
Open University of the Netherlands
faculty of Management, Science & Technology

Bachelor Computer Science

Interpreting NTFS Time-stamps

Author:
Jelle Bouma
851887770

Researcher:
Ir. Vincent van der Meer

Supervisor:
Dr. Ir. Hugo Jonker

August 1, 2019

ABSTRACT: Digital forensic investigators try to reconstruct events that have taken place on a computer
system, to find evidence for use in court. To convict a suspect, it must be proven that the suspect has
interacted with some illegal files. The most basic indication of when a file was used, are the time-stamps
attached to the file. Time-stamps are important to digital forensics as they save the exact time that some
operation occurred. However, from time-stamps alone it is not clear which file operations have happened at
those times. This study aids digital forensic investigators as it explores the different kinds of file operations
and how time-stamps can be used to find out which file operations may have happened at which times. The
ways that time-stamps might have been tampered with to hinder digital forensics are also explored. Finally
these findings are implemented in a tool that can match time-stamps with operations.

1

Contents

1 Introduction 5

2 Background 8
2.1 NTFS . 8
2.2 Master File Table . 8

2.2.1 $STANDARD_INFORMATION attribute . 9
2.2.2 $FILE_NAME attribute . 9
2.2.3 $DATA attribute . 9
2.2.4 $MFTMirr . 9

2.3 File operations . 9
2.3.1 File operations considered in this research . 10
2.3.2 Time-stamp changes . 11

3 Related Work 13
3.1 File operations and their effects on time-stamps . 13

3.1.1 Does Windows version affect time-stamps? . 13
3.1.2 Does file type affect time-stamps? . 14
3.1.3 Consensus on the effect of operations on time-stamps 14

3.2 Detection of forgery by comparing time-stamps . 14

4 Methodology 15
4.1 MFT or $LogFile . 15
4.2 Tooling . 15

4.2.1 Reading the MFT . 16
4.3 Performing file operations and inferring their effects . 16
4.4 Validating file operations . 16

5 The types of resulting time-stamps for file operations 18
5.1 The time at which the file operation starts: opStartTime . 19
5.2 The time at which the file operation ends: opEndTime . 19
5.3 An unchanged time-stamp . 19
5.4 A time-stamp transferred from the SI attribute . 20
5.5 A time-stamp transferred from another file entry . 20
5.6 A time-stamp transferred by file tunneling . 21
5.7 A time-stamp set to an arbitrary value . 21
5.8 Result modifier: rounding . 21
5.9 Result modifier: timezone difference . 22

6 Time-stamps as a Result of File Operations 23
6.1 Extracting zip archives using Windows Explorer . 23
6.2 Overwriting move within volume . 24
6.3 Update MS Word/Office . 25
6.4 Overview of time-stamp changes by operations . 25

2

7 Modifiers to the Effects of File Operations on Time-stamps 27
7.1 Last access updating . 27
7.2 File tunneling . 29
7.3 Transferring files from other file systems . 30
7.4 Unexpected behaviour of SI.E . 32
7.5 Operations per file type . 32

7.5.1 Executable files . 32
7.5.2 Directories . 32

7.6 Operations per operating system . 33
7.7 Accuracy of time-stamp names . 33

8 Time-stamp Forgery and Degraded Time-stamps 35
8.1 Changing time-stamps to user-specified values . 35

8.1.1 The SetFileTime system call . 35
8.1.2 the undocumented NtSetInformationFile system call 36
8.1.3 Editing the raw time-stamps data in the MFT to change time-stamps 37
8.1.4 Detection . 37

8.2 Changing the system clock . 37
8.3 Time-stamp degradation . 38
8.4 Origins of irregular time-stamps . 38
8.5 Conclusion . 39

9 Investigating Time-stamps in the Wildfrag Database 40
9.1 WildFrag database . 40
9.2 Future and far past time-stamps . 40

9.2.1 Volume 59 . 41
9.2.2 Amount of future or far past time-stamps per type 41

9.3 The quirk: SI.C > SI.E . 41

10 Automating Comparison of Time-stamps with Operations 43
10.1 Examples of rules derived from file operation overviews . 43
10.2 Structure . 44

10.2.1 Time-stamp result types . 44
10.3 Method . 45

10.3.1 Comparing an array of time-stamps to an operation 45
10.3.2 Finding a possible sequence of operations for an array of time-stamps 46
10.3.3 Finding all possible sequences of operations for an array of time-stamps 47

10.4 Time-stamp Analyser . 48
10.4.1 Use . 48
10.4.2 Output . 48
10.4.3 Use case . 48
10.4.4 Testing . 50

11 Discussion 51
11.1 MFT entry allocation . 51
11.2 The effects of file operations on the sequence number . 52

11.2.1 Possible use of the sequence number: uncover the original ordering of file entries . . 52

12 Future work 53

13 Conclusions 54

3

A Reflection on Process 56
A.1 Communication . 56
A.2 Planning . 56
A.3 Writing . 57

B Overviews of File Operations, Modifiers and Their Effect on Time-stamps 58
B.1 Base File Operations . 58
B.2 Modifiers . 59

C Diagrams 61

4

Chapter 1

Introduction

Digital forensic investigators try to reconstruct events that have taken place on a computer system, to find
evidence for use in court. Based on this evidence, a suspect might be declared either innocent or guilty
of possessing and using some illegal files. The existence of illegal files on the suspect’s hard drive is not
enough evidence to convict someone, it must be proven that the suspect had some interaction with the
files. For this, digital forensic investigators uncover when the illegal files were used and how. The most
basic indication of when a file was used, are the time-stamps attached to the file. In this study we will
explore how time-stamps are formed in the Windows operating system, and how the events leading to the
time-stamps can be reconstructed.

A time-stamp is a date and time value recording when an event took place. However, information relating
to the event is not recorded. Microsoft does not provide any details as to how the time-stamps are formed.
In the documentation of Windows and NTFS (the file system used by Windows) they only state: “Time
stamps are updated at various times and for various reasons. The only guarantee about a file time stamp is
that the file time is correctly reflected when the handle that makes the change is closed.”1. While Windows
does update the time-stamps (which they also call “file times”) of a file for various reasons, Microsoft does
not specify how or why the time-stamps are updated, only that this is guaranteed to be done correctly.
This study will show how to interpret time-stamps to uncover what may have happened at those times. A
digital forensic investigator will then be able to decipher from the time-stamps of a file, what happened to
that file at those times, using the results of this study. Consider the following eight time-stamps belonging
to some file under investigation:

a. $STANDARD_INFORMATION b. $FILE_NAME
1 Creation 2019-07-02 21:33:35.3624443 2019-07-02 21:33:35.3624443
2 Write 2009-07-14 05:32:31.6745400 2019-07-02 21:33:35.3624443
3 Entry Modification 2019-07-02 21:33:35.3654445 2019-07-02 21:33:35.3624443
4 Access 2019-07-02 21:33:35.3624443 2019-07-02 21:33:35.3624443

Table 1.1: The time-stamps of a file under investigation.

While the names of these time-stamps might hint at what caused them, the reality of how they are
calculated is vastly more complex (as described in section 7.7). Using the results of this study, we can
determine that either of two things happened:

1. The original file was created or updated at 2009-07-14 05:32:31.6745400 (2a) and copied to the current
file which started at 2019-07-02 21:33:35.3624443 (1a, 4a, 1b, 2b, 3b, 4b) and completed at 2019-07-02
21:33:35.3654445 (3a) this might have changed a file attribute (such as permissions) on completion.

2. A file created or updated at 2009-07-14 05:32:31.6745400 (2a) was copied at 2019-07-02 21:33:35.3654445
(3a), overwriting a file created or copied at 2019-07-02 21:33:35.3624443 (1a, 4a, 1b, 2b, 3b, 4b).

In this study we will show how to interpret the time-stamps of any file in NTFS, and how to automate this.
1https://docs.microsoft.com/en-us/windows/desktop/sysinfo/file-times

5

https://docs.microsoft.com/en-us/windows/desktop/sysinfo/file-times

The effect of file operations on time-stamps

To reconstruct events from time-stamps, an array of time-stamps is treated as the result of a sequence of
user interactions in the form of file operations. Examples of these operations are creating, copying and
renaming files. Because different operations change time-stamps differently, the operations used may be
inferred from the time-stamps. There are contradictory results in the literature describing the time-stamp
effects of various file operations (see Chapter 3). By comparing the different studies with each other and
our own findings we can validate the studies and ascertain what might have caused their differences and
explain their measurements.

Some of these studies use their overview of file operations to uncover forgery. They suggest that if an
array of time-stamps can not be the result of regular operations then it must be forged. To check whether an
array of time-stamps may be the result of regular operations, the file operation overview should be complete.
Otherwise valid time-stamps might be labeled as forged, because they match a regular operation not present
in the incomplete operation overview. Until now, no complete overview of file operations exists, despite
claims by the authors of those studies. For example, no study on time-stamp based event reconstruction
mentions file tunneling, which can transfer a time-stamp from one file to another. It is known that ignoring
file tunneling can lead to incorrect conclusions regarding time-stamps [1]. If incorrect conclusions are made
by forensic investigators then court cases can suffer from false evidence. This stresses the need for an
updated file operation overview, which this research will provide.

Time-stamp based event reconstruction

Until now, determining the operations that have happened for the time-stamps has been done by hand.
This takes a lot of effort as for each file under investigation, the eight time-stamps will have to be compared
to each other and the effects of every relevant file operation. Efforts to simplify this process can cause new
problems (these problems are described in chapter 10). We propose a method and structure to automate
determination of what file operations caused which time-stamps.

Time-stamps which should not be used for event reconstruction

Time-stamp based event reconstruction might be hindered or misled by time-stamps that have been forged.
Time-stamp forgery can be done by adjusting the system clock to an incorrect time or using a time-stamp
change tool. Arrays of time-stamps that can not be the result of regular file operations must be forged
or degraded. To determine the degree to which forged time-stamps can be detected, we forge and then
interpret time-stamps. Alternatively time-stamps might suffer from data degradation, causing them to
appear as impossible times.

We also look into the possibility of irregular time-stamps carrying over between systems. If an irregular
time-stamp may have originated on a different system, then it could have been forged by a third party
irrelevant to the forensic investigation, or could have been caused by some other file system or operating
system. No research has been found that considers the effect of transference of forged time-stamps between
systems.

Real-life data

To verify our understanding of would-be regular and irregular time-stamps, real-life data collected by our
supervisors is searched for time-stamps that fit certain regular or forging file operations. The amount of
files found are then explained accordingly with the results of this research. Doing this we can ascertain the
impact of bit-rot on time-stamps. We can also find out how often a quirk (See 7.4) occurs which we have
not been able to uncover the cause of.

Contributions

The contributions of this research are:

6

1. An overview of file operations’ effects on time-stamps, which can be compared to the time-stamps of
a file to reconstruct events. This overview is the result of comparing and validating similar overviews
of past research and uncovering different variations of the file operations mentioned in those studies.

2. An analysis of time-stamp forgery, time-stamp degradation and possible transference of forged or
degraded time-stamps, which can be used to uncover if time-stamp forgery has taken place on a
system.

3. A method and structure to automate determining which file operations happened for which time-
stamps.

7

Chapter 2

Background

2.1 NTFS
The New Technology File System (NTFS) is a file system which allocates the contents of files to evenly-
sized clusters. Cluster size is determined when formatting the disk. To quickly determine which clusters
are allocated, NTFS uses a meta-data file called the bitmap (called ‘$BITMAP’ on disk) which holds a 1
(allocated) or 0 (unallocated) for every cluster [2]. File names of NTFS meta-data files always start with
a dollar sign ($), there is nothing preventing a user to create a file whose name starts with a dollar sign
however. To restore the file system to an earlier state if necessary, NTFS keeps a log file called $LogFile,
which contains before and after information of every meta-data change. $LogFile is implemented as a
circular log, which means that it has a maximum size and if a new log entry is added when the log is full,
then the oldest log entry is deleted1. NTFS contains various other meta-data files, most importantly the
Master File Table (MFT, called ‘$MFT’ on disk) which holds the meta-data of every file. When a file is
deleted in NTFS, the file is marked as deleted in the MFT. Its meta-data and contents remain to eventually
be overwritten. Thus, deleted files that have not yet been overwritten may be restored [3]. NTFS contains
much meta-data that could possibly be used to date files, deleted or not. In this research we focus on the
workings of the MFT and its contents, specifically the time-stamps.

This research focuses exclusively on NTFS. Because this is the file system used by the popular Windows
series of desktop operating systems, the newest version of NTFS (NTFS 3.1) has been in use since Windows
XP. Because NTFS is the file system used by Windows, it is an important file system from a digital forensics
perspective as most disks under investigation will use NTFS. Different file systems have different types of
time-stamps, different file operations and different behaviour by which time-stamps are changed as a result
of those file operations. Because of this, the results of this research are not applicable to other file systems.

2.2 Master File Table
The MFT is a construct in NTFS that holds the meta-data of every file on the volume. It is structured as
a series of evenly-sized entries. The default entry size is 1024 bytes (1 kB). The MFT contains only entries,
thus its size should always be a multiple of the entry size. Each file and directory on the volume has at
least one entry associated with it. The MFT is a file itself, as such the first entry contains the meta-data of
the MFT.

Entries are addressed by its index, Microsoft calls this the “file number”. Each entry also has a 2-byte
sequence number which together with the index forms the “file reference address” [2]. The first 48 bytes of
an entry form the entry header, which contains information about the entry and its contents. The entry
header has a flag which specifies if it contains a file, directory, deleted file or deleted directory. If a file or
directory is deleted then this flag is changed and the file is de-allocated. Deleted files can have their entry
overwritten and can be overwritten on disk. The entry header of a file or directory will be followed by a list

1https://github.com/jschicht/LogFileParser

8

https://github.com/jschicht/LogFileParser

of attributes, which contain the meta-data of the file or directory. Attribute names in NTFS always start
with a dollar sign.

2.2.1 $STANDARD_INFORMATION attribute
Each file or directory has one $STANDARD_INFORMATION (SI) attribute. This attribute contains
four time-stamps, these are (in the order in which they are stored): creation, write, entry modification
and access. These time-stamps might be called by different names: birth, modification, change and last
access. None of these names accurately describe the complex way in which these time-stamps are changed
by operations however (see section 7.7). An NTFS time-stamps is stored as a 64-bit value. This value
represents the positive number of one-hundred nanoseconds since 1601-01-01 00:00:00 UTC2, using the
Gregorian calendar. The start of the year 1601 was picked because the Gregorian calendar operates on a
400 year cycle and 1601 is the start of the cycle during which NTFS was created3. Storing the time-stamps
in a fixed format independent of local timezones or calendars, means that the time-stamps will not be
affected if the volume is moved between timezones or calendars. Copies of the SI time-stamps are stored in
parent directory attributes $INDEX_ROOT and/or $INDEX_ALLOCATION, these are updated for any
interaction with the file4. The SI time-stamps are displayed in local timezone and calendar, rounded down
to seconds when viewing the properties of a file in Windows Explorer, except for the entry modification
time.

2.2.2 $FILE_NAME attribute
Each file or directory has at least one $FILE_NAME (FN) attribute. This attribute contains the name of
the file or directory. FN also contains the same four types of time-stamps SI does, stored in the same order:
creation, write, entry modification and access. While these time-stamps have the same names as the SI
time-stamps, they are different and are changed differently by file operations. Multiple FN attributes can
be used to store both long and short file names, if there are multiple attributes then their time-stamps are
always equal to each other.

2.2.3 $DATA attribute
The $DATA attribute contains pointers to the clusters that hold the contents of the file. If the contents of
a file fit in the entry then they are stored directly in the $DATA attribute instead. This is called a resident
file, as the file will be resident in the MFT. If the $DATA attribute contains pointers to the allocated clusters
then the file is non-resident.

2.2.4 $MFTMirr
Because of the importance of the MFT for the NTFS file system, the first entries of the MFT are backed
up in the file “$MFTMirr” for recovery purposes. The $MFTMirr file contains copies of the first 4 entries
from the MFT by default. If the cluster size is larger than 4 times the entry size, the $MFTMirr file’s size
is equal to cluster size. The $MFTMirr file always contains as much entries as can fit into it, so a 32kB
cluster size and 1kB entry size means the $MFTMirr file holds copies of the first 32 entries of the MFT5.

2.3 File operations
File operations are any interactions with files performed by any user or any software on the computer. This
can be any reading or writing to the contents or meta-data of the file. There is no complete list of every
possible file operation. Even if there was such a list, there would be no way to verify its completeness, and

2https://docs.microsoft.com/en-us/windows/desktop/sysinfo/file-times
3https://devblogs.microsoft.com/oldnewthing/20090306-00/?p=18913
4https://github.com/jschicht/SetMace
5https://flatcap.org/linux-ntfs/ntfs/files/mftmirr.html

9

https://docs.microsoft.com/en-us/windows/desktop/sysinfo/file-times
https://devblogs.microsoft.com/oldnewthing/20090306-00/?p=18913
https://github.com/jschicht/SetMace
https://flatcap.org/linux-ntfs/ntfs/files/mftmirr.html

new file operations could emerge at any time. Many file operations change the time-stamps of a file, storing
times of operation in some time-stamps.

2.3.1 File operations considered in this research
While there are many file operations, in this research we only consider some. We want to discover what a
user might have done to a file to cause its time-stamps. Thus any file operation a user can not knowingly
perform is of no interest, neither is any file operation that does not alter or relate to time-stamps.

To reduce redundancy we do not consider file operations that consist of file operations we already
consider. Application level software uses file operations provided by the operating system to implement
their own file operations. For example: web browsers use sequences of file operations such as creating,
renaming and updating to download files. Any web browser could use the same sequence of operations,
change it in an update or use a different sequence. Furthermore, any other application software could use
the same sequence of file operations for some other functionality. Considering these file operations that
might have happened if some specific version of some specific software is used adds very little, as opposed
to only considering the sequence of file operations that has happened.

We only consider a file operation if it satisfies the following conditions:

1. The file operation should be able to be performed by a user, either through the operating system or
application software. This is because, while we are interested in how any file operation a user performs
changes time-stamps. We are not interested in the implementation details of those file operations,
which in the case of the closed-source operating system Windows we can only guess at.

2. The file operation should have some relation to time-stamps. Most file operations change some time-
stamps and thus satisfy this condition. While “Delete” does not change any time-stamps, it is still
related to time-stamps as described in the table below. If a file operation has no relation to time-
stamps, we can not gain any evidence from time-stamps to whether or not this file operation happened,
making the file operation irrelevant to this research.

3. In the group categorised by the previous conditions, file operations should not be a sequence of other
file operations. This condition reduces redundancy by getting rid of application specific file operations
that consist of file operations provided by the operating system.

We have compared all file operations found by related work and marked the file operations we will not
consider in grey in table 2.1.

10

Name Condition 1 Condition 2 Condition 3
Create A user can create a file Changes time-stamps Not a sequence of other file operations
Copy (target) A user can copy a file Changes time-stamps Not a sequence of other file operations
Copy (source) A user can copy a file No effect on time-stamps
Update A user can update a file Changes time-stamps Not a sequence of other file operations
Update using MS
Word/Office

A user can update a file using MS
Office

Changes time-stamps Is a sequence of other file operations as
shown in section 6.3

Move within vol-
ume

A user can move a file Changes time-stamps Not a sequence of other file operations

Move from another
volume (target)

A user can move a file Changes time-stamps differently
from “Move within volume”

Not a sequence of other file operations

Move from another
volume (source)

A user can move a file No effect on time-stamps

Overwriting copy A user can copy a file, overwrit-
ing another file

Changes time-stamps differently
from “Copy”

Not a sequence of other file operations

Overwriting move
within volume

A user can move a file, overwrit-
ing another file

Changes time-stamps the same
way as “Move within volume”

Is a “Move within volume”, and has the
same effect on time-stamps as shown in
section 6.2

Overwriting move
from another
volume

A user can move a file, overwrit-
ing another file

Changes time-stamps differently
from “Move” and “Move from an-
other volume”

Not a sequence of other file operations

Rename A user can rename a file Changes time-stamps the same
way as “Move within volume”

Has the same effect on time-stamps
as “Move within volume” but is not a
“Move within volume”

Attribute change A user can change an attribute
of a file

Changes time-stamps Not a sequence of other file operations

Delete A user can delete a file No file operation can happen af-
ter deletion, meaning that dele-
tion always happens after the lat-
est time-stamp

Not a sequence of other file operations

Access A user can access a file May change time-stamps, as we
show in section 7.1

Not a sequence of other file operations

Extract zip archive A user can extract a zip archive Changes time-stamps Not a sequence of other file operations if
Windows Explorer is used. Extracting
zip archives with third party software
may be a sequence of other file opera-
tions.

Upload A user can upload a file No effect on time-stamps
Download A user can download a file Changes time-stamps Is a sequence of operations depending

on the browser used, for example “Cre-
ate” and then “Update”.

Move to recycle bin A user can move a file to the re-
cycle bin

No effect on time-stamps

Move from recycle
bin

A user can move a file from the
recycle bin

Changes time-stamps Is a “Move within volume”, and has the
same effect on time-stamps

Table 2.1: After the “Overwriting move within volume” where dir1/file.txt “overwrites” dir2/file.txt.

2.3.2 Time-stamp changes
This research is about the effects of file operations on time-stamps, both the four SI time-stamps and the
four FN time-stamps. In this context, we treat file operations as an array of eight time-stamp changes
that change an array of eight time-stamps. A time-stamp change is a collection of all characteristics of the

11

resulting time-stamp after the file operation, including a reference to the source time-stamp.

12

Chapter 3

Related Work

While NTFS has had time-stamps since its inception in 1993, research into how different operations change
time-stamps did not start until 2007 when Chow et. al. [4] performed file operations and noted the change
to some specific time-stamps.

Before 2007, the cause of time-stamps was judged by the names of those time-stamps and a short
description, as Carrier [2] does in his analysis of NTFS. This is an over simplistic view however as it evokes
a lot of questions. For example, “Creation Time: The time that the file was created.”: Should the copying
of a file be considered creation? Should the moving of a file from another volume be considered creation?
Should extracting zip archives be considered creation? One could argue for any of these cases that it either
is or is not the creation of a file. Time-stamps are still judged by their names in recent research (such as in
Knutson and Carbone’s analysis of time-stamps [5] from 2016), often citing Carrier [2]. We further describe
the problems with judging time-stamps by their names in section 7.7.

According to Raghavan [6] there is widespread acknowledgement among digital forensics researchers that
research efforts should be focused at digital forensic analysis which mainly aims to reconstruct events from
time-stamps. He describes this in his study of the digital forensics state of the art. Raghavan also states
that this area of research holds much promise and is the most likely to witness developments in “the years
to come”, (Raghavan wrote this in 2012). Buchholz and Spafford [7] state that time-stamps are crucial to
event reconstruction. They suggest that time-stamps might be used to find out what file operations have
taken place per file and put them into a time-line.

While there is some research into time-stamp based event reconstruction, researchers are often unaware
of previous studies in this area causing them to unknowingly repeat work. Whenever results contradict
earlier studies, the contradiction then remains unexplained. We can only take educated guesses as to what
caused these contradictions.

3.1 File operations and their effects on time-stamps
Multiple researchers have performed file operations and read the MFT, to reconstruct events using time-
stamps. They do this to get an impression of the before and after state of these file operations. These
states are then compared to each other to find differences and explain these differences in the context of
the operation. Cho [8], Bang and Lee [9], Ding and Zou [10], Sharma and Kaur [11] all have contradicting
findings on operations’ effects on time-stamps. These contradictions are not mentioned in their studies
however.

3.1.1 Does Windows version affect time-stamps?
The related work is split on this question. Bang and Lee [9] and Sharma and Kaur [11] observe different
effects of file operations on time-stamps depending on Windows version. Ding and Zou [10] and Cho [8]
observe no difference depending on Windows version.

Bang and Lee [9] analyse file operations on 6 different versions of Windows ranging from Windows 2000
to Windows 7. Bang and Lee describe the resulting time-stamps in prior to (<) and equals relations (=)

13

to each other. They observe different effects on time-stamps depending on the Windows version used being
later than Windows XP or not. They observe that the effect on time-stamps is the same for Windows
XP and earlier versions. They observe that the effect on time-stamps is the same for Windows Vista and
later versions. Bang and Lee also state that time-stamps can be changed differently for resident files and
non-resident files.

Sharma and Kaur [11] analyse file operations on Windows XP, Windows Vista and Windows 7. They
observe differences between Windows Vista and Windows 7 for the operations “Editing in file” and “Extrac-
tion of file from compressed zipped file”. Despite citing Cho’s research they do not copy his time-stamp
change naming scheme, instead opting for more general terms to explain the time-stamps such as “Copy
time” for copy operations. For more complex operations this terminology can become confusing, for instance
they mention a "Creation time" time-stamp change for the operation “Extraction of file from compressed
zipped file”. This might mean the creation time-stamp of the archive is copied to the extracted file but
alternatively it might refer to the time that the extracted file is created. They also ignore the processing
time (∆) differences that Cho uncovered. Why they make these choices is not explained.

3.1.2 Does file type affect time-stamps?
Ding and Zou [10] analyses 12 different file operations with a total of 16 variations. Ding and Zou group files
into three categories: executable files, documents and directories. Ding and Zou claim that the effects of
operations on time-stamps are dependant on file types as well as the applications used for opening/editing
files. This claim is not supported by the other researchers, who only make a distinction between files and
directories, or none at all. Cho [8] who has also considered different file types has not found file type to
influence time-stamps.

Cho [8] identifies six different ways by which a time-stamp can change. Cho then describes the effects
of 11 different file operations by their time-stamp changes, and he describes the use of a time-stamp change
tool. He does this to compare regular file operations with time-stamps to detect forgery by time-stamp
change tools. Cho [12] also analyses the results of his table to assess if operations can be detected as being
the last performed. Cho makes no distinctions based on operating system, other than stating the known fact
that Windows Vista and Windows 7 have last access updating disabled by default as opposed to Windows
XP1. Cho does not reference the published research of Bang and Lee [9] or Ding and Zou [10].

3.1.3 Consensus on the effect of operations on time-stamps
While the different related works all have different results, there are some operations for which each of
these studies observes the same effect on time-stamps. Every study suggests that when a file is created, all
time-stamps are set to the time of creation. Furthermore each study agrees on the effects of one variation
of each file operation, however they do not agree on the cause of the variations.

3.2 Detection of forgery by comparing time-stamps
When Cho’s [8] sequence of rules based on operations effects on time-stamps is inconclusive then the $LogFile
file is read to try to find the log record of an operation that forged the time-stamps. This log record might
be easily recognised as the log record will show before and after time-stamps for the file and these can then
be compared to the effects of file operations. This might detect forgery independent of current time-stamps,
however it does depend on the forgery operation still being recorded in the $LogFile file. If the forgery
happened a long time ago then likely it will not be recorded in the $LogFile file anymore.

Willassen [13] proves that system clocks that have been adjusted back can be detected by finding events
that have a causality relation to each other and checking their time-stamps. If some event A must happen
before an event B, then the time of event A must be earlier than that of event B. If this does not hold true,
then the clock that delivered these time-stamps is assumed to be faulty. The possibility of a time-stamp
change tool being used to alter the time-stamps of event A or B is not considered however.

1https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc959914(v=technet.10)

14

Chapter 4

Methodology

To infer the effects of file operations on time-stamps, we perform file operations and read the change in
time-stamps. The only way to definitely find all possible effects of file operations on time-stamps would be
to analyse the source code of the closed-source Windows operating system. Furthermore, future versions
of Windows might change how the file operations change time-stamps or introduce new file operations. As
the source code is kept secret, we will instead reverse engineer the effects of file operations on time-stamps,
by performing file operations and reading the change in time-stamps.

4.1 MFT or $LogFile
The effect on time-stamps may be measured by reading the contents of either the MFT or $LogFile. The
MFT is where the time-stamps are stored. The time-stamps may be read before and after a file operation
is performed, to infer the effect of the file operation on the time-stamps. An MFT entry contains the file
name, this allows quickly searching the MFT for the file we are operating on.

$LogFile is an NTFS meta-data file which contains before (undo) and after (redo) information of all
recent (limited by $LogFile size) changes in meta-data. After a file operation is performed, the changes it
made to time-stamps can be read from $LogFile, to infer the effect of the file operation on the time-stamps.
A problem with using the $LogFile to read time-stamp changes is that it contains records for every change
in meta-data, while we are only interested in the change to time-stamps, which may be stored in multiple
records. This means that we will have to search for the time-stamps. Searchability of $LogFile is poor
however, as it contains only meta-data which is changed.

Reading either the MFT or $LogFile accomplishes the same goal, it provides the time-stamps before and
after the file operation is performed. Alternatively both can be read, this is the method used by Cho [8],
he has not noted any differences between MFT and $LogFile results. We focus only on the MFT as this is
where the time-stamps are stored, making it the starting point of any event reconstruction. We do not also
read $LogFile, as this redundancy has not been proven worthwhile and it would take a significant amount
of time to learn the workings of $LogFile and then read it for every experiment.

4.2 Tooling
The perfect tool to find the effects of file operations would be a tool that can perform file operations just like
a user would and read the time-stamps before and after a file operation. This tool would allow experiments
to be run as fast as the computer can handle them. However, no such tool exists. To create such a tool,
verify its correctness and then use it would take too much time, it would take far more time than performing
file operations and reading the time-stamps without such a tool.

15

4.2.1 Reading the MFT
Time-stamps can be read directly from an MFT entry where they are stored as eight bytes each in little-
endian order. These bytes hold the unsigned amount of 100 nanosecond intervals since 1601-01-01 00:00:00
UTC. While these bytes may be easily found and compared to each other, conversion is needed to read the
actual date and time stored in the bytes.

An MFT entry does not contain the path of a file, it only stores the index of the MFT entry of the parent
directory. Because of this, finding the MFT entry for a file becomes a problem when there are multiple files
with the same name.

Because of the problems with reading raw bytes and finding the right file entry, we instead use a tool
called “Mft2Csv”1 which reads an MFT and outputs a human-readable text file containing 1 line per MFT
entry. This line contains the index, sequence number, file name, file path and all eight time-stamps (and
some more meta-data irrelevant to this research). Representing time-stamps as text not only makes them
easier to read, it also allows searching for certain time-stamps.

4.3 Performing file operations and inferring their effects
To find and verify the effects of regular and irregular file operations, file operations are performed on NTFS
3.1 disks using Windows XP, Vista 7, 8 and 10. Multiple operating systems are tested because they might
differ in time-stamp determination [9]. The following cycle is repeated:

1. Optionally, we fulfill a condition that might modify the effects of a file operation on time-stamps. This
condition may relate to the operating system used, the settings of the operating system, the type of
files that are operated on or the system clock. For example: the setting of the system clock to some
future, far past or otherwise incorrect time, or changing the timezone, for testing the effects of an
incorrect system clock.

2. The MFT is read, parsed and saved before the file operation, using Mtf2Csv.

3. The file operation is performed on multiple files. The current system time is noted after starting
the operation. The files are of different types in different folders, with sizes varying from bytes to
gigabytes.

4. The MFT is read and saved after the file operation, using Mtf2Csv.

5. The before and after MFT entries are compared to each other to look for changes to sequence number,
location in the MFT and changes to time-stamps. The changes in time-stamps are examined to
determine if they fit a type, or if they hold a new type of time-stamp change. The noted times of
operation are also compared to the resulting MFT to detect any time-stamps that are earlier or later
than expected.

This cycle is then repeated with both the same and other files until each time-stamp change can be defini-
tively categorised. The cycle is then repeated again at a later time, to verify invariance of the operation
under the chosen conditions. This is done at a later time to guarantee a different system state, to test if
there are unknown factors which influence the effect of the operation on time-stamps.

All file operations that are mentioned in the aforementioned works related to this research will be tested.
To discover irregular operations, we searched for possible problems and forgery like incorrect system times
and time-stamp change tools.

4.4 Validating file operations
To verify our understanding of would-be regular and irregular time-stamps, the WildFrag database contain-
ing real-life NTFS meta-data is queried to find files that match specific time-stamp patterns. The amount
of files with that specific pattern is then explained in relation to the results of this research. This will give

1https://github.com/jschicht/Mft2Csv

16

https://github.com/jschicht/Mft2Csv

insight into how common some patterns are. This insight is invaluable when dealing with elusive seemingly
random time-stamp changes such as time-stamp degradation. Common irregular time-stamp patterns that
can not be explained mean that there are unknown file operations at play.

17

Chapter 5

The types of resulting time-stamps for
file operations

As described in section 2.2, each file has a total of eight time-stamps. Depending on the file operations that
have happened for a file, some of its time-stamps may be equal to each other. Four of these time-stamps
are stored in the standard information attribute (SI) and the other four are stored in the file name attribute
(FN). While each time-stamp has an implicit name within the attribute, respectively: creation, write, entry
modification and access, these names do not accurately reflect what happened at those times (as described
in section 7.7). For convenience, the time-stamps will be referred to by shortened names, these are:

- creation in SI: SI.C
- write in SI: SI.W
- entry modification in SI: SI.E
- access in SI: SI.A
- creation in FN: FN.C
- write in FN: FN.W
- entry modification in FN: FN.E
- access in FN: FN.A

Table 5.1: Abbreviations of time-stamp names

Each file operation results in eight time-stamps. Cho [8] identifies six different types of resulting time-
stamps. We identify an additional resulting time-stamp which is caused by file tunneling. These seven
are:

1. The start time of the file operation is written to the time-stamp (section 5.1).

2. The end time of the file operation is written to the time-stamp (section 5.2).

3. The time-stamp is left unchanged (section 5.3).

4. A time-stamp is copied from the SI attribute to the FN attribute (section 5.4).

5. A time-stamp from a different file entry is copied to the time-stamp (section 5.5).

6. A time-stamp stored in memory is transferred to the time-stamp because of file tunneling (section
5.6).

7. A time-stamp is set to an arbitrary value (section 5.7).

Every effect on a time-stamp of every known file operation can be described as these results.
Files stored in archive files or on other file systems may have time-stamps that have different precision

than NTFS. Additionally, these time-stamps may be stored in local time without specifying the timezone.

18

To account for files transferred from different file systems or archive files, we introduce modifiers to resulting
time-stamps for rounding (section 5.8) and time-zone difference (section 5.9).

5.1 The time at which the file operation starts: opStartTime
When a file operation is performed, the time at which the file operation is called may be written to time-
stamps. We call this type of resulting time-stamp opStartTime(). A file operation that is performed has
only one start time, meaning that if multiple time-stamps are set to opStartTime() by a file operation,
then they will be equal after the file operation. So if for some file operation: SI .C := opStartTime()
and SI .W := opStartTime() then SI .C = SI .W (where := denotes assignment and = denotes equality).
Table 5.2 shows time-stamps being set to opStartTime() for a create file operation performed at 2019-07-06
14:32:05.0577676.

Create at 2019-07-06 14:32:05.0577676
Time-
stamp

Before file operation resulting time-stamp After file operation

SI.C N/A opStartTime() 2019-07-06 14:32:05.0577676
SI.W N/A opStartTime() 2019-07-06 14:32:05.0577676
SI.E N/A opStartTime() 2019-07-06 14:32:05.0577676
SI.A N/A opStartTime() 2019-07-06 14:32:05.0577676
FN.C N/A opStartTime() 2019-07-06 14:32:05.0577676
FN.W N/A opStartTime() 2019-07-06 14:32:05.0577676
FN.E N/A opStartTime() 2019-07-06 14:32:05.0577676
FN.A N/A opStartTime() 2019-07-06 14:32:05.0577676

Table 5.2: This example shows time-stamps being set to opStartTime() for a create file operation performed
at 2019-07-06 14:32:05.0577676.

5.2 The time at which the file operation ends: opEndTime
When a file operation is completed, the time at which the file operation is completed may be written to
time-stamps. We call this resulting time-stamp opEndTime(). Cho [8] describes this resulting time-stamp
as opStartTime() + some processing time which may be zero. We have observed this resulting time-stamp
to write the end time of the operation. However sometimes the start time is written instead of the end time.
So the following is always true: opStartTime() <= opEndTime().

5.3 An unchanged time-stamp
When a file operation is performed, some time-stamps may be left unchanged. Table 5.3 shows time-stamps
left unchanged for an attribute change file operation performed at 2019-07-06 11:22:23.3571618.

19

Attribute change at 2019-07-06 11:22:23.3571618
Time-
stamp

Before file operation resulting time-stamp After file operation

SI.C 2009-07-14 05:32:32.0000000 SI.C 2009-07-14 05:32:32.0000000
SI.W 2019-06-16 15:23:17.6506413 SI.W 2019-06-16 15:23:17.6506413
SI.E 2019-06-16 15:23:17.9616808 opStartTime() 2019-07-06 11:22:23.3571618
SI.A 2019-06-16 15:23:17.6576422 SI.A 2019-06-16 15:23:17.6576422
FN.C 2019-06-14 12:55:30.3611443 FN.C 2019-06-14 12:55:30.3611443
FN.W 2009-07-14 05:32:31.6745400 FN.W 2009-07-14 05:32:31.6745400
FN.E 2019-06-14 12:55:30.3621444 FN.E 2019-06-14 12:55:30.3621444
FN.A 2019-06-14 12:55:30.3611443 FN.A 2019-06-14 12:55:30.3611443

Table 5.3: This example shows time-stamps left unchanged for an attribute change file operation performed
at 2019-07-06 11:22:23.3571618.

5.4 A time-stamp transferred from the SI attribute
Some file operations such as “Rename” transfer time-stamps from SI to FN. Table 5.4 shows time-stamps
being transferred from the SI attribute for a rename file operation performed at 2019-07-07 20:01:28.1003004.

Rename at 2019-07-07 20:01:28.1003004
Time-
stamp

Before file operation resulting time-stamp After file operation

SI.C 2019-07-04 18:44:49.3263725 SI.C 2019-07-04 18:44:49.3263725
SI.W 2019-07-04 18:44:49.6723923 SI.W 2019-07-04 18:44:49.6723923
SI.E 2019-07-04 18:44:49.6723923 opStartTime() 2019-07-07 20:01:28.1003004
SI.A 2019-07-04 18:44:49.3873760 SI.A 2019-07-04 18:44:49.3873760
FN.C 2019-07-04 18:44:40.0078395 SI.C 2019-07-04 18:44:49.3263725
FN.W 2019-06-23 13:18:51.8347653 SI.W 2019-07-04 18:44:49.6723923
FN.E 2019-07-04 18:44:49.3883761 SI.E 2019-07-04 18:44:49.6723923
FN.A 2019-07-04 18:44:49.3873760 SI.A 2019-07-04 18:44:49.3873760

Table 5.4: This example shows time-stamps being transferred from the SI attribute for a rename file
operation performed at 2019-07-07 20:01:28.1003004.

5.5 A time-stamp transferred from another file entry
When a file operation is performed, some time-stamps might be transferred from another file entry. We
will call this other file entry SRC. Table 5.5 shows SI.W transferred from another file entry for a copy file
operation performed from 2019-07-07 09:01:47.8710875 to 2019-07-07 09:01:47.8880884.

20

Copy from 2019-07-07 09:01:47.8710875 to 2019-07-07 09:01:47.8880884
Time-
stamp

Before file operation (source
file SRC)

resulting time-stamp After file operation (target
file)

SI.C 2019-06-23 13:17:28.7660140 opStartTime() 2019-07-07 09:01:47.8710875
SI.W 2019-06-23 13:18:53.5948659 SRC.SI.W 2019-06-23 13:18:53.5948659
SI.E 2019-06-23 13:18:53.5948659 opEndTime() 2019-07-07 09:01:47.8880884
SI.A 2019-06-29 14:37:11.3834131 opStartTime() 2019-07-07 09:01:47.8710875
FN.C 2019-06-23 13:18:51.8307650 opStartTime() 2019-07-07 09:01:47.8710875
FN.W 2019-06-23 13:18:51.8347653 opStartTime() 2019-07-07 09:01:47.8710875
FN.E 2019-06-23 13:18:53.3288507 opStartTime() 2019-07-07 09:01:47.8710875
FN.A 2019-06-23 13:18:53.3288507 opStartTime() 2019-07-07 09:01:47.8710875

Table 5.5: This example shows SI.W transferred from another file entry for a copy file operation performed
from 2019-07-07 09:01:47.8710875 to 2019-07-07 09:01:47.8880884.

5.6 A time-stamp transferred by file tunneling
When a file operation is performed, file tunneling can transfer SI.C and FN.C time-stamps from memory.
These time-stamps belonged to a file that existed with the same file name and path. We will call this
memory location TNL. Why and when file tunneling happens is described further in section 7.2. Table
5.6 shows SI.C and FN.C transferred by file tunneling for a create file operation performed at 2019-07-24
20:50:31.3366254.

Create at 2019-07-24 20:50:31.3366254 with file tunneling
Time-
stamp

Before file operation (in
memory TNL)

resulting time-stamp After file operation (target
file)

SI.C 2017-08-03 10:02:31.8012975 TNL.SI.C 2017-08-03 10:02:31.8012975
SI.W N/A opStartTime() 2019-07-24 20:50:31.3366254
SI.E N/A opStartTime() 2019-07-24 20:50:31.3366254
SI.A N/A opStartTime() 2019-07-24 20:50:31.3366254
FN.C 2017-08-03 10:02:31.8012975 TNL.FN.C 2017-08-03 10:02:31.8012975
FN.W N/A opStartTime() 2019-07-24 20:50:31.3366254
FN.E N/A opStartTime() 2019-07-24 20:50:31.3366254
FN.A N/A opStartTime() 2019-07-24 20:50:31.3366254

Table 5.6: This example shows SI.C and FN.C transferred by file tunneling for a create file operation
performed at 2019-07-24 20:50:31.3366254.

5.7 A time-stamp set to an arbitrary value
A user can use a time-stamp change tool to set time-stamps to user specified values. We call this resulting
time-stamp any(). This resulting time-stamp is due to forgery or bit-rot.

5.8 Result modifier: rounding
While NTFS stores time-stamps with a precision of 100 nanoseconds, other file systems or archives may
store files with a lower precision. A file operation may transfer these time-stamps with lower precision to
NTFS, which can be detected by the time precision of the resulting time-stamp. We introduce a function
round(resulting time-stamp, precision, type) which specifies the rounding a resulting time-stamp has and
whether it is rounded up, down or to the nearest amount. The precision is an amount of 100 nanoseconds.
For example: the FAT file system stores creation time (FATs equivalent time-stamp to SI.C) with a precision

21

of 10 milliseconds. When a FAT file is moved to NTFS, the rounding for SI.C is round(SRC.SI.C, 100000,
up). The effect of transferring files from FAT is described in further detail in section 7.3.

5.9 Result modifier: timezone difference
While NTFS stores time-stamps in UTC, other file systems or archives may store time-stamps in local
time without specifying a timezone. FAT is an example of a file system that stores time-stamps without
specifying a timezone. A file operation may transfer time-stamps from FAT to NTFS, which a Windows
system will read in its own timezone and then store in UTC. If the timezones of the systems differ, then
the time-stamp will be off by the difference. When a FAT file is moved to NTFS, the resulting time-stamp
for SI.C is round(SRC.SI.C, 100000, up) + tzd. Where tzd is the timezone difference, this is an amount
of hours that can be negative, positive or zero. Table 5.7 shows time-stamps of a FAT file operated on in
New York (UTC-5) being moved to an NTFS volume on a Windows system in the Netherlands (UTC+1),
causing the resulting time-stamps to be off by -6 hours.

Move from FAT volume from 2019-07-07 18:15:00.0481954 to 2019-07-07 18:15:00.0871976 where the
timezone of the target system is UTC+1
Time-
stamp

Before file operation (source
file SRC)

resulting time-stamp After file operation (target
file)

SI.C 2019-06-23 12:12:12.76 (set
in timezone UTC-5)

round(SRC.SI.C, 100000, up) +
tzd

2019-06-23 11:12:12.7600000

SI.W 2019-06-23 13:12:52 (set in
timezone UTC-5)

round(SRC.SI.W, 20000000, up)
+ tzd

2019-06-23 12:12:52.0000000

SI.E N/A opEndTime() 2019-07-07 18:15:00.0871976
SI.A 2019-06-29 (set in timezone

UTC-5)
opStartTime() 2019-07-07 18:15:00.0481954

FN.C N/A opStartTime() 2019-07-07 18:15:00.0481954
FN.W N/A opStartTime() 2019-07-07 18:15:00.0481954
FN.E N/A opStartTime() 2019-07-07 18:15:00.0481954
FN.A N/A opStartTime() 219-07-07 18:15:00.0481954

Table 5.7: This example shows time-stamps of a FAT file operated on in New York (UTC-5) being moved
to an NTFS volume on a Windows system in the Netherlands (UTC+1), causing the resulting time-stamps
to be off by -6 hours.

22

Chapter 6

Time-stamps as a Result of File
Operations

To discover what file operations might have happened to a file to cause its time-stamps, we consider all file
operations mentioned in related work. We have found different results for the file operations: Extract Zip
Archive, Overwriting Move Within Volume and Update MS Word/Office. The effects of file operations that
all related work agrees on and that we can reliably reproduce are not described in detail but are included
in the resulting file operation overview in section 6.3.

A file operation may have different effects on time-stamps depending on some modifiers. This chapter
is about the base effect of file operations on time-stamps, chapter 7 describes the different modifiers that
file operations can have and their effects. For convenience, the overviews of base operations and modifiers
are bundled together in appendix B.

6.1 Extracting zip archives using Windows Explorer

Figure 6.1: Change in time-stamps when extracting a zip file using Windows Explorer in Windows 7. The
original time-stamps are show on the left, the time-stamps after zipping and extracting are shown on the
right. The time-stamp transferred from the original file is marked in grey.

When extracting zip archive files with Windows Explorer, SI.C, SI.W and SI.A are set to the SI.W
(modification time for other file systems) of the archived file rounded up to the nearest even number of
seconds. This is because by default zip files store only SI.W with 2 second precision. This operation is
illustrated by Figure 6.1, where the effect of a zip extraction at 2019-06-14 12:57:32.0431041 are shown. The
SI.W in the zip file is not stored in UTC and thus can suffer from timezone differences, leading to time-
stamps that are possibly off by any amount of hours. Because the time-stamps are rounded on 2 seconds
exactly while NTFS has a precision of 100 nanoseconds, an extracted time-stamp can be detected by its 2
second precision. However, every other time-stamp will have a 1/20,000,000 chance of a false positive. The
FN time-stamps are all set to opStartTime() while SI.E is set to opEndTime().

23

Figure 6.2: Time-stamp change observed by Sharma and Kaur on Windows 7. As taken from “Time Rules
for NTFS File System for Digital Investigation” [11].

Figure 6.3: Time-stamp change observed by Sharma and Kaur on Windows Vista and Windows XP. As
taken from “Time Rules for NTFS File System for Digital Investigation” [11].

While Sharma and Kaur [11] observed a difference between extracting zip files on Windows 7 (see Figure
6.2) and extracting zip files on XP or Vista (see Figure 6.3), we have not observed any difference. We used
Windows Explorer for extracting zip files on Windows Vista, Windows XP and Windows 7, with equal
results. As Sharma and Kaur have not mentioned the application used for zip extracting it is possible
that they might have used a third party program on Windows 7, as we have only observed extraction
using Windows Explorer to have a unique effect. When the zip is extracted with WinRAR (not a part of
Windows) it is treated as a regular copy operation, it still has the same problems inherent to zip archives
however (2 second precision and timezones).

6.2 Overwriting move within volume
When a file is moved within the same volume to overwrite another file, it does not actually overwrite the
target file or file entry. Instead the target file is marked as deleted and the source file is then moved within
the volume, without file tunneling. After an “Overwriting move within volume” the target file and file entry
are only de-allocated, while any other overwriting operation would overwrite the target file and file entry.

Tables 6.1 and 6.2 serve as an example, they show the before and after state of file dir1/file.txt at MFT
index 45 “overwriting” dir2/file.txt at MFT index 63.

Performing “overwriting move within volume”
MFT index Deleted Path File operation performed
45 Not deleted dir1/file.txt Move within volume
63 Not deleted dir2/file.txt Delete

Table 6.1: Before the “Overwriting move within volume” where dir1/file.txt “overwrites” dir2/file.txt.

24

After “overwriting move within volume”
MFT index Deleted Path File operation performed
45 Not deleted dir2/file.txt Moved within volume
63 Marked as deleted dir2/file.txt Deleted

Table 6.2: After the “Overwriting move within volume” where dir1/file.txt “overwrites” dir2/file.txt.

6.3 Update MS Word/Office
We have found that when updating a file with Microsoft Word, that file is actually deleted and a new file
is made. This is because the “’safe save method” is used, this method of updating files does not alter the
original file but creates a new one and writes the updated data to the new file. The creation time-stamps
are unchanged, the other time-stamps are set to near operation time and always SI.A = FN.A < SI.W =
FN.W < FN.E < SI.E.

This is what could have led to these time-stamps:

1. source file has its name changed to "W̃RL0001.tmp"

2. new file is created with file tunneling from source file

3. update

4. attribute change

5. rename

This would lead to a new copy of the file with the same name where always SI.A = FN.A < SI.W =
FN.W < FN.E < SI.E. Because updating a file using MS Office is made up of different operations, it will
be excluded from the file operation overview. updating a file using MS Office does not have a unique effect
on time-stamps and thus can not be reliably detected. Other software could be using the same updating
method.

6.4 Overview of time-stamp changes by operations
The following overview (table 6.3) contains the resulting time-stamps for the unmodified file operations.
These are the effects on time-stamps of files (not directories) if last access update is disabled, files are not
transferred from other file systems, no file tunneling takes place and the SI.E quirk (section 7.4) does not
happen. Some file operations and time-stamps can be affected by these modifiers. The different modifiers
are described in chapter 7. For convenience, the overviews of the base file operations and all modifiers are
grouped together in appendix B.

25

Operation Resulting time-stamps
SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Create opStartTime() opStartTime() opStartTime() opStartTime()
opStartTime() opStartTime() opStartTime() opStartTime()

Copy opStartTime() SRC.SI.W opEndTime() opStartTime()
opStartTime() opStartTime() opStartTime() opStartTime()

Update SI.C opEndTime() opStartTime() SI.A
FN.C FN.W FN.E FN.A

Move SI.C SI.W opEndTime() SI.A
Within volume SI.C SI.W SI.E SI.A
Move SRC.SI.C SRC.SI.W opEndTime() opStartTime()
From another volume opStartTime() opStartTime() opStartTime() opStartTime()
Overwriting copy SI.C SI.W SI.E SI.A

FN.C FN.W FN.E FN.A
Overwriting move SRC.SI.C SRC.SI.W opStartTime() SI.A
From another volume FN.C FN.W FN.E FN.A
Rename SI.C SI.W opStartTime() SI.A

SI.C SI.W SI.E SI.A
Attribute change SI.C SI.W opStartTime() SI.A

FN.C FN.W FN.E FN.A
Delete SI.C SI.W SI.E SI.A

FN.C FN.W FN.E FN.A
Access SI.C SI.W SI.E SI.A

FN.C FN.W FN.E FN.A
Extract zip file round(SRC.SI.W,

20000000, up) + tzd
round(SRC.SI.W,
20000000, up) + tzd

opEndTime() round(SRC.SI.W,
20000000, up) + tzd

opStartTime() opStartTime() opStartTime() opStartTime()

Table 6.3: The unmodified effects of file operations on time-stamps.

26

Chapter 7

Modifiers to the Effects of File
Operations on Time-stamps

To be able to find the operations that have happened to cause some time-stamps. We need to consider
every possible effect the operation might have on time-stamps.

The effect of a file operation on time-stamps may be influenced by modifiers. A modifier overwrites
some resulting time-stamps for some operations. The known modifiers are:

1. Last access updating (section 7.1) can be disabled or enabled in Windows by editing a registry key,
its default values differ per Windows version. This modifier only affects (SI.A). Last access updating
is a widely known modifier [8][9][10]. However, no research analyses the effect of last access updating
on time-stamps in detail for every file operation.

2. File tunneling (section 7.2) saves information of a file that is renamed, relocated or deleted. Among
this information are the SI.C and FN.C time-stamps which may be written to a new file which has
the same path and name as the old one. File tunneling can be replicated reliably on all versions of
Windows [1]. However, no research analyses the effect of file tunneling on time-stamps in detail for
every file operation.

3. Transferring files from other file systems (section 7.3) can cause timezone differences and can be
detected by rounded time-stamps. This is because other file systems use different time-stamp precision
and might not store or enforce a timezone. We consider all file systems supported by Windows at time
of writing, these are: FAT and exFAT. Other file systems can only be read by third party software,
considering all these file systems and third party software is outside of the scope of this study.

4. We have found a quirk (section 7.4) where sometimes copying or moving from another volume leaves
SI.E unchanged. Unfortunately we have not been able to unearth the cause for the quirk.

The modifiers are not mutually exclusive, except perhaps for the quirk which has proven difficult to
reproduce. This means that if a file is copied from FAT while last access updating is enabled and file
tunneling happens, then the resulting time-stamps are affected by all these three modifiers.

There are contradictory results in past research relating to whether the effect of file operations might
be modified by the type of file operated on (section 7.5) or the version of Windows used (section 7.6). We
investigate these claims and compare the results of past research with our own.

7.1 Last access updating

27

Figure 7.1: Change in time-stamps when accessing a file by reading its properties, with NtfsDisableLastAc-
cessUpdate set to false. The original time-stamps are show on the left, the time-stamps after access are
shown on the right. The changed time-stamps are marked in grey.

Whenever a file is accessed, which is a broad term used to describe any kind of reading information from
the file, the value of the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem\NtfsDisableLastAccessUpdate
registry key will determine if SI.A is updated to time of operation [4]. In Windows Vista, Windows 7, Win-
dows 8 and early versions of Windows 10 this is set to 1 (true) by default, which means that the access time
will remain unchanged when accessing files. Figure 7.1 shows the change in time-stamps for a file accessed
at 2019-06-15 18:40:16.4897393, with the registry key set to false.

In Windows 10 with update "Redstone 4" and later, the system determines the value of the registry key
during booting by default. If the system volume (where Windows is installed) is 128GB or smaller in size,
then it is set to 0x80000002 during system booting which enables last access updates. If the system volume
is larger than 128GB it is set to 0x80000003, which disables last access updates. A user can turn off the
system management by setting it to 0x80000000 (last access update enabled) or 0x80000001 (last access
update disabled) 1.

If the registry key is set to anything other than 1, 0x80000002 or 0x80000003 then the registry key has
been changed by a user. If the registry key is changed by the user then this might be a weak attempt at
forgery. However if it is set to any of the default values, the registry key might have been changed and
reset. The system disk might also have changed over time, leading to changes in the registry key. Thus we
can not assume that the value has not been changed any number of times. This is why we can not consider
either the access operation with or without update to be indicative of forgery attempts.

Figure 7.2: Delayed change in time-stamps when accessing a file by opening it, with NtfsDisableLastAcces-
sUpdate set to false. The original time-stamps are show on the left, the time-stamps after access are shown
on the right. The changed time-stamps are marked in grey.

The last access update can be delayed up to an hour 2, when the access time-stamp is then updated it is
set to the original operation time. A delayed update is treated as an attribute change operation, meaning
that SI.E will hold the time after delay. Figure 7.2 shows the change in time-stamps for a file accessed at
2019-06-15 18:40:04.2021790, with the registry key set to false and the access update delayed till 2019-06-15
18:40:07.7711322. The last access update might in some cases not happen at all, even if the registry key is
set to false.

When an operation is performed the file might be accessed before or after the operation. A file will be
accessed before: moving within volume, changing an attribute or deleting. A file will be accessed after:
updating or extracting from zip. Some operations do not have an associated separate access operation, but
have different resulting time-stamps if last access update is enabled. For the operations copy, update, move,

1https://dfir.ru/2018/12/08/the-last-access-updates-are-almost-back/
2https://docs.microsoft.com/en-us/windows/desktop/sysinfo/file-times

28

https://dfir.ru/2018/12/08/the-last-access-updates-are-almost-back/
https://docs.microsoft.com/en-us/windows/desktop/sysinfo/file-times

overwriting copy and overwriting move, the access time is set to the latest time of operation if last access
update is enabled.

Table 7.1 shows the resulting time-stamps and file operations affected by the modifier. Resulting time-
stamps marked “...” are the same as in the base operation overview 6.3.

Last access updating enabled
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Copy opEndTime()
...

Update opEndTime()
...

Move opEndTime()
From another volume
Overwriting copy opStartTime()

...
Overwriting move opStartTime()
From another volume
Access opStartTime()

...

Table 7.1: The effects of having last access update enabled on time-stamps for file operations. Resulting
time-stamps marked “...” are the same as in the base file operation overview 6.3.

7.2 File tunneling
When a file has its short name changed, is copied, is moved or is deleted: the full path, short name (prior
to name change) and SI.C are kept in memory for some time (15 seconds by default) 3. If within this time
another file is created or modified to have the same short name and path. Then this file has both its SI.C
and FN.C set to the SI.C in memory.

File tunneling is done to support the “safe save method”3. This is a method of updating a file, which
does not alter the original file. In this method, a new file is created and the updated data is written to this
new file, and only then is the old file is deleted. Renaming is done to either the new or old file so they can
exist at the same time and the new file gets the name of the old file. Because of file tunneling, updating a
file with the safe save method keeps the creation time of the original file.

File tunneling can happen for the following operations: “create”, “copy”, non-overwriting “move in the
same volume” and “file name change”. For non-overwriting “move in the same volume” and “file name
change”, the FN.C is not tunneled however. It has been proven that ignoring file tunneling can lead to
incorrect conclusions regarding time-stamps [1]. File tunneling does not happen for directories.

The maximum amount of files tunneled at the same time can be changed by creating the registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem\MaximumTunnelEntries,
setting it to 0 will disable file tunneling. The time frame in which tunneling can happen (15 seconds by
default) can be changed by creating the registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem\MaximumTunnelEntryAgeInSeconds.

Tunneling might be proven by finding the file that was tunneled from. The only other regular operations
that can result in multiple files having the exact same creation time are extract zip file and the FAT
related operations (due to rounding inaccuracies). So if multiple files have the same creation time-stamp
not rounded on 10 milliseconds, tunneling must have taken place.

3https://df-stream.com/2012/02/file-system-tunneling-in-windows/

29

https://df-stream.com/2012/02/file-system-tunneling-in-windows/

Table 7.2 shows the resulting time-stamps and file operations affected by the modifier.

File tunneling
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Create TNL.SI.C
TNL.FN.C

Copy TNL.SI.C
TNL.FN.C

Move TNL.SI.C
In the same volume
Rename TNL.SI.C

...

Table 7.2: The effects of file tunneling on time-stamps for file operations. Resulting time-stamps marked
“...” are the same as in the base file operation overview 6.3.

7.3 Transferring files from other file systems
FAT

FAT (File Allocation Table) is a file system which has the following time-stamps: Creation (SI.C equivalent),
Modification (SI.W equivalent), Access (SI.A equivalent). FAT has varying precision for the creation,
modification and access time-stamps. The creation time is stored with 10 millisecond precision. The
modification time is stored with 2 second precision. The access time is stored with 1 day precision, it
can not be transferred to NTFS however. A creation or modification time-stamp can thus be detected as
originating from a FAT file system. However because any operation could lead to a time-stamp with this
exact precision, there exists the chance of a false positive. Each file will have a 1/100,000 false positive
chance for creation time and 1/20,000,000 for modification time.

FAT time-stamps do not store any timezone information, nor is any timezone enforced. Because of this
timezone differences might arise when FAT files are read in a different timezone or transferred to a different
timezone.

Table 7.3 shows the resulting time-stamps and file operations for a file transfer from FAT.

30

Transfer from FAT
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Copy ... round(SRC.SI.W,
20000000, up) + tzd

... ...

...
Move round(SRC.SI.C,

100000, up) + tzd
round(SRC.SI.W,
20000000, up) + tzd

... ...

From another volume
Overwriting copy ... round(SRC.SI.W,

20000000, up) + tzd
... ...

...
Overwriting move round(SRC.SI.C,

100000, up) + tzd
round(SRC.SI.W,
20000000, up) + tzd

... ...

From another volume

Table 7.3: The effects of transferring from FAT on time-stamps for file operations. Resulting time-stamps
marked “...” are the same as in the base file operation overview 6.3.

exFat

exFat (Extended File Allocation Table) is a variant of FAT file systems, which solves some of the problems
inherent to FAT. exFAT has the same time-stamps as FAT: Create (SI.C), Modification (SI.W) and Access
(SI.A). Unlike FAT, exFAT stores time-stamps in UTC, avoiding unknown timezone differences. Further-
more, exFAT has a modification time (SI.W) precision of 10 milliseconds, as opposed to FAT’s 2 second
precision. The access time is stored with 2 second precision in exFAT, it can not be transferred to NTFS
however.

Table 7.4 shows the resulting time-stamps and file operations for a file transfer from exFAT.

Transfer from exFAT
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Copy ... round(SRC.SI.W,
100000, up)

... ...

...
Move round(SRC.SI.C,

100000, up)
round(SRC.SI.W,
100000, up)

... ...

From another volume
Overwriting copy ... round(SRC.SI.W,

100000, up)
... ...

...
Overwriting move round(SRC.SI.C,

100000, up)
round(SRC.SI.W,
100000, up)

... ...

From another volume

Table 7.4: The effects of transferring from exFAT on time-stamps for file operations. Resulting time-stamps
marked “...” are the same as in the base file operation overview 6.3.

31

7.4 Unexpected behaviour of SI.E
There is a quirk in Windows where SI.E does not get updated for a period of time. This behaviour was
encountered on a Windows 10 system for the operations: copy and move from another volume. The origin
of the quirk is unknown at this point, the system in question did not have the quirk before or after. All
other time-stamps were updated as expected.

Table 7.5 shows the resulting time-stamps and file operations affected by the quirk.

Quirk
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Copy SRC.SI.E ...
...

Move SRC.SI.E ...
From another volume

Table 7.5: The effects of the quirk on time-stamps for file operations. Resulting time-stamps marked “...”
are the same as in the base file operation overview 6.3.

7.5 Operations per file type
It has been suggested that file type influences the time-stamp change pattern.

7.5.1 Executable files
Ding and Zou [10] observe that executable files have SI.E changed differently from other files. They note
that the operations “Copy” and “Inter-volume move” update the SI.E time to time of operation for other
files, but not for executables. However when we copy and move executables and other files across volumes
the SI.E time is updated for either type of file. Ding and Zou might have stumbled upon the same quirk
that we did and thought it to be related to the file type. This likely means that the quirk happens more
often for some systems as it has proven elusive to us.

Ding and Zou also note a difference for the operation “Touch” where .exe files have their SI.E set to time
of operation, while other files have their SI.E unchanged. The operation “Touch” is not described, but we
have not found running or looking at the properties of .exe files to have an effect on the SI.E time-stamp.
It is possible that touching the file caused an attribute to change which sets SI.E to operation time. This
might have been caused by a short delay in the last access update.

7.5.2 Directories
For directories we have found the same time-stamp effects for operations as Ding and Zou [10] have. File
operations have the same effect on directories, except for the update operation. Furthermore directories
can not overwrite each other, they can only combine. When two directories are combined, files are copied
or moved from one directory to the other. This is an update operation for the directory. Directories are
not extracted from zip archives either. Instead, the directories are newly created and updated when a zip
archive is extracted.

Table 7.6 shows the resulting time-stamps for file operations preformed on directories.

32

Is directory
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Update opEndTime()
...

Overwriting copy N/A N/A N/A N/A
N/A N/A N/A N/A

Overwriting move N/A N/A N/A N/A
From another volume N/A N/A N/A N/A
Extract zip file N/A N/A N/A N/A

N/A N/A N/A N/A

Table 7.6: The effects of file operations on the time-stamps of directories. Resulting time-stamps marked
“...” are the same as in the base file operation overview 6.3.

7.6 Operations per operating system
It has been suggested that time-stamp calculation is done differently per operating system. Bang and Lee
[9] have noted differences between Windows XP and later versions of Windows. We have confirmed the
invariance of their results. Most of these differences are related to the NtfsDisableLastAccessUpdate registry
key however, as it is set to 0 by default in Windows XP as opposed to Windows Vista and Windows 7.

Sharma and Kaur [11] have noted differences between Windows XP, Windows Vista and Windows 7.
They observed differences between time-stamp updating in Windows Vista and Windows 7 for “Editing in
file” and “Extraction of file from compressed zipped file”, however we have not seen any difference when
performing these operations on Windows Vista and Windows 7. They suggest that “Editing in file” does
not update the SI.W time in Windows Vista, we have not been able to reproduce this however.

Both Bang and Lee and Sharma and Kaur have observed that when copying a file or moving a file
between volumes on Windows XP, SI.E is set to tEsrc. We have confirmed this effect on Windows XP. This
can be explained as the quirk happening more often or always on Windows XP.

To conclude: we have not observed any difference in the effects of file operations across Windows versions
newer than Windows XP. Furthermore, the differences between Windows XP and later Windows versions
might be the result of the default setting of NtfsDisableLastAccessUpdate and a higher frequency of the
quirk in Windows XP.

7.7 Accuracy of time-stamp names
Now that all file operations and modifiers can be considered, we can ascertain the accuracy of the names
and descriptions given to the time-stamps by past research. We will not consider the FN time-stamps as
past research already recognises that the names and descriptions of the time-stamps are not applicable to
the FN time-stamps as FN time-stamps are calculated differently [2][5]. Carrier [2] defines the time-stamps
as follows:

• Creation Time (SI.C): “The time that the file was created.”

• Modified Time (SI.W): “The time that the content of the $DATA or $INDEX attributes was last
modified.”

• MFT modified Time (SI.E): “The time that the metadata of the file was last modified.”

• Accessed Time (SI.A): “The time that the content of the file was last accessed.”

33

Creation Time (SI.C)

To verify the following: “This is the time the file was created.”, we must first define “created”. Oxford
English Dictionary defines “creation” as “The action or process of bringing something into existence.”. In
this case either the file or the file entry must be brought into existence at the time of SI.C.

SI.C is not the time that a file entry was brought into existence, as moving files from other volumes
leaves SI.C unchanged.

SI.C is not the time that a file was brought into existence either. When a file is copied then SI.C of
the new file is updated as it should because a new file is brought into existence. However, when a file
is extracted from a zip archive then SI.C of the extracted file becomes SRC.SI.W, which is unrelated to
creation. Furthermore any file tunneling causes SI.C to become TNL.SI.C which is related to the creation
of an arguably different file.

Modification Time (SI.W)

The description: “The time that the content of the $DATA or $INDEX attributes was last modified.” is
true for NTFS, only updating the contents of the file will update SI.W. However, if a file is transferred from
another file system then it would not have had a $DATA or $INDEX attribute to modify.

MFT modified Time (SI.E)

The description: “The time that the metadata of the file was last modified.”, is false whenever the quirk
(section 7.4) happens.

Accessed Time (SI.A)

SI.A is described as: “The time that the content of the file was last accessed.”. This is only true if the
NtfsDisableLastAccess registry key is false however, and even then last access updating might not always
happen.

Conclusion

There is some truth to the names and descriptions of the time-stamps. However, the names and descriptions
provide a simplistic view which allows room for interpretation and error. In real forensic investigation these
simplified names and descriptions should be avoided as they fall short of the detail gained by considering
individual file operations.

34

Chapter 8

Time-stamp Forgery and Degraded
Time-stamps

Time-stamp based event reconstruction might be hindered or misled by time-stamps that have been forged
or affected by bit-rot. Time-stamps that are forged or degraded may match no file operations at all.
Alternatively, these time-stamps will match file operations that may not have happened with the wrong
times.

Time-stamp forgery can be done by either changing time-stamps directly to some user-specified value
(section 8.1) or by adjusting the system clock to an incorrect time before performing operations.

Time-stamp changing is a powerful anti-forensics tool that if used correctly can fool forensic investigators
into assuming operations picked by the forger happened at times defined by the forger. We will describe
the three ways to change time-stamps, and their accompanying tools.

Adjusting the system clock is also a powerful tool to hinder forensics. As long as a clock is only adjusted
forward, the time-stamps will still accurately show what file operations took place only at the wrong times.

Bit-rot can also affect time-stamps, hindering digital forensic investigation or causing investigators to
draw wrong conclusion. Knowing the possible impact of forgery and bit-rot on the time-stamps of a file will
allow us to determine detectability. If forgery and bit-rot can be detected, then wrong conclusions can be
avoided.

Possible transference of forged or degraded time-stamps from a different volume is also considered. If
a time-stamp is forged or degraded then it will be interesting to know where the forging or degradation
happened. Especially in the case of forgery where a suspect could get blamed for forgery someone else might
have committed.

8.1 Changing time-stamps to user-specified values
Changing the time-stamps to user-specified times is the only way to set time-stamps to times unrelated to
any time of operation. The resulting time-stamps might help to possibly detect the time-stamp forgery if
they are set to some impossible or suspicious value. However, because they are not related to any operation
time, time-stamps forged by a time-stamp change tool can not provide any other information.

8.1.1 The SetFileTime system call
The Windows system call “SetFileTime” can set the SI.C, SI.W and SI.A time-stamps to specified values1.
This system call will set SI.E to opStartTime().

Most time-stamp change tools use this system call to set time-stamps and are thus limited to changing
SI.C, SI.W and SI.A. They also have another limitation not imposed by the system call, all these time-stamp
change tools use second precision. This means that resulting time-stamps will be rounded on seconds.

1https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfiletime

35

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfiletime

Rounding on seconds for SI.C and SI.W also happens for transferring from FAT, exFAT or zip archive.
However the only modified or unmodified file operation that rounds SI.A on seconds is extract zip archive,
which rounds SI.A on an even number of seconds. Thus time-stamps rounded on an uneven number of
seconds should be seen as suspicious, especially SI.A. The reason that these tools all use second precision is
perhaps that the more precise time-stamp information is hidden when looking at files in Windows Explorer.

Table 8.1 shows the resulting time-stamps for time-stamp change tools using SetFileTime, and the po-
tential of SetFileTime.

SetFileTime
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Time-stamp change tool round(any(),
10000000, nearest)

round(any(),
10000000, nearest)

opStartTime() round(any(),
10000000, nearest)

FN.C FN.W FN.E FN.A
Potential any() any() opStartTime() any()

FN.C FN.W FN.E FN.A

Table 8.1: The effect of using SetFileTime to forge time-stamps.

8.1.2 the undocumented NtSetInformationFile system call
The officially undocumented Windows system call “NtSetInformationFile” can set all SI time-stamps to
user-specified values2. The time-stamp change tool Timestomp is the only known tool that uses this system
call3. Timestomp suffers from the same limitation as previous time-stamp change tools however, it can only
set time-stamps with one second precision. These time-stamps are even more suspicious as there is no file
operation that rounds SI.E.

Table 8.2 shows the resulting time-stamps for time-stamp change tools using NtSetInformationFile, and
the potential of NtSetInformationFile.

NtSetInformationFile
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Timestomp round(any(),
10000000, nearest)

round(any(),
10000000, nearest)

round(any(),
10000000, nearest)

round(any(),
10000000, nearest)

FN.C FN.W FN.E FN.A
Potential any() any() any() any()

FN.C FN.W FN.E FN.A

Table 8.2: The effect of using NtSetInformationFile to forge time-stamps.

NtSetInformationFile can not change the FN time-stamps. However, all time-stamps can be set to user
specified values by the following steps4:

1. Use NtSetInformationFile to set all SI time-stamps to desired FN values.

2. Move the file within the volume or change the file name, to copy the SI time-stamps to the FN
time-stamps.

2https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%
2FFile%2FNtSetInformationFile.html

3https://www.forensicswiki.org/wiki/Timestomp
4https://www.forensicswiki.org/wiki/Timestomp

36

https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FFile%2FNtSetInformationFile.html
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FFile%2FNtSetInformationFile.html
https://www.forensicswiki.org/wiki/Timestomp
https://www.forensicswiki.org/wiki/Timestomp

3. Use NtSetInformationFile to set all SI time-stamps to desired values.

Detecting this 3-step time-stamp forgery might require more information than only time-stamps, as all the
time-stamps can be forged to appear legitimate (apart from possible second precision when using any tools
available at time of writing).

8.1.3 Editing the raw time-stamps data in the MFT to change time-stamps
While Windows protects NTFS meta-data files, using a different operating system the MFT of a disk can be
modified directly. Alternatively, an experimental tool inspired by Timestomp called “SetMace”5 can change
all time-stamps (SI and FN) to user specified values, with maximum NTFS precision (100 nanoseconds).
This tool works by writing directly to physical disk, thus circumventing operation system and file system
security. The copies of the SI time-stamps stored in parent directory attributes $INDEX_ROOT and/or
$INDEX_ALLOCATION, are also changed by SetMACE. Windows has protections in place against writing
to physical disk and as such SetMACE has to circumvent these protections, at time of writing it uses a
kernel mode driver for this.

Table 8.3 shows the resulting time-stamps for editing the raw time-stamp data in the MFT.

Editing the raw data of the MFT
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Editing raw time-stamps any() any() any() any()
any() any() any() any()

Table 8.3: The effect of editing the raw time-stamps.

Because the raw MFT data is edited circumventing any logging by Windows or NTFS, no record of it
will exist anywhere. However, if $LogFile still contains some record of the old time-stamps then it is clear
that an unlogged impossible time-stamp change happened to lead to the current time-stamps.

8.1.4 Detection
Because most time-stamp change tools work with 1 second precision, time-stamps that are rounded on
seconds should be considered suspicious. Especially if the same time-stamps are not rounded on 2 seconds
as well, meaning they can not originate from a zip file or FAT modification time.

Time-stamps that do not match regular non-forging file operations could be the result of forgery. These
time-stamps could be matched against the possible forging operations. However, editing raw time-stamps
will match any time-stamps as it is always a possibility.

If there are still time-stamps before the time-stamp change present then Cho’s [8] method can be used
which uses the $LogFile to detect forgery by time-stamp change tool. This method requires the time-stamp
change tool changes to still be logged in $LogFile, which is bounded and overwrites old records with new
ones.

If time-stamps forged by a time-stamp change tool match a series of non-forging file operations, have
time-stamps that are neither impossible nor rounded on seconds, with the evidence of forgery overwritten
in $LogFile then these forged time-stamps can not be detected.

8.2 Changing the system clock
When a regular file operation is performed, some time-stamps will be set to opStartTime() or opEndTime().
These are the time values the clock has when the operation is performed, if the clock is set to the wrong
time then these time-stamps will be set to the wrong time as well.

5https://github.com/jschicht/SetMace

37

https://github.com/jschicht/SetMace

Detection

If an incorrect clock is ideal (never moving back) then the time-stamps will seem formed by regular file
operations. If the clock is moved back then files can have time-stamps where a time of operation is lower
than an unchanged time which might be detected as time-stamps not formed by regular file operations.
Furthermore, if $LogFile holds time-stamps from before and after the moving back of the clock, this can
easily be detected by the jump back in time. If a clock is moved back or forward to impossible times this
can easily be detected as time-stamp forgery, because the time-stamps will have impossible values.

8.3 Time-stamp degradation

Figure 8.1: Time-stamps of an $MFT file created at 2015-10-23 22:32:42.4215809 where the FN.W has
degraded. The degraded time-stamp is marked in grey.

Bit-rot on disk might cause time-stamps to degrade. If only the time-stamp is affected then the structure
of the MFT entry is still correct and the signature of the entry will not indicate any problems. We have
encountered degraded time-stamps. Figure 8.1 shows the time-stamps of an $MFT file created at 2015-10-
23 22:32:42.4215809 where the FN.W has degraded. While the time-stamps might not seem related to one
another, 2015-10-23 22:32:42.4215809 is actually written on disk as 0x0175 28BB E20D D101, while 7857-
04-01 04:03:30.2301953 is written on disk as 0x0175 28BB E20D 661B (NTFS stores time-stamps in little
endian byte order). Only the last 2 bytes of the FN.W time-stamp have degraded in this case. Interestingly,
the MFT mirror $MFTMirr has the exact same time-stamps, it seems that one of these files mirrored the
degraded time-stamp from the other.

Degraded time-stamps can possibly be detected by looking at the $LogFile if the time-stamps have
changed recently. If $LogFile still contains some record of the undegraded time-stamp then it is clear that
an unlogged impossible time-stamp change happened to lead to the current time-stamps.

The real danger of degraded time-stamps are the least significant bytes. While degradation in the most
significant bytes is easily detected due to the time-stamp having some impossible future or far past value,
degradation in the least significant byes is more subtle. As mentioned earlier, NTFS stores time-stamps in
8 bytes containing 100 nano second intervals since 1601 01-01. The least significant 4 bytes contain half of
the time-stamp but only store 2(̂4*8) - 1 = 4294967295 100 nanosecond intervals. This amounts to a mere
429.4967295 seconds, which means that when time-stamp degradation happens, half the time it will change
time-stamps by less than 430 seconds. This small change in a time-stamp will likely not be detected and
the time-stamps might be matched with the wrong file operation.

8.4 Origins of irregular time-stamps
As time-stamps are associated with files, the time-stamps can be carried over between volumes or systems.
This can happen for any operation that transfers files across volumes and copies time-stamps from other
file entries (SRC).

• SI.C can be transferred by moving a file from another volume (overwriting or non-overwriting) or
extracting a zip file.

• SI.W can be transferred by copying, moving from another volume (both operations overwriting or
non-overwriting) or extracting a zip file.

• SI.E can be transferred by copying or moving from another volume if the quirk occurs.

38

• SI.A can be transferred by extracting a zip file.

• The FN time-stamps can all be copied over from SI and thus time-stamps transferred from other
systems could wind up in the FN attribute by renaming the file or moving it within volume.

The most difficult time-stamps to transfer are thus SI.A and FN.A. If SI.A or FN.A does not have 2 second
precision then it is not extracted from a zip file which means that according to all known file operations it
could not be transferred from another system. This means that if SI.A or FN.A has some impossible value
that is not rounded on 2 seconds then that value must have originated on the current volume.

Using the time-stamps of the $MFT file to detect forgery or degradation

When an NTFS volume is formatted, the $MFT file is created and in accordance with the “Create” file
operation all time-stamps are set to time of operation. However, the $MFT file is special in that it will
never have its time-stamps updated, no matter how many times it is modified. This means that time-stamps
that do not originate on some other volume should always be later than those associated with the $MFT
file.

8.5 Conclusion
The MFT is limited in the information it contains about the time-stamps, this also limits its ability to detect
forgery or degradation. $LogFile is perhaps a better tool to detect forgery or degradation as it contains
past time-stamps, however, $LogFile contains only recent changes.

The time-stamps in the MFT are far more useful to detect if forgery or degradation have most likely
not taken place. If the time-stamps match file operations, are not impossible times and are not rounded on
seconds (unless the matched file operations round the time-stamps on seconds) then there is no indication
that forgery or degradation have taken place.

39

Chapter 9

Investigating Time-stamps in the
Wildfrag Database

Real-life data collected by our supervisors is searched for time-stamps that match with certain regular or
forging file operations. Doing this we can ascertain the frequency of certain file operations and time-stamp
degradation. Knowing how frequent time-stamps degrade provides insight into the impact of time-stamp
degradation. By extension, this provides insight into the reliability of time-stamps themselves. We can also
find out how often the quirk occurs, of which we have not been able to uncover the cause.

9.1 WildFrag database
To aid digital forensic research, Vincent van der Meer has composed a database with file meta-data of 220
student volunteer laptops running the Windows operating system. The Wildfrag database composed by
Vincent van der Meer contains file meta-data of 100,014,916 files across 729 NTFS volumes on 220 student
volunteer laptops. As the volunteer students are presumably innocent of time-stamp forgery, their time-
stamps can be used to gain insight into the commonality of future and far past time-stamps on the average
volume.

While WildFrag was intended for research into file fragmentation, the SI time-stamps are included in the
database. The start time of the disk reading run is also stored in the database which will allow comparing
with SI time-stamps to find time-stamps that were in the future at read time. Because of the tooling used for
reading the laptops (The Sleuth Kit1 and Fiwalk2), the time-stamps have been converted to UNIX Epoch
times. This means that the time-stamps are rounded on seconds and have a range of 1901-12-13 20:45:52
to 2038-01-19 03:14:07, the time-stamps outside this range are nulls in the database. It should be noted
that at time of writing there was a mix-up with signed and unsigned integers causing time-stamps between
1901-12-13 20:45:52 and 1970 to appear as time-stamps after 2038-01-19 03:14:07. The nulls and mix-up
will cause little problems however, as both future and far past all have the same causes and are equally
irregular.

By investigating the SI time-stamps from the WildFrag database, we gain insight into how commonly
specific time-stamp patterns can be found. The amount of files with some specific pattern is explained
accordingly with the results of this research.

9.2 Future and far past time-stamps
The database contains 39,886 NTFS files with time-stamps that are either in the future counting from the
start time of the disk analysing run or from 1970-01-01 00:00:00 or before. This is approximately 0.04% of
all NTFS files in the database. These files are spread out across 339 volumes out of 729. Only 18 of these

1https://www.sleuthkit.org/
2https://www.forensicswiki.org/wiki/Fiwalk

40

https://www.sleuthkit.org/
https://www.forensicswiki.org/wiki/Fiwalk

339 volumes have a size of less than 100 GB, while 367 of the 390 remaining volumes have a size of less
than 100GB. From this we can conclude that presence of future or far past time-stamps on a disk is mainly
tied to the amount of files and not to the user. Thus because having future and far past time-stamps on
a volume is common and usually not tied to the user, their mere presence on a disk does not indicate any
foul play.

9.2.1 Volume 59
Volume 59 contains the largest share of files with future or far past time-stamps: 13,099. This might be
the result of an erroneous clock, as 13,067 of these file only have time-stamps that are within a day of the
start time of the disk analysing run. Because volume 59 has both Windows 10 and Linux installed, these
might have separate clocks. Interestingly 11,065 of these 13,067 files only have SI.E in the future or far
past. It is likely that the Linux operating system is not writing the NTFS time-stamps correctly. Testing
file operations on Ubuntu 18.04.2 shows that the time-stamps written to disk by the Linux NTFS driver
NTFS-3G are not accurate, we have observed the time-stamps being off by a seemingly random amount of
time between two and three hours from the actual time of operation. Furthermore some file operations have
different effects on time-stamps when using Linux. Because this volume is an outlier not representative of
the average volume and its time-stamps have now been examined, this volume will not be considered in the
further analysis of the WildFrag database.

9.2.2 Amount of future or far past time-stamps per type
We would expect SI.C and SI.W to be in the future or far past more often than SI.E and SI.A, because of how
many file operations can transfer these between systems. However, the database has approximately 7000 of
each time-stamp, which seems to indicate that internal (not transferred from another volume) time-stamp
degradation happens far more often than transference of future or far past time-stamps. As time-stamp
degradation is equally likely to happen for any time-stamp, this would explain the little difference in amount
of future or far past time-stamps per type.

Time-
stamp

Files with only this
time-stamp in the
future or far past

Files with multiple
time-stamps in fu-
ture or far past

Total
files

Total
vol-
umes

SI.C 6321 484 6805 313
SI.W 6608 1660 8268 311
SI.E 5885 466 6351 308
SI.A 6252 1365 7617 310

Table 9.1: The amount of future and far past time-stamps per type
of time-stamp.

Table 9.1 shows the amount of future and far past time-stamps per time-stamp type. It also shows the
difference between the amount of files that have only one future or far past time-stamp, and those that have
multiple. There are many more files with only one future or far past time-stamp than files with multiple,
this is likely due to time-stamp degradation happening more often for only one time-stamp than for two.

These future and far past time-stamps might have been caused by bit-rot, however they might not have
been. As these are all time-stamps that have been subject to change, they may be the result of wrong
calculation by Windows or the CPU.

9.3 The quirk: SI.C > SI.E
All regular file operations result in an SI.C earlier than SI.E, except for the copy operation with the quirk
that does not update the SI.E time-stamp. Alternatively, some these time-stamps might be caused by
timezone differences when extracting zip files or transferring from FAT volumes. The WildFrag database

41

contains 3,173,018 files across volumes with SI.C later than SI.E (not counting future or far past time-stamps
or volume 59). This is likely mostly due to the quirk in Windows where SI.E does not get updated when
copying. 2,692,002 of these files match “Copy with quirk” as the last operation. These files all have equal
SI.C and SI.A. times and earlier SI.M and SI.W times. When we also consider the possibility of a copy with
quirk followed by an access with last access update enabled (SI.C < SI.A), this matches 443,488 files out of
the remaining 481,016.

We have encountered this quirk while reading the MFT of a Windows 10 system, but from the three
Windows 7 systems in the database it seems that this quirk is also present on Windows 7. On these three
systems, approximately 4% of files have time-stamps that match copying with quirk.

42

Chapter 10

Automating Comparison of Time-stamps
with Operations

To make easier use of the file operation overviews, past studies have derived rules from them by hand. These
rules have conditions based on time-stamp patterns, if the condition is fulfilled then the time-stamps must
be the result of some operation. Comparing an array of time-stamps to every operation in the overview
should give the same result as the rule does. The downside with using these rules is that when operations
need to be added or removed from the operation overview (for example, due to a Windows update), that
every rule will need to be re-evaluated. Furthermore, finding rules is a complex process which can easily
lead to human error, due to the large amount of possible time-stamp changes that need to be considered.

To solve both these problems, we propose a structure and method for comparing operations to time-
stamp arrays. This method and structure is then implemented in a tool which can match time-stamps to
file operations.

10.1 Examples of rules derived from file operation overviews
Ding and Zou [10] derive rules from the table of file operations that they made. These derived rules provide
detailed information on what operations have happened. Unfortunately, likely due to human error, not all
derived rules match their table of file operations. They state these derived rules for all file types: If SI.C >
SI.W, then the contents and the summary property of the file have not been modified in the current volume;
If SI.C < SI.W, then SI.W is the last modification time of content or summary property of the file in the
current volume.

These rules do not match the “Inter-volume replace” operation in their table. Ding and Zou describe
Inter-volume replace as keeping SI.C unchanged and setting SI.W to SRC.SI.W. Because SI.C may be either
later or earlier than SRC.SI.W, SI.C might be either later or earlier than SI.W following an Inter-volume
replace. This means that any Inter-volume replace can match either derived rule, while the derived rules
have mutually exclusive results. This means that the derived rules can not be correct based on the file
operation overview of Ding and Zou.

Cho [8] uses his table to devise a set of 7 rules to be used in sequence to determine if a set of time-stamps
have been forged. Because these rules are meant to be used in sequence they do not only rely on the file
overview being correct and complete, but also rely on the rules earlier in the sequence. Now, updates to
Windows and developments in time-stamp forgery have made some of these rules outdated however. “Rule
2: if at least one of the FN field has no U, the case is not timestamp forgery” has become outdated because
of developments in time-stamp forgery where the FN time-stamps can be forged. Rules 3 to 7 relate to
some subset of operations that did not pass the condition of rule 2. Now that rule 2 has become outdated,
this subset of operations and its associated 5 rules have also become outdated.

These examples show that formulating rules from an operation overview can cause problems as adding
or changing one operation can cause multiple rules to no longer be correct. They also show that deriving

43

these rules is a complex process which can easily lead to human error, due to the large amount of resulting
time-stamps that need to be compared to each other.

10.2 Structure
To automate comparison of operations with time-stamps, the operations must be structured in a way that
allows easy comparison. This and past research have provided overviews where file operations are structured
as an array of time-stamp results which allows comparing of file operations with the related time-stamps.
To automate this, we must define and structure the differences between the time-stamp result types.

10.2.1 Time-stamp result types
Time-stamp result types (such as opStartTime()) need to be characterised to be distinguished from each
other so they can be correctly compared and matched. This characterisation is done by assigning the
following attributes to each:

• integer “lateness”: If the time associated with this time-stamp result type should be later or earlier
than other time-stamp results. For instance: opStartTime() (lateness 1) is always later than a SRC
or unchanged time-stamp (lateness 0) [8]. Note that lateness is ignored if the time-stamps are equal.
If the lateness can not be compared then it should be set to -1, this is the case for time-stamp results
with a possible timezone difference.

• integer “possibleEquivalence”: Other time-stamp results with the same value can have the same time.
The time-stamp results that have rounding can all have the same times because they might be different
times rounded to the same time. opStartTime() and opEndTime() might also be equivalent.

• boolean “alwaysSelfEquivalent”: If other time-stamp results with this type must have equal times.
For example, this is true for opStartTime() as there can only ever be one operation start time for an
operation.

• positive integer “rounding”: The rounding the time-stamp should have in 100 nanosecond intervals. A
value of 1 means rounded on 100 nanoseconds (no rounding).

• integer “equivalenceWithSameType”: Other time-stamp results with the same value have the same
time, if the related time-stamps are of the same type (creation, modification, entry modification or
access). This is true only for a time-stamp transferred from SI to FN and an unchanged time-stamp
as this unchanged time-stamp will have been copied to FN. As it is a copy, the time-stamps must be
equal.

Now the time-stamp result types can be compared with time-stamps to find the latest operation that has
taken place. However we also want to know when the operation has taken place and what operations
happened before it. To achieve this, attributes need to be added which will let us determine which time-
stamp results hold part of the time of operation. We will also need to add attributes which will let us mark
already matched time-stamps so that those can be ignored when considering what operations happened
before it. Additionally, to find multiple operations we need to be able to restore time-stamps to their state
before the operation, if possible. These are as follows:

• boolean “operationResult”: If the time-stamp is related to the time of the operation. Only opStart-
Time() and opEndTime() have this value set to true. These time-stamps will determine at what time
the operation happened.

• boolean “fromFile”: Time-stamp changes with this parameter set to the same value, have time-stamps
originating from the same file. Different values mean the time-stamps stem from different files. For
example: this is 1 for a time-stamp from SRC but 0 for an unchanged time-stamp so when an operation
like “Overwriting move from another volume” happens, the remaining unmatched time-stamps need
to be divided among 2 files.

44

• enum “copyStyle”: This can have one of three values: NOT_COPIED if this resulting time-stamp is
not copied from another type of time-stamp.

COPIED_FROM_TIMESTAMP if the time-stamp is copied to this time-stamp from some specific
time-stamp. For instance: time-stamps being copied from SRC.SI.W when extracting zip files.

COPIED_FROM_SAME_TYPE if the time-stamp is copied from the other attribute to the same
time-stamp type. This is true for a time-stamp copied from SI to the same time-stamp type in FN.

• optional integer “copiedFrom”: If copyStyle is set to COPIED_FROM_TIMESTAMP this denotes
the time-stamp that was copied from. This is a 0-7 value that follows the same time-stamp order as
the rest of this research: SI.C SI.W SI.E SI.A FN.C FN.W FN.E FN.A.

10.3 Method

10.3.1 Comparing an array of time-stamps to an operation
When comparing an array of time-stamps with an array of time-stamp changes (an operation), each time-
stamp change pair must be compared with their corresponding time-stamps. If we compare the following
array of time-stamps:

• SI.C: 2019-03-17 20:39:40.4969433

• SI.W: 2009-07-14 05:32:31.6745400

• SI.E: 2019-03-17 20:39:40.4969433

• SI.A: 2019-03-17 20:39:40.4969433

• FN.C: 2019-03-17 20:39:40.4969433

• FN.W: 2019-03-17 20:39:40.4969433

• FN.E: 2019-03-17 20:39:40.4969433

• FN.A: 2019-03-17 20:39:40.4969433

to the file operation copy, whose time-stamp effects are shown in table 10.1.

Operation Resulting time-stamps
SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Copy opStartTime() SRC.SI.W opEndTime() opStartTime()
opStartTime() opStartTime() opStartTime() opStartTime()

Table 10.1: The effects on time-stamps of the file operation “Copy”.

It must first be verified that SI.C could have been set to opStartTime(), for this it must be compared
with every other time-stamp.

1. Comparing it with SI.W which should have been set to SRC.SI.W, shows that SI.C is later than SI.W,
just like opStartTime() should be later than SRC.SI.W.

2. Comparing it with SI.E shows that SI.C and SI.E are equal, opStartTime() and opEndTime() have
possible equivalence, so this matches.

3. Comparing SI.C with all other time-stamps shows that they are all equal and all match opStartTime().

45

This confirms that SI.C could have been set to opStartTime() in the context of this operation and these
time-stamps. Now the other time-stamps are compared with each other, if all time-stamps are compared
and no problems have been found then this time-stamp array matches the operation.

If any of the FN time-stamps is not 2019-03-17 20:39:40.4969433 then it will not match SI.C, as op-
StartTime() is always self equivalent. This will cause the comparison to stop with the conclusion that this
time-stamp array can not be the result of the copy operation.

In pseudo-code this is as follows:

amount o f time−stamps = 8
For (i i = 0 ; i i < amount o f time−stamps − 1 ; i i ++):

For (j j = i i + 1 ; j j < amount o f time−stamps ; j j ++):
I f time−stamps i i and j j do not match the operat ion ’ s r e s u l t i n g time−stamps i i and j j then :

Return t h i s opera t i on does not match the time−stamps
Return t h i s opera t i on matches the time−stamps

10.3.2 Finding a possible sequence of operations for an array of time-stamps
To find the operation that happened before a matched operation, we first mark the operation result time-
stamps (for which the operationResult attribute is true) as matched. Because we do not know what time-
stamp came before a matched one, it can be any time-stamp. Looking back at our previous example: the copy
operation marked every time-stamp as matched except SI.W. At that time (2009-07-14 05:32:31.6745400)
either a create or an update operation happened, as these are the only operations that set SI.W to an
operation result time. The other time-stamps are no longer considered as they have already been matched.

Splitting the array of time-stamps

Some operations such as the overwriting move and copy, have time-stamps from two different files. When
any of these operations is matched the time-stamps need to be split up to two arrays as they were before
the operation.

Copied time-stamps

Copied time-stamps are more complicated as they can have an implicit time of operation. For example the
following time-stamps (previous example with name changed):

• SI.C: 2019-03-17 20:39:40.4969433

• SI.W: 2009-07-14 05:32:31.6745400

• SI.E: 2019-03-18 13:21:24.7343231 matched as “attribute change”

• SI.A: 2019-03-17 20:39:40.4969433

• FN.C: 2019-03-17 20:39:40.4969433

• FN.W: 2009-07-14 05:32:31.6745400

• FN.E: 2019-03-17 20:39:40.4969433

• FN.A: 2019-03-17 20:39:40.4969433

The SI.E time-stamp has been matched as an “attribute change” operation which is possible. However,
when looking at the FN time-stamps we know that a rename or move within volume must have happened,
as FN.W is not equal to FN.E and no other file operations can cause that. We know that the operation
(rename or move within volume) must have happened after 2019-03-17 20:39:40.4969433, as that time-stamp
was moved by the operation. We also know that it happened before 2019-03-18 13:21:24.7343231, as this
time-stamp was changed after the operation (otherwise it would have been copied to FN.E). Thus for copied
time-stamps with no operation time left to match, we can match these to the following range: later than

46

the latest time-stamp that was copied to, but earlier than the earliest time-stamp value that has not been
copied. If an operation with copied time-stamps is matched then those time-stamps should be marked and
copied back. For this example this would look as follows:

• SI.C: 2019-03-17 20:39:40.4969433 copied back

• SI.W: 2009-07-14 05:32:31.6745400 copied back

• SI.E: 2019-03-17 20:39:40.4969433 copied back

• SI.A: 2019-03-17 20:39:40.4969433 copied back

• FN.C: 2019-03-17 20:39:40.4969433 marked

• FN.W: 2009-07-14 05:32:31.6745400 marked

• FN.E: 2019-03-17 20:39:40.4969433 marked

• FN.A: 2019-03-17 20:39:40.4969433 marked

10.3.3 Finding all possible sequences of operations for an array of time-stamps
As the previous example showed, multiple sequences can be matched to an array of time-stamps. We
should strive to find all possible sequences. The pseudo-code to find all possible sequences for an array of
time-stamps is as follows:

amount o f time−stamps = 8

Algorithm matchTimestampsToSequences :
While not a l l time−stamps in a l l sequences are matched :

For each sequence :
matchTimestampsToSequence

Algorithm matchTimestampsToSequence :
L i s t matchedOperations
While not a l l time−stamps are matched :

For each operat i on :
I f matchTimestampsToOperation i s not nu l l then :

I f ope ra t i on marks or c op i e s d i f f e r e n t time−stamps than matchedOperations then :
f o rk sequence with time and operat i on

e l s e :
s t o r e time and operat ion in matchedOperations

Mark matched time−stamps
(s p l i t and fo rk) or copy back i f nece s sa ry

Algorithm matchTimestampsToOperation :
For (i i = 0 ; i i < amount o f time−stamps − 1 ; i i ++):

For (j j = i i + 1 ; j j < amount o f time−stamps ; j j ++):
I f (time−stamps i i and j j do not match the operat ion ’ s time−stamp r e s u l t s i i and j j)
and ne i t h e r i i nor j j i s marked then :

Return t h i s opera t i on does not match the time−stamps (nu l l)
Return matched time−stamps

47

10.4 Time-stamp Analyser
The Time-stamp Analyser reads an MFT and compares the meta-data of each entry to the list of regular
operations. If no regular file operation can be matched with the time-stamp then it is assumed to be the
result of forgery or decay and those are matched instead. For each time-stamp a list of possible operations
is given. This can be done because unless a time-stamp change tool is used, every time-stamp is formed by
a time of operation. The tool is open source and the list of file operations is made to be easily changeable
if new regular or irregular operations are discovered.

10.4.1 Use
The Time-stamp Analyser is written in Java 8, this means JRE 8 or newer is required to run it. The Time-
stamp Analyser takes an MFT file as input and produces a text file as output. The Time-stamp Analyser
is a command line tool with the following parameters:

1. input file

2. output file

3. (optional) MFT entry size in bytes: default is 1024.

4. (optional) filter: either “deleted” to analyse only time-stamps of deleted files, “irregular” to find files
with irregular time-stamps or “all” for everything (default).

5. (optional) list of indexes or file names to be analysed separated by “|”. By default every file in the
MFT is analysed.

An MFT file can be extracted from disk using RawCopy 1.

10.4.2 Output
The time-stamp analyser outputs a text file which describes what possible sequences of operations have
happened. A sequence is structured as follows:

(MFT entry index) (file name) ((time: possible operations at that time) (If the operations took place
on a different volume)) (<-) ((earlier time: possible operations at that time) (If the operations took place
on a different volume))
If an operation combines time-stamps from two files (such as overwriting copy), the sequence for the file
from a different entry is marked by not having an MFT entry index. The latest file operation is mentioned
first because the possible file operations converge to the time-stamps.

10.4.3 Use case
In the introduction of this study the following time-stamps are shown:

a. $STANDARD_INFORMATION b. $FILE_NAME
1 Creation 2019-07-02 21:33:35.3624443 2019-07-02 21:33:35.3624443
2 Write 2009-07-14 05:32:31.6745400 2019-07-02 21:33:35.3624443
3 Entry Modification 2019-07-02 21:33:35.3654445 2019-07-02 21:33:35.3624443
4 Access 2019-07-02 21:33:35.3624443 2019-07-02 21:33:35.3624443

Table 10.2: The time-stamps of penguins.jpg.

These time-stamps belong to the file penguins.jpg, in the introduction we claim to interpret from these
time-stamps that either of two sequences of file operations have happened:

1https://github.com/jschicht/RawCopy

48

https://github.com/jschicht/RawCopy

1. The original file was created or updated at 2009-07-14 05:32:31.6745400 (2a) and copied to the current
file which started at 2019-07-02 21:33:35.3624443 (1a, 4a, 1b, 2b, 3b, 4b) and completed at 2019-07-02
21:33:35.3654445 (3a) this might have changed a file attribute (such as permissions) on completion.

2. A file created or updated at 2009-07-14 05:32:31.6745400 (2a) was copied at 2019-07-02 21:33:35.3654445
(3a), overwriting a file created or copied at 2019-07-02 21:33:35.3624443 (1a, 4a, 1b, 2b, 3b, 4b).

We run the time-stamp analyser with the following parameters:

C: \ r e s ea r ch \MFT_with_penguins C: \ r e s ea r ch \out . txt 1024 a l l penguins . jpg

This results in the file out.txt containing the following text, which is equal in meaning to the two sequences
of file operations written above:

113 .\Penguins.jpg (From 2019-JULY-2 21:33:35.3624443 UTC to 2019-JULY-2 21:33:35.3654445 UTC:
Copy) <- (At 2009-JULY-14 5:32:31.6745400 UTC: Create | Create with file tunneling | Update | Update
with last access update enabled) possibly on other volume

113 .\Penguins.jpg (At 2019-JULY-2 21:33:35.3654445 UTC: Attribute change) <- (At 2019-JULY-2
21:33:35.3624443 UTC: Copy | Copy with last access update enabled | Copy with quirk) <- (At 2009-JULY-
14 5:32:31.6745400 UTC: Create | Create with file tunneling | Update | Update with last access update
enabled) possibly on other volume

.\Penguins.jpg (At 2019-JULY-2 21:33:35.3654445 UTC: Overwriting copy) <- (At 2009-JULY-14 5:32:31.6745400
UTC: Create | Create with file tunneling | Update | Update with last access update enabled) possibly on
other volume

113 .\Penguins.jpg (At 2019-JULY-2 21:33:35.3654445 UTC: Overwriting copy) <- (At 2019-JULY-2
21:33:35.3624443 UTC: Create)

113 .\Penguins.jpg (At 2019-JULY-2 21:33:35.3654445 UTC: Overwriting copy) <- (At 2019-JULY-2
21:33:35.3624443 UTC: Copy from FAT volume | Copy from FAT volume with last access update enabled |
Copy from exFAT volume | Copy from exFAT volume with last access update enabled)

113 .\Penguins.jpg (At 2019-JULY-2 21:33:35.3654445 UTC: Overwriting copy) <- (At 2019-JULY-2
21:33:35.3624443 UTC: Copy | Copy with last access update enabled | Copy with quirk)

These are all the possible sequences of file operations for these time-stamps, which may seem like a lot
of possibilities. All the possible sequences have two things in common however, the file was copied at
2019-JULY-2 21:33:35 and created or updated at 2009-JULY-14 5:32:31.6745400.

Because of time constraints on this study, the choice was made to not implement a visualisation of the
time-stamp analyser output and settle for a basic text output instead. A visualised output would have
looked as Figure 10.1.

49

Figure 10.1: Visualisation of possible file operations for the time-stamps of penguins.jpg

The time-stamps are positioned along side the vertical axis. File operations are either aligned with time-
stamps (precise time), between two time-stamps (range) or between two time-stamps with arrows pointing
to the time-stamps (duration). The file operations are connected, each path is a possible sequence of file
operations. The file operations marked in grey may have happened on another volume. The number in the
top-right corner of file operations indicate what files the time-stamps are from before any file operations
that combine time-stamps from different files, in this case “Overwriting copy”.

10.4.4 Testing
Development of the tool was driven by continuous JUnit tests.

Alpha testing has been performed with various MFT files as input. These MFT files contain file entries
on which all (modified) file operations have been performed at least once, including forging operations.
Correct matching of time-stamps with file operations has been verified both for files where only a few file
operations have happened and files where all eight time-stamps are different from each other.

The author’s personal real-life MFTs of over 1GB (over 1 million file entries) were input to statistically
test the correct solving of the MFT and ability to interpret many time-stamps without running into obvious
problems such as errors.

50

Chapter 11

Discussion

We have uncovered some workings of the MFT that, while not related to the rest of this study, might be
of interest to future digital forensics research. These workings relate to the allocation of entries, and the
sequence number.

We have found that when a new file is created, it overwrites the deleted file with the lowest index (except
for entries 0 through 34 which are reserved for NTFS meta-data files). If a new file is created while the
MFT has no deleted files, then 256 empty, nameless, deleted files are first appended to the MFT.

Each MFT entry has a sequence number, this is a value used by NTFS/Windows to adress files. The
sequence number does not work as it is described in literature. According to Carrier [2], the sequence
number increments whenever a file is allocated to the entry. We have observed this to be false however.
We have not been able to reproduce a sequence number incrementing as a result of allocation. Instead, the
sequence number increments only when the file entry is marked as deleted.

11.1 MFT entry allocation
From file deletions and creations the following conclusions about the MFT can be drawn:

I f a f i l e i s d e l e t ed :
The f i l e i s marked as de l e t ed and de−a l l o c a t e d .

I f a f i l e i s c r ea ted :
I f the MFT i s f u l l :

256 rows are appended a f t e r the l a s t index .
These rows conta in de l e t ed f i l e s with nu l l s f o r meta−data .

The new f i l e ove rwr i t e s the de l e t ed f i l e with the lowest index .

Figure 11.1: Basic example of MFT entry allocation. The left table shows part of the MFT before file6 is
created. The right table shows the same part of the MFT after. The deleted file entry to be overwritten
next is marked in grey.

Figure 11.1 serves as an example, showing the creation of a new file “file6". The newly created file
overwrites the deleted file with the lowest index higher than 34. Entries 0 through 34 contain NTFS meta-

51

data files and additional space for NTFS meta-data files. As long as there is a deleted file at index 36 any
newly created file will have to be created at an index smaller or equal to 36, because it must overwrite the
deleted file with the lowest index. In the example “file2" and “file4" were deleted at 16:30. Any file created
after 16:30 like “file6" can not have an index higher than that of the deleted files.

11.2 The effects of file operations on the sequence number
Testing all known file operations shows that the sequence number starts at 1 and only increments when
a file is marked as deleted in the Master File Table. This includes deleting a file by moving it out of the
volume, but does not include overwriting a file as this never marks the entry as deleted. The only exception
are the NTFS-related file entries located at index 1 through 15, these have a sequence number equal to
their index number. These files are protected and can not be deleted, their sequence number is fixed. The
sequence number is stored in 2 bytes, it overflows to 0. Thus the sequence number can be defined as follows:
sequence number = (x + 1) % 65536 where x = the amount of deletions. This behaviour of the sequence
number has been found to be consistent across different Windows versions.

Carrier [2] observed the sequence number to be incremented when a file is allocated. However Car-
rier made this observation by deleting files and then allocating new files, possibly wrongfully linking the
allocation to the incremention.

11.2.1 Possible use of the sequence number: uncover the original ordering of
file entries

A file entry that has never been deleted will never have its sequence number incremented. All these files
will have a sequence number of 1. Because these file entries have never been marked as deleted, any file
entry with a higher index will have been created at a later date. File entries that have been marked as
deleted a multiple of 65,536 times will also have a sequence number of 1. These files that have been deleted
a multiple of 65,536 times in the same file entry are unlikely to be encountered as files are not expected
to be deleted that often, seeing as only 15 out of 100,014,916 NTFS files in the WildFrag database have
sequence numbers higher than 50,000.

52

Chapter 12

Future work

While we have uncovered and explained the effect on time-stamps of more (modified) file operations than
past research, not everything has an explanation yet. Furthermore, while we have focused on reproducing
file operations from time-stamps in the MFT, higher accuracy could possibly be gained from comparing
matched file operations with other meta-data. $LogFile comes to mind for this, as it contains records of
changes to time-stamps.

Phenomena left with no explanation

We did not find out under what conditions the quirk happens where SI.E does not get updated. Neither
was uncovered under what conditions the last access update will be delayed or aborted. The conditions
under which these variations of operations can happen might be forensically interesting, as knowing under
what conditions time-stamps are formed will give insight into what happened on the system at that time.

$LogFile

This research and the resulting software focus only on the MFT. It could be expanded upon by also
considering $LogFile which contains before and after meta-data of file operations [2]. The usefulness of
$LogFile for detecting time-stamp forgery has already shown by Cho [8]. We believe that it could also be
used to gain insights into what events happened, combined with time-stamps. For example, if ‘rename’ is
one of the matched operations for an array of time-stamps. Then $LogFile could be searched for a change
of file name, to possibly prove that the operation happened and if it did, recover the earlier file name.

53

Chapter 13

Conclusions

To allow forensic investigators to discover what operations have happened for an array of time-stamps,
we have provided a complete overview of file operations and their effects on time-stamps. To construct
this overview, past research into this subject has been explored, compared and tested. Some modified file
operations missing from past research have also been added. As these file operations are too many and
too complex to reliably compare by hand we have delivered a structure and method by which comparing
file operations to time-stamps can be automated. This has as an added advantage that file operations can
be easily added or removed from some list without it affecting other file operations. Unlike rules derived
from time-stamp overviews, which we have shown will often become incorrect if new operations are added
or existing ones are changed. We have also implemented this method and structure in an open source tool.

We have made an analysis of irregular time-stamps and possible transference of those time-stamps.
Which can be used if an array of time-stamps is suspicious or does not match any regular operations, to
uncover if time-stamp forgery has taken place on the system, or elsewhere. From the WildFrag database
we have learned that degraded time-stamps are somewhat common with 0.04% of files having time-stamps
degraded into the future or far past. This means that most disks will have at least one future or far past
time-stamp, so their presence does not prove foul play.

Because of this research, future digital forensics investigation will have greater understanding of time-
stamps. Time-stamps may now be used to accurately find the sequences of file operations that may have
happened at those times. If no file operations can be found for some time-stamps, then the time-stamps
can be compared with forging operations to find evidence of forging and the bytes of the time-stamps can
be compared with each other to find evidence of degradation.

54

Bibliography

[1] E. Casey, “Digital stratigraphy: Contextual analysis of file system traces in forensic science,” Journal
of Forensic Sciences, vol. 63, no. 5, pp. 1383–1391, 2018.

[2] B. Carrier, File system forensic analysis. Addison-Wesley Professional, 2005.

[3] S. H. Mahant and B. Meshram, “Ntfs deleted files recovery: Forensics view,” IRACST-International
Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN, pp. 2249–9555,
2012.

[4] K.-P. Chow, F. Y. Law, M. Y. Kwan, and P. K. Lai, “The rules of time on ntfs file system,” in Systematic
Approaches to Digital Forensic Engineering, 2007. SADFE 2007. Second International Workshop on.
IEEE, 2007, pp. 71–85.

[5] T. Knutson and R. Carbone, “Filesystem timestamps: What makes them tick,” GIAC GCFA Gold
Certification, vol. 11, 2016.

[6] S. Raghavan, “Digital forensic research: Current state of the art,” CSI Transactions on ICT, vol. 1, 03
2012.

[7] F. P. Buchholz and E. H. Spafford, “On the role of file system metadata in digital forensics,” Digital
Investigation, vol. 1, pp. 298–309, 2004.

[8] G.-S. Cho, “A computer forensic method for detecting timestamp forgery in ntfs,” Computers & Secu-
rity, vol. 34, pp. 36–46, 2013.

[9] B. Y. Jewan Bang and S. Lee, “Analysis of changes in file time attributes with file manipulation,”
Digital Investigation, vol. 7, no. 3, pp. 135 – 144, 2011.

[10] X. Ding and H. Zou, “Time based data forensic and cross-reference analysis,” in Proceedings of the 2011
ACM symposium on applied computing. ACM, 2011, pp. 185–190.

[11] T. Sharma and M. Kaur, “Time rules for ntfs file system for digital investigation,” International Journal
of Advanced Research in Computer Engineering & Technology (IJARCET), vol. 4, pp. 1146–1151, 2015.

[12] G. S. Cho, “An intuitive computer forensic method by timestamp changing patterns,” in 2014 Eighth
International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS).
IEEE, 2014, pp. 542–548.

[13] S. Willassen, “Hypothesis-based investigation of digital timestamps,” in IFIP International Conference
on Digital Forensics. Springer, 2008, pp. 75–86.

55

Appendix A

Reflection on Process

Yvonne Vollebregt, Robbert Noordzij and I were originally going to write a thesis together. We were all
attracted to the project by Hugo Jonker and Vincent van der Meer, which was to find a way to determine
a time-line for a disk based on fragmentation information, specifically to date deleted files. Personally I
was attracted to this project because it had a clear, complicated and important problem that I wanted to
solve: deleted files needed to be dated for evidence in court. When we were doing our literature study
to get further acquainted with the workings of file systems, something interesting caught my eye. From
the literature it seemed that when a file is deleted it is only marked as deleted. When I asked Hugo and
Vincent about this they told me to try it out and see what I would find. When I tried it out, I saw with
much enthusiasm the deleted file’s meta-data still present in the MFT. My interest for file meta-data only
grew from here and when we were deciding what sub-researches we wanted to do I immediately opted for a
sub-research about meta-data. I am grateful to Vincent and Hugo for the freedom to take the direction I
wanted to take. Yvonne wanted to do her sub-research about the data Vincent had collected in the WildFrag
database, while Robbert wanted to do his sub-research about simulating fragmentation. As time progressed
and we were all writing our own sub-research for the thesis plan, it became more and more apparent that
our sub-researches were very different. Eventually Hugo told us that it would be better to each produce our
own thesis.

A.1 Communication
While we each produce our own thesis, we did not split up as group. We have continued to have group
meetings, both with and without Vincent and Hugo. We also stayed in contact via Skype, discussing parts
of our research and helping each other out if possible. Each two weeks on Monday we would have a Skype
call with Hugo and Vincent, usually on the Wednesday before these Skype calls we would submit some part
of our thesis(es) or plan for reading. In the beginning Hugo and Vincent would only quickly read the titles
and provide feedback on those, but as time progressed their feedback became more detailed, their feedback
was always incredibly useful however. We have also provided feedback to each-other, reading each-others
parts and providing feedback varying from marking English grammatical errors to asking detailed questions
about the contents.

A.2 Planning
When the thesis plan was submitted, I had not realised the complexity of file operations yet. Performing the
research I learned of file tunneling, quirks in Windows and the complex working of the NtfsDisableLastAc-
cessUpdate registry key. The original thesis plan was focused on deleted files and forged time-stamps. The
focus on deleted files faded as time-stamps are updated the same way for any file, so the research results
could apply to any file. Similarly time-stamp forgery became less interesting as regular file operations, as
it became clear that time-stamp forgery detection has a larger false positive problem than it does a false
negative problem. Because the thesis changed like it did (for the better), the original planning was simply

56

not accurate anymore. I proceeded to focus on the things that were most important for the research at that
time, this also meant more literature study searching for anything that could alter time-stamp calculation.

A mistake that I did make with regards to planning, is postponing writing the research in a way that
considered the reader. I did write down a lot of my results but never in a way that considered the reader,
until the last few weeks. This caused me to have to spend more time than I would have wanted near the
end of the research. Luckily Hugo did help me when I started the final writing by providing useful feedback
to get me on the right track.

A.3 Writing
I have never liked writing, and as such I have postponed it while fooling myself into thinking I had not, by
writing down barely anything but results early on. I have struggled for a long time with writing during the
research, but in the end I feel confident that I have put together a good thesis due to lots of hard work and
rewriting.

57

Appendix B

Overviews of File Operations, Modifiers
and Their Effect on Time-stamps

B.1 Base File Operations

Operation Resulting time-stamps
SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Create opStartTime() opStartTime() opStartTime() opStartTime()
opStartTime() opStartTime() opStartTime() opStartTime()

Copy opStartTime() SRC.SI.W opEndTime() opStartTime()
opStartTime() opStartTime() opStartTime() opStartTime()

Update SI.C opEndTime() opStartTime() SI.A
FN.C FN.W FN.E FN.A

Move SI.C SI.W opEndTime() SI.A
Within volume SI.C SI.W SI.E SI.A
Move SRC.SI.C SRC.SI.W opEndTime() opStartTime()
From another volume opStartTime() opStartTime() opStartTime() opStartTime()
Overwriting copy SI.C SI.W SI.E SI.A

FN.C FN.W FN.E FN.A
Overwriting move SRC.SI.C SRC.SI.W opStartTime() SI.A
From another volume FN.C FN.W FN.E FN.A
Rename SI.C SI.W opStartTime() SI.A

SI.C SI.W SI.E SI.A
Attribute change SI.C SI.W opStartTime() SI.A

FN.C FN.W FN.E FN.A
Delete SI.C SI.W SI.E SI.A

FN.C FN.W FN.E FN.A
Access SI.C SI.W SI.E SI.A

FN.C FN.W FN.E FN.A
Extract zip file round(SRC.SI.W,

20000000, up) + tzd
round(SRC.SI.W,
20000000, up) + tzd

opEndTime() round(SRC.SI.W,
20000000, up) + tzd

opStartTime() opStartTime() opStartTime() opStartTime()

58

B.2 Modifiers
Last access updating enabled

Operation Resulting time-stamps
SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Copy opEndTime()
...

Update opEndTime()
...

Move opEndTime()
From another volume
Overwriting copy opStartTime()

...
Overwriting move opStartTime()
From another volume
Access opStartTime()

...

File tunneling
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Create TNL.SI.C
TNL.FN.C

Copy TNL.SI.C
TNL.FN.C

Move TNL.SI.C
In the same volume
Rename TNL.SI.C

...

Transfer from FAT
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Copy ... round(SRC.SI.W,
20000000, up) + tzd

... ...

...
Move round(SRC.SI.C,

100000, up) + tzd
round(SRC.SI.W,
20000000, up) + tzd

... ...

From another volume
Overwriting copy ... round(SRC.SI.W,

20000000, up) + tzd
... ...

...
Overwriting move round(SRC.SI.C,

100000, up) + tzd
round(SRC.SI.W,
20000000, up) + tzd

... ...

From another volume

59

Transfer from exFAT
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Copy ... round(SRC.SI.W,
100000, up)

... ...

...
Move round(SRC.SI.C,

100000, up)
round(SRC.SI.W,
100000, up)

... ...

From another volume
Overwriting copy ... round(SRC.SI.W,

100000, up)
... ...

...
Overwriting move round(SRC.SI.C,

100000, up)
round(SRC.SI.W,
100000, up)

... ...

From another volume

Quirk
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Copy SRC.SI.E ...
...

Move SRC.SI.E ...
From another volume

Is directory
Operation Resulting time-stamps

SI.C SI.W SI.E SI.A
FN.C FN.W FN.E FN.A

Update opEndTime()
...

Overwriting copy N/A N/A N/A N/A
N/A N/A N/A N/A

Overwriting move N/A N/A N/A N/A
From another volume N/A N/A N/A N/A
Extract zip file N/A N/A N/A N/A

N/A N/A N/A N/A

60

Appendix C

Diagrams

61

Figure C.1: Class diagram, shows methods only for the main class TimeAnalyser.

62

	Introduction
	Background
	NTFS
	Master File Table
	$STANDARD_INFORMATION attribute
	$FILE_NAME attribute
	$DATA attribute
	$MFTMirr

	File operations
	File operations considered in this research
	Time-stamp changes

	Related Work
	File operations and their effects on time-stamps
	Does Windows version affect time-stamps?
	Does file type affect time-stamps?
	Consensus on the effect of operations on time-stamps

	Detection of forgery by comparing time-stamps

	Methodology
	MFT or $LogFile
	Tooling
	Reading the MFT

	Performing file operations and inferring their effects
	Validating file operations

	The types of resulting time-stamps for file operations
	The time at which the file operation starts: opStartTime
	The time at which the file operation ends: opEndTime
	An unchanged time-stamp
	A time-stamp transferred from the SI attribute
	A time-stamp transferred from another file entry
	A time-stamp transferred by file tunneling
	A time-stamp set to an arbitrary value
	Result modifier: rounding
	Result modifier: timezone difference

	Time-stamps as a Result of File Operations
	Extracting zip archives using Windows Explorer
	Overwriting move within volume
	Update MS Word/Office
	Overview of time-stamp changes by operations

	Modifiers to the Effects of File Operations on Time-stamps
	Last access updating
	File tunneling
	Transferring files from other file systems
	Unexpected behaviour of SI.E
	Operations per file type
	Executable files
	Directories

	Operations per operating system
	Accuracy of time-stamp names

	Time-stamp Forgery and Degraded Time-stamps
	Changing time-stamps to user-specified values
	The SetFileTime system call
	the undocumented NtSetInformationFile system call
	Editing the raw time-stamps data in the MFT to change time-stamps
	Detection

	Changing the system clock
	Time-stamp degradation
	Origins of irregular time-stamps
	Conclusion

	Investigating Time-stamps in the Wildfrag Database
	WildFrag database
	Future and far past time-stamps
	Volume 59
	Amount of future or far past time-stamps per type

	The quirk: SI.C > SI.E

	Automating Comparison of Time-stamps with Operations
	Examples of rules derived from file operation overviews
	Structure
	Time-stamp result types

	Method
	Comparing an array of time-stamps to an operation
	Finding a possible sequence of operations for an array of time-stamps
	Finding all possible sequences of operations for an array of time-stamps

	Time-stamp Analyser
	Use
	Output
	Use case
	Testing

	Discussion
	MFT entry allocation
	The effects of file operations on the sequence number
	Possible use of the sequence number: uncover the original ordering of file entries

	Future work
	Conclusions
	Reflection on Process
	Communication
	Planning
	Writing

	Overviews of File Operations, Modifiers and Their Effect on Time-stamps
	Base File Operations
	Modifiers

	Diagrams

