
Fingerprint Privacy
A fresh perspective on web privacy

Christof Ferreira Torres
christof.ferreira.001@student.uni.lu

A thesis presented for the degree of
Bachelor in Computer Science

Local supervisor: Dr. Ir. Hugo Jonker hugo.jonker@uni.lu
Academic supervisor: Prof. Dr. Sjouke Mauw sjouke.mauw@uni.lu

Faculty of Science, Technology and Communication
University of Luxembourg
Academic Year 2013 - 2014

Summary

The aim of this thesis is to propose a fresh perspective on web privacy. To that end, this thesis
analyses current tracking technologies such as browser fingerprinting and evaluates existing coun-
termeasures. These countermeasures either block JavaScript respectively Flash or modify a user’s
browser characteristics in such a way that these are identical to the characteristics of a large set
of users. However, the first approach impedes functionality and the second approach can easily
be circumvented. Therefore we provide a new approach to web privacy which aims to separate so
called “web identities”. This separation is achieved through the creation of unique web identities
for each website the user visits. This way a website cannot identify a user across different web-
sites. We implement this approach in a Firefox extension called Fingerprint Privacy and test it
successfully against an open source fingerprinting library. Finally we evaluate our approach and
discuss future improvements.

Keywords: web privacy, fingerprinting, user tracking, detection.

Resumé

L’objectif de cette thèse est de proposer une nouvelle perspective au sujet de la protection de
la vie privée sur le web. À cette fin, cette thèse analyse les technologies de traçage actuelles
telles que les empreintes digitales d’un navigateur et évalue les contre-mesures existantes. Ces
contre-mesures permettent soit de bloquer JavaScript, et précisément Flash, ou la modification
des caractéristiques du navigateur d’un utilisateur de telle façon que celles-ci sont identiques aux
caractéristiques d’un large ensemble d’utilisateurs. Toutefois, la première approche entrave les
fonctionnalités et la deuxième approche est facilement contournable. Donc nous fournissons une
nouvelle approche pour protéger la vie privée sur le web qui vise à la séparation de ce qu’on ap-
pelle les “identités web”. Cette séparation est réalisée grâce à la création des identités web uniques
pour chaque site que l’utilisateur visite. De cette manière un site web ne peut pas identifier un
utilisateur sur différents sites web. Nous mettons en œuvre cette approche dans une extension
pour Firefox appelé Fingerprint Privacy et nous la testons avec succès contre une bibliothèque
open source pour les empreintes digitales. Enfin, nous évaluons notre approche et nous discutons
des futures améliorations.

Mots clés: protection de la vie privée sur le web, empreintes digitales, traçage des utilisateurs,
détection.

Declaration of Honesty

I hereby confirm that the present thesis is solely my own work and that if any text passages or
diagrams from books, papers, the Web or other sources have been copied or in any other way
used, all references – including those found in electronic media – have been acknowledged and
fully cited.

Signature

Christof Ferreira Torres

Acknowledgements

I would like to thank my local supervisor Hugo Jonker for his enthusiasm, his spirit for novelty
and his constructive criticism. Without his guidance and his persistent help this thesis would not
have been possible.

In addition, I would like to thank Rolando Trujillo Rasúa from the University of Luxembourg
and Alexandre Viejo from the Universitat Rovira i Virgili for the discussion that we had about
browser fingerprinting.

Furthermore, I would like to thank Tatiana Ven for proofreading the English part, Patrick Kalenga
for proofreading the French part and Laura Bock for developing the Fingerprint Privacy logo.

Finally, I would like to thank everyone else who supported me through the writing of this thesis.

Table of Contents

1 Introduction 17

2 Web Tracking 19
2.1 Reasons for Web Tracking . 19

2.1.1 Web Analytics . 19
2.1.2 Advertising . 19
2.1.3 Usability Improvement . 20
2.1.4 Law Enforcement . 20

2.2 Evolution of User Tracking . 20
2.2.1 Tracking Cookies . 20
2.2.2 Flash Cookies . 21
2.2.3 Evercookies . 21
2.2.4 Web Bugs . 22
2.2.5 Browser Fingerprinting . 22

3 Fingerprinting 23
3.1 Browser Fingerprinting . 23
3.2 Browser Fingerprinting Methods . 24

3.2.1 Passive Browser Fingerprinting . 24
3.2.2 Active Browser Fingerprinting . 25

3.3 Robustness of Browser Fingerprints . 26
3.4 OSI Model Fingerprinting . 27

4 Related Work 29
4.1 Panopticlick . 29
4.2 Real-life Implementations of Browser Fingerprinting 31

4.2.1 Fingerprinting Through Browser Plugins 33
4.2.2 Fingerprinting Through Unique Browser Properties 34
4.2.3 Detection of Installed System Fonts . 34
4.2.4 Piercing Through Proxy Servers . 35
4.2.5 Native Fingerprinting Libraries . 35
4.2.6 Fingerprint Delivery Systems . 35

4.3 Evaluation of Existing Fingerprinting Countermeasures 36
4.3.1 FireGloves . 36
4.3.2 Private Browsing Modes . 37

9

10 TABLE OF CONTENTS

4.3.3 Do-Not-Track Header . 37
4.3.4 User-Agent Spoofing Tools . 38
4.3.5 Tor Browser Bundle . 38

5 Methodology 41
5.1 Web Identities . 41
5.2 Linking Web Identities . 42
5.3 Maintaining Consistency between Web Identities and Browser Capabilities 42
5.4 Existing Countermeasures . 43
5.5 Alternative Approaches to Web Privacy . 44

5.5.1 Hide where the Request Originated . 44
5.5.2 Separate Web Identities . 45
5.5.3 Conclusion . 46

5.6 Validation of the Implementation . 46
5.6.1 Test Case 1: First-party Fingerprinters . 46
5.6.2 Test Case 2: Third-party Fingerprinters 47

6 Development of Fingerprint Privacy 49
6.1 Structure of Firefox Extensions . 49

6.1.1 Chrome Folder . 50
6.1.2 Chrome.manifest . 50
6.1.3 Defaults . 51
6.1.4 Install.rdf . 51
6.1.5 Locale . 51
6.1.6 Modules . 51
6.1.7 Skin . 51

6.2 Packaging and Installing . 51
6.2.1 Packaging with Windows . 51
6.2.2 Packaging with Mac . 52
6.2.3 Packaging with Linux . 52

6.3 Embedding a Proxy . 52
6.3.1 Intercepting and Modifying HTTP requests 52
6.3.2 Intercepting and Modifying HTTP responses 53

6.4 Implementation of Web Identities . 54
6.5 Random Fingerprint Generator . 54
6.6 Detecting Fingerprinting Activities . 56
6.7 Handling Requests to Social Plugins . 57
6.8 Handling Requests to Browser Plugins . 59
6.9 User Interface . 59

6.9.1 Toolbar Button Popup Menu . 59
6.9.2 Preferences Menu . 60
6.9.3 Web Identities Management Menu . 61
6.9.4 Edit Attribute Menu . 62

6.10 Validation of the Extension . 63
6.10.1 Test Case 1: First-party Fingerprinters . 63

10

TABLE OF CONTENTS 11

6.10.2 Test Case 2: Third-party Fingerprinters 63
6.11 Limitations of the Extension . 63
6.12 Dependencies . 64

7 Discussion and Future Work 65
7.1 Improving Existing Functionality . 65
7.2 Adding New Functionality . 66

8 Conclusion 67

Appendices 75

A List of different HTTP browser requests 77

B List of JavaScript attributes that Fingerprint Privacy detects and manipulates 79

C Fiches de suivi de stage 81

11

List of Figures

1 An example of linking web identities. 42
2 Web identities belonging to an anonymity set are still linkable. 43
3 Hiding where the request originated. 44
4 Separating web identities. 45
5 Test case 1: The inclusion of a fingerprinting library on two distinct websites. . . . 46
6 Test case 2: The inclusion of a fingerprinting library on a website through a third-

party website. 47

7 An example of the hierarchical folder structure of a Firefox extension. 50
8 A representation of the workflow of our embedded proxy. 52
9 Notification banner on wwwen.uni.lu showing the list of detected attributes and the

two options. 57
10 Examples of social plugins. 57
11 User interface for the toolbar button popup menu. 60
12 User interface for the preferences menu. 61
13 User interface for the web identities management menu. 62
14 User interface for the edit attribute menu. 62

13

List of Tables

1 User-agent strings for popular browsers. 24
2 Order of HTTP request headers for popular browsers. 25
3 Fingerprintable protocols sorted by OSI layer . 27

4 Attributes and their collection method included in Panopticlick’s fingerprints, sorted
by their entropy [7]. 31

5 JavaScript-based font-probing fingerprinting scripts on the top 1M Alexa websites [2]. 32
6 Flash-based font-probing fingerprinting scripts on the top 10K Alexa websites [2]. 32
7 Comparison of all the attributes used by Panopticlick and the three studied finger-

printing providers [20]. 33
8 Unique navigator and screen object properties of popular browsers [20]. 34

15

Chapter 1

Introduction

Websites, advertising companies and social networks can track what users view while they browse
the web or make a purchase online. Companies such as Google and Facebook are nowadays present
on a majority of websites either through advertising services or social plugins. They can follow
users all around the web and they are able to gather all sorts of information about a user such
as his IP address, which websites he visits and how much time he spends on a particular website.
From this gathered data can companies infer further information about a user. This causes a
serious threat to privacy and web users should be concerned since this obviously shows that there
are no limits to what types of information can be collected, how long it can be stored, with whom
it can be shared or how it can be used or misused.

Privacy aware users want therefore to be more anonymous on the web and want to have the
ability to determine what information they reveal over the Internet, who has access to their in-
formation and for what purposes their information may or may not be used. Unfortunately, it is
not easy to achieve anonymity on the web. Developing countermeasures is a cat-and-mouse game
where large IT companies are constantly improving their tracking techniques.

Most users these days are aware of the usage of so-called cookies by websites, but they do not
know that these cookies also can be used by third-party websites to track users across the web
and create profiles based on the websites they have visited. A lesser-known tracking technique are
evercookies introduced by Samy Kamkar in 2010 [14]. These cookies have the particularity to be
really difficult to delete.

Other widely used but still lesser-known tracking techniques are web bugs or pixel tags, these
can be objects such as images embedded in websites or emails. A good example of such web bugs
are social plugins. These social plugins are particularly concerning, for instance, the Facebook
“Like” button or Twitter’s “Tweet” button can collect information about which websites you visit
without you having to be logged into your account [24].

A little known but powerful tracking technique is browser fingerprinting. In 2010 Peter Eck-
ersley published a study about browser fingerprinting [7] and created a website illustrating this
tracking technique, which caused a sensation and a new threat to web privacy. Browser finger-
printing techniques aim to collect as much as possible information of the browser and computer

17

18 CHAPTER 1. INTRODUCTION

configuration of a user in order to fully or partially identify a user across the web. The frightening
part of this technique is that it is passive and that it still works even when cookies are turned off.

The application of browser fingerprinting is becoming an increasingly common practice nowa-
days and is being used by advertising companies and anti-fraud companies. This form of stateless
user tracking allows advertising companies to bypass the limitations imposed by cookies. More-
over, with the market growth of smartphones and tablets, fingerprinting allows advertisers to
augment previously gathered user-data and track the user across devices. Anti-fraud companies
use fingerprinting as a method to protect users and web applications against malicious actors, for
instance, by the use of stolen credentials. These services are based on massive “device reputation”
databases where device fingerprints are stored along with the device owner’s web history and
“reputation scores”.

Moreover, most current fingerprinting countermeasures such as Tor [23] and FireGloves [3], and
current research approaches focus on hiding the user’s real identity. We propose a radical new
approach. In our view is this issue with web privacy bound to the linking of “web identities” across
websites. Websites necessitate to identify users in order to provide them their services. Therefore,
we generate unique web identities for individual websites and keep them separate. Since these
web identities are unique, they make it impossible for websites to link them.

In this thesis we highlight existing web tracking techniques mainly focusing on browser finger-
printing. We review related work and we analyse existing countermeasures against browser fin-
gerprinting and list their limitations. As a proof-of-concept we develop an Firefox extension
enhancing the limitations of existing methods and implementing our new concept of separating
web identities, in order to achieve our goal, namely to preserve privacy on the web with respect
to browser fingerprinting.

18

Chapter 2

Web Tracking

In this chapter we discuss the context of web tracking in detail. In the first section we mention
the main reasons for web tracking and we give a more clear perspective concerning the advan-
tages and disadvantages of web tracking. In the second section we discuss the evolution of user
tracking, mentioning the individual techniques currently used and their limitations which led to
the development of browser fingerprinting techniques.

2.1 Reasons for Web Tracking

Web tracking is referred to the linking of visits to one or more websites as made by the same
user. Web tracking can be done for numerous reasons: web analytics, advertising, usability and
law enforcement. Not every form of web tracking is harmful for a user. On the one hand websites
use tracking to enhance the user’s browsing experience and estimate the website’s performance.
On the other hand websites do not miss the opportunity to collect information about their users
in order to provide them more personal advertisements which increases their revenue and allows
them to offer their services for free.

2.1.1 Web Analytics

Web analytic techniques focus on the number of visitors over a period of time, manners in which
individuals entered the website, traffic that advertisements brings to the website, approximate ge-
ographical location of the visitors, how much time visitors spent on the website, etc. Web analytics
gives websites the opportunity to evaluate their overall performance, improve their effectiveness
and help managers make decisions about campaign effectiveness [15].

2.1.2 Advertising

Advertising is the main reason for tracking users because websites can earn large amounts of
money by showing personalized advertisements. A website with no or only partial knowledge
about a visiting user, displays randomly the advertisements which other companies paid for. As
a result, website visitors watch advertisements which they are probably not interested in. For
example, if men see shoe advertisements, they will ignore it whereas women will be interested
in this particular product. If websites, would have more knowledge about a user, they would be

19

20 CHAPTER 2. WEB TRACKING

able to display personalized advertising. For this kind of advertising companies pay websites more
money because it fits the user’s interests which then results in increasing product selling. This form
of targeted advertising can be split into contextual advertising, which is displaying advertisements
connected with the content of the page a user is browsing, and behavioural advertising which
categorizes the advertising content on the basis of the collected user information which may
include age, gender, location, revenue, hobbies, activities and interests, etc.

2.1.3 Usability Improvement

Usability tracking brings the possibility to see where exactly users have trouble with the function-
ality of a website and even to categorize the computer skills of a user and adapt the page to his
skills, amongst other benefits.

2.1.4 Law Enforcement

Law enforcement tracking allows to collect evidences, solve crimes, initiate investigations, find
breaches of laws and identify, locate or find suspects.

However, the issue of web tracking is that it revokes the anonymity of users while they browse
the web. Currently, websites try to collect all kind of information about their users. Thereby the
goal is to identify a user uniquely, even if the user is not logged in or is not registered. Typically
websites do not explicitly inform users about the tracking of their information. Furthermore, have
web users no control about which information a website really collects about them, where it stores
the information and finally who can access the information. As a result, normal web users, who
are not experts in computer science, give personal information about them away, although they
are not aware of it.

2.2 Evolution of User Tracking

User tacking techniques evolved over the past years due to several limitations. Moreover, each
tracking technology represents an advance in the capabilities and persistence of tracking, which
shows the evolution and growth of user tracking.

2.2.1 Tracking Cookies

The most basic and popular method for tracking users across the web, is to use tracking cookies or
third-party cookies. These tracking cookies are normal HTTP cookies, also known as web cookies,
browser cookies or simply cookies, which are supposed to outlast user sessions, hence be persistent
and to store a unique identifier and return this identifier upon every HTTP request back to the
server. Third-party cookies are the same as regular cookies, except that they belong to different
domains than the visited website, therefore can third-party cookies track users across different
websites. Nevertheless, there are several limitations concerning the usage of cookies in general:

1. Cookies are stored on a per-browser basis at the client side and as a result cookies stored on
one browser are not available on another browser.

20

2.2. EVOLUTION OF USER TRACKING 21

2. Cookies have a limited size. According to the RFC 62651, cookies should not be limited by
the browsers, but browsers limit their cookies to 4096 bytes per cookie.

3. Cookies can easily be removed by the user in the browser settings.

2.2.2 Flash Cookies

Adobe Systems created the so-called Local Shared Objects2 (LSOs) or also known as Flash cookies.
These are pieces of data similar to cookies which are stored locally on a user’s computer by
websites using Adobe Flash3. LSOs are used for a variety of purposes: Flash game saves, storing
site preferences and of course user tracking. LSOs have the advantage that they can be accessed
across different browsers on a user’s computer and therefore users can be identified behind different
browsers. Another advantage that LSOs have over cookies, is the size limitation, LSOs can store
up 100KB of information whereas cookies are limited by browsers to 4KB of information. Since
LSOs require a browser to have the Flash plugin installed, the plugin itself is responsible to manage
the storing of the LSOs. As a result of this, browsers can not easily delete these LSOs. However,
as of January 5th 20114, Adobe Systems, Google Inc., and the Mozilla Foundation, published a
new browser API named “NPAPI ClearSiteData”5. This allows browsers implementing the API
to treat LSOs the same way as HTTP cookies and thus deletion rules that previously applied only
to HTTP cookies are now also applied to LSOs.

2.2.3 Evercookies

Regular cookies are easy to delete and for this reason Samy Kamkar created in 2010 Evercookies or
also known as Zombie cookies or Supercookies. These cookies can be recreated after deletion from
information stored outside of the browsers dedicated storage. This information is stored locally
on the user’s computer on various locations: [14] as standard HTTP cookies, LSOs, Silverlight
Isolated Storage, RGB values of auto-generated, force-cached PNGs using HTML5 Canvas tag to
read pixels back out, web history, HTTP ETags, web cache, window.name caching, Internet Ex-
plorer userData storage, HTML5 Session Storage, HTML5 Local Storage, HTML5 Global Storage,
HTML5 Database Storage via SQLite. The information is stored on various locations, in order to
assure the recreation of the cookie. Some of these storage locations can be read from any browser
and thus a user can be identified across different browsers. Consequently, these cookies are very
hard to remove and can be cross-browser compatible due to LSOs and HTML5 storage mechanisms.

Although, since the 26th May 2012 the EU e-Privacy Directive, or also denoted as the EU Cookie
Law, enforces websites to get their visitors informed consent before placing a cookie on their com-
puter [21]. This law does not only apply for cookies but it also affects anything that acts like
a cookie, for example, Flash cookies and HTML5 Local Storage. However, many websites still
ignore this law because there are no real prosecutions being done and because it is more a directive

1HTTP Cookie, RFC 6265 – http://tools.ietf.org/html/rfc6265
2Adobe Local Shared Objects – http://www.adobe.com/security/flashplayer/articles/lso/
3Adobe Flash – https://www.adobe.com/software/flash/about/
4NPAPI Clear plugin site data – https://mail.mozilla.org/pipermail/plugin-futures/2011-January/000298.html
5NPAPI:ClearSiteData – https://wiki.mozilla.org/NPAPI:ClearPrivacyData

21

22 CHAPTER 2. WEB TRACKING

of the EU and therefore the EU member states still have the last word regarding if they enforce
this law or not.

2.2.4 Web Bugs

Web bugs or also known as web beacons or pixel tags, are objects embedded in websites or emails.
Mostly web bugs are a 1x1 image which is included in a piece of HTML code which is usually
invisible to the user due to the fact of being so small. They are used to track when and from which
device a user is reading a website or email. When a user accesses a website or opens an email, all of
the images are loaded. For each image a request is sent out and the website receiving the request
knows where the request originated. Social networking websites are particularly using extensively
these web bugs, since it’s interesting for them knowing on which websites their users go to create
profiles and provide their users personalised advertising. A good example of such web bugs are
Facebook’s like button [9], Twitter’s tweet button [13] or Google’s +1 button [10]. Almost every
website nowadays offers these social buttons. What makes these buttons so terrifying, is that for
instance, even if you don’t click on the like button, Facebook knows what website you visited.
When your browser visits the website, it makes a request to Facebook asking for the image of the
like button and sends at the same time a cookie identifying you.

2.2.5 Browser Fingerprinting

All the above mentioned user tracking techniques depend on some information stored on the
user’s computer and thus are vulnerable to deletion. Browser fingerprinting is a passive tracking
technique and therefore more robust against manipulation by the user. Consequently, future user
tracking techniques are not focusing anymore on the authentication factor of what the user “has”
but instead they are focusing on the authentication factor of what the user “is”, in order to
identify a user. It’s harder to hide what you are than what you have. Since this is a new way of
identification we do not know if existing privacy enhancing techniques are effective.

22

Chapter 3

Fingerprinting

Fingerprinting or device fingerprinting can be seen as a form of a side channel attack. Many kinds
of electronic devices leak unintentionally subtle but measurable information which allows them to
be “fingerprinted”. These devices can be entirely or partially identified through processing of their
outputs or communications [16]. A device fingerprint or browser fingerprint is the combination of
information collected about a remote computing device for the purpose of identification.

In the first section of this chapter we outline the definition and characteristics of browser fin-
gerprinting. In the second section we mention possible browser fingerprinting methods for the
extraction of fingerprintable information, whereas we divided them into passive and active finger-
printing methods. The third section we list the current robustness of browser fingerprints. In the
final section we discuss fingerprinting from the perspective of the OSI model.

3.1 Browser Fingerprinting

Browser fingerprinting is the process of collecting sufficient information through the web browser
such that a website is capable to perform a stateless device identification in order to identify or re-
identify a visiting user. The combination of this information, also denoted as browser fingerprint,
is then used as identifier for tracking the user across the web. Naturally, when a user browses to
a website that includes fingerprinting technology and he logs in, then his browser fingerprint may
be collected and associated with his user profile and compared to a database of known browser
fingerprints. Using such techniques, known browser fingerprints can be matched, and previously
unknown browser fingerprints can be added to the database.

There are several reasons why websites may need device specific information, e.g. to correctly
render content or serve device compatible media. As a result, there are many APIs available in
different programming languages which enable websites to query for these attributes [2]. If all of
these attributes are taken separately, then they don’t provide enough information to identify a
device uniquely. Combined, this information is far more revealing.

Fingerprints can be used as global identifiers, if there is enough entropy in the distribution of
a given fingerprinting algorithm to make a subset of users uniquely recognizable. Fingerprints
can also be used in combination with IP addresses as cookie regenerators. A significant number

23

24 CHAPTER 3. FINGERPRINTING

of websites may use evercookies or supercookies as a way to regenerate normal cookies that the
user has previously deleted. Fingerprints may act as successors for evercookies and supercookies
in order to regenerate cookies [7]. In particular, a fingerprint that carries no more than 15-20 bits
of entropy might be in almost all of the cases sufficient to uniquely identify a particular browser,
given its IP address. Therefore, a final usage for fingerprints might be the combination of finger-
print and IP address in the absence of cookies, hence as a means of distinguishing multiple users
behind a single IP address, even if those users block cookies entirely [27].

3.2 Browser Fingerprinting Methods

In general, browser fingerprinting methods can be divided into passive and active methods. Clearly
nothing prohibits the combination of passive and active fingerprinting methods which then results
in a lot more effective fingerprinting methods.

3.2.1 Passive Browser Fingerprinting

Passive browser fingerprinting methods are based on characteristics observable in the contents of
web requests, without the use of any code executing on the client side. Passive fingerprinting can
therefore include cookies, HTTP request headers, IP address and other networking related infor-
mation. The user-agent string, for example, is an HTTP request header that typically identifies
the browser, rendering engine, browser version and operating system. For some cases, the combi-
nation of the user-agent string and the IP address will commonly uniquely identify a particular
user’s browser. This is due to the fact that the user-agent string reveals a lot of unnecessary
unique information, for example, long browser and operation system version numbers. In Table 1
we can recognize that browsers based on Apple’s WebKit rendering engine i.e. Safari, Opera and
Chrome are significantly affected by this issue. These browsers reveal the minor version of the
operating system and the minor version of the rendering engine, which as a result makes them
more fingerprintable.

Browser User-Agent

Mozilla Firefox Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:29.0) Gecko/20100101
Firefox/29.0

Apple Safari Mozilla/5.0 (Macintosh; Intel Mac OS X 10 9 2) AppleWe-
bKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14

Opera Mozilla/5.0 (Macintosh; Intel Mac OS X 10 9 2) AppleWe-
bKit/537.36 (KHTML, like Gecko) Chrome/34.0.1847.132 Safari/537.36
OPR/21.0.1432.57

Google Chrome Mozilla/5.0 (Macintosh; Intel Mac OS X 10 9 2) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/34.0.1847.131 Safari/537.36

Microsoft Internet
Explorer

Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko

Table 1: User-agent strings for popular browsers.

24

3.2. BROWSER FINGERPRINTING METHODS 25

The order in which browsers send the HTTP headers and the variation in HTTP accept headers
across requests for different content types1, is a further example of a passive fingerprinting method.
In Table 2 we can see an example of the order of HTTP request headers to the website “uni.lu”
made by different popular browsers (see Appendix A for a more detailed list). We perceive that
the order in which a browser sends the HTTP headers depends of the rendering engine it uses.
Mozilla Firefox uses the rendering engine Gecko and therefore sends after the GET request the
host, then the user-agent and finally the accept, accept-language and the accept-encoding header.
Furthermore, we state that Apple Safari, Opera and Google Chrome send the HTTP headers
in the same manner by sending after the GET request, the host, then the accept header, then
the user-agent and finally the accept-encoding and the accept-language header. This is due to
the fact that those three browsers are based on Apple’s WebKit rendering engine. As a last
observation, Microsoft’s Internet Explorer uses it’s own rendering engine named Trident, which
sends the HTTP headers in a totally different order then the previous browsers did. It sends
after the GET request first the accept and the accept-language header, then the user-agent, then
the accept-encoding header and finally the host. Unfortunately, there is no given standard which
implies rendering engines to send the HTTP headers in a defined way. This is bad for privacy,
since the order reveals additional distinguishable information and because a website might still
find out the true nature of a user’s browser with the help of the order of the HTTP headers, even
if a user is spoofing his user-agent.

Mozilla Firefox Apple Safari, Opera,
Google Chrome

Microsoft Internet Ex-
plorer

Host Host Accept
User-Agent Accept Accept-Language
Accept User-Agent User-Agent
Accept-Language Accept-Language Accept-Encoding
Accept-Encoding Accept-Encoding Host

Table 2: Order of HTTP request headers for popular browsers.

3.2.2 Active Browser Fingerprinting

Active browser fingerprinting methods are techniques where a website runs some JavaScript or
other code on the local client computer in order to observe additional characteristics about the
browser or computer. Techniques for active fingerprinting might include accessing the screen
size, enumerating fonts or plugins, evaluating performance characteristics or rendering graphical
patterns. Examples of such active methods are:

• Collecting device identifiable information (e.g. CPU speed, CPU manufacturer, installed
programs, etc) through plugin APIs such as Microsoft’s Silverlight API, Adobe Systems
Flash API or Oracle’s Java API.

• Clock skew measurements, thus measuring the time difference between a user’s computer
and a server, where 41st Parameter [1] is claiming to look at more than 100 parameters and
at the core of its algorithm being such a time differential parameter.

1http://www.newmediacampaigns.com/blog/browser-rest-http-accept-headers

25

26 CHAPTER 3. FINGERPRINTING

• TCP stack fingerprinting, thus the detection of irregularities in the TCP/IP stack and
the piercing through proxy servers in order to retrieve the clients real IP address, where
ThreatMetrix [26] is claiming to be able to do that.

• The detection of visited websites through the CSS history detection hack [8]. It detects from
a list of websites, which websites a user has or has not visited.

• The detection of installed system fonts by using Flash, Java or any other plugin. However,
there is also a way of detecting the installed system fonts by using JavaScript and CSS [22].

• A wide range of subtle JavaScript behavioural tests, that can be used to measure the perfor-
mance signature of a browser’s JavaScript engine, allowing the detection of browser version,
operating system and micro architecture [17,19]. Another example is to subvert the whitelist
mechanism of the popular NoScript Firefox extension through a website determining if par-
ticular domains exist in a user’s NoScript whitelist [17].

• HTML5 Canvas fingerprinting, where the same HTML5 Canvas element can produce differ-
ent pixels on a different browser, depending on the system on which it is executed [18].

It should be noted that the above listed active fingerprinting methods are only the tip of the
iceberg and that there are potentially more methods which help to collect useful information to
include in fingerprints.

3.3 Robustness of Browser Fingerprints

Numerous events can cause a browser fingerprint to change. These events may include browser
updates, installing or upgrading plugins, disabling cookies or JavaScript, installing a new font or
installing an external application which includes new fonts, buying a new monitor or in cases of
a laptop connecting an external monitor which then alters the screen resolution. However, the
robustness of browser fingerprints can be increased due to the fact that there are some values
that remain constant or rarely change after the installation of a system. Browser, plugin and font
upgrades can be detected and matched to previous fingerprints with the help of IP addressees or
with the help of fingerprints contained in a database having a high matching score. Dynamic IP
address changes can be solved by using only the two first octets of an IP address [4]. Eckersley et
al. [7] implemented a very simple algorithm to heuristically estimate whether a given fingerprint
might be an evolved version of a fingerprint seen previously. Their heuristic made a correct guess
in 65% of the cases, an incorrect guess in 0.56% of the cases and no guess in 35% of the cases.
Incredible 99.1% of the guesses were correct, while the false positive rate was only 0.86%. They
also state that their algorithm is very crude and that with no doubt it could be significantly
improved with some effort. Although fingerprints turn out not to be particularly stable, browsers
reveal so much version information and configuration information that they remain overwhelmingly
trackable.

26

3.4. OSI MODEL FINGERPRINTING 27

3.4 OSI Model Fingerprinting

Fingerprinting can also be seen from a more general perspective, for example with respect to
the OSI model. The OSI model is a conceptual model that characterizes and standardizes the
internal functions of a communication system by partitioning it into seven abstraction layers.
Most fingerprinting algorithms operate only on the top layer, the application layer, because it is
the closest to the user, the user mainly interacts with this layer. Another reason for fingerprinting
algorithms to operate on the top layer, is the convenience to program whereas lower layers would
include a larger complexity which would require for instance to reimplement the TCP/IP stack
in order to retrieve more detailed information about the network and system. As an example,
various network protocols transmit or broadcast packets or headers from which one may infer
client information. Examples of such protocols are: FTP, HTTP, Telnet, DHCP, TLS/SSL,
SNMP, NetBIOS, TCP, IPv4, IPv6, ICMP, SMB, CDP, IEEE 802.11, etc. Table 3 illustrates
some of these protocols sorted by layer. However, OSI model fingerprints can operate on more
than one layer and thus go beyond the scope of simple browser fingerprinting.

OSI layer Protocol

Layer 7: Application layer FTP, HTTP, Telnet, DHCP
Layer 6: Presentation layer TLS/SSL
Layer 5: Session layer SNMP, NetBIOS
Layer 4: Transport layer TCP
Layer 3: Network layer IPv4, IPv6, ICMP
Layer 2: Data link layer SMB, CDP
Layer 1: Physical layer IEEE 802.11

Table 3: Fingerprintable protocols sorted by OSI layer

27

Chapter 4

Related Work

In this chapter we review related work discovered through our research whereas the limitations we
came across later also conducted to the development of certain functionalities of our Firefox exten-
sion. In the first section we discuss the Panopticlick fingerprinting algorithm from P. Eckersley [7]
and list some of his major observations. In the second section we consider commercial fingerprint-
ing, the real-life implementations of fingerprinting libraries discovered by G. Acar, M. Juarez, N.
Nikiforakis, C. Diaz, S. Gürses, F. Piessens & B. Preneel [2] through their self-developed frame-
work FPDetective. We also consider a later study by N. Nikiforakis, A. Kapravelos, W. Joosen, C.
Kreugel, F. Piessens & G. Vigna [20] which attempts to examine the problem of browser finger-
printing from all of the players involved, i.e. from the perspective of the fingerprinting providers
and their fingerprinting methods, the sites making use of fingerprinting and the users who employ
privacy-preserving extensions to fight fingerprinting. In the third section we discuss privacy-
preserving extensions, where we debate about FireGloves, an Firefox extension developed by K.
Boda, Á. M. Földes, G. Gulyás & S. Imre in 2011 [4] as a response to Eckersley’s study, and other
existing fingerprinting countermeasures. We briefly explain their core functionalities and highlight
their current limitations.

4.1 Panopticlick

In 2010, P. Eckersley from the Electronic Frontier Foundation earned several merits for conducting
the first large-scale study concerning browser fingerprinting [7], and detailing one of the various
possible methods of fingerprinting a browser. For demonstration purposes he created a website
named Panopticlick 1, and illustrated how unique browser fingerprints could help websites to iden-
tify individual users across the web without the need of client-side storage technologies, such as
cookies. The website tests the uniqueness of your browser based on the information it shares
with the website i.e. trough reading the HTTP headers and with the help of JavaScript, Flash or
Java. Surprisingly, according to his results is this method extremely precise. 94.2% of the visiting
browsers with Flash or Java enabled could be uniquely identified.

Eckersley describes one possible implementation of a fingerprinting algorithm by collecting a
number of commonly known and less-commonly known characteristics that modern browsers make

1Panopticlick – https://panopticlick.eff.org/

29

30 CHAPTER 4. RELATED WORK

available to websites. A small part of these characteristics can be inferred from the HTTP requests
sent by the browser to the website. However, the majority of these characteristics are collected
through JavaScript or Flash and are asynchronously (e.g. AJAX) sent back to the website. The
collected data is grouped into eight separate attributes, listed in Table 4, though some of these
attributes comprise multiple related details. The fingerprint is essentially the combination of these
attributes.

The entropy measures how much identifying information is revealed. This can be expressed in bits
whereas an entropy of 1 bit denotes 2 possible values, an entropy of 2 bits denotes 4 possible val-
ues, etc. Adding one more bit of entropy doubles the number of possibilities. For instance, there
are around 7 billion humans on the planet, the identity of a random, unknown person contains
just under 33 bits of entropy (233 ≈ 8 billion), ∆S = log2(

1
6625000000

) = 32.6 bits of information.
When we learn a new fact about a person, that fact reduces the entropy of their identity by a
certain amount:

∆S = −log2(P (X = x))

Where ∆S is the reduction in entropy, measured in bits, therefore 2 as the logarithm base, and
P (X = x) is simply the probability that the fact would be true of a random person. As an example:

Starsign: ∆S = −log2 · P (STARSIGN = lion) = −log2(1
12

) = 3.58 bits
Birthday: ∆S = −log2 · P (BIRTHDAY = 20th of August) = −log2(1

365
) = 8.5 bits

However, the combining of information depends on whether the information is independent. For
instance, if you know someone’s birthday and gender, you have 8.51+1 = 9.51 bits of information
about their identity because the probability distributions of birthday and gender are independent.
But the same is not true for birthdays and starsigns. If you know someone’s birthday, then you
already know their starsign, and being told their starsign doesn’t increase the information at all,
8.51 + 3.58 = 8.51 bits of information. We want to calculate the change in conditional entropy of
the person’s identity on all the observed variables. We can do that by making the probabilities
for new facts conditional on all the facts we already know [6].

Therefore, the amount of revealing information in a specific field depends on how much we already
know about this field. This combination can again be expressed in bits by Shannon’s entropy for-
mula [25]. Whereas for n different variables X1, X2, ..., Xn with probabilities p1, p2, ..., pn, the total
amount of revealing information of the field is specified by the following formula:

H = −
n∑

i=1

pi · log2(
1

pi
)

In Table 4 we can observe that the list of installed browser plugins, the list of installed system
fonts and the user-agent, are the three attributes which return the highest entropy, thus provide
the most information. The list of browser plugins provides 15.4 bits of entropy, the list of system
fonts provides 13.9 bits of entropy and the user-agent provides 10.0 bits of entropy. The list of
browser plugins and system fonts reveal a large amount of information because of their order.

30

4.2. REAL-LIFE IMPLEMENTATIONS OF BROWSER FINGERPRINTING 31

Unfortunately the API’s do not return the list of browser plugins or system fonts sorted back and
if a browser plugin or system font is newly installed or updated, then it is moved to the top of
the list. Therefore, is the order different from operating system to operating system and even
from computer to computer. Furthermore, provide browser plugins more information than system
fonts because they return the exact plugin version numbers e.g. Java 1.6.0 17 or DivX Web Player
1.4.0.233.

Attribute Entropy (bits)
Collectable via

HTTP JavaScript Flash Java

Browser plugin list
(plugin versions and
Mime-types)

15.4 X

System font list 13.9 X X X
User-Agent 10.0 X X
HTTP Accept headers 6.09 X
Screen resolution 4.83 X
Timezone 3.04 X
Partial supercookie
test

2.12 X

Cookies enabled 0.353 X

Table 4: Attributes and their collection method included in Panopticlick’s fingerprints, sorted by
their entropy [7].

4.2 Real-life Implementations of Browser Fingerprinting

In 2013, G. Acar and his working colleagues from KU Leuven reported in their paper [2] the
implementation and the deployment of a framework called FPDetective, for the detection and
analysis of web-based fingerprinters. Their framework is based on a crawler, whose purpose is to
visit websites and collect data about events that might be related to fingerprinting, such as the
loading of system fonts or the reading of specific browser properties. The collected data is then
parsed and committed to a central database. To detect Flash-based fingerprinting, all crawler
traffic is directed to an intercepting proxy, where the network dumps are parsed to extract Flash
objects. These Flash objects are then decompiled using a free third-party decompiler and stored
in the central database. By applying their framework, with focus on font detection practices, the
researchers were able to conduct a large-scale analysis of the top million most popular websites
on the internet given by the Alexa global ranking2. They discovered that the adoption of finger-
printing is much higher than previous studies had estimated. FPDetective found 13 instances of
JavaScript-based font-probing scripts, on a total of 404 websites. Table 5 lists these 13 scripts
sorted by the number of websites using the particular script.

2Alexa top ranking – http://www.alexa.com/topsites

31

32 CHAPTER 4. RELATED WORK

Fingerprinting provider Script name Number of websites

BlueCava BCAC5.js 250
Perferencement tagv22.pkmin.js 51
CoinBase application-

773a[...snipped...].js
28

MaxMind device.js 24
Inside graph ig.js 18
SiteBlackBox No fixed URL 14
Analytics-engine fp.js 6
Myfreecams o-mfccore.js 3
Mindshare Tech. pomegranate.js 3
Cdn.net cc.js 3
AFK Media fingerprint.js 2
Anonymizer fontdetect.js 1
Analyticsengine fingerprint.compiled.js 1

Table 5: JavaScript-based font-probing fingerprinting scripts on the top 1M Alexa websites [2].

In addition to the 13 JavaScript-based font-probing scripts, FPDetective found 6 Flash-based font-
probing scripts on a total of 95 websites of the top 10 thousand Alexa global ranking websites.
Table 6 lists these 6 scripts sorted by the number of websites using the particular script.

Fingerprinting provider Script name Number of websites

BB Elements bbnaut.swf 69
Piano Media novosense.swf 12
BlueCava guids[2-3].swf 6
ThreatMetrix fp.swf 6
Alipay lsa.swf 1
MEB (Turkish Ministry of Education) 502758.swf 1

Table 6: Flash-based font-probing fingerprinting scripts on the top 10K Alexa websites [2].

A few months later, Nick Nikiforakis and his colleagues from KU Leuven took this research a
step further. They analysed in detail [20] the code of three popular browser fingerprinting code
providers and compared them to the code of Panopticlick. These companies are BlueCava3,
Iovation4 and ThreatMetrix5. In Table 7 we can compare the attributes used by Panopticlick
with the attributes used by these three companies. We can state that these companies share some
attributes with Panopticlick, but that they also included new attributes in their fingerprinting
solutions not used by Panopticlick.

3BlueCava – http://bluecava.com/
4Iovation – https://www.iovation.com/
5ThreatMetrix – http://www.threatmetrix.com/

32

4.2. REAL-LIFE IMPLEMENTATIONS OF BROWSER FINGERPRINTING 33

Attribute Panopticlick
Fingerprinting provider

BlueCava Iovation ThreatMetrix

Plugin enumeration X X X
Mime-type enumeration X X
ActiveX + CLSIDs X X X
Google Gears Detection X
Flash Manufacturer X
Cookies enabled X
Timezone X X X X
Flash enabled X X X X
Browser Language X X X
System/User Language X
Do-Not-Track User Choice X
MSIE Security Policy X
Date & time X
Proxy Detection X X
User-Agent X X X X
HTTP Accept headers X
Partial supercookie test X
Math constants X
AJAX Implementation X
Font Detection X X X
Windows Registry X X
MSIE Product key X
OS + Kernel version X
Screen Resolution X X X X
Device Enumeration X
Device Identifiers X
IP address X
TCP/IP Parameters X X

Table 7: Comparison of all the attributes used by Panopticlick and the three studied fingerprinting
providers [20].

4.2.1 Fingerprinting Through Browser Plugins

All three companies use Flash in addition to JavaScript to fingerprint a user’s environment,
whereas Panopticlick only uses Flash to retrieve the list of system fonts. Surprisingly, none of
these companies uses Java, whereas one does have dead Java code in their library, but does not
make any use of it. This is most likely due to the low market penetration in browsers and the fact
that a user gets notified and must give permission to a website when it is trying to run a Java
applet. However, Panopticlick does uses Java in order to retrieve the list of installed system fonts
when Flash and Javascript are disabled. A reason why these companies use Flash is because it is
transparent to the user, the API is richer in functionality and provides more detailed information

33

34 CHAPTER 4. RELATED WORK

as the JavaScript API. For instance, a Linux user running Firefox on a 64-bit machine will with
JavaScript report about the platform “Linux x86 64”. Flash on the other hand, will report about
the platform the full kernel version e.g. “Linux 3.2.0-26-generic”. This additional information is
not only unwelcome concerning privacy, but in addition this is also bad from a security perspec-
tive, since an attacker knows not only the browser and the architecture but also the specific kernel
version of the system and therefore he could launch a tailored attack on the system. Another
API call that behaves peculiarly is the reporting of the screen resolution. When a user utilizes a
dual-monitor setup, Flash reports as the width of the screen the sum of the two individual screens.
This value, when combined with the JavaScript API call, which lists the resolution of the monitor
where the browser window is located, allows the detection of a multiple-monitor setup.

4.2.2 Fingerprinting Through Unique Browser Properties

Another significant difference from Panopticlick is that these three companies are not trying to op-
erate in the same way across all browsers, but given a specific browser, they try to read unique prop-
erties provided by this browser. For example, when Internet Explorer is detected, then they try to
extensively fingerprint Internet Explorer specific properties, such as navigator.securityPolicy
and navigator.systemLanguage. See Table 8 for a more detailed list of unique properties
of the navigator and screen object of popular browsers. This information can be not only
used to fingerprint a user but also detect a fake user-agent.

Browser Unique properties

Mozilla Firefox screen.mozBrightness, screen.mozEnabled,
navigator.mozSms, +10

Opera navigator.browserLanguage,
navigator.getUserMedia

Google Chrome navigator.webkitStartActivity,
navigator.getStorageUpdates

Microsoft Internet Explorer screen.logicalXDPI, screen.fontSmoothingEnabled,
navigator.appMinorVersion, +11

Table 8: Unique navigator and screen object properties of popular browsers [20].

4.2.3 Detection of Installed System Fonts

Nikiforakis et al. [20] validate what Eckersley [7] already denoted. The list of installed system fonts
can serve as an important part of a user’s unique fingerprint owing to the fact that it provides a
large entropy. Since JavaScript does not provide a direct way of retrieving this list, all three com-
panies use plugin-based detection to gather the list of installed system fonts. Surprisingly, only one
company is preserving the order of the list of installed system fonts, whereas the other companies
probably are unaware of the fact that the order of fonts, likely to the order of installed plugins,
is stable and machine specific and thus can be used as an additional fingerprinting characteristic.
However, one company also uses JavaScript as a fall-back method for font-detection. This is more
a side-channel inference, where they make use of a technique similar to the JavaScript/CSS Font
Detector [22], in order to identify the presence or absence of any given font from a list of fonts.

34

4.2. REAL-LIFE IMPLEMENTATIONS OF BROWSER FINGERPRINTING 35

The downside of this approach is that less popular fonts are not detected and the order of the
fonts is no longer a fingerprintable characteristic.

4.2.4 Piercing Through Proxy Servers

A specific IP address can be an important feature for fingerprinting and assuming that anti-fraud
solutions use fingerprinting for the detection of fraudulent activities. The distinction between a
user who is situated in a specific country or a user who pretends to be in a specific country, is
crucial. Therefore, are two of the three companies trying to detect the user’s real IP address, or
at least detect if the user is making use of a proxy server. The companies use Flash to retrieve the
user’s real IP address. Flash has the ability to circumvent the user-set proxies at the level of the
browser and thus directly contact a remote host, disregarding any browser-set HTTP proxies. To
detect the present of a proxy server, the companies exchange identifiers between JavaScript and
Flash. These identifiers are used to correlate two possibly different IP addresses. If a JavaScript
originating request has the same identifier as a Flash originating request from a different IP
address, then the server can be certain that the user is making use of an HTTP proxy.

4.2.5 Native Fingerprinting Libraries

Previous browser fingerprinting solutions and research focused on utilizing as much as possible of
the API surface of existing popular browser plugins in order to obtain user-specific data. However,
two out of the three companies probe a user’s browser for a special plugin. This special plugin is
essentially a native fingerprinting library, which is distributed as a CAB file for Internet Explorer
and eventually loads as a DLL inside the browser. DLL’s are able to retrieve system-specific
attributes, such as the hard disk’s identifier, TCP/IP parameters, the computer’s name, Internet
Explorer’s product identifier, the installation date of Windows, the Windows Digital Product Id
and the installed system drivers. All of these attributes combined provide a much stronger finger-
print than what JavaScript or Flash could ever construct. It is also worthwhile mentioning that
one of the two plugins was misleadingly identifying itself as “ReputationShield” when asking the
user for permission and none of the 44 antivirus engines of VirusTotal identified the fingerprinting
DLL’s as malicious.

4.2.6 Fingerprint Delivery Systems

Nikiforakis et al. [20] made in addition to the previous mentioned discoveries, an even more petrify-
ing discovery on how commercial fingerprinting providers deliver their services. In the experiments
of Eckerlsley [7] was a 1-to-1 relationship between the page creating the fingerprint and the back-
end storing the fingerprint. However, in commercial fingerprinting, there is a N-to-1 relationship
because each company provides his fingerprinting services to many websites and needs to get back
the user fingerprints from each of these websites. This was not determined by chance but to the
contrary, there is a smart business model behind it. This model allows commercial fingerprinting
providers to provide and improve their services at the same time.

They discovered two different scenarios for fingerprinting. For the first scenario, the first-party
website was not directly involved in the fingerprinting process. Instead, the fingerprinting code

35

36 CHAPTER 4. RELATED WORK

was delivered by an advertising network which in turn sent back the resulting fingerprint to the
fingerprinting company. They assume that this was most likely done by the advertising network
in order to fight click-fraud and that it is rather unclear if the first-party website knows that its
users are being fingerprinted. For the second scenario, the first-party website directly includes the
fingerprinting library. The fingerprinting companies BlueCava and Iovation combine all features
into a single fingerprint, the fingerprint is DES-encrypted, concatenated with the encrypted keys
and finally converted to a Base64 encoding. The resulting string is then added as a new hidden
input element in the first-party website’s login form. This way the fingerprint is saved to the
first-party’s server when the user logs in. However, the first-party website cannot decrypt the fin-
gerprint, since the DES keys were generated on the fly and then encrypted with a public key. The
first-party website must therefore submit it back to the fingerprinting company. The fingerprint-
ing company then answers with a reputation score and other device information respectively user
information. This architecture allows BlueCava and Iovation to hide the implementation details
from their clients and to correlate user profiles across its entire client-base. ThreatMetrix works
in a different way. The first-party website must first create a session identifier and place it into
an <div> element with a predefined id. The script of ThreatMetrix reads this session identifier
and appends it to all requests towards its server. This means that the first-party website never
gets a user’s fingerprint but only receives information about the user by querying ThreatMetrix
for specific session identifiers.

4.3 Evaluation of Existing Fingerprinting Countermeasures

In the previous section it has been shown that most of the fingerprintable information is provided
through JavaScript and Flash, so disabling these would significantly decrease the information
provided and therefore the ability to track browsers. However, this would also mean a significant
decrease in the browsing experience, since nowadays many web technologies and websites are
based on JavaScript and Flash. In this section we will mention the main functionalities and
the limitations of some currently existing countermeasures against fingerprinting, such as the
FireGloves Firefox extension, the private browsing modes of browsers, the Do-Not-Track header,
some user-agent header spoofing tools and finally the Tor Browser Bundle.

4.3.1 FireGloves

FireGloves [3] is a proof-of-concept browser extension for Firefox developed by K. Boda et al. [4]
for research purposes. FireGloves returns user-defined or random values from a defined list, when
queried for certain attributes such as the screen resolution, the platform on which the browser
is running, the browser’s vendor, the browser’s version, and the browser language. Although
FireGloves tries to randomly spoof some attributes of the browser, it always spoofs the browser’s
user-agent and platform in the same manner i.e. pretending to be Mozilla Firefox version 6 running
on Windows. This is because K. Boda et al. aim to make the user being part of a majority of
users and this configuration came out to be, at the time of their research, the most common con-
figuration. However, this configuration is not the most commonly used anymore and the extension
does not take fully care of consistency, for example it does not modify the navigator.oscpu
object and it does not remove any of the new unique properties introduced in later versions of

36

4.3. EVALUATION OF EXISTING FINGERPRINTING COUNTERMEASURES37

Mozilla Firefox, such as navigator.mozCameras and navigator.doNotTrack. Addition-
ally, FireGloves limits the number of fonts that a single browser tab can load and reports false
dimension values for the offsetWidth and offsetHeight properties to make JavaScript-
based font detection useless. However, due to the limitation of the number of fonts, some websites
may be displayed in an unpleased and unintended manner for the user and therefore have an
impact on user experience. Another shortcoming, instead of relying on the offsetWidth and
offsetHeight properties, websites could easily use the width and the height of the rectangle
object returned by the getBoundingClientRect method [2]. This method bypasses Fire-
Gloves fake dimension values and returns the text’s dimension values even more precisely than
the original methods did. Finally, FireGloves does not modifies the Flash API and therefore can
websites still use Flash to discover the true nature of the browser, the real operating system,
screen resolution, etc.

4.3.2 Private Browsing Modes

Almost all modern browsers support a private browsing mode. These modes aim to delete the
tracks of a user’s browsing activity and thus gives him more privacy on the web. They prevent
the use of cookies, ETags and sometimes also the use of different plugins and add-ons for tracking
purposes. Browsers also usually make sure that after leaving these modes, they wipe out the
cache, the history, the cookies and other local storage spaces, in order to not leave any traces on
the computer. However, all private browsing modes keep providing all the information needed for
fingerprinting. Therefore, are users not protected by these modes against fingerprinting.

4.3.3 Do-Not-Track Header

The Do-Not-Track (DNT) HTTP header was introduced in 2009 by the researchers Christopher
Soghoian, Sid Stamm, and Dan Kaminsky. It allows users to signal their tracking preferences to
websites. Is the DNT header set to 0, then the user consents to being tracked. Is the DNT header
set to 1, then the user does not want to be tracked. Is the DNT header missing in a request, then
this means that the user has not expressed a preference. Since 2010 all major browsers support
Do-Not-Track. The DNT header is currently being standardized by the W3C under the name
“Tracking Preference Expression”6. However, DNT is not enforced, i.e. the server may choose to
not honour the user’s decision. This may work for honest website operators, but nevertheless, it is
still up to them to decide if they stop tracking the user or ignore the request. For example, Acar
et al. [2] have set their DNT header to 1 while their experiments with the FPDetective framework.
They obtained the same results as with not having set the DNT header to 1, concluding that the
DNT setting is ignored by fingerprinters. As a further example, Yahoo has recently decided to no
longer enable the Do Not Track settings on their servers and therefore ignore the user’s preference
to not be tracked. Yahoo arguments that the DNT header is not effective, not easy to use and has
not been adopted by the broader tech industry, whereas Yahoo was part of the first companies to
implement Do-Not-Track7.

6Tracking Preference Expression (DNT) – http://www.w3.org/2011/tracking-protection/drafts/tracking-dnt-
last-call.html

7Yahoo’s Default = A Personalized Experience – http://yahoopolicy.tumblr.com/post/84363620568/yahoos-
default-a-personalized-experience

37

38 CHAPTER 4. RELATED WORK

4.3.4 User-Agent Spoofing Tools

A browser’s user-agent string is an important part of a fingerprint and thus it may seem reasonable
to assume that if users modify their default values, they will increase their privacy [27]. Yen et
al. [27] advice therefore the usage of user-agent spoofing tools. However, most user-agent spoofing
tools have the following issues [20]:

• Incomplete coverage of the navigator object. User-agent spoofing tools which modify
the navigator.userAgent property, mostly leave other revealing properties intact, such
as appName, appVersion, platform and vendor.

• Inconsistencies between related properties. None of the user-agent spoofing tool at-
tempts to modify the screen object. Thus users who are utilizing laptops or desktop
computers and pretending to be mobile devices are reporting inconsistent screen resolutions.

• Mismatch between user-agent values. The user-agent of any given browser is accessible
through the HTTP headers and through the JavaScript object navigator.userAgent.
However, some of the user-agent spoofing tools might change the HTTP headers but leave
out navigator.userAgent property.

As a result of these issues, is the presence of any user-agent spoofing tool a discriminatory feature.
It makes them more visible and more distinguishable from other users, who are using their browsers
without any modifications.

4.3.5 Tor Browser Bundle

The Tor Browser Bundle8 is a popular service, which enables users to anonymously browse the
web. It is based on a modified version of Mozilla Firefox and makes use of the Tor anonymity
network. The Tor anonymity network relays communications over three routers located in different
parts of the world. The communications are encrypted in layers, also denoted as onion routing,
to prevent the Tor routers from linking the source and the destination of a data stream. The
Tor Browser currently incorporates or plans to incorporate strong fingerprinting defenses against
fingerprinting of: plugins, HTML5 canvas image extraction, WebGL, fonts, desktop resolution,
CSS media queries and system colors, user-agent and HTTP headers, timezone and clock offset,
JavaScript performance fingerprinting, non-uniform HTML5 API implementations and keystroke
fingerprinting [23]. Fonts are operating-system and user dependent therefore they are an excellent
candidate attribute for fingerprinting. The Tor Browser limits font-based fingerprinting similar
to FireGloves, namely by limiting the number of fonts that a page can request and load. Since
the Tor Browser uses the Tor anonymity network, which is sort of acting as a proxy between the
user and the website, the real IP address of the user is therefore not revealed. In general the Tor
Browser project can be seen as the “best” defence against browser fingerprinting at the moment,
since it does the best effort to be anonymous. It changes the user-agent to a common browser
version, it disables all plugins and it changes several properties to some default value. However,
the Tor Browser users can still be identified as a single group. For instance, the available screen
width and height as well as the total screen width and height are queryable through JavaScript.

8Tor Browser Bundle – https://www.torproject.org/projects/torbrowser.html.en

38

4.3. EVALUATION OF EXISTING FINGERPRINTING COUNTERMEASURES39

The Tor browser modifies the available screen size to the same value as the total screen size. This
is quite unique since most browsers have a taskbar and therefore is the available screen height
slightly less then the total screen height. Combined with the fact that most, if not all of the exit
nodes from the Tor network are known, one could easily identify Tor users as a group.

39

Chapter 5

Methodology

In this chapter we discuss our approach regarding the separation of so called “web identities”. As
a first step we explain the notion of web identities and how the linking of web identities works.
Afterwards, we mention some problems regarding the consistency of web identities. In addition,
we discuss the approach of current browser fingerprinting countermeasures and then we emphasize
on our own two possible approaches. Finally, we elaborate the setting of our two test cases, in
order to validate our final approach and in order to allow the reproduction of our results for further
research.

5.1 Web Identities

A web identity is an identity that is related to a user and is solely used on the web. Websites
establish this identity in order to re-identify their users upon future interactions. This identity
can be established through an IP-address, a cookie, a user-agent or simply through a user id when
a user logs in to a website. In the context of browser fingerprinting, a website establishes a web
identity through the information it gets about a user’s browser characteristics: (e.g. user-agent,
language, screen resolution, timezone, etc.). For our purposes, we focus solely on the HTTP and
JavaScript inferable parts. Therefore, if a user changes his browser characteristics, then his web
identity also changes. However, users do not frequently change their browser characteristics and
therefore remains their web identity persistent. This is useful for advertising networks, since they
can identify users without them being logged in.

41

42 CHAPTER 5. METHODOLOGY

5.2 Linking Web Identities

Figure 1: An example of linking web identities.

In order to track users across the web, websites match a newly received web identity IDA with a
previously established web identity IDB. Websites usually do this by simply comparing if a received
web identity is in their database of known web identities. However, a small change in the browser
characteristics would change the web identity and therefore using a simple comparison does not
work. Thus, we assume that most websites compare web identities from fingerprints through a
matching score e.g. match(IDA, IDB) = 95%. As an example, consider Figure 1. The browser
sends the same characteristics to website A, website B and website C. As a result, receive all three
websites the same ID. Besides, we can also observe that the third-party website B receives the
same ID from website A and from website C, which in turn means that the third-party website B
knows that the user was on website A and on website C. This is also denoted as linking of web
identities.

5.3 Maintaining Consistency between Web Identities and

Browser Capabilities

Since web identities are partially bound to the browser characteristics, one obvious approach to
privacy is tempting to simply change these characteristics. However, it is important to maintain
consistency between reported information and actual browser capabilities in order to make oneself
not conspicuous. For instance, a browser with JavaScript disabled which returns default values
for screen resolution, browser plugins, system fonts and supercookies, indicates with the presence
of these measurements that JavaScript is activated. More subtly, browsers with a Flash blocking
extension such as Flashblock1 installed will show Flash in the plugins list, but running Flash
fails. Such behavioural quirks help to distinguish web identities even though neither measure-
ment (browser plugins) explicitly detected the blocker. Similarly, many browsers with spoofed
user-agent strings are distinguishable because other measurements are invalid for the reported

1Flashblock – https://addons.mozilla.org/en-US/firefox/addon/flashblock/

42

5.4. EXISTING COUNTERMEASURES 43

user-agent.

For example:

• Browsers sending iPhone user-agents but with the Flash player plugin installed (not sup-
ported on the iPhone)

• Browsers that identify themselves as Mozilla Firefox but support Internet Explorer userData
supercookies.

5.4 Existing Countermeasures

Figure 2: Web identities belonging to an anonymity set are still linkable.

Current browser fingerprinting countermeasures, such as FireGloves [3], aim to change the web
identity of a user in such a way that he belongs to a large anonymity set. An anonymity set is in
this case a set of users all having the same web identity and therefore not being distinguishable
within this set. FireGloves achieves this by changing the user’s browser characteristics to a very
common one. Nevertheless, this approach has some downsides:

1. It requires a large number of users in order to work.

2. A user is required to frequently change his browser characteristics in order to keep being
part of the majority of the users on the web.

3. A user is still unique through his IP-address.

As an example, consider Figure 2. FireGloves simply replaces the user’s real web identity ID
with ID’. Third-party website B receives ID’ from both website A and website C, and is therefore
able to link both IDs together. The user is identified as part of a set of users who visited website A
and website C. However, each user can still be distinguished through his IP-address. As a result,
we need a different approach in order to solve this issue with the linking of web identities.

43

44 CHAPTER 5. METHODOLOGY

5.5 Alternative Approaches to Web Privacy

In this part we elaborate in detail two possible approaches in order to prevent web identities to
be linked. The first approach aims to hide where we are coming from and the second approach
aims to completely separate web identities one from another.

5.5.1 Hide where the Request Originated

Figure 3: Hiding where the request originated.

A first possible approach is that we hide where each request originated. That is, regardless of
this website acting as a third-party or not. For every website we first create a fake web identity
(in Figure 3, IDA, IDB and IDC). Next we prevent the connection (illustrated by a red cross)
between website A and website B and between website C and website B. Afterwards we send
from website A and website C to website B always IDB. This means that for website B, every
interaction looks as if it is directly communicating with the user and not via another website like
A or C. This approach has two requirements in order to work properly:

1. We need to make sure that the fake web identities, which we created are not the same, i.e.
IDA 6= IDB, and IDC 6= IDB, nor should they be trivially linkable; cf. Section 5.2.

2. We need to make sure that there is no revealing interaction between website A and website B
(respectively website C and website B), such that website B does not know that it is actually
interacting with the user through website A (respectively website C). Website A respectively
website C and website B can interact in various ways, including:

(a) HTML: Website A includes an url to website B referring itself. For example:
.
Website B can parse this url and deduce website A as the origin of the request.

(b) HTTP: The HTTP referrer header tells website B where a request originated.

44

5.5. ALTERNATIVE APPROACHES TO WEB PRIVACY 45

(c) JavaScript, Flash, Silverlight and other client-side technologies: These can send direct
requests to website B and tell website B the origin of the request through parameters
(e.g. JavaScript - AJAX, Flash - Sockets).

(d) PHP, ASP, Java and other server-side technologies: These can send direct requests
from website A to website B. For example:
include ’http://websiteB.com/track.php?refer=A’;.

As the last item highlights, the interaction between first-party and third-party websites does not
need to go via the client. Therefore, at this point it should be clear that this approach is not
viable because we do not have any influence on the server-side. Finally it is simply impossible to
always distinguish tracking content from necessary content, i.e. detect when a first-party website
is revealing its true origin to a third-party website for tracking purposes.

5.5.2 Separate Web Identities

Figure 4: Separating web identities.

A second possible approach is to create a fake web identity for each website the user visits.
Afterwards enforce that a third-party website receives the same fake web identity as the first-
party website. For an example, consider Figure 4. When contacted directly, website A sees
web identity IDA, website B sees web identity IDB and website C sees web identity IDC. When
website B is contacted through website A or website C, website B sees IDA and IDC, respectively.
Website B sees therefore three individual and distinct web identities. As a result, website B cannot
link IDA with IDB, nor can it link IDC with IDB. This approach has one requirement:

1. We need to make sure that the fake web identities, which we created are not the same, i.e.
IDA 6= IDB, and IDC 6= IDB, nor should they be trivially linkable; cf. Section 5.2.

Although this is a strong requirement, seems this second approach to be promising, as we only
need to address the first requirement as compared to the first approach.

45

46 CHAPTER 5. METHODOLOGY

5.5.3 Conclusion

We proposed two different approaches to web privacy. However, the first approach is not viable
because we simply do not have any influence on the server-side and it is simply impossible to
always distinguish tracking content from non-tracking content. Therefore we chose to incorporate
the second approach in our Firefox extension, because it only requires us to make sure that we
always generate unique fake web identities and enforce these properly.

5.6 Validation of the Implementation

In order to validate our new approach of separating web identities, we need to test the following
two cases:

1. The inclusion of a fingerprinting library on two distinct websites, simulating first-party
fingerprinters.

2. The inclusion of a fingerprinting library on a website through a third-party website, simu-
lating third-party fingerprinters.

5.6.1 Test Case 1: First-party Fingerprinters

The setting of our first test case is very simple but abundant. Website A and website B, both
directly include a call to a fingerprinting library. Both websites display a hash value based on the
web identity they detected. In the normal case, (cf. Figure 5a), we expect the two hashes to be
the same. With the protection enabled, (cf. Figure 5b), we expect the two hashes to be distinct.

(a) Without the protection. (b) With the protection enabled.

Figure 5: Test case 1: The inclusion of a fingerprinting library on two distinct websites.

46

5.6. VALIDATION OF THE IMPLEMENTATION 47

5.6.2 Test Case 2: Third-party Fingerprinters

In our second test case only website B directly includes a call to a fingerprinting library. Website A
and website C do not directly include any fingerprinting library, instead they include a third-party
code from website B. Website C is grayed out because it is enough to only verify website A in order
to show that third-party fingerprinting works. Website B displays a hash value from each web
identity it detected. In the normal case, (cf. Figure 6a), we expect website B to log three equal
hashes, one coming from website A, one coming from website B and one coming from website C.
With the protection enabled, (cf. Figure 6b), we expect website B to log three distinct hashes,
coming again from the three websites.

(a) Without the protection. (b) With the protection enabled.

Figure 6: Test case 2: The inclusion of a fingerprinting library on a website through a third-party
website.

47

Chapter 6

Development of Fingerprint Privacy

In this chapter we explain the development of our Firefox extension Fingerprint Privacy. Fire-
fox extensions or sometimes also denoted as “add-ons”, are installable enhancements for Firefox,
which modify the behaviour of existing features or add entirely new features. Firefox extensions
are developed through XML, JavaScript and XUL. XUL stands for XML User Interface Language
and is solely developed by Mozilla to create interfaces in Firefox and Thunderbird.

We describe first the structure of a Firefox extension in general and how the packaging and
installing of a Firefox extension is done. Afterwards we explain the interception and modification
of HTTP requests respectively responses. Furthermore we explain the injection of JavaScript code
in order to override properties of the JavaScript API. Moreover, we outline the implementation
of web identities in our extension and we outline the implementation of our random fingerprint
generator. In addition, we emphasize on the detection of fingerprinting activities and the options
we provide to the user upon a detection. Furthermore, we highlight how we handle requests to
social plugins and browser plugins. On top of that, we discuss the implementation of our user
interface. Finally, we explain the validation of our extension and list the associated limitations
and dependencies.

6.1 Structure of Firefox Extensions

Every Firefox extension is build up with a defined hierarchical folder structure as illustrated in
Figure 7. In this section we solely describe the purpose of the individual folders and files. We
recommend you therefore to skip this section if you are not necessarily interested in the structure
of Firefox extensions.

49

50 CHAPTER 6. DEVELOPMENT OF FINGERPRINT PRIVACY

Figure 7: An example of the hierarchical folder structure of a Firefox extension.

6.1.1 Chrome Folder

The chrome of Firefox consists of everything around the content window, e.g. web browser toolbar,
menus, statusbar etc. The chrome folder is composed of a folder content, which is responsible for
the user interface and the main business logic of the extension. The following three files must
exist within the chrome/content folder:

Browser.xul
This file overrides some of the default look of the web browser, e.g. add a button to the
toolbar, an item to the Tools menu or add a status-bar icon. This file also defines the
component structure of the popup menu of the toolbar button.

Options.xul
This file defines the structure and components of the options or preferences dialog of the
extension.

Overlay.js
This file handles the core business logic of the extension and allows to script for any element
defined inside the browser.xul file.

6.1.2 Chrome.manifest

The chrome.mainfest file is in conjunction with install.rdf the key to how the extension will be
added to Firefox. Furthermore describes the chrome.mainfest file the paths to the individual files
which are necessary for the extension.

50

6.2. PACKAGING AND INSTALLING 51

6.1.3 Defaults

The defaults folder is responsible for the default content of the extension. It contains a folder pref-
erences, which itself contains a file defaults.js. This file defaults.js is used to store the preferences
of the extension.

6.1.4 Install.rdf

The install.rdf file contains all the meta information about the extension, which versions of Firefox
it supports and other assorted information.

6.1.5 Locale

The locale folder is used for localization. In this case there is only one child folder, namely one for
American English content. However, this can be easily extended for other languages. The en-US
folder has a file translations.dtd, which contains translations for the labels used in XUL files.

6.1.6 Modules

The modules folder contains JavaScript modules which are required by the business logic of the
extension.

6.1.7 Skin

The skin folder contains the images and the CSS files which are used to describe the appearance
of all XUL components and therefore altering the look and feel of the extension.

6.2 Packaging and Installing

Firefox extensions are delivered as XPI files. XPI files are basically just ZIP files with another
extension. Therefore, all we need to do is ZIP all files together and give it an XPI extension. Note
that we do not ZIP the containing folder of the extension, just its contents (e.g. chrome folder,
chrome.manifest, install.rdf, etc).

The installation is fairly straightforward. Once we created the XPI file, we just need to drag
and drop the file into Firefox and it will automatically install.

6.2.1 Packaging with Windows

We select all the contents of the extension folder, do a right-click and choose: Send To → Com-
pressed (Zipped) Folder. Afterwards we simply rename the resulting ZIP file to .xpi instead of
.zip.

51

52 CHAPTER 6. DEVELOPMENT OF FINGERPRINT PRIVACY

6.2.2 Packaging with Mac

We open the Terminal, navigate to the extension folder with the cd command and then we type
in the following command: zip -r ../fingerprintprivacy.xpi * -x *.DS Store*.

6.2.3 Packaging with Linux

We open a console, navigate to the extension folder with the cd command and we type in the
following command: zip -r ../fingerprintprivacy.xpi *.

6.3 Embedding a Proxy

Our approach of separating web identities requires us to have full control over the communication
between the browser and the website. The communication between a browser and a website is
entirely done through HTTP. The browser sends an HTTP request to the website and the website
answers with an HTTP response. Therefore, we embedded a proxy in our Firefox extension, which
allows us to intercept and modify these HTTP responses and HTTP requests. As an example,
consider Figure 8. The proxy of our extension receives the original request from the browser to
website A, modifies this request, and forwards the request to website A. Afterwards, receives our
proxy the original response from website A, modifies this response and forwards it to the browser.

Figure 8: A representation of the workflow of our embedded proxy.

6.3.1 Intercepting and Modifying HTTP requests

There are several ways to detect and intercept loading of web pages and their contentIn order
to modify any HTTP request header, we implemented an HTTP observer object. This object
listens to the “http-on-modify-request” event and notifies our extension when a HTTP request is
ready to be send and is available for the modification of its HTTP headers. Once our extension
is notified, we do the following steps:

1. Determine the requesting and the referring domain.

52

6.3. EMBEDDING A PROXY 53

2. Look up if there is already an existing web identity for the referring domain.

(a) If there is a web identity, we simply get its fingerprint.

(b) If there is no web identity, we create a new web identity and generate a new fingerprint.
Note that our main goal is to keep web identities separate. In order to achieve this we
must return a unique fingerprint for each domain we visit. Therefore, when generating
a new fingerprint, we ensure that the fingerprint is different from the fingerprints of all
the other domains.

3. For the user-agent, the accept-language and the accept-encoding header:

(a) In case spoofing, we replace the original values with the generated values of our finger-
print.

(b) In case blocking, we remove the headers from the HTTP request.

(c) In case allowing, we just keep the original values.

4. Remove the following ETag headers in order to prevent fingerprinting:

• If-Match

• If-None-Match

• If-Range

Note that ETag headers allow web caches to be more efficient and therefore removing these
headers might have an impact on the bandwidth and websites might load more slowly. How-
ever, ETags can also be used to fingerprint users. Furthermore, we chose for a blacklisting
approach, because websites can use their own headers (headers starting with an “X-”) and
therefore make it simply impossible to go for a whitelisting approach.

5. Check if the requesting domain is different from the referring domain. In case of both being
different:

(a) Classify the requested domain as a third-party and add it to the list of third-parties
for this particular web identity.

(b) Remove the HTTP referer header from the HTTP request.

(c) If the requested domain is part of a known social network (cf. Section 6.7), block and
reject the HTTP request.

6.3.2 Intercepting and Modifying HTTP responses

In order to modify HTTP responses, we implemented again an observer object. This object how-
ever, listens to the “http-on-examine-response” event and the “http-on-examine-cached-response”
event and notifies our extension when a response is ready to be downloaded from the server. Once
notified, we need to filter out every response which is not an HTML file. Afterwards, before
the file is parsed by the JavaScript engine, we inject JavaScript code that overrides properties
of the navigator, screen and Date object (see Appendix B for a more detailed list). This

53

54 CHAPTER 6. DEVELOPMENT OF FINGERPRINT PRIVACY

JavaScript code is injected on top of the HTML file, just right after the <head> tag, in order
to be parsed first. A part of the injected code consists of sending a notification to our extension
when a property is called (cf. Section 6.6). Another part of our injected code blocks JavaScript
access to browser-identifying properties or returns fake values for these. In the end our injected
JavaScript code removes itself from the DOM parse tree, as similar to FireGloves [3], in order to
prevent other websites to detect our injected code through JavaScript.

6.4 Implementation of Web Identities

Web identities are implemented as JavaScript objects. A web identity is always associated to
a particular domain (e.g. example.com) and consists of a list of attributes representing a
fingerprint, a list of third-parties, a list of allowed respectively blocked social plugins and a list of
allowed respectively blocked browser plugins. Once a web identity is generated, it is saved and
always reused for that particular domain. Each web identity is added to an array which contains
all of the web identities. When the user shuts down the browser, the web identities are stored as
an JSON array in the defaults.pref file inside the defaults/preferences folder. When the user starts
up the browser, the web identities are loaded from the JSON array and parsed back to JavaScript
objects. Web identities can be removed and regenerated. Furthermore, can individual attributes
of the attribute list which represents the fingerprint, be edited, removed and regenerated.

6.5 Random Fingerprint Generator

The random fingerprint generator used by our extension is based on Jeffrey Mealo random user-
agent generator1. This random user-agent generator was extended in order to generate random
fingerprints. A generated fingerprint consists of:

• a user-agent string

• a navigator object containing the following properties:

– App Code Name

– App Name

– App Version

– Language

– Platform

– OS CPU

– Product

– Vendor

• a screen object containing the following properties:

– Screen Height

1random-ua.js - A random User-Agent Generator v0.0.4 – https://github.com/jmealo/random-ua.js

54

6.5. RANDOM FINGERPRINT GENERATOR 55

– Screen Width

– Color Depth

– Available Height

– Available Width

– Pixel Depth

• a Date object containing a timezone offset

• an accept object containing an accept-encoding string

The user-agent string is generated by first randomly choosing a particular browser from a defined
list of browsers:

• Mozilla Firefox

• Google Chrome

• Apple Safari

• Opera

Afterwards an operating system is randomly chosen from a defined list of operating systems:

• Microsoft Windows

• Mac OS X

• Linux

As a next step, a random version number is generated for the browser and the operating system.
The random version numbers are bound to a range belonging to a particular browser or operating
system. For example, if we randomly choose as browser Safari, then we will generate a random
Apple Web Kit version number as follows: [531...536].[1...50].[1...7] and a random Safari version
number as follows: [4...7].[0...1].[1...5]. If we randomly choose as operating system Windows, then
we will generate a random Windows NT version number as follows: [5...6].[0..2]. Finally, the
user-agent string is constructed based on the chosen browser and operating system, for example:

Mozilla/5.0 (Windows; U; Windows NT 6.1) AppleWebKit/535.14.5 (KHTML, like
Gecko) Version/6.0.5 Safari/535.14.5

Moreover, all the user-agent related JavaScript navigator object properties are set ac-
cording to the generated user-agent string. The language property of the navigator object, is
chosen randomly from a list of 96 languages.

The screen height and the respective screen width are chosen at random from a defined list
of screen resolutions:

55

56 CHAPTER 6. DEVELOPMENT OF FINGERPRINT PRIVACY

• 1366x768

• 1024x768

• 1280x800

• 1920x1080

• 1280x1024

• 1440x900

• 1600x900

• 1680x1050

• 1360x768

These screen resolutions originate from the 10 most used desktop screen resolutions between
04/2013 and 04/20142. The color depth and the pixel depth are equivalent and are randomly
chosen from three possible values: 16-bit, 24-bit and 32-bit. The available screen width is set
to the same value as the screen width. The available screen height is set to a smaller height
than the actual screen height, by taking the screen height and subtracting 74 pixel from it. This
should simulate the toolbar of the browser. Note that changing the screen resolution can result
in undesired usability effects.

The timezone offset is generated by randomly choosing a timezone offset from a list of all 40
possible existing timezone offsets (e.g. -720, -660, -600, -570, ..., 720, 765, 780, 840).

The HTTP accept-encoding string is generated according to the browser we chose. If
the browser is Opera we return “gzip,deflate,lzma,sdch”, if the browser is Chrome we return
“gzip,deflate,sdch” and for the other browsers we always return “gzip, deflate”.

The random generator makes use of the JavaScript Math.random() method, which is seeded
from the current time, as in Java. In Firefox is the Math.random() method implemented as a
linear feedback shift generator similar to the one of Java3.

6.6 Detecting Fingerprinting Activities

In order to receive notifications from the DOM tree, we implemented an event listener in our
extension which listens to an event called “DetectionEvent”. When a website calls one of the
properties from the navigator, screen or Date object (see Appendix B for a more detailed
list), our injected code is called instead and sends a notification to our extension about the call
through the “DetectionEvent”. The extension then notifies the user by showing a notification

2Top 10 screen resolutions 04/2013 - 04/2014 – http://gs.statcounter.com/#desktop-resolution-ww-monthly-
201304-201404

3Firefox Math.random() – http://mxr.mozilla.org/mozilla-central/source/js/src/jsmath.cpp#728

56

6.7. HANDLING REQUESTS TO SOCIAL PLUGINS 57

banner (cf. Figure 9). The notification banner lists all the attributes which got called by the
website and proposes the following two options to the user:

Allow
A popup window is displayed where the user can individually allow certain attributes to be
read.

Keep blocking
All attributes are blocked and the banner closes.

The extension remembers the option that the user took for a particular website. Later on the user
is only notified if a website is trying to request additional attributes.

Figure 9: Notification banner on wwwen.uni.lu showing the list of detected attributes and the two
options.

6.7 Handling Requests to Social Plugins

Figure 10: Examples of social plugins.

A social plugin, also sometimes denoted as social widget, is a piece of JavaScript code or HTML
code embedded on a website in order to provide a particular service from a social network. Ex-
amples of such services are the Facebook Like button, the Twitter Tweet Button, the Google +1
button or the Pinterest Pin it button (cf. Figure 10). These social plugins are quite common
these days, a large amount of websites include them in their source code. However, as discussed
in Section 2.2.4, social networks may use these social plugins as web bugs in order to track which
websites a user has visited.

Our extension simply blocks these social plugins by rejecting the HTTP requests for particular
known social scripts from social networking websites. We are blocking requests to the following
social networks and particular social scripts:

• Facebook [9]

– connect.facebook.net/en US/all.js

– facebook.com/plugins/

57

58 CHAPTER 6. DEVELOPMENT OF FINGERPRINT PRIVACY

• Twitter [13]

– platform.twitter.com/widgets.js

– platform.twitter.com/widgets/

• Google+ [10]

– apis.google.com/js/platform.js

– apis.google.com/js/plusone.js

• LinkedIn [5]

– platform.linkedin.com/in.js

• Tumblr [12]

– platform.tumblr.com/v1/

• Pinterest [11]

– assets.pinterest.com/js/pinit.js

As an example for Facebook, we are blocking the Facebook Like button by checking if the re-
quested domain from the HTTP request contains “facebook.com/plugins/” or contains “con-
nect.facebook.net/enUS/all.js”. If it does, we simply reject the request. Furthermore, we picked
these social networks because these provide a dedicated API for developers and because these are
widely used on the web.

We compared our approach with the one of Ghostery4 and Disconnect5. Ghostery is a free browser
extension owned by an advertising company, which enables its users to detect and control web
bugs. Ghostery does not fully replace the social plugin buttons on a website. Ghostery puts its
own button, which once clicked, simply allows the social networking website to load its own but-
ton. This is basically the same as our implementation. Disconnect is a free open source browser
extension created by former Google engineers, which enables users to block third-party content
and block social plugins from Facebook, Twitter and Google. Disconnect uses the same approach
as we do, it simply blocks the requests to known social plugins and displays therefore no social
plugins on a website.

However, a better approach would be completely replacing any social button with our own button
and not let the social networking website load its own code. If the user then clicks our own button,
we directly forward the request to the social networking website and hide where the request is
originally coming from. Obviously should the user have the same experience as if he would have
clicked on the original button of the social networking site.

4Ghostery – https://www.ghostery.com/en/
5Disconnect – https://github.com/disconnectme/disconnect

58

6.8. HANDLING REQUESTS TO BROWSER PLUGINS 59

6.8 Handling Requests to Browser Plugins

The list of installed browser plugins can provide a lot of information since the list and the order
of installed plugins is different from browser to browser. Especially the order of installed plugins
is a worthwhile characteristic for fingerprinting. When a plugin is installed or updated it is added
to the top of the list of plugins, therefore two users with the same installed plugins might still
have differently ordered lists of plugins. In JavaScript can the list of installed browser plugins be
retrieved through the navigator.plugins property and the navigator.mimeTypes prop-
erty. Both properties return an array containing information about the installed browser plugins
including their mime types.

Our extension solves these issues with the order and the list of the installed plugins, by blocking
browser plugins individually and by keeping the order consistent. Only the QuickTime Player6,
Flash Player7, VLC Player8 can be blocked individually, because these are the frequently used
ones on websites for multimedia content. However, all browser plugins are blocked by default and
therefore the list of plugins is empty. If a plugin is allowed for a website, then a new fake plugin list
is created for this website and the allowed plugin is added to the list and returned when requested.

Note that we actually do not completely block these browser plugins. We solely prevent them to
be read through the JavaScript API. In other words, the browser plugins will still work also if
we block them with our extension. However, it turns out that many websites check first through
JavaScript if a particular plugin is present or not. If the plugin is missing then they do not run
the plugin and ask the user to install the plugin, while the plugin is actually installed.

6.9 User Interface

In this section we discuss the user interface of our Firefox extension Fingerprint Privacy. We
highlight the different functionality available through the toolbar button popup menu and the
preferences window.

6.9.1 Toolbar Button Popup Menu

The popup menu of the toolbar button is divided into five different parts. The first part of the
popup menu displays the domain name of the current open website and provides the user a direct
way to the preferences window by clicking on the gear icon on the top right. The second part of
the popup menu is dedicated to social plugins. The extension detects which of our known social
plugins the current website is using and provides the possibility to the user to individually block
respectively allow them for the current domain. A social plugin is blocked if it is greyed out and
struck through. The third part of the popup menu displays a short summary regarding the number
of attributes the current website requested and the third-parties that the extension detected. The
user can allow respectively block individually the requested attributes by simply expanding the

6QuickTime Player – https://www.apple.com/quicktime/what-is/
7Flash Player – https://www.adobe.com/software/flash/about/
8VLC Player – http://www.videolan.org/vlc/index.html

59

60 CHAPTER 6. DEVELOPMENT OF FINGERPRINT PRIVACY

list and clicking on the according checkbox (cf. Figure 11a). Furthermore, by expanding the list
of third-parties the user can view an alphabetic sorted list with the domain names of the third
parties (cf. Figure 11b). The fourth part of the popup menu is dedicated to browser plugins. The
user has the possibility to individually block respectively allow multimedia content plugins and
block respectively allow non multimedia content plugins for the current domain. The fifth and
last part of the popup menu allows the user to disable respectively enable the extension for the
current website.

(a) List of requested at-
tributes. (b) List of third-parties.

Figure 11: User interface for the toolbar button popup menu.

6.9.2 Preferences Menu

The preferences menu allows the user to disable respectively enable the notifications of requested
attributes from websites. Moreover, allows the preferences menu to open the web identities man-
agement menu in order to manage individual web identities and their corresponding attributes.
Furthermore, is the preference menu divided into two groups of settings, namely HTTP settings
and JavaScript settings. The user can in the HTTP settings block respectively allow third-party
cookies, remove respectively keep the HTTP Referer header, send respectively do not send the Do
Not Track header and finally remove respectively keep the HTTP ETag headers. The user can in
the JavaScript settings check if he wants to automatically block all known social plugins and if
he wants to automatically block all browser plugins. Finally, has the user the ability to reset all
settings back to their default values.

60

6.9. USER INTERFACE 61

Figure 12: User interface for the preferences menu.

6.9.3 Web Identities Management Menu

The web identities management menu lists all the generated web identities. Each web identity
belongs to a particular domain. The user can expand a web identity in order to see its full list of
attributes. Each attribute has a name, a value and an action. If the user does a right-click on a
web identity, then a dedicated context menu appears and allows the user to view the respective
third-parties, delete the web identity and regenerate the web identity. If the user does a right-click
on an attribute, then a different dedicated context menu appears and allows the user to open the
edit menu for the attribute, delete the attribute and regenerate the attribute.

61

62 CHAPTER 6. DEVELOPMENT OF FINGERPRINT PRIVACY

Figure 13: User interface for the web identities management menu.

6.9.4 Edit Attribute Menu

The edit attribute menu allows the user to edit the action and value field of a selected attribute.
An attribute may have three possible actions: allow – the website is allowed to read the attribute,
spoof – the website receives the fake value of the attribute and block – the website has no access to
the attribute. Whereby some attributes only have two possible actions, allow and block, because
our fingerprint generator does not generate a value for them and therefore making the action spoof
useless. The value of an attribute can only be modified when the action spoof is selected.

Figure 14: User interface for the edit attribute menu.

62

6.10. VALIDATION OF THE EXTENSION 63

6.10 Validation of the Extension

As previously described in Section 5.6, we set up two test cases with two different websites, in
order to test our new approach of separating web identities. In this section we will describe the
implementation of both test cases. As fingerprinting algorithm we use the fingerprinting library
“fingerprintJS”9 from Valentin Vasilyev. FingerprintJS is a fast open source browser fingerprinting
library written in pure JavaScript with no dependencies. It collects browser information through
JavaScript and hashes all gathered information into a 32-bit integer. It uses Murmur hashing,
which is a non-cryptographic hashing function created by Austin Appleby in 2008.

6.10.1 Test Case 1: First-party Fingerprinters

In our first test case, we want to test first-party fingerprinters. Therefore, we embed on both
websites directly in their source code the fingerprinting library. Both websites create a fingerprint
and display the 32-bit hash value based on the web identity they detect. Before testing our
extension, we had to make sure that the fingerprinting library works. We did this by comparing
the hash values displayed on both websites. If both hash values are the same, then it means that
the fingerprinting library is working. Afterwards we enabled our extension and reloaded both
websites. We compared both hash values and observed that they were this time different from
each other. This proves that our extension successfully prevents fingerprinting for our first test
case.

6.10.2 Test Case 2: Third-party Fingerprinters

In our second test case, we want to test third-party fingerprinters. Website A includes therefore
an iframe which makes a call to a PHP file located on the server of website B. The PHP file
on website B generates an HTML page including the desired picture for website A and it also
embeds in the HTML code the fingerprinting library. When the picture is loaded on website A, a
hash of our fingerprint will be created and sent together with the IP-address and host domain to
website B through AJAX. Website B receives this information and logs it into a file. When visiting
website B, it displays the 10 most recent entries of the file and it also displays the hashed value of
our current fingerprint. We did the test first with our extension disabled. If the hash on website B
is the same as the hash received from website A, then it means that the third-party fingerprinting
is working. Afterwards, we enabled our extension and reloaded first website A and then website B.
We compared if our hash was corresponding to the hash received from website A and observed
that both were distinct. This proves that our extension successfully prevents fingerprinting for
out first test case.

6.11 Limitations of the Extension

Firstly, we decided to solely focus on HTTP and JavaScript fingerprinting techniques due to
the given time constraints that we had. The extension can thereby not guarantee with absolute

9fingerprintJS v0.5.3 – https://github.com/Valve/fingerprintjs

63

64 CHAPTER 6. DEVELOPMENT OF FINGERPRINT PRIVACY

certainty that it is still effective against commercial fingerprinting methods, since these make ex-
cessively use of Flash. The Flash API provides the same properties as the JavaScript API, whereas
the Flash API returns for some properties more detailed information than the JavaScript API. In
addition is the fingerprintable surface larger at Flash. Therefore will websites that make use of
Flash still be able to fingerprint their users.

Secondly, we do not provide a complete protection against social plugins. We only handle social
plugins from six different social networks, namely: Facebook, Twitter, Google, LinedIn, Tumblr
and Pinterest. Other social plugins can therefore still track users across the web.

Thirdly, we solely block the list of install browser plugins from being read through the JavaScript
API. This means that browser plugins can still be executed through their own API calls.

Fourthly, we tested our extension on different platforms such as Windows, Linux and MAC OS
X. We realised however that our extension only works on MAC OS X, probably because we devel-
oped our extension on MAC OS X. Nevertheless, we were expecting our extension to work across
different platforms, since this is one of the purposes of an Firefox extension. A Firefox extension
should run on every platform running Firefox.

Finally, if a fingerprinting website finds a way to detect our extension then this website can
use this additional information as a distinctive feature for identification.

6.12 Dependencies

Our Firefox extension has solely one dependency, namely jQuery10. We make use of jQuery 2.1.0
and the library is directly bundled with the extension and therefore does not need to be updated
or added manually.

10jQuery – https://github.com/jquery/jquery

64

Chapter 7

Discussion and Future Work

Fingerprint Privacy successfully prevents, under the tested circumstances, browser fingerprinting
through libraries using HTTP and JavaScript. The extension uses our new approach of separating
web identities. It generates for each visited website a unique random web identity. This prevents
websites from linking web identities since the ones we provide are unique and therefore completely
different from one another. The new approach that we proposed is generic and can be further
extended to prevent fingerprinting through any client-side scripting technology. In addition, we
block third-party cookies through the built-in option of Firefox. Finally, we block social plugins
and prevent installed browser plugins from being detected through JavaScript.

7.1 Improving Existing Functionality

Social plugins from Facebook, Twitter, Google, LinkedIn, Tumblr and Pinterest are successfully
blocked. However, this finite list could be extended to include more social networks and as de-
scribed in Section 6.7, a better approach would be replacing the original buttons through our own
buttons.

Browser plugins are not completely blocked but only removed from the list of plugins which
is retrievable through the navigator.plugins object and the navigator.mimeTypes ob-
ject. We could improve this by also blocking the execution of browser plugins.

The list of JavaScript attributes that our extension currently detects could be further extended.
For example, we observed that some commercial fingerprinting libraries use attributes such as:
math constants, date, time and the AJAX implementation of the browser to further fingerprint
users.

The extension was mainly developed and tested on MAC OS X. We also tested our extension
across different platforms such as Windows and Linux. However our extension did not work on
the latter platforms. This issue could be solved through further development and testing on these
platforms.

65

66 CHAPTER 7. DISCUSSION AND FUTURE WORK

7.2 Adding New Functionality

We had to limit the scope of our extension due to time constraints. Therefore we only focused on
HTTP and JavaScript fingerprinting. However, commercial fingerprinting libraries do not solely
use HTTP and JavaScript but also make use of Flash to fingerprint their users. For that reason
we aim to extend our extension in order to detect websites requesting attributes through Flash
and to find a way to override the original Flash attributes with our own attributes.

Firefox claims to manage Flash cookies the same way as normal HTTP cookies. However, this is
only the case for the deletion of Flash cookies. In order to block third-party Flash cookies, we
must use a separate tool such as Better Privacy1 or the Settings Manager from the Flash Player2.
We are aware that this creates a potential risk and that our extension should be extended in order
to also block Flash cookies.

Current fingerprinting countermeasures such as FireGloves [3] focus mainly on font detection.
Previous research has shown [4, 7, 20] that fonts leak a lot of identifiable information. We did
not investigate further into font detection because it was out of our scope and FireGloves already
tries to combat this. However font detection can be done through Flash and JavaScript, whereas
FireGloves only focuses on JavaScript font detection. Therefore a possible improvement for our
extension could be including font detection detecting code, e.g. based on FireGloves, in order to
prevent font detection through JavaScript and extend this code to also prevent font detection
through Flash.

Fingerprint Privacy detects third-party requests on websites but does not provide any further
information. We could try to classify such requests through online databases such as Google’s
Safe Browsing3 or Trend Micro’s Site Safety Center4. These online services return if a website is
safe, harmful, suspicious, or untested. However, the disadvantage is that these online databases
would receive all of our requests and we do not want to reveal every domain we visit because this
would induce a privacy risk. We are not sure to what extend these online services might use our
information. Therefore a better approach would be for the extension to compile such a list from
online sources and perform the check offline.

An additional improvement could be the use of an empty list of web identities per private window,
instead of using the existing ones, when the user is using the private browsing mode of Firefox.
Private browsing allows users to browse the web without saving any information about which
websites they visited and our extension should comport with this. Moreover could the extension’s
user interface be improved in order to achieve a better user experience.

Finally, we would like to test our extension against commercial fingerprinting re-identification
services.

1Better Privacy – https://addons.mozilla.org/en-US/firefox/addon/betterprivacy/
2Disable third-party local shared objects – http://helpx.adobe.com/flash-player/kb/disable-third-party-local-

shared.html
3Google Safe Browsing API – https://developers.google.com/safe-browsing/
4Trend Micro Site Safety Center – http://global.sitesafety.trendmicro.com/

66

Chapter 8

Conclusion

We researched web privacy with a focus on browser fingerprinting. We discussed in detail the
context of web tracking, identifying the principle reasons for web tracking and discussing the
evolution of user tracking. Then we outlined the definition and characteristics of browser finger-
printing, where we described the differences between passive and active fingerprinting methods. In
addition, we elaborated the robustness of browser fingerprints and discussed fingerprinting from
the perspective of the OSI model.

Afterwards we discussed Panopticlick’s [7] fingerprinting algorithm and considered commercial
fingerprinting libraries discovered by Nikiforakis et al. [20] We analysed and evaluated current
fingerprinting countermeasures, such as Tor [23], FireGloves [3, 4] by Boda et al. and user-agent
spoofing tools and highlighted their current limitations. Such countermeasures are easily de-
tectable and therefore easily breakable. Often, countermeasures aim to hide the web identity of
a user by modifying a user’s browser characteristics in such a way that these are identical to the
characteristics of a large set of users. We decided to do the opposite: instead of providing a generic
web identity for every website, we provide a unique web identity for each website.

Finally, we developed a Firefox extension called Fingerprint Privacy, which applies our new ap-
proach to browser fingerprinting. We validated our extension with the help of two test cases. The
first test case simulates first-party fingerprinting, the second test case simulates third-party finger-
printing. In both test cases we used an open source fingerprinting library written in JavaScript.
Our extension successfully prevented this library from linking two fingerprints in both test cases.

Fingerprint Privacy currently combats re-identification only through HTTP and JavaScript. Com-
mercial fingerprinting libraries make excessive use of Flash to fingerprint users. Therefore the next
step is to adapt our Firefox extension to also account for Flash.

67

Bibliography

[1] 41st Parameter. Complex Device Recognition. http://www.the41.com/solutions/
complex-device-recognition. Retrieved April 6, 2014.

[2] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank Piessens, and
Bart Preneel. FPDetective: Dusting the Web for Fingerprinters. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security, CCS ’13, pages
1129–1140, New York, NY, USA, 2013. ACM.

[3] Károly Boda, Ádám Máté Földes, and Gábor György Gulyás. FireGloves – Cross-browser
fingerprinting test 2.0. http://fingerprint.pet-portal.eu/?menu=6. Retrieved
May 10, 2014.

[4] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre. User Tracking
on the Web via Cross-Browser Fingerprinting. In Proceedings of the 16th Nordic Confer-
ence on Information Security Technology for Applications, NordSec’11, pages 31–46, Berlin,
Heidelberg, 2011. Springer-Verlag.

[5] LinkedIn Corporation. LinkedIn Share button documentation. https://developer.
linkedin.com/share-plugin. Retrieved May 30, 2014.

[6] Peter Eckersley. A Primer on Information Theory and Privacy. https://www.eff.org/
deeplinks/2010/01/primer-information-theory-and-privacy, January
2010. Retrieved April 6, 2014.

[7] Peter Eckersley. How Unique Is Your Web Browser? In Privacy Enhancing Technologies.
Springer, 2010.

[8] Jeremiah Grossman. CSS History Hack – I know where you’ve been. http:
//jeremiahgrossman.blogspot.com/2006/08/i-know-where-youve-been.
html, August 2006. Retrieved April 6, 2014.

[9] Facebook Inc. Facebook Like button documentation. https://developers.facebook.
com/docs/plugins/like-button/. Retrieved May 9, 2014.

[10] Google Inc. Google +1 button documentation. https://developers.google.com/+/
web/+1button/. Retrieved May 9, 2014.

[11] Pinterest Inc. Pinterest Pin It button documentation. https://developers.
pinterest.com/pin_it/. Retrieved May 30, 2014.

69

70 BIBLIOGRAPHY

[12] Tumblr Inc. Tumblr Share button documentation. http://www.tumblr.com/buttons.
Retrieved May 30, 2014.

[13] Twitter Inc. Twitter Tweet button documentation. https://dev.twitter.com/docs/
tweet-button/. Retrieved May 9, 2014.

[14] Samy Kamkar. Evercookie - Virtually Irrevocable Persistent Cookies. http://www.samy.
pl/evercookie/, September 2010. Retrieved April 4, 2014.

[15] Michael L. Kent, Bryan J. Carr, Rebekah A. Husted, and Rebeca A. Pop. Learning web ana-
lytics: A tool for strategic communication. Public Relations Review, 37(5):536–543, December
2011.

[16] Tadayoshi Kohno, Andre Broido, and K.C. Claffy. Remote physical device fingerprinting.
IEEE Transactions on Dependable and Secure Computing, 2(2):93–108, May 2005.

[17] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. Fingerprinting Infor-
mation in JavaScript Implementations. In Helen Wang, editor, Proceedings of W2SP 2011.
IEEE Computer Society, May 2011.

[18] Keaton Mowery and Hovav Shacham. Pixel Perfect: Fingerprinting Canvas in HTML5. In
Matt Fredrikson, editor, Proceedings of W2SP 2012. IEEE Computer Society, May 2012.

[19] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian Schrittwieser,
and Edgar Weippl. Fast and Reliable Browser Identification with JavaScript Engine Finger-
printing, 2012.

[20] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel, Frank
Piessens, and Giovanni Vigna. Cookieless Monster: Exploring the Ecosystem of Web-based
Device Fingerprinting. In Proceedings of the 2013 IEEE Symposium on Security and Privacy,
SP ’13, pages 541–555, Washington, DC, USA, 2013. IEEE Computer Society.

[21] Toby Osbourn. The EU Cookie Law. http://www.theeucookielaw.com/. Retrieved
May 9, 2014.

[22] Lalit Patel. JavaScript/CSS Font Detector. http://www.lalit.org/lab/
javascript-css-font-detect/, March 2007. Retrieved April 6, 2014.

[23] Mike Perry, Erinn Clark, and Steven Murdoch. The Design and Implementation of the
Tor Browser [DRAFT]. https://www.torproject.org/projects/torbrowser/
design/#fingerprinting-linkability. Retrieved May 11, 2014.

[24] Arnold Roosendaal. Facebook tracks and traces everyone: Like this! http://ssrn.com/
abstract=1717563, 2011.

[25] C. E. Shannon. Prediction and Entropy of Printed English. Bell System Technical Journal,
30(1):50–64, 1951.

[26] ThreatMetrix. Proxy and VPN Detection. http://www.threatmetrix.com/
technology/proxy-and-vpn-detection/. Retrieved April 6, 2014.

70

BIBLIOGRAPHY 71

[27] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin Abadi. Host Fingerprint-
ing and Tracking on the Web: Privacy and Security Implications. In Proceedings of the 19th
Annual Network & Distributed System Security Symposium, February 2012.

71

Abbreviations

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
CDP Cisco Discovery Protocol
CPU Central Processing Unit
CSS Cascading Style Sheets
DES Data Encryption Standard
DHCP Dynamic Host Configuration Protocol
DLL Dynamic-Link Library
DOM Document Object Model
EU European Union
FTP File Transfer Protocol
HTTP Hypertext Transfer Protocol
HTML HyperText Markup Language
ICMP Internet Control Message Protocol
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
JSON JavaScript Object Notation
LSO Local Shared Object
NetBIOS Network Basic Input/Output System
NPAPI Netscape Plugin Application Programming Interface
OS Operating System
OSI Open Systems Interconnection
PHP PHP: Hypertext Preprocessor
RGB Red Green Blue
SMB Server Message Block
SNMP Simple Network Management Protocol
SQLite Structured Query Language Lite
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
XUL XML User Interface Language

73

Appendices

75

Appendix A

List of different HTTP browser requests

Mozilla Firefox 29.0:

GET http://uni.lu:80/ HTTP/1.1
Host: uni.lu
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:29.0)

Gecko/20100101 Firefox/29.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,

/;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

Apple Safari 7.0.3:

GET http://uni.lu:80/ HTTP/1.1
Host: uni.lu
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,

/;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2)

AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3
Safari/537.75.14

Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: keep-alive

Opera 21.0:

GET http://uni.lu:80/ HTTP/1.1
Host: uni.lu
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,

image/webp,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/34.0.1847.132
Safari/537.36 OPR/21.0.1432.57

Accept-Encoding: gzip,deflate,lzma,sdch
Accept-Language: en-US,en;q=0.8

77

78 APPENDIX A. LIST OF DIFFERENT HTTP BROWSER REQUESTS

Google Chrome 34.0:

GET http://uni.lu:80/ HTTP/1.1
Host: uni.lu
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,

image/webp,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/34.0.1847.131
Safari/537.36

Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8

Microsoft Internet Explorer 11.0:

GET http://uni.lu:80/ HTTP/1.1
Accept: text/html, application/xhtml+xml, */*
Accept-Language: en-US
User-Agent: Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko
Accept-Encoding: gzip, deflate
Host: uni.lu

78

Appendix B

List of JavaScript attributes that
Fingerprint Privacy detects and
manipulates

• navigator.appCodeName

• navigator.appName

• navigator.appVersion

• navigator.battery

• navigator.connection

• navigator.geolocation

• navigator.javaEnabled

• navigator.language

• navigator.mimeTypes

• navigator.onLine

• navigator.oscpu

• navigator.platform

• navigator.plugins

• navigator.product

• navigator.userAgent

• navigator.buildID

• navigator.cookieEnabled

79

80
APPENDIX B. LIST OF JAVASCRIPT ATTRIBUTES THAT FINGERPRINT

PRIVACY DETECTS AND MANIPULATES

• navigator.doNotTrack

• navigator.id

• navigator.productSub

• navigator.vendor

• navigator.vendorSub

• screen.height

• screen.width

• screen.colorDepth

• screen.availHeight

• screen.availWidth

• screen.pixelDepth

• Date().getTimezoneOffset()

80

Appendix C

Fiches de suivi de stage

81

Université du Luxembourg
Faculté des Sciences, de la Technologie et de la Communication

Bachelor en Informatique (professionnel)

page 1 / 3

Campus Kirchberg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
T. +352 46 66 44 52 17
F. +352 46 66 44 55 00 www.uni.lu

TRAVAIL DE FIN D’ETUDES

FICHE DE SUIVI DE STAGE

L’étudiant(e) :

NOM, Prénom FERREIRA TORRES Christof

Numéro matricule 0111131947

L’établissement d’accueil :

 NOM Université du Luxembourg

Responsable local de stage :

 NOM, Prénom JONKER Hugo

Responsable académique de stage :

 NOM, Prénom MAUW Sjouke

Période :

 Du 17.02.2014

 Au 09.03.2014

Document à compléter et à envoyer (même non encore signé) par email au responsable
académique, avec copie au responsable local, le plus tôt possible après la fin de chaque
période. Une période correspond à trois semaines de stage.

Ce document complété et signé devra figurer en annexe du mémoire de fin d'études.

Université du Luxembourg
Faculté des Sciences, de la Technologie et de la Communication

Bachelor en Informatique (professionnel)

page 2 / 3

Campus Kirchberg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
T. +352 46 66 44 52 17
F. +352 46 66 44 55 00 www.uni.lu

Travaux effectués pendant la période :

In the first three weeks I have spent a lot of time in doing research about what is actually
browser fingerprinting in order to understand better the context and to deal better with the
problem. Furthermore I tried to understand how such a browser fingerprint looks like, how
stable such a browser fingerprint is and what kind of research has already been done in
this field e.g. if there are already technologies out there which help you to preserve privacy
regards browser fingerprinting.

Another task of my initial research was about data acquisition. I had to look up for data
sources, which could provide me with statistics about the most commonly used browser
configurations. I found some websites which provide global and local statistics about
browser configurations and I succeeded in contacting the people who are behind the
Luxembourgish government website « MySchool.lu » and got some statistical data
regarding the browser configurations of their visitors.

In addition to my research and the data acquisition, I also started developing a first version
of the plugin, which intercepts and observes the HTTP requests and the HTTP responses
made by the browser. The plugin can also already manipulate HTTP request headers for
example in order to delete the HTTP Referer header if the host and referrer are not from
the same domain. Finally the plugin is also able to inject custom JavaScript code into the
HTTP responses, in order to override certain JavaScript objects (e.g. navigator,
window.screen, etc.) and spoof the values that they return.

(Si pertinent) Travaux prévus pour la période suivante :

In the continuation of my work, I will be focusing on how to keep web identities separate
across different websites, this means to provide always the same fake fingerprint for the
same website. I will try to reuse the “FireGloves” project and maybe in combination with
“Private Tabs”, in order to achieve this separation of the web identities and additional
privacy regarding cookies.

Furthermore in the upcoming weeks I have also planned to find a way on how to keep your
web identities separate across those social media sharing buttons on websites, in order to
prevent the social networking websites to track you.

Finally if there is still some time I will also try to work on a way to detect browser
fingerprinting scripts in order to warn the user when a website that he is visiting is trying to
fingerprint him.

Université du Luxembourg
Faculté des Sciences, de la Technologie et de la Communication

Bachelor en Informatique (professionnel)

page 3 / 3

Campus Kirchberg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
T. +352 46 66 44 52 17
F. +352 46 66 44 55 00 www.uni.lu

 Le responsable local, L’étudiant(e),

Date : ………………………………………. ……………………………………….

Signature : ………………………………………. ……………………………………….

Université du Luxembourg
Faculté des Sciences, de la Technologie et de la Communication

Bachelor en Informatique (professionnel)

page 1 / 3

Campus Kirchberg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
T. +352 46 66 44 52 17
F. +352 46 66 44 55 00 www.uni.lu

TRAVAIL DE FIN D’ETUDES

FICHE DE SUIVI DE STAGE

L’étudiant(e) :

NOM, Prénom FERREIRA TORRES Christof

Numéro matricule 0111131947

L’établissement d’accueil :

 NOM Université du Luxembourg

Responsable local de stage :

 NOM, Prénom JONKER Hugo

Responsable académique de stage :

 NOM, Prénom MAUW Sjouke

Période :

 Du 10.03.2014

 Au 30.03.2014

Document à compléter et à envoyer (même non encore signé) par email au responsable
académique, avec copie au responsable local, le plus tôt possible après la fin de chaque
période. Une période correspond à trois semaines de stage.

Ce document complété et signé devra figurer en annexe du mémoire de fin d'études.

Université du Luxembourg
Faculté des Sciences, de la Technologie et de la Communication

Bachelor en Informatique (professionnel)

page 2 / 3

Campus Kirchberg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
T. +352 46 66 44 52 17
F. +352 46 66 44 55 00 www.uni.lu

Travaux effectués pendant la période :

In the past 3 weeks I focused on the development of the plugin, mainly on the part of
keeping web identities separate. I achieved this through creating an JavaScript object
holding for each domain the user visits a fake fingerprint. This fingerprint is generated
through a modified version of a random user-agent generator script.

Furthermore, I also implemented a way to block social plugins, by rejecting the requests
going to Google, Facebook or Twitter. It’s is currently more efficient than the «Disconnect»
plugin, but as it’s right now very restrictive, for example, it blocks also essential requests
and blocks also requests where a user wants to voluntarily share something. This makes it
not very user-friendly.

Moreover, I have worked on a way to track down third parties and to detect if a website is
trying to read information useful for fingerprinting. In case of detection a user is warned
and has to the choice to allow, thus whitelist the website or keep blocking the access and
blacklist the website.

Finally, I started writing on my final report, by elaborating in the first two sections all the
knowledge I gained across the past 6 weeks.

(Si pertinent) Travaux prévus pour la période suivante :

As a continuation to my current work, I will look for a way to persistently store the
generated fingerprints in a whitelist and a blacklist, and give the possibility to the user to
manage both lists.

I will try to reduce the restriction of the current blocking of social plugins in order to gain
more usability and I am going to add the functionality to enable or disable social plugins for
a given domain.

Additionally, I will improve the random fingerprint generator and the way users are notified
up on the detection of possible fingerprinting websites.

Finally, I will continue updating my final report to the latest results and start writing the new
sections about the current limitations of existing anti-fingerprinting techniques and about
the development of my own plugin.

 Le responsable local, L’étudiant(e),

Université du Luxembourg
Faculté des Sciences, de la Technologie et de la Communication

Bachelor en Informatique (professionnel)

page 3 / 3

Campus Kirchberg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
T. +352 46 66 44 52 17
F. +352 46 66 44 55 00 www.uni.lu

Date : ………………………………………. ……………………………………….

Signature : ………………………………………. ……………………………………….

Université du Luxembourg
Faculté des Sciences, de la Technologie et de la Communication

Bachelor en Informatique (professionnel)

page 1 / 3

Campus Kirchberg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
T. +352 46 66 44 52 17
F. +352 46 66 44 55 00 www.uni.lu

TRAVAIL DE FIN D’ETUDES

FICHE DE SUIVI DE STAGE

L’étudiant(e) :

NOM, Prénom FERREIRA TORRES Christof

Numéro matricule 0111131947

L’établissement d’accueil :

 NOM Université du Luxembourg

Responsable local de stage :

 NOM, Prénom JONKER Hugo

Responsable académique de stage :

 NOM, Prénom MAUW Sjouke

Période :

 Du 31.03.2014

 Au 20.04.2014

Document à compléter et à envoyer (même non encore signé) par email au responsable
académique, avec copie au responsable local, le plus tôt possible après la fin de chaque
période. Une période correspond à trois semaines de stage.

Ce document complété et signé devra figurer en annexe du mémoire de fin d'études.

Université du Luxembourg
Faculté des Sciences, de la Technologie et de la Communication

Bachelor en Informatique (professionnel)

page 2 / 3

Campus Kirchberg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
T. +352 46 66 44 52 17
F. +352 46 66 44 55 00 www.uni.lu

Travaux effectués pendant la période :

I found a way to persistently store the web identities including the fingerprints, list of
allowed/blocked social plugins and third parties through JSON. I create a popup dialog
allowing the user to manage his web identities. However, the menu is currently
complicated to understand and needs to be modified.

Furthermore, I reduced the restriction of blocking social plugins in order to gain more
usability, for example, the previous code was not only block the Google+ button, but also
Google Maps or Google fonts, the script simply blocked every request going to Google.
This approach was very efficient but not the best solution. Social plugins can now be
enabled or disabled individually per domain.

Moreover, I have added the functionality to remove ETags from HTTP headers, since
these could be used to fingerprint a user.

Additionally, I improved the random fingerprint generator, by taking out Internet Explorer
and improving the generation of random user-agents for Firefox, Chrome, Safari and
Opera. Moreover, I have added time zone offsets, which are now also randomly
generated. The script detects now properties called from the Screen object and the Date
object in JavaScript.

I have added the possibility to individually allow or block browser plugins such as the Flash
player, the QuickTime player or the VLC player for a particular domain.

Finally, I have updated my report regarding the latest progress of the development of my
extension.

(Si pertinent) Travaux prévus pour la période suivante :

As a continuation, I will try to improve the menu for the management of the web identities,
by adding the possibility to change individual attributes, regenerate individual attributes or
web identities, remove web identities, allow or block certain attributes and copy web
identities in order to link 2 web identities.

Additionally, I will try to improve in general the UI of my extension in order to become more
user-friendly.

Furthermore, I will do some last improvements to the fingerprint generator, by adding the
possibility to generate individual attributes and add the possibility to generate screen sizes
and color depths, and HTTP accept headers.

Finally, I will try to finish Related Work, Methodology and Extension Development part of
my final report.

Université du Luxembourg
Faculté des Sciences, de la Technologie et de la Communication

Bachelor en Informatique (professionnel)

page 3 / 3

Campus Kirchberg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
T. +352 46 66 44 52 17
F. +352 46 66 44 55 00 www.uni.lu

 Le responsable local, L’étudiant(e),

Date : ………………………………………. ……………………………………….

Signature : ………………………………………. ……………………………………….

