bidders attend the auction
in person, e-auctions attract more participants, as users with the Internet can join
an auction. Real-life examples are websites like eBay, eBid, Yahoo!auctions and
so on.

There are different types of (e-)auctions. For instance, depending on whether the
bids are public, there are sealed-bid auctions and open-bid auctions.

• Sealed-bid auctions : There are two phases in an auction: the bidding phase
and the opening phase. Bidders can only submit bids in the bidding phase.
All bids are sealed in the bidding phase and opened in the opening phase.

• Open-bid auctions : Bids are broadcast to all participants.

Other criteria to classify (e-)auctions exist. For example, depending on the bidding
price increases or decreases, there are English auctions (A bid needs to be higher
than the previous one; the winning bid is the final bid) and Dutch auctions (The
bidding price decreases until a bid is submitted); depending on the calculation
of payment, there are first-price auctions (The winner pays the price he bid, the
highest price) and Vickrey auctions (The winner pays the second highest price).
Different auctions are suitable for different types of negotiations, e.g., English
auctions are often used in real estate, Dutch auctions are often used in flower
selling, and Vickrey auctions are favoured by economists as that Vickrey auctions
are better at encouraging bidders to express their real estimation on the value of
the items to bid on [Tre07].

This chapter is based on published work [FAST10]

29
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4.2 Privacy and enforced privacy in e-auctions

Many security issues have been identified in e-auctions, such as, a bidder may
falsely claim or forge bids, a seller may not deliver goods, the auctioneer may
corrupt with other bidders [Tre05]. Beside security issues, an important problem
with existing e-auction systems is privacy. The link between a bidder and his bids
needs to be protected as such information can be used to target a bidder with
unsolicited junk mails or other malicious purposes, e.g., bid shielding1. A major
challenge of designing a protocol is to ensure the functionality of the protocol. In
addition to that, a challenge for designing a privacy preserving e-auction protocol
is that too much anonymity may allow bidders to repudiate bids: if nothing can
be learned about the bids, the winning bidder can simply not claim to have won,
and no one can identify him. On the other hand, insufficient anonymity may allow
bidders to be profiled.

Depending on different types of auctions, privacy may have varying levels. For
instance, in sealed-bid auctions, all bids are sealed until the winner is determined,
thus, if auctioneers can decide the winners without knowing the non-winning bid-
der’s bids, sealed-bid auctions can offer bidding-price secrecy for non-winning bid-
ders; while in open-bid auctions, all the bids are published. Some auctions require
that the auctioneer cannot link a bidder to his bids, whereas some others do not.
The arguments of this are made according to the following lines. In Vickery auc-
tions, a bidder’s bid reflects the bidder’s valuation of the item bid on. Knowing a
bidder’s bid, an auctioneer knows the bidder’s valuation. Since the winning bid-
der pays the second highest price, the auctioneer could enter a bid just under the
bidder’s valuation, to increase the auction’s revenue [Tre07]. Contrarily in English
auctions, a bidder’s previous bids reveal less information of the bidder’s future bid,
thus, that the auctioneer knows the link between a bidder and his previous bids is
less harmful [Tre07]. In general, sealed-bid e-auctions require that the non-winning
bidder’s bidder-bid relation should be kept secret.

In addition to the above privacy notions, a stronger privacy notion – enforced
privacy – has also been identified. In sealed-bid e-auctions, a bidder may be coerced
to bid a low price, so that the coercer can win an auction with an unreasonably
low price. The phenomenon that a coercer tries to control the winning price by
coercion is call bid-rigging. Note that the traditional auctions do not suffer from
bid-rigging, as the bidders do not have receipts on submitting a bid [HGP09].
Inspired by the requirement of receipt-freeness in e-voting that a voter should not
be able to prove his vote to a voter-buyer, the requirement of receipt-freeness for
fighting against bid-rigging has been identified [SM00].

In general, the following two privacy notions are required in sealed-bid e-auctions:

Bidding-price-secrecy for non-winning bidders: An e-auction protocol pre-
serves bidding-price-secrecy for non-winning bidders if the adversary cannot
determine the bidding price of any non-winning bidder.

1A dishonest bidder submits a higher price to deter other bidders with lower valuations, when
it approaches the close time of the auction, the dishonest bidder withdraws his bid in order to
win with another lower bid from him.
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Receipt-freeness for non-winning bidders: An e-auction protocol is receipt-
free for non-winning bidders if a non-winning bidder cannot prove how he
bids to the adversary.

4.3 Formalisation of privacy notions

We formalise the above two privacy notions using the applied pi calculus in the
context of sealed-bid e-auctions. An e-auction protocol normally involves two roles:
bidders and auctioneers. An e-auction protocol with nb bidders and nau auctioneers
can be modelled as:

Pbid := νchandata.(PK | Pb1 | · · · | Pbnb
| Pa1 | · · · | Panau

),

where Pb i is an instance of a bidder process, Pa j is an instance of an auctioneer
process, PK is the key distribution process, and chandata models private data and
private channels. The corresponding context in where two bidder processes are
replaced with a hole is formalised as:

Cb [ ] := νchandata.(PK | Pb1 | · · · | Pbnb−2 | | Pa1 | · · · | Panau
).

4.3.1 Bidding-price-secrecy

Bidding-price-secrecy for non-winning bidders can be formalised in two levels: stan-
dard bidding-price-secrecy and strong bidding-price-secrecy. Standard bidding-
price-secrecy is formalised as the adversary cannot derive the bidding price of a
non-winning bidder. Strong bidding-price-secrecy is formalised as the adversary
cannot even distinguish between the case when a bidder bids for price a and the
case when the bidder bids for price c. In other words, the adversary cannot tell
whether a bidder changes his bidding price from a to c.

Formalisation similar to strong bidding-price-secrecy has been used, e.g., vote-
privacy [DKR09]: a process in which voter vA votes for a (PvA{a/vote}) and voter
vB votes for c (PvB{c/vote}) is observationally equivalent to a process where vA
votes for c (PvA{c/vote}) and vB votes for a (PvB{a/vote}). The idea is that
even if all other voters reveal how they voted, the adversary cannot deduce the
votes of voter vA and voter vB , given voter vA and voter vB counterbalance each
other. Different from privacy in voting where the voting result is published, in
sealed-bid e-auction protocols, normally a non-winning bidder’s bidding price is
not published. Therefore, we do not need a counterbalancing process. Instead, we
need a process in which a bidder bids for a higher price so that non-winning bids
are not revealed in the opening phase. Therefore, strong bidding-price-secrecy is
formalised as follows:

Definition 4.1 (strong bidding-price-secrecy for non-winning bidders). An auction
protocol Pbid , with a bidder sub-process represented as Pb, satisfies strong bidding-
price-secrecy for non-winning bidders, if for all possible bidders bA and bB we have:

Cb [PbA{a/pb} | PbB{d/pb}] ≈ℓ Cb [PbA{c/pb} | PbB{d/pb}]

with a < d and c < d.
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The context Cb [ ] is used to capture the assumption made on the checked protocol,
usually it includes the other honest participants in the protocol. The process PbA

is a non-winning bidder process executed by bidder bA. The process PbB is a bidder
process in which the bidder bB bids for a higher price d. The intuition is that the
adversary cannot determine whether a non-winning bidder bids for price a or price
c, provided there exists another bidder who bids for a higher price d.

4.3.2 Receipt-freeness

Similar to receipt-freeness in e-voting, when modelling receipt-freeness for non-
winning bidders in e-auctions, we also need to model the situation in which a bidder
wants to provide his secret information to the adversary. We use the definition in
e-voting (Definition 3.15) directly in our model. Intuitively, a bidder, who is willing
to share information with the adversary, sends any input of base type, any freshly
generated names of base type to the adversary through a fresh public channel chc.
Note that public channels are under the adversary’s control.

Now, we can define receipt-freeness for sealed-bid e-auction protocols. Again, we
need a bidder process PbB in which bidder bB bids for a higher price d, so that non-
winning bids are not revealed. Intuitively, if a non-winning bidder has a strategy to
cheat the adversary, and the adversary cannot tell the difference between whether
the bidder cheats or not, then the protocol is receipt-free.

Definition 4.2 (receipt-freeness for non-winning bidders). An auction protocol
Pbid , with a bidder sub-process Pb, satisfies receipt-freeness for non-winning bid-
ders, if there exists a closed plain process Pf such that:

1. Pf
\out(chc,·) ≈ℓ PbA{c/pb},

2. Cb [PbA{a/pb}
chc | PbB{d/pb}] ≈ℓ Cb [Pf | PbB{d/pb}]

with a < d and c < d.

Process Pf is a bidder process in which bidder bA bids for price c but communicates
with the adversary and tells the adversary he bids for price a. Process PbA{c/pb} is
a bidder process in which bidder bA bids for price c. Process PbA{a/pb}

chc is a bidder
process in which bidder bA bids for price a and shares his secret with the adversary.
Process PbB is a bidder process in which bidder bB bids for a higher price d. The
first equivalence says that ignoring the outputs bidder bA makes on the channel
chc to the adversary, Pf looks like a normal process in which bA bids for price c.
The second equivalence says that the adversary cannot tell the difference between
the situation in which bA obeys the adversary’s commands and bids for price a,
and the situation in which bA pretends to cooperate but actually bids for price c,
provided there is a bidding process PbB that bids higher, ensuring that bidding
processes PbA and Pf are not winners. Receipt-freeness is a stronger property than
bidding-price-secrecy, for the same reason as receipt-freeness in e-voting is stronger
than vote-privacy (as shown [DKR09]).
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4.4 Case study: the AS02 protocol

After receipt-freeness has been identified in sealed-bid e-auctions. Abe and Suzuki
proposed the first protocol which aims to prevent bid-rigging – the AS02 pro-
tocol [AS02]. In this section, we analyse both bidding-price-secrecy and receipt-
freeness for non-winning bidders in the AS02 protocol. ProVerif code is available
at [1].

4.4.1 Introduction

This protocol is a sealed-bid e-auction protocol. The protocol involves n bidders
b1, . . . , bn and k auctioneers a1, . . . , ak. The list of all prices allowed for bids is
published before the protocol. During the protocol, each bidder sends a commit
for every price in the price list: a ‘bid’ if he wants to bid that price, and a ‘non-bid’
otherwise. Auctioneers work together to open the commitments of all bidders from
the highest price down until the winning bid(s) is/are found.2

4.4.2 Physical assumptions

In order to ensure privacy of bidders, the protocol has two physical assumptions:

• a1: a bidding booth for the bidders, and

• a2: a one-way untappable channel from every bidder to every auctioneer.

The bidding booth enables a bidder to privately submit a bid free from control or
observation of the adversary. The untappable channels ensure no adversary can
see messages sent.

4.4.3 Settings

Before starting the protocol, one auctioneer publishes an increasing price list
p1, . . . , pm, a message Myes for “I bid”, a message Mno for “I do not bid”, a gener-
ator g of subgroup of Z∗

p with order q, where q, p are large primes with p = 2q+1.

4.4.4 Description of the protocol

The protocol consists of two phases: bidding and opening.

Bidding phase. A bidder in the bidding booth chooses a secret key x, publishes
his public key h = gx with a predetermined signature. Then the bidder chooses
a series of random numbers r1, . . . , rm as secret seeds, one random number for
each price, and decides a price pb to bid for. Then he generates either a “bid” or

2The protocol does not specify how to resolve the case where there are fewer bidding items
than winners.
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ssk , spk, p1, . . . , pm
bidderj

spk, p1, . . . , pm
auctioneeri

generate sk
sign(pk(sk), ssk)

generate r1, . . . , rm

choose price pb

compute Commit1, . . . ,Commitm

sign((Commit1, . . . ,Commitm), ssk)

interactive zero-knowledge proof:
originator of the commitments

compute ri1, . . . , r
i
m i ∈ {1, . . . , k}

sign((ri1, . . . , r
i
m), ssk)

find the winner with other auctioneers

msc [AS02]

Figure 4.1: The AS02 protocol.

a “non-bid” bit-commitment for each price pℓ (1 ≤ ℓ ≤ m), using the following
formula:

Commit ℓ =

{

gMyeshrℓ if pℓ = pb (a bid for price pℓ)
gMnohrℓ if pℓ 6= pb (a non-bid for price pℓ)

Next, the bidder publishes the sequence of the bit-commitments with his signature.
Then he proves to each auctioneer that he knows the secret key logg h = x and the
discrete logs (logg Commit1, . . . , logg Commitm) using interactive zero-knowledge
proofs. Finally, he computes t-out-of-k3 secret shares riℓ for each secret seed rℓ
and each auctioneer ai, and then sends the signed secret share riℓ over the one-way
untappable channel to the auctioneer ai (see Figure 4.1).

Opening phase. Auctioneers together iterate the following steps for each price
pℓ = pm, pm−1, . . . , p1 until the winning bid is determined.

Each auctioneer ai publishes secret shares r
i
ℓ (the ℓ-th secret share of a bidder sent

to auctioneer ai) of all bidders. For each bidder, all auctioneers work together to

3t is a threshold, k is the number of auctioneers, it means only more than t auctioneers together
can reconstruct the secret seeds.
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reconstruct the secret seed rℓ, and check for each bidder whether

Commit ℓ
?
= gMyeshrℓ .

If there exist some bidders for which the above equivalences are satisfied, the
auctioneers finish checking the current price and then stop. In this case, the price
pℓ is the winning price, those bidders are winning bidders. If there is no equivalence
existing, which means there is no bidder bidding for the price pℓ, the auctioneers
repeat the above process on the next lower price.

4.4.5 Claimed privacy properties

The authors claim the following properties: bidding-price-secrecy and receipt-
freeness for non-winning bidders. Intuitively, the bidding price of each bidder
is sealed in the bidding phase, and only the winning bidder’s bidding price is re-
vealed in the opening phase, thus the adversary does not know the bidding price for
non-winning bidders, thus standard bidding-price-secrecy is satisfied. The strong
bidding-price-secrecy is satisfied mainly due to the random number used in calcu-
lating the bit-commitments.

Informal reasoning of receipt-freeness. We use M to represent either Myes or Mno ,
the formula for computing Commit ℓ is of the following form:

Commit ℓ = gM · hrℓ = gM · (gx)rℓ = gM+xrℓ ,

since h = gx. Thus, logCommit ℓ = M + xrℓ. By using interactive zero-knowledge
proofs, a bidder is proved to know his secret key x and discrete logs logCommit ℓ.
An interesting property of chameleon bit-commitments is that if the bidder bids
for price pℓ,

logCommit ℓ = Myes + xrℓ

he can calculate a fake r′ℓ such that:

logCommit ℓ = Mno + xr′ℓ and r′ℓ = (Myes + xrℓ −Mno)/x.

Using the fake r′ℓ, the bidder can show that the bit-commitment Commit ℓ is opened
as message Mno , which means bidder did not bid for price pℓ. Using the same
method, a bidder can open a ‘no’ bit-commitment as a ‘yes’ bit-commitment.
Thus, the commit leaks no information concerning the bid, thus the bidder cannot
prove how he bid, e.g. receipt-freeness is satisfied.

4.5 Modelling AS02

We use the applied pi calculus to model the AS02 protocol. We use two simplifi-
cations:

• s1: one honest auctioneer; and

• s2: perfect zero knowledge proofs.
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In the protocol, auctioneers are cooperating to find the winning bid. It takes at
least t auctioneers to decide the winner, thus guaranteeing t-out-of-k secrecy. As
we focus on bidder privacy, we need to consider only one honest auctioneer. Thus,
we simplify the model to have only one honest auctioneer. The AS02 protocol uses
interactive zero knowledge proofs to guarantee that each bidder knows his secret
key and the discrete logs of bit-commitments. However, the details of these proofs
are left unspecified, and thus we did not include them in the model. We simply
assume that each bidder knows his secret key and discrete logs of bit-commitments.

In addition, the AS02 does not specify how the auctioneers tell the signed public
key from the signed commitments generated by the same bidder. In order for the
auctioneer to distinguish the two messages, in our modelling,

• s3: we use a symbol k in the signed public key messages.

Signature and equational theory. The signatures and the equational theory model
cryptographic primitives used in the protocol. We fix a list of bidders (b1, . . . , bn)
and an ordered list of prices (p1, . . . , pm), which are modelled as functions with
arity 0. We define function nextbidder to find the next bidder in the bidder list, and
function nextprice to find the next lower price in the price list. Function checksign
is used to check whether the public signature key is the right one for the signed
message, and we use function getmsg to get the original message from a signed
message. Particularly, chameleon bit-commitments are modelled as a function
commit with arity 3 (a random number, public key of the bidder and message M
either Myes or Mno). The relevant properties of chameleon bit-commitments are
captured in the following equational theory.

commit(r, pk(sk b),Myes) =E commit(f(r), pk(sk b),Mno)
commit(r, pk(sk b),Mno) =E commit(f(r), pk(sk b),Myes)

open(commit(r, pk,m), r, pk) =E m

Constants Mno and Myes represent “I do not bid” and “I bid”, respectively. The
parameter pk(sk b) is the public key of a bidder, and r is the secret seed the bidder
chooses. Function f(r) returns the fake secret seed of a secret seed r. We can
model the function f by just giving one parameter - the real secret seed. Because we
assume that each bidder knows his secret key and discrete logs of bit-commitments,
he can compute the fake secret seed for each real secret seed, as explained in the
previous section. The first equivalence means that if a bidder chooses a secret seed
r, bids for a price, and calculates the bit-commitment commit(r, pk(sk b),Myes), he
can compute a fake secret seed f(r), and by using this fake secret seed, the bit-
commitment can be opened as message Mno , which means “I do not bid”. The
second equivalence shows that the opposite situation also holds. A bidder can also
open a bit-commitment as if he bids for that price, when actually he does not. All
functions defined in this model are shown in Figure 4.2 and the equational theory
is shown in Figure 4.3. Recall that fun is used to denote function in ProVerif, and
reduc and equation are used to denote the equational theory in ProVerif.

Main process. For each bidder bj , the main process (see Figure 4.4) generates two
private channels privchbj (m1) and privchabj (m2). These channel are used for
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fun b1/0, . . . , fun bn/0, fun p1/0, . . . , fun pm/0, fun Myes/0, fun Mno/0,
fun true/0, fun pk/1, fun commit/3, fun sign/2, fun f/1, fun k/0.

Figure 4.2: Functions.

reduc nextbidder(b1) = b2.
. . .
reduc nextbidder(bn−1) = bn.
reduc nextbidder(bn) = ⊥.
reduc nextprice(pm) = pm−1.
. . .
reduc nextprice(p2) = p1.
reduc nextprice(p1) = ⊤.
reduc checksign(pk(sk), sign(m, sk)) = true.
reduc getmsg(sign(m, sk)) =m.
equation commit(r, pk(sk b),Myes) = commit(f(r), pk(sk b),Mno).
equation commit(r, pk(sk b),Mno) = commit(f(r), pk(sk b),Myes).
reduc open(commit(r, pk,m), r, pk) =m

Figure 4.3: Equational theory.

instantiating a bidder process. In particular, a bidder receives his secret signing key
from channel privchbj ; and the auctioneer receives the corresponding public key
from channel privchabj . In addition, the main process generates an untappable

channel untapchbj for bidders bj (m3). The untappable channel is shared between
each bidder and the auctioneer. The private channels synchb1 , . . . , synchbn are
generated for modelling convenience (m4). These channels are used by the auc-
tioneer to collect all necessary information before moving to the opening phase.
The main process launches a key generating process PK (m5), n instantiations
of the bidder process (m5-m8) and an instance of the auctioneer process (m8).
Four variables need to be instantiated in an instance of bidder process: the bid-
ding price pb, the untappable channel untapch, the private channel privch and the
public channel for that bidder ch. Note that pb1 , . . . , pbn are parameters, each of
these parameters has to be instantiated with a constant in the published price list
p1, . . . , pm. For the simplicity of modelling, each bidder bj has a distinct public
channel chbj . The correspondence between privchabj , untapchbj and chbj allows
the auctioneer to distinguish messages from the same bidder. In this way, we avoid
modelling the auctioneer classifying messages by bidders (by checking signatures).

Key distribution process. This process generates and distributes keying material
modelling a PKI – public key infrastructure (Figure 4.5). This process first gen-
erates n secret keys (k1). Each bidder bj has one secret key sskbj for signing
messages. Each secret key corresponds to a public key (k2-k4). Each secret key
is assigned to a bidder process by being sent to the bidder over the private chan-
nel privchbj for that bidder (k5). The corresponding public key is sent to the

auctioneer over the private channel privchabj (k6) and is published over the pub-
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PAS02 :=
m1. νprivchb1 .νprivchb2 . · · · .νprivchbn .
m2. νprivchab1 .νprivchab2 . · · · .νprivchabn .
m3. νuntapchb1 .νuntapchb2 . · · · .νuntapchbn .
m4. νsynchb1 .νsynchb2 . · · · .νsynchbn .
m5. (PK | (let pb = pb1 in let untapch = untapchb1 in

m6. let privch = privchb1 in let ch = chb1 in Pb) |
m7. · · · | (let pb = pbn in let untapch = untapchbn in

m8. let privch = privchbn in let ch = chbn in Pb) | Pa)

Figure 4.4: The main process.

lic channel chbj such that the adversary knows the keys (k7). Therefore, only
a bidder knows his own secret key, and everyone including the adversary knows
each bidder’s public key. Sending each public key to the auctioneer over a private
channel, models the following protocol setting: There are fix number of bidders in
sealed-bid auctions, and the auctioneer knows each bidder’s public signing key as
predetermined knowledge.

PK :=
k1. νsskb1 .νsskb2 . · · · .νsskbn .
k2. let spkb1 = pk(sskb1) in

k3. · · ·
k4. let spkbn = pk(sskbn) in

k5. (out(privchb1 , sskb1) | · · · | out(privchbn , sskbn) |
k6. out(privchab1 , spkb1) | · · · | out(privchabn , spkbn) |
k7. out(chb1 , spkb1) | · · · | out(chbn , spkbn))

Figure 4.5: The key distribution process.

Bidder process. The applied pi calculus process for a bidder Pb is given in Fig-
ure 4.6. First, a bidder receives his secret signature key from his private channel
(b1). Next, the bidder generates his secret key skb, signs the corresponding public
key and publishes the signed message (b2). To indicate that this message contains
a key, we add k into the message (see s3). In addition, the bidder chooses a series
of random numbers r1, . . . , rm as secret seeds (b3). The bidder then computes
each bit-commitment cmtpℓ as described in Section 4.4.4. For each price, the bid-
der computes a commitment: if the price is the bidding price, then the bidder
commits ‘yes’ with Myes , otherwise, the bidder commits ‘no’ with Mno (b4-b9).
Finally, the bidder publishes the series of bit-commitments cmtp1 , . . . , cmtpm with
his signature (b10), and sends the signed series of secret seeds to the auctioneer
through the untappable channel (b11). As we assume there is only one honest
auctioneer in the model, we do not need to model secret shares.

Auctioneer process. During the bidding phase, the auctioneer launches n copies
of sub-process readinfo to gather information from each bidder bj (a1).
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Pb :=
b1. in(privch, ssk b).
b2. νskb.out(ch, sign((pk(skb), k), ssk b)).
b3. νr1. · · · .νrm.
b4. if p1 = pb
b5. then let cmtp1 = commit(r1, pk(skb),Myes) in

b6. else let cmtp1 = commit(r1, pk(skb),Mno) in

. . .
b7. if pm = pb
b8. then let cmtpm = commit(rm, pk(skb),Myes) in

b9. else let cmtpm = commit(rm, pk(skb),Mno) in

b10. out(ch, sign((cmtp1 , · · · , cmtpm), ssk b)).
b11. out(untapch, sign((r1, · · · , rm), ssk b))

Figure 4.6: The bidder process.

In details, the auctioneer collects public signature key spkbj (r1) and the signed
committing public key signedpk (supposed to be sign((pk(sk bj), k), ssk bj)) (r2).
The auctioneer verifies whether the committing public key is signed with the right
signature (r3) and obtain the committing public key from signedpk (r4). Next, the
auctioneer reads in the signed commitments signedcommitbj of bidder bj (r5) and
verifies the signature (r6). If the commitments are correctly signed, the auctioneer
obtains the series of bit-commitments cmtp1bj , . . . , cmtpmbj (r7), then the auctioneer

reads in the signed secret seeds sr from the untappable channel of bidder bj (r8).
The auctioneer verifies the signature (r9). If the secret seeds are correctly signed,
the auctioneer obtains the secret seeds ssp1bj , . . . , ss

pm
bj

(r10). Finally, the auctioneer
sends the signal that information collecting for bidder bj has finished, over the
channel synch (r9). In addition, the collected information (the committing public
key, the commitments, the secret seeds) is sent to the sub-process in which the
winning bidder is determined.

Next the auctioneer needs to synchronise with all bidders (a2). The auctioneer pro-
cess is not allowed to continue until all bidders reach the end of the bidding phase.

In the opening phase, the auctioneer evaluates cmtpmbj
?
= commit(sspmbj , pkbj ,Myes)

for each bidder (a3, a7, a12). If the two values are equivalent for the first bidder
b1 (a3), bidder b1 has bid for that price, otherwise, bidder b1 has not bid for that
price. When bidder b1 has bid for that price, the auctioneer publishes the bidder
together with the price over the public channel winnerch (a4), then the auctioneer
checks the evaluation for the next bidder (if exists) (a7). Once the auctioneer
has evaluated for every bidder (a5) and has determined the set of winning bid-
ders (a4), he stops the process (a6). When bidder b1 has not bid for that price,
the auctioneer checks the evaluation for the next bidder (if exists) (a12). Once
the auctioneer has evaluated for every bidder and no winner has been found (a8),
the auctioneer repeats the evaluation steps for each bidder at the next lower price
(a11). If the next lower price does not exist (a9), the process stops (a10) and no
bidder has bid for any price. In a similar way, the sub-process checknextb

pj
bi

is used
to evaluate the bid of a bidder bi at price pj, if there are already some winners
before bidder bi. And the sub-process checknextbnp

pj
bi

is used to check the next
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Pa :=
a1. let ch = chb1 in let privcha = privchab1 in

let synch = synchb1 in let untapch = untapchb1 in readinfo |
· · · |
let let ch = chbn in let privcha = privchabn in

let let synch = synchbn in untapch = untapchbn in readinfo |
a2. in(synchb1 , (pkb1 , cmtp1b1 , . . . , cmtpmb1 , ss

p1
b1
, . . . , sspmb1 )).

· · · .
in(synchbn , (pkbn , cmtp1bn , . . . , cmtpmbn , ss

p1
bn
, . . . , sspmbn )).

a3. if cmtpmb1 = commit(sspmb1 , pkb1 ,Myes)
a4. then out(winnerch, (pm, b1)).
a5. if nextbidder(b1) = ⊥
a6. then 0
a7. else checknextbpm

nextbidder(b1 )

a8. else if nextbidder(b1) = ⊥
a9. then if nextprice(pm) = ⊤
a10. then 0

a11. else checknextbnp
nextprice(pm )
b1

a12. else checknextbnppm
nextbidder(b1 )

Figure 4.7: The auctioneer process.

bidder at price pj, if there is no winner before that bidder. We use ⊥ and ⊤ to
represent the end of the bidder list and price list, respectively.

In the sub-process checknextb
pj
bi
, the auctioneer checks whether the bidder bi has

bid for price pj (n1). If the bidder bi has bid for pj, bi is a winning bidder. The
auctioneer publishes the winning bidder bi and the winning price pj (n2). Note
that since there already exists one or more winning bidders, bi is not the first
winner. The auctioneer checks whether the bidder bi is the last bidder (n3). If
bi is the last bidder, the auctioneer has found all winning bidders, thus stops the
opening process (n4); otherwise, the auctioneer checks the evaluation for the next
bidder at the same price (i.e., whether the next bidder is also a winner) (n5).

In the sub-process checknextbnp
pj
bi
, the auctioneer first checks whether the bidder

bi has bid for price pj (p1). If the bidder bi has bid for pj, bi is a winner. The
auctioneer publishes the bidder bi and the winning price pj (p2). Since there is
no winning bidder found before, bi is the first winner. Then the auctioneer checks
whether the bidder bi is the last bidder (p3). If bi is the last bidder, bidder bi is
the only winner. Since the auctioneer has found all winners, he stops the opening
process (p4). Otherwise, the auctioneer checks whether the next bidder is also a
winner (p5). Note that since there is already a winner bi, the auctioneer use the
process checknextb

pj
nextbidder(bi)

. If the bidder bi has not bid for pj, the auctioneer

checks whether the bidder is the last bidder (p6). If bi is the last bidder, since
there is no bidder bid for price pj before bi and bi has not bid for pj , there is
no bidder bid for price pj. Thus, the auctioneer checks the evaluations for every
bidder at the next lower price pj−1. To do so, the auctioneer first checks whether
pj−1 is the bottom (whether pj is already the lowest price in the price list) (p7).
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readinfo :=
r1. in(privcha, spk).
r2. in(ch, signedpk).
r3. if checksign(signedpk , spk) = true
r4. then let (pk,= k) = getmsg(signedpk) in

r5. in(ch, signedcommit).
r6. if checksign(signedcommit , spk) = true
r7. then let (cmtp1bj , . . . , cmtpmbj ) = getmsg(signedcommit) in

r8. in(untapch, sr).
r9. if checksign(sr , spk) = true
r10. then let (ssp1 , . . . , sspm) = getmsg(sr) in

r11. out(synch, (pk, cmtp1bj , . . . , cmtpmbj , ss
p1 , . . . , sspm))

Figure 4.8: The process readinfo.

checknextb
pj
bi
:=

n1. if cmt
pj
bi

= commit(ss
pj
bi
, pkbi ,Myes)

n2. then out(winnerch, (pj , bi)).
n3. if nextbidder(bi) = ⊥
n4. then 0
n5. else checknextb

pj
nextbidder(bi )

Figure 4.9: The process checknextb
pj
bi
.

If pj−1 is the bottom, since the auctioneer has not found a winner, there does
not exist a winner. That is, the auctioneer has checked the evaluations for all
bidders at all prices, and no one has bid for any price. Thus, the opening process
stops (p8). If pj−1 is not the bottom, the auctioneer checks the evaluation for
the first bidder at the next lower price pj−1. Note that since b1 is the first bidder
checked for price pj−1, there is no winning bidder found before, the process for

checking b1 is checknextbnp
nextprice(pj)
b1

(a9). If bi has not bid for pj and bi is not
the last bidder, the auctioneer checks the evaluation for the next bidder at the
same price (p10). Note that since there is no winning bid found, the process is
checknextbnp

pj
nextbidder(bi)

.

4.6 Analysis of AS02

After modelling the protocol in the previous section, we formally analyse bidding-
price-secrecy and receipt-freeness for bidders. In the AS02 protocol, the winning
bid is published, and thus bidding-price-secrecy and receipt-freeness for the winning
bidders are not satisfied. Particularly, if all bidders bid for the same price, then
all bidders are winners, i.e., no bidder is a non-winning bidder, thus bidding-price-
secrecy is not satisfied in this case. From here on, when we refer to bidding-price-
secrecy and receipt-freeness, we mean only with respect to non-winning bidders.
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checknextbnp
pj
bi
:=

p1. if cmt
pj
bi

= commit(ss
pj
bi
, pkbi ,Myes)

p2. then out(winnerch, (pj , bi)).
p3. if nextbidder(bi) = ⊥
p4. then 0
p5. else checknextb

pj
nextbidder(bi )

p6. else if nextbidder(bi) = ⊥
p7. then if nextprice(pj) = ⊤
p8. then 0

p9. else checknextbnp
nextprice(pj )
b1

p10. else checknextbnp
pj
nextbidder(bi )

Figure 4.10: The process checknextbnp
pj
bi
.

4.6.1 Bidding-price-secrecy

In general, bidding-price-secrecy can be formalised in two levels: standard bidding-
price-secrecy and strong bidding-price-secrecy. Standard bidding-price-secrecy is
defined as no matter how the adversary interacts with the protocol, he cannot
derive a non-winning bidder’s bidding price. Thus, it aims to keep the price secret.
However, since the AS02 protocol publishes the bidding price list, the adversary
initially knows all the prices. No matter which price a bidder bids for, the bidding
price is not a secret to the adversary. Therefore, a bidder’s bidding price is not a
secret. In fact, what the AS02 protocol aims to protect is the link between bidders
and the price he bid, instead of the price itself. Therefore, bidding-price-secrecy of
the AS02 protocol is captured by strong bidding-price-secrecy.

Strong bidding-price-secrecy ensures the anonymity of the link between a non-
winning bidder and the price he bids for. It is formalised as that the adversary
cannot distinguish between the case when a bidder bids for price a and the case
when the bidder bids for price c. This property is formally defined in Definition 4.1.

CAS02 [ ] :=
c1. νprivchb1 .νprivchb2 . · · · .νprivchbn .
c2. νprivchab1 .νprivchab2 . · · · .νprivchabn .
c3. νuntapchb1 .νuntapchb2 . · · · .νuntapchbn .
c4. νsynchb1 .νsynchb2 . · · · .νsynchbn .

(PK |
c5. (let pb = pb1 in let untapch = untapchb1 in

c6. let privch = privchb1 in let ch = chb1 in Pb) |
· · ·

c7. (let pb = pbn−2
in let untapch = untapchbn−2

in

c8. let privch = privchbn−2
in let ch = chbn−2

in Pb) |
c9. |
c10. Pa)

Figure 4.11: The context CAS02 [ ].
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In the verification, we assume all the participants in the context are honest. Thus,
the context CAS02 [ ] is defined as the auction process PAS02 with a hole (c9) instead
of two bidder processes (see Figure 4.11). We denote the two bidder process as
PbA and PbB. Sub-process c5 to c8 models the other n − 2 bidder processes. To
verify strong bidding-price-secrecy is to verify the following equivalence

CAS02 [ (let pb = a in let untapch = untapchbA in
let privch = privchbA in let ch = chbA in Pb) |
(let pb = d in let untapch = untapchbB in
let privch = privchbB in let ch = chbB in Pb)]

≈ℓ CAS02 [ (let pb = c in let untapch = untapchbA
in

let privch = privchbA in let ch = chbA in Pb) |
(let pb = d in let untapch = untapchbB

in
let privch = privchbB in let ch = chbB in Pb)]

where a, c,d are from the list p1, . . . , pm with a < d and c < d.

Strong secrecy properties can be verified, using ProVerif, by querying noninterf .
Note that ProVerif is sensitive to evaluations of statements in the if-then-else con-
structs. ProVerif reports false attacks when directly querying the following predi-
cate: noninterf pb among p1, . . . , pd−1. To be able to check noninterf of a bidding
price in ProVerif, we modify the bidder process by replacing if-then-else construc-
tions with choices of a list of variables vp1, . . . , vpn−1. For example, lines (b4-b6)
in Figure 4.6 is changed to “let cmtp1 = commit(r1, pk(skb), vp1) in”. Each variable
vpi corresponds to a price pi and can be assigned to two possible values, either Myes

or Mno . If the variable is assigned Myes , the bidder bids that price, otherwise, not.
By querying “noninterf vp1 among (Myes ,Mno), . . . , vpn−1 among (Myes ,Mno)”,
the variable vpi is replaced with Myes or Mno , resulting into different versions of
the bidder process with different bidding prices (possibly bidding for multi-prices).
ProVerif gives a positive result, which means that these process versions are all
observationally equivalent. In this way, we prove that the protocol satisfies strong
bidding-price-secrecy.

4.6.2 Receipt-freeness

Receipt-freeness is formally defined in Definition 4.2. To prove the AS02 protocol
satisfies receipt-freeness, we need to find a process Pf which satisfies both equiva-
lences in the definition of receipt-freeness. The process Pf is shown in Figure 4.12.
The two equivalences are shown as follows (eq1 and eq2).

eq1
(let untapch = untapchbA in

let privch = privchbA in let ch = chbA in Pf
\out(chc,·))

≈ℓ (let pb = c in let untapch = untapchbA in
let privch = privchbA in let ch = chbA in Pb),
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eq2
CAS02 [(let pb = a in let untapch = untapchbA in

let privch = privchbA in let ch = chbA in Pb)
chc |

(let pb = d in let untapch = untapchbB in
let privch = privchbB in let ch = chbB in Pb)]

≈ℓ CAS02 [(let untapch = untapchbA in
let privch = privchbA in let ch = chbA in Pf ) |
(let pb = d in let untapch = untapchbB in
let privch = privchbB in let ch = chbB in Pb)]

with a < d and c < d.

Pf :=
f1. in(privch, ssk b). out(chc, ssk b).
f2. νskb. out(chc, skb).
f3. out(ch, sign((pk(skb), k), ssk b)).
f4. νr1. · · · .νra. · · · .νrc. · · · .νrm.
f5. out(chc, (r1, . . . , f(ra), . . . , f(rc), . . . , rm)).
f6. let cmtp1 = commit(r1, pk(skb),Mno) in

f7. . . .
f8. let cmtpa = commit(ra, pk(skb),Mno) in

f9. . . .
f10. let cmtpc = commit(rc, pk(skb),Myes) in

f11. . . .
f12. let cmtpm = commit(rm, pk(skb),Mno) in

f13. out(ch, sign((cmtp1 , . . . , cmtpm), ssk b)).
f14. out(untapch, sign((r1, . . . , ra, . . . , rc, . . . , rm), ssk b))

Figure 4.12: The process Pf .

According to the properties of chameleon bit-commitments, the bidder can send a
sequence of fake secret seeds to the adversary, and sends the series of real secret
seeds to the auctioneer through an untappable channel. The adversary opens the
bit-commitments as the bidder bids for price a, using the fake secret seeds he
received, while the auctioneer opens the same bit-commitments as the bidder bids
for price c, using the secret seeds the auctioneer received through an untappable
channel. Thus, the bidder could execute the process Pf as shown in Figure 4.12 to
lie to the adversary. The bidder in this process communicates with the adversary
through channel chc, sending the adversary his secret signature key ssk b (f1) and
his secret key skb (f2). Later the bidder sends the auctioneer r1, . . . , rm through
an untappable channel (f14), and send the adversary the same list except changing
ra and rc to f(ra) and f(rc), respectively (f5). The untappable channel ensures
the adversary cannot learn anything about the differences.

Proof sketch: To prove the first equivalence, we can simply consider Pf
\out(chc,·)

as process Pf without communication on the channel chc. Since the process
Pf

\out(chc,·) works exactly the same as the process Pb{c/pb}, the first equivalence
(eq1) is satisfied. For detailed proofs, see Appendix A.1. To show the second
equivalence (eq2), we need to consider all the transitions of each side. On both



4.6 Analysis of AS02 45

P
in(privch,sskb)
−−−−−−−−→

in(privchb,bsskb)
−−−−−−−−−→

νx1.out(chc,x1)
−−−−−−−−→ P1 | {ssk b/x1}

νx2.out(chc,x2)
−−−−−−−−→ νñ. (P2 | {ssk b/x1} | {skb/x2})
νx3.out(ch,x3)
−−−−−−−−→
νx4.out(chc,x4)
−−−−−−−−→ νñ. (P3 | {ssk b/x1} | {skb/x2} | {sign(pk(skb), ssk b)/x3}

| {sign(pk(bskb), bsskb)/x4})
νx5.out(chc,x5)
−−−−−−−−→ νñ. (P4 | {ssk b/x1} | {skb/x2} | {sign(pk(skb), ssk b)/x3}

| {sign(pk(bskb), bsskb)/x4} | {r1, . . . , rm/x5}
νx6.out(ch,x6)
−−−−−−−−→
νx7.out(chc,x7)
−−−−−−−−→ νñ. (P5 | {ssk b/x1} | {skb/x2} | {sign(pk(skb), ssk b)/x3}

| {sign(pk(bskb), bsskb)/x4}
| {r1, . . . , rm/x5} | {sign((cmtp1 , . . . , cmtpm), ssk b)/x6}
| {sign((bcmtp1 , . . . , bcmtpm), bsskb)/x7})

Q
in(privch,sskb)
−−−−−−−−→

in(privchb,bsskb)
−−−−−−−−−→

νx1.out(chc,x1)
−−−−−−−−→ Q1 | {ssk b/x1}

νx2.out(chc,x2)
−−−−−−−−→ νñ. (Q2 | {ssk b/x1} | {skb/x2})
νx3.out(ch,x3)
−−−−−−−−→
νx4.out(ch,x4)
−−−−−−−−→ νñ. (Q3 | {ssk b/x1} | {skb/x2} | {sign(pk(skb), ssk b)/x3}

| {sign(pk(bskb), bsskb)/x4})
νx5.out(chc,x5)
−−−−−−−−→ νñ. (Q4 | {ssk b/x1} | {skb/x2} | {sign(pk(skb), ssk b)/x3}

| {sign(pk(bskb), bsskb)/x4}
| {r1, . . . , f(ra), . . . , f(rc), . . . , rm/x5})

νx6.out(ch,x6)
−−−−−−−−→
νx7.out(ch,x7)
−−−−−−−−→ νñ. (Q5 | {ssk b/x1} | {skb/x2} | {sign(pk(skb), ssk b)/x3}

| {sign((pk(bskb), bsskb)/x4}
| {r1, . . . , f(ra), . . . , f(rc), . . . , rm/x5}
| {sign((cmtp1 , . . . , cmtpm), ssk b)/x6}
| {sign((bcmtp1 , . . . , bcmtpm), bsskb)/x7})

Figure 4.13: A sketch proof of receipt-freeness in AS02.

sides, the process PK only distributes keys, and all the bidder processes in the con-
text follow the same process. For the sake of simplicity, we ignore the outputs in the
process PK and those bidder processes in the context. During the bidding phase the
auctioneer process only reads information and synchronises on the private channel
synch. There is no output on public channels in the auctioneer process. We denote
the sequence of names skb, r1, . . . , rm, bskb, br1, . . . , brm by ñ (skb, r1, . . . , rm are
bound names in the non-winning bidder process, and bskb, br1, . . . , brm are bound
names in the winning bidder process PbB). After the key distribution, we want to
see whether the behaviour of the process Pb{a/pb}

chc | PbB{d/pb} is observation-
ally equivalent to Pf | PbB{d/pb}. For this purpose, we need to consider all possible
executions of these two processes. Here, we consider a particular execution and
only show the interesting part of the two frames after each step of execution by
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the two processes. Let P := PbA{a/pb}
chc | PbB{d/pb} and Q := Pf | PbB{d/pb},

we have their labelled transitions as shown in Figure 4.13.

The frames we obtained at the end of P and Q are statically equivalent. In partic-
ular, as the adversary knows the bit-commitments the bidder submits, the public
key of the bidder, and the secret seeds, the adversary can open all the commitments
of the bidder. The only functions the adversary can use are getmsg and open, to get
extra information. By applying these two functions, the adversary can additional
get the public key of the bidder represented as xmsg = getmsg(x3, x1) and a series of
opened messages from bit-commitments. Since x3 and x1 are the same for both P
and Q, xmsg is the same for both processes as well. Particularly, PbA{a/pb} bids for
price a. The adversary opens the commitments cmtpa = commit(ra, pk(sk b),Myes)
and cmtpc = commit(rc, pk(sk b),Mno) as follows:

open(cmtpa , ra, pk(sk b)) =E Myes open(cmtpc , rc, pk(sk b)) =E Mno

For the process Q, the process Pf bids for price c. The adversary has a sequence
of secret seeds, in which two of them are fake: f(ra) and f(rc). According to
the equational theory of chameleon bit-commitments (see Section 4.5), the adver-
sary opens cmtpa = commit(ra, pk(sk b),Mno) =E commit(f(ra), pk(sk b),Myes) and
cmtpc = commit(rc, pk(sk b),Myes) =E commit(f(rc), pk(sk b),Mno) as follows:

open(cmtpa , f(ra), pk(sk b)) =E Myes open(cmtpc , f(rc), pk(sk b)) =E Mno

All other secret seeds and bit-commitments are the same in both P and Q, hence
the adversary gets the same series of opened messages for both P and Q as well.

Next, we consider the opening phase, the auctioneer process is the only active
process. According to the protocol, the auctioneer process stops after finding the
winning bids. Therefore, non-winning bids are not revealed. Since we have assumed
the auctioneer is honest, the information that the auctioneer process reveals is the
opened bit-commitments of all bidders at prices no lower than the winning price,
and the winning bidders. Only the winning bid is opened as Myes , others are
opened as Mno . Due to the existence of a higher bid (d in the process PbB{d/pb})
on both sides of the equivalence, the bid made by the bidder bA will never be
published, hence the information the auctioneer process reveals is the same. Now,
we can conclude that the protocol satisfies receipt-freeness.

4.7 Conclusions

In this chapter, we first discussed privacy and enforced privacy issues in the e-
auction domain. An enforced privacy property, receipt-freeness for non-winning
bidders, is required in sealed-bid e-auctions. To formally define this property, we
first formalised the classical privacy property, strong bidding-price-secrecy for non-
winning bidders. On top of that, the enforced privacy property was formalised.
As the requirement for privacy is different in e-auction and e-voting, the privacy,
strong bidding-price-secrecy for non-winning bidders (Definition 4.1), is formalised
differently from vote-privacy (Definition 3.14). Due to this difference, the enforced
privacy property, receipt-freeness for non-winning bidders (Definition 4.2), is for-
malised differently from receipt-freeness in e-voting (Definition 3.17). In addition,
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we only model the cooperating bidder forwarding information to the adversary
in e-auctions, because of the setting – the bidding booth in which bidders can-
not communicate with the adversary. In situations without this setting, a similar
property like coercion-resistance can be defined in e-auctions. Finally, the proposed
formalisations of strong bidding-price-secrecy and receipt-freeness for non-winning
bidders are validated in the case study. The AS02 protocol is modelled in the
applied pi calculus, and we successfully verified that it does indeed satisfy bidding-
price-secrecy and receipt-freeness for non-winning bidders. The protocol achieves
this mainly based on the use of chameleon bit-commitments and an untappable
channel, much like Okamoto used in his e-voting protocol [Oka96].

Future directions. The case study focused on a protocol relying on chameleon
bit-commitments and an untappable channel. It would be interesting to use the
proposed formalisation to verify correctness of enforced privacy claims of an auction
protocol that uses other cryptographic primitives, such as the auction protocol by
Chen et al. [CLK03], that relies on homomorphic encryption.

One of the main motivation for studying enforced privacy in auctions was the simi-
larity between auction protocols and voting protocols. (For example, in both, roles
can be divided into two types: participants and authorities.) Having successfully
lifted the concept of enforced privacy to a similar domain, we are now ready to take
matters one step further and study enforced privacy in a more complex setting.





5

Enforced privacy in e-health

In the previous chapter, we formalised enforced privacy in the e-auction domain.
In this chapter, we study enforced privacy in the e-health domain. We identify
and formalise enforced privacy in e-health in a similar way as in e-voting and e-
auctions. Additionally, in e-health, it is required that pharmacists should not be
able to prove a doctor’s prescription behaviour to the adversary. We formalise a
privacy property capturing this requirement. Furthermore, we formalise a privacy
property capturing the conjunction of enforced privacy and pharmacist revealing
information to the adversary. Finally, we verify the formalised privacy properties
of an e-health protocol in a case study.

5.1 Introduction to e-health

E-health systems are health care systems using distributed electronic devices which
communicate via the network, typically the Internet. E-health systems aim to
support secure sharing of information and resources across different health care
settings and workflows among different health care providers. The services of such
systems for the general public are intended to be more secure, more effective, more
efficient and more timely.

An e-health system normally consists of at least patients and doctors. Doctors
prescribe medicine to patients according to examinations. In some e-health sys-
tems, this procedure can be done entirely using electronic devices. For instance,
in home-care systems, patients do examinations at home. The examination results
are sent to doctors via the network (automatically or manually). Then a doctor
sends the prescription back. Whereas, in some other e-health systems, only stor-
ing information, such as patient’s medical records, is digitalised. Consequently,
e-health systems may have different privacy requirements. For instance, ensuring
privacy in systems, which only involve electronic devices for storing data, mainly
requires local protection. In e-health systems involving using open networks for
communication, adversaries from the network need to be taken into consideration.

In addition, e-health systems may involve more roles. Once a patient obtains
a prescription from doctors, the patient needs to get medicine according to the
prescription. Therefore, pharmacists are involved. During this procedure, a phar-
macist may have access to some private information, for example, prescriptions.
In some systems, a pharmacist is even allowed to change one type of medicine to
another type with similar functions. And in emergency cases, the pharmacist needs
to be able to contact the doctor who has prescribed certain medicine. However,

This chapter is based on published work [FHIES11] and [ESORICS12]
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pharmacists, in general, are not always trustworthy. Hence, pharmacists may not
be reliable about not revealing private information. In fact, pharmacists are al-
lowed to offer certain information to others in particular cases, like doing research.
Therefore, pharmacists may influence privacy in e-health.

Furthermore, depending on systems, even more other parties can be involved. For
instance, medical administration and social insurance, which are normally assumed
to trustworthy, and nurses, who need to access private information of patients.
In some e-health systems, emergency situations are considered. In emergency
situations, privacy becomes subtle since patient’s information is normally revealed.

Hence, we can see that roles and relations in e-health systems are complex com-
pared to e-voting and e-auction systems. In e-voting and e-auctions, there is a
natural division into two types of roles: participants (voters, bidders) and authori-
ties (who run the election/auction). E-health systems have to deal with a far more
complex constellation of roles. This may cause complexity of privacy in e-health.

5.2 Privacy and enforced privacy in e-health

Due to the sensitive nature of health care data, privacy is one of the foremost
challenges raised by adopting electronic storage and communication. In health
care, it is often necessary to collect information for statistical study, like, collecting
locations of patients having a certain type of disease to study the correspondence
between locations and the disease. Thus, one privacy challenge is to maintain
user anonymity even if information is revealed for statistical study. In addition,
given the sensitive nature of health care data, handling this data must meet strict
privacy requirements. Traditionally, data in health care (e.g., patient records) is
stored on paper files. Privacy is relatively easily satisfied by controlling access to
the physical documents. Those who had access could be considered trusted not to
violate privacy of the data. With the advent of e-health systems – systems that
digitally store and exchange health care data – health care data is open to inference
by adversaries controlling the network or manipulating digital devices.

Indeed, privacy in e-health has been recognised as an important requirement nec-
essary for adoption by the general public [MRS06, KAB09]. Moreover, due to
the complexity of e-health systems, existing privacy control techniques from do-
mains such as e-voting (e.g., [DKR09]) and e-auctions (e.g., [FAST10]) does not
carry over straightforwardly. E-health systems involve more complex roles. Each
of these roles has access to different private information and has different privacy
concerns. As existing approaches from other domains are not properly equipped
to handle such a diverse array of roles, privacy must be tailored to the e-health
domain. In addition, roles may not be trustworthy, although some of them may
be able to access sensitive data of others, for example, pharmacists normally have
access to prescriptions. Thus, third parties may influence a target participant’s
privacy. Therefore, we shall consider privacy taking into account of third parties’
influences.

Depending on the protected role, privacy in e-health can be classified into patient
privacy and doctor privacy. Privacy of other roles, e.g., pharmacists, insurance
companies, medical administrations, is beyond our consideration, as they are public
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entities.

5.2.1 Patient privacy

The importance of patient privacy in e-health is traditionally seen as vital to es-
tablishing a good doctor-patient relationship. This is even more pertinent with
the emergence of the Electronic Patient Record [And96]. As in most of the liter-
ature, a necessary early stage of e-health is to transform the paper-based health
care process into a digital process. The most important changes in this stage are
made to patient information processing, mainly health care records. To properly
express privacy requirements for such patient records, privacy policies are consid-
ered the de facto standard. There are three main approaches to implement these
requirements of patient privacy: access control, architectural design, and the use
of cryptography.

Patient privacy by access control. To preserve privacy of electronic health care
records, one necessary part is to limit access to these records to allowed parties. The
need for access control is supported by several privacy threats to personal health
information listed by Anderson [And96]. Many access control approaches designed
for patient privacy can be found in the literature, including access rules proposed
by Anderson [And96], consent-based access rules [Lou98], role-based access control
(RBAC) [RCHS03], organisation based access control [KBM+03], etc.

Patient privacy by architectural design. E-health systems cater to a number of dif-
ferent roles, including doctors, patients, pharmacists, insurers, etc. Each such role
has its own sub-systems or components. As such, e-health systems can be consid-
ered as a large network of systems, including administrative system components,
laboratory information systems, radiology information systems, pharmacy infor-
mation systems, and financial management systems. Diligent architectural design
is an essential step to make such a complex system function correctly. Since pri-
vacy is important in e-health systems, keeping privacy in mind when designing the
architecture of such systems is a promising path towards ensuring privacy [SV09].
Examples of architectures taking privacy in mind include the architecture of wire-
less sensor networks in e-health [KLS+10], the architecture for e-health systems
proposed by Maglogiannis et al. [MKDH09], the architecture for cross-institution
image sharing in e-health [CHCK07], etc.

Cryptographic approaches to patient privacy. Cryptography is a necessary tool
for privacy in e-health systems, especially communications between components of
systems [BB96]. For example, Van der Haak et al. [vWB+03] use digital signatures
and public-key authentication (for access control) to satisfy legal requirements for
cross-institutional exchange of electronic patient records. Ateniese et al. [ACdD03]
use pseudonyms to preserve patient anonymity, and enable a user to transform
statements concerning one of his pseudonyms into statements concerning one of his
other pseudonyms (e.g., transforming a prescription for the pseudonym used with
his doctor to a prescription for the pseudonym used with the pharmacist). Layouni
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et al. [LVS+09] consider communication between health monitoring equipment at
a patient’s home and the health care centre. They propose a protocol using wallet-
based credentials (a cryptographic primitive) to let patients control when and how
much identifying information is revealed by the monitoring equipment. More re-
cently, De Decker et al. [dDLVV08] propose a health care system for communication
between insurance companies and administrative bodies as well as patients, doctors
and pharmacists. Their system relies on various cryptographic primitives to ensure
privacy, including zero-knowledge proofs, signed proofs of knowledge (a signature
scheme which uses zero-knowledge proofs to sign a message), and bit-commitments.
Their system is explained in more detail in Section 5.4.

5.2.2 Doctor privacy

A relatively understudied privacy aspect is that of doctor privacy. Matyáš [Mat98]
investigates the problem of enabling analysis of prescription information while en-
suring doctor privacy. His approach is to group doctors, and release the data per
group, hiding who is in the group. He does not motivate a need for doctor privacy,
however. Two primary reasons for doctor privacy have been identified in the liter-
ature: (1) (Ateniese et al. [ACdD03]) to safeguard doctors against administrators
setting specific efficiency metrics on their performance (e.g., requiring the cheapest
medicine be used, irrespective of the patient’s needs). To address this, Ateniese et
al. [Ad02, ACdD03] propose an anonymous prescription system that uses group sig-
natures for privacy; (2) (De Decker et al. [dDLVV08]) to prevent a pharmaceutical
company from bribing a doctor to prescribe their medicine. A typical scenario can
be described as follows. A pharmaceutical company seeks to persuade a doctor to
favour a certain kind of medicine by bribing or coercing. To prevent this, a doctor
should not be able to prove which medicine he is prescribing to this company (in
general, to the adversary). This implies that doctor privacy must be enforced by
e-health systems. De Decker et al. also note that preserving doctor privacy is not
sufficient to prevent bribery: pharmacists could act as go-betweens, revealing the
doctor’s identity to the briber, as pharmacists often have access to prescriptions,
and thus know something about the prescription behaviour of a doctor. This leads
us to formulate the requirement of independency of prescribing-privacy : no third
party should be able to help the adversary link a doctor to his prescription.

Observations

In the above overview, we observe that current approaches to privacy in e-health
mostly focus on patient privacy and try to solve it as an access control or authen-
tication problem. Doctor privacy is also required, but research on doctor privacy
is in its infancy. We believe that doctor privacy is as important as patient privacy
and should be studied in more depth. It is clear from the analysis that privacy in
e-health systems needs to be addressed at different layers: access control ensures
privacy at the service layer; privacy by architecture design addresses privacy con-
cerns at the system/architecture layer; use of cryptography guarantees privacy at
the communication layer. Since e-health systems are complex [TGC09] and rely
on correct communications between many sub-systems, we strongly advocate to
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study privacy in e-health as a communication problem. In fact, message exchanges
in communication protocols may leak information which leads to a privacy breach.

Classical privacy notions which are well-studied in the literature, attempt to ensure
that privacy can be enabled. However, enabling privacy is far from enough. In many
cases, a system must enforce user privacy instead of allowing the user to pursue
it. To avoid doctor bribery, we take into account enforced privacy for doctors.
In addition, we consider that one party’s privacy may depend on another party
(e.g., in the case of a pharmacist revealing prescription behaviour of a doctor).
Our opinion is that offering privacy is insufficient if privacy can be reduced in such
ways.

In summary, we focus on the following privacy notions for doctors in communica-
tion protocols in the e-health domain.

prescribing-privacy: A protocol preserves prescribing-privacy if the adversary
cannot link a doctor to his prescriptions.

enforced prescribing-privacy: A protocol satisfies enforced prescribing-privacy
if a doctor cannot prove his prescriptions to the adversary.

independency of prescribing-privacy: A protocol preserves independency of
prescribing-privacy if third parties cannot help the adversary to link a doctor
to the doctor’s prescriptions.

independency of enforced prescribing-privacy: A protocol ensures indepen-
dency of enforced prescribing-privacy if a doctor cannot prove his prescrip-
tions to the adversary given that third parties sharing information with the
adversary.

5.3 Formalisation of privacy notions

In order to formally verify privacy notions of a protocol, the first step is to give
precise definitions of the privacy notions. The privacy notions in the previous
section are formalised in the applied pi calculus. These notions focus on protecting
doctor’s prescription behaviour against bribery. Such kinds of privacy notions
have not been studied formally so far. In the end, we briefly show the definitions of
anonymity, strong anonymity, untraceability and strong untraceability for e-health
protocols, as such notions have been formally studied in the literature (e.g., [SS96,
vMR08, BHM08, KT09, ACRR10, KTV10]), which can be lifted to the e-health
domain.

In the following discussions, we model an e-health protocol Peh as an n-role well-
formed [ACRR10] protocol of the form:

Peh := νchandata.init .(!R1 | . . . |!Rn).

Unlike in e-voting and e-auctions where the number of participates is determined, in
e-health, participants need not to be predetermined. Essentially, this formalisation
allows us to model an unbounded number of users (modelled by the exclamation



54 Chapter 5 Enforced privacy in e-health

mark in front of each role) and represent each user as an instance of a role. In
particular, we have a doctor role Rdr of the form:

Rdr := νIddr .initdr .!Pdr ,

where
Pdr := νpresc.maindr .

We focus on the behaviour of a doctor, since we aim to formalise privacy notions
for doctors. Each doctor is associated with an identity and can execute an infinite
number of sessions (modelled by the exclamation mark in front of Pdr ). Within
each session, the doctor will create a prescription. Processes init and initdr model
the initialisation of the protocol and the doctor role. Process Pdr models a session
of the doctor role. Furthermore, we use Ceh [ ] to denote a context (a process with
a hole) consisting of honest users,

Ceh [ ] := νchandata.init .(!R1 | . . . |!Rn | ).

Finally, Iddr and presc are free variables; dA and dB are free names, represent-
ing doctor identities known to the adversary; and pA and pB are two free names,
representing two different prescriptions.

5.3.1 Prescribing-privacy

Prescribing-privacy aims to protect doctors’ prescription behaviour, which can
be captured by the unlinkability of a doctor and his prescriptions. Considering
that doctors’ prescriptions are revealed eventually, e.g., in the DLV08 e-health
protocol, unlinkability is modelled as indistinguishability when two honest users
swap their actions (or items), e.g., see the formalisation of vote-privacy 3.14. Thus,
prescribing-privacy is modelled as the equivalence of two doctor processes: in the
first process, an honest doctor dA prescribes pA in one of his sessions and another
honest doctor dB prescribes pB in one of his sessions; in the second one, dA prescribes
pB and dB prescribes pA.

Definition 5.1 (prescribing-privacy). A well-formed e-health protocol Peh with a
doctor role Rdr , satisfies prescribing-privacy if for all possible doctors dA and dB
(dA 6= dB) we have

Ceh [
(

initdr{dA/Iddr}.(!Pdr{dA/Iddr} | maindr{dA/Iddr , pA/presc})
)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pB/presc})
)

]
≈ℓ Ceh [

(

initdr{dA/Iddr}.(!Pdr{dA/Iddr} | maindr{dA/Iddr , pB/presc})
)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pA/presc})
)

],

where pA and pB (pA 6= pB) are two prescriptions.

Process initdr{dA/Iddr}.(!Pdr{dA/Iddr} | maindr{dA/Iddr , pA/presc}) models an in-
stance of a doctor, with identity dA. The sub-process maindr{dA/Iddr , pA/presc})
models a prescribing session in which dA prescribes pA for a patient. The sub-
process !Pdr{dA/Iddr} models other prescribing sessions of dA. Similarly, process
initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pB/presc}) models another doctor
dB. On the right hand of the equivalence, the two doctors, dA and dB, swap their
prescriptions, pA and pB.
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5.3.2 Enforced prescribing-privacy

De Decker et al. [dDLVV08] identify the need to prevent a pharmaceutical company
from bribing a doctor to favour their medicine. Hence, doctor’s prescribing-privacy
should be enforced by protocols to prevent doctor bribery. This means that in-
tuitively, even if a doctor collaborates, the adversary cannot be certain that the
doctor has followed his instructions. Bribed users cannot be modelled as part of
the adversary, as they are not trusted by the adversary. Inspired by the formal-
isation of receipt-freeness in e-voting 3.17 and e-auction 4.2, we define enforced
prescribing-privacy to be satisfied if there exists a process where the bribed doctor
does not follow the adversary’s instruction (e.g., prescribing a particular medicine),
which is indistinguishable from a process where she does.

Modelling this notion necessitates modelling a doctor who genuinely reveals all her
private information to the adversary. This is achieved by process transformation
P chc, which transforms a plain process P into one which shares all private informa-
tion over the channel chc with the adversary (see Definition 3.15). In addition, we
also use the transformation P \out(chc,·)) (see Definition 3.16). This models a pro-
cess P which erases all outputs on channel chc. Formally, P \out(chc,·) := νchc.(P |
!in(chc, x)).

Definition 5.2 (enforced prescribing-privacy). A well-formed e-health protocol Peh

with a doctor role Rdr , satisfies enforced prescribing-privacy for a doctor dA, if there
exist processes init ′dr and P ′

dr , such that:

1. Ceh [
(

init ′dr{dA/Iddr}.(!Pdr{dA/Iddr} | P ′
dr{dA/Iddr})

)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pA/presc})
)

]
≈ℓ Ceh [

(

(initdr{dA/Iddr})
chc.(!Pdr{dA/Iddr} | (maindr{dA/Iddr , pA/presc})

chc)
)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pB/presc})
)

];

2. init ′dr{dA/Iddr}
\out(chc,·).(P ′

dr{dA/Iddr}
\out(chc,·))

≈ℓ initdr{dA/Iddr}.(maindr{dA/Iddr , pB/presc}),

where init ′dr{dA/Iddr}.(!Pdr{dA/Iddr} | P ′
dr{dA/Iddr}) is a closed plain process, chc

is a fresh channel name, pA and pB (pA 6= pB) are two prescriptions, and dB (dA 6= dB)
is a doctor identity.

In the definition, the process init ′dr{dA/Iddr}.(!Pdr{dA/Iddr} | P ′
dr{dA/Iddr}) models

the process in which the doctor dA lies to the adversary about one of his prescrip-
tions. The real prescription behaviour of dA is modelled by the second equivalence.
The first equivalence shows that the adversary cannot distinguish whether dA lied,
given a counter-balancing doctor dB.

The difference between this formalisation and receipt-freeness in e-voting and in
e-auctions is that in this definition only a part of the doctor process (the initiation
sub-process and a prescribing session) shares information with the adversary. In
e-voting, each voter only votes once. In the contrast, a doctor prescribes multiple
times for various patients. As patients and situations of patients vary, a doctor
cannot prescribe medicine from the bribing pharmaceutical company all the time.
Therefore, only part of the doctor process shares information with the adversary.
We model only one bribed prescribing session, as that if a doctor can cheat the
adversary in one session, he can easily cheat in multiple similar sessions. This def-
inition can be easily extended to model multiple prescribing sessions being bribed.
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5.3.3 Independency of prescribing-privacy

Usually, e-health systems have to deal with a complex constellation of roles: doc-
tors, patients, pharmacists, insurance companies, medical administration, etc.
Each of these roles has access to different private information and has different
privacy concerns. An untrusted role may be bribed to reveal private information
to the adversary such that the adversary can break another roles’ privacy. De
Decker et al. [dDLVV08] note that pharmacists may have sensitive data which can
be revealed to the adversary to break a doctor’s prescribing-privacy. To prevent
a party (not a doctor) to do this, e-health protocols are required to satisfy in-
dependency of prescribing-privacy, meaning that even if another party Ri reveals
their information (i.e., Rchc

i ), the adversary should not be able to break a doctor’s
prescribing-privacy.

Definition 5.3 (independency of prescribing-privacy). A well-formed e-health pro-
tocol Peh with a doctor role Rdr , satisfies prescribing-privacy independent of role
Ri, if for all possible doctors dA and dB (dA 6= dB) we have

Ceh [!Ri
chc |

(

initdr{dA/Iddr}.(!Pdr{dA/Iddr} | maindr{dA/Iddr , pA/presc})
)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pB/presc})
)

]
≈ℓ Ceh [!Ri

chc |
(

initdr{dA/Iddr}.(!Pdr{dA/Iddr} | maindr{dA/Iddr , pB/presc})
)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pA/presc})
)

].

where pA and pB (pA 6= pB) are two prescriptions, and Ri is a non-doctor role.

Note that we assume a worst situation in which role Ri genuinely cooperates with
the adversary. For example, the pharmacist forwards all information obtained from
channels hidden from the adversary. The equivalence shows that no matter how
role Ri cooperates with the adversary, the adversary cannot link a doctor to the
doctor’s prescriptions.

5.3.4 Independency of enforced prescribing-privacy

We have discussed two situations where a doctor’s prescription behaviour can be
revealed when either the doctor or another different party cooperates with the
adversary. It is natural to consider the conjunction of these two, i.e., a situation
in which the adversary coerces both a doctor and another party (not a doctor).
Since the adversary obtains more information, this constitutes a stronger attack on
doctor’s prescribing-privacy. To address this problem, we define independency of
enforced prescribing-privacy, which is satisfied when a doctor’s prescribing-privacy
is preserved even if both the doctor and another party reveal their private infor-
mation to the adversary.

Definition 5.4 (independency of enforced prescribing-privacy). A well-formed e-
health protocol Peh with a doctor role Rdr , satisfies enforced prescribing-privacy
independent of role Ri for a doctor dA, if there exist processes init ′dr and P ′

dr , such
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that:

1. Ceh [!R
chc

i |
(

init ′dr{dA/Iddr}.(!Pdr{dA/Iddr} | P ′
dr{dA/Iddr})

)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pA/presc})
)

]
≈ℓ Ceh [!R

chc

i |
(

(initdr{dA/Iddr})
chc.

(!Pdr{dA/Iddr} | (maindr{dA/Iddr , pA/presc})
chc)

)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pB/presc})
)

];

2. init ′dr{dA/Iddr}
\out(chc,·).(P ′

dr{dA/Iddr}
\out(chc,·))

≈ℓ initdr{dA/Iddr}.(maindr{dA/Iddr , pB/presc}),

where init ′dr{dA/Iddr}.(!Pdr{dA/Iddr} | P ′
dr{dA/Iddr}) is a closed plain process, Ri

is a non-doctor role, chc is a fresh channel name, pA and pB (pA 6= pB) are two
prescriptions, and dB (dA 6= dB) is a doctor identity.

We conjecture that independency of enforced prescribing-privacy implies indepen-
dency of prescribing-privacy and enforced prescribing-privacy, each of which also
implies prescribing-privacy.

5.3.5 Anonymity and strong anonymity

Anonymity is a privacy notion that protects users’ identities. We model anonymity
as indistinguishability of processes initiated by two different users.

Definition 5.5 (doctor anonymity). A well-formed e-health protocol Peh with a
doctor role Rdr satisfies doctor anonymity for a doctor dA if there exists another
doctor dB, such that

Ceh [initdr{dA/Iddr}.!Pdr{dA/Iddr}] ≈ℓ Ceh [initdr{dB/Iddr}.!Pdr{dB/Iddr}].

A stronger notion of anonymity is defined in [ACRR10], capturing the situation
that the adversary cannot even find out whether a user (with identity dA) has
participated in a session of the protocol or not.

Definition 5.6 (strong doctor anonymity [ACRR10]). A well-formed e-health pro-
tocol Peh with a doctor role Rdr satisfies strong doctor anonymity, if

Peh ≈ℓ νchandata.init .
(

!R1 | . . . |!Rn | (initdr{dA/Iddr}.!Pdr{dA/Iddr})
)

.

Similarly, we can define anonymity and strong anonymity for patient and other
roles in an e-health protocol, by replacing the doctor role with a different role.

5.3.6 Untraceability and strong untraceability

Untraceability is a notion preventing the adversary from tracing a user, meaning
that he cannot tell whether two executions are initiated by the same user.

Definition 5.7 (doctor untraceability). A well-formed e-health protocol Peh with a
doctor role Rdr satisfies doctor untraceability if, for any two doctors dA and dB 6= dA,

Ceh [initdr{dA/Iddr}.(Pdr{dA/Iddr} | Pdr{dA/Iddr})]
≈ℓ Ceh [(initdr{dA/Iddr}.Pdr{dA/Iddr}) | (initdr{dB/Iddr}.Pdr{dB/Iddr})].
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A stronger notion of untraceability is proposed in [ACRR10] that captures the ad-
versary’s inability to distinguish the situation where one user executes the protocol
multiple times from no user executing the protocol more than once.

Definition 5.8 (strong doctor untraceability [ACRR10]). A well-formed e-health
protocol Peh with a doctor role Rdr being the j-th role, satisfies strong doctor un-
traceability, if

Peh ≈ℓ νchandata.init .
(

!R1 | . . . |!Rj−1 |!Rj+1 |!Rn |!(νIddr .initdr .Pdr )
)

.

Similarly, we can define untraceability and strong untraceability for patient and
other roles in a protocol, by replacing the doctor role with a different role.

5.4 Case study: the DLV08 protocol

In this section, we apply the above formal definitions for doctor privacy in a case
study as a validation of the definitions. We choose to analyse the DLV08 e-health
protocol proposed by De Decker et al. since it claims enforced privacy for doctors.
However, the analysis is not restricted to doctor privacy. We provide a rather
complete analysis of the protocol including patient anonymity, patient untrace-
ability, patient/doctor information secrecy and patient/doctor authentication as
well. ProVerif code is available at [1].

5.4.1 Introduction

The DLV08 protocol is a complex health care protocol for the Belgium situa-
tion [dDLVV08], which captures most aspects of the current Belgian health care
practice and aims to provide a strong guarantee of privacy for patients and doctors.
The protocol involves five roles: doctor, patient, pharmacist, medicine prescription
administrator (MPA) and health insurance institute (HII); and it works as follows:
a doctor prescribes medicine to a patient; next the patient obtains medicine from a
pharmacist according to the prescription; following that, the pharmacist forwards
the prescription to his MPA, the MPA checks the prescription and refunds the
pharmacist; finally, the MPA sends invoices to the patient’s HII and is refunded.
As we do not focus on properties such as revocability and reimbursement, we do not
consider the other two roles: public safety organisation (PSO) and social security
organisation (SSO).

5.4.2 Cryptographic primitives

To ensure security and privacy properties, the DLV08 protocol employs several
special cryptographic primitives, besides the classical ones, like encryption. We
briefly introduce the following special cryptographic primitives.

Bit-commitments. The bit-commitments scheme consists of two phases, commit-
ting phase and opening phase. On the committing phase, a message sender makes
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a commitment on a message. It can be considered as putting the message into a
box, and sending the box to the receiver. Later in the opening phase, the sender
sends the key of the box to the receiver. The receiver opens the box and obtains
the message.

Zero-knowledge proofs. A zero-knowledge proof is a cryptographic scheme which
can be used for one party (prover) to prove to another party (verifier) that a state-
ment is true, without leaking secret information of the prover. A zero-knowledge
proof scheme can be interactive or non-interactive. We consider the non-interactive
zero-knowledge proofs in this protocol.

Digital credentials. A digital credential is like a certificate, which can be used to
prove that the owner qualifies some requirements. Unlike some paper certificates
such as passport which gives out the owner’s identity, a digital credential could be
used to authenticate the owner anonymously. For example, a digital credential can
be used to prove that a driver is old enough to drive without showing the age of
the driver.

Anonymous authentication. Anonymous authentication is a scheme for authen-
ticating a user anonymously. The procedure of an anonymous authentication is
actually a zero-knowledge proof, with the digital credential being the public in-
formation of the prover. In the scheme, a user’s digital credential is used as the
public key in the public key authentication structure. A verifier can check whether
a message is signed correctly by the prover, while the verifier cannot identify the
prover. Thus, this ensures anonymous authentication.

Verifiable encryptions. A verifiable encryption is a zero-knowledge proof as well.
A prover encrypts a message, and uses zero-knowledge proofs to prove that the
encrypted message satisfies some properties without showing the original message.

Signed proofs of knowledge. Signed proofs of knowledge is using proofs of knowl-
edge as a digital signature scheme (for details see [Bra00]). Intuitively, a prover
signs a message using some secret information, which can be considered as a secret
signing key. And the prover uses proofs of knowledge to convince the verifier that
he has the secret signing key corresponding to the public key.

5.4.3 Settings

Every participant of the protocol is equipped with some initial information.

• A doctor has an identity (Iddr), a pseudonym (Pnymdr), and an anonymous
doctor credential (Creddr) issued by trusted authorities.

• A patient has an identity (Idpt), a pseudonym (Pnympt), an HII (Hii), a social
security status (Sss), a health expense account (Acc) and an anonymous
patient credential (Credpt) issued by trusted authorities.
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• Pharmacists, MPA, and HII are public entities, each of which has an identity
(Idph , Idmpa , Idhii), a secret key (skph , skmpa , skhii) and an authorised public
key certificate (pkph , pkmpa , pkhii) issued by trusted authorities.

5.4.4 Description of the protocol

The DLV08 protocol consists of four sub-protocols: doctor-patient sub-protocol,
patient-pharmacist sub-protocol, pharmacist-MPA sub-protocol, and MPA-HII
sub-protocol. We describe the sub-protocols one by one.

Doctor-patient sub-protocol

The doctor authenticates himself to a patient using the authorised doctor cre-
dential. The patient verifies the doctor credential. If the verification passes, the
patient authenticates himself to the doctor using the patient credential, sends the
bit-commitments on his identity to the doctor, and proves to the doctor that the
identity used in the credential is the same as in the bit-commitments. After verify-
ing the patient credential, the doctor generates a prescription, computes a prescrip-
tion identity, computes the doctor bit-commitments. Then the doctor combines
these computed messages with the received patient bit-commitments; signs these
messages using a signed proof of knowledge, which proves that the doctor’s pseu-
donym used in the doctor credential is the same as in the doctor bit-commitments.
Together with the proof, the doctor sends the open information of the doctor bit-
commitments. The communication in the doctor-patient sub-protocol is shown as
a message sequence chart (MSC) in Figure 5.1.

Patient-Pharmacist sub-protocol

The pharmacist authenticates himself to the patient. The patient verifies the
authentication and obtains, from the authentication, the pharmacist’s identity and
the pharmacist’s MPA. Then the patient anonymously authenticates himself to
the pharmacist, and proves his social security status. Next, the patient computes
verifiable encryptions vc1, vc2, vc3, vc

′
3, vc4, vc5, where

• vc1 encrypts the patient’s HII using the MPA’s public key and proves that
the HII encrypted in vc1 is the same as the one in the patient’s credential.

• vc2 encrypts the doctor’s pseudonym using the MPA’s public key and proves
that the doctor’s pseudonym encrypted in vc2 is the same as the one in the
doctor commitment embedded in the prescription.

• vc3 encrypts the patient’s pseudonym using the public safety organisation’s
public key and proves that the pseudonym encrypted in vc3 is the same as
the one in the patient’s commitment.

• vc′3 encrypts the patient’s HII using the social security organisation’s public
key and proves that the content encrypted in vc′3 is the same as the HII in
the patient’s credential.



5.4 Case study: the DLV08 protocol 61

Idpt , Pnympt , Hii, Sss, Acc

pt

Iddr , Pnymdr
dr

anonymous authentication (Authdr )

verify authentication,
commit on Idpt (Comtpt)

anonymous authentication (Authpt),

commitment (Comtpt),

PtProof (zk: link between Authpt , Comtpt)

verify authentication,

commit on Pnymdr ,

prescribe medicine presc,

compute prescription

identity

PrescProof (spk: prove the link between

Authdr , Comtdr , presc and the patient),

open information to commitment

verify PrescProof ,
open Comtdr

msc [DLV08] I. Doctor-Patient sub-protocol

Figure 5.1: Doctor-Patient sub-protocol.

• vc4 encrypts the patient’s pseudonym using the MPA’s public key and proves
that the patient’s pseudonym encrypted in vc4 is the same as the one in the
patient’s credential.

• vc5 encrypts the patient’s pseudonym using his HII’s public key and proves
that the patient’s pseudonym encrypted in vc5 is the same as the one in the
patient’s credential.

• c5 encrypts vc5 using the MPA’s public key.

The patient sends the received prescription to the pharmacist and proves to the
pharmacist that the patient’s identity in the prescription is the same as in the pa-
tient credential. The patient sends vc1, vc2, vc3, vc

′
3, vc4, c5 as well. The pharmacist

verifies the correctness of all the received messages. If every message is correctly
formatted, the pharmacist charges the patient, and delivers the medicine. Then the
pharmacist generates an invoice and sends it to the patient. The patient computes
a receipt ReceiptAck : signing a message (consists of the prescription identity, the
pharmacist’s identity, vc1, vc2, vc3, vc

′
3, vc4, vc5) using a signed proof of knowledge

and proving that he can construct the patient credential. This receipt proves that
the patient has received his medicine. The pharmacist verifies the correctness of
the receipt. The communication in the patient-Pharmacist sub-protocol is shown
in Figure 5.2.
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Figure 5.2: Patient-Pharmacist sub-protocol.

Pharmacist-MPA sub-protocol

The pharmacist and the MPA first authenticate each other using public key au-
thentication. Then the pharmacist sends the received prescription and the receipt
ReceiptAck , together with vc1, vc2, vc3, vc

′
3, vc4, c5, to the MPA. The MPA ver-

ifies correctness of the received information. Then, the MPA decrypts vc1, vc2,
vc4 and c5, which provide the patient’s HII, the doctor’s pseudonym, the patient’s
pseudonym, and vc5. The communication in the pharmacist-MPA sub-protocol is
shown in Figure 5.3.

MPA-HII sub-protocol

The MPA and the patient’s HII first authenticate each other using public key
authentication. Then the MPA sends the receipt ReceiptAck to the patient’s HII
as well as the verifiable encryption vc5 which encrypts the patient’s pseudonym
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Figure 5.3: Pharmacist-MPA sub-protocol.

with the patient’s HII’s public key. The patient’s HII checks the correctness of
ReceiptAck , decrypts vc5 and obtains the patient’s pseudonym. From the patient
pseudonym, the HII obtains the identity of the patient; then updates the patient’s
account and pays the MPA. The MPA pays the pharmacist when he receives the
payment. The communication in the MPA-HII sub-protocol is shown in Figure 5.4.

5.4.5 Claimed privacy properties

The DLV08 protocol is claimed to satisfy the following properties:

• Secrecy of patient and doctor information: No other party should be able to
know a patient or a doctor’s information, unless the information is intended
to be revealed in the protocol.

• Authentication: All parties should properly authenticate each other.

• Patient anonymity: No party should be able to determine a patient’s identity.

• Patient untraceability: Prescriptions issued to the same patient should not
be linkable to each other.

• Prescribing-privacy: The protocol protects a doctor’s prescription behaviour.

• Enforced prescribing-privacy: The protocol prevents bribery between doctors
and pharmaceutical companies.

• Independency of prescribing-privacy: Pharmacists should not be able to pro-
vide evidence to pharmaceutical companies about doctors’ prescription.
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Figure 5.4: MPA-HII sub-protocol.

5.5 Modelling DLV08

We model the DLV08 protocol in the applied pi calculus. Since the description
of the protocol is not clear in some details, before modelling the protocol, a few
ambiguities need to be settled. Next we explain the modelling of a few crypto-
graphic primitives, since security and privacy rely heavily on these cryptographic
primitives in the protocol. Then, we illustrate the modelling of the protocol.

5.5.1 Underspecification of the DLV08 protocol

The DLV08 protocol leaves the following issues unspecified:

• a1 whether a zero-knowledge proof is transferable;

• a2 whether an encryption is probabilistic;

• a3 whether a patient/doctor uses a fresh identity and/or pseudonym for each
session;

• a4 whether credentials are freshly generated in each session;

• a5 what a patient’s social security status is and how it can be modified;

• a6 how many HIIs exist and whether a patient can change his HII;

• a7 whether a patient/doctor can obtain a credential by requesting one;

• a8 what type of communication channels are used (public or untappable).

To be able to discover potential flaws on privacy, we make the following (weakest)
assumptions in our modelling of the DLV08 protocol:
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• s1 the zero-knowledge proofs used are non-interactive and transferable;

• s2 encryptions are not probabilistic;

• s3 a patient/doctor uses the same identity and pseudonym in every session;

• s4 a patient/doctor has the same credential in every session;

• s5 a patient’s social security status is the same in every session;

• s6 there are many HIIs, different patients may have different HIIs, and a
patient’s HII is fixed and cannot be changed;

• s7 a patient/doctor’s credential can be obtained by requesting one;

• s8 the communication channels are public.

5.5.2 Modelling cryptographic primitives

The cryptographic primitives are modelled in the applied pi calculus using function
symbols and equational theory. All functions and equational theory are shown in
Figure 5.5, Figure 5.6 and Figure 5.7.

Bit-commitments. The bit-commitments scheme is modelled as two functions:
function commit, modelling the committing phase, and function open, modelling
the opening phase. Function commit creates a commitment with two parameters:
a message m and a random number r. A commitment can only be opened with
the correct opening information r, thus reveals the message m.

fun commit/2.
reduc open(commit(m, r), r) = m.

Zero-knowledge proofs. Non-interactive zero-knowledge proofs can be modelled
as function zk(secrets , pub info) (a function with two parameters: a tuple of se-
cret information secrets , and a tuple of public information pub info) inspired
by [BMU08]. The verifying information and the secret information satisfies a
relation. Since the secret information is only known by the prover, only the prover
can construct the zero-knowledge proof. To verify a zero-knowledge proof is to
check whether the relation between the secret formation and the verifying for-
mation is satisfied. The verification of a zero-knowledge proof is modelled as
function Vfy-zk(zk(secrets, pub info), verif info), in which two parameters are: a
zero-knowledge proof to be verified zk(secrets, pub info) and the verification infor-
mation verif info. Compared to that in [BMU08], we define each zero-knowledge
specifically, as only a limited number of zero-knowledge proofs are used in the pro-
tocol. We specify each verification rule as in Figure 5.7. Since the pub info and
verif info happens to be the same in all the zero-knowledge proofs verifications in
this protocol, the generic structure of verification rule is as

Vfy-zk(zk(secrets, pub info), pub info) = true,



66 Chapter 5 Enforced privacy in e-health

where true is a constant. The specific function to check a zero-knowledge proof of
type z is denoted as Vfy-zkz, e.g., verification of a patient’s anonymous authenti-
cation is modelled by function Vfy-zkAuthpt .

Digital credentials. A digital credential is issued by trusted authorities. We as-
sume the procedure of issuing a credential is perfect, which means that the adver-
sary cannot forge a credential nor obtain one by impersonation. We model digital
credentials as a private function (declaimed by key word private fun in ProVerif)
which is only usable by honest users. In the DLV08 protocol, a credential can have
several attributes; we model these as parameters of the credential function.

private fun drcred/2. private fun ptcred/5.

There are two credentials in the DLV08 protocol: a doctor credential which is mod-
elled as Creddr := drcred(Pnymdr , Iddr), and a patient credential which is modelled
as Credpt := ptcred(Idpt , Pnympt , Hii, Sss, Acc).

Anonymous authentication. The procedure of anonymous authentication is a zero-
knowledge proof using the digital credential as public information. The anonymous
authentication of a doctor is modelled as

Authdr := zk((Pnymdr , Iddr ), drcred(Pnymdr , Iddr)),

and the verification of the authentication is modelled as

Vfy-zkAuthdr (Authdr , drcred(Pnymdr , Iddr)).

The equational theory for the verification is

reduc Vfy-zkAuthdr ( zk((Pnymdr , Iddr), drcred(Pnymdr , Iddr)),
drcred(Pnymdr , Iddr )) = true.

The verification implies that the creator of the authentication is a doctor, because
only doctors can use the function drcred, and thus create a valid proof. The ad-
versary can observe a credential drcred(Pnymdr , Iddr), but does not know secrets
Pnymdr , Iddr , and thus cannot forge a valid zero-knowledge proof. If the adversary
forges a zero-knowledge proof with fake secret information Pnymdr

′ and Iddr
′, the

fake zero-knowledge proof will not pass verification. For the same reason, a vali-
dated proof proves that the credential belongs to the creator of the zero-knowledge
proof. Similarly, an anonymous authentication of a patient is modelled as

Authpt := zk( (Idpt , Pnympt , Hii, Sss, Acc),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)),

and the verification rule is modelled as

reduc Vfy-zkAuthpt ( zk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc)),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)) = true.
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Verifiable encryptions. A verifiable encryption is modelled as a zero-knowledge
proof. The encryption is embedded in the zero-knowledge proof as public function.
The receiver can obtain the cipher text from the proof. For example, a patient
wants to prove that he encrypted a secret s using a public key k to a pharmacist,
while the pharmacist does not know the corresponding secret key for k. The
pharmacist cannot open the cipher text to test whether it uses the public key k
to encrypt. However, the zero-knowledge proof can prove that the cipher text is
encrypted using k, while not revealing s. The general structure of the verification
of a verifiable encryption is

Vfy-venc(zk(secrets , (pub info, cipher)), verif info) = true,

where secrets is private information, pub info and cipher consist public informa-
tion, verif info is the verification information.

Signed proofs of knowledge. A signed proof of knowledge is a scheme which signs
a message, and proves a property of the signer. For the DLV08 protocol, this
proof only concerns equality of attributes of credentials and commitments (e.g. the
identify of this credential is the same as the identity of that commitment). To verify
a signed proof of knowledge, the verifier must know which credentials/commitments
are considered. Hence, this information must be obtainable from the proof, and
thus is included in the model. In general, a signed proof of knowledge is modelled
as function

spk(secrets , pub info,msg),

which models a signature using private value(s) secrets on the message msg, with
public information pub info as settings. What knowledge is proven, depends on
the specific instance of the proof and is captured by the verification functions for
the specific proofs. For example, to prove that a user knows a) all fields of a
(simplified) credential, b) all fields of a commitment to an identity, and c) that
the commitment concerns the same identity as the commitment, he generates the
following proof:

spk( (Idpt , Pnympt , rpt), (∗secrets∗)
(ptcred(Idpt , Pnympt), commit(Idpt , rpt)), (∗pubublic info∗)
msg). (∗message∗)

These proofs are verified by checking that the signature is correct, given the signed
message and the verification information. E.g., the above example proof can be
verified as follows:

reduc Vfy-spk( spk( (Idpt , Pnympt , rpt),
(ptcred(Idpt , Pnympt), commit(Idpt , rpt)),
msg ), (∗signed message∗)

( ptcred(Idpt , Pnympt), commit(Idpt , rpt) ), (∗verify info∗)
msg (∗message∗)
) = true.
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fun true/0. fun hash/3. fun pk/1.
fun enc/2. fun commit/2. fun sign/2.
private fun drcred/2. private fun ptcred/5. fun zk/2.
fun spk/3. fun invoice/1. fun key/1.
fun host/1.

Figure 5.5: Functions.

reduc dec(enc(m, pk(sk)), sk) = m.
reduc open(commit(x, y), y) = x.
reduc Vfy-sign(sign(x, y), pk(y)) = true.
reduc getsignmsg(sign(x, y), pk(y)) = x.
reduc getpublic(zk(x, y)) = y.
reduc getmsg(spk(x, y, z)) = z.
reduc getSpkVinfo(spk(x, y, z)) = y.
equation key(host(x)) = x.
equation host(key(x)) = x.

Figure 5.6: Equational theory part I: non-zero-knowledge part.

Other cryptographic primitives. Hash functions, encryptions and signing messages
are modelled by functions hash, enc, and sign, respectively (Figure 5.5). Corre-
spondingly, decryption and retrieving the message from a signature are modelled
as functions dec and getsignmsg (Figure 5.6). Functions getpublic, getSpkVinfo
and getmsg model retrieving public information from a zero-knowledge proof, from
a signed proof of knowledge, and obtaining the message from a signed proof of
knowledge, respectively (Figure 5.6).

5.5.3 Modelling the DLV08 protocol

Modelling the doctor-patient sub-protocol. This sub-protocol is used for a doctor,
whose steps are labelled di in Figure 5.8, to prescribe medicine for a patient, whose
steps are labelled ti in Figure 5.9.

First, the doctor anonymously authenticates to the patient using credential Creddr
(d1). The patient reads in the doctor authentication (t1), obtains the doctor
credential (t2), and verifies the authentication (t3). If the verification in step
(t3) succeeds, the patient anonymously authenticates himself to the doctor using
his credential (t5, the first zk function), generates a nonce rpt (t4), computes a
commitment with the nonce as opening information, and proves that the patient
identity used in the patient credential is the same as in the commitment, thus
linking the patient commitment and the patient credential (t5, the second zk).

The doctor reads in the patient authentication as rcv Authpt and the patient proof
as rcv PtProof (d2), obtains the patient credential from the patient authentication
(d3), obtains the patient commitment c Comtpt and the patient credential from
the patient proof, tests whether the credential matches the one embedded in the
patient authentication (d4), then verifies the authentication (d5) and the patient
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reduc Vfy-zkAuthdr (zk((Pnymdr , Iddr ), drcred(Pnymdr , Iddr)),
drcred(Pnymdr , Iddr)) = true.

reduc Vfy-zkAuthpt (zk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc)),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)) = true.

reduc Vfy-zkPtProof(zk((Idpt , Pnympt , Hii, Sss, Acc),
(commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc))),

commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)) = true.

reduc Vfy-spkPrescProof(spk((Pnymdr , rdr , Iddr),
(commit(Pnymdr , rdr), drcred(Pnymdr , Iddr )),
(presc,PrescriptID , commit(Pnymdr , rdr),
commit(Idpt , rpt))),

drcred(Pnymdr , Iddr ), presc,PrescriptID ,
commit(Pnymdr , rdr ), commit(Idpt , rpt)) = true.

reduc Vfy-zkPtAuthSss(zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss),

ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss) = true.
reduc Vfy-spkPtSpk(spk((Idpt , Pnympt , Hii, Sss, Acc, rpt),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt)),
nonce),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),
commit(Idpt , rpt), nonce) = true.

reduc Vfy-vencHii(zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc),
enc(Hii, pkx ))),

ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Hii, pkx ), pkx ) = true.
reduc Vfy-vencDrnymMpa(zk((Pnymdr , rdr),

(spk((Pnymdr , rdr , Iddr),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr)),
(presc,PrescriptID ,
commit(Pnymdr , rdr ), cph Comtpt)),

enc(Pnymdr , pkx ))),
spk((Pnymdr , rdr , Iddr),

(commit(Pnymdr , rdr), drcred(Pnymdr , Iddr )),
(presc,PrescriptID ,
commit(Pnymdr , rdr), cph Comtpt)),

enc(Pnymdr , pkx ), pkx ) = true.
reduc Vfy-vencPtnym(zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Pnympt , pkx ))),
ptcred(Idpt , Pnympt , Hii, Sss, Acc),
enc(Pnympt , pkx ), pkx ) = true.

reduc Vfy-spkReceiptAck(spk((Idpt , Pnympt , Hii, Sss, Acc),
ptcred(Idpt , Pnympt , Hii, Sss, Acc),
(c PrescriptID , cpt Idph , vc1, vc2, vc3, vc

′
3, vc4, c5)),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),
c PrescriptID , cpt Idph , vc1, vc2, vc3, vc

′
3, vc4, c5) = true.

Figure 5.7: Equational theory part II: zero-knowledge part.
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Pdr :=
d1. out(ch, zk((Pnymdr , Iddr), drcred(Pnymdr , Iddr))).
d2. in(ch, (rcv Authpt , rcv PtProof )).
d3. let c Credpt = getpublic(rcv Authpt) in

d4. let (c Comtpt ,= c Credpt) = getpublic(rcv PtProof ) in

d5. if Vfy-zkAuthpt (rcv Authpt , c Credpt) = true then

d6. if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

d7. νpresc.
d8. νrdr .
d9. let PrescriptID = hash(presc, c Comtpt , commit(Pnymdr , rdr)) in

d10. out(ch, (spk((Pnymdr , rdr , Iddr),
(commit(Pnymdr , rdr), drcred(Pnymdr , Iddr)),
(presc,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr))

Figure 5.8: The doctor process Pdr .

proof (d6). If the verification in the previous item succeeds, the doctor generates
a prescription presc (d7), generates a nonce rdr (d8), computes a prescription
identity PrescriptID (d9), and computes a commitment Comtdr using the nonce
as opening information (d10). Note that a medical examination of the patient
is not part of the DLV08 protocol. Next, the doctor signs the message (presc,
PrescriptID , Comtdr , c Comtpt) using a signed proof of knowledge. This proves
the pseudonym used in the credential Creddr is the same as in the commitment
Comtdr , thus linking the prescription to the credential. The doctor sends the signed
proof of knowledge together with the open information of the doctor commitment
rdr (d10).

The patient reads in the prescription as rcv PrescProof and the opening informa-
tion of the doctor commitment (t6), obtains the prescription c presc, prescription
identity c PrescriptID , doctor commitment c Comtdr , and tests the patient com-
mitment signed in the receiving message (t7). Then the patient verifies the signed
proof of prescription (t8). If the verification succeeds, the patient obtains the
doctor’s pseudonym c Pnymdr by opening the doctor commitment (t9).

Modelling the patient-pharmacist sub-protocol. This sub-protocol is used for a
patient, whose steps are labelled ti in Figure 5.10, to obtain medicine from a
pharmacist, whose steps are labelled hi in Figure 5.11.

First, the pharmacist authenticates to the patient using a public key authenti-
cation (h1). Note that the pharmacist does not authenticate anonymously, and
that the pharmacists’s MPA identity is embedded. The patient reads in the phar-
macist authentication rcv Authph (t10) and verifies the authentication (t11). If
the verification succeeds, the pharmacist obtains the pharmacist’s MPA identity
from the authentication (t12), thus obtains the public key of MPA (t13). Then
the patient anonymously authenticates himself to the pharmacist, and proves his
social security status using the proof PtAuthSss (t14). The patient generates a
nonce which will be used as a message in a signed proof of knowledge (t15), and
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Ppt p1 :=
t1. in(ch, rcv Authdr).
t2. let c Creddr = getpublic(rcv Authdr) in

t3. if Vfy-zkAuthdr (rcv Authdr , c Creddr) = true then

t4. νrpt .
t5. out(ch, (zk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc)),
zk((Idpt , Pnympt , Hii, Sss, Acc),

(commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc))))).

t6. in(ch, (rcv PrescProof , rcv rdr)).
t7. let (c presc, c PrescriptID , c Comtdr ,= commit(Idpt , rpt))

= getmsg(rcv PrescProof ) in

t8. if Vfy-spkPrescProof(rcv PrescProof , (c Creddr , c presc,
c PrescriptID , c Comtdr , commit(Idpt , rpt))) = true then

t9. let c Pnymdr = open(c Comtdr , rcv rdr) in 0

Figure 5.9: The patient process in the doctor-patient sub-protocol Ppt p1.

computes verifiable encryptions vc1, vc2, vc3, vc
′
3, vc4 and vc5 (t16-t21). These

divulge the patient’s HII, the doctor’s pseudonym, and the patient’s pseudonym
to the MPA, the patient’s pseudonym to the HII, and the patient pseudonym and
HII to the social safety organisation, respectively. The patient encrypts vc5 with
MPA’s public key as c5 (t22). The patient computes a signed proof of knowledge

PtSpk = spk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt)),
nonce)

which proves that the patient identity embedded in the prescription is the same as
in his credential. In the prescription, this identity is contained in a commitment.
For simplicity, we model the proof using the commitment instead of the prescrip-
tion. The link between commitment and prescription is ensured when the proof is
verified (h10).

The patient sends the prescription rcv PrescProof , the signed proof PtSpk , and
vc1, vc2, vc3, vc

′
3, vc4, c5 to the pharmacist (t23). The pharmacist reads in the au-

thentication rcv PtAuthSss (h2), obtains the patient credential and his social se-
curity status (h3), verifies the authentication (h4). If the verification succeeds, the
pharmacist reads in the patient’s prescription rcvph PrescProof , the signed proof
of knowledge rcvph PtSpk , the verifiable encryptions rcv vc1, rcv vc2, rcv vc3,
rcv vc′3, rcv vc4, and cipher text rcv c5 (h5); and verifies rcvph PrescProof (h6-
h8), rcvph PtSpk (h9-h10), and rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4 (h11-
h20). If all the verifications succeed, the pharmacist charges the patient, and
delivers the medicine (neither are modelled as they are out of DLV08’s scope).
Then the pharmacist generates an invoice with the prescription identity embedded
in it and sends the invoice to the patient (h21).

The patient reads in the invoice (t24), computes a receipt: a signed proof of
knowledge ReceiptAck which proves that he receives the medicine (t25); and sends
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Ppt p2 :=
t10. in(ch, rcv Authph).
t11. if Vfy-sign(rcv Authph , rcvpt pkph) = true then

t12. let (= cpt Idph , cpt Idmpa)
= getsignmsg(rcv Authph , rcvpt pkph) in

t13. let cpt pkmpa = key(cpt Idmpa) in

t14. out(ch, zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss))).

t15. νnonce.
t16. let vc1 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),
enc(Hii, cpt pkmpa))) in

t17. let vc2 = zk((c Pnymdr , rcv rdr),
(rcv PrescProof , enc(c Pnymdr , cpt pkmpa))) in

t18. let vc3 = zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc),
enc(Pnympt , pksso))) in

t19. let vc′3 = zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc),
enc(Hii, pksso))) in

t20. let vc4 = zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc),
enc(Pnympt , cpt pkmpa))) in

t21. let vc5 = zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc),
enc(Pnympt , cpt pkhii))) in

t22. let c5 = enc(vc5, cpt pkmpa) in

t23. out(ch, (rcv PrescProof , spk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt)), nonce),

vc1, vc2, vc3, vc
′
3, vc4, c5)).

t24. in(ch, rcv Invoice).
t25. let ReceiptAck = spk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),
(c PrescriptID , cpt Idph , vc1, vc2, vc3, vc

′
3, vc4, c5)) in

t26. out(ch,ReceiptAck)

Figure 5.10: The patient process in the patient-pharmacist sub-protocol Ppt p2.

the signed proof of knowledge to the patient (t26). The pharmacist reads in the
receipt rcv ReceiptAck (h22) and verifies its correctness (h23).

Modelling the pharmacist-MPA sub-protocol. The pharmacist-MPA sub-protocol
is used for the pharmacist, whose steps are labelled hi in Figure 5.13 to report the
received prescriptions to the MPA, whose steps are labelled mi in Figure 5.12.

As the pharmacist mostly forwards the information supplied by the patient, this
protocol greatly resembles the patient-pharmacist protocol described above. Each
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Pph p1 :=
h1. out(ch, sign((Idph , cph Idmpa), skph)).
h2. in(ch, rcv PtAuthSss).
h3. let (cph Credpt , cph Sss) = getpublic(rcv PtAuthSss) in

h4. if Vfy-zkPtAuthSss(rcv PtAuthSss , (cph Credpt , cph Sss))
= true then

h5. in(ch, (rcvph PrescProof , rcvph PtSpk ,
rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4, rcv c5)).

h6. let (cph Comtdr , cph Creddr)
= getSpkVinfo(rcvph PrescProof ) in

h7. let (cph presc, cph PrescriptID ,= cph Comtdr , cph Comtpt)
= getmsg(rcvph PrescProof ) in

h8. if Vfy-spkPrescProof(rcvph PrescProof , (cph Creddr , cph presc,
cph PrescriptID , cph Comtdr , cph Comtpt)) = true then

h9. let c msg = getmsg(rcvph PtSpk) in

h10. if Vfy-spkPtSpk(rcvph PtSpk ,
(cph Credpt , cph Comtpt , c msg)) = true then

h11. let (= cph Credpt , c Enc1) = getpublic(rcv vc1) in

h12. if Vfy-vencHii(rcv vc1, (cph Credpt , c Enc1, rcvph pkmpa))
= true then

h13. let (= rcvph PrescProof , c Enc2) = getpublic(rcv vc2) in

h14. if Vfy-vencDrnymMpa(rcv vc2, (rcvph PrescProof ,
c Enc2, rcvph pkmpa)) = true then

h15. let (= cph Credpt , c Enc3) = getpublic(rcv vc3) in

h16. if Vfy-vencPtnym(rcv vc3, (cph Credpt , c Enc3, pksso))
= true then

h17. let (= cph Credpt , c Enc′3) = getpublic(rcv vc′3) in

h18. if Vfy-vencHii(rcv vc′3, (cph Credpt , c Enc′3, pksso)) = true then

h19. let (= cph Credpt , c Enc4) = getpublic(rcv vc4) in

h20. if Vfy-vencPtnym(rcv vc4,
(cph Credpt , c Enc4, rcvph pkmpa)) = true then

h21. out(ch, inv(cph PrescriptID)).
h22. in(ch, rcv ReceiptAck).
h23. if Vfy-spkReceiptAck(rcv ReceiptAck , (cph Credpt , cph PrescriptID ,

Idph , rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4, rcv c5)) = true
then 0

Figure 5.11: The pharmacist process in the patient-pharmacist sub-protocol
Pph p1.

step is modelled in details as follows: The pharmacist authenticates himself to
his MPA by sending his identity and the signed identities of the pharmacist and
the MPA (h24). The MPA stores this authentication in rcvmpa Authph , and stores
the pharmacist’s identity in cmpa Idph (m1). From the pharmacist’s identity, the
MPA obtains the pharmacist’s public key (m2). Then the MPA verifies the phar-
macist’s authentication against the pharmacist’s public key (m3). If the veri-
fication succeeds, according to the corresponding rule in the equational theory,
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Pmpa p1 :=
m1. in(ch, (rcvmpa Authph , cmpa Idph)).
m2. let rcvmpa pkph = key(cmpa Idph) in

m3. if Vfy-sign(rcvmpa Authph , rcvmpa pkph) = true then

m4. let (= cmpa Idph ,= Idmpa)
= getsignmsg(rcvmpa Authph , rcvmpa pkph) in

m5. out(ch, sign(Idmpa , skmpa)).
m6. in(ch, (rcvmpa PrescProof , rcvmpa vc1, rcvmpa vc2, rcvmpa vc3,

rcvmpa vc′3, rcvmpa vc4, rcvmpa c5, rcvmpa ReceiptAck)).
m7. let (cmpa Comtdr , cmpa Creddr)

= getSpkVinfo(rcvmpa PrescProof ) in

m8. let (cmpa presc, cmpa PrescriptID ,= cmpa Comtdr , cmpa Comtpt)
= getmsg(rcvmpa PrescProof ) in

m9. if Vfy-spkPrescProof(rcvmpa PrescProof , (cmpa Creddr , cmpa presc,
cmpa PrescriptID , cmpa Comtdr , cmpa Comtpt)) = true then

m10. let (= cmpa Credpt , cmpa Enc1) = getpublic(rcvmpa vc1) in

m11. if Vfy-vencHii(rcvmpa vc1,
(cmpa Credpt , cmpa Enc1, pkmpa)) = true then

m12. let cmpa Hii = dec(cmpa Enc1, skmpa) in

m13. let (= rcvmpa PrescProof , cmpa Enc2)
= getpublic(rcvmpa vc2) in

m14. if Vfy-vencDrnymMpa(rcvmpa vc2,
(rcvmpa PrescProof , cmpa Enc2, pkmpa)) = true then

m15. let cmpa Pnymdr = dec(cmpa Enc2, skmpa) in

m16. let (= cmpa Credpt , cmpa Enc3) = getpublic(rcvmpa vc3) in

m17. if Vfy-vencPtnym(rcvmpa vc3,
(cmpa Credpt , cmpa Enc3, pksso)) = true then

m19. let (= cmpa Credpt , cmpa Enc′3) = getpublic(rcvmpa vc′3) in

m20. if Vfy-vencHii(rcvmpa vc′3,
(cmpa Credpt , cmpa Enc ′3, pksso)) = true then

m21. let (= cmpa Credpt , cmpa Enc4) = getpublic(rcvmpa vc4) in

m22. if Vfy-vencPtnym(rcvmpa vc4,
(cmpa Credpt , cmpa Enc4, pkmpa)) = true then

m23. let cmpa Pnympt = dec(cmpa Enc4, skmpa) in

m24. if Vfy-spkReceiptAck(rcvmpa ReceiptAck , (cmpa Credpt ,
cmpa PrescriptID , cmpa Idph , rcvmpa vc1, rcvmpa vc2,
rcvmpa vc3, rcvmpa vc ′3, rcvmpa vc4, rcvmpa c5)) = true then 0

Figure 5.12: The MPA process in the pharmacist-MPA sub-protocol Pmpa p1.

and the MPA verifies that he is indeed the pharmacist’s MPA (m4), the MPA
then authenticates itself to the pharmacist by sending the signature of his iden-
tity (m5). The pharmacist reads in the MPA’s authentication in rcv Authmpa

(h25), and verifies the authentication (h26). If the verification succeeds, the
pharmacist sends the following to the MPA: prescription rcvph PrescProof , re-
ceived receipt rcv ReceiptAck , and verifiable encryptions rcv vc1, rcv vc2, rcv vc3,
rcv vc′3, rcv vc4, rcv c5 (h27). The MPA reads in the information (m6) and ver-
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Pph p2 :=
h24. out(ch, (sign((Idph , cph Idmpa), skph), Idph)).
h25. in(ch, rcv Authmpa).
h26. if Vfy-sign(rcv Authmpa , rcvph pkmpa) = true then

h27. out(ch, (rcvph PrescProof ,
rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4, rcv c5,
rcv ReceiptAck))

Figure 5.13: The pharmacist process in the pharmacist-MPA sub-protocol Pph p2.

ifies their correctness (m7-m23). If the verifications succeed, the MPA decrypts
the corresponding encryptions (cmpa Enc1, cmpa Enc2, and cmpa Enc4) embedded
in rcvmpa vc1, rcvmpa vc2, rcvmpa vc4, and obtains the patient’s HII (m12), the doc-
tor pseudonym (m15), the patient pseudonym (m23). The storing information to
database by the MPA is beyond our concern.

Modelling the MPA-HII sub-protocol. This protocol covers the exchange of infor-
mation between the pharmacist’s MPA, whose steps are labelled mi in Figure 5.14
and the patient’s HII, whose steps are labelled ii in Figure 5.15.

Pmpa p2 :=
m25. out(ch, (sign(Idmpa , skmpa), Idmpa)).
m26. in(ch, rcvmpa Authhii).
m27. let cmpa pkhii = key(cmpa Hii) in

m28. if Vfy-sign(rcvmpa Authhii , cmpa pkhii) = true then

m29. if getsignmsg(rcvmpa Authhii , cmpa pkhii) = cmpa Hii then

m30. out(ch, (rcvmpa ReceiptAck , dec(rcvmpa c5, skmpa))).
m31. in(ch, rcvmpa Invoice)

Figure 5.14: The MPA process in the MPA-HII sub-protocol Pmpa p2.

The MPA sends his identity to the HII and authenticates to the HII using public
key authentication (m25). The HII stores the MPA’s identity in rcvhii Idmpa and
stores the authentication in rcvhii Authmpa (i1). From the MPA’s identity, the HII
obtains the MPA’s public key (i2). Then the HII verifies the MPA’s authentication
(i3). If the verification succeeds, the HII authenticates to the MPA using public key
authentication (i4). The MPA stores the authentication in rcvmpa Authhii (m26).
Then the MPA obtains the HII’s public key from the HII’s identity (m27) and
verifies the HII’s authentication (m28). If the verification succeeds, and the MPA
verifies that the authentication is from the intended HII (m29), the MPA sends
the receipt rcvmpa PrescProof and the patient pseudonym encrypted for the HII –
verifiable encryption rcvmpa vc5 = dec(rcvmpa c5, skmpa) (m30). The HII receives
the receipt as rcvhii ReceiptAck and the encrypted patient pseudonym for the HII
as chii vc5 (i5). The HII verifies the above two pieces of information (i6-i10). If the
verifications succeed, the HII decrypts the encryption chii Enc5 which is embedded
in chii vc5, and obtains the patient’s pseudonym (i11). Finally, the HII sends an
invoice of the prescription identity to the MPA (i12). The MPA stores the invoice
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Phii :=
i1. in(ch, (rcvhii Authmpa , rcvhii Idmpa)).
i2. let chii pkmpa = key(rcvhii Idmpa) in

i3. if Vfy-sign(rcvhii Authmpa , chii pkmpa) = true then

i4. out(ch, sign(Idhii , skhii)).
i5. in(ch, (rcvhii ReceiptAck , chii vc5)).
i6. let chii Credpt = getSpkVinfo(rcvhii ReceiptAck) in

i7. let (chii PrescriptID , chii Idph , chii vc1, chii vc2, chii vc3, chii vc
′
3,

chii vc4, chii c5) = getmsg(rcvhii ReceiptAck) in

i8. if Vfy-spkReceiptAck(rcvhii ReceiptAck , (chii Credpt ,
chii PrescriptID , chii Idph , chii vc1, chii vc2, chii vc3, chii vc

′
3,

chii vc4, chii c5)) = true then

i9. let (= chii Credpt , chii Enc5) = getpublic(chii vc5) in

i10. if Vfy-vencPtnym(chii vc5, (chii Credpt , chii Enc5, pkhii)) = true then

i11. let chii Pnympt = dec(chii Enc5, skhii) in

i12. out(ch, invoice(chii PrescriptID))

Figure 5.15: The HII process Phii .

in rcvmpa Invoice (m31). Afterwards, the HII pays the MPA and updates the
patient account. As before, handling payment and storing information are beyond
the scope of the DLV08 protocol and therefore, we do not model this stage.

Composition. Finally, we compose the two parts of patient processes, the two
parts of pharmacist processes and the two parts of the MPA processes. Since
the DLV08 protocol works as four sub-protocols executing in order, as shown in
Figure 5.16, we simply connect each two parts to compose them. We compose
Ppt p1 and Ppt p2 to obtain Ppt (as shown in Figure 5.17), compose Pph p1 and
Pph p2 to obtain Pph (as shown in Figure 5.18), and compose Pmpa p1 and Pmpa p2
to obtain Pmpa (as shown in Figure 5.19).

The protocol. The DLV08 protocol is modelled as the five roles Rdr , Rpt , Rph ,
Rmpa , and Rhii running in parallel.

PDLV08 := νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii)
init := let pksso = pk(sksso) in out(ch, pksso)

where νm̃ represents global secrets sksso and private channels chhp, chmp, chphpt;
process init initialises the settings of the protocol. Each role is of the form Ri :=
init i.!Pi.

In summary, the DLV08 protocol is composed as shown in Figure 5.20. In the
protocol model, the roles Rdr , Rhii , Rpt , Rph , Rmpa are shown as in Figure 5.21,
Figure 5.22, Figure 5.17, Figure 5.18, and Figure 5.19, respectively.
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Figure 5.16: Overview of the DLV08 protocol.

Rpt := νIdpt .
νPnympt .νSss.νAcc.
in(chhp, Hii).let cpt pkhii = key(Hii) in

}

initpt

!(in(chphpt, rcv pkph).
let rcvpt pkph = rcv pkph in let Idph = host(rcv pkph) in

(. . .
let c Pnymdr = open(c Comtdr , rcv rdr) in

}

Ppt p1

in(ch, rcv Authph).
. . .)

}

Ppt p2







































Ppt

Figure 5.17: The process for role patient Rpt .
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Rph := νskph .
let pkph = pk(nskph) in

let Idph = host(pkph) in

(!out(ch, pkph) |!out(chphpt, pkph) |
!(in(chmp, rcvph pkmpa).
let cph Idmpa = host(rcvph pkmpa) in

(. . .
if Vfy-spkReceiptAck(rcv ReceiptAck , (cph Credpt ,

cph PrescriptID , Idph , rcv vc1, rcv vc2, rcv vc3,
rcv vc′3, rcv vc4, rcv c5)) = true then















Pph p1

out(ch, (sign((Idph , cph Idmpa), skph), Idph)).
. . .)))

}
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Figure 5.18: The process for role pharmacist Rph .

Rmpa := νskmpa .
let pkmpa = pk(skmpa) in

let Idmpa = host(pkmpa) in

(!out(ch, pkmpa) |!out(chmp, pkmpa) |
!(. . .
if Vfy-spkReceiptAck(rcvmpa ReceiptAck ,

(cmpa Credpt , cmpa PrescriptID , cmpa Idph ,
rcvmpa vc1, rcvmpa vc2, rcvmpa vc3,
rcvmpa vc′3, rcvmpa vc4, rcvmpa c5))

= true then
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}
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Figure 5.19: The process for role MPA Rmpa .

PDLV08 := νsksso .νchhp.νchmp.νchphpt. } νm̃
let pksso = pk(sksso) in

out(ch, pksso).

}

init

(!(Rdr) |!(Rpt) |!(Rph) |!(Rmpa) |!(Rhii))

Figure 5.20: The process for the DLV08 protocol.

Rdr := νIddr .
νPnymdr . } initdr
!(Pdr )

Figure 5.21: The process for role doctor Rdr .

5.6 Analysis of DLV08

In this section, We analyse the claimed properties, including secrecy of patient
and doctor information, authentication, (strong) patient and doctor anonymity,



5.6 Analysis of DLV08 79

Rhii := νskhii .
let pkhii = pk(skhii) in

let Idhii = host(pkhii) in

(!out(ch, pkhii) |!out(chhp, Idhii) |!(Phii))

Figure 5.22: The process for role HII Rhii .

(strong) patient and doctor untraceability, (enforced) prescribing-privacy and in-
dependence of (enforced) prescribing-privacy of the DLV08 protocol. The two
properties, doctor anonymity and untraceability, are not required by the protocol
but are still interesting to analyse.

5.6.1 Secrecy of patient and doctor information

The DLV08 protocol is claimed to satisfy the following requirement: any party
involved in the prescription processing workflow should not know the information
of a patient and a doctor unless the information is intended to be revealed in
the protocol. In [dDLVV08], this requirement is considered as an access control
requirement. We argue that ensuring the requirement with access control is not
enough when a party is dishonest. Since it is not clearly described whether the
involved parties are honest, assuming a party is dishonest by observing the network
and manipulating the protocol, we found that the party may obtain information
which he should not access.

We analyse secrecy of patient and doctor information, respecting to a dishonest
party who has the Dolev-Yao adversary ability. Private information of patients
and doctors, which needs to be protected, is as follows: patient identity (Idpt),
doctor identity (Iddr ), patient pseudonym (Pnympt), doctor pseudonym (Pnymdr), a
patient’s social security status (Sss), a patient’s health insurance institute (Hii).
Although it is not required, the health expense account Acc of a patient has also
been verified.

Verification result. We query the standard secrecy of the set of private informa-
tion using ProVerif [Bla01]. The verification result (see Table 5.1) shows that a
patient’s identity, pseudonym, health expense account, health insurance institute
and identity of a doctor (Idpt , Pnympt , Hii Acc, Iddr ) satisfy standard secrecy; a
patient’s social security status Sss and a doctor’s pseudonym Pnymdr do not satisfy
standard secrecy. The Sss is revealed by the proof of social security status from
the patient to the pharmacist. The Pnymdr is revealed by the revealing of both
the commitment of the patient’s pseudonym and the open key to the commitment
during the communication between the patient and the doctor.

To fix secrecy of a patient’s social security status, it requires that the proof of
social security status only reveals the status to the pharmacist. Since how a social
security status is represented and what the pharmacist needs to verify, are not
clear, we cannot give explicit suggestions. However, if the social security status is
a number, and the pharmacist only needs to verify that the number is higher than
a certain threshold, the patient can prove it using zero-knowledge proof without
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checked Security property initial model cause(s) improvement
Secrecy of Idpt

√

Secrecy of Pnympt
√

Secrecy of Sss × revealed session key
Secrecy of Hii

√

Secrecy of Acc
√

Secrecy of Iddr
√

Secrecy of Pnymdr × revealed session key

Table 5.1: Verification results of secrecy for patients and doctors.

revealing the number; if the pharmacist needs to verify the exact value of the
status, one way to fix its secrecy is that the pharmacist and the patient agree on
a session key and the status is encrypted using the key. Similarly, a way to fix the
secrecy of Pnymdr is to encrypt the open information using the agreed session key.

5.6.2 Patient and doctor authentication

The protocol claims that all parties should be able to properly authenticate each
other. Compared to authentications between public entities, pharmacists, MPA
and HII, we focus on authentications between patients and doctors, as patients
and doctors use anonymous authentication. Authentications between patients and
pharmacists are sketched as well.

The authentication from a patient to a doctor is defined as when the doctor finishes
his process and believes that he prescribed medicine for a patient, then the patient
did ask the doctor for prescription. Similarly, the authentication from a doctor
to a patient is defined as when the patient believes that he visited a doctor, the
doctor did prescribe medicine for the patient.

Authentications are modelled as correspondence properties. To verify the au-
thentication of a patient, we add an event EndDr〈c Credpt , c Comtpt〉 at the end
of the doctor process, meaning the doctor believes that he prescribed medicine
for a patient who has a credential c Credpt and committed c Comtpt ; and add
an event StartPt〈ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt)〉 in the pa-
tient process, meaning that the patient did ask for a prescription. Then we
query ev(inj):EndDr(x,y) ==> ev(inj):StartPt(x,y), meaning that when the
event EndDr is executed, there is an (unique) event StartPt has been executed be-
fore. Similarly, to authenticate a doctor, we add to the patient process an event
EndPt〈c Creddr , c Comtdr , c presc, c PrescriptID〉 at the end, and add an event
StartDr〈drcred(Pnymdr , Iddr ), commit(Pnymdr , rdr), presc,PrescriptID〉 in the doc-
tor process, then query ev(inj):EndPt(x,y,z,t) ==> ev(inj):StartDr(x,y,z,t).

Verification result. The queries are verified using the tool ProVerif [Bla02]. The
verification result shows that the doctor authentication, both injective and non-
injective, succeed; the non-injective patient authentication succeeds and injective
patient authentication fails. The failure is caused by the a replay attack from
the adversary. That is, the adversary can impersonate a patient by replaying old
messages from the patient. This authentication flaw leads to termination of the
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checked Auth initial model cause(s) improvement
dr to pt (inject)

√

dr to pt (non-inject)
√

pt to dr (inject) × replay attack add challenge
pt to dr (non-inject)

√

ph to pt (inject) × adv. can reply 1st message, sign the invoice
compute 2nd message

ph to pt (non-inject) × adv. can reply 1st message, sign the invoice
compute 2nd message

pt to ph (inject) × replay attack add challenge
pt to ph (non-inject)

√

Table 5.2: Verification results of authentication of patients and doctors.

successive procedure, the patient-pharmacist sub-process. We verified the authen-
tications between patients and pharmacists as well. Non-injective patient authen-
tication succeeds, and injective patient authentication fails. This means that the
messages received by a pharmacist are from a patient, but not necessarily from
the patient who the pharmacist is communicating with. Neither non-injective nor
injective pharmacist authentication succeeds. This means that the adversary can
record messages from a pharmacist and pretend to be that pharmacist. The veri-
fication results are summarised in Table 5.2.

The reason that injective patient authentications to doctors and pharmacists fail is
that they suffer from replay attack. To fix them, one way is to add a challenge step
from the doctor or pharmacist to the patient, and when the patient authenticates
to the doctor or pharmacist, the patient includes the challenge in the proofs. This
assures that the proof is freshly generated. Thus it prevents the adversary replaying
old messages. The reason that the (injective and non-injective) authentication from
a pharmacist to a patient fails is that the adversary can generate the invoice to
replace the one from the real pharmacist. To fix the flaw, one way is for the
pharmacist to sign the invoice.

5.6.3 (Strong) patient and doctor anonymity

The DLV08 protocol claims that no party should be able to determine the identity
of a patient. We define (strong) patient anonymity to capture the requirement.
Note that in the original paper of the DLV08 protocol, the terminology of the pri-
vacy notion for capturing this requirement is patient untraceability. Our definition
of untraceability (Definition 5.7) has different meaning from theirs (for details, see
Section 5.6.4). Also note that the satisfaction of standard secrecy of patient iden-
tity does not fully capture this requirement, as the adversary can still guess about
it.

Patient and doctor anonymity. Doctor anonymity is defined as in Definition 5.5.
Patient anonymity can be defined in a similar way by replacing the role of doctor
with the role of patient.

Ceh [initpt{tA/Idpt}.!Ppt{tA/Idpt}] ≈ℓ Ceh [initpt{tB/Idpt}.!Ppt{tB/Idpt}].
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To verify doctor/patient anonymity, is to check the satisfiability of the correspond-
ing equivalence between processes in the definition. This is done by modelling the
two processes on two sides of the equivalence as a bi-processes, and verify the bi-
process using ProVerif. Recall that a bi-process models two processes sharing the
same structure and differing only in terms or destructors. The two processes are
written as one process with choice-constructors which tells ProVerif the spots where
the two processes differ. For example, choice[x, y] means that the first process uses
x to replace choice[x, y] while the second process uses y.

The bi-process for verifying doctor anonymity is

νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii | (νPnymdr .let Iddr = choice[dA, dB] in !Pdr ),

and the bi-process for verifying patient anonymity is

νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii | (let Idpt = choice[tA, tB] in
νPnympt .νSss.νAcc.in(chhp, Hii).let cpt pkhii = key(Hii) in !Ppt).

Strong patient and doctor anonymity. Strong doctor anonymity is defined as in
Definition 5.6. By replacing the role of doctor with the role of patient, we obtain
the definition of strong patient anonymity.

The bi-process for verifying strong doctor anonymity is

free dA;
νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii |

(νdB.νnPnymdr .let Pnymdr = nPnymdr in !(let Iddr = choice[dB, dA] in Pdr))),

and the bi-process for verifying strong patient anonymity is

free tA;
νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii | (νtB.νPnympt .νSss.νAcc.

in(chhp, Hii).let cpt pkhii = key(Hii) in !(let Idpt = choice[tB, tA] in Ppt))).

Verification result. The bi-processes are verified using ProVerif. The verification
results show that patient anonymity and strong patient anonymity are satisfied
and neither doctor anonymity nor strong doctor anonymity is not satisfied. For
strong doctor anonymity, the adversary can distinguish a process initiated by an
unknown doctor and a known doctor. Given a doctor process, where the doctor
has identity dA, pseudonym Pnymdr , and credential drcred(Pnymdr , dA), Pnymdr and
drcred(Pnymdr , dA) are revealed. We assume that the adversary knows another doc-
tor identity dB. The adversary can fake an anonymous authentication by faking the
zero-knowledge proof as zk((Pnymdr , dB), drcred(Pnymdr , dA)). If the zero-knowledge
proof passes the corresponding verification Vfy-zkAuthdr by the patient, then the
adversary knows that the doctor process is executed by the doctor dB. Otherwise,
not. For the same reason, doctor anonymity fails the verification. Both flaws can
be fixed by requiring a doctor to generate a new credential in each session (s4’).

5.6.4 (Strong) patient and doctor untraceability

Even if a user’s identity is not revealed, the adversary may be able to trace a user
by telling whether two executions are done by the same user. The DLV08 protocol
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claims that prescriptions issued to the same patient should not be linkable to each
other. In other words, the situation in which a patient executes the protocol twice
should be indistinguishable from the situation in which two different patients exe-
cute the protocol individually. To satisfy this requirement, patient untraceability
is required. Note that patient untraceability is claimed as patient unlinkability by
the authors of the DLV08 protocol, we use different terminology.

Patient and doctor untraceability. Doctor untraceability has been defined in Def-
inition 5.7, and patient untraceability can be defined in a similar style.

The bi-process for verifying doctor untraceability is

νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii | (νnPnymdr .νwPnymdr .
((let Iddr = dA in let Pnymdr = nPnymdr in Pdr) |
(let Iddr = choice[dA, dB] in let Pnymdr = choice[nPnymdr , wPnymdr ] in Pdr )))),

and the bi-process for verifying patient untraceability is

νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii |
(νnPnympt .νnSss.νnAcc.νwPnympt .νwSss.νwAcc.
in(chhp, nHii).in(chhp,wHii).
let cpt npkhii = key(nHii) in let cpt wpkhii = key(wHii) in
(let Hii = nHii in let cpt pkhii = cpt npkhii in let Idpt = tA in
let Pnympt = nPnympt in let Sss = nSss in let Acc = nAcc in Ppt) |
(let Hii = choice[nHii ,wHii ] in let cpt pkhii = choice[cpt npkhii , cpt wpkhii ] in
let Idpt = choice[tA, tB] in let Pnympt = choice[nPnympt , wPnympt ] in
let Sss = choice[nSss, wSss] in let Acc = choice[nAcc, wAcc] in Ppt))).

Strong patient and doctor untraceability. Strong untraceability is modelled as a
patient executing the protocol repeatedly is indistinguishable from different pa-
tients executing the protocol each once. Strong doctor untraceability is defined
as in Definition 5.8 and strong patient untraceability can be defined in the same
manner.

The bi-process for verifying strong doctor untraceability is

νm̃.init .(!Rpt |!Rph |!Rmpa |!Rhii |!(νnIddr .νnPnymdr .!(νwIddr .νwPnymdr .
let Iddr = choice[nIddr , wIddr ] in let Pnymdr = choice[nPnymdr , wPnymdr ] in Pdr))),

and the bi-process for verifying strong patient untraceability is

νm̃.init .(!Rdr |!Rph |!Rmpa |!Rhii |!(νnIdpt .νnPnympt .νnSss.νnAcc.in(chhp, nHii).
!(νwIdpt .νwPnympt .νwSss.νwAcc.
let Idpt = choice[nIdpt , wIdpt ] in let Pnympt = choice[nPnympt , wPnympt ] in
let Sss = choice[nSss, wSss] in let Acc = choice[nAcc, wSss] in
in(chhp,wHii).let Hii = choice[nHii ,wHii ] in let cpt pkhii = key(Hii) in Ppt))).

Verification result. The bi-processes are verified using ProVerif. The verification
results show that the DLV08 protocol does not satisfy patient/doctor untraceabil-
ity, nor strong untraceability. The strong doctor untraceability fail because the
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adversary can distinguish sessions initiated by one doctor and by different doctors.
The doctor’s pseudonym is revealed and a doctor uses the same pseudonym in
all sessions. Sessions with the same doctor pseudonyms are initiated by the same
doctor. For the same reason, doctor untraceability also fails. Both of them can be
fixed by requiring a doctor to freshly generate his pseudonym in each session (s3’).
For strong patient untraceability, the adversary can distinguish sessions initiated
by one patient (with identical social security statuses) and initiated by different
patients (with different social security statuses). Second, the adversary can distin-
guish sessions initiated by one patient (with identical cipher texts enc(Pnympt , pksso)
and identical cipher texts enc(Hii, pksso)) and initiated by different patients (with
different cipher texts enc(Pnympt , pksso) and different cipher texts enc(Hii, pksso)).
Third, since the patient credential is the same in all sessions and is revealed, the
adversary can also trace a patient by the patient’s credential. Fourth, the adversary
can distinguish sessions using the same HII and sessions using different HIIs. For
the same reasons, patient untraceability fails. Both flaws can be fixed by revising
the assumptions (s5’, s2’, s4” and s6’).

5.6.5 Prescribing-privacy

Prescribing-privacy has been defined in Definition 5.1. To verify the prescribing-
privacy is to check the satisfaction of the equivalence in the definition. The bid-
process for verifying the equivalence is

free dA.free dB.free pA.free pB.
νm̃.init .(!Rpt |!Rdr |!Rph | (νnPnymdr .νwPnymdr .

let Iddr = choice[dA, dB] in
let Pnymdr = choice[nPnymdr , wPnymdr ] in
let presc = pA in maindr) |
(νnPnymdr .νwPnymdr .
let Iddr = choice[dB, dA] in
let Pnymdr = choice[nPnymdr , wPnymdr ] in
let presc = pB in maindr)).

Verification result. The verification, using ProVerif, shows that the DLV08 proto-
col does not satisfy prescribing-privacy, i.e., the adversary can distinguish whether
a prescription is prescribed by doctor dA or doctor dB. In the prescription proof, a
prescription is linked to a doctor credential. And a doctor credential is linked to
a doctor identity. Thus, the adversary can link a doctor to his prescription. To
break the link, one way is to make sure that the adversary cannot link a doctor
credential to a doctor identity. This can be achieved by adding randomness to the
credential (s4’).

5.6.6 Enforced prescribing-privacy

The definition of enforced prescribing-privacy is modelled as the existence of a
process P ′

dr , such that the two equivalences in Definition 5.2 are satisfied. Due to
the existential quantification, we cannot verify the property directly using ProVerif.
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Examining the DLV08 protocol, we find an attack on enforced prescribing-privacy,
even after fixing prescribing privacy (with assumption s4’). A bribed doctor is
able to prove to the adversary of his prescription as follows:

1. A doctor communicates with the adversary to agree on a bit-commitment
that he will use, which links the doctor to the commitment.

2. The doctor uses the agreed bit-commitment in the communication with his
patient. This links the bit-commitment to a prescription.

3. Later, when the patient uses this prescription to get medicine from a phar-
macist, the adversary can observe the prescription being used. This proves
that the doctor has really prescribed the medicine.

Formally, using ProVerif, we can show that if a doctor reveals all his information
to the adversary, the doctor’s prescribing-privacy is broken. To prove that there
exist no alternative precesses for a doctor to cheat the adversary, we assume that
there exists a process P ′

dr which satisfies the definition of enforced prescribing-
privacy, and then derive some contradiction. A bribed doctor reveals the nonces
used in the commitment and the credential to the adversary. Thus, the adversary
links a bribed doctor to his commitment and credential. In the prescription proof,
a prescription is linked to a doctor’s commitment and credential. Suppose there
exists a process P ′

dr in which the doctor lies to the adversary that he prescribed
pA, while the adversary observes that the commitment or the credential is linked
to pB. The adversary can detect that the doctor has lied.

Proof. Assume there exists a process P ′
dr which satisfies the definition of enforced

prescribing-privacy. i.e., ∃ P ′
dr such that

1. Ceh [
(

init ′dr{dA/Iddr}.(!Pdr{dA/Iddr} | P ′
dr{dA/Iddr})

)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pA/presc})
)

]
≈ℓ Ceh [

(

(initdr{dA/Iddr})
chc.(!Pdr{dA/Iddr} | (maindr{dA/Iddr , pA/presc})

chc)
)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pB/presc})
)

];

2. init ′dr{dA/Iddr}
\out(chc,·).(P ′

dr{dA/Iddr}
\out(chc,·))

≈ℓ initdr{dA/Iddr}.(maindr{dA/Iddr , pB/presc}).

According to the definition of labelled bisimilarity and static equivalence, if two
processes are labelled bisimilar, we have that if M =E N at any state of one
process, then there exist some states of the other process, such that M =E N .
Due to the first equivalence, we have that if M =E N on the right hand side of
the first equivalence, then M =E N on the left hand side.

On the right hand side of the first equivalence, there exists an output of a prescrip-
tion proof PrescProof r, over public channels, from a process initiated by doctor dA
(process (maindr{dA/Iddr , pA/presc})

chc). The adversary can obtain the prescrip-
tion pA from PrescProof r.

(pA,PrescriptID
r,Comt rdr , c Comt rpt) = getmsg(PrescProof r)



86 Chapter 5 Enforced privacy in e-health

On the left hand side of the first equivalence, there should also exist an output of
a prescription proof PrescProof l over public channels, from which the adversary
can obtain a prescription pA.

(pA,PrescriptID
l,Comt ldr , c Comt lpt) = getmsg(PrescProof l)

Next, we prove that prescription proof PrescProof l is the prescription proof in pro-
cess init ′dr{dA/Iddr}.P

′
dr{dA/Iddr}. On the right hand side of the first equivalence,

the term PrescProof r is computed as

PrescProof r = spk((Pnymrdr , r
r
dr , dA, n

r
dr),

(commit(Pnymrdr , r
r
dr ), drcred(Pnym

r

dr , dA, n
r
dr )),

(pA,PrescriptID
r, commit(Pnymrdr , r

r
dr ), c Comt rpt)

where the doctor pseudonym Pnymrdr and the nonce for doctor commitment rrdr and
the nonce for doctor credential nrdr (used for assumption s4’) are revealed to the
adversary on chc channel. On the left hand side of the first equivalence, to be equiv-
alent to the right side, there should also exist sub-processes which output messages
on chc channel. Such sub-processes can only be init ′dr{dA/Iddr} and P ′

dr{dA/Iddr},
because there is no output on chc in other sub-processes in the left hand side
process. Suppose Pnymldr , r

l
dr and nldr are the doctor pseudonym and the nonces

sent to the adversary over chc on the left hand side (corresponding to Pnymrdr , r
r
dr

and nrdr on the right hand side). Since the process init ′dr{dA/Iddr}.P
′
dr{dA/Iddr}

knows Pnymldr , r
l
dr , n

l
dr and dA, the process is able to compute and thus output a

prescription proof PrescProof l, where the prescription is pA.

PrescProof l = spk((Pnymldr , r
l
dr , dA, n

l
dr),

(commit(Pnymldr , r
l
dr ), drcred(Pnym

l

dr , dA, n
l
dr )),

(pA,PrescriptID
l, commit(Pnymldr , r

l
dr), c Comt lpt)

On the other hand, sub-processes on the left hand side of the first equivalence,
except processes init ′dr{dA/Iddr} and P ′

dr{dA/Iddr}, cannot generate such a pre-
scription as PrescProof l with Pnymldr , r

l
dr and nldr shared with the adversary.

1) The sub-processes except doctor sub-processes honestly follow the protocol
and thus do not generate a signed proof knowledge which matches the pattern
of PrescProof l.

2) The prescription proof PrescProof l cannot be generated in doctor sub-processes
except the sub-processes init ′dr{dA/Iddr} and P ′

dr{dA/Iddr}.

– First, the doctor sub-processes do not generate PrescProof l using out-
side information. The doctor sub-processes honestly follow the protocol
and thus do not purposely read in the secret values (Pnymldr , r

l
dr and

nldr) from the chc channel to generate PrescProof l. Even the adversary
feeds the sub-processes with Pnymldr , r

l
dr and nldr over public channels,

the sub-processes cannot generate PrescProof l. Because the honest doc-
tor sub-processes do not use read in values to generate a prescription
proof.

– Second, the honest doctor sub-processes can not generate PrescProof l

using their initial knowledge.
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∗ Since in honest doctor sub-processes, Pnymdr , rdr and ndr are freshly
generated in each session of a doctor sub-process, the honest doctor
sub-processes do not generate PrescProof l using globally shared
information.

∗ The honest doctor sub-processes can not generate PrescProof l using
self-generated information. Suppose an honest doctor sub-process
generates PrescProof l using self-generated information. In order to
do so, the honest doctor sub-process needs to generates Pnymldr , r

l
dr

and nldr . As we stated earlier, init ′dr{dA/Iddr} or P ′
dr{dA/Iddr} need

to know Pnymldr , r
l
dr and nldr , so that the three values can be sent

to the adversary over chc. However, there is no way for process
init ′dr{dA/Iddr} or P ′

dr{dA/Iddr} to know nldr from the honest doc-
tor sub-process, because ndr is never revealed by an honest doctor
sub-process. Therefore, the honest doctor processes do not gener-
ate nldr and thus cannot generate PrescProof l using self-generated
information.

Therefore, the process which outputs the prescription proof PrescProof l on the left
hand side of the first equivalence is init ′dr{dA/Iddr} and/or P ′

dr{dA/Iddr} Thus, the
prescription in process init ′dr{dA/Iddr}.P

′
dr{dA/Iddr} is pA.

However, in the right hand side process of the second equivalence, there is a pre-
scription proof output over public channels from processmaindr{dA/Iddr , pB/presc}.
The adversary obtains prescription pB from the prescription proof. To satisfy the
second equivalence, the left hand side process of the second equivalence (the pro-

cess init ′dr{dA/Iddr}
\out(chc,·).(P ′

dr{dA/Iddr}
\out(chc,·))) should also output a prescrip-

tion proof (denoted as PrescProof ′) where the prescription is pB. Since the pro-

cess init ′dr{dA/Iddr}
\out(chc,·).(P ′

dr{dA/Iddr}
\out(chc,·)) outputs PrescProof ′, its cor-

responding process, init ′dr{dA/Iddr}.P
′
dr{dA/Iddr}, in which communication over

chc is not hidden, should also output PrescProof ′. Therefore, the prescription in
init ′dr{dA/Iddr}.P

′
dr{dA/Iddr} is pB. Since pA 6= pB, contradiction is found.

5.6.7 Independency of (enforced) prescribing-privacy

The doctor’s prescribing-privacy independent of the pharmacist is modelled by
replacing Ri with Rph in Definition 5.3. The bi-process for verifying the property
is

free dA.free dB.free pA.free pB.
νm̃.init .(!Rpt |!Rdr |!(Rph)

chc | (νnPnymdr .νwPnymdr .
let Iddr = choice[dA, dB] in
let Pnymdr = choice[nPnymdr , wPnymdr ] in
let presc = pA in maindr ) |
(νnPnymdr .νwPnymdr .
let Iddr = choice[dB, dA] in
let Pnymdr = choice[nPnymdr , wPnymdr ] in
let presc = pB in maindr )).

The verification, using ProVerif, shows that the protocol (after fixing the flaw on
prescribing-privacy with assumption s4’) satisfies this property.



88 Chapter 5 Enforced privacy in e-health

checked privacy notion initial cause(s) improvement revised
model model

prescribing-privacy × s4 s4’
√

enforced presc.-priv. × (with s4’ ) s8’
√

ind. of presc.-priv.
√

(with s4’)
√

ind. of enf. presc.-priv. ×(with s4’) s8’ ×
patient anonymity

√ √

strong patient anonymity
√ √

doctor anonymity × s4 s4’
√

strong doctor anonymity × s4 s4’
√

patient untraceability × s2, s4, s5, s6 s2’, s4”, s5’, s6’
√

strong patient untrace. × s2, s4, s5, s6 s2’, s4”, s5’, s6’
√

doctor untraceability × s3 s3’
√

strong doctor untrace. × s3 s3’
√

Table 5.3: Verification results of privacy properties and revised assumptions.

Similarly, the doctor’s enforced prescribing-privacy independent of pharmacist is
defined as replacing Ri with Rph in Definition 5.4. The flaw described in Sec-
tion 5.6.6 is also applied here. Intuitively, when a doctor can prove his prescrip-
tion without the pharmacist sharing information with the adversary, the doctor
can prove it when the pharmacist genuinely cooperates with the adversary.

The verification results for privacy properties are summarised in Table 5.3.

5.7 Addressing the flaws of the DLV08 protocol

To summarise, we modify assumptions in Section 5.5.1 to fix the flaws found in
our analysis of the privacy notions.

• s2’ The encryptions are probabilistic.

• s3’ A doctor’s pseudonym is freshly generated in every session.

• s4’ A doctor freshly generates an unpredictable credential in each session.
We model this with another parameter (a random number) of the creden-
tial. Following this, anonymous authentication using these credentials proves
knowledge of the used randomness.

• s4” A patient freshly generates a credential in each session.

• s5’ A patient’s social security status is different in each session.

• s6’ All patients share the same HII.

The modified protocol was verified again using ProVerif. The verification results
show that the protocol with revised assumptions satisfies doctor anonymity, strong
doctor anonymity, and prescribing-privacy, as well as untraceability and strong
untraceability for both patient and doctor.
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To make the protocol satisfies enforced prescribing-privacy, we apply the following
assumption on communication channels.

• s8’ The communication channels are untappable, except that the communi-
cation channels for authentications remain public.

Our model of the protocol is accordingly modified as follows: replacing channel ch
in lines d10, t6 with an untappable channel chdp, replacing channel ch in lines
t23, t26, h5, h22 with an untappable channel chptph, and replacing channel ch in
lines t24, h21 with an untappable channel chphpt. The untappable channels are
modelled as global private channels. We prove that the protocol (with s4’ and s8’)
satisfies enforced prescribing-privacy by showing the existence of a process P ′

dr (as
shown in Figure 5.23) such that the equivalences in Definition 5.2 are satisfied.
The Equivalences are verified using ProVerif.

initdr{dA/Iddr}.(!Pdr{dA/Iddr} | P ′
dr{dA/Iddr}) :=

let Iddr = dA in νPnymdr .
(!Pdr (∗the Pdr has assumptions s4’ and s8’∗)

| (out(chc, Iddr ).
out(chc, Pnymdr).
νndr .out(chc, ndr ).
(∗s4’: creating a nonce and adding it in zk and spk∗)
out(ch, zk((Pnymdr , Iddr , ndr ), drcred(Pnymdr , Iddr , ndr))).
in(ch, (rcv Authpt , rcv PtProof )).
out(chc, (rcv Authpt , rcv PtProof )).
let c Credpt = getpublic(rcv Authpt) in

let (c Comtpt ,= c Credpt) = getpublic(rcv PtProof ) in

if Vfy-zkAuthpt (rcv Authpt , c Credpt) = true then

if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

out(chc, pA).
νrdr .
out(chc, rdr).
let PrescriptID = hash(pB, c Comtpt , commit(Pnymdr , rdr)) in

out(chdp, (spk((Pnymdr , rdr , Iddr , ndr),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(pB,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr)).
out(chc, (spk((Pnymdr , rdr , Iddr , ndr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(pA, hash(pA, c Comtpt , commit(Pnymdr , rdr)),
commit(Pnymdr , rdr ), c Comtpt)),

rdr))))

Figure 5.23: The doctor process P ′
dr (using untappable channels).

However, with the above assumptions the DLV08 protocol does not satisfy indepen-
dency of enforced prescribing-privacy. We first show that P ′

dr is not sufficient for
proving this with ProVerif. Then we prove (analogous to the proof in Section 5.6.6)
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that there is no alternative process P ′
dr which satisfies Definition 5.4. Intuitively,

all information sent over untappable channels are received by pharmacists and can
be genuinely revealed to the adversary by the pharmacists (do not lie by assump-
tion). Hence, there still exist links between a doctor, his nonces, his commitment,
his credential and his prescription, when the doctor is bribed/coerced to reveal the
nonces used in the commitment and the credential to the adversary.

Proof. Suppose, there exists a process P ′
dr which satisfies the definition of indepen-

dency of enforced prescribing-privacy. That is, ∃ P ′
dr such that the two equivalences

in Definition 5.4 are satisfied.

1. Ceh [!R
chc

ph |
(

init ′dr{dA/Iddr}.(!Pdr{dA/Iddr} | P ′
dr{dA/Iddr})

)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pA/presc})
)

]
≈ℓ Ceh [!R

chc

ph |
(

(initdr{dA/Iddr})
chc.

(!Pdr{dA/Iddr} | (maindr{dA/Iddr , pA/presc})
chc)

)

|
(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pB/presc})
)

];

2. init ′dr{dA/Iddr}
\out(chc,·).(P ′

dr{dA/Iddr}
\out(chc,·))

≈ℓ initdr{dA/Iddr}.(maindr{dA/Iddr , pB/presc}).

We prove that this assumption leads to contradictions.

According to the definition of labelled bisimilarity and static equivalence, if two
processes are labelled bisimilar, we have that if M =E N at any state of one
process, then there exist some states of the other process, such that M =E N .
Due to the first equivalence, we have that if M =E N on the right hand side of
the first equivalence, then M =E N on the left hand side of the first equivalence.

In the right hand side process of the first equivalence, the doctor dA computed a
prescription proof PrescProof r in sub-process (maindr{dA/Iddr , pA/presc})

chc. This
prescription proof eventually is revealed to the adversary on the chc channel by a
pharmacist. The adversary can obtain a prescription pA and a doctor commitment
Comt rdr from it using

(pA,PrescriptID
r,Comt rdr , c Comt rpt) = getmsg(PrescProof r).

The adversary can also obtain the doctor credential Cred r
dr and the same doctor

commitment Comt rdr from the prescription proof using

(Comt rdr ,Cred
r
dr) = getSpkVinfo(PrescProof r).

In the left hand side process of the first equivalence, there should also exist an
output of a prescription proof PrescProof l on the chc channel by a pharmacist,
such that

(pA,PrescriptID
l,Comt ldr , c Comt lpt) = getmsg(PrescProof l),

and
(Comt ldr ,Cred

l
dr) = getSpkVinfo(PrescProof l).

Furthermore, in the right hand side process of the first equivalence, the term
Comt rdr is computed as

Comt rdr = commit(Pnymrdr , r
r
dr),
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where Pnymrdr , r
r
dr are revealed to the adversary on chc channel, and the term

Cred r
dr is computed as

Cred r
dr = drcred(dA, Pnym

r

dr , n
r
dr),

where Pnymrdr and nrdr are revealed to the adversary on chc channel. In the left
hand side process of the first equivalence, there should also exist sub-processes
which output messages on chc channel. Such sub-processes can only be !Rchc

ph ,
init ′dr{dA/Iddr} and P ′

dr{dA/Iddr}.

Suppose the corresponding doctor pseudonym, the nonce used for doctor commit-
ments and the nonce used in doctor credentials on the left hand side, which are
sent to the adversary over chc, are Pnymldr , r

l
dr and nldr . The adversary obtains

the bribed doctor’s commitment on the left hand side as

Comt ldr = commit(Pnymldr , r
l
dr),

and the bribed doctor’s credential of the left hand side as

Cred l
dr = drcred(dA, Pnym

l

dr , n
l
dr).

According to the protocol and the transformation Pchc, messages output over
chc by process !Rchc

ph cannot be used as Pnymldr , rldr or nldr , because the rela-

tions between the output messages and the prescription proof PrescProof l cannot
be satisfied. Thus, the processes that output Pnymldr , r

l
dr and nldr over chc are

init ′dr{dA/Iddr} and/or P ′
dr{dA/Iddr}.

Next, we show that PrescProof l is indeed the prescription proof generated by the
process init ′dr{dA/Iddr}.P

′
dr{dA/Iddr}. First, init ′dr{dA/Iddr}.P

′
dr{dA/Iddr} is able

to generate such a prescription proof, with the knowledge of Pnymldr , r
l
dr , n

l
dr and

dA.

PrescProof l = spk((Pnymldr , r
l
dr , dA, n

l
dr ),

(commit(Pnymldr , r
l
dr), drcred(Pnym

l

dr , dA, n
l
dr )),

(pA,PrescriptID
l, commit(Pnymldr , r

l
dr ), c Comt lpt),

Second, no sub-processes, except init ′dr{dA/Iddr} and P ′
dr{dA/Iddr}, can generate a

prescription with Pnymldr , r
l
dr and nldr , which are shared with the adversary over

chc.

• Sub-processes, except doctor sub-processes, on the left hand side (includ-
ing !Rchc

ph ) honestly follow the protocol (or transformed process) and thus
do not compute a signed proof of knowledge which matches the pattern of
prescription proof PrescProof l.

• Doctor sub-processes, except init ′dr{dA/Iddr} and P ′
dr{dA/Iddr}, cannot gen-

erate a prescription with Pnymldr , r
l
dr and nldr . As honest doctor processes,

Pnymldr , r
l
dr and n

l
dr are not purposely read in by the processes over chc. Even

Pnymldr , r
l
dr or n

l
dr is feed by the adversary over public channels, honest doctor

sub-processes will not use the read in values to generate a prescription proof.
In addition, the nonce ndr is freshly generated in each session of an honest
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doctor sub-process, meaning that nldr is not globally shared between sessions
of doctors. Therefore, the doctor sub-processes, except init ′dr{dA/Iddr} and
P ′
dr{dA/Iddr}, cannot generate PrescProof l using read in information and

globally shared information. Furthermore, the doctor sub-processes, except
init ′dr{dA/Iddr} and P ′

dr{dA/Iddr}, cannot generate PrescProof l using self-
generated information. Because if the nldr is generated by an honest doctor
sub-process, there is no way for init ′dr{dA/Iddr} or P ′

dr{dA/Iddr} to know it,
since nldr is not revealed by the honest doctor sub-process.

Therefore, the prescription proof in init ′dr{dA/Iddr}.P
′
dr{dA/Iddr} is PrescProof l,

meaning that the doctor prescribes pA in process init ′dr{dA/Iddr}.P
′
dr{dA/Iddr}.

However, on the second equivalence, in the right hand side process, the doctor
prescribes pB. Thus, on the left hand side, the doctor prescribes pB in process
init ′dr{dA/Iddr}

\out(chc,·).P ′
dr{dA/Iddr}

\out(chc,·). Therefore, in corresponding process
where chc is not hidden (process init ′dr{dA/Iddr}.P

′
dr{dA/Iddr}), the doctor pre-

scribes pB, because showing the communication over chc does not affect the com-
munication between the doctor and his communication partner. Since pA 6= pB,
contradiction is found.

Intuitively, a bribed doctor is linked to the nonces he sent to the adversary. The
nonces are linked to the doctor’s prescription in a prescription proof. A doctor’s
prescription proof is sent over untappable channels first to a patient and later from
the patient to a pharmacist. Malicious pharmacists reveal the prescription proof
to the adversary. If a bribed doctor lied about his prescription, the adversary can
detect it by checking the doctor’s corresponding prescription proof revealed by the
pharmacist. The untappable channel assumption enables the protocol to satisfy
enforced prescribing-privacy but not independency of enforced prescribing-privacy
because untappable channels enable a bribed doctor to hide his prescription proof
and thus allow the doctor to lie about his prescription, however the pharmacist
gives the prescription proof away, from which the adversary can detect whether
the doctor lied about the prescription.

5.8 Conclusions

In this chapter, we studied enforced privacy in the e-health domain. We identified
the requirement that doctor privacy should be enforced to prevent doctor bribery
by (e.g.) the pharmaceutical industry. To capture this requirement, we first for-
malised the classical privacy property prescribing-privacy, and its enforced privacy
counterpart, enforced prescribing-privacy. The cooperation between the bribed
doctor and the adversary is formalised in the same way as in receipt-freeness in
e-voting. However, the formalisation of enforced prescribing-privacy differs from
receipt-freeness in e-voting, due to the domain requirement that only part of the
doctor’s process needs to share information with the adversary.

Next, we noted that e-health systems involve untrusted third parties, such as phar-
macists. Such parties should also not be able to assist an adversary in breaking
doctor privacy. To capture this requirement, we formally defined independency
of prescribing-privacy. This requirement must hold, even if the doctor is forced
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to help the adversary. To capture that, we formally defined independency of en-
forced prescribing-privacy. These formalisations were validated in a case study of
the DLV08 protocol. The protocol was modelled in the applied pi calculus and
verified with the help of the ProVerif tool. In addition to the (enforced) doctor
privacy notions, we analysed secrecy, authentication, anonymity and untraceability
for both patients and doctors. Ambiguities which may lead to flaws were found
and addressed.

The experience gained in the domain-specific studies in e-auctions (Chapter 4) and
e-health (this chapter), and the differences between the formalisations enable us
to generalise from these formalisations and develop a domain-independent formal
framework for verifying enforced privacy properties in the next chapter.





6

Enforced privacy in the presence of others

In the previous chapters, we proposed domain-specific formalisations of enforced
privacy in e-auctions and e-health. However, the adversary’s ability to bribe or
coerce does not depend on any specific domain. In order to address the enforced
privacy concerns domain-independently, in this chapter, we propose a generic prop-
erty – enforced privacy : a user’s privacy is preserved even if the user collaborates
with the adversary by sharing information.

Enforced privacy only prevents the target user from undoing his own privacy. How-
ever, a third party may help to break user privacy (collaboration), e.g., pharmacist
may help prove a doctor’s prescription behaviour, revealing your vote may enable
the adversary to deduce another voter’s vote. On the other hand, we identify that
a third party can help maintain privacy (coalition), e.g., a non-coerced voter (who
votes as the adversary desires) can swap receipts with a coerced voter, providing the
coerced voter “proof” of compliance while being free to vote as he pleases. Account-
ing for the privacy effect of third parties is particularly necessary in domains where
many non-trusted roles are involved. For example, pharmacists in e-health may
be able to help reveal prescription behaviour of doctors. In order to ensure doctor
prescribing-privacy, an e-health system must prevent this [dDLVV08, FHIES11].
This requirement has been expressed and formalised in e-health [ESORICS12] and
e-voting [DLL11]. We generalise these formalisations as independency of privacy :
the help of a set of third parties does not enable the adversary to break a target
user’s privacy. To capture the converse situation – the privacy effect of third parties
helping the target user by sharing information with the target user, we propose a
new notion of coalition privacy : a target user’s privacy is preserved with the help
of a set of third parties sharing information with the target user. In particular, we
use this notion to also capture the situation where third parties are involved but
no information is shared between the target user and third parties. In this case,
the mere existence of the third parties can help to create a situation where privacy
is preserved.

6.1 Privacy notions

We distinguish between two classes of privacy-affecting behaviour: the target user
(collaborating with the adversary or not), and the behaviour of third parties. Third
parties may be neutral, collaborating with the adversary (attacking), or collabo-
rating with the target user (defending) – thus we also consider the situation where
some are attacking and some are defending. A target user who collaborates with

This chapter is based on published work [ESORICS13]
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target user third parties
collaborates some defending

with adversary all neutral some attacking some defending some attacking
no priv ipriv cpriv cipriv
yes epriv iepriv cepriv ciepriv

Table 6.1: Privacy notions

the adversary is not under the adversary’s direct control, contrary to a compro-
mised user who genuinely shares initial private information with the adversary. A
neutral third party, like an honest user, follows the protocol specification exactly.
Thus, such a third party neither actively helps nor actively harms the target user’s
privacy. A defending third party helps the target user to preserve his privacy. An
attacking third party communicates with the adversary to break the target user’s
privacy. Note that we do not consider a third party that attacks and defends the
target user simultaneously. Given this classification, a target user will find himself
one of the following four situations w.r.t. third parties: 1) all are neutral; 2) some
are attacking; 3) some are defending; and 4) some are attacking, some are defend-
ing. In the latter three cases, the remaining third parties (if any) are considered
neutral. Combining the various behaviours of the third parties with those of the
target user gives rise to eight privacy properties (see Table 6.1). In the table,
privacy properties are abbreviated. The property, data-privacy, where the target
user does not collaborate with the adversary and third parties are all neutral, is
abbreviated as priv. Abbreviations of other properties can be distinguished by their
prefix to priv. In particular, the prefix e indicates that the target user collaborates
with the adversary. Prefix i indicates a set of third parties collaborates with the
adversary. And prefix c indicates that a set of third parties cooperate with the
target user. The properties listed in Table 6.1 cover all combinations of prefixes.

Examples of each property listed in Table 6.1 are as follows:

• data-privacy (priv): the adversary cannot link the contents of an encrypted
email to the user;

• enforced-privacy (epriv): a voter should not be able to prove to a vote-buyer
how he voted;

• independency-of-privacy (ipriv): in e-health the adversary cannot link a doc-
tor to his prescriptions, despite the help of a pharmacist;

• independency-of-enforced-privacy (iepriv): the adversary should not be able
to link a doctor to his prescriptions (to prevent bribes), even when both the
pharmacist and the doctor are helping him;

• coalition-privacy (cpriv): in location-based services, the user’s real location
is hidden amongst the locations of the helping users;

• coalition-enforced-privacy (cepriv): in anonymous routing, a sender remains
anonymous if he synchronises with a group of senders, even if he seems to
collaborate;
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• coalition-independency-of-privacy (cipriv): the adversary cannot link an
RFID chip to its identity, even though some malicious readers are helping
the adversary, provided other RFID tags behave exactly as the target one;

• coalition-independency-of-enforced-privacy (ciepriv): in electronic road pric-
ing, other users may hide a user’s route from the adversary, even if the user
seems to collaborate and malicious routers relay information on passing cars
to the adversary.

The examples above illustrate that similar privacy concerns arise in many different
domains – e-voting, e-health, location-based services, RFID, etc. So far, attempts
at formalising privacy have usually been domain-specific (e.g., [KR05, vMR08,
DKR09, ACRR10, BP11, DDS11, DLL12, FAST10, ESORICS12]). We advocate
a domain-independent approach to privacy, and develop a formal framework to
achieve this in Section 6.2.

6.2 Formal framework

In this section, we present a formal framework which allows us to give domain-
independent formalisations. We define a standard form of protocols which is able
to represent any protocol. To formally define enforced privacy properties and
independency of privacy properties, we model collaboration between users and the
adversary. The collaboration allows us to precisely specify which information is
shared and how it is shared, thus provides the necessary flexibility for modelling
various types of collaboration. To model coalition privacy properties, we propose
the notion of coalition in our framework to formally capture the behaviour and
shared information among a target user and a set of third parties.

6.2.1 Well-formed protocols

In the applied pi calculus, a protocol is normally modelled as a plain process. For
the simplicity of formalising privacy properties, we define a standard form of a
protocol [ACRR10] and any protocol can be written in this form.

Definition 6.1 (well-formed protocols). A protocol with p roles is well-formed if
it is a closed plain process Pw of the form:

Pw := νc̃.(genkey |!R1 | · · · |!Rp)
Ri := νidi.νdatai.init i.!(νsi.νsdatai.sinit i.main i) (∀i ∈ {1, · · · , p})

where

1. Pw is canonical [ACRR10]: names and variables in the process never appear
both bound and free, and each name and variable is bound at most once;

2. data is typed, channels are ground, private channels are never sent on any
channel;

3. νc̃, νdatai and νsdatai may be null;
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4. init i and sinit i are sequential processes;

5. genkey, init i, sinit i and main i can be any process (possibly null) such that
Pw is a closed plain process.

In process Pw , c̃ are channel names; genkey is a sub-process in which shared data
(e.g., keys shared between two roles) are generated and distributed; Ri (1 ≤ i ≤
p) is a role. To distinguish instances taking the same role Ri, each instance is
dynamically associated with a distinct identity νidi; datai is private data of an
instance; init i models the initialisation of an instance; (νsi.νsdatai.sinit i.main i)
models a session of an instance. To distinguish sessions of the same instance, each
session is dynamically associated to a distinct identity (νsi); sdatai is private data
of a session; sinit i models the initialisation of a session; main i models the behaviour
of a session.

Note that this standard form does not limit the type of protocols we consider. A
role may include a number of sub-roles so that a user may take more than one
part in a protocol. The identities do not have to be used in the process. All of νc̃,
νdatai and νsdatai may be null and genkey , init i, sinit i and main i can be any
process (possibly null) such that Pw is a closed plain process. Any process can be
written in a canonical form by α-conversion [ACRR10]. Thus, any protocol can be
written as a well-formed protocol.

Example 6.2 (well-formed protocol). A very simple anonymous proxy service
could work via an intermediary TTP: the user sends her service requests to the
TTP, which forwards them under its own identity to APP. Each request is distinct
from others. In more detail, the system can be formalised in the following form
(well-formed):

P := νcp.(!RU |!RTTP)
RU := νid.!(νreq.out(cp, (id, req)))
RTTP := in(cp, (idx, x)).out(ch, (idTTP , x))

A user process is RU and the TTP process is RTTP . cp is a private channel between
a user and TTP which models the assumption that APP does not know the message
between a user and TTP. ch is a public channel over which information is sent to
the APP.

6.2.2 Data-privacy

We formally define the property data-privacy that acts as the foundation upon
which other properties are built. To do so, we need to make explicit which data is
protected. Thus, the property data-privacy always specifies the target data. When
there is no ambiguity of the target data, we use data-privacy for short. In process
Pw , the target data τ is a bound name which belongs to a role (the target role Ri),
i.e., τ ∈ bn(Ri). For the sake of simplicity, we (re)write the role Ri in the form of

Ri := νidi.ντ.R̂i ,

where R̂i is a plain process which has two variables id i and τ . Note that by
α-conversion we can always transform any role Ri into the above form. When
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τ ∈ datai,
R̂i := νdatai/τ.init i.!(νsi.νsdatai.sinit i.main i).

When τ is session data in session s, i.e., τ ∈ sdata′i,

R̂i := νdatai.init i.(!(νsi.νsdatai.sinit i.main i) | (νs.νsdata
′
i/τ.sinit

′
i.main ′

i)).

In case that only information in session s is shared with the adversary or third
parties, we require that s 6∈ bn(Pw), νsdata

′
i/τ.sinit

′
i.main ′

i is obtained by applying
α-conversion on bound names and variables in the original process νsdatai/τ.
sinit i.main i.

Intuitively, data-privacy w.r.t. τ of protocol Pw , is the unlinkability of an honest
user taking role Ri and his instantiation of the target data τ . An honest user
taking role Ri is modelled as process Ri. We denote a particular user – the target
user process, as Ři{id/id i} where Ri := νidi.Ři , variable id i is instantiated with a
name or constant id. R̂i{id/id , t/τ} denote an instance of the target user in which
the target user instantiates the target data with t where t denotes any data which
can be used to replace the target data. The unlinkability is modelled as strong
secrecy [Bla04] of the target data: the adversary cannot distinguish an execution
of Ri where τ = t1 from an execution where τ = t2, for t1 6= t2.

Definition 6.3 (priv). A well-formed protocol Pw satisfies data-privacy (priv) w.r.t.
data τ (τ ∈ bn(Ri)), if

CPw
[R̂i{id/id i , t1/τ}] ≈ℓ CPw

[R̂i{id/id i , t2/τ}].

In the definition, id is a name or constant, t1 and t2 are free names. Since
Ri := νidi.ντ.R̂i , process R̂i{id/id i , t1/τ} is an instance of role Ri where the
identity is id and the target data is t1. The context CPw

[ ] models honest third
parties. Thus, CPw

[R̂i{id/id i , t1/τ}] is an instance of the protocol Pw , similarly for
CPw

[R̂i{id/id i , t2/τ}]. The only difference between these two instances is the in-
stantiation of the target data τ . Thus, this definition captures data-privacy by
using the relation ≈ℓ: the adversary cannot distinguish a user process with differ-
ent target data.

Example 6.4 (data-privacy). We study whether the system in Example 6.2 en-
sures request anonymity. Request anonymity is defined as the adversary cannot
distinguish a user sending request req1 from sending request req2. This property
can be formalised as data-privacy with respect to a request reqi. In order to specify
a request, we write the target user process in the following form:

RU := νid.νreqi.
(

out(cp, (id, reqi)) |!(νreq.out(cp, (id, req)))
)

.

Thus we have, R̂U defined as follows:

R̂U :=
(

out(cp, (id , req i)) |!(νreq.out(cp, (id , req)))
)

.

Data-privacy w.r.t. reqi is formalised as

Cex [
(

out(cp , (id, req1 )) |!(νreq.out(cp , (id, req)))
)

]
≈ℓ Cex [

(

out(cp , (id, req2 )) |!(νreq.out(cp , (id, req)))
)

],

where Cex [ ] := νcp.(!RU |!RTTP | ).
The system does not satisfy request anonymity, because on the left hand side process
of the equivalence, the adversary observes req1 which does not appear on the right
hand side process.
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6.2.3 Modelling collaboration with the adversary

In order to define enforced privacy properties where the target user collaborates
with the adversary and independency privacy properties where a set of third parties
collaborate with the adversary, we need to model collaboration of users (a target
user/third parties) with the adversary.

The process of a set of users is modelled as processes of each user in parallel. Since
a user process is modelled as a role in a well-formed protocol and each user process
can be any role, the set of users of a well-formed protocol Pw is formally defined
as a plain process RU := Ru1

| · · · | Rum
, ∀i ∈ {1, . . . ,m},Rui

∈ {R1, . . . ,Rp}.

Inspired by the formal definition of coercion in [DKR09], the collaboration between
a user and the adversary is formalised as a transformation of the user process. We
extend it as a transformation of the process of a set of users. Note that a user
need not always share all his information, e.g., a bribed user in a social network
may reveal his relation with another user, but not his password. To be able to
specify which information is shared, we formally define the set of information that
a user has. Information of a user is expressed as a set of terms in the user process.
Since the user processes are canonical in a well-formed protocol, bound names and
variables are different in each user process. Thus, we can express information of a
set of users as a set of terms appearing in the process of the set of users. Terms
appearing in a plain process RU are given by Term(RU ).

Term(0) = ∅ Term(P | Q) = Term(P ) ∪ Term(Q)
Term(!P ) = Term(P ) Term(νn.P ) = {n} ∪ Term(P )
Term(in(v, x).P ) = {x} ∪ Term(P ) Term(out(v,M).P ) = {M} ∪ Term(P )
Term(if M =E N then P else Q) = Term(P ) ∪ Term(Q)

A collaboration specification then specifies which terms of a process are shared and
how they are shared.

Definition 6.5 (collaboration specification). A collaboration specification of a
process RU is a tuple 〈Ψ ,Φ, cout , cin〉. Ψ ⊆ Term(RU ) denotes the set of terms
sent to the adversary each of which is of base type, Φ ⊆ Term(RU ) represents terms
to be replaced by information provided by the adversary, cout is a fresh channel
for sending information to the adversary, and cin is a fresh channel for reading
information from the adversary, i.e., cout , cin /∈ fn(RU ) ∪ bn(RU ).

Given a plain process RU and a collaboration specification 〈Ψ ,Φ, cout , cin〉 of the

process, the transformation of RU is given by R
〈Ψ ,Φ,cout ,cin 〉
U . Note that we use

cin = ǫ to denote that the adversary neither prepares information for the coerced
users nor controls the conditional evaluations of the users.

Definition 6.6 (collaboration behaviour). Let RU be a plain process, and
〈Ψ ,Φ, cout , cin〉 be a collaboration specification of RU . Collaboration behaviour
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of RU according to 〈Ψ ,Φ, cout , cin〉 is defined as:

• 0 〈Ψ ,Φ,cout ,cin 〉 =̂ 0,
• (P | Q)〈Ψ ,Φ,cout ,cin 〉 =̂ P 〈Ψ ,Φ,cout ,cin 〉 | Q 〈Ψ ,Φ,cout ,cin 〉,
• (!P)〈Ψ ,Φ,cout ,cin 〉 =̂ !P 〈Ψ ,Φ,cout ,cin 〉,

• (νn.P)〈Ψ ,Φ,cout ,cin 〉 =̂

{

νn.out(cout , n).P
〈Ψ ,Φ,cout ,cin 〉 if n ∈ Ψ ,

νn.P 〈Ψ ,Φ,cout ,cin 〉 otherwise,

• (in(v , x ).P)〈Ψ ,Φ,cout ,cin 〉 =̂

{

in(v, x).out(cout , x)).P
〈Ψ ,Φ,cout ,cin 〉 if x ∈ Ψ ,

in(v, x).P 〈Ψ ,Φ,cout ,cin 〉 otherwise,

• (out(v ,M ).P)〈Ψ ,Φ,cout ,cin 〉 =̂







in(cin , x).out(v, x).P
〈Ψ ,Φ,cout ,cin 〉 if M ∈ Φ

∧cin 6= ǫ, where x is a fresh variable,
out(v,M).P 〈Ψ ,Φ,cout ,cin 〉 otherwise,

• (if M =E N then P else Q)〈Ψ ,Φ,cout ,cin 〉 =̂






in(cin , x).if x = true then P 〈Ψ ,Φ,cout ,cin 〉else Q 〈Ψ ,Φ,cout ,cin 〉 if cin 6= ǫ,
where x is a fresh variable and true is a constant,

if M =E N then P 〈Ψ ,Φ,cout ,cin 〉 else Q 〈Ψ ,Φ,cout ,cin 〉 otherwise.

Note that we only specify user behaviour in a collaboration with the adversary. The
adversary’s behaviour may be omitted, as in the applied pi calculus the adversary
is considered as the environment and does not need to be explicitly modelled.
Our approach to reasoning about the adversary’s behaviour in a collaboration
(e.g., enforcing a voter to cast a particular vote) follows the line of the definition of
coercion-resistance in [DKR09]. Namely, a context C[ ] := νcout .νcin( |Q) models a
specific way of collaboration of the adversary, where Q models the the adversary’s
behaviour in the context. In this way, we separate the adversary’s behaviour
of distinguishing two processes, which is modelled by the environment, from the
behaviour of collaborating with users which is modelled by the context.

Example 6.7 (collaboration). In the system in Example 6.2, suppose a user col-
laborates with the adversary in the following way. The user reveals his request reqi
in a specific session with session identity i, reads in an identity and a request from
the adversary and then forwards the received message in session j.

In order to specify the collaboration, we need to specify the session i and j. The
user process needs to be of the following form:

RU := νid.
(

(νreqi.out(cp, (id, reqi))) | (νreqj.out(cp, (id, reqj)))
|!(νreq.out(cp, (id, req)))

)

.

The term sent to the adversary is reqi, i.e., Ψ = {reqi}. The replaced term
is (id, reqj), i.e., Φ = {(id, reqj)}. Therefore the collaboration is specified as
〈Ψ ,Φ, cout , cin〉 = 〈{reqi}, {(id, reqj)}, cout , cin〉.

Following Definition 6.6, the collaboration behaviour of the user is modelled as:

R
〈Ψ ,Φ,cout ,cin 〉
U := νid.

(

(νreqi.out(cout , reqi).out(cp, (id, reqi)))
| (νreqj.in(cin , x).out(cp, x))
|!(νreq.out(cp, (id, req)))

)

.
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6.2.4 Modelling user coalitions

To define coalition privacy properties, we need to formally define a coalition be-
tween a target user and a set of defending third parties. The notion collaboration
from the previous section cannot be adopted directly, as it does not specify the ad-
versary’s behaviour, whereas a coalition must specify the behaviour of all involved
users.

Given a set of users RU := Ru1
| · · · | Rum

, a coalition of the users specifies commu-
nication between (potentially) each pair of users. For every communication, a coali-
tion specification needs to make explicit who the sender and receiver are (unlike
collaboration). Similar to the specification of collaboration, a coalition specifica-
tion makes explicit which data is sent on which channel. To make the behaviour of
both communicating parties explicit, we need to specify how the term in a commu-
nication is referred to in the receiver’s process. A communication in a coalition is
specified as a tuple 〈Rui

,Ruj
,M, c, y〉 where Rui

,Ruj
∈ {Ru1

, . . . ,Rum
} (Rui

6= Ruj
)

are the sender and receiver process, respectively; M ∈ Term(Rui
) is the data sent

in the communication; c 6∈ fn(RU ) ∪ bn(RU ) is a fresh channel used in the com-
munication; y 6∈ fv(RU ) ∪ bv(RU ) is the variable used by the receiver to refer to
the term M . A coalition specifies a set of communications of this type (denoted as
Θ). For the simplicity of modelling, we assume that for each communication, the
coalition uses a distinct channel and distinct variable, i.e., ∀ 〈Rui

,Ruj
,M, c, y〉 ∈ Θ

and 〈R′
ui
,R′

uj
,M ′, c′, y′〉 ∈ Θ we have c 6= c′ ∧ y 6= y′.

A coalition specifies a set of terms which are communicated by the originating user
process and are replaced in the coalition. In addition, a coalition needs to define
how a term is replaced. In a collaboration, the adversary is assumed to be able
to compute and prepare this, but in a coalition, no user can compute and prepare
information for other users. Thus, this ability has to be explicitly specified in a
coalition as a set of substitutions ∆ = {{N/M} | M ∈ Term(RU )}. The new term
N are calculated from a set of terms N1, . . . , Nn which are generated by the user,
read in by the original process, or read in from coalition members. A successful
coalition requires that there are no such situations where N cannot be calculated
in the user process when M needs to be replaced.

Moreover, in a coalition, we allow the coalition to decide values of conditional
evaluations (similar to collaboration, where the adversary decides this). Since no
user in a coalition has the ability to specify the values of evaluations, these need
to be assigned specifically. In addition, to add more flexibility, we allow a coalition
to specify which evaluations are decided by the coalition and which are not. The
evaluations of a plain user process RU is Eval(RU ). The assignments of evaluations
are specified as a set Π ⊆ {(e, b) | e ∈ Eval(RU ) ∧ b ∈ {true, false}}.

Eval(0) = ∅ Eval(P | Q) = Eval(P ) ∪ Eval(Q)
Eval(!P ) = Eval(P ) Eval(νn.P ) = Eval(P )
Eval(in(v, x).P ) = Eval(P ) Eval(out(v,M).P ) = Eval(P )
Eval(if M =E N then P else Q) = {M =E N} ∪ Eval(P ) ∪ Eval(Q)

Definition 6.8 (coalition specification). A coalition of a set of users RU is specified
as a tuple 〈Θ ,∆,Π 〉 where Θ is a set of communication, ∆ is a set of substitutions
and Π is an assignment for a set of evaluations.
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Note that this model does not include the coalition strategies in which the tar-
get users and defending third parties are able to generate new data, initiate new
sessions, establishing new secrets, etc.

With the above setting, given a set of users RU and a coalition specification
〈Θ ,∆,Π 〉 on users, the behaviour of a user in the coalition is modelled as a coalition
transformation of the user’s original process.

Definition 6.9 (coalition behaviour). Let RU := Ru1 | · · · | Rum be a plain
process of a set of users, 〈Θ ,∆,Π 〉 be a coalition specification of process RU ,
R ∈ {Ru1 , · · · ,Rum} be a plain user process, the transformation of the process
R in the coalition is given by R〈Θ ,∆,Π 〉:

R〈Θ ,∆,Π 〉 =̂ νη.(R〈Γ ,∆,Π 〉 | in(c1, y
′
1).!out(c

′
1, y

′
1) | · · · | in(cℓ, y

′
ℓ).!out(c

′
ℓ, y

′
ℓ))

where Γ = {〈R,Ruj
,M, c, y〉 | 〈R,Ruj

,M, c, y〉 ∈ Θ}, η = {c′1, . . . , c
′
ℓ}, c

′
1, . . ., c

′
ℓ

are fresh, {c1, . . . , cℓ} = {c | 〈Rui
,R,M, c, y〉 ∈ Θ}, y′1, . . . , y

′
ℓ are fresh variables,

ξ = {(c1, y
′
1, c

′
1), . . . , (cℓ, y

′
ℓ, c

′
ℓ)} defines the association of channels and variables

in process in(c1, y
′
1).!out(c

′
1, y

′
1) | · · · | in(cℓ, y

′
ℓ).!out(c

′
ℓ, y

′
ℓ), and R〈Γ ,∆,Π 〉 is given

by:

• 0
〈Γ ,∆,Π 〉
F =̂ 0,

• (P | Q)
〈Γ ,∆,Π 〉
F =̂ P

〈Γ ,∆,Π 〉
F | Q

〈Γ ,∆,Π 〉
F ,

• (!P)
〈Γ ,∆,Π 〉
F =̂ !P

〈Γ ,∆,Π 〉
F ,

• (νn.P)
〈Γ ,∆,Π 〉
F =̂







νn.out(c1, n). . . . .out(cℓ, n).P
〈Γ ,∆,Π 〉
F

if {c1, . . . , cℓ} = {c | 〈R,Ruj
, n, c, y〉 ∈ Γ} ,

νn.P
〈Γ ,∆,Π 〉
F otherwise,

• (in(v , x ).P)
〈Γ ,∆,Π 〉
F =̂







in(v, x).out(c1, x). . . . .out(cℓ, x).P
〈Γ ,∆,Π 〉
F

if {c1, . . . , cℓ} = {c | 〈R,Ruj
, x, c, y〉 ∈ Γ} ,

in(v, x).P
〈Γ ,∆,Π 〉
F otherwise,

• (out(v ,M ).P)
〈Γ ,∆,Π 〉
F =̂



























in(c′1, y1). · · · .in(c
′
ℓ, yℓ).out(v,N).P

〈Γ ,∆,Π 〉
F\{y1 ,...,yℓ}

if {N/M} ∈ ∆, {y1, . . . , yℓ} ⊆ F ∪ N ,
∀i ∈ {1, . . . , ℓ},

〈Ri,R, ciM, yi〉 ∈ Θ ∧ (ci, y
′
i, c

′
i) ∈ ξ,

out(v,M).P
〈Γ ,∆,Π 〉
F otherwise,

• (if M =E N then P else Q)
〈Γ ,∆,Π 〉
F =̂











P
〈Γ ,∆,Π 〉
F if (M =E N, true) ∈ Π ,

Q
〈Γ ,∆,Π 〉
F if (M =E N, false) ∈ Π ,

if M =E N then P
〈Γ ,∆,Π 〉
F else Q

〈Γ ,∆,Π 〉
F otherwise.

with F initially equals to {y1, . . . , yℓ | 〈Rui
,R,M, c, y〉 ∈ Θ}.

Process in(c1, y
′
1).!out(c

′
1, y

′
1) | · · · | in(cℓ, y

′
ℓ).!out(c

′
ℓ, y

′
ℓ) models the receiving be-

haviour of process R in the coalition. The coalition specifies which channel is use
to receive data. The received data on a channel are referred to as a distinct fresh
variable. The received data is sent out over a distinct private channel. The as-
sociation of channels and variables is modelled in ξ. This sending behaviour is
used for the process R〈Γ ,∆,Π 〉 to read the data when it is needed. Process R〈Γ ,∆,Π 〉
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models the sending behaviour, substitution of terms, assignments of evaluations.
F captures the variables which are in {y1, . . . , yℓ} and has not been read in yet.

Given a set of users RU and a coalition specification 〈Θ ,∆,Π 〉 for them, the

coalition is now modelled as R
〈Θ ,∆,Π 〉
U =̂ νΩ .(R

〈Θ ,∆,Π 〉
u1 | · · · | R

〈Θ ,∆,Π 〉
um ) where Ω =

{c | 〈Rui
,Ruj

,M, c, y〉 ∈ Θ}.

Example 6.10 (coalition). In the system in Example 6.2, suppose two users Ui

and Uj cooperate in the following way: Ui sends his own request and the request
from Uj; Uj sends his own request and the request from Ui.

RUi
:= νidi.

(

(νreqi.out(cp, (idi, reqi))) | (νreq
′
i.out(cp, (idi, req

′
i)))

|!(νreq.out(cp, (idi, req)))
)

RUj
:= νidj.

(

(νreqj.out(cp, (idj, reqj))) | (νreq
′
j.out(cp, (idj, req

′
j)))

|!(νreq.out(cp, (id, req)))
)

.

The coalition can be specified as Θ = {〈Ruj
,Rui

, reqj, cj, yj〉, 〈Rui
,Ruj

, reqi, ci, yi〉},
∆ = {{(idi, yj)/(idi, req

′
i)}, {(idj, yi)/(idj, req

′
j)}} and Π = ∅.

According to Definition 6.15, the process (RUi
| RUj

)〈Θ ,∆,Π 〉 is as follows:

νc′i.νc
′
j.

(

(

νidi.((νreqi.out(ci, reqi).out(cp, (idi, reqi))) | (νreq
′
i.in(c

′
j, yj).out(cp, (idi, yj)))

|!(νreq.out(cp, (idi, req))))
)

|
(

νidj.((νreqj.out(cj, reqj).out(cp, (idj, reqj))) | (νreq
′
j.in(c

′
i, yi).out(cp, (idj, yi)))

|!(νreq.out(cp, (id, req))))
)

|

in(ci, y
′
i).!out(c

′
i, y

′
i) | in(cj, y

′
j).!out(c

′
i, y

′
j)
)

.

6.3 Formalising the privacy notions

In our framework, the foundational property data-privacy, is formalised in a classi-
cal way as strong secrecy: equivalence of two processes where a variable is instan-
tiated differently [Bla04]. Based on this property, we formalise enforced-privacy,
independency-of-privacy and independency-of-enforced-privacy using the formali-
sation of collaboration. Using the formalisation of coalition, four corresponding
coalition privacy properties are formalised.

6.3.1 Enforced-privacy

Enforced-privacy is the unlinkability of a target user to his data even when the user
collaborates with the adversary. Different collaborations impact privacy differently,
so when we say a protocol satisfies enforced-privacy, it always refers to a specific
collaboration specification.

Similar as in receipt-freeness and coercion-resistance in e-voting [DKR09], when a
protocol Pw satisfies enforced-privacy w.r.t. a target data τ (which belongs to role
Ri) and a collaboration specification 〈Ψ ,Φ, cout , cin〉 defined on process R̂i (where
Ri := νidi.ντ.R̂i), there exists a process Pf for the target user to execute, such
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that the adversary cannot distinguish between real collaboration with τ = t1 and
fake collaboration (by means of process Pf ) with τ = t2. In the epistemic notion of
coercion-resistance, enforced-privacy can be defined as the existence of a counter-
strategy for the target user to achieve his own goal, but the adversary cannot
distinguish it from the target user following the adversary’s instructions [KT09].

Definition 6.11 (epriv). A well-formed protocol Pw satisfies enforced-privacy
(epriv) w.r.t. target data τ and collaboration specification 〈Ψ ,Φ, cout , cin〉, if there
exists a closed plain process Pf , such that for any context C[ ] := νcout .νcin .( | Q)

satisfying bn(Pw) ∩ fn(C[ ]) = ∅ and CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]] ≈ℓ

CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}], we have

1. C[Pf ]
\out(c′out ,·) ≈ℓ R̂i{id/id i , t2/τ},

2. CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]] ≈ℓ CPw

[C[Pf ]],

where τ ∈ bn(Ri), Ri := νidi.ντ.R̂i , 〈Ψ ,Φ, cout , cin〉 is defined on R̂i , t is a free

name representing a piece of data, and C[Pf ]
\out(c′out ,·) := νc′out .(C[Pf ] |!in(c

′
out , x)).

The process R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ} models the behaviour of the collaborating

target user. The behaviour of the adversary in the collaboration is implicitly
modelled as Q in the context C[ ] := νcout .νcin .( | Q). Thus a specific col-

laboration is modelled as C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]. Note that sometimes the

target data in the collaboration is not decided by {t/τ}, but by the context

C[ ]. The target data is actually instantiated by CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]]

≈ℓ CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}]. The first equivalence shows that even if the

context C[ ] is able to decide the target data, the target user can still actually
instantiate the target data with t2 by executing the process Pf . The second equiv-
alence shows that the adversary cannot distinguish the target user following the
collaboration in process R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ} from executing the process Pf ,

in the context of the adversary collaboration C[ ].

6.3.2 Independency-of-privacy

Next, we account for attacking third parties. Based on data-privacy, we define
independency-of-privacy to capture privacy when a set of third parties collaborate
with the adversary. As different sets of third parties may differently influence
the target user’s privacy, and since different collaboration amongst the same third
parties leads to different privacy properties, independency-of-privacy is defined
with respect to a set of third parties and a collaboration specification between
them and the adversary.

Definition 6.12 (third parties). Given a well-formed protocol Pw and an instance
of the target user R̂i{id/id , t/τ}, a set of third parties is defined as a set of users
RU := Ru1

| · · · | Rum
where ∀i ∈ {1, · · · ,m},Rui

6= R̂i{id/id , t/τ}. We use RT

to denote a set of attacking third parties and RD to denote a set of defending third
parties.

The collaboration between a set of attacking third parties RT and the adversary is
expressed as a collaboration specification 〈Ψ t ,Φt , ctout , c

t
in〉 defined on process RT .
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The behaviour of the third parties in the collaboration is modelled as R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T .
Inspired by the domain-specific formal definitions, vote-independence [DLL11] in
e-voting and independency-of-prescribing-privacy [ESORICS12] in e-health, the
generic property independency-of-privacy is defined as follows: a well-formed pro-
tocol Pw satisfies independency-of-privacy w.r.t. (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉) and τ ∈

bn(Ri), if the adversary cannot distinguish the honest target user executing role
Ri with τ = t1 from the same user with τ = t2, even when the set of third par-
ties RT collaborates with the adversary according to collaboration specification
〈Ψ t ,Φt , ctout , c

t
in〉.

Definition 6.13 (ipriv). A well-formed protocol Pw satisfies independency-of-pri-
vacy (ipriv) w.r.t. data τ and attacking third parties (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉) if

CPw
[R̂i{id/id i , t1/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ] ≈ℓ CPw
[R̂i{id/id i , t2/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ],

where 〈Ψ t ,Φt , ctout , c
t
in〉 is a collaboration specification of process RT .

If the equivalence holds, then despite this collaboration, adversary cannot distin-
guish R̂i{id/id i , t1/τ} in which the target user uses τ = t1 from R̂i{id/id i , t2/τ}
in which the target user uses τ = t2.

6.3.3 Independency-of-enforced-privacy

We define independency-of-enforced-privacy (iepriv) based on epriv in a similar
fashion as ipriv. More precisely, iepriv of a protocol Pw is defined w.r.t. target data
τ ∈ bn(Ri), a collaboration specification 〈Ψ ,Φ, cout , cin〉 defined on process R̂i with
Ri := νidi.ντ.R̂i , and a set of attacking third parties together with a collaboration
specification defined on the third parties processes (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉). A well-

formed protocol Pw satisfies iepriv w.r.t. τ, 〈Ψ ,Φ, cout , cin〉, (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉),

if there exists a closed plain process Pf for the target user to execute, such that,
despite the help of third parties RT according to 〈Ψ t ,Φt , ctout , c

t
in〉, the adversary

cannot distinguish between the target user collaborating with τ = t1, and him
really using τ = t2 but faking collaboration for τ = t1 by Pf .

Definition 6.14 (iepriv). A well-formed protocol Pw satisfies independency-of-
enforced-privacy (iepriv) w.r.t. τ , 〈Ψ ,Φ, cout , cin〉, and (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉), if

there exists a closed plain process Pf , s.t. for any C[ ] := νcout .νcin .( |Q) satisfying

bn(Pw ) ∩ fn(C[ ]) = ∅ and CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]

| RT ] ≈ℓ CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RT ], we have

1. C[Pf ]
\out(cout ,·) ≈ℓ R̂i{id/id i , t2/τ},

2. CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ] ≈ℓ CPw
[C[Pf ] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ],

where 〈Ψ ,Φ, cout , cin〉 is a collaboration specification for R̂i , and 〈Ψ t ,Φt , ctout , c
t
in〉

is a collaboration specification of process RT .

This formalisation adds the collaboration of third parties R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T to Defini-
tion 6.11.
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6.3.4 Coalition privacy properties

Corresponding to each privacy property defined above, we define coalition privacy
properties which take into account defending third parties.

Definition 6.15 (defensive coalition). Given an instance of the target user
R̂i{id/id , t/τ}, a set of defending third parties RD, and a coalition specification
〈Θ ,∆,Π 〉 defined on R̂i{id/id , t/τ}|RD, the coalition is modelled as
νΩ .(R̂i{id/id , t/τ} | RD)

〈Θ ,∆,Π 〉, where Ω = {c | 〈Rui
,Ruj

,M, c, y〉 ∈ Θ}.

The target user’s behaviour in the coalition is R̂i{id/id , t/τ}
〈Θ ,∆,Π 〉

=̂
νη.((R̂i{id/id , t/τ})

〈Γ ,∆,Π 〉|Pγ), where ηis a set of fresh channels {c′i, . . . , c
′
ℓ}, Γ =

{〈R̂i{id/id , t/τ},Ruj
,M, c, y〉 | 〈R̂i{id/id , t/τ},Ruj

,M, c, y〉 ∈ Θ}, and Pγ :=
in(c1, y

′
1).!out(c

′
1, y

′
1) | · · · | in(cℓ, y

′
ℓ).!out(c

′
ℓ, y

′
ℓ) with {y′1, . . . , y

′
ℓ} being fresh vari-

ables, {(c1, . . . , cℓ} = {c | 〈Rui
, R̂i{id/id , t/τ},M, c, y〉 ∈ Θ}. The third parties’

behaviour in the coalition is R
〈Θ ,∆,Π 〉
D .

Coalition-privacy Intuitively, coalition-privacy means that a target user’s pri-
vacy is preserved due to the cooperation of a set of defending third parties. A
well-formed protocol Pw satisfies coalition-privacy w.r.t. data τ ∈ bn(Ri) and
(RD, 〈Θ ,∆,Π 〉), where 〈Θ ,∆,Π 〉 is defined on R̂i | RD and Ri := νidi.ντ.R̂i , if
the adversary cannot distinguish an honest user in role Ri using τ = t1 from the
user actually using τ = t2 while helped by a set of defending third parties.

Definition 6.16 (cpriv). A well-formed protocol Pw satisfies coalition-privacy
(cpriv) w.r.t. data τ and coalition (RD, 〈Θ ,∆,Π 〉) if

CPw
[R̂i{id/id i , t1/τ} | RD] ≈ℓ CPw

[νΩ .(R̂i{id/id i , t2/τ} | RD)
〈Θ ,∆,Π 〉],

where 〈Θ ,∆,Π 〉 is a coalition specification defined on R̂i{id/id i , t2/τ} | RD.

In the definition, the coalition is modelled as νΩ .(R̂i{id/id i , t2/τ} | RD)
〈Θ ,∆,Π 〉,

where the target user instantiates the target data with t2. The equivalence shows
that the adversary cannot distinguish the target user instantiating the target data
with t2 in the coalition from the target user instantiating the target data with t1.
Thus, coalition-privacy captures privacy when there exists a set of third parties
cooperating with the target user following a pre-defined coalition specification.

Coalition-enforced-privacy Taking into account defending third parties, we de-
fine coalition-enforced-privacy based on enforced-privacy. As before, coalition-
enforced-privacy specifies a target data τ and a collaboration specification of the
target user 〈Ψ ,Φ, cout , cin〉. Similar as in coalition-privacy, coalition-enforced-
privacy specifies a set of defending third parties RD and a coalition specification
〈Θ ,∆,Π 〉 as well. In coalition-enforced-privacy, the target user both cooperates
with the adversary and defending third parties. Similar to enforced-privacy, we as-
sume that the target user lies to the adversary if it is possible. We do not assume
that the target user lies to the defending third parties, as they help the target user
maintain privacy.

Intuitively, coalition-enforced-privacy means that a target user is able to lie to
the adversary about his target data when helped by defending third parties –
the adversary cannot tell whether the user lied. This property is modelled as
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the combination of coalition-privacy and enforced-privacy: a protocol Pw satisfies
coalition-enforced-privacy w.r.t τ ∈ bn(Ri), 〈Ψ ,Φ, cout , cin〉 and (RD, 〈Θ ,∆,Π 〉),
for 〈Ψ ,Φ, cout , cin〉 a collaboration specification defined on R̂i (Ri := νidi.ντ.R̂i),
and 〈Θ ,∆,Π 〉 a coalition specification defined on the target user and RD, if there
exists a process Pf , such that the adversary cannot distinguish between genuine
collaboration with τ = t1 and faking collaboration using Pf with the help of the
coalition for τ = t2.

Definition 6.17 (cepriv). A well-formed protocol Pw satisfies coalition-enforced-
privacy (cepriv) w.r.t. data τ , 〈Ψ ,Φ, cout , cin〉 and (RD, 〈Θ ,∆,Π 〉), if there
exists a closed plain process Pf , such that for any C[ ] := νcout .νcin .( | Q)

satisfying bn(Pw ) ∩ fn(C[ ]) = ∅ and CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD] ≈ℓ

CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RD], we have

1. νΩ .(νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) ≈ℓ νΩ .(R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉,

2. CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD] ≈ℓ CPw

[νΩ .(νη.(C[Pf ] | Pγ) | R
〈Θ ,∆,Π 〉
D )],

where Ω, η, Pγ are defined in Definition 6.15, 〈Ψ ,Φ, cout , cin〉 is defined on R̂i ,

〈Θ ,∆,Π 〉 is a coalition specification defined on R̂i{id/id i , t2/τ} | RD.

The collaboration between the target user and the adversary instantiating the tar-
get data with t1 is modelled by the equivalence CPw

[C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] |

RD] ≈ℓ CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RD]. The target user’s actual behaviour of

instantiating the target data with t2 in process Pf is modelled as the first equiv-
alence. The second equivalence shows that the adversary cannot distinguish the
process in which the target user follows the collaboration with the adversary from
the process in which the target user lies to the adversary with the help of defending
third parties.

Coalition-independency-of-privacy Similarly, we define coalition-independency
-of-privacy with respect to a target data τ , a set of attacking third parties with
a collaboration specification (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉), and a set of defending third

parties RD with a coalition specification 〈Θ ,∆,Π 〉. Note that we require that there
is no intersection between attacking third parties and defending third parties, i.e.,
RT ∩RD = ∅, as we assume a third party cannot be both attacking and defending
at the same time. A well-formed protocol Pw satisfies coalition-independency-of
-privacy w.r.t. τ , (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉) and (RD, 〈Θ ,∆,Π 〉), if the adversary,

even with the collaboration of a set of attacking third parties, cannot distinguish
the target user instantiating τ = t1 from the target user actually instantiating
τ = t2 in the coalition with the help of defending third parties.

Definition 6.18 (cipriv). A well-formed protocol Pw satisfies coalition-indepen-
dency-of-privacy (cipriv) w.r.t. data τ , (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉), and (RD, 〈Θ ,∆,Π 〉),

if

CPw
[R̂i{id/id i , t1/τ} | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[νΩ .((R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉) | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ],

where 〈Ψ t ,Φt , ctout , c
t
in〉 is a collaboration specification of process RT , 〈Θ ,∆,Π 〉 is

a coalition specification defined on R̂i{id/id i , t2/τ} | RD.
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Coalition-independency-of-enforced-privacy Finally, we consider the case
combining all situations together: the target user collaborates with the adver-
sary following 〈Ψ ,Φ, cout , cin〉, a set of attacking third parties RT collaborate with
the adversary following 〈Ψ t ,Φt , ctout , c

t
in〉, and a set of defending third parties RD

and a coalition 〈Θ ,∆,Π 〉). We formally define coalition-independency-of-enforced-
privacy below.

Definition 6.19 (ciepriv). A well-formed protocol Pw satisfies coalition-indepen-
dency-of-enforced-privacy (ciepriv) w.r.t. τ , 〈Ψ ,Φ, cout , cin〉, (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉)

and (RD, 〈Θ ,∆,Π 〉), if there exists a closed plain process Pf such that for any con-
text C[ ] := νcout .νcin .( | Q) satisfying bn(Pw ) ∩ fn(C[ ]) = ∅ and

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RT | RD] ≈ℓ CPw

[R̂
〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RT |

RD], we have

1. νΩ .(νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) ≈ℓ νΩ .((R̂i{id/id i , t2/τ}|RD)

〈Θ ,∆,Π 〉),

2. CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ],

where Ω, η, Pγ are defined in Definition 6.15, 〈Ψ ,Φ, cout , cin〉 is a collaboration

specification defined on R̂i , 〈Ψ
t ,Φt , ctout , c

t
in〉 is a collaboration specification defined

on RT , 〈Θ ,∆,Π 〉 is a coalition specification defined on R̂i{id/id i , t2/τ} | RD.

As certain coalitions may fail to maintain privacy, the coalition privacy properties
can be generalised by requiring the existence of a successful coalition. The gen-
eral version of coalition privacy properties allow us to reason about the existence
of a coalition (a strategy) such that a user’s privacy is preserved. How to find
such a coalition is an interesting topic for studying coalition privacy properties.
Each property defined in the above can be instantiated in many different forms
by specifying the parameters of the property (such as target data, collaboration,
coalition). Furthermore, only the target user is allowed to lie to the adversary –
we do not consider lying third parties. Properties, ipriv, iepriv, cipriv and ciepriv,
can be extended by allowing third parties to lie.

6.3.5 An example of coalition privacy

We modelled a system in Example 6.2 and defined a coalition 〈Ψ ,Φ, cout , cin〉 of
two users in the system in Example 6.10. According to Definition 6.16, the system
does not satisfy cpriv w.r.t. target data req and coalition 〈Θ ,∆,Π 〉. The reason is
that without coalition, all the requests the adversary observed are different; with
the coalition, the adversary can detect that two requests are sent twice.

We show that the system in Example 6.2 may satisfy cpriv with respect to a different
coalition. For instance, the following coalition specification in which the two users
swap their requests.

〈Θ ′,∆′,Π ′〉 = 〈∅, {{(idi , reqj )/(idi , reqi}, {(idj , reqi)/(idj , reqj}), ∅〉.
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According to Definition 6.15, the coalition process is as follows.

νΩ .(RUi
| RUj

)〈Θ ,∆,Π 〉 =̂
(

νidi.
(

(νreqi.out(cp, (idi, reqj))) |

!(νreq.out(cp, (idi, req)))
)

)

|
(

νidj.
(

(νreqj.out(cp, (idj, reqi))) |

!(νreq.out(cp, (id, req)))
)

)

.

Since the adversary cannot detect who sent which request, a user’s request is
anonymous. This coalition prevents the situation, in which one only user is involved
and thus his request is known by the adversary.

Now consider the following collaboration specification in which the user Ui needs
to forward the private message to the adversary.

〈Ψ ,Φ, cout , cin〉 = 〈{(idi, reqi)}, ∅, cout , ǫ〉.

The collaboration behaviour of Ui is modelled as follows:

R
〈Ψ ,Φ,cout ,cin 〉
Ui

=̂ νidi.( (νreqi.out(cp, (idi, reqi)).out(cout , (idi, reqi)))
|!(νreq.out(cp, (idi, req)))).

The system does not satisfy cepriv w.r.t. req, collaboration 〈Ψ ,Φ, cout , cin〉 and
coalition (RUj

, 〈Θ ,∆,Π 〉), since the system does not satisfies cpriv w.r.t. req and
coalition (RUj

, 〈Θ ,∆,Π 〉). However, the system satisfies cepriv w.r.t. req, collab-
oration 〈Ψ ,Φ, cout , cin〉 and coalition (RUj

, 〈Θ ′,∆′,Π ′〉). Because there exists a
process

Pf := (νidi.(νreqi.out(cp, (idi, reqj)).out(cp, (idi, reqi))) |
!(νreq.out(cp, (idi, req)))).

such that the two equivalence in Definition 6.17 are satisfied. That is, context C[ ]
satisfies

Cex [C[R
〈Ψ ,Φ,cout ,cin 〉
Ui

] | RUj
] ≈ℓ Cex [R

〈Ψ ,∅,c′out ,ǫ〉
Ui

| RUj
],

Since Ui does not read information from the adversary, we have the context being
empty and

R
〈Ψ ,∅,c′out ,ǫ〉
Ui

:= R
〈Ψ ,Φ,cout ,cin 〉
Ui

with cout = c′out .

Accordingly, νΩ .(νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) :=

(

νidi.(νreqi .out(cp , (idi , reqj )).out(cout , (idi , reqi)))
\out(cout ,·) |

!(νreq.out(cp, (idi, req)))
)

|
(

νidj.(νreqj.out(cp, (idj, reqi))) |!(νreq.out(cp, (id, req)))
)

.

Since (νreqi .out(cp , (idi , reqj )).out(cout , (idi , reqi)))
\out(cout ,·) works the same as

(νreqi.out(cp, (idi, reqj)), we have the first equivalence,

νΩ .
(

νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
Uj

)

≈ℓ νΩ .(RUi
| RUj

)〈Θ ,∆,Π 〉.

Similarly, since
R

〈Ψ ,Φ,cout ,cin 〉
Ui

| RUj
≈ℓ Pf | R

〈Θ ,∆,Π 〉
Uj

we have the second equivalence,

Cex [R
〈Ψ ,Φ,cout ,cin 〉
Ui

| RUj
] ≈ℓ Cex [νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
Uj

)].
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ieprivρ,θ

cieprivρ,θ,δ

eprivρ iprivθ

ceprivρ,δ ciprivθ,δ

priv

cprivδ

∃δ

∃δ ∃δ

∃δ

Figure 6.1: Relations of the privacy notions

6.4 Relations between the privacy notions

We show the relations between the privacy properties in Figure 6.1: we use ρ
to denote the specification of a target user’s collaboration with the adversary
〈Ψ ,Φ, cout , cin〉, θ to denote the specification of a set of attacking third parties
and their collaboration with the adversary (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉), and δ to de-

note the specification of a set of defending third parties and their coalition with
the target user (RD, 〈Θ ,∆,Π 〉).

The left diamond in Figure 6.1 shows the relations between privacy properties
which do not consider defending third parties while the right diamond shows the
relations between privacy properties which consider defending third parties. In the
left diamond, eprivρ and iprivθ are stronger than priv, meaning that if a protocol
satisfies eprivρ or iprivθ, then the protocol satisfies priv. Intuitively, if the adversary
cannot break privacy with the help from the target user (in eprivρ) or from a set of
attacking third parties (in iprivθ), the adversary cannot break privacy without any
help (in priv). Similarly, if the adversary cannot break privacy with the help from
both target user and attacking third parties (in ieprivρ,θ), the adversary cannot
break privacy with the help from only one of them (in eprivρ and iprivθ). Thus,
ieprivρ,θ is stronger than both enforced-privacyρ and iprivθ. This is described as
Theorem. 6.20.

Theorem 6.20. (1) ∀θ, ieprivρ,θ =⇒ eprivρ, (2) ∀ρ, ieprivρ,θ =⇒ iprivθ, (3) ∀ρ,
eprivρ =⇒ priv, and (4) ∀θ, iprivθ =⇒ priv.

Proof sketch: The proof of ∀ρ, ieprivρ,θ =⇒ iprivθ and ∀ρ, eprivρ =⇒ priv follows
the strategy of how to prove coercion-resistance =⇒ receipt-freeness =⇒ vote-
privacy given by Delaune et al. [DKR09]. For all ρ, when a protocol satisfies eprivρ,
for an adversary context C[ ], three equivalences in Definition 6.11 hold. From the

equivalences, we can deduce that CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}] ≈ℓ CPw

[C[Pf ]]. By
applying the evaluation context νc′out .( |!in(c′out , x)) on both side of the equiva-

lence, we prove that CPw
[R̂i{id/id i , t1/τ}] ≈ℓ CPw

[C[Pf ]
\out(c′out ,·)]. Because of the

first equivalence in Definition 6.11: C[Pf ]
\out(c′out ,·) ≈ℓ R̂i{id/id i , t2/τ}, we deduce
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the equivalence CPw
[R̂i{id/id i , t1/τ}] ≈ℓ CPw

[R̂i{id/id i , t2/τ}]. This coincides with
the equivalence in Definition 6.3. Thus we prove that ∀ρ, eprivρ =⇒ priv. Similarly
we prove ∀ρ, ieprivρ,θ =⇒ iprivθ.

∀θ, iprivθ =⇒ priv can be proved as follows: for an adversary context C[ ] :=

νctout .νc
t
in .( | Q) satisfying bn(Pw) ∩ fn(C[ ]) = ∅ ∧ CPw

[C[R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]] ≈ℓ

CPw
[R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ]), we show that iprivθ =⇒ priv. By applying C[ ] and the evalua-
tion context νctout .( |!in(ctout , x)) on both side of the equivalence in Definition 6.13,
we have CPw

[R̂i{id/id i , t1/τ} | RT ] ≈ℓ CPw
[R̂i{id/id i , t2/τ} | RT ]. By applying rule

!P ≡ P |!P , the third parties’ behaviour RT is absorbed by the environment. Thus,
the equivalence in Definition 6.3 is satisfied. Similarly reasoning holds for proving
∀θ, ieprivρ,θ =⇒ eprivρ. Precise proofs are available in Appendix B.2.

Moreover, the implication relations in Theorem. 6.20 are uni-directional, in the
sense that we can disprove the opposite directions by presenting counter-examples
(see details in Appendix B.2). We can apply the same technique to prove the
relations in the right diamond. Thus we have the following theorem. Precise
proofs are available in Appendix B.3.

Theorem 6.21. (1) ∀θ, cieprivρ,θ,δ =⇒ ceprivρ,δ, (2) ∀ρ, cieprivρ,θ,δ =⇒ ciprivθ,δ,
(3) ∀ρ, ceprivρ,δ =⇒ cprivδ, and (4) ∀θ, ciprivθ,δ =⇒ cprivδ.

Each privacy property in the left diamond has a weaker corresponding property in
the right diamond, meaning that if a protocol satisfies a privacy property in the left
diamond, there exists a coalition such that the property satisfies the corresponding
coalition privacy property in the right diamond. Intuitively, if a protocol preserves
privacy of a target user without any help from third parties, the protocol can still
preserve his privacy with the help from others.

Theorem 6.22. (1) cieprivρ,θ =⇒ ∃δ, cieprivρ,θ,δ, (2) eprivρ =⇒ ∃δ,ceprivρ,δ, (3)
iprivθ =⇒ ∃δ, ciprivθ,δ, and (4) priv =⇒ ∃δ, cprivδ.

Proof sketch: When a protocol satisfies priv, the equivalence in Definition 6.3
holds. It is easy to see that the equivalence in Definition 6.3 coincides with the
one in Definition 6.16 when the coalition is set empty. The same reasoning holds
for proving other relations in the theorem. Precise proofs are available in Ap-
pendix B.4.

Generally, given a set of defending third parties RD, when a protocol satisfies priv,
the requirement that the protocol also satisfies cprivδ is the following equivalence:
νΩ .(R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉 ≈ℓ R̂i{id/id i , t2/τ} | RD. When the coalition
is of the form 〈Θ , ∅, ∅〉, this requirement is satisfied. However, not all coalition
specifications defined on RD can satisfy the requirement. Therefore, even when a
protocol satisfies priv, some coalition specification may fail to satisfy cprivδ. The
observation holds for other relations in Theorem. 6.22 as well. Note that the
requirement ‘∃δ’ makes the coalition privacy properties in Theorem. 6.22 coincide
with their general extensions as discussed previously in Section 6.3.4.
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6.5 Application

Privacy notions modelled as strong secrecy can be captured by data-privacy. For
instance, doctor anonymity (see Definition 5.5) is data-privacy where the target
data is a user’s identity. Various domain-specific properties, which capture privacy
in domains where data-privacy is too strong to be satisfied, can be instantiated by
coalition-privacy. For instance,

• strong bidding-price-secrecy for non-winning bidders (see Definition 4.1) in
sealed-bid e-auctions is defined as the adversary cannot determine a bidder’s
bidding-price, assuming the existence of a winning bid. This can be instan-
tiated as coalition-privacy where the target data is a bid pb, the defending
third party is the winning bidder PbB{d/pb} and the coalition specification is
〈∅, ∅, ∅〉.

• Prescribing-privacy (see Definition 5.1) is defined as the adversary cannot
determine a doctor’s prescription with the existence of a counter-balancing
doctor. This can be instantiated as coalition-privacy where the target data
is a prescription presc, the defending third party is the counter-balancing
doctor

(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pB/presc})
)

and the
coalition specification is 〈∅,∆, ∅〉 where the substitution ∆ specifies how to
replace the counter-balancing doctor’s prescription {pA/pB}.

• Vote-privacy (see Definition 3.14) is defined as the adversary cannot deter-
mine a voter’s vote with the existence of a counter-balancing voter. This can
be instantiated as coalition-privacy where the target data is a vote vote, the
defending third party is the counter-balancing voter PvB{c/vote} and the
coalition specification is 〈∅,∆, ∅〉 where the substitution ∆ specifies how to
replace the counter-balancing voter’s vote {a/c}.

Enforced privacy notions like receipt-freeness or coercion-resistance in e-voting can
be captured by either enforced-privacy or coalition-enforced-privacy.

• Receipt-freeness in e-voting (see Definition 3.17) can be instantiated by coalition-
enforced-privacy w.r.t. vote and (PvB{c/vote}, 〈∅, {{a/c}}, ∅〉) (the target
data and the coalition are the same as in vote-privacy), and the collabora-
tion specification is 〈Ψ , ∅, cout , ǫ〉 where Ψ contains all private terms gener-
ated and read-in in the target voter process. Ψ in a process R is given by
OutTerm(R).

OutTerm(0) = ∅
OutTerm(P | Q) = OutTerm(P ) ∪ OutTerm(Q)

OutTerm(!P ) = OutTerm(P )
OutTerm(νn.P ) = {n} ∪ OutTerm(P ) when n is name of base type,
OutTerm(νn.P ) = OutTerm(P ) otherwise

OutTerm(in(v, x).P ) = {x} ∪ OutTerm(P ) when n is name of base type,
OutTerm(in(v, x).P ) = OutTerm(P ) otherwise

OutTerm(out(v,M).P ) = OutTerm(P )
OutTerm(if M =E N then P else Q)

= OutTerm(P ) ∪ OutTerm(Q)
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• In a similar way, coercion-resistance in e-voting (see Definition 3.19) is an
instance of coalition-enforced-privacy w.r.t. vote and coalition specification
(PvB{c/vote}, 〈∅, {{a/c}}, ∅〉) (the target data and the coalition are the same
as in vote-privacy), and the cooperation specification is 〈Ψ ,Φ, cout , cin〉 where
Ψ contains all private terms generated and read-in in the target voter pro-
cess and Φ contains all the send out terms. Φ in a process R is given by
ReplaceTerm(R).

ReplaceTerm(0) = ∅
ReplaceTerm(P | Q) = ReplaceTerm(P ) ∪ ReplaceTerm(Q)

ReplaceTerm(!P ) = ReplaceTerm(P )
ReplaceTerm(νn.P ) = ReplaceTerm(P )

ReplaceTerm(in(v, x).P ) = ReplaceTerm(P )
ReplaceTerm(out(v,M).P ) = {M} ∪ ReplaceTerm(P )
ReplaceTerm(if M =E N then P else Q)

= ReplaceTerm(P ) ∪ ReplaceTerm(Q)

The two independency of privacy properties, i.e., independency-of-prescribing-
privacy and independence-vote-privacy are instances of coalition-independency-of-
privacy.

• Independency of prescribing-privacy (see Definition 5.3) can be instantiated
as coalition-independency-of-privacy w.r.t. target data presc, defending third
parties

(

initdr{dB/Iddr}.(!Pdr{dB/Iddr} | maindr{dB/Iddr , pB/presc})
)

, coali-
tion specification 〈∅, {{pA/pB}}, ∅〉 with the attacking third parties Ri and
third party collaboration 〈Ψ , ∅, cout , ǫ〉 where Ψ contains all private terms
generated and read-in in Ri, i.e., Ψ = OutTerm(Ri).

• Vote-independence [DLL11]: A voting process respects vote-independence if
for all votes a and c

Cv [PvA{a/vote} | PvB{c/vote} | PvC
cout ,cin ]

≈ℓ Cv [PvA{a/vote} | PvB{c/vote} | PvC
cout ,cin ].

This property can also be considered as an instance of coalition-independency
-of-privacy, where the target data is and the coalition are the same as in
vote-privacy, the set of attacking third parties is a third voter PvC , and the
collaboration specification of the third voter is 〈Ψ ,Φ, cout , cin〉 where Ψ are
all generated OutTerm(PvC) and Φ are all read-in terms ReplaceTerm(PvC)
in the third voter process.

6.6 Conclusions

In this chapter, we considered both negative and positive influences of third par-
ties to a target user’s privacy. Furthermore, we identified a new privacy notion:
coalition privacy, where third parties help defend the target user’s privacy. In addi-
tion, we presented a formal framework which allows us to give domain-independent
formalisations of the privacy notions accounting for third parties. We defined a
standard form of protocols in which any protocol may be expressed.
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To formally define enforced privacy properties and independency of privacy prop-
erties, we modelled collaboration between users and the adversary. A collaboration
specifies precisely what information is shared and how it is shared. As such, this
modelling provides the necessary flexibility for expressing various types of collabo-
ration. To model coalition privacy properties, we proposed the notion of coalition
in our framework. This notion formally expresses the behaviour of and information
shared between a target user and a set of third parties.

In our framework, the basic privacy property data-privacy was formalised in a
classical way as strong secrecy: equivalence of two processes where a variable is
instantiated differently [Bla04]. Based on this property, we formalised enforced-
privacy, independency-of-privacy and independency-of-enforced-privacy using the
formalisation of collaboration. Using the formalisation of coalition, four corre-
sponding coalition privacy properties were formalised.

Finally, we discussed the relations between the defined properties. We proved that
these properties are hierarchically related, and we showed that various privacy
definitions from literature are instances of properties in our hierarchy.
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Conclusions and future work

As motivated in the introduction (Chapter 1), privacy is a desirable requirement
in services based on the Internet. To ensure privacy against adversaries controlling
the network, cryptography is widely used in protocols. However, the design and
verification of cryptographic protocols are well known to be error-prone. Formal
approaches have shown to be effective in addressing this problem. Therefore we
argue that formalising privacy notions is a necessary step to verify privacy claims of
a protocol. In particular, a strong privacy notion – enforced privacy was proposed
recently to ensure privacy against bribery and coercion. In this thesis, we studied
enforced privacy formally using a process algebra – the applied pi calculus.

We first studied existing requirements and formalisations of enforced privacy (Chap-
ter 2). We found that enforced privacy is required in domains such as e-voting,
e-auctions and e-health. However, formalisations of enforced privacy focused on
the e-voting domain. We formalised enforced privacy in other domains: e-auctions
and e-health. We formalised enforced privacy in the e-auction domain in a similar
way as the formalisations in the e-voting domain (Chapter 4). We performed a
case study to validate our formalisations. E-auction systems are similar to e-voting
systems in the sense that roles can be naturally divided into two types: partici-
pants and authorities. In contrast, e-health systems involve a far more complex
constellation of roles, some of which may not be trustworthy. Hence, protecting a
user’s privacy when third parties cooperating with the adversary was required in e-
health. Therefore, in addition to enforced privacy, we formalised an independency
of privacy property of e-health systems to capture such third parties’ cooperating
behaviour. Furthermore, we verified the formalised properties of a Belgian e-health
protocol which was proposed for practical use. Using the experience of formalising
domain-specific enforced privacy, we proposed a general formalisation of enforced
privacy in a formal framework. In addition, we took third parties’ influence into
account. On the one hand, a third party can influence a target user’s privacy
negatively by cooperating with the adversary to break the user’s privacy. On the
other hand, a third party can influence a target user’s privacy positively by co-
operating with the target user to maintain the user’s privacy. We generalised the
formalisations of privacy properties taking into account negative third parties in
the framework. In addition, we proposed privacy properties taking into account
positive third parties and formalised the properties in the framework as well. Fi-
nally, we proved the relations between the formalised privacy properties in the
framework.

117
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7.1 Summary of contributions

In this thesis, we studied enforced privacy: privacy with respect to an adversary
who can bribe or coerce users in addition to control the network. More specifically,
we

1. studied enforced privacy in e-auctions (Chapter 4),

2. studied enforced privacy in e-health (Chapter 5), and

3. developed a formal verification framework in which we generalised enforced
privacy and studied enforced privacy in the presence of others (Chapter 6).

Chapter 4: Enforced privacy in e-auctions In the study of enforced privacy
in e-auctions, our main contribution is that we proposed formalisations of two
privacy properties of auction protocols: bidding-price-secrecy and receipt-freeness,
following definitions of vote-privacy and receipt-freeness in e-voting [DKR09]. We
have modelled the AS02 protocol in the applied pi calculus, verified bidding-price-
secrecy of the protocol automatically, using ProVerif, and receipt-freeness of the
protocol manually.

Chapter 5: Enforced privacy in e-health The main contribution in the study
of enforced privacy in e-health is that we identified three enforced privacy properties
of e-health systems: enforced prescribing-privacy, independency of prescribing-
privacy, independency of enforced prescribing-privacy. In addition, we are the
first to provide formal definitions for them. Furthermore, we developed an in-
depth applied pi model of the DLV08 e-health protocol [dDLVV08] which is rather
complicated and aims for practical use in Belgium. Furthermore, we formally
analysed privacy and enforced privacy properties of the protocol, as well as regular
security and privacy properties. We have found ambiguities in the protocol which
potentially lead to flaws on privacy, and proposed suggestions for fixing them. The
formal analysis of the DLV08 protocol, together with the analysis of the AS02
protocol, provide insights on the design of protocols preserving enforced privacy.

Chapter 6: Enforced privacy in the presence of others We generalised
domain-specific enforced privacy properties of the e-voting, e-auction and e-health
systems. Inspired by the requirement of independency of privacy in e-health sys-
tems, we took into account privacy properties where third parties cooperate with
the adversary and generalised them as independency of privacy properties. In addi-
tion, we considered privacy properties where third parties cooperate with the target
user, and proposed coalition privacy. We also formalised the privacy properties in
a new formal framework and formally prove their relations. In the framework,
we defined a standard form of protocols which is able to represent any proto-
col. To formally define enforced privacy properties and independency of privacy
properties, we model collaboration between users and the adversary. The collab-
oration allows us to precisely specify which information is shared and how it is
shared, thereby providing the necessary flexibility for modelling various types of
collaboration. To model coalition privacy properties, we proposed the property of
coalition in our framework to formally capture the behaviour and shared informa-
tion among a target user and a set of third parties. The formal framework allows
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us to give domain-independent formalisations of the privacy properties. We for-
malised data-privacy, enforced-privacy, independency-of-privacy and independency
-of-enforced-privacy using the formalisation of collaboration. Using the formalisa-
tion of coalition, four corresponding coalition privacy properties are formalised.
Finally, we formally discussed how the formalised privacy properties are related
in a privacy hierarchy. In addition, we showed that many existing formalisations
are instances of properties in our hierarchy. It appears that the formalisations of
enforced privacy in other domains can benefit from our framework.

7.2 Future work

Enforced privacy is still rather new compared to classical privacy properties such as
anonymity and untraceability. Enforced privacy requirements have only been for-
mally studied in a few domains, e-voting, e-auctions and e-health. The adversary’s
ability to bribe or coerce users does not depend on domains. As such, enforced pri-
vacy needs to be studied in other domains. For instance, in online social networks,
normally a user maintains the link between the identities and pseudonyms of his
friends. The following scenario that a user may be coerced to reveal the link has
been identified in social networks [BMP11]. Thus, the following requirement has
been identified: a user should be able to give fake associations between pseudo-
nyms and identities of his friends to a coercer [BMP11]. Once the requirements are
identified, designing systems enforcing user’s privacy is needed. Development of
systems providing enforced privacy will benefit from privacy-enforcing techniques
used to guarantee receipt-freeness and coercion-resistance in e-voting, e-auctions
and e-health, for example chameleon bit commitments, untappable channels and
zero-knowledge proofs, as used in the AS02 e-auction protocol. As design of cryp-
tographic protocols is well-known to be error-prone, a claimed enforced privacy
property needs to be formally verified. To do so, formalising such a property is
a necessary step. The formalisations of a claimed enforced privacy property will
benefit from our formal framework.

In the two domains where enforced privacy has been studied in this thesis, e-
auctions and e-health, there is still interesting research that needs to be carried
out. For instance, in e-auctions, we only formalised receipt-freeness in sealed-bid
e-auctions as it is required in the literature. Privacy notions due to different types
of cooperation between a bribed or coerced user and the adversary have not been
formalised. Thus, an interesting research direction is to formalise such privacy
notions, for example, coercion-resistance, in e-auctions. In addition, the privacy
notions we defined in e-auctions (bidding-price-secrecy and receipt-freeness) aim to
protect privacy for non-winning bidders. Chen et al. proposed an auction protocol
which can ensure the winner’s privacy as well [CLK03]. It is interesting to formalise
and verify privacy and enforced privacy for this protocol.

Compared to the study of enforced privacy in the e-auction and e-voting domains,
where many systems providing enforced privacy have been proposed, the study
of enforced privacy in the e-health domain is in its infancy. Especially, e-health
systems require a strong privacy, the combination of enforced privacy and indepen-
dency of privacy, for instance, the DLV08 e-health protocol requires doctor privacy
even if both pharmacists and doctors cooperate with the adversary. How to en-
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sure such strong privacy properties in e-health remains a challenge, for instance,
improving the DLV08 protocol to satisfy the independency of enforced prescribing-
privacy.

Moreover, as we have already mentioned in Chapter 6, there are some interesting
research directions based on the formal framework. A coalition privacy notion
formalised in the framework is always with respect to a specific coalition. A coali-
tion between a target user and third parties may fail to maintain privacy of the
target user. How to find a coalition and synthesise a strategy for the coalition to
satisfy some coalition privacy properties for a protocol is an interesting research
direction. In addition, in the formal framework, we did not consider that the third
parties cooperating with the adversary may lie to the adversary. Taking this third
parties’ lying into account will lead to new privacy notions. Thus, how to extend
our privacy hierarchy to capture situations where a third party is coerced but has
a strategy to lie to the adversary needs to be addressed.

Our work focuses on formalising enforced privacy notions. The verification of en-
forced privacy properties in our case studies benefit from verification techniques
provided by the tool ProVerif. However, this tool may report false attacks, or not
terminate. As we can see, equivalences in the enforced privacy formalisations are
often complex. Developing verification techniques which are efficient for verify-
ing such equivalences is an interesting direction. Furthermore, ProVerif can only
help prove whether an equivalence hold, it cannot, for example, prove whether
there exists a process in which a bribed or coerced user can successfully cheat the
adversary. How to find such processes automatically remains a challenge.
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Full proofs in Chapter 4

A.1 Full proof of receipt-freeness of AS02

We show the detailed proof of the equivalence eq1 in Section 4.6.2.

(let untapch = untapchbA in let privch = privchbA in

let ch = chbA in Pf
\out(chc,·))

≈ℓ (let pb = c inlet untapch = untapchbA in
let privch = privchbA in let ch = chbA in Pb),

where Pf
\out(chc,·) =̂ νchc.(Pf |!in(chc, x)), Pf is defined in Figure 4.12, and Pb is

defined as in Figure 4.6.

In order to prove the equivalence, we can prove that Pf
\out(chc,·) ≈ℓ Pb{c/pb}, i.e.,

(νchc.(Pf |!in(chc, x)) ≈ℓ Pb{c/pb}.

Let P ′ := (νchc.(Pf |!in(chc, x)) and Q′ := Pb{c/pb}. Process P ′ is shown in
Figure A.1, and process Q′ is shown in Figure A.3.

P ′ := νchc.(
p1. in(privch, ssk b).
p2. out(chc, ssk b).
p3. ν sk b. out(chc, sk b).
p4. out(ch, sign(pk(sk b), ssk b)).
p5. ν r1. · · · . ν ra. · · · . ν rc. · · · . ν rm.
p6. out(chc, (r1, . . . , f(ra), . . . , f(rc), . . . , rm)).
p7. let cmtp1 = commit(r1, pk(sk b),Mno) in

p8. . . .
p9. let cmtpa = commit(ra, pk(sk b),Mno) in

p10. . . .
p11. let cmtpc = commit(rc, pk(sk b),Myes) in

p12. . . .
p13. let cmtpm = commit(rm, pk(sk b),Mno) in

p14. out(ch, sign((cmtp1 , . . . , cmtpm), ssk b)).
p15. out(untapch, sign((r1, . . . , ra, . . . , rc, . . . , rm), ssk b))
p16. |!in(chc, x))

Figure A.1: The process νchc.(Pf |!in(chc, x)).

The transitions of process P ′ are shown in Figure A.2.

In Figure A.2 P ′
1, . . . , P

′
7 are sub-processes in Figure A.1.
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P ′ in(privch,y)
−−−−−−−→ νchc.P ′

1{y/ssk b}
→ (COMM) νchc.P ′

2{y/ssk b}
→ (COMM) νchc.νsk b.P

′
3{y/ssk b}

ν x1. out(ch,x1)
−−−−−−−−−→ νchc.νsk b.(P

′
4 | {sign(pk(sk b), ssk b)/x1}){y/ssk b}

→ (COMM) νchc.νsk b.νr1. · · · νrm.(P
′
5 | {sign(pk(sk b), ssk b)/x1}){y/ssk b}

ν x2. out(ch,x2)
−−−−−−−−−→ νchc.νsk b.νr1. · · · νrm.(P

′
6 | {sign(pk(sk b), ssk b)/x1}

| {sign((cmtp1 , . . . , cmtpm), ssk b)/x2}){y/ssk b}
ν x3. out(chc,x3)
−−−−−−−−−−→ νchc.νsk b.νr1. · · · νrm.(P

′
7 | {sign(pk(sk b), ssk b)/x1}

| {sign((cmtp1 , . . . , cmtpm), ssk b)/x2}
| {sign((r1, . . . , rm), ssk b)/x3}){y/ssk b}

Figure A.2: Transitions of P ′

• P ′
1 is the sub-process p2 to p16.

• P ′
2 is the sub-process p3 to p16.

• P ′
3 is the sub-process p4 to p16.

• P ′
4 is the sub-process p5 to p16.

• P ′
5 is the sub-process p7 to p16.

• P ′
6 is the sub-process p15 to p16.

• P ′
7 is the sub-process p16.

Q′ :=
q1. in(chpriv , ssk b).
q2. ν sk b.out(ch, sign(pk(sk b), ssk b)).
q3. ν r1. · · · .ν rm.
q4. let cmtp1 = commit(r1, pk(sk b),Mno) in

q5. . . .
q6. let cmtpa = commit(ra, pk(sk b),Mno) in

q7. . . .
q8. let cmtpc = commit(rc, pk(sk b),Myes) in

q9. . . .
q10. let cmtpm = commit(rm, pk(sk b),Mno) in

q11. out(ch, sign((cmtp1 , · · · , cmtpm), ssk b)).
q12. out(untapch, sign((r1, · · · , rm), ssk b))

Figure A.3: The bidder process Pb{c/pb}.

The transitions of process Q′ are shown in Figure A.4.

In Figure A.4, Q′
1, . . . , Q

′
4 are sub-processes in Figure A.3.

• Q′
1 is the sub-process q2 to q12.
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Q′ in(privch,y)
−−−−−−−→ Q′

1{y/ssk b}
ν x1. out(chc,x1)
−−−−−−−−−−→ νsk b.(Q

′
2 | {sign(pk(sk b), ssk b)/x1}){y/ssk b}

ν x2. out(chc,x2)
−−−−−−−−−−→ νsk b.ν r1. · · · .ν rm. (Q

′
3 | {sign(pk(sk b), ssk b)/x1}

| {sign((cmtp1 , · · · , cmtpm), ssk b)/x2}){y/ssk b}
ν x3. out(ch,x3)
−−−−−−−−−→ νsk b.ν r1. · · · .ν rm. (Q

′
4 | {sign(pk(sk b), ssk b)/x1}

| {sign((cmtp1 , · · · , cmtpm), ssk b)/x2}
| {sign((r1, · · · , rm), ssk b)/x3}){y/ssk b}

Figure A.4: Transitions of Q′.

• Q′
2 is the sub-process q3 to q12.

• Q′
3 is the sub-process q12.

• Q′
4 is the sub-process 0.

We build a relation R as follows: P ′ R Q′, P 1 R Q1, P 2 R Q1, P 3 R Q1, P 4 R Q2,
P 5 R Q2, P 6 R Q3, where

P 1 := (νchc.P ′
1{y/ssk b})

P 2 := (νchc.P ′
2{y/ssk b})

P 3 := (νchc.νsk b.P
′
3{y/ssk b})

P 4 := (νchc.νsk b.(P
′
4 | {sign(pk(sk b), ssk b)/x1}){y/ssk b})

P 5 := (νchc.νsk b.νr1. · · · νrm.(P
′
5 | {sign(pk(sk b), ssk b)/x1}){y/ssk b})

P 6 := (νchc.νsk b.νr1. · · · νrm.(P
′
6 | {sign(pk(sk b), ssk b)/x1}
| {sign((cmtp1 , . . . , cmtpm), ssk b)/x2}){y/ssk b})

Q1 := Q′
1{y/ssk b},

Q2 := (νsk b.(Q
′
2 | {sign(pk(sk b), ssk b)/x1}){y/ssk b})

Q3 := (νsk b.ν r1. · · · .ν rm. (Q
′
3 | {sign(pk(sk b), ssk b)/x1}
| {sign((cmtp1 , · · · , cmtpm), ssk b)/x2}){y/ssk b}).

We prove that P ′ ≈s Q′. Since frame(P ′) := νsk b.ν r1. · · · .ν rm and frame(Q′) :=
νchc.νsk b.νr1. · · · νrm, we have that domain(P ′) = domain(Q′) and M =E N in
frame(P ′) iff M =E N in frame(Q′), thus, we have frame(P ′) ≈s frame(Q′). There-
fore, P ′ ≈s Q

′.

Similarly, from the above we can prove that P 1 ≈s Q1, P 2 ≈s Q1, P 3 ≈s Q1,
P 4 ≈s Q

2, P 5 ≈s Q
2, P 6 ≈s Q

3.
(1) frame(P 1) := (νchc.0) and frame(Q1) := 0. We can see that domain(P 1) =
domain(Q1). According to rule NEW − 0, we have that frame(P 1) ≈s frame(Q1),
and thus, M =E N in frame(P 1) iff M =E N in frame(Q1). Therefore, P 1 ≈s Q

1.

(2) Since frame(P 2) := (νchc.0) as well, from (1) we have that P 2 ≈s Q
1.

(3) Since frame(P 3) := νchc.νsk b.0, we can see that domain(P 1) = domain(Q1).
According to rule NEW−0, we have that frame(P 3) ≈s frame(Q1) as well. There-
fore, M =E N in frame(P 1) iff M =E N in frame(Q1), and thus, P 3 ≈s Q

1.

(4) frame(P 4) := νchc.νsk b.({sign(pk(sk b), ssk b)/x1}){y/ssk b}) and frame(Q2) :=
νsk b.({sign(pk(sk b), ssk b)/x1}){y/ssk b}. We can see that domain(p4) = domain(Q2).
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According to rule PAR− 0, we have that

frame(P 4) ≡ νchc.νsk b.({sign(pk(sk b), ssk b)/x1} | 0){y/ssk b}).

According to rule NEW− PAR, we have that

νchc.νsk b.({sign(pk(sk b), ssk b)/x1} | 0){y/ssk b})
≡ νsk b.({sign(pk(sk b), ssk b)/x1} | νchc.0){y/ssk b}).

According to rule NEW− 0, we have that νchc.0 ≡ 0 and thus

νsk b.({sign(pk(sk b), ssk b)/x1} | νchc.0){y/ssk b})
≡ νsk b.({sign(pk(sk b), ssk b)/x1}){y/ssk b}).

Therefore, frame(P 4) ≡ νsk b.({sign(pk(sk b), ssk b)/x1}){y/ssk b}).
That is frame(P 4) ≡ frame(Q2). Therefore, we have frame(P 4) ≈s frame(Q2), and
thus, M =E N in frame(P 4) iff M =E N in frame(Q2). Therefore, P 4 ≈s Q

2.

(5) frame(P 5) := νchc.νsk b.νr1. · · · νrm.({sign(pk(sk b), ssk b)/x1}){y/ssk b}. We
can see that domain(p5) = domain(Q2). Similar as in (3), we can prove that
frame(P 5) ≡ frame(P 4). Therefore, frame(P 5) ≈s frame(Q2) as well. Thus,
M =E N in frame(P 5) iff M =E N in frame(Q2). Hence, we have P 5 ≈s Q

2.

(6) We have the two frames, frame(P 6) and frame(Q3), defined as follows:

frame(P 6) := νchc.νsk b.νr1. · · · νrm.( {sign(pk(sk b), ssk b)/x1} |
{sign((cmtp1 , . . . , cmtpm), ssk b)/x2}){y/ssk b}.

frame(Q3) := νsk b.ν r1. · · · .ν rm. ( {sign(pk(sk b), ssk b)/x1} |
{sign((cmtp1 , · · · , cmtpm), ssk b)/x2}){y/ssk b}.

We can see that domain(P 6) = domain(Q3). Similar as in (1), we prove that
frame(P 6) ≈s frame(Q3). Thus, M =E N in frame(P 6) iff M =E N in frame(Q3).
Hence, we have P 6 ≈s Q

3.

We can see that the relation R satisfies the definition of labelled bisimilarity (see
Definition 3.11). If P ′ does a internal reduction to P 1, then we have P 1 R Q′. If
Q′ does a labelled transition to Q1, then P ′ can do three internal reductions and a
labelled transition to P 4, and Q2 R P 4.

Proving the second equivalence holds is similar. Below, we explain how the proof
runs.

Recall the proof obligation:

CAS02 [ (let pb = a in let untapch = untapchbA in
let privch = privchbA in let ch = chbA in Pb)

chc |
(let pb = d in let untapch = untapchbB in
let privch = privchbB in let ch = chbB in Pb)]

≈ℓ CAS02 [ (let untapch = untapchbA in
let privch = privchbA in let ch = chbA in Pf ) |
(let pb = d in let untapch = untapchbB in
let privch = privchbB in let ch = chbB in Pb)]
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Since the processes on each side of the equivalence consists of several concur-
rent processes, including the key distribution process, n bidder processes and an
auctioneer process. In addition, the key distribution process and the auctioneer
process contain sub-processes which are in parallel. Thus, the transitions of the
process on each side are too complicated to be showed here. The proof of this
equivalence is similar to the proof of the first equivalence as shown above. The
difference is that for proving the second equivalence, the states and transitions are
more complicated.

Generally speaking, since the contexts are the same on both sides, if the process on
the left side can do a labelled transition by one of the parallel sub-processes in the
context, or a internal reduction between sub-processes in the context, the corre-
sponding sub-processes on the right hand side context can do the same transition.
And Vice versa.

The transitions caused by the two bidder processes, PbA{a/pb}
chc and PbB{d/pb}

on the left side, Pf and PbB{d/pb} on the right side, are showed in Figure 4.13.
From Figure 4.13, we can see that if the left side can do a transition by the two
bidder processes, the right side can do a corresponding transition by the two bidder
processes as well. Figure 4.13 also shows the change of adversary knowledge caused
by transitions of the two bidder processes. We can see, form Figure 4.13, that the
change of adversary knowledge is the same on both sides for most transitions. The
only exception is x5. In the proof sketch in Section 4.6.2, we showed that the
adversary cannot distinguish the difference of x5 between left and right side.

Therefore, for a state on the left side, there is a corresponding state on the right
side. We build a relation between the corresponding states. The relations satisfies
the second and third items in the definition of labelled bisimilarity (see Defini-
tion 3.11). Then we prove that the frames of the corresponding states are static
equivalence, in a similarly way as we prove the first equivalence. Generally speak-
ing, most frames are the same, due to the similarity of the processes on both sides.
In such a way, the second equivalence is proved.
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Full proofs in Chapter 6

B.1 Auxiliary lemmas

Theorem 1. If A ≈ℓ B and B ≈ℓ C, then A ≈ℓ C.

Proof. 1. Since A ≈ℓ B, according to Definition 3.11, we have A ≈s B. Similarly,
since B ≈ℓ C, we have B ≈s C.

Accoding to Definition 3.8, since A ≈s B, we have frame(A) ≈s frame(B). That is,
1) domain(frame(A)) = domain(frame(B)) and
2) ∀ terms M,N : (M =E N) in frame frame(A) iff (M =E N) in frame frame(B).
Similarly, since B ≈s C, we have frame(B) ≈s frame(C). Thus,
3) domain(frame(B)) = domain(frame(C)) and
4) ∀ terms M,N : (M =E N) in frame frame(B) iff (M =E N) in frame frame(C).

Because of 1) and 3), we have domain(frame(A)) = domain(frame(C)). Because of
2) and 4), we have ∀ terms M,N : (M =E N) in frame frame(A) iff (M =E N) in
frame frame(C). Therefore, frame(A) ≈s frame(C), and thus, A ≈s C.

2. We build a relation R: A R C if A ≈ℓ P and P ≈ℓ C for some P .

2.1 Since A ≈ℓ B, according to Definition 3.11, we have that if A → A′ then
B →∗ B′ and A′ ≈ℓ B′ for some B′. Similarly, since B ≈ℓ C, we have that if
B → B” then C →∗ C” and B” ≈ℓ C” for some C”. Therefore, if B →∗ B′, then
C →∗ C ′ and B′ ≈ℓ C

′ for some C ′. From the above, we can see, if A → A′ then
C →∗ C ′ and A′ ≈ℓ B

′ and B′ ≈ℓ C
′ for some B′ and C ′. Thus, we have if A → A′

then C →∗ C ′ and A′ R C ′ for some C ′. Vice versa, we prove that if C → C ′ then
A →∗ A′ and A′ R C ′ for some A′, in a simlar way.

2.2 Since A ≈ℓ B, according to Definition 3.11, we have that if A
α
−→ A′ and

fv(α) ⊆ domain(A) and bn(α) ∩ fn(B) = ∅; then B →∗ B1
α
−→→∗ B′ and A′ ≈ℓ B

′

for some B′.

5) Since A ≈ℓ B, we have domain(A) = domain(B) (see second paragraph). There-
fore, From the condition fv(α) ⊆ domain(A), we have fv(α) ⊆ domain(B).

6) Since B ≈ℓ C, we have that if B →∗ B1 then C →∗ C1 and B1 ≈ℓ C1 for some
C1 (see fourth paragrph).
Since internal reduction does not introduce active substitutions, thus does not
change the domain, i.e., domain(B) = domain(B1). Form 5), we get fv(α) ⊆
domain(B1).
Assume bn(α)∩ fn(C) = ∅, since internal reduction does not introduce free names,
we have bn(α) ∩ fn(C1) = ∅.
Since B1 ≈ℓ C1, we have that if B1

α
−→ B′ and fv(α) ⊆ domain(B1) and bn(α) ∩

127
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fn(C1) = ∅; then C1 →
∗ α
−→→∗ C ′ and B′ ≈ℓ C

′ for some C ′.

Combining 5) and 6), we have that if A
α
−→ A′ and fv(α) ⊆ domain(A) and bn(α)∩

fn(C) = ∅; then C →∗ C1 →
∗ α
−→→∗ C ′ and A′ ≈ℓ B

′ and B′ ≈ℓ C
′ for some C ′.

Therefore, if A
α
−→ A′ and fv(α) ⊆ domain(A) and bn(α) ∩ fn(C) = ∅; then

C →∗ α
−→→∗ C ′ and A′ R C ′ for some C ′.

In a similar way, we can prove that if C
α
−→ C ′ and fv(α) ⊆ domain(C) and bn(α)∩

fn(A) = ∅; then A →∗ α
−→→∗ A′ and A′ R C ′ for some A′.

From the above step 1, 2.1, and 2.2, we prove that A ≈ℓ C.

Theorem 2. If A ≡ B and C ≡ D, and A ≈ℓ C then B ≈ℓ D.

Proof. From the following lemma in [AF01]: Static equivalence is closed by struc-
tural equivalence, we have that if A ≡ B, then A ≈s B.
That is, accoding to Definition 3.8, if A ≈s B, then
1) domain(frame(A)) = domain(frame(B)) and
2) ∀ terms M,N : (M =E N) in frame frame(A) iff (M =E N) in frame frame(B).

According to Definition 3.11, since A ≈ℓ C, we have, A ≈s C, that is,
3) domain(frame(A)) = domain(frame(C)) and
4) ∀ terms M,N : (M =E N) in frame frame(A) iff (M =E N) in frame frame(C).

Combining 1) and 3), we have domain(frame(B)) = domain(frame(C)).
Combining 2) and 4), we have ∀ terms M,N : (M =E N) in frame frame(B) iff
(M =E N) in frame frame(C). Thus, B ≈s C.

We build a relation R as B R C if B ≈ℓ C.

Since A ≈ℓ C, we have that if C → C ′ then A →∗ A′ and A′ ≈ℓ C
′ for some A′.

Since internal reduction is closed under structural equivalence, we have that if
A ≡ B and A →∗ A′, then B →∗ B′ and B′ = A′.
Therefore, if C → C ′ then B →∗ B′ and B′ ≈ℓ C

′ for some B′. That is, if C → C ′

then B →∗ B′ and B′ R C ′ for some B′.
In a similar way, we can prove that if B → B′ then C →∗ C ′ and B′ R C ′ for some
C ′.

5) Assume B
α
−→ B′. According to rule STRUCT, we have that if B

α
−→ B′ and

A ≡ B then A
α
−→ B′.

6) Since A ≈ℓ C, we have that if A
α
−→ B′ and fv(α) ⊆ domain(A) and bn(α) ∩

fn(C) = ∅; then C →∗ α
−→→∗ C ′ and B′ ≈ℓ C

′ for some C ′.
7) Since we have domain(A) = domain(B) (see first paragraph), we have if fv(α) ⊆
domain(A) then fv(α) ⊆ domain(B).

Combining 5) 6) and 7), we have if B
α
−→ B′ and fv(α) ⊆ domain(B) and bn(α) ∩

fn(C) = ∅; then C →∗ α
−→→∗ C ′ and B′ ≈ℓ C

′ for some C ′.

In a similar way, we can prove that if C
α
−→ C ′ and fv(α) ⊆ domain(C) and bn(α)∩

fn(B) = ∅; then B →∗ α
−→→∗ B′ and B′ ≈ℓ C

′ for some B′.

From the above, we prove that B ≈ℓ C. Simialrly, we can prove that A ≈ℓ D. By
lemma 1, we have if A ≈ℓ C, B ≈ℓ C, then A ≈ℓ B. Similarly, if A ≈ℓ B and
A ≈ℓ D then B ≈ℓ D.

Theorem 3. Let Q be a closed plain process and c′out be a channel name such that

c′out 6∈ fn(Q)∪bn(Q). Let Ch [ ] := νc′out .( |!in(c′out , x)). We haveQ 〈Ψ ,∅,c′out ,ǫ〉
\out(c′out ,·)
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=̂ νc′out .(Q
〈Ψ ,∅,c′out ,ǫ〉 |!in(c′out , x)) ≈ℓ Q [DKR09]

Theorem 4. Let C1 [ ] = νũ1.( | B1) and C2 [ ] = νũ2.( | B2) be two evaluation
contexts such that ũ1 ∩ (fv(B2) ∪ fv(B2)) = ∅ and ũ2 ∩ (fv(B1) ∪ fv(B1)) = ∅. We
have that C1 [C2 [A]] ≡ C2 [C1 [A]] for any extended process A [DKR09].

Theorem 5. Let A | B be a process, ch be a channel name in A, ch never appears

in B. (A | B)\out(ch,·) ≡ A\out(ch,·) | B.

Proof.

(A | B)\out(ch,·) := νch.((A | B) |!in(ch, x))

A\out(ch,·) | B := (νch.(A |!in(ch, x))) | B

Since ch never appears in B, we have (rule NEW-PAR)

(νch.(A |!in(ch, x))) | B ≡ νch.((A |!in(ch, x)) | B),

Because of rule PAR-C and rule PAR-A, we have

(A | B) |!in(ch, x) ≡ A |!in(ch, x) | B,

Thus,

νch.((A | B) |!in(ch, x)) ≡ νch.((A |!in(ch, x)) | B).

By transitivity of structural equivalence, we have

(A | B)\out(ch,·) ≡ A\out(ch,·) | B.

B.2 Theorem 6.20

(3) ∀ρ, eprivρ =⇒ priv

We prove the statement in the following two directions: 1. ∀ρ, eprivρ =⇒ priv 2.
∃ρ, priv 6=⇒ eprivρ

1. ∀ρ, when a protocol satisfies eprivρ, we prove that the protocol also satisfies
priv.

For a collaboration ρ = 〈Ψ ,Φ, cout , cin〉, when a well-formed protocol Pw

satisfies epriv w.r.t. τ and 〈Ψ ,Φ, cout , cin〉, there exists a closed plain process
Pf , such that for any context C[ ] := νcout .νcin .( | Q) satisfying bn(Pw ) ∩
fn(C[ ]) = ∅ and
eq1:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]] ≈ℓ CPw

[R̂
〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}],

we have
eq2:

C[Pf ]
\out(c′out ,·) ≈ℓ R̂i{id/id i , t2/τ},
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and
eq3:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]] ≈ℓ CPw

[C[Pf ]].

1) According to Lemma 1 (transitivity of ≈ℓ), combining (eq1) and (eq3),
we have
eq4:

CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}] ≈ℓ CPw

[C[Pf ]].

2) By applying the evaluation context Ch [ ] := νc′out .( |!in(c′out , x)) (x is a
fresh variable) on both sides of (eq4), we have
eq5:

Ch [CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}]] ≈ℓ Ch [CPw

[C[Pf ]]].

3) According to Lemma 4, by swapping position of context Ch [ ] and CPw
[ ],

the left side of (eq5) is structural equivalent to

CPw
[Ch [R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}]],

and the right side of (eq5) is structural equivalent to CPw
[Ch [C[Pf ]]]. Accord-

ing to Lemma 2, the above two processes are bisimilar, that is
eq6:

CPw
[Ch [R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}]] ≈ℓ CPw

[Ch [C[Pf ]]].

4) By Lemma 3, we have the following equivalence

Ch [R̂
〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}] ≈ℓ R̂i{id/id i , t1/τ}.

By applying the context CPw
[ ] on both sides of the above equivalence, we

have
eq7:

CPw
[Ch [R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}]] ≈ℓ CPw

[R̂i{id/id i , t1/τ}].

That is, the left side of (eq6) is equivalent to CPw
[R̂i{id/id i , t1/τ}].

5) By Lemma 3, we have C[Pf ]
\out(c′out ,·) := Ch [C[Pf ]]. Thus, we can replace

the process C[Pf ]
\out(c′out ,·) in (eq2) with Ch [C[Pf ]]. That is, Ch [C[Pf ]] ≈ℓ

R̂i{id/id i , t2/τ}. By applying context CPw
[ ] on both sides of the above

equivalence, we have
eq8:

CPw
[Ch [C[Pf ]]] ≈ℓ CPw

[R̂i{id/id i , t2/τ}].

That is, the right side of (eq6) is equivalent to CPw
[R̂i{id/id i , t2/τ}].

6) According to Lemma 2, combining (eq6), (eq7) and (eq8), we have
eq9:

CPw
[R̂i{id/id i , t1/τ}] ≈ℓ CPw

[R̂i{id/id i , t2/τ}].

The equivalence (eq9) coincides with the equivalence in Def. 6.3. Thus, the
protocol Pw satisfies priv.

2. There exists ρ such that priv 6=⇒ eprivρ.

We prove the statement by showing an example in which a protocol satisfies
priv but not eprivρ for some ρ as in Ex. B.1.
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Example B.1. Protocol Q := νr.νs.out(ch, enc(s, r)) where ch is a public
channel, satisfies priv w.r.t. s, but not epriv w.r.t. s and 〈{r}, ∅, cout , ǫ〉.
The adversary cannot distinguish enc(s1, r) and enc(s2, r), thus the protocol
satisfies priv w.r.t s. However, when Q is coerced to reveal r, there is no way
for Q to cheat the adversary. Because of the perfect encryption assumption,
any other nonce cannot be used to decrypted enc(s, r), thus, the adversary
will find out whether the user lied.

(4) ∀θ, iprivθ =⇒ priv

Note that in iprivθ, we assume the existence of a set of attacking third parties RT .
Thus, when we consider priv, we have the same assumption that there exists the
same set of third parties RD.

We prove the statement in the following two directions: 1. ∀θ, iprivθ =⇒ priv 2.
∃θ, priv 6=⇒ iprivθ

1. ∀θ = (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉), when a protocol satisfies iprivθ, we prove that

the protocol also satisfies priv with the existence of RT .

For a collaboration of third parties θ = (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉), when a well-

formed protocol Pw satisfies ipriv w.r.t. τ and (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉), the

following equivalence holds.
eqi1:

CPw
[R̂i{id/id i , t1/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[R̂i{id/id i , t2/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ].

Similar as in definitions of enforced privacy properties like epriv, we sepa-
rate the adversary’s ability of coercing from distinguishing differences of two
processes, and model the ability of providing information for collaborating
users as a context. Since for all contexts of the adversary which provides
information for the collaborating third parties, the protocol satisfies iprivθ,
thus, for the following context Ct [ ], which supplies information needed by
the collaborating third parties, the protocol satisfies iprivθ.

Ct [ ] :=νctout .νc
t
in .( |Q)

satisfying bn(Pw ) ∩ fn(Ct [ ]) = ∅ and
eqi2:

Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ] ≈ℓ R
〈Ψ t ,∅,ctout ,c

t
in 〉

T ,

2) By applying the context Ct [ ] on both sides of (eqi1), we have
eqi3:

Ct [CPw
[R̂i{id/id i , t1/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]

≈ℓ Ct [CPw
[R̂i{id/id i , t2/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]].

3) By applying the evaluation context Ct
h [ ] := νctout .( |!in(ctout , x)) (x is a

fresh variable), on both sides of (eqi3), we have
eqi4:

Ct
h [Ct [CPw

[R̂i{id/id i , t1/τ} | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≈ℓ C
t
h [Ct [CPw

[R̂i{id/id i , t2/τ} | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]].
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4) According to Lemma 4, by swapping contexts Ct
h [ ] and CPw

[ ], the left side
of (eqi4) is structural equivalent to

CPw
[Ct

h [Ct [R̂i{id/id i , t1/τ} | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

That is,
eqi5:

Ct
h [Ct [CPw

[R̂i{id/id i , t1/τ} | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≡ CPw
[Ct

h [Ct [R̂i{id/id i , t1/τ} | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

Since ctout and ctin are fresh channel names, they do not appear in
R̂i{id/id i , t1/τ}. According to Lemma 5, we have are able to move the
position of the context Ct

h [ ], thus have
eqi6:

CPw
[Ct

h [Ct [R̂i{id/id i , t1/τ} | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≡ CPw
[R̂i{id/id i , t1/τ} | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]].

Thus, combining (eqi5) and (eqi6), we have
eqi7:

Ct
h [Ct [CPw

[R̂i{id/id i , t1/τ} | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≡ CPw
[R̂i{id/id i , t1/τ} | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]].

5) Similarly, the right side of (eqi4) satisfies the following equivalence,
eqi8:

Ct
h [Ct [CPw

[R̂i{id/id i , t2/τ} | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≡ CPw
[R̂i{id/id i , t2/τ} | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]].

6) According to Lemma 2, combining (eqi7), (eqi8) and (eqi4), we have
eqi9:

CPw
[R̂i{id/id i , t1/τ} | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≈ℓ CPw
[R̂i{id/id i , t2/τ} | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]].

7) By applying the context Ct
h [ ] on both sides of (eqi2), we obtain

Ct
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]] ≈ℓ C
t
h [R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ].

According to Lemma 3, from the above equivalence, we have

Ct
h [R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ] ≈ℓ RT .

By Lemma 1 (transitivity of the above two equivalences), we have
eqi10:

Ct
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]] ≈ℓ RT .

8) Thus, the left side of (eqi9) satisfies the following equivalence (by applying
context CPw

[R̂i{id/id i , t1/τ} | ] on both sides of (eqi10))

CPw
[R̂i{id/id i , t1/τ} | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]] ≈ℓ CPw
[R̂i{id/id i , t1/τ} | RT ].

The right side of (eqi9) satisfies the following equivalence (by applying con-
text CPw

[R̂i{id/id i , t2/τ} | ] on both sides of (eqi10))

CPw
[R̂i{id/id i , t2/τ} | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]] ≈ℓ CPw
[R̂i{id/id i , t2/τ} | RT ].
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According to Lemma 1 (transitivity), from (eqi9), we have
eqi11:

CPw
[R̂i{id/id i , t1/τ} | RT ] ≈ℓ CPw

[R̂i{id/id i , t2/τ} | RT ]

9) According to the definition of third parties – third parties are third party
processes running in parallel. The context CPw

[ ] has the following form

CPw
[ ] := νc̃.(genkey |!R1 | . . . |!Rp | ).

Thus, according to rule
!P ≡ P |!P,

RT can be absorbed by the context. Thus, CPw
[ | RT ] is a type of context

where there requires RT to be present. We define C
′

Pw
[ ] := CPw

[ | RT ], where
RT has to be present in the context, we have
eqi12:

C
′

Pw
[R̂i{id/id i , t1/τ}] ≈ℓ C

′

Pw
[R̂i{id/id i , t2/τ}]

Therefore, the protocol satisfies priv w.r.t. τ with the existence of RT .

2. There exists θ such that priv 6=⇒ iprivθ.

We prove the statement by showing an example in which a protocol satisfies
priv but not iprivθ for some θ as in Ex. B.2.

Example B.2. The following protocol

P := νuntapch.(Q | Q′)
Q := νs.out(untapch, s)
Q′ := in(untapch, x)

where untapch is an untappable channel, satisfies priv w.r.t. s, but not ipriv
w.r.t. s and (Q′, 〈{x}, ∅, cout , ǫ〉). Since the communication is untappable,
the adversary cannot distinguish s1 from s2, thus the protocol satisfies priv
w.r.t. s. However, when the communication partner Q′ reveals the secret
information he reads in on the untappable channel, s is revealed.

(2) ∀ρ, ieprivρ,θ =⇒ iprivθ

Similar as proving ∀ρ, eprivρ =⇒ priv, we prove the statement in the following two
directions: 1. ∀ρ, ieprivρ,θ =⇒ iprivθ 2. ∃ρ, θ, iprivθ 6=⇒ ieprivρ,θ

1. ∀ρ, when a protocol satisfies ieprivρ,θ for some θ, we prove that the protocol
also satisfies iprivθ.

For a collaboration ρ = 〈Ψ ,Φ, cout , cin〉, when a well-formed protocol Pw sat-
isfies iepriv w.r.t. τ , 〈Ψ ,Φ, cout , cin〉 and (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉) there exists

a closed plain process Pf , such that for any context C[ ] := νcout .νcin .( |Q)
satisfying bn(Pw ) ∩ fn(C[ ]) = ∅ and
eqie1:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RT ] ≈ℓ CPw

[R̂
〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RT ],
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we have
eqie2:

C[Pf ]
\out(c′out ,·) ≈ℓ R̂i{id/id i , t2/τ},

and
eqie3:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[C[Pf ] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ].

We first prove the following statement: If a context which provides infor-
mation for the collaborating target user C

′

[ ] := νcout .νcin .( |Q
′) satisfies

bn(Pw ) ∩ fn((C[ ]) = ∅ and
eqie4:

CPw
[C

′

[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ],

then this context satisfies (eqie1) when RT exists.

Proof. Since (eqie4) holds for any context of the adversary which provides
information for the collaborating third parties, for a specific context Ct [ ]
of the adversary providing information for the collaborating third parties,
(eqie4) should hold.

Ct [ ] :=νctout .νc
t
in .( |Q)

satisfying bn(Pw ) ∩ fn(Ct [ ]) = ∅ and
eqie41:

Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ] ≈ℓ R
〈Ψ t ,∅,ctout ,c

t
in 〉

T ,

Since (eqie4) holds in context Ct [ ], we apply context Ct [ ] and evaluation
context Ct

h [ ] := νctout .( |!in(ctout , x)) (x is a fresh variable) on both sides of
(eqie4), we have
eqie42:

Ct
h [Ct [CPw

[C
′

[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]]

≈ℓ C
t
h [Ct [CPw

[R̂
〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]].

Similar as proving ∀θ, iprivθ =⇒ priv, by Lemma 5, we move the position of
the contexts Ct [ ] and Ct

h [ ], and have
eqie43:

CPw
[C

′

[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | C

t
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]]

≈ℓ CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

By applying context Ct
h [ ] on both sides of (eqie41) we have

eqie44:

Ct
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]] ≈ℓ C
t
h [R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ].

According to Lemma 3, we have

Ct
h [R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ] ≈ℓ RT
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Thus, by transitivity, combining the above equivalence and (eqie44), we
have
eqie45:

Ct
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]] ≈ℓ RT

By applying context CPw
[C

′

[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | ] on both sides of

(eqie45), we have

CPw
[C

′

[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | C

t
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]]

≈ℓ CPw
[C

′

[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RT ]

By applying context CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | ] on both sides of

(eqie45), we have

CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≈ℓ CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RT ]

Because of (eqie43), combining the above two equivalences, we have

CPw
[C

′

[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RT ] ≈ℓ CPw

[R̂
〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RT ]

Thus, the statement is proved.

1) Since the context C
′

[ ] satisfies bn(Pw ) ∩ fn(C[ ]) = ∅ and
eqie51: (replacing C[ ] with C

′

[ ] in (eqie1))

CPw
[C

′

[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RT ]

≈ℓ CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RT ],

for C
′

[ ], (eqie2) and (eqie3) should hold by replacing C[ ] with C
′

[ ].
eqie52:

C
′

[Pf ]
\out(c′out ,·) ≈ℓ R̂i{id/id i , t2/τ},

eqie53:

CPw
[C

′

[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[C

′

[Pf ] | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ].

2) Combining (eqie4) and (eqie53), we have
eqie6:

CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ] ≈ℓ CPw
[C

′

[Pf ] | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ].

3) By applying evaluation context Ch [ ] := νc′out .( |!in(c′out , x)) (x is a fresh
variable) on both sides of (eqie6), we have
eqie7:

Ch [CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ Ch [CPw
[C

′

[Pf ] | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]].
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4) By Lemma 4 and Lemma 5, we move the position of context Ch [ ] and
have
eqie8:

CPw
[Ch [R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[Ch [C

′

[Pf ]] | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ].

6) Because of Lemma 3,

Ch [R̂
〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}] ≈ℓ R̂i{id/id i , t1/τ},

thus we have that the left side of (eqie8) is equivalent to

CPw
[R̂i{id/id i , t1/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

Because of (eqie52), we have

Ch [C
′

[Pf ]] := C
′

[Pf ]
\out(c′out ,·) ≈ℓ R̂i{id/id i , t2/τ}.

Thus, by applying context CPw
[ | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ] on both sides of the equiv-
alence, we have that the right side of (eqie8) is equivalent to

CPw
[R̂i{id/id i , t2/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

By Lemma 1 (transitivity), we have

CPw
[R̂i{id/id i , t1/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[R̂i{id/id i , t2/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

The above equivalence coincides with the equivalence in ipriv (Def: 6.13).
Thus, the protocol satisfies iprivθ.

There exists ρ, θ such that iprivθ 6=⇒ ieprivρ,θ.

We prove the statement by showing an example in which a protocol satisfies
iprivθ but not ieprivρ,θ for some ρ as in Ex. B.3.

Example B.3. Protocol

P := Q | Q′

Q := νr.νs.out(ch, enc(s, r))
Q′ := in(ch, x)

where ch is a public channel, satisfies ipriv w.r.t. s and (Q′, 〈{x}, ∅, cout , ǫ〉),
but not iepriv w.r.t. s, 〈{r}, ∅, cout , ǫ〉 and (Q′, 〈{x}, ∅, cout , ǫ〉).

When the third party Q′ is coerced for the information he read. The revealing
of information from Q′ does not help increase the adversary’s knowledge.
Therefore, the adversary still cannot distinguish enc(s1, r) and enc(s2, r),
even when Q′ reveals information, thus the protocol satisfies ipriv w.r.t. s

and (Q′, 〈{x}, ∅, cout , ǫ〉).

However, when Q is also coerced to reveal r, the adversary can decrypt the
message out(ch, enc(s, r)) and find s. In addition, there is no way for Q to
cheat the adversary. Due to the perfect encryption assumption, any other
nonce cannot be used to decrypt enc(s, r), thus, the adversary will find out
whether the user lied. Therefore, the protocol does not satisfy iepriv w.r.t. s,
〈{r}, ∅, cout , ǫ〉 and (Q′, 〈{x}, ∅, cout , ǫ〉).
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(1) ∀θ, ieprivρ,θ =⇒ eprivρ

We prove the statement in the following two directions: 1. ∀θ, ieprivρ,θ =⇒ eprivρ
2. ∃ρ, θ, eprivρ 6=⇒ ieprivρ,θ

1. ∀θ = (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉), when a protocol satisfies ieprivρ,θ for some ρ,

we prove that the protocol also satisfies eprivρ with the existence of RT .

For a collaboration of third parties θ = (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉), when a well-

formed protocol Pw satisfies iepriv w.r.t. target data τ , 〈Ψ ,Φ, cout , cin〉 and
(RT , 〈Ψ

t ,Φt , ctout , c
t
in〉), there exists a closed plain process Pf , such that for

any context C[ ] := νcout .νcin .( |Q) satisfying bn(Pw) ∩ fn(C[ ]) = ∅ and
eqiee1:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RT ] ≈ℓ CPw

[R̂
〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RT ],

we have
eqiee2:

C[Pf ]
\out(c′out ,·) ≈ℓ R̂i{id/id i , t2/τ},

eqiee3:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[C[Pf ] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ].

1) Since for any context of the adversary which provides information for the
collaborating third parties, the equivalence (eqiee3) holds. Thus, for the
following context Ct [ ] of the adversary, the equivalence still holds. Ct [ ] :=
νctout .νc

t
in .( |Q) satisfying bn(Pw) ∩ fn(Ct [ ]) = ∅ and

eqiee4:

Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ] ≈ℓ R
〈Ψ t ,∅,ctout ,c

t
in 〉

T .

That is, by applying the context Ct [ ] on both sides of (eqiee3), we have,
eqiee5:

Ct [CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]

≈ℓ Ct [CPw
[C[Pf ] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]].

2) By applying the evaluation context Ct
h [ ] := νctout .( |!in(ctout , x)) (x is a

fresh variable), on both sides of (eqiee5), we have
eqiee6:

Ct
h [Ct [CPw

[C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]]

≈ℓ C
t
h [Ct [CPw

[C[Pf ] | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]].

3) By Lemma 4 and Lemma 5, we move the position of the contexts Ct
h [ ]

and Ct [ ] in (eqiee6) and have
eqiee7:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | C

t
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]]

≈ℓ CPw
[C[Pf ] | C

t
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]].
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4) By applying context Ct
h [CPw

[C[C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | ]]] on both

sides of (eqiee4), we have
eqiee8:

Ct
h [CPw

[C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]]

≈ℓ C
t
h [CPw

[C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ]].

5) By Lemma 5, we move the position of context Ct
h [ ] and have

eqiee9:

CPw
[C[R̂〈Ψ ,Φ,cout ,cin 〉

i {id/id i , t/τ}] | C
t
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]]

≈ℓ CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | C

t
h [R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ]].

6) By Lemma 1 (transitivity), combining (eqiee7) and (eqiee9),we have
eqiee10:

CPw
[C[Pf ] | C

t
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]]

≈ℓ CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | C

t
h [R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ]].

7) According to Lemma 3 (hide on channel), we have

Ct
h [R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ] ≈ℓ RT .

8) By Lemma 1 (transitivity), combining the above equivalence and (eqiee4),
we have

Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ] ≈ℓ RT .

9) Thus, by applying context CPw
[C[Pf ] | ] on both sides of the above equiv-

alence, the left side of (eqiee10) is bisimilar to

CPw
[C[Pf ] | RT ]

and by applying context CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | ] on both sides

of the above equivalence, the right side of (eqiee10) is bisimilar to

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RT ].

Thus,
eqiee11:

CPw
[C[Pf ] | RT ] ≈ℓ CPw

[C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RT ].

10) Because of rule
!P ≡ P |!P,

RT can be absorbed by the context. That is, CPw
[ | RT ] is a type of context

where there requires RT to be present. We define C
′

Pw
[ ] := CPw

[ | RT ], where
RT has to be present in the context, Thus, we have
eqiee12:

C
′

Pw
[C[Pf ]] ≈ℓ C

′

Pw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]].

From (eqiee1), by replacing the context CPw
[ ] with C

′

Pw
[ ], we have

eqiee13:

C
′

Pw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]] ≈ℓ C

′

Pw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}],

Therefore, for any context C[ ] satisfying (eqiee13), (eqiee2) and (eqiee12)
hold. Thus, the protocol satisfies eprivρ.
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2. There exists θ, ρ such that eprivρ 6=⇒ ieprivρ,θ.

We prove the statement by showing an example in which a protocol satisfies
eprivρ but not ieprivρ,θ for some θ as in Ex. B.4.

Example B.4. The following protocol

P := νuntapch.(Q | Q′)
Q := νs.out(untapch, s)
Q′ := in(untapch, x)

where untapch is an untappable channel, satisfies epriv w.r.t. s and collab-
oration 〈{s}, ∅, cout , ǫ〉, but not iepriv w.r.t. s, collaboration 〈{s}, ∅, cout , ǫ〉
and third party collaboration (Q′, 〈{x}, ∅, cout , ǫ〉).

Since the communication is untappable, Q can lie about s to be s′, the ad-
versary cannot detect whether Q lied, thus the protocol satisfies epriv w.r.t.
s and 〈{s}, ∅, cout , ǫ〉. However, when the communication partner Q′ reveals
the secret information that he reads in on the untappable channel, s is re-
vealed. Thus, the protocol does not satisfies iepriv w.r.t. s, 〈{s}, ∅, cout , ǫ〉
and (Q′, 〈{x}, ∅, cout , ǫ〉).
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(3) ∀ρ, ceprivρ,δ =⇒ cprivδ

With the above assumption, we prove the statement in the following two directions:
1. ∀ρ, ceprivρ,δ =⇒ cprivδ 2. ∃ρ, δ, cprivδ 6=⇒ ceprivρ,δ

1. ∀ρ, when a protocol satisfies ceprivρ,δ for some δ, we prove that the protocol
also satisfies cprivδ.

For a collaboration ρ = 〈Ψ ,Φ, cout , cin〉, when a well-formed protocol Pw

satisfies cepriv w.r.t. τ , 〈Ψ ,Φ, cout , cin〉 and (RD, 〈Θ ,∆,Π 〉), there exists a
closed plain process Pf , such that for any context C[ ] := νcout .νcin .( | Q)
satisfying bn(Pw ) ∩ fn(C[ ]) = ∅ and
eqc1:

CPw
[C[R̂i{id/id i , t/τ}

〈Ψ ,Φ,cout ,cin 〉]] ≈ℓ CPw
[R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉],

we have
eqc2:

νΩ .(νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) ≈ℓ νΩ .(R̂i{id/id i , t2/τ}|RD)

〈Θ ,∆,Π 〉,

eqc3:

CPw
[C[R̂i{id/id i , t/τ}

〈Ψ ,Φ,cout ,cin 〉] | RD]

≈ℓ CPw
[νΩ .((νη.(C[Pf ] | Pγ)) | R

〈Θ ,∆,Π 〉
D )].

1) By applying context Ch [ ] on both side of (eqc3), we have
eqc4:

Ch [CPw
[C[R̂i{id/id i , t/τ}

〈Ψ ,Φ,cout ,cin 〉] | RD ]]

≈ℓ Ch [CPw
[νΩ .((νη.(C[Pf ] | Pγ)) | R

〈Θ ,∆,Π 〉
D )]].
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2) By Lemma 5, we move the position of Ch [ ], and have
eqc5:

CPw
[Ch [C[R̂i{id/id i , t/τ}

〈Ψ ,Φ,cout ,cin 〉]] | RD]

≈ℓ CPw
[νΩ .((νη.(Ch [C[Pf ]] | Pγ)) | R

〈Θ ,∆,Π 〉
D )].

3) The context CPw
[ ] has the following form:

CPw
[ ] := νc̃.(genkey |!R1 | . . . |!Rp | ).

Because of (eqc1) and rule !P ≡ P |!P, we have
eqc6:

CPw
[C[R̂i{id/id i , t/τ}

〈Ψ ,Φ,cout ,cin 〉] | RD]

≈ℓ CPw
[R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉 | RD].

4) By applying Ch [ ] on both side of (eqc6), we have
eqc7:

Ch [CPw
[C[R̂i{id/id i , t/τ}

〈Ψ ,Φ,cout ,cin 〉] | RD ]]

≈ℓ Ch [CPw
[R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉 | RD ]].

5) By Lemma 5, we move the position of Ch [ ] and have
eqc8:

CPw
[Ch [C[R̂i{id/id i , t/τ}

〈Ψ ,Φ,cout ,cin 〉]] | RD]

≈ℓ CPw
[Ch [R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉] | RD].

6) By Lemma 1, combining (eqc5) and (eqc8), we have
eqc9:

CPw
[Ch [R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉] | RD]

≈ℓ CPw
[νΩ .((νη.(Ch [C[Pf ]] | Pγ)) | R

〈Θ ,∆,Π 〉
D )].

7) By Lemma 3, we have

Ch [R̂i{id/id i , t1/τ}
〈Ψ ,∅,c′out ,ǫ〉] ≈ℓ R̂i{id/id i , t1/τ}

Thus, we have (by applying context CPw
[ | RD] on the above equivalence)

eqc10:

CPw
[Ch [R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉] | RD] ≈ℓ CPw
[R̂i{id/id i , t1/τ} | RD].

That is, the left side of (eqc9) is equivalent to

CPw
[R̂i{id/id i , t1/τ} | RD].

8) According to Lemma 3, we have

νΩ .((νη.(Ch [C[Pf ]] | Pγ)) | R
〈Θ ,∆,Π 〉
D ) =̂ νΩ .(νη.(C[Pf ]

\out(c′out ,·) | Pγ) | R
〈Θ ,∆,Π 〉
D )

Because of (eqc2), we have
eqc11:

νΩ .((νη.(Ch [C[Pf ]] | Pγ)) | R
〈Θ ,∆,Π 〉
D ) ≈ℓ νΩ .(R̂i{id/id i , t2/τ}|RD)

〈Θ ,∆,Π 〉.

9) By applying context CPw
[ ] on both sides of (eqc11), we have

eqc12:

CPw
[νΩ .((νη.(Ch [C[Pf ]] | Pγ)) | R

〈Θ ,∆,Π 〉
D )]

≈ℓ CPw
[νΩ .(R̂i{id/id i , t2/τ}|RD)

〈Θ ,∆,Π 〉].
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That is, the right side of (eqc9) is equivalent to

CPw
[νΩ .(R̂i{id/id i , t2/τ}|RD)

〈Θ ,∆,Π 〉].

10) Combining (eqc10) and (eqc12), we have

CPw
[R̂i{id/id i , t1/τ} | RD] ≈ℓ CPw

[νΩ .(R̂i{id/id i , t2/τ}|RD)
〈Θ ,∆,Π 〉].

Therefore, the protocol satisfies cpriv.

2. There exists ρ, δ such that cprivδ 6=⇒ ceprivρ,δ.

We prove the statement by showing an example in which a protocol sat-
isfies cprivδ but not ceprivρ,δ for some ρ, δ. As shown in Section 6.5, vote-
privacy is an instance of cpriv where the defending third party is the counter-
balancing voter, and the coalition is the counter-balancing voter replaces
his vote to counter balance to target voter’s vote, and receipt-freeness is an
instance of cepriv with the same defending third party and coalition. The
protocol FOO92 [FOO92] is shown to satisfy vote-privacy but not receipt-
freeness [DKR09].

(4) ∀θ, ciprivθ,δ =⇒ cprivδ

We prove the statement in the following two directions: 1. ∀θ, ciprivθ,δ =⇒ cprivδ
2. ∃θ, δ, cprivδ 6=⇒ ciprivθ,δ

1. ∀θ = (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉), when a protocol satisfies iprivθ,δ for some δ, we

prove that the protocol also satisfies cprivδ with the existence of RT .

For a collaboration of third parties θ = (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉), when a

well-formed protocol Pw satisfies cipriv w.r.t. τ , (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉) and

(RD, 〈Θ ,∆,Π 〉) the following equivalence holds.
eqci1:

CPw
[R̂i{id/id i , t1/τ} | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[νΩ .((R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉) | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]

Since for all context of the adversary which supplies information needed by
the collaborating third parties the protocol satisfies ciprivθ,δ, thus, for the
following context which provides information for collaborating third parties,
Ct [ ] :=νctout .νc

t
in .( |Q) satisfying bn(Pw) ∩ fn(Ct [ ]) = ∅ and

eqci2:

Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ] ≈ℓ R
〈Ψ t ,∅,ctout ,c

t
in 〉

T ,

the protocol satisfies ciprivθ,δ.
1) By applying context Ct [ ] on both sides of (eqci1), we have
eqci3:

Ct [CPw
[R̂i{id/id i , t1/τ} | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]

≈ℓ Ct [CPw
[νΩ .((R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉) | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]].
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2) By applying the evaluation context Ct
h [ ] := νctout .( |!in(ctout , x)) (x is a

fresh variable), on both sides of (eqci3), we have
eqci4:

Ct
h [Ct [CPw

[R̂i{id/id i , t1/τ} | RD | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≈ℓ C
t
h [Ct [CPw

[νΩ .((R̂i{id/id i , t2/τ} | RD)
〈Θ ,∆,Π 〉) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]].

3) According to Lemma 4 and Lemma 5, we move the position of contexts
Ct
h [ ] and Ct [ ] and have

eqci5:

CPw
[R̂i{id/id i , t1/τ} | RD | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≈ℓ CPw
[νΩ .((R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉) | Ct
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]].

4) By applying context Ct
h [ ] on both sides of (eqci2), we have

Ct
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]] ≈ℓ C
t
h [R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ]

Because of Lemma 3, we have

Ct
h [R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ] ≈ℓ RT

Thus, by transitivity, combining the above two equivalences, we have

Ct
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]] ≈ℓ RT .

Thus, by applying context CPw
[R̂i{id/id i , t1/τ} | RD | ] and context

CPw
[νΩ .((R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉) | ] on both sides of the above equiv-
alence, because of transitivity via (eqci5), we have
eqci6:

CPw
[R̂i{id/id i , t1/τ} | RD | RT ]

≈ℓ CPw
[νΩ .((R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉) | RT ].

5) Since RT can be absorbed by the context CPw
[ ], we have

eqci7:

CPw
[R̂i{id/id i , t1/τ} | RD] ≈ℓ CPw

[νΩ .((R̂i{id/id i , t2/τ} | RD)
〈Θ ,∆,Π 〉)].

Thus, the protocol satisfies cpriv.

2. There exists θ such that cprivδ 6=⇒ ciprivθ,δ.

We prove the statement by showing an example in which a protocol satisfies
cprivδ for some δ but not eprivθ,δ for some θ. For instance, Dreier et al. proved
that the protocol by Lee et al. [LBD+03] satisfies vote-privacy – an instance
of cpriv where coalition is the counter-balancing voter votes differently from
the target voter, but not vote-independence – an instance of cipriv where the
coalition is the same as in cpriv and the attacking third party is the third
voter [DLL11].

(2) ∀ρ, cieprivρ,θ,δ =⇒ ciprivθ,δ

We prove the statement in the following two directions: 1. ∀ρ, cieprivρ,θ,δ =⇒
ciprivθ,δ 2. ∃ρ, θ, δ, ciprivθ,δ 6=⇒ cieprivρ,θ,δ
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1. ∀ρ, when a protocol satisfies cieprivρ,θ,δ for some θ, δ, we prove that the pro-
tocol also satisfies ciprivθ,δ.

For a collaboration ρ = 〈Ψ ,Φ, cout , cin〉, when a well-formed protocol Pw

satisfies ciepriv w.r.t. τ , 〈Ψ ,Φ, cout , cin〉,
(RT , 〈Ψ

t ,Φt , ctout , c
t
in〉) and RD, 〈Θ ,∆,Π 〉, there exists a closed plain process

Pf , such that for any context C[ ] := νcout .νcin .( |Q) satisfying bn(Pw) ∩
fn(C[ ]) = ∅ and
eqiei1:

CPw
[C[R̂i{id/id i , t/τ}

〈Ψ ,Φ,cout ,cin 〉] | RT | RD]

≈ℓ CPw
[R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉 | RT | RD],

we have
eqiei2:

νΩ .(νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) ≈ℓ νΩ .(R̂i{id/id i , t2/τ}|RD)

〈Θ ,∆,Π 〉,

eqiei3:

CPw
[C[R̂i{id/id i , t/τ}

〈Ψ ,Φ,cout ,cin 〉] | RD | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]

≈ℓ CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ].

1) Similar as in proving ∀ρ, ieprivρ,θ =⇒ iprivθ, we can prove that if a context
C

′

[ ] := νcout .νcin .( |Q
′) satisfies bn(Pw) ∩ fn(C[ ]) = ∅ and

eqie4:

CPw
[C

′

[R̂i{id/id i , t/τ}
〈Ψ ,Φ,cout ,cin 〉] | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉 | RD | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ],

then this context satisfies the following equivalence (replacing C[ ] with C
′

[ ]
in (eqiei1)) when RT exists.

CPw
[C

′

[R̂i{id/id i , t/τ}
〈Ψ ,Φ,cout ,cin 〉] | RT | RD]

≈ℓ CPw
[R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉 | RT | RD].

2) Thus, for C
′

[ ], the following equivalence holds (replacing C[ ] with C
′

[ ] in
(eqiei2) and (eqiei3)).
eqiei5:

νΩ .(νη.(C
′

[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) ≈ℓ νΩ .(R̂i{id/id i , t2/τ}|RD)

〈Θ ,∆,Π 〉,

eqiei6:

CPw
[C

′

[R̂i{id/id i , t/τ}
〈Ψ ,Φ,cout ,cin 〉] | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[νΩ .(νη.(C

′

[Pf ] | Pγ) | R
〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

3) Combining (eqiei4) and (eqiei6), we have
eqiei7:

CPw
[νΩ .(νη.(C

′

[Pf ] | Pγ) | R
〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T

≈ℓ CPw
[R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉 | RD | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]
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4) By applying evaluation context Ch [ ] := νc′out .( |!in(c′out , x)) (x is a fresh
variable) on both sides of (eqiei7), we have
eqiei8:

Ch [CPw
[νΩ .(νη.(C

′

[Pf ] | Pγ) | R
〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]

≈ℓ Ch [CPw
[R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉 | RD | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]

5) By Lemma 4 and Lemma 5, we move the position of context Ch [ ] and
have
eqiei9:

CPw
[νΩ .(νη.(Ch [C

′

[Pf ]] | Pγ) | R
〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[Ch [R̂i{id/id i , t1/τ}

〈Ψ ,∅,c′out ,ǫ〉] | RD | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]

6) Because of Lemma 3, we have

Ch [R̂i{id/id i , t1/τ}
〈Ψ ,∅,c′out ,ǫ〉] ≈ℓ R̂i{id/id i , t1/τ},

thus, we have that the right side of (eqiei9) is equivalent to

CPw
[R̂i{id/id i , t1/τ} | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ].

7) By applying context CPw
[ | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ] on both sides of (eqiei2), we
have

CPw
[νΩ .(νη.(C[Pf ]

\out(c′out ,·) | Pγ) | R
〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[νΩ .(R̂i{id/id i , t2/τ}|RD)

〈Θ ,∆,Π 〉 | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]

That is, the left side of (eqiei9) is equivalent to

CPw
[νΩ .(R̂i{id/id i , t2/τ}|RD)

〈Θ ,∆,Π 〉 | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ].

Therefore, by transitivity, we have

CPw
[R̂i{id/id i , t1/τ} | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[νΩ .(R̂i{id/id i , t2/τ}|RD)

〈Θ ,∆,Π 〉 | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]

Therefore, the protocol satisfies ciprivθ,δ.

2. There exists ρ, θ, δ such that ciprivθ,δ 6=⇒ cieprivρ,θ,δ.

We prove the statement by showing an example in which a protocol satisfies
ciprivθ,δ but not cieprivρ,θ,δ for some ρ, θ, δ. For instance, Dreier et al. prove
that the voting protocol FOO92 [FOO92] satisfies vote-independence – an
instance of cipriv where the coalition is the counter-balancing voter votes dif-
ferently from the target voter and the attacking third party is the third voter,
but not vote-independence with passive collaboration – an instance of ciepriv
where the coalition and attacking third party are the same as in cipriv and
the collaboration is forwarding private information to the adversary [DLL11].
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(1) ∀θ, cieprivρ,θ,δ =⇒ ceprivρ,δ

We prove the statement in the following two directions: 1. ∀θ, cieprivρ,θ,δ =⇒
ceprivρ,δ 2. ∃ρ, θ, δ, ceprivρ,δ 6=⇒ cieprivρ,θ,δ

1. ∀θ = (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉), when a protocol satisfies cieprivρ,θ,δ for some

ρ, δ, we prove that the protocol also satisfies ceprivρ,δ with the existence of
RT .

For a collaboration of third parties θ = (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉), when a well-

formed protocol Pw satisfies ciepriv w.r.t. τ , 〈Ψ ,Φ, cout , cin〉, (RD, 〈Θ ,∆,Π 〉)
and (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉), there exists a closed plain process Pf , such that

for any context C[ ] := νcout .νcin .( |Q) satisfying bn(Pw) ∩ fn(C[ ]) = ∅ and
eqciee1:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RT | RD]

≈ℓ CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RT | RD],

we have
eqciee2:

νΩ .(νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) ≈ℓ νΩ .(R̂i{id/id i , t2/τ}|RD)

〈Θ ,∆,Π 〉,

eqciee3:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ].

1) Since for any context of the adversary which provides information for the
collaborating third parties, the equivalence (eqciee3) holds. Thus, for the
following context Ct [ ] of the adversary which provides information for the
collaborating third parties, the equivalence (eqciee3) still holds. Ct [ ] :=
νctout .νc

t
in .( |Q) satisfying bn(Pw) ∩ fn(Ct [ ]) = ∅ and

eqciee4:

Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ] ≈ℓ R
〈Ψ t ,∅,ctout ,c

t
in 〉

T .

Therefore, by applying the context Ct [ ] on both sides of (eqciee3), we have,
eqciee5:

Ct [CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]

≈ℓ Ct [CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]

2) By applying the evaluation context Ct
h [ ] := νctout .( | in(ctout , x)) (x is a

fresh variable), on both sides of (eqciee5), we have
eqciee6:

Ct
h [Ct [CPw

[C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]]

≈ℓ C
t
h [Ct [CPw

[νΩ .(νη.(C[Pf ] | Pγ) | R
〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]]

3) By Lemma 4 and Lemma 5, we move the position of context Ct
h [ ] and

Ct [ ] in (eqciee6), and have
eqciee7:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≈ℓ CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D ) | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]].
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4) By applying context Ct
h [CPw

[C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | ]] on both

sides of (eqciee4), we have
eqciee8:

Ct
h [CPw

[C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]]]

≈ℓ C
t
h [CPw

[C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ]].

5) By Lemma 5, we move the position of context Ct
h [ ] in (eqciee8) and have

eqciee9:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≈ℓ CPw
[C[R̂〈Ψ ,Φ,cout ,cin 〉

i {id/id i , t/τ}] | RD | Ct
h [R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ]].

6) By Lemma 1, combining (eqciee7) and (eqciee9),we have
eqciee10:

CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D ) | Ct

h [Ct [R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]]]

≈ℓ CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | Ct

h [R
〈Ψ t ,∅,ctout ,c

t
in 〉

T ]].

7) According to Lemma 3, we have

Ct
h [R

〈Ψ t ,∅,ctout ,c
t
in 〉

T ] ≈ℓ RT .

8) By Lemma 1, combining the above equivalence and (eqiee4), we have

Ct
h [Ct [R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]] ≈ℓ RT .

9) Thus, the left side of (eqciee10) is bisimilar to

CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D ) | RT ]

and the right side of (eqiee10) is bisimilar to

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | RT ].

Thus,
eqciee11:

CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D ) | RT ]

≈ℓ CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD | RT ].

10) Because of rule
!P ≡ P |!P,

RT can be absorbed by the context. CPw
[ | RT ] is a type of context where

there requires RT to be present. We define C
′

Pw
[ ] := CPw

[ | RT ], where RT

has to be present in the context, Thus, we have
eqciee12:

C
′

Pw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D )]

≈ℓ C
′

Pw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD].

From (eqciee1), we can obtain
eqciee13:

C
′

Pw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD] ≈ℓ C

′

Pw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RD],

Therefore, for any context C[ ] satisfying (eqciee13), (eqciee2) and
(eqciee12) hold. Thus, the protocol satisfies ceprivρ.
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2. There exists θ, ρ, δ such that ceprivρ,δ 6=⇒ cieprivρ,θ,δ.

We prove the statement by showing an example in which a protocol satisfies
ceprivρ,δ but not cieprivρ,θ,δ for some ρ, θ, δ. For instance, Dreier et al. proved
that the voting protocol by Lee et al. [LBD+03] satisfies receipt-freeness –
an instance of cepriv where the coalition is is the counter-balancing voter
votes differently from the target voter and the collaboration is forwarding
private information to the adversary, but not vote-independence with passive
collaboration – an instance of ciepriv where the coalition and collaboration are
the same as in cepriv and the defending third party is the third voter [DLL11].

B.4 Theorem. 6.22

(4) priv =⇒ ∃δ, cprivδ

We prove the statement in the following two directions: 1. priv =⇒ ∃δ, cprivδ 2.
∃δ, cprivδ 6=⇒ priv

1. When a protocol satisfies priv, then there exists a coalition δ such that the
protocol satisfies cprivδ.

When a well-formed protocol Pw satisfies priv w.r.t. τ we have
eqcc1:

CPw
[R̂i{id/id i , t1/τ}] ≈ℓ CPw

[R̂i{id/id i , t2/τ}].

The context CPw
[ ] has the following form

CPw
[ ] := νc̃.(genkey |!R1 | · · · |!Rp | ).

Because of rule
!P ≡ P |!P,

we have (for a set of defending third parties RD)
eqcc2:

CPw
[R̂i{id/id i , t1/τ} | RD] ≈ℓ CPw

[R̂i{id/id i , t2/τ} | RD].

Let δ = (RD, 〈∅, ∅, ∅〉) be a coalition,
eqcc3:

νΩ .(R̂i{id/id i , t2/τ} | RD)
〈Θ ,∆,Π 〉 =̂ R̂i{id/id i , t2/τ} | RD

Thus,
eqcc4:

CPw
[νΩ .(R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉] ≈ℓ CPw
[R̂i{id/id i , t2/τ} | RD]

Because of (eqcc2), we have
eqcc5:

CPw
[R̂i{id/id i , t1/τ} | RD] ≈ℓ CPw

[νΩ .(R̂i{id/id i , t2/τ} | RD)
〈Θ ,∆,Π 〉]

Thus, the protocol satisfies cprivδ.
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2. There exists δ such that cprivδ 6=⇒ priv.

We prove the statement by showing an example in which a protocol satisfies
cprivδ but not priv. For instance, FOO92 [FOO92] is shown that it does not
satisfy priv w.r.t. vote vote, but satisfies vote-privacy – an instance of cpriv
where the coalition is the counter-balancing votes differently from the target
voter [KR05].

(3) iprivθ =⇒ ∃δ, ciprivθ,δ

We prove the statement in the following two directions: 1. iprivθ =⇒ ∃δ, ciprivθ,δ
2. ∃θ, δ, ciprivθ,δ 6=⇒ iprivθ

1. When a protocol satisfies iprivθ for some θ, then there exists a coalition δ
such that the protocol satisfies ciprivθ,δ.

For a collaboration of third parties θ = (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉), when a well-

formed protocol Pw satisfies epriv w.r.t. τ and (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉), the

following equivalence holds.
eqcci1:

CPw
[R̂i{id/id i , t1/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[R̂i{id/id i , t2/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ].

Thus, we have (for a set of defending third parties RD)
eqcci2:

CPw
[R̂i{id/id i , t1/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T | RD]

≈ℓ CPw
[R̂i{id/id i , t2/τ} | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T | RD].

Let δ = (RD, 〈∅, ∅, ∅〉) be a coalition, then
eqcci3:

νΩ .((R̂i{id/id i , t2/τ} | RD)
〈Θ ,∆,Π 〉) =̂ R̂i{id/id i , t2/τ} | RD

Thus, we have

CPw
[νΩ .((R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉) | R
〈Ψ t ,Φt ,ctout ,c

t
in 〉

T ]

≈ℓ CPw
[R̂i{id/id i , t1/τ} | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ].

Therefore, the protocol satisfies ceprivθ,δ.

2. There exists θ, ρ such that ciprivθ,δ 6=⇒ iprivθ.

We prove the statement by showing an example in which a protocol satisfies
ciprivθ,δ but not iprivθ. For instance, voting protocols FOO92 are shown
does not satisfies priv w.r.t. vote vote [KR05], thus does not satisfy ipriv,
but satisfies vote-independence – an instance of cipriv where the coalition is
the counter-balancing voter votes differently from the target voter and the
attacking third party is the third voter [DLL11].

(2) eprivρ =⇒ ∃δ,ceprivρ,δ

We prove the statement in the following two directions: 1. eprivρ =⇒ ∃δ,ceprivρ,δ
2. ∃ρ, δ, ceprivρ,δ 6=⇒ eprivρ
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1. When a protocol satisfies eprivρ for some ρ, then there exists a coalition δ
such that the protocol satisfies ceprivρ,δ.

When a well-formed protocol Pw satisfies epriv w.r.t. τ and ρ where ρ =
〈Ψ ,Φ, cout , cin〉, there exists a closed plain process Pf , such that for any
context C[ ] :=νcout .νcin .( |Q) satisfying bn(Pw ) ∩ fn(C[ ]) = ∅ and
eqcce1:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]] ≈ℓ CPw

[R̂
〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ}],

we have
eqcce2:

C[Pf ]
\out(c′out ,·) ≈ℓ R̂i{id/id i , t2/τ},

eqcce3:
CPw

[C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]] ≈ℓ CPw

[C[Pf ]].

From (eqcce3), we have
eqcce4:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD] ≈ℓ CPw

[C[Pf ] | RD].

Let δ = (RD, 〈∅, ∅, ∅〉) be a coalition, then
eqcce5:

νΩ .(νη.(C[Pf ] | Pγ) | R
〈Θ ,∆,Π 〉
D ) =̂ C[Pf ] | RD

By applying context CPw
[ ] on both sides of (eqcce5) we have

eqcce6:

CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D )] ≈ℓ CPw

[C[Pf ] | RD]

Combining (eqcce4) and (eqcce6), by Lemma 1, we have
eqcce7:

CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D )]

≈ℓ CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD]

Since δ = (RD, 〈∅, ∅, ∅〉), we have

νΩ .(νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) =̂ C[Pf ]

\out(c′out ,·) | RD

Because of (eqcce2), we have
eqcce8:

C[Pf ]
\out(c′out ,·) | RD ≈ℓ R̂i{id/id i , t2/τ} | RD.

Since δ = (RD, 〈∅, ∅, ∅〉), we have

Ω .(R̂i{id/id i , t2/τ} | RD)
〈Θ ,∆,Π 〉 := R̂i{id/id i , t2/τ} | RD

Thus,
eqcce9:

νΩ .(νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) ≈ℓ Ω .(R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉

Because of (eqcce1), we have
eqcce10:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RD] ≈ℓ CPw

[R̂
〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RD],

Therefore, for any context C[ ] satisfying (eqcce10), the protocol satisfies
(eqcce7) and (eqcce9), thus, the protocol satisfies ceprivρ,δ.
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2. There exists δ, ρ such that ceprivρ,δ 6=⇒ eprivρ.

We prove the statement by showing an example in which a protocol satisfies
ceprivρ,δ but not eprivρ. For instance, voting protocol by Okamoto [Oka96]
does not satisfy priv w.r.t. vote vote [KR05] in the case of unanimous result,
thus does not satisfy epriv where ρ is forwarding private information to the
adversary, but satisfies receipt-freeness – an instance of cepriv where the coali-
tion is the counter-balancing votes differently from the target voter and the
collaboration is forwarding private information to the adversary [DKR09].

(1) ieprivρ,θ =⇒ ∃δ, cieprivρ,θ,δ

We prove the statement in the following two directions: 1. ieprivρ,θ =⇒ ∃δ,
cieprivρ,θ,δ 2. ∃ρ, θ, δ, cieprivρ,θ,δ 6=⇒ ieprivρ,θ

1. When a protocol satisfies ieprivρ,θ for some ρ, θ, then there exists a coalition
δ such that the protocol satisfies cieprivρ,θ,δ.

For a collaboration of the target user ρ = 〈Ψ ,Φ, cout , cin〉 and a collabora-
tion of third parties θ = (RT , 〈Ψ

t ,Φt , ctout , c
t
in〉), when a well-formed proto-

col Pw satisfies iepriv w.r.t. τ , 〈Ψ ,Φ, cout , cin〉 and (RT , 〈Ψ
t ,Φt , ctout , c

t
in〉),

there exists a closed plain process Pf , such that for any context C[ ] :=
νcout .νcin .( |Q) satisfying bn(Pw) ∩ fn(C[ ]) = ∅ and
eqccee1:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RT ] ≈ℓ CPw

[R̂
〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RT ],

we have
eqccee2:

C[Pf ]
\out(c′out ,·) ≈ℓ R̂i{id/id i , t2/τ},

eqccee3:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[C[Pf ] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ].

Because of (eqccee3), we have
eqccee4:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T | RD]

≈ℓ CPw
[C[Pf ] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T | RD].

Let δ = (RD, 〈∅, ∅, ∅〉) be a coalition, then
eqccee5:

νΩ .(νη.(C[Pf ] | Pγ) | R
〈Θ ,∆,Π 〉
D ) =̂ C[Pf ] | RD

By applying context CPw
[ | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ] on both sides of (eqccee5), we
have
eqccee6:

CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

≈ℓ CPw
[C[Pf ] | RD | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]
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By Lemma 1, combining (eqccee4) and (eqccee6), we have
eqccee7:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T | RD]

≈ℓ CPw
[νΩ .(νη.(C[Pf ] | Pγ) | R

〈Θ ,∆,Π 〉
D ) | R

〈Ψ t ,Φt ,ctout ,c
t
in 〉

T ]

Since δ = (RD, 〈∅, ∅, ∅〉), we have

νΩ .(νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) =̂ C[Pf ]

\out(c′out ,·) | RD.

Because of (eqccee2), we have
eqccee8:

νΩ .(νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) ≈ℓ R̂i{id/id i , t2/τ} | RD

Since δ = (RD, 〈∅, ∅, ∅〉), we also have

νΩ .(R̂i{id/id i , t2/τ} | RD)
〈Θ ,∆,Π 〉 =̂ R̂i{id/id i , t2/τ} | RD

Thus, we have
eqccee9:

νΩ .(νη.(C[Pf ]
\out(c′out ,·) | Pγ) | R

〈Θ ,∆,Π 〉
D ) ≈ℓ νΩ .(R̂i{id/id i , t2/τ} | RD)

〈Θ ,∆,Π 〉

From (eqccee1), we have
eqccee10:

CPw
[C[R̂

〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}] | RT | RD]

≈ℓ CPw
[R̂

〈Ψ ,∅,c′out ,ǫ〉
i {id/id i , t1/τ} | RT | RD]

Therefore, for any context C[ ] satisfying (eqccee10), (eqccee7) and
(eqccee9) are satisfies. Thus, the protocol satisfies cieprivρ,θ,δ.

2. There exists θ, ρ, δ such that cieprivρ,θ,δ 6=⇒ ieprivρ,θ.

We prove the statement by showing an example in which a protocol satisfies
cieprivρ,θ,δ but not ieprivρ,θ. For instance, voting protocol by Okamoto [Oka96]
does not satisfy priv w.r.t. vote vote when all votes are unanimous. Thus, the
protocol does not satisfy iepriv w.r.t. vote vote, ρ and θ, where ρ is the target
voter forwarding information to the adversary, θ is the collaborating third
voter communicating with the adversary. However, the protocol satisfies
vote-independence with passive collaboration – an instance of ciepriv w.r.t.
vote vote, ρ, θ and δ where ρ and θ are the same as in ieprivand δ is the
counter-balancing voter voting differently from the target voter [DLL11].
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