
Open University of the Netherlands
faculty of Management, Science & Technology

Bachelor Computer Science

Shepherd: Enabling Large-Scale
Scanning of Websites after Social Single

Sign-on

Authors:
Jelle Kalkman
Alan Verresen

Chair(wo)man:
prof. dr. Tanja Vos

Supervisors:
dr. ir. Hugo Jonker

Benjamin Krumnow, MSc.

Presentation date:
02-08-2019

July 31, 2019

Course code:
IB9906

Abstract

Session security for web applications should keep users safe from session hijacking and
ensure privacy and security in their online lives. A substantial part of their online lives are
hidden behind a login field. To study how secure and private their online lives are, it is needed
to do this from the same, authenticated, perspective. However, for a large-scale study, this
would require us to automate authentication and account creation for a large number of web
applications.

This has proven to be a major challenge because web application can roll out countermea-
sures against automated account creation, valid credentials should be used, the web is very
heterogeneous, and several ethical concerns need to be addressed.

We found that we could leverage Single Sign-On, such as signing in with Facebook or
Google, to automate authentication for a large amount of websites. At least 6.3 % of the
web applications in the daily Alexa top 1M lists offer the option to use Single Sign-On to
authenticate and in 56 % of the cases this is sufficient to reach the authenticated state. We
extended the Shepherd framework to increase the reach of research on session security by adding
modules to automatically detect if a web application offers Social Single Sign-On and, if so,
the ability to automatically authenticate for that web application.

With these extensions Shepherd is able to detect Single Sign-On and managed to authen-
ticate in almost all cases where no additional account creation handling is needed.

Contents

1 Introduction 5
1.1 Aim, Scope, and Contributions of Study . 6
1.2 Context of Study . 6
1.3 Overview of Thesis . 6

2 Background 7
2.1 Web Session Management . 7
2.2 Web Session Hijacking . 8
2.3 Web Session Security . 9
2.4 Social Single Sign-On . 11
2.5 Web Crawling . 12
2.6 Browser Automation Tools . 14
2.7 Summary . 15

3 Related Work 16
3.1 SSO Security . 16
3.2 SSO Detection . 17
3.3 The Shepherd Project . 18
3.4 Summary . 18

4 The Shepherd Framework 19
4.1 Introduction . 19
4.2 Problem Description . 19
4.3 Shepherd’s Architecture . 19

4.3.1 Apps and Modules . 20
4.4 Stable Web Pages . 20
4.5 Summary . 21

5 Automated Detection of Social Single Sign-On Authentication 22
5.1 Overview . 23
5.2 Prevalence of SSSO On The Web . 24

5.2.1 Problem Description . 24
5.2.2 Observations . 24
5.2.3 Conclusions . 26

5.3 Integration of SSSO Authentication . 26
5.3.1 Problem Description . 26
5.3.2 Observations . 26
5.3.3 Conclusions . 28

5.4 Detection of SSSO Authentication . 28
5.4.1 Problem Description . 28
5.4.2 Observations . 29

1

5.4.3 Conclusions . 31
5.5 Locations of SSSO Buttons . 31

5.5.1 Problem Description . 31
5.5.2 Observations . 31
5.5.3 Conclusions . 33

5.6 Recognizing SSSO Buttons . 34
5.6.1 Problem Description . 34
5.6.2 Observations . 34
5.6.3 Conclusions . 38

5.7 Clicking on SSSO Buttons . 39
5.7.1 Problem Description . 39
5.7.2 Observations . 39
5.7.3 Conclusions . 43

5.8 Finding URLs of Relevant Web Pages . 43
5.8.1 Problem Description . 43
5.8.2 Observations . 43
5.8.3 Conclusions . 44

5.9 Searching for SSSO Buttons On A Page . 45
5.9.1 Problem Description . 45
5.9.2 Observations . 45
5.9.3 Conclusions . 47

5.10 Searching for SSSO Buttons On A Website . 48
5.10.1 Problem Description . 48
5.10.2 Observations . 48
5.10.3 Conclusions . 50

5.11 Discussion and Final Conclusions . 51
5.11.1 Evaluation . 51
5.11.2 Future Work . 51
5.11.3 Conclusions . 51

6 Automated Authentication via Social Single Sign-On 52
6.1 Overview . 52
6.2 Commonalities and Differences in Authenticating to Different SSSO Identity

Providers . 53
6.2.1 Problem Description . 53
6.2.2 Observations . 53
6.2.3 Conclusions . 57

6.3 Automating Social Single Sign-On . 58
6.3.1 The SSSO Login Module . 58
6.3.2 Testing the SSSO Login Module . 59
6.3.3 Conclusions . 60

6.4 Account Creation . 60
6.4.1 Problem Description . 60
6.4.2 Observations . 60
6.4.3 Registration Forms . 62
6.4.4 Conclusions . 65

6.5 Processing Forms with Formasaurus . 65
6.5.1 Formasaurus . 65
6.5.2 Shepherd’s Account Creation Module 65
6.5.3 Testing and Tuning the Account Creation 66
6.5.4 Conclusions . 67

2

6.6 Verification of the Authenticated State . 68
6.6.1 Problem Description . 68
6.6.2 Observations . 68
6.6.3 Conclusions . 71

6.7 Automating the Verification . 71
6.7.1 Shepherds SSSO Verification Module . 71
6.7.2 Testing Shepherds Verification Module 72
6.7.3 Conclusions . 72

6.8 Results and Discussion . 73

7 Conclusions and Future Work 74

Appendices 78

A SSSO Detection Experiments 79
A.1 Prevalence of SSSO On The Web . 79

A.1.1 Sampling . 79
A.1.2 Process . 79
A.1.3 Analysis . 80
A.1.4 Conclusions . 81

A.2 Clicking SSSO Buttons To Initiate Authentication Process 82
A.2.1 Sampling . 82
A.2.2 Process . 82
A.2.3 Analysis . 82
A.2.4 Conclusion . 83

A.3 Redirection of Browser After Clicking SSSO Buttons 84
A.3.1 Sampling . 84
A.3.2 Process . 84
A.3.3 Analysis . 84
A.3.4 Conclusions . 85

A.4 Locations of Components Related To Authentication 86
A.4.1 Sampling . 86
A.4.2 Process . 86
A.4.3 Analysis . 86
A.4.4 Conclusions . 86

A.5 Recognition of SSSO Buttons Using Keywords 87
A.5.1 Sampling . 87
A.5.2 Process . 87
A.5.3 Analysis . 87
A.5.4 Conclusions . 87

A.6 Persistent CSS Selectors . 88
A.6.1 Sampling . 88
A.6.2 Process . 88
A.6.3 Analysis . 88
A.6.4 Conclusions . 88

A.7 Action Sequences For Clicking on SSSO Buttons 89
A.7.1 Sampling . 89
A.7.2 Process . 89
A.7.3 Analysis . 89
A.7.4 Conclusions . 90

A.8 Finding URLS of Relevant Pages . 91
A.8.1 Sampling . 91

3

A.8.2 Process . 91
A.8.3 Analysis . 91
A.8.4 Conclusions . 91

B SSSO Login Experiments 92

C SSSO Account Creation Experiments 94

D SSSO Verification Experiments 100

E UML Class Diagrams 103

F Looking back on the project 105
F.1 Jelle . 105
F.2 Alan . 106

4

Chapter 1

Introduction

Can we steal your identity on the Web? With the integration of the Internet and the World
Wide Web into our daily lives, the security of digital services has become more important than
ever. Yet, we regularly hear about data breaches and hackers taking over the accounts of users,
so how common and widespread are the vulnerabilities at the basis of these problems?

Security vulnerabilities are everywhere, as demonstrated by newspaper articles [1], vul-
nerability databases containing disclosed vulnerabilities [2], and yearly reports published by
companies that are specialized in tracking these vulnerabilities down. Piessens [3] points out
that security vulnerabilities can be introduced at any stage of the software development life
cycle and survive due to a lack of development practices aimed at preventing, detecting, or
mitigating these security vulnerabilities. Even if a flaw is discovered, developers might be un-
able or unwilling to address it [4], the security patch trying to fix the flaw might be insufficient
[5] or late, or users may never install security patches in the first place [6].

Session management vulnerabilities are an example of common security vulnerabilities found
in web applications. In 2014, a session management vulnerability was discovered at word-
press.com [7], a widely used WordPress hosting provider. As a result of this security issue,
session hijacking attacks were possible whereby an attacker could identify and authenticate
themselves as another user and gain full control over a wordpress.com account. Yahoo! also
suffered from similar security breaches in 2013 and 2014, caused by a session management vul-
nerability, which potentially affected 3 billion users [8, 9]. A session management vulnerability
also played a role in the largest security breach to date at Facebook [10], which might have
affected 50 million users in 2017 and further illustrates how widespread and persistent these
security issues can be.

To study online security and privacy, it is often necessary to investigate this from the per-
spective of an authenticated user for a large number of web applications. When conducting such
large-scale experiments, any form of manual interaction quickly becomes infeasible. Zhou and
Evans [11] have demonstrated that authentication processes can be automated by leveraging
Social Single Sign-On, SSSO. Ghasemisharif et al. [12] have found that more than 6.3 % (lower
bound) of the domains in the Alexa top million ranking let users authenticate via SSSO, so we
argue that automating authentication processes through the use of SSSO can make large-scale
experiments from the perspective of an authenticated user possible.

Mundada, Feamster, and Krishnamurthy [13] and Takamatsu, Kosuga, and Kono [14] de-
scribe automated methods for detecting session management vulnerabilities, but were limited
in scale. Zhou and Evans [11] used SSSO to automate the process of authentication, but focused
on detecting vulnerabilities related to the integration of SSSO for a large number of websites
rather than using it as a stepping stone for further research. As such, there are no existing
large-scale studies from the perspective of an authenticated user that have tried to answer the
question of how common and widespread session management vulnerabilities are.

5

1.1 Aim, Scope, and Contributions of Study

Our research aims to make large-scale vulnerability scans possible from the perspective of
authenticated users by using Social Single Sign-On, so that we can investigate how common
and widespread session management vulnerabilities in web applications are. The contributions
of our study are:

• a method to find entry points used to initiate authentication via a known SSSO provider

• a method for authenticating a user via a known SSSO provider in an automated way

• a modular platform that can be used to conduct the envisioned large-scale studies

• implementations of the methods listed above, to be used for the developed platform

Although the Shepherd Project has already investigated the problem of session hijacking from
the perspective of authenticated users in Jonker et al. [15], the amount of domains that were
examined was limited by the availability of valid credentials.

1.2 Context of Study

This study was done within the context of a Bachelor graduation project at the Open University
of the Netherlands. Each student spent approximately 400 hours on this graduation project,
of which a considerable amount of hours were spent on individual research topics to prove our
competence as researchers.

Our study follows up on the Bachelor thesis ’Counting Sheep’ by M. Sleegers, and con-
tributes to the Shepherd Project headed by dr. ir. H.L. Jonker and M.Sc.B. Krumnow. We
were asked to increase the reach of the web security vulnerabilities research in the Shepherd
project by making use of Social Single Sign-On.

1.3 Overview of Thesis

After a brief overview of all required background knowledge, and a discussion of related work,
we first present the Shepherd framework. The development of this software platform was an
important first step towards making further research possible.

Next, we will present our individual research, which is focused on harnessing SSSO for
automating user authentication. Identifying the entry points to initiate the authentication
process was investigated by Alan Verresen, and is presented in the chapter ’Automated Detec-
tion of Social Single Sign-On’. The automation of the authentication process was investigated
by Jelle Kalkman, who presents his research in the chapter ’Automated Authentication via
Social Single Sign-On’.

We base our conclusions on extensive testing of our modules and provide an overview of
future work.

6

Chapter 2

Background

This chapter outlines the fundamental background knowledge which the rest of this thesis
further builds upon. Central to our research are web session management, and the workings of
Social Single Sign-On, SSSO. Sections on web session security and web session hijacking were
added in order to understand the large-scale vulnerability scan presented at the end of this
thesis. Finally, a brief introduction to web crawling is provided, as a web crawler is used to
search web pages for entry points to initiate the authentication process.

2.1 Web Session Management

Since the inception of the Web in 1990, web browsers and web servers have used the Hypertext
Transfer Protocol, HTTP, to communicate with each other. Originally, HTTP was a simple
request-response protocol intended to let web servers serve static documents to web browsers,
and was inherently stateless, meaning that no state was to be maintained on the server’s side
between subsequent requests. However, as the Web grew in both size and complexity, the
HTTP protocol was altered and extended, so that stateful applications could be built on top of
the HTTP protocol, by adding a state management mechanism in the form of HTTP cookies.

Figure 2.1: A diagram showing a
session ID exchange.

Nowadays, many web applications are complex systems
where many HTTP messages are sent back and forth be-
tween the browser and the server. A sequence of HTTP
requests and responses associated with the same user is
called a web session. Because the HTTP protocol itself is
stateless, the browser has to pass on a session identifier, or
session ID, with every request to the web server, so that
the server knows which session the message belongs to, and
by extension, which user has sent the request.

1. The browser sends an HTTP request to the server
without a session ID, because the user hasn’t been
assigned a session identifier yet.

2. The server assigns a new session ID upon receiving a
request from an unidentified user, and sends it back
with the next HTTP response.

3. The browser sends a session ID with every subse-
quent request so that the server can identify the user
sending the request.

7

Example 2.1
A list of attributes of the session cookie that was stored by the browser after visiting
’https://www.icann.org/’ for the first time.

name: _new_icann_session

value: "09a6f91d6"

domain: "www.icann.org"

expires: "session"

path: "/"

hostOnly: true

httpOnly: true

secure: true

sameSite: "unset"

creationTime:"Sat, 13 Apr 2019 15:05:59 GMT"

lastAccessed:"Sat, 13 Apr 2019 15:05:59 GMT"

Example 2.2
Header of a HTTP response that sets a new session cookie.

Set-Cookie: _new_icann_session=09a6f91d6; path=/; secure; HttpOnly

4. The web server uses the session ID to associate the
request with a user, processes the request, and sends
a response back.

Nowadays, HTTP cookies have become the standard mechanism for session ID exchange.
Cookies that are used to store the session ID are commonly referred to as session cookies.
OWASP [16] lists other mechanisms that can be used to store and pass along session IDs to
the server, but argues that cookies are the only acceptable mechanism for session ID exchange,
because cookies provide the necessary capabilities for granular control that are needed to protect
the session ID, while other mechanisms do not.

The server passes cookies to the browser by adding one or more Set-Cookie headers to an
HTTP response. This header needs to contain the name and value of the cookie, but can also
set additional attributes for granular control over when the cookie is sent back, and how it can
be accessed.

When the browser sends an HTTP request to the server, it can use the Cookie header to
send along the cookies that were set by the server. However, a cookie may not be sent back
under certain circumstances, depending on its attributes, which we will discuss in the next
section.

More information about the HTTP protocol can be found in RFC2616 [17] and its many
updates. The workings of HTTP cookies are described in-depth in RFC6265 [18].

2.2 Web Session Hijacking

If a web application fails to protect the session ID stored in a cookie then it could be vulnerable
to session hijacking. A successful session hijack attack can result in an attacker taking over the

8

Example 2.3
Header of a HTTP request that passes the session cookie to the server.

Cookie: _new_icann_session=09a6f91d6

session and an attacker impersonating a valid user. This is commonly accomplished by access
to the session ID by an attacker [19]. There are various well known methods for executing a
session hijacking attack [20, 21, 22, 23], such as cross-site scripting, eavesdropping and session
fixation.

Cross-Site Scripting In a cross-site scripting attack (XSS), a malicious script is run by the
browser that has been injected by the attacker. The malicious script can gain access to the
session ID of a badly configured session cookie and disclose it to the attacker [24].

Eavesdropping In an eavesdropping attack an attempt is made to intercept a session ID.
This is possible when the cookie in an HTTP message is not sent over a secure connection
using the HTTPS protocol, or when an attacker successfully sets up a Man-in-the-Middle
attack. Even if HTTPS is used by a web application, a user’s browser might be tricked into
sending an unencrypted HTTP request with the session cookies [25].

Session Fixation If the server does not assigns a new session ID to the user after successful
authentication, then the web application could be vulnerable to session fixation attacks. An
attacker gains access to the session ID by XSS or altering intercepted HTTP messages when
the user has not authenticated yet. After the user successfully authenticates and is not assigned
a new session ID, then the attacker can continue the session and is authenticated [26].

2.3 Web Session Security

The security of an application’s session management is of utmost importance. If an attacker
is able to obtain the session ID of another user, the attacker can impersonate that user. This
attack is commonly referred to as session hijacking.

There are several ways in which session management is inherently vulnerable to session
hijacking, regardless of the underlying mechanism. First of all, an attacker should not be able
to predict or guess the session ID of another user. Second, an application should handle session
IDs with care, and make sure that their value is not leaked anywhere, such as server logs, or
when transmitted over communication channels. Third, the server-side life cycle of a session
ID must be correctly implemented. When a user is identified as a known user after successful
authentication, a new session ID should be assigned to this user, and the old session ID should
be invalidated. Session IDs should expire after a properly assessed period of time, and if a user
terminates the session, the session ID should be invalidated as well.

In addition, because web session management is usually implemented by using HTTP cook-
ies, badly configured session cookies are also a potential vulnerability. Session cookies must be
secured properly to avoid leakage, which can be done by setting their security-related attributes
correctly. The settings for cookie attributes are requested by the server to the client in the
HTTP response, this is a request, it is not something the server can enforce a client to do [16].

9

Figure 2.2: Server-side state of session IDs during a typical session of a secure application. SID1
is assigned when the user first accesses the application, and SID2 is assigned after successful
authentication.

The secure attribute This attribute instructs the browser to only send the cookie when
HTTPS is used. HTTPS is an extension of the HTTP protocol that ensures encryption of the
application layer of the TCP/IP model. If this attribute is set for a session cookie, the session
ID is not exposed when an HTTP message is intercepted, because, either the HTTP message
is encrypted, or the session ID was not passed along with the HTTP message in the first place.

The HttpOnly attribute This attribute restricts access to a cookie. A client is only allowed
to send the cookie with an HTTP request and the value of this cookie can only be changed
by HTTP communication. Thus when this attribute is set, a client side script, for example
JavaScript, can not access the cookie. This attribute can be used to protect the session ID
against malicious JavaScript.

Domain and Path attributes These attributes are used to further control when a cookie
should be passed along with an HTTP request, based on the URL of the HTTP request. The
domain of the URL must match the domain attribute of the cookie [18] and the path of the
URL must match the path attribute of the cookie [18]. By setting these attributes, the scope
of session cookies can be limited to parts of a website where they are needed.

Expire and Max-Age attributes These attributes are used to control the client-side lifes-
pan of a cookie. By default a cookie is deleted by a browser when the browser instance is
closed. Cookies set with one of these attributes can be considered persistent cookies and will
not be removed when the browser instance closes. When the expires attribute is set to a specific
time and date the cookie will be removed at that moment. When the max-age attribute is set
with a life span, the cookie will be removed when the lifespan expires. By setting one of these
attributes for a session cookie, a session can stay intact when the browser has been closed,
and thus the user does not have to be re-authenticated when the browser is re-opened. On
the other hand, the session cookie can be made inaccessible on the client-side upon closing the
browser.

SameSite attribute By default a browser sends all cookies with an HTTP request. Cross-
origin requests are used for example to load images or use the API from another website. For

10

these type or requests it is not always desirable to send specific cookies. This attribute is not
widely used yet, but can be crucial in preventing Cross-Site Forgery Requests. If this attribute
is set, the cookie is not sent along with cross-origin requests.

2.4 Social Single Sign-On

Social Single Sign-On (SSSO) authentication (also called Social Login, Social Authentication,
or Social Sign-In) is an authentication method where social media platforms, such as Facebook,
Google or Twitter, are used by other systems to authenticate users.

The term ’Single Sign-On’ indicates that users have to provide security credentials only once
in order to gain access to multiple independent systems. Instead of using different credentials
for every system, an Identity Provider (IdP) is used to coordinate the identity of a user between
the different systems, called Service Providers (SPs), or relying parties. When a user’s identity
needs to be authenticated by an SP, the IdP provides the user with an authentication token that
can be used to authenticate their identity. In the case of Social Single Sign-On authentication,
social media platforms act as an IdP, and let their users rely on them for authentication by
any SP that supports them (Figures 2.3, 2.4 and 2.5).

Figure 2.3: A website that al-
lows users to authenticate via
Google or Amazon (see bot-
tom).

Figure 2.4: User is prompted
with which Google account
they would like to authenti-
cate.

Figure 2.5: After successful
authentication, the user can
access their account on the
website.

Usage of SSO authentication is preferred over username and password credentials by users
[27, 28]. One reason is that SSO provides a solution to password fatigue caused by the large
amount of password required on a daily basis [29]. It also avoids bad password habits [30] and
should provide more secure passwords in theory [30].

Users only need to remember the security credentials to sign into the IdP, and do not
need security credentials for every SP they would like to access. However, the use of SSO
authentication also introduces several concerns. First of all, if the IdP is unavailable, or the
user forgets their security credentials, the user cannot be authenticated, and thus also loses
access to all their other accounts. If a user’s access to an IdP is somehow compromised,
attackers can access any SP impersonating as the user. Such compromises can have cascading
and long lasting effects [12].

Several existing protocols, such as OpenId or OAuth, can be used for implementing SSSO
authentication, but Mainka et al. [31] have observed that the sequence of steps that all of these
protocols go through, can be generalized, as depicted in figure 2.6.

1. The user initiates the SP’s authentication process, indicating that they would like to rely
on the IdP for authentication.

2. If necessary, the SP contacts the IdP to gather information on how to authenticate the
user, how to verify subsequent messages, or where to redirect the user to for retrieving

11

Figure 2.6: The general SSSO authentication flow [31]

their authentication token.

3. The SP requests the user to provide an authentication token that they can obtain from
the IdP, and redirects them to the IdP.

4. If the user has not been authenticated yet, the user needs to be authenticated by the IdP.

5. The IdP passes the authentication token on to the user, and redirects the user back to
the SP, so that the user can pass on the authentication token to the SP.

6. If necessary, the SP can verify the authentication token by contacting the IdP.

7. If nothing went wrong, the user has now been authenticated by the SP.

2.5 Web Crawling

Web crawlers (also called spiders, or robots) are programs that explore the Web with the
purpose of extracting information from web pages. Web crawlers have many applications, but
all generally work the same way.

Every web crawl session, depicted in figure 2.5, starts with a non-empty queue containing
one or multiple seed URLs that will be crawled first. Until the queue of URLs is empty, or a
certain condition is met, the following steps are repeated:

1. the next URL is popped from the front of the queue of URLs

2. document at the URL is downloaded

3. new URLs are extracted from the document

4. the document is stored for later processing

12

Figure 2.7: A diagram of
the general workflow of a web
crawler.

In order to avoid redundant work, a crawl history needs to
be maintained to remember which URLs are currently queued
up, or have been visited in the past. Even though this basic
approach of a web crawler is the same for all web crawlers,
many variations exist that uniquely modify their behaviour.

The first distinction to be made is how the next URL is de-
cided. Most web crawlers used by search engines tend to pre-
fer a breadth-first strategy. Breadth-first strategies visit di-
rectly referenced pages first, which tend to be of much higher
quality than pages that are several jumps away. Another com-
mon strategy employed by preferential web crawlers is using
a priority queue to queue the URLs, and assign a priority to
every URL that was found during the URL extraction phase.

A second major distinction is the scope of web crawlers.
Universal web crawlers try to reach as many web pages as
possible, such as the web crawlers employed by search engines
which try to index every web page according to their content.
On the other hand, focused web crawlers attempt to keep
their exploration limited to pages of interest, such as pages
that are related to sport or commerce, or pages that have
certain functionality.

Web crawlers face many different challenges. Not only do
they have to correctly fetch, parse, and store web pages in a
scalable way, but they also have to extract new URLs from
these pages to drive their search. Older web pages used to
be static documents containing references to other pages as
simple hyperlinks, which were easy to extract. But nowadays
modern web applications may use JavaScript to dynamically
construct web pages, and can hide references to other pages
server-side or deeply hidden in page scripts.

A crawler also can get stuck in the deep web, a term re-
served for web pages that are dynamically constructed based
on prior interactions of a user with a website. This situation is
common on e-commerce websites, where every product page
contains unique URLs to even more product pages. These
pages are aptly called spider traps, and every web crawler
should have a strategy to deal with them, such as limiting
the search depth (the length of the path between a seeded
page, and the accessed page), limiting the amount of pages
per domain that may be inspected, or inspecting the URL
itself for potential trouble before adding it to the queue.

Another aspect that should be considered is web crawler
etiquette. Crawlers can put a lot of strain on the servers
serving the content that they are exploring. Some websites
do not wish to be crawled, and thus provide a robots.txt file
in the root directory to let conforming crawlers know which
web pages may be crawled.

13

Example 2.4
This ’robots.txt’ file lists instructions for crawler bots. The first set of lines allows ’Twitterbot’
to crawl the website, with the exception of web pages that path-match ’/search’ or ’/admin’.
The second set of lines disallows any other crawler from crawling any part of the website.

User-agent: Twitterbot

Crawl-delay: 120

Disallow: /search

Disallow: /admin

User-agent: *

Disallow: /

2.6 Browser Automation Tools

The need for automated verification of client-side behaviour of web applications in software
testing has led to the development of browser automation tools. Browser automation tools are
used to automate a sequence of browser interactions, effectively emulating a user’s behaviour
without human interaction, which makes them an ideal tool for automated software testing.

Browser automation tools tend to use one of two popular approaches. A first popular
approach lets the tester record a sequence of browser interactions, which can then be replayed
in the same way during tests. This allows the tester to add new tests in a fast way, usually
without having to write any code. However, to change the test, the tester needs to record a
new sequence of interactions from start to end. Another potential problem with this approach
is that, depending on the implementation, these tests might break when the UI changes, and
thus tests using this approach can be rather fragile. The other popular approach is the use
of scripts for browser automation. This approach has the advantage that a tester only has to
change relevant parts of the test, and these tests tend to be less fragile.

Although browser automation tools were originally only used for software testing, other
uses have been found for browser automation tools, including web crawling. The use of browser
automation tools for web crawling has several advantages over other tools: first and foremost,
they are commonly used to evaluate JavaScript, which is necessary to render modern web
applications. This also helps with avoiding countermeasures. The only real disadvantage to
using a browser automation tool for web crawling is the amount of resources used. Another
disadvantage of using a browser automation tool for web crawling is that their interfaces are
designed with software testing in mind, resulting in the omission of certain functionality that
would be convenient for web crawling.

Selenium is a popular script-based browser automation tool for software testing that can
be used to automate multiple types of browsers, and is available for multiple programming
languages. Selenium uses webdrivers, browser-specific programs that execute interactions with
a browser. Selenium’s development has inspired the creation of the WebDriver protocol, which
has been considered to be the de facto standard for webdrivers since long. Because all web-
drivers implement the same interface according to the WebDriver protocol, any browser can be
automated as long as a conforming webdriver is available for that browser. In reality, however,
differences between browsers and their respective webdrivers still forces testers to write a lot
of browser-specific code.

Browser automation is achieved by using interprocess communication, in the following way:

• application uses selenium to send requests to webdriver instance
• webdriver instance sends requests to browser instance

14

• browser instance processes requests and sends responses with feedback to webdriver
• webdriver instance receives response from browser instance
• application uses selenium to receive response from webdriver instance

Figure 2.8: Data flow in system using Selenium to automate several popular browsers.

Recently, other browser automation tools besides Selenium have been gaining popularity,
where the focus has shifted away from software testing, and more towards browser automation
itself. Instead of supporting multiple browsers with an interface designed for software testing
in mind, these browser automation tools support only one single browser with a broad and
advanced interface. An example of this is Puppeteer, a JavaScript-based tool for Google
Chrome.

Another recent change has been the integration of browser automation endpoints in the
browsers themselves, which can be communicated with browser-specific protocols, and thus
removing the need for a mediator such as a webdriver. As these things tend to go, popular
browser-specific protocols are later standardized and adopted by other browsers as well. This
is the case for Google’s Chrome DevTools Protocol, which is now also supported by Mozilla’s
Firefox browser.

Another fairly recent trend is the adoption of a headless mode by most popular browsers,
coinciding with the rise in popularity of the term ’headless browser’ over browser automation
tool. When using a headless browser, the graphical user interface is not rendered, resulting in
less resources being used.

2.7 Summary

In this chapter we provided fundamental knowledge that is required to understand the rest
of this thesis. Our research is centered around web session management, and authentication
through SSSO. However, this research would not have been possible without writing a web
crawler to explore the web. This background is also necessary for the next chapter on related
work, in which we explore the frontiers of related research.

15

Chapter 3

Related Work

Our study touches upon several areas of active research. We will discuss the most relevant
studies in those areas of research and their contributions, in order to further shape the context
of our study. We will do this by showing how our study is different from other studies, clarify
how our study is new and original. Lastly, we would also like to discuss the Shepherd Project,
a study investigating session management vulnerabilities, which our study directly contributes
to.

3.1 SSO Security

The first area of research that is related to our study is the security of Single Sign-On (SSO).
This area of research features a wide range of studies, ranging from theoretical analysis to
large-scale real-world experiments.

A field study on popular Web SSO systems by Wang, Chen, and Wang [32] identified several
session hijacking vulnerabilities in the implementation of SSO by identity providers and service
providers. They manually logged into several websites, while intercepting web traffic between
the web browser and web server. A tool was used to intercept and analyze HTTP requests
and responses related to SSO. Intercepted HTTP requests were then modified, and sent back
to the web server, after which the HTTP responses that were sent back by the web server were
inspected for inconsistencies, indicating vulnerabilities.

The same approach of interception of and analyzing web traffic between the web browser and
web servers was used by Li and Mitchell [33] in 2014. They probed implementations of Web
SSO based on the OAuth 2.0 protocol for logic flaws and cross-site request forgery (CSRF)
vulnerabilities, which allowed for session hijacking to happen. Their study investigated 60
Chinese relying parties, covering 10 different Chinese identity providers. They concluded that
21 of the 60 relying parties were vulnerable. They also tried to identify a potential reason as
to why these vulnerabilities existed, and determined that the OAuth 2.0 protocol was unclear
and lacked information.

A similar study was conducted again by Li and Mitchell [34] in 2016. This time they
investigated all domains supporting Google’s OpenID Connect in the GTMetrix Top 1000 sites,
103 in total for similar flaws, with a similar approach. Multiple flaws in the implementation
of OpenID Connect were detected via black-box testing. These flaws could allow an attacker
access to the victim’s account using XSS or CSRF. They also identified potential causes for
the implementation flaws and provided recommendations to the identity providers and relying
parties.

These studies are only some of many similar studies that were performed on a relatively
small scale, or needed manual intervention to handle the authentication process. Our study
affects this area of research by allowing these studies to be conducted on a large-scale, without
any manual intervention.

16

3.2 SSO Detection

A small number of existing studies related to SSO security are of particular interest to our study,
because they already investigated the automated detection of SSO in some way or another,
which we will discuss here. So, although they technically belong in the previous section, we
would like to emphasize the effort of automated SSO detection that was done by these studies.

EsPReSSO is a penetration testing tool built on top of Burpsuite, a popular penetration
testing tool, by Mainka et al. [31]. This tool intercepts web traffic in order to automatically
detect and analyze SSO security. To detect if, and identify which, SSO was being used, they
established a method for fingerprinting several SSO protocols. These fingerprints were then
used to process intercepted web traffic in an automated way. If the use of SSO was recognized,
then the security of SSO was analyzed through the manipulation of HTTP messages, in a way
that is similar to the aforementioned studies of the previous section. The results were then
presented in a user-friendly way for further investigation.

Ghasemisharif et al. [12] explored the potential consequences of an attacker taking over an
account that can be used with SSO, and highlights the lack of countermeasures foreseen by most
protocols to reduce harm in this situation. They discuss multiple ways in which an attacker
can hijack a session, which then allows the attacker to gain access to, or even create, accounts
for other services. They also explored several ways in which an attacker can retain control
over compromised accounts, and further showed how attackers can abuse hijacked accounts of
relying parties due to incorrect integration, even after revocation of access rights. These attacks
are hard or even impossible to recover from in most cases, especially due to the invisibility and
lack of oversight when such an attack happens. For this reason, they proposed to extend the
OpenID Connect protocol with ’Single Sign-Off’, a feature that revokes access to all accounts
of relying parties, and thus prevents attackers from accessing those other services. Their study
also includes a practical component where they built a web crawler to determine the prevalence
of SSO on the Web. They searched for login and registration pages by analyzing the landing
page for potential references to such pages. If no pages were initially found, the crawler would
also try to guess the links to these pages by using common link patterns, such as the URL path
/login/. If a login or registration page was found, their crawler would try to infer the use of
SSO by using regular expressions and searching for references to known SSO API endpoints.
With this crawler they analyzed the Alexa top 1 million ranking and determined that a lower
bound of 6.3 % of the domains has integrated some form of SSO, with Facebook being the
most commonly supported SSO provider, followed by Google and Twitter.

Zhou and Evans [11] investigated security vulnerabilities related to the integration of Face-
book’s SSO by websites in 2014. For this purpose, they built a web crawler that tried to detect
the integration of Facebook’s SSO by a website, and if this was the case, would attempt to log
in using Facebook’s SSO. Web traffic was intercepted to determine whether or not Facebook
SSO was actually being used, and was also analyzed to determine the presence of security
vulnerabilities. They probed 20.000 of the most popular websites in the US for several vulner-
abilities caused by improperly integrating Facebook’s SSO. 1660 of these websites were found
to have integrated Facebook’s SSO, and of those websites that had integrated Facebook’s SSO,
20 % were found to be vulnerable to one or multiple vulnerabilities. This study was the first of
its kind, in the sense that they were the first to largely automate the process of detecting SSO,
attempting to log in, and verifying the logged in state. In a sense, they have set the stage for
our study. Their paper describes in an elaborate way how they detected Facebook’s SSO, how
they performed the login attempt, and verified a successful login attempt. An additional step
in this process is further account creation after successfully logging in, which was still necessary
in 44 % of the cases. Their study revealed a lot of the complexities that make the automation
of this such a complicated problem. They managed to successfully log into 80 % of the sites
that supported Facebook SSSO. Although the lack of support for non-English websites and

17

only detecting Facebook’s SSO limits SSOScan, their methods can be extended to detect and
use multiple identity providers.

These studies are highly relevant, because automatically detecting the integration of SSO,
and using SSO for authenticating to websites are the main focus points of our study. We will
contribute to this area of research by evaluating and exploring the methods used by these
studies in greater detail, proposing several improvements, so that future studies can benefit.

3.3 The Shepherd Project

Our research is a direct contribution to the Shepherd Project, a tool used to automatically
scan a large amount of websites for session management vulnerabilities. The scanner built in
this project was used in February 2018 to scan 50,000 domains and was able to automatically
login and verify the login attempt in 12.4 %, 6,273, of the domains. From the domains from
which Shepherd managed to log in and verify the log in, 41,4 % was found vulnerable to session
hijacking. Shepherd is designed to work in three distinctive phases: the targeting phase, the
log in phase, and the scanning phase.

The targeting phase can be run stand alone prior to the actual scanning and comprises the
selection of the targets and an attempt to fetch credentials. To authenticate Shepherd as a
valid user, Shepherd tries to source credentials for each given domain from BugMeNot, a service
where users can share credentials. When using this service, the validity of the credentials is a
limiting factor. However no legal alternatives are available.

If any credentials are found, Shepherd searches the page with the login elements and at-
tempts to authenticate with the sourced credentials in the next phase. If a successful, Shepherd
determines how to verify the logged in state, which is important because this result is used in
determining the susceptibility to session hijacking. To determine this susceptibility, Shepherd
first needs to determine the set of cookies containing the authorization token. If that succeeds
Shepherd can inspect if all the cookies containing the authorization token are well protected.
It is only needed to determine if the secure flag is set for these cookies.

To assess the accuracy and to reveal shortcomings in the scanners heuristics manual eval-
uations were performed. Detection of the login page/elements is reasonable. Authentication
failures were mostly caused by invalid credentials or a misinterpretation of the web page.
Any improvements made in the verification of the authenticated state could contribute to the
scanners performance. Most importantly, the confidence is high for the authentication and
verification.

In February 2018 a first trial attempt was performed to also log in using Facebook SSSO
to gain some first hand experience with automatically logging in using SSSO and to determine
difficulties and discover pitfalls.

3.4 Summary

In this chapter we discussed studies which were highly relevant to our contributions to the
Shepherd project, provide knowledge or methods how to solve expected problems. We suspect
our work will have a lot in common with the works of Zhou and Evans [11] and Ghasemisharif
et al. [12].

18

Chapter 4

The Shepherd Framework

4.1 Introduction

Our contributions are built on top of an existing implementation to crawl the web for the login
options for a web application. In the Shepherd Project was already decided what programming
languages, Python and JavaScript, and which browser automation tool, Selenium, would be
used. In this chapter we explain what we needed to do to make our contributions possible,
namely the development of the Shepherd framework.

4.2 Problem Description

We decided to create a proof of concept implementation to detect and to authenticate with
Facebook SSSO to gain first hand experience with the existing framework and automated
scanning. This also served the purpose of identifying and deciding what improvements and
changes needed to be made to the existing framework.

We built the proof of concept Facebook SSSO implementation on top of the current version.
From this we concluded that:

• The existing implementation was hard to reuse for our intended goals.

• Refactoring the existing implementation enables us to use the existing tool as a basis for
our intended goals.

We managed to create a proof of concept scanner which was used in the Shepherd Project with
limited success. However, one of our intended goals is to support multiple SSSO providers and
we did not see any option how this could be logically done with the current implementation.
We proposed to spend time on refactoring the current version to create reusable core classes
and to develop an architecture that is suitable for extension.

4.3 Shepherd’s Architecture

Because we envisioned a more extensible and logical architecture we decided to use the following
main architecture consisting of the following components: apps, core, modules and settings.

Core Functionality

The core functionality is placed in this package because this will be widely used in multiple
modules and to provide a stable interface.

19

Browser The main goal of this module is to provide a Pythonic interface for managing
and interacting with a browser instance provided by Selenium. This provides an independent
interface for any browser and if changes need to be made because of changes in a browser or
a webdriver, it is done within this module. Because the browser classes directly interact with
the browser instances, they also provide the error handling for this.

This module also contains a Pythonic class which provides a wrapper around an HTML
element and handles the interaction and errors with such an element.

Other functionality in this module is for example code for handling the loading of pages
and the loading of browser extensions.

Framework Classes in this module provide base classes for our core concepts apps and
modules which we will explain separately and code to handle multiple worker threads simul-
taneously. This makes it possible to process multiple domain simultaneously, each in its own
thread with and its own browser instance.

Resources, Utils and Scanner These modules contain utility classes for example to fetch
data from the Alexa ranking, base class implementations to queue pages that need to be scanned
and many others.

4.3.1 Apps and Modules

We needed to develop an architecture where it was possible to create multiple and run multiple
configurations and that it is possible to easily extend these with new functionality. This resulted
in three core concepts: websites, modules and apps.

Website A Website object in Shepherd is an object that is created to store all properties
and results from modules for the current domain that is processed. A Website object is passed
from module to module and each module that receives this object can retrieve and store results
for and from other modules through a well defined interface.

Modules A Module in Shepherd represents one defined feature or task. For example a
module to detect SSSO on a website or a module that is only concerned with the verification
of the authenticated state.

A module receives a Website object from which it can retrieve information and results from
a previously run module. If other modules depend on the results of the current module, these
are stored in the Website object. This creates the possibility to run multiple configurations
and to create reusable components.

Apps An App actually defines what configuration to run. In an App subclasses are used
from Worker and Leader classes from the framework. The Leader base class manages workers
in multiple threads for processing a collection of domains. A Worker class actually runs a chain
of modules for a given domain.

4.4 Stable Web Pages

When we created the proof of concept Facebook SSSO scanner with the initial version of Shep-
herd, we observed that fixed time outs were used after interaction with the browser instance.
For example, when a link is clicked and a page is loaded the time out for a page to load could
only be set to a specified time. This does not take into account if a page has actually loaded.
We see two problems with this approach. First it could be that interaction with the browser

20

instance is resumed however a page has not loaded completely. This can affect the stability
and results. Second, waiting is done while nothing happens.

Stability Within Selenium there is no support to determine if a page has stabilized, meaning
that no changes are expected on a short notice. Our solution was to monitor the evolution of
the amount of DOM elements that are loaded and the amount of outstanding HTTP responses
on a dynamic basis. For this all open tabs from the browser instance need to be evaluated.

The Algorithm On an interval basis an algorithm runs to determine if the amount of ele-
ments in the DOM did not changed in a short period of time and that the amount of outstanding
HTTP responses did not changed over a long period of time. The interval is continually ad-
justed based on the results. When a lot of changes in the amount of DOM elements were
found, then the interval time increases, and when the amount of outstanding HTTP responses
is stable over a long time, the interval time is reduced.

ShepherdRequestTracker Because no support exists in Selenium to keep track of out-
standing HTTP responses, it was needed to create a browser extension for this, the Shepher-
dRequestTracker. This browser extension keeps track of how many HTTP requests are waiting
for a response. Unfortunately its use is limited to Chrome only.

Performance Impact Although this has some effect on the run time, the performance gain
as a result of a more stable platform should also be taken into consideration.

4.5 Summary

In this chapter we discussed only a limited number of improvements we had to apply to Shep-
herd to make it an actual framework. We were convinced that these were actually needed to
do to make our intended goals possible. We explained our design choices and highlighted how
we solved the stability problem. This resulted in a modular and extensible architecture which
moved away from a largely functional programming paradigm to a more object oriented design
with the use of utility functions. We are convinced that this work is a substantial contribution
to the Shepherd Project.

21

Chapter 5

Automated Detection of Social
Single Sign-On Authentication

Using Social Single Sign-On (SSSO) to automate authentication for a large amount of websites
has been shown to be a promising endeavour by prior research. Zhou and Evans [11] have
demonstrated that it is possible to automate SSSO authentication processes, and Ghasemisharif
et al. [12] have found that a significant number of websites let users log in with SSSO. However,
before we can automate SSSO authentication processes, we need a reliable way to discover the
entry points of these processes.

Figure 5.1: (Indeed) An example of the buttons used to log in with SSSO.

As described in background section 2.4, a user typically needs to click a button in order to log
in with SSSO. The discovery of such a button is a trivial task for a human user, but is far from
trivial for a computer program. In this chapter, we present our research that tries to address
the following research question:

How can we discover the entry points of SSSO authentication processes,
in a fully automated way, for any website,

for any SSSO provider, in an efficient and reliable way?

This research question applies several restrictions upon any possible solutions. ”In a fully
automated way” implies that a solution should not involve any human interactions. ”For
any website” reflects our wish that a solution may only make generic assumptions about the
structure and workings of a website, and similarly, ”for any SSSO provider” suggests that a
solution should work for most, if not all, SSSO providers. Last but not least, a solution should
work ”in an efficient and reliable way”, hence a solution should not explore every possibility.
Instead, a solution should make sensible decisions based on experimental evidence, and produce
reliable results in a relatively fast amount of time with the resources at hand.

22

https://secure.indeed.com/account/login

5.1 Overview

After confirming that using SSSO for automating authentication is an undertaking that’s worth
investigating, we will discuss and motivate the general approach of our solution. If a user wants
to log in with SSSO, then they typically need to click on an SSSO button, such as the ones
shown in figure 5.1. We have found that this is the only consistent way to initiate almost all
SSSO authentication processes, and thus our solution revolves around clicking on these SSSO
buttons.

We will also discuss the methods that have been used by prior studies to detect whether or
not SSSO authentication has been integrated by a web application. We have identified several
pitfalls that need to avoided in order to prevent skewing results. We discuss several ways to
address these pitfalls, and present a new and reliable method that can be used to verify whether
or not an element that we have clicked is an SSSO button.

Before we can click on SSSO buttons, we need a way to discover SSSO buttons on any
website. We explore several problems related to the discovery of SSSO buttons that need to
be addressed first:

• Where to look for SSSO buttons?
We should only look for SSSO buttons in locations where we expect to find other compo-
nents related to authentication to be, such as username-password forms on login pages.

• How to recognize SSSO buttons?
We can recognize SSSO buttons by using an approach that is primarily based on the
presence of relevant keywords and by using heuristics for filtering/sorting results.

• How to click on SSSO buttons?
We have investigated the sequences of actions that may be required to click on an SSSO
button, and present an appropriate data structure to store such sequences.

• How to find the URLs of relevant web pages?
To drive our exploration of a website, we need a way to discover the URLs of pages where
we are likely to find SSSO buttons.

After having explored several problems related to the discovery of SSSSO buttons, we
then present a method for discovering SSSO buttons as our solution to this chapter’s research
problem. This method operates on two levels:

• How to find an SSSO button on a web page?
We use a trial-and-error-based approach where we execute sequences of actions in an
attempt to discover the next step that might lead to clicking on an SSSO button.

• How to find an SSSO button on a website?
We use a preferential web crawler that prioritizes pages that are deemed more likely to
contain an SSSO button.

We end this chapter by scanning a set of websites for SSSO buttons using a web scanner that
implements our solution. We analyze its results, and report any existing problems, potential
improvements, and future work.

23

5.2 Prevalence of SSSO On The Web

5.2.1 Problem Description

In 2018, Ghasemisharif et al. [12] conducted an experiment to determine the prevalence of
SSSO on the Web, as part of their study investigating account takeovers with SSSO. They
scanned all domains of a daily Alexa Global Top 1M list for evidence of SSSO integration, and
claimed to have found that at least 57,555 out of 1 million domains hosted a website that would
let users log in with SSSO. This led us to believe that a significant amount of websites let users
log in with SSSO. However, we grew concerned about skewed results when we evaluated the
methods that were used for this experiment, and found a significant amount of false positives
in the published data set. This encouraged us to validate their findings by providing our own
experimental evidence.

Scheitle et al. [35] scrutinized the way in which ’Internet top lists’ have been (mis)used in
prior studies. They examined the impact that the use of different Internet top lists can have
on research results, and urge to be careful when doing research using these lists. We needed to
ensure that we were using these Internet top lists correctly, and that our findings were correct.

5.2.2 Observations

Ghasemisharif et al. [12] created a web scanner which would first try to discover a web page
where users could log in, and then would scan that page for evidence of SSSO authentication.
While examining the published data set, we found that 37 domains out of the 100 positive
results that we checked, were false positives. We observed several systematical flaws in the
used methodology that could’ve potentially skewed the results in a significant way:

• social media buttons, share buttons, etc. were misinterpreted as evidence
• blogs and other similar services which were hosted by a host website (e.g. tumblr.com)

were treated as standalone websites, and the authentication systems of the host website
were treated as the authentication system of the hosted blog or website
• SSSO authentication used by embedded third party services, such as embedded com-

menting systems (e.g. disqus.com), was treated as being part of the website itself
• evidence of SSSO was searched for on web pages of unrelated websites

We will also observe in section 5.5 that SSSO buttons are commonly found in modal windows
and pop-up menus, which are hidden initially, or sometimes are loaded only after the user
has interacted with the page. Our solution needs to properly address these issues to ensure
accurate results.

Figure 5.2: (tumblr.com) A ’sign up’ button
belonging to the blog hosting service is shown
at the top of most blogs.

Figure 5.3: (disqus.com) A third party em-
bedded comment system with SSSO authen-
tication (marked in red), below an article.

24

https://www.tumblr.com/
https://disqus.com/
https://www.tumblr.com/
https://about.disqus.com/disqus-demo-page

To validate the results of the experiment by Ghasemisharif et al. [12], we manually in-
vestigated 2000 web domains sampled from the Alexa Global Top 1M list of July 3 2019 in
experiment A.1, on July 4 2019. In addition, we also extended the original experiment by
determining whether or not any user could register and log into a website.

Out of 2000 web domains, we found that 593 domains (29.65% ∓ 2.00%, 95% CI) hosted
a website with user registration, and that 139 of all websites (6.95% ± 1.11%, 95% CI) had
integrated SSSO for at least one SSSO provider. If we were to generalize our findings to the
whole population of the daily Alexa Top 1M rankings list, this would mean that we could use
SSSO to log in for:

• 6.95% ± 1.11% (95% CI) of all domains
• 23.44% ± 3.41% (95% CI) of websites with user registration

Despite the flaws that we had found in the data sets published by Ghasemisharif et al. [12], our
experiment came to similar conclusions. We confirmed the trend that more popular websites
are more likely to have integrated SSSO, which is probably related to the trend that more
popular websites are more likely to have an authentication system in place, as shown in figures
5.4 and 5.5. We also confirmed the dominance of Facebook as an SSSO provider among websites
listed in the Alexa Top 1M list, followed by Google, Twitter, and a long tail of other SSSO
providers, as shown in figure 5.6.

Figure 5.4: Percentage of websites with user
registration and websites with SSSO, orga-
nized per range of 100,000 domains in top list.

Figure 5.5: Percentage of SSSO integration
among websites with user registration, orga-
nized per range of 100,000 domains in top list.

Figure 5.6: Coverage of SSSO providers among websites that have integrated SSSO.

25

However, we should be careful when drawing inferences about the whole Web from these
experiments. Scheitle et al. [35] have investigated the use of top lists in existing research, and
found that:

• sources and effects of bias for these top lists are often unclear
• there are large differences in characteristics between different top lists
• list contents may vary immensely based on the date (daily changes, weekday vs. weekend)
• results based on top lists are largely overestimated when compared to the whole Web

Although using a large sample that is representative of the whole Web is recommended by
Scheitle et al. [35] to avoid these problems, we have decided to keep using the Alexa Global
Top 1M list for our experiments. This top list is biased towards web-based traffic, and deemed a
great fit for sampling popular websites, while avoiding domains that are used to host embedded
content. SSSO authentication is more prevalent among popular websites, and thus using this
top list helps us reduce our research efforts.

We just need to be careful to avoid relying on any properties that are correlated with
the popularity of a website. Looking ahead, we can say that we never found any statistically
significant correlation between the popularity of a website, and any of the properties that our
solution relies upon. As such, we have no reason to expect that the effectiveness of our solution
is different for any websites outside of the Alexa Global Top 1M lists.

5.2.3 Conclusions

We validated the results found by Ghasemisharif et al. [12] regarding the prevalence of SSSO.
However, we cannot reliably infer any information about the whole Web from these experiments.
As such, we can only conclude that:

• a significant amount of websites uses SSSO authentication in absolute terms
• popular websites are more likely to use SSSO authentication

Because we use the Alexa Global Top 1M list for our research, we should avoid relying on
a property when there’s a statistically significant correlation between that property and a
website’s popularity.

5.3 Integration of SSSO Authentication

5.3.1 Problem Description

To identify suitable approaches for solving this chapter’s research problem, we analyzed the
integration of SSSO authentication by web applications. Zhou and Evans [11] already demon-
strated that clicking on SSSO buttons is a common entry point for SSSO authentication pro-
cesses, and that the discovery of SSSO buttons can be automated. However, their research
dates back to more than 5 years ago, was limited to a single SSSO provider, and did not make
mention of any other viable ways to approach this problem.

5.3.2 Observations

The integration of SSSO authentication is a complicated situation due to the wide variety
of existing SSSO providers, SSO protocols, and the many different technologies that can be
used to implement SSSO authentication. The only trend that is largely consistent among
different web applications is that the user typically needs to click on an SSSO button to log in
with SSSO. Everything that happens after clicking on an SSSO button depends on how SSSO
authentication has been integrated by the web application.

26

A large source of diversity among implementations of SSSO authentication is the variety
of browser technologies that can be used. The user’s web browser is used to relay messages
between the SSSO provider and the web application, but there’s no preferred mechanism to
handle these communications:

• URL-Based Messaging
URLs can be used to store tokens, information about the application, and other infor-
mation that is used to implement SSSO.

• Cross-Window Messaging
Cross-origin communication with pop-up windows and embedded frames is possible by
using the Window.postMessage API.

• AJAX (Asynchronous Javascript And XML)
AJAX is commonly used for direct communication between the web application’s client-
side scripts and API end-points provided by the SSSO provider.

The use of different browser technologies for messaging goes hand in hand with varying de-
grees of server-side handling of SSSO authentication. Some web applications have reduced
the client-side integration of SSSO to just a button and a URL, and completely handle SSSO
authentication on the server-side, while other web applications handle almost everything using
client-side scripts.

Another source of diversity among different implementations of SSSO authentication is the
large amount of tools that can be used by developers to integrate SSSO authentication:

• standard development kits (SDKs) (e.g. Facebook)
• third-party services (e.g. Auth0)
• third-party libraries (e.g. Twitter)
• developers can write their own implementations

No matter how SSSO authentication is integrated by its developers, its implementation will
always be a part of a bigger whole, the web application itself. Therefore, every implementation
of SSSO authentication can be considered unique, and thus any approach based on the way
that SSSO authentication is implemented, is not a viable approach.

The only option that remains, is to base our approach on clicking on SSSO buttons to
initiate SSSO authentication processes. Anything beyond this point is too complex and varied
to base a reliable approach upon. Zhou and Evans [11] already used such an approach to
successfully automate SSSO authentication processes with Facebook, and there is no apparent
reason for why this approach wouldn’t also work with other SSSO providers. This led us to the
following hypothesis, which serves as the fundamental basis that our solution is based upon.

Hypothesis 5.1
We can reliably initiate SSSO authentication processes by clicking on SSSO buttons.

This hypothesis is supported by experimental evidence collected during experiment A.2. We
investigated 139 websites with SSSO authentication, and found a total of 396 different entry
points of SSSO authentication processes. Hypothesis 5.1 held true for 382 out of 396 entry
points (96.46% ± 1.82%, 95% CI).

27

https://developers.facebook.com/docs/facebook-login/
https://auth0.com/
https://developer.twitter.com/en/docs/developer-utilities/twitter-libraries

When the hypothesis did not hold true, an implementation based on the OpenId protocol
was used, SSSO authentication was implemented using QR codes, or extra preconditions needed
to be fulfilled before we could initiate SSSO authentication. However, these situations are not
deemed common or impactful enough to really disprove the usefulness of our hypothesis.

Figure 5.7: (darxton.ru) Users need to pro-
viding their mail.ru email address.

Figure 5.8: A warning message is shown to
notify users that SSSO authentication is mis-
configured on the SSSO provider’s end.

A much larger issue was the amount of broken SSSO authentication processes. In 50 out
of the remaining 382 cases (13.09% ± 3.38%, 95% CI), we observed one of the following two
problems after clicking on an SSSO button:

• in 34 cases, SSSO authentication was badly integrated by the web application
• in 16 cases, SSSO authentication was badly misconfigured on the SSSO provider’s end

We found no correlation between the ranking of a website, and the likelihood of an SSSO
authentication process being broken. At least one SSSO authentication process was broken for
27 out of 139 websites, and all SSSO authentication processes were broken for 8 out of 139
websites.

5.3.3 Conclusions

Due to the wide variety of ways to implement SSSO authentication, and SSSO buttons being
the only consistency among most web applications, we have concluded that our solution should
be based around clicking on SSSO buttons to initiate SSSO authentication processes. We
confirmed that this is a reliable way to initiate SSSO authentication processes in experiment
A.2, but also observed that a significant amount of SSSO authentication processes are simply
broken.

5.4 Detection of SSSO Authentication

5.4.1 Problem Description

Zhou and Evans [11] were able to accurately identify SSSO buttons by monitoring HTTP
traffic for messages related to SSSO after clicking on buttons. This was in stark contrast to
the inaccurate methods used by Ghasemisharif et al. [12], who tried to find evidence of SSSO
authentication by scanning a login page for URLs and matches of regular expressions. When we
evaluated their methods, and examined the published data set with results, we noticed several
problems with their approach, that also applied to Zhou and Evans [11]. A reliable method
for discovering SSSO buttons should not only be able to correctly identify SSSO buttons, but
should also ensure that the button is part of the website’s own authentication system.

28

https://darxton.ru/personal/

5.4.2 Observations

After we click on an SSSO button, the browser usually handles the rest of the SSSO authentica-
tion process without any human interaction, as described in background section 2.4. However,
user interaction may be required in one of the following cases:

• the user has not been authenticated yet by the SSSO provider
• the user needs to give permission before logging into the website with SSSO

If the user has not been authenticated yet by the SSSO provider, then the SSSO provider
typically redirects the browser to a web page for authentication before the user can continue
with SSSO authentication, and this page often contains evidence of having clicked an SSSO
button. We believe that we can use this behaviour to reliably determine whether or not we
have clicked on an SSSO button, as we demonstrate in example 1 for Facebook.

Hypothesis 5.2
If a user has not been authenticated yet by the SSSO provider, and we click on an SSSO button,
then the browser is redirected to a page for authentication by the SSSO provider, that contains
evidence of having clicked on an SSSO button.

We found in experiment A.3 that this hypothesis always held true as long as SSSO authen-
tication was integrated and configured correctly, which implies that we can use this method to
reliably verify the identity of any SSSO button that we can use to automate SSSO authentica-
tion. Evidence of clicking on an SSSO button could be found by examining:

• the URL of the page that we were redirected to
• user information found on the page itself

This way, we can avoid the pitfall of confusing share buttons and other similar services for
SSSO buttons. However, we listed several other pitfalls in section 5.2 that we need to address.

Figure 5.9: (wacom.com) We are redirected
to a page that tells us that we clicked on an
SSSO button.

Figure 5.10: (zdnet.com) We are redirected to
a page that tells us that we clicked on a share
button.

29

https://wacom.com/
https://www.zdnet.com/

Example 5.1
Typical flow of an SSSO authentication process where the user that has not been authenticated
yet by the SSSO provider. This allows us to reliably verify whether or not we clicked on an
SSSO button.

When a user visits Imgur, and clicks on Facebook’s SSSO button to sign in, the
following happens:

1. the browser is redirected to Facebook’s SSSO authentication page
2. the browser is redirected to Facebook’s user authentication page
3. the user logs into Facebook
4. the browser is redirected back to Facebook’s SSSO authentication page
5. the user confirms that they want to use Facebook to log into imgur.com, and

the browser is redirected back to imgur.com

Facebook’s redirection is implemented by passing URLs as arguments. For example,
in step 2, the URL of the user authentication page that the browser is redirected to,
has a URL with a ’next’ parameter that contains the URL of the SSSO authentication
page.

https://www.facebook.com/login.php?...&next=<URL>&...

We can inspect the value of this ’next’ parameter in step 3 to confirm that we were
redirected from the SSO authentication page, which in turn confirms that we originally
clicked on Facebook’s SSSO button.

We can use a similar approach to gather information about the application that we
are trying to use SSSO authentication for. The ’next’ URL always contains a unique
identifier of the application that we are trying to use SSSO authentication for. In
addition, Facebook often also shows the display name of an application on the user
authentication page.

30

https://imgur.com/signin

If we want to ensure that an SSSO button belongs to the web application that we are
investigating, then we should attempt to verify that the SSSO button does not belong to
another application. This is a potential problem when:

• the website that we are investigating is hosted by a website that includes its own authen-
tication system on the pages of hosted websites (see figure 5.2)
• an embedded third party service uses SSSO authentication for its users (see figure 5.3)

During experiment A.3, the page that the browser was redirected to after clicking on an SSSO
button, contained information to identify the application in 323 out of 332 cases (97.29% ±
1.75%, 95% CI):

• in 303 cases (91.27% ± 3.04%, 95% CI), evidence was found in the URL
• in 190 cases (57.23% ± 5.32%, 95% CI), evidence was found within the page itself

In the remaining 9 cases where we could not find any evidence, specific SSSO providers were
used, such as Amazon Pay, and thus we can anticipate when we cannot find any evidence.

We can use this information to fingerprint blogging websites and common third party
services that can be embedded on other websites, in order to avoid confusing SSSO buttons of
other services with SSSO buttons of the website that we are investigating.

In section 5.2, we also listed two other pitfalls related to SSSO detection. We can avoid
finding SSSO buttons on unrelated websites by containing our search to web pages of the same
domain, which we will discuss further in-depth in section 5.8. The other pitfall is missing
evidence of SSSO detection that is hidden in harder-to-reach places, which we will discuss in
the next section.

5.4.3 Conclusions

Hypothesis 5.2 can be used to verify whether or not a button that we clicked upon was an
SSSO button. In addition, we have also established that the page that we are redirected to,
usually contains enough information to identify and avoid pitfall situations.

5.5 Locations of SSSO Buttons

5.5.1 Problem Description

In order to reliably discover SSSO buttons, we need to know where to look for them. SSSO
buttons can be found in various locations on websites, and we need to make sure that we do
not miss any SSSO buttons because we forgot to look in a certain place. Vice versa, we should
avoid searching for SSSO buttons in locations where we are unlikely to discover them.

5.5.2 Observations

Initial observations led us to believe that we would find SSSO buttons in the same locations
as where we would expect to find username-password forms, registration forms, and other
components related to authentication.

Hypothesis 5.3
We expect to find SSSO buttons in the same locations as where we expect to find other
components related to authentication.

31

We confirmed this hypothesis during experiment A.4, where all SSSO buttons where find in a
typical location. and identified the following locations where we could find components related
to authentication:

• main/landing page, main content
• login page, main content
• registration page, main content
• any page, base template
• any page, part of modal window
• any page, part of pop-up menu

It is important to note that these locations are not exclusive. A website can have dedicated
pages for letting users log in, and register, while also making it possible for the users to log in
through a pop-up menu.

Figure 5.11: (Quora) Unauthenticated users
are prompted to log in or register when visiting
the landing page.

Figure 5.12: (Imgur) A dedicated login page
where all possible methods for logging in are
presented.

Figure 5.13: (Twitch) A modal window ap-
pears in front of the web page after clicking
the ”Log In” button.

Figure 5.14: (AliExpress) While shopping, an
unauthenticated user can access the following
pop-up menu to sign in.

32

https://www.quora.com/
https://imgur.com/signin/
https://www.twitch.tv/
https://www.aliexpress.com/category/7/computer-office.html

During experiment A.4, we observed that a fifth of all websites with user registration did
not have a dedicated login or registration page, and instead, users had to log in and register
on the landing/main page. We would typically find references to the login and registration
pages on the main page, and when the registration page was not referenced on the main page,
a reference to it could be found on the login page. Login and registration pages often contain
references to each other, and sometimes, the same web page was used for both logging in and
registration.

page count depth = 0 depth = 1 depth = 2 depth = 3

login 33 66.00% 1 3.03% 32 96.97% 0 0.00% 0 0.00%

registration 32 64.00% 0 0.00% 27 84.38% 5 15.63% 0 0.00%

Table 5.1: Experimental data from investigating 50 different websites with user registration.

On almost half of all websites, we discovered components related to authentication, such
as references to a login page or username-password forms, in window modals or popup-menus.
Although there are cases where the contents of window modals and popup-menu can be accessed
by checking the DOM of a web page, websites may also load their contents only after the user
has clicked on a button.

Not only did we find SSSO buttons in the same locations as where we would expect to find
other elements related to authentication, but when we found an SSSO button, then they were
almost always in the presence of other authentication methods, such as username-password
forms, or registration forms. This implies that we are much more likely to find SSSO buttons
near other authentication methods than anywhere else on a page.

If we discover an SSSO button and have verified its identity using hypothesis 5.2 while
avoiding known pitfalls, then we can be quite certain that a website supports SSSO. The
other way around, the lack of an SSSO button in the vicinity of a login form or a registration
form, can also be a reliable indicator to determine whether or not a website supports SSSO
authentication or not. This gives rise to our next hypothesis.

Hypothesis 5.4
If we find a way for users to authenticate, such as a username-password form, or a registration
form, but do not find any evidence of SSSO authentication in their vicinity, then it is very
likely that the website has not integrated SSSO.

Although the hypothesis is not waterproof, it allows us to make a predictions about the
integration of SSSO authentication by a website in cases where we are able to find a username-
password forms, or other ways to authenticate users.

5.5.3 Conclusions

Based on hypothesis 5.3 and the observations made during experiment A.4, we conclude that
an effective search strategy for discovering SSSO buttons at least entails the following:

• searching the main, login, and registration pages
• a maximum search depth of 1 of 2
• interacting with pages to discover the contents of window modals and popup-menus

We are able to make reliable predictions about the integration of SSSO authentication by using
hypothesis 5.4, in cases where we have discovered components related to authentication.

33

5.6 Recognizing SSSO Buttons

5.6.1 Problem Description

We already established where to search for SSSO buttons in section 5.5, but we never addressed
the problem of how to recognize these buttons. Human users can easily recognize SSSO buttons
based on visual cues, but there is no straightforward way for a computer program to recognize
an SSSO button. Developers use a combination of HTML, CSS, and JavaScript to make web
applications behave and look exactly the way that they want, and this flexibility stands in the
way of programmatically recognizing SSSO buttons.

We can rely on hypothesis 5.2 to reliably verify that an HTML element is an SSSO button,
but we cannot use a brute force approach that involves trying out every element on a web page,
because that would take too much time. Along the same lines, if we use a method that might
result in too many candidates that we need to test, we need a way to cut down the amount
of candidates by filtering or sorting candidates, without removing any SSSO buttons from the
pool of candidates.

5.6.2 Observations

Zhou and Evans [11] have shown that it’s possible to recognize SSSO buttons in a reliable
way by searching for keywords in the source of HTML elements. We also identified another
potentially viable approach that uses visual recognition to recognize SSSO buttons.

Visual recognition is a form of machine learning where a computer program learns how to
recognize things based on images containing examples. This is done by building a data set of
images in which all items of interest are tagged with a classifier, and then training a computer
program to recognize those items using the data set. For example, a data set that is used to
teach computer programs how to recognize different types of furniture, might include a picture
of a dining room, in which all chairs are marked as a chair, a table would be marked as a table,
etc. In our case, we would attempt to tackle this problem by taking screenshots of a large
amount of different web pages or HTML elements, and would tag every SSSO button with a
classifier. We think that such an approach could be highly effective due to the distinct looks
of SSSO buttons.

However, despite their similarities, SSSO buttons of the same SSSO provider can still look
very different looks, as demonstrated in figure 5.15. Another problem is that adding support for
each SSSO provider might be a long and intensive task, where we have to provide thousands
of examples of buttons. And last but not least, we did not have any prior experience with
machine learning and visual recognition.

Figure 5.15: Examples of SSSO buttons for
Facebook found on different websites.

Figure 5.16: (Washington Post) An example of
the HTML underlying an SSSO button.

So we opted to use an approach that is similar to the one used by Zhou and Evans [11],
where we attempt to recognize SSSO buttons by searching the source of HTML elements for
specific keywords related to the SSSO provider.

34

https://www.washingtonpost.com/

Hypothesis 5.5
We can recognize SSSO buttons by searching for keywords related to an SSSO provider.

We investigated the validity of this hypothesis in experiment A.5, and confirmed that this
hypothesis held true in close to all cases. Just like in figure 5.16, the HTML source of SSSO
buttons contained one or multiple references to its SSSO provider in 122 out of 126 cases.
When the hypothesis failed, the button looked like a generic login button with no hint of it
being an SSSO button.

Zhou and Evans [11] searched the attributes and visible text of elements for keywords
by using the case insensitive regex facebook. However, during our experiment, we observed
several cases where this approach was not enough. We found that multiple keywords were used
for most SSSO providers, and that these references weren’t always found by only checking the
attributes or visible text of buttons. For this reason, we needed to take another look at the
following questions:

• Where do we search for keywords?
• Which keywords do we look for?

To determine where to search for keywords, we compared different options. Out of 122
cases where hypothesis 5.5 held true, we found that we could use:

• inspecting visible text based approach in 63 out of 122 cases (51.64%)
• inspecting the id and class attributes in 80 out of 122 cases (65.57%)
• inspecting all attributes in x out of 122 cases (100.00%)
• inspecting all attributes and visible text in x out of 122 cases (100.00%)

Ideally, we would scan the full outer HTML of an element for keywords, which includes the
opening tag, the closing tag, and everything in between. However, a major downside of doing
this is that any element with a descendant that contains a keyword would also be tagged as a
potential candidate.

As mentioned earlier, Zhou and Evans [11] used the case-insensitive regex facebook to
identify potential Facebook SSSO buttons. During our experiment, it quickly came to our
attention that this is not adequate enough in a significant amount of cases. For example,
the regex facebook only matched in 51 out of 55 cases (92.73%), and the regex google only
matched in 29 out of 33 cases (87.88%). In several cases, references were made to the SSSO
provider using abbreviations. Based on our observations in experiment A.5, we put together
the following table of regexes for different SSSO providers:

SSSO provider long keywords short keywords

Facebook (facebook|fbook) fb

Google (google|gplus|g[\-_]?oauth) gp

Twitter (twitter|twttr) tw

VKontakte vkontakte vk

mail.ru (mailru) mru

Table 5.2: Regexes used to match long and short keywords related to SSSO providers.

We decided to make a distinction between regexes for long keywords and regexes for short
keywords. Long keywords suffice in most cases, but shorter keywords are necessary to have
complete coverage. However, the use of shorter keywords results in finding a lot of false

35

positives. If we want to use short keywords for recognizing SSSO buttons, we also need a way
to cut down the pool of possible candidates.

An approach that searches the attributes and visible text of elements for long keywords
related to the SSSO provider, typically results in a small pool of candidates and suffices to find
a large amount of SSSO buttons. However, for an approach with quasi-complete coverage of all
SSSO buttons, we would need to search the full outer HTML of an element for long and short
keywords. Both of these aspects result in a lot of candidates that are false positives, which
means that, if we want to use such an approach, we need to drastically cut down the amount
of candidates in an effective way.

A first way to cut down the amount of potential candidates for SSSO buttons is to filter
out any HTML elements that are not buttons. However, due to the flexibility and diversity of
the Web platform, any HTML element can be a button:

• The ’button’ tag name should be used when an element is a button, but we have found
many examples of HTML elements that behave and look just like a button, but have
different tag names, such as input, a, li, div, span, img, etc.

• Technically, we can click on any HTML element due to the nature of event capturing and
event bubbling. A click event passes by many different elements. When we click on a
descendant of an HTML element, we also click on the HTML element itself.

• Default behaviour when clicked upon is defined for area elements, anchor elements, button
elements, and input elements with type ’button’ or ’submit’. However, default behaviour
can be disabled or overwritten.

• JavaScript can be used to attach a click event listener to any element, and there is no
out-of-the-box way to determine whether or not an event listener of a certain type is
attached to an HTML element.

• By default, the mouse cursor changes when it is positioned on top of an element that can
be clicked. CSS can be used to emulate the changing cursor by changing the value of an
element’s ’cursor’ CSS property to have the value ’pointer’.

• Web developers can add attributes to the elements of web pages to help improve ac-
cessibility for people with disabilities (e.g. microdata, ARIA). However, the number of
websites that actually add these attributes is small.

None of these aspects can be used on their own to reliably determine whether or not an element
is a button. However, by combining these different aspects, we create a very reliable indicator
of what a button is.

Hypothesis 5.6
A HTML element is considered a clickable button if one of the following applies:

• default behaviour to handle a click-related event defined for element
• a click-related event listener is attached to the element
• cursor is a pointer when position above the element
• it is marked as a button using an attribute related to accessibility

Note that the following are click-related events: ’click’, ’dblclick’, ’mouseup’, ’mousedown’.

36

We can easily check each indicator of hypothesis 5.6, with the exception of the second
one. Determining whether or not a click-related event listener is attached to an element is not
possible out of the box, but we used a browser extension to add this functionality. We injected
a script that uses a technique called monkey patching to intercept all function calls that attach
event listeners to HTML elements. This way, we could keep track of which event listeners were
attached to each HTML element.

Figure 5.17: (IANA) A filter that only marks clickable elements at work.

However, this is not the only way to filter candidates for SSSO buttons. Based on our
observations, we found several other traits among SSSO buttons that are universally shared.

Hypothesis 5.7
We can filter candidates based on the following nearly-universal traits of SSSO buttons:

• SSSO buttons are expected to be clickable buttons (see hypotheses 5.1, 5.6)
• SSSO buttons are expected to be visible to the user
• the height of an SSSO button tends to be within certain margins (20px < height < 400px)
• the length of visible text within an element has to be limited (<50 characters).

In sections 5.7 and 5.9, we will discover that another way to limit the amount of candidates,
is to only search in parts of the page that have changed. For example, when we click a button,
and a pop-up menu appears, we should only search for new candidates in that popup-menu.

37

https://www.iana.org/domains/reserved

Even if we are able to filter out a large amount of candidates that are unlikely to be SSSO
buttons, the pool of candidates might still be too large. At this point, we have only limited
the pool of candidates to clickable buttons that contain references to an SSSO provider, and
share several properties that are common among SSSO buttons. This might include buttons
related to other services provided by the SSSO provider, such as buttons for sharing articles,
or joining a fan page, etc. Another case where this might be a problem, is if one of the SSSO
provider’s keywords commonly appears on a web page.

To solve this problem, we can sort these candidates by the likelihood of being SSSO buttons,
and only test the most likely candidates. Zhou and Evans [11] had identified several indicators
that increased or decreased the likelihood of an HTML element being an SSSO button:

• the position of an element on a web page
• the presence of certain terms, such as ’auth’ (increase) or ’share’ (decrease)

On login and registration pages, SSSO buttons were typically part of the main content, while on
other pages, they could be found anywhere, including in window modals, and pop-up menus.
Terms indicative of authentication, such as login, signin, auth increase the likelihood, while
terms such as share, support, etc. led to decreases in likelihood. Other factors, such as the
width or height of an element were deemed less indicative, and thus less helpful when sorting
candidates.

Hypothesis 5.8
We can sort the candidates based on the following traits:

• candidates that are further away from positions where we expect to find SSSO buttons,
are less likely to be SSSO buttons
• candidates that contain terms that are related to authentication are more likely to be

SSSO buttons
• candidates that contain terms that are related to other services provided by an SSSO are

less likely to be SSSO buttons
• candidates that are further away from other authentication methods, are less likely to be

SSSO buttons (see hypothesis 5.4)

After having scored every candidate, we can apply a cautious cut-off, so that any of the
downsides of of checking the full outer HTML of elements for long and short keywords have
been reduced to a manageable level.

Now that we have established a way to reliably select candidates for SSSO buttons, we can
combine this selection method with hypothesis 5.2 to find all SSSO buttons. By clicking on
each candidate, we can accurately determine whether or not they are SSSO buttons.

5.6.3 Conclusions

We can recognize SSSO buttons by searching the source of HTML elements for keywords related
to SSSO providers. Different approaches have advantages and disadvantages. To have as much
coverage as possible, an approach that searches the full outer HTML of elements for long and
short keywords should be used, in combination with limiting the amount of candidates through
filtering and sorting by likelihood of being an SSSO button. We can verify whether or not a
candidate is an SSSO button by using hypothesis 5.2.

38

5.7 Clicking on SSSO Buttons

5.7.1 Problem Description

We have already established where to look for SSSO buttons, and how to recognize them.
However, as we observed in section 5.5, SSSO buttons may be located in pop-up menus or
modal windows, in which case, prior interactions with other elements of the web page are
typically required to reveal those SSSO buttons.

These prior interactions often involve clicking on a button that results in a pop-up menu,
or a modal menu appearing. Similarly to how we investigated where to look for SSSO buttons,
and how to recognize them, we need to investigate these same problems for these buttons.

Besides identifying which sequences of actions might be necessary to click on SSSO elements,
We also need a way to record these action sequences. For this, an appropriate way to reference
HTML elements is need that is resilient to page navigation, and element staleness.

Last but not least, the same problems that we tried to solve for SSSO buttons, need to be
solved for login buttons, and other elements that we need to discover before we can discover
SSSO buttons.

5.7.2 Observations

When an unauthenticated user visits the main page of a website, the web page usually contains
one or multiple incitements to log in. Sometimes, a registration form or username-password
form is presented immediately to the user, but more often than not, ways to authenticate are
hidden behind a login button. When the user interacts with one of these login buttons, either
a modal window or pop-up menu apears, or the browser is redirected to a dedicated login or
registration page. In either case, interacting with these login buttons is an important step in
our discovery of SSSO buttons.

Figure 5.18: (Twitch) A modal window ap-
pears in front of the web page after clicking
the ”Log In” button.

Figure 5.19: (AliExpress) A pop-up menu ap-
pears when the mouse cursor is placed over the
sign-in button.

We found that in a large majority of cases, prior interactions involved clicking on a button,
while in some cases, the user had to place the mouse cursor on top of an element, followed by
clicking on an SSSO button as the final action. Sometimes, multiple interactions were necessary
before SSSO buttons were revealed. As such, we are able to generalize our interactions with a
web page as a sequence of clicks and hovers.

39

https://www.twitch.tv/
https://www.aliexpress.com/category/7/computer-office.html

Hypothesis 5.9
Any sequence of interactions that results in clicking on an SSSO buttion is composed of the
following interactions:

• click on an element
• hovering, or placing the mouse cursor on top of an element

We confirmed this hypothesis in experiment A.7, in which we observed 35 different sequences
of actions that resulted in clicking on an SSSO button. During this experiment, we observed
an interesting trend regarding the length of these sequences of interactions:

• prior interactions were almost always required on main pages
• no prior interactions were needed for unique sequences found on login/registration pages

Note that we did observe longer sequences on login and registration pages. However, in these
cases, the same sequences were also found on the main page, as they were usually part of the
website’s template. Based on these findings, we think that an effective approach should only
attempt to discover longer sequences of interactions on the main page.

page n=1 n=2 n=3 n=4 n=5

main 0 0.00% 10 28.57% 5 14.29% 0 0.00% 0 0.00%

login 12 34.29% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

registration 8 22.86% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Table 5.3: Amount of interactions (=n) needed to click on an SSSO button per type of page.

Within the context of programmatic browsers, these sequences of interactions are commonly
referred to as action chains, and most programmatic browsers have built-in functionality for
handling them. An action chain is an ordered sequence of actions, where each action is com-
prised of an event, such as clicking, and a reference to an HTML element in the loaded page,
upon which the action is performed.

A first problem related to the use of programmatic browser is the limited scope of focus
of programmatic browsers. A loaded web page in a tab typically consists of one or multiple
frames: the main frame, and any embedded frames within the main frame, which in turn,
can also contain frames. A frame is a browser context, and a programmatic browser can only
operate within the browser context that it is currently focused upon. Therefore, if we want
to access an element in another frame, then we should change the browser context that our
browser is currently focused upon.

Although it is not very common, SSSO buttons and other elements of interest can sometimes
be found in embedded frames. Therefore, we should access and search embedded frames as
well, and thus our sequences of interactions, when using a programmatic browser, should also
include actions related to switching the focus from one frame to another.

Another problem related to programmatic browsers and action chains is the referencing of
HTML elements on which to perform actions. Most programmatic browsers use references to
HTML elements that currently exist within a web page, which become stale, or invalid, upon
any form of page navigation, such as the page being refreshed, or when the element is removed
from the page. As such, we need to find a way to reference HTML elements that is resilient to
becoming stale, and only fails when the element simply is not present on the page.

40

Example 5.2
An example of the persistent CSS selectors that we will use to reference elements.

html > body:nth-child(0) > div:nth-child(3) > p:nth-child(2)

Besides using a CSS selector to reference elements, we also identified the use of an element’s
position, or an image of an element, as a potential way to reference elements in a persistent
way. Using an image of a button seems ideal with a visual approach as described in 5.6, but
wasn’t further explored due to taking a different approach. Using the position of an element to
reference elements turned out to be a bad idea, due to the reliance on several factors: changing
the viewport of a browser window can result in changing the whole layout of a page, and
its elements. Another problem is the inaccuraccy of this method: in any given position, an
element, its ancestors, and its descendants may all locate the same location. This approach
would also not allow us to reference frame elements in a persistent way.

As such, we decided to reference HTML elements using CSS selectors. Using a CSS selector
allows us to avoid most, if not all, of the disadvantages listed above, but will only suffice if
carefully crafted. In addition, we identified the following properties as ideal:

• every element has a unique selector
• changes in other parts of the page do not invalidate our selector
• the selector does not match any other element if the element is not present

Not all elements have id or class attributes, and thus using CSS selectors based on these
attributes cannot be used for every HTML element. In addition, the value of an element’s
class attribute can be quite volatile, and the HTML standard requires that the values of id
attributes are unique, but this is not enforced in reality. The scope of these selectors also tends
to be global, and thus may be invalidated by changes in other parts of page. In experiment
A.6, we found that selectors using only IDs could only select elements of interest in 20% of all
cases, while selectors using class attributes could be used to select around 85% of all cases.

Every HTML element has a tag name and a position relative to its sibling HTML elements,
which we can use to uniquely identify the element among its siblings. We can also use specific
selectors to limit the search scope among the child elements of an element. By combining these
selectors, we can create a CSS selector for selecting the n’th child element with a given tag
name:

• an nth-type selector can be used to select the nth element that matches a selector

selector:nth-of-type(n)

• a child selector can be used to search among a parent’s child elements:

parent_selector > child_selector

• when combined, we can select the n’th child of a parent element:

parent_selector > child_selector:nth-of-type(n)

This way, we can recursively build a unique CSS selector for any element in a page, by re-
cursively selecting the next descendant in the web page’s DOM until the element is reached,
as described in algorithm 1. In experiment A.6, we were able to select all cases using these
persistent CSS selector. An example of such a persistent CSS selector is shown in example 2.

41

We consider these persistent CSS selectors as ideal, because, every element has a unique
selector, and due to the use of child selectors, the search scope is always kept as small as
necessary. The selector could potentially match other siblings if the element is not present,
but because the HTML elements of interest are usually in fairly static parts of a page, this
approach still seems to hold up, as confirmed in experiment A.6.

algorithm 5.1
build persistent selector(e) builds a unique CSS selector for a given HTML element e.

A helper function build child selector(e) returns the next part of our CSS selector,
which selects the n’th child element with a given tag name. If an HTML element
child has tagname TAGNAME, and is the N ’th child with that tagname among its
siblings, then a function call will return the following string:

build_child_selector(child) -> "<TAGNAME>:nth-of-type(<N>)"

For example, if the child element is the second child element with tagname DIV, then
the result will be the string ”DIV:nth-of-type(2)”.

The main algorithm recursively builds up the selector string, by visiting element e and
every ancestor of e, starting from element e, target element, until the root element of
the web page is reached.

1. First we will set up the algorithm, by initializing a variable c used to designate
the current element, and a variable s used to store the CSS selector while we
are building it.

var c = e;

var s = "";

2. We then build up most of the query selector by visiting element e, and every
one of its ancestors, until we reach the document’s root element. At every node,
we prepend another piece of the final CSS selector.

while (c.parentElement !== null) {

s = " > " + build_child_selector(c) + s;

c = c.parent;

}

3. When the root element of the web page has been reached, we simple prepend
the root element’s tagname to the string.

s = c.tagname + s;

4. Now variable s contains the query selector, and the algorithm is finished.

42

5.7.3 Conclusions

In this section, we have discussed how we can record the sequences of actions, often referred
to as action chains, that lead up to clicking an SSSO button. Every step of an action chain is
comprised of an action to perform (click, hover), and some way to select an element of a page.
Action chains for approaches using programmatic browsers are complicated by the fact that
one needs to handle the switching between different browser contexts. The selection method
for the HTML element to perform an action upon needs to be accurate, and survive page
navigation, for which a CSS selector build out child selectors seems to work the best.

5.8 Finding URLs of Relevant Web Pages

5.8.1 Problem Description

In section 5.5, we found that SSSO buttons are commonly found on login and registration
pages, and thus our approach should include the discovery of these pages. We also found that
if a website has a login page or a registration page, then references to these pages can typically
be found on the main page. However, due to the nature of modern web applications, these
references aren’t always anchor elements with the page’s URL as an href attribute.

No prior research has investigated the extraction of URLs from web pages, but Ghasem-
isharif et al. [12] tried guessing the URLs of login and registration pages. We also identified
search engines as a potential source for URLs, and websites may provide other sources of
information where one can possibly find references to these pages.

5.8.2 Observations

We have identified multiple sources of information where we can find references to login and
registration pages. Although each method has its merits, it can be difficult to extract URLs in
some cases, and some methods also tend to bring up some concerns about whether or not the
URLs that have been found should be accessible to users.

In a lot of cases, the references to other web pages can be found in the DOM of the web
page itself. We can typically find new URLs by checking certain attributes of the following
HTML elements:

• the href attribute of an anchor elements and area element
• the action attribute of form elements
• the src attribute of iframe elements

Not only are these sources easy to find, and is it easy to extract URLs from them, but they
also cover a lot of grounds. During experiment A.8, the URLs of login and registration pages
were stored as attributes of an HTML in 69 out of 75 cases (92.00%), and we would’ve been
able to successfully scrape 15 out of 20 websites (75.00%) without worrying about URLs stored
in JavaScript.

However, a signification amount of modern web applications also use JavaScript to imple-
ment behaviour related to redirecting the user to authentication pages, in which case, the URLs
cannot be extracted as easily. URLs of login and registration pages may be hidden in event
listeners, or the scripts that are called by those event listeners. We could inspect the source
code of a web page and included scripts to identify URLs, but it would be difficult to recognize
any URLs besides absolute URLs. Instead, we think that it’s better to rely on actually clicking
on login buttons, and checking which page we are redirected to, as discussed in section 5.7.

Websites can also provide other sources for potentially finding URLs, such as sitemaps, and
robots.txt files. Although sitemaps almost always contain the URLs of login and registration
pages, only few websites actually include them, and thus sitemaps aren’t a very common source

43

that we can rely on. Similarly, robots.txt files are also not available for all websites, and they
usually do not include full URLs, but instead only include parts of a URL’s path.

Similarly to Ghasemisharif et al. [12], we can also try out well known URL patterns of login
and registration pages, or use search engines to find the URLs of these pages. The URLs of
login and registration pages tend to follow certain patterns such as www.domain.com/login/

or secure.domain.com/auth/login/. The crawling strategy that is typically used by search
engines aims to index every page, and thus is more thorough than ours. Both methods can be
used to find URLs of pages that we would normally miss. However, we should be careful when
guessing URLs or when using a search engine, as we might find URLs that are not meant for
normal users, such as the login page for web administrators.

Based on the advantages and disadvantages of the aforementioned methods, and the context
in which we will be using these methods, we decided on employing the following methods to
find the URLs of the login and registration pages, in a way that mimicks a regular viewer:

• inspecting the attributes of anchor elements, form elements, and frame elements
• clicking on buttons, and inspecting the URLs of newly loaded pages after page navigation

We are not interested in every URL that we can extract from a web page, and thus we should
filter out the URLs of pages where we are unlikely to find the SSSO buttons of a website.
We are most interested in the URLs of login and registration pages, which typically contain
several keywords that we can use to identify such URLs. Similarly to how we filtered and
sorted candidates of SSSO buttons in section 5.6, we should filter and sort the URLs that we
discover.

When we took a closer look at the data set published by Ghasemisharif et al. [12], we found
that their web crawler regularly ended up scanning web pages belonging to unrelated websites.
In order to avoid this problem, a page should only be scanned if the top private domain of its
URL is a subdomain of the target domain that we are investigating, as demonstrated in table
5.4.

target domain URL top private domain accept?

bbc.co.uk https://www.bbc.co.uk/login/ bbc.co.uk yes

bbc.co.uk https://secure.bbc.co.uk/login/ bbc.co.uk yes

bbc.co.uk https://www.ikea.co.uk/login/ ikea.co.uk no

Table 5.4: Examples of which URLs should be accepted and rejected.

This measure may fail when a federated identity manager is used by several separate websites,
and is hosted under a different top private domain than the target domain. However, the use
of federated identity managers is not very common, and thus this measure still helps us to
drastically improve the quality of our results.

5.8.3 Conclusions

We have concluded that our approach should inspect the attributes of HTML elements for
URLs of login and registration pages, and that we should attempt to click on login buttons to
discover the URLs of login pages, in case that we are redirected. We should also avoid scanning
unrelated web pages.

44

5.9 Searching for SSSO Buttons On A Page

5.9.1 Problem Description

The main research problem of this chapter is the discovery of entry points for SSSO authenti-
cation processes, and as we determined in section 5.3, SSSO buttons are the only entry points
of SSSO authentication processes that are consistently available. We already explored several
problems related to the discovery of SSSO buttons that needed to be addressed before we could
shape a solution for this problem: where to look for SSSO buttons, how to recognize SSSO
buttons, how to click on SSSO buttons, and how to find the URLs of relevant web pages. We
now present a general method to discover SSSO buttons on a web page, before discussing how
to handle searching a website in the next section.

5.9.2 Observations

To search a page with a given URL for SSSO buttons, we can use a strategy that repeatedly
tries out action chains in order to determine whether or not the action chain results in clicking
on an SSSO button, and if not, tries to discover new items of interest that might eventually
lead us to clicking on an SSSO button.

algorithm 5.2
search page(url, found urls, ssso action chains) scans a web page with a given URL url
for URLs of other web pages that need to be scanned, and action chains to click on SSSO
buttons, which are stored in the parameters found urls and ssso action chains, respectively.

We use a queue to store the new action chains that we discover while searching. We
start out by queuing an empty action chain, and pop the next action chain from the
queue, until the queue is empty. For each action chain, we do the following:

1. reload the web page
2. execute the action chain
3. process the results

We reload the page before executing the action chain to ensure that the execution of
previous action chains does not affect the results. Depending on what happens after
executing the action chain, we do one of the following:

• browser loaded page for authentication by SSSO provider
We can use hypothesis 5.2 to determine whether or not we clicked on an SSSO
button, and if so, we add the current action chain to ssso action chains.
• browser loaded another page

If the page that we were redirected to is a login or registration page, then the
URL of the page should be stored in found urls.
• browser did not load a new page

We search new parts of the page for items of interest: SSSO buttons, login and
register buttons, and URLs of login and registration pages. For each button
that we discover, we extend the current action chain with an action for clicking
on, or hovering over, that button, and queue the new action chain so that we can
try it out later. URLs of login and registration pages are added to found urls.

When the queue of action chains is empty, we have finished scanning the web page.

45

To further demonstrate the workings of algorithm 2, we provide some examples of typical
situations. When we scan a website, we always start by scanning the main page of the website.

action chain: []
When we first investigate a web page, the action chain that we are
trying out is an empty action chain, and thus we can skip the execution
of the action chain. We check the whole page, including all embedded
frames, for any items of interest. In this situation, we typically discover
login buttons and registration buttons, and the URLs of login pages
and registration pages. We queue new action chains for clicking on
the buttons that we have discovered, and add the URLs that we have
discovered to found urls, so that we can visit those web pages later.

action chain: [(click, login button)]
After reloading the main page, we execute the action chain that results
in clicking on the login button. The browser loads a new page, which is
the website’s login page, in which case, we do not investigate this page,
but instead add the URL of the login page to found urls, so that we
can visit it later.

When we scanned the main page for the first time, we also added an action chain to the queue,
which results in clicking on the register button. When we click it, the browser might load a
registration page whose URL is stored for later scanning, just like when we clicked on the login
button. Because we did not discover any new buttons to interact with, after we clicked on
the login and registration buttons, no new action chains were added to the queue, and thus
the queue is empty now, which indicates that we have finished scanning the web page. How-
ever, it is also possible that the browser didn’t load a new page after clicking on the login and
registration buttons, but that instead, a pop-up menu or a modal window appeared.

action chain: [(click, login button)]
After reloading the main page, we execute the action chain that results
in clicking on the login button. A modal window has appeared in front
of the rest of the page, in which case, we search the modal window for
items of interest. In this situation, we typically discover SSSO buttons,
and other authentication methods, such as username-password forms.
We queue new action chains for clicking on the buttons that we have
discovered, and add the URLs that we have discovered to found urls,
so that we can visit them later.

action chain: [(click, login button), (click, FB button)]
After reloading the main page, we execute the action chain that results
in clicking on the FB button. The browser loads a new page, which
is a page for authentication by the SSSO provider. In this case, we
investigate the page for evidence to determine whether or not we were
redirected to an SSSO provider’s login page to use SSSO authentication.
If so, then we know that the current action chain results in clicking on
an SSSO button, and we add it to ssso action chains.

46

When we clicked on the login button and the browser loaded the website’s login page, we stored
the URL of the login page. The situation tends to be simpler for login pages. As we established
in section 5.7, prior interactions are typically not needed to click on SSSO buttons that are
located on login and registration pages, and thus the situation tends to be a lot simpler.

action chain: []
When we first investigate a web page, the action chain that we are try-
ing out is an empty action chain, and thus we can skip the execution
of the action chain. We check the whole page, including all embed-
ded frames, for any items of interest. In this case, we typically dis-
cover SSSO buttons, other authentication methods, such as username-
password forms, and the URL of the registration page. We queue new
actions chains for clicking on the buttons that we have discovered, and
add the URL that we have discovered to found urls, so that we can visit
it later.

action chain: [(click, FB button)]
After reloading the main page, we execute the action chain that results
in clicking on the FB button. The browser loads a new page, which
is a page for authentication by the SSSO provider. In this case, we
investigate the page for evidence to determine whether or not we were
redirected to an SSSO provider’s login page to use SSSO authentication.
If so, then we know that the current action chain results in clicking on
an SSSO button, and we add it to ssso action chains.

Although the presented algorithm is fairly simple in its general form, there are still several
smaller problems, which have been omitted so far. When implementing this algorithm using a
programmatic browser, the following problems need to be addressed:

• to determine which parts of the page need to be scanned after executing an action chain,
the states of a page right before and after executing the last step of the action chain must
be compared; any element that has become visible, or any element that was newly added
to the page, should be investigated
• when we extend action chains to interact with a button inside of an embedded frame, the

action chain should also include actions to change the focus of the browser

We may also encounter situations where the algorithm would take too long, or never finish. As
such, the following measures should be taken:

• when searching for buttons to interact with, these should be filtered and sorted/prioritized,
as discussed in section 5.6
• an action chain should contain at most 4 interactions with buttons, any longer action

chain is unlikely to be valid, as demonstrated in section 5.7

5.9.3 Conclusions

We have presented a general method for scanning a web page for SSSO buttons and URLs of
other web pages that we might be interested in. This can be done by repeatedly trying out
action chains and processing the results to determine whether or not we clicked on an SSSO
button.

47

5.10 Searching for SSSO Buttons On A Website

5.10.1 Problem Description

Now that we have established how to search a single web page for SSSO buttons by using the
search page algorithm, we present a general approach for scanning a whole website for SSSO
buttons. To conduct this search in an efficient way, we need a way to establish which pages to
scan, and in which order they should be scanned.

5.10.2 Observations

Our approach starts by scanning the main page for SSSO buttons using search page, and
then scans other pages, based on the URLs of login and registration pages that we were able
to extract from the main page. We keep scanning pages to discover SSSO buttons and new
URLs, until there are no more pages left to scan.

algorithm 5.3
search website(url, ssso buttons) searches a website for SSSO buttons. The website’s
main page has the URL url. Information about discovered SSSO buttons is stored in passed
parameter ssso buttons for access by the caller, after the algorithm is done.

We use a priority queue to keep track of the URLs that we still have to visit. The
priority of a URL should be higher if it is more likely that SSSO buttons can be found
on the its web page. We should also implement some form of memory, to remember
which URLs and web pages have already been visited.

We start by adding the URL of the website’s main page to the queue. As long as our
priority queue of URLs is not empty, we repeat the following steps.

1. In any of the following cases, we should not scan the web page:

• the top private domain of the URL is different from the target domain’s
• we have already visited a web page with this URL

2. Let the browser load the web page with the given URL. The browser may load
a web page with a different URL after redirection.

3. In any of the following cases, we should not scan the web page:

• the top private domain of the URL is different from the target domain’s
• we have already visited a web page with this URL
• the contents of the loaded web page are too similar to the contents of a

web page that we have already scanned

4. Scan the page using search page(url, found urls, ssso buttons) algorithm.

5. After scanning the page, we process the results by:

• add the URLs that were discovered to the URL queue
• add information about discovered SSSO buttons to parameter ssso buttons

We scan web pages until the priority queue is empty, in which case, we have fin-
ished scanning the whole website for SSSO buttons, and all information about the
discovered SSSO buttons is stored in ssso buttons.

48

We already established in section 5.5, that the maximum search depth of an effective strategy
should be 2 links at most. The order in which we visit pages should reflect our findings from
section 5.5. We are more likely to find SSSO buttons on the main page, and at a depth of 1, so
a breadth-first search is deemed more appropriate. Among pages with the same depth, we can
prioritize different URLs based on the likelihood of the web page containing an SSSO button.

Figure 5.20: An example of our approach to scan a website. Every node is a different web
page, whose priority is based on its URL. The order in which web pages are visited is noted in
the circles in the top-right of every node.

We should avoid scanning pages that are the same as, or too similar to, the ones that we
have already scanned. To enforce this measure, we need to use some form of memory that
’remembers’ the pages that we have already visited. Using this memory, we can decide before
and after loading the web page for the first time, whether or not we should scan the page.

Two URLs can be considered different if their domains or paths are different. Vice versa,
two URLs often result in the same document being served if their domains and paths are the
same. However, due to the dynamic nature of web pages, the parameters of a URL might also
completely change the page that is served to the user. In our situation, we are usually not
interested in pages with dynamic content, but a small amount of websites map URLs to web
pages using parameters (e.g. www.example.com/?login). This practice is not very common,
and thus we deem two URLs equivalent if the domain and path match.

After we have loaded a web page for the first time, we can access the source of the web
page. We can use simhashing to determine how similar two web pages are, as demonstrated
by Manku, Jain, and Das Sarma [36]. This algorithm was developed at Google, and has been
used by Google to detect duplicate web pages.

49

We presented our approach in an ideal situation where the landing page that we first visited
was the main page. However, the landing page of a website might not be the main page, in
which case, our approach might fail, due to one of the following reasons:

• some websites use a browser check to prevent bots from accessing their websites, which
is presented to the user on their first visit to the website, as shown in figure 5.21
• some websites present the user with a landing page that lists all localized websites for

different countries, as shown in figure 5.22
• some websites block the user from entering their websites, until the user confirms their

age, agrees with the website’s GDPR policies, or due to other legal issues

These situations are not common, and thus this problem has not been addressed in-depth.
However, they might cause our approach to fail. An implementation of our approach should
attempt to identify the main page first, and not simply start scanning a website from the
landing page.

Figure 5.21: An example of a browser check
being performed when a website is visited for
the first time.

Figure 5.22: (KLM) The user needs to select
their country or region from the menu, after
which they are redirected to a localized website.

5.10.3 Conclusions

We have presented a general approach for discovering SSSO buttons on a website, that relies
on the search page(url, found urls, ssso buttons) method from section 5.9. During our
search for SSSO buttons, we need to make several decisions about which web pages to scan,
and in which order. One of the preconditions for our approach to work well, is that the scan
needs to start on the main page. Not every landing page is the main page, and if so, our
approach might fail.

50

https://www.klm.com/

5.11 Discussion and Final Conclusions

5.11.1 Evaluation

As a proof of concept, we added a module to the Shepherd framework that implements our
approach for discovering SSSO buttons on a website, and used this module to scan multiple
websites. Although the implementation of the presented approach generally works, its effec-
tiveness is lessened due to several factors:

• errors due to instable nature of programmatic browsers and the Web platform
• the unstable waiting times for pages to load or change
• managing the browser’s focus is difficult/unstable/error-prone

Although experiments were designed to investigate our hypotheses, the actual sample sizes
of our experimental data are still too small to really form any conclusive evidence.

We did a small scan of 25 websites which provided SSSO authentication, and were able to
detect SSSO buttons for 15 out of 25 websites (60%). Detection failed due to the following:

• a fatal exception occurred on 2 websites which ended the scan
• we did not find several steps due to the instability of having to wait for a page to load

or change

5.11.2 Future Work

Besides resolving the factors that lessen the effectiveness of our implementation, and gathering
more experimental evidence to support our findings, we identified several areas throughout this
chapter where future work is required to further explore this problem:

• explore using visual recognition to recognize SSSO buttons
• find a better way to reference HTML elements in a persistent way
• investigate different strategies for pages to load
• investigate different strategies for pages to change
• further investigate methods to extract URLs from web pages
• improve the decision making for whether or not to scan a web page
• assigning priorities to discovered items, such as buttons or URLs
• handling landing pages, and identifying the main page

5.11.3 Conclusions

In this chapter, we approached the problem of identifying entry points of SSSO authentication
processes. A general method for discovering SSSO buttons on any website. However, the
problem is complex, due to the , and there are still problems left that need to be investigated.

51

Chapter 6

Automated Authentication via
Social Single Sign-On

That it is possible to leverage Social Single Sign-On to automate the creation of the perspec-
tive of an authenticated user for a large number of web applications has been done in prior
research by Zhou and Evans [11]. They identified the following natural steps: authenticating
to the SSSO-provider, handling any possible post-login account creation and verification of
the authenticated state. Their research was limited to the usage of Facebook as an identity
provider. One of our goals is to automatically authenticate using any SSSO provider detected.
In this chapter we will try to answer the following research question:

To what extent is it possible to automatically create the perspective of the
authenticated user for any website or web application using any SSSO provider

supported by the site in question?

Web applications are designed with humans in mind. Humans needed to authenticate them-
selves, humans need to interpret the questions asked, interpret the forms to fill and need to
decide which buttons to click. This results in that this is much more difficult for machines than
for humans. We investigated the authentication to an SSSO provider, the account creation
procedures and to what extent it is possible and desirable to create accounts automatically and
how to verify if the authenticated state has been created.

6.1 Overview

First we investigate the authentication process from the perspective of a human user and we
will identify commonalities found within the authentication processes found for multiple SSSO
providers. After identifying the commonalities we propose how we can apply these for many
SSSO providers. And we will argue that the approach taken by Zhou and Evans [11] is reliable,
relatively stable and adaptable to any SSSO provider. Next, we investigate the problem of
additional account creation steps that are needed in a substantial amount of domains after
authenticating to an SSSO provider to create the authenticated state. This problem was
also identified by Zhou and Evans [11] and remained unsolved. Then we investigate how the
authenticated state can be verified keeping in mind the restrictions from the Shepherd project
and how the existing methods can be improved.

52

6.2 Commonalities and Differences in Authenticating to Dif-
ferent SSSO Identity Providers

6.2.1 Problem Description

In this section we will identify diversities and commonalities found in the authentication process
used by multiple SSSO providers which should result in a general approach to this chapter’s
first sub-problem, automated authentication to any SSSO provider. Zhou and Evans [11] were
able to automate the process of authenticating to the SSSO provider Facebook. Their approach
was to follow the flow from the perspective of a human user. Our goal is to use any SSSO
provider integrated by a web application following the same approach.

6.2.2 Observations

As initially observed, from a technical perspective the SSSO implementation can be very di-
verse. However from the users perspective there are commonalities between SSSO provideres
and they and match the process as described in section 2.4. Example 6.1 describes the authen-
tication process for Facebook and example 6.2 describes the authentication process for Google.
The most conspicuous difference is the number of steps in which the user needs to enter the
credentials.

The Authentication Process The similarities found in both the authentication flow for
Facebook and Google makes us suspect that a general flow for authenticating with any SSSO
provider exists. We conducted a small study on the 10 SSSO providers that Shepherd will
support. We authenticated with each SSSO provider on 5 different domains to confirm the
existence of such a generic authentication flow from the perspective of a human user. We
found that:

• Facebook, VKontakte, Twitter, mail.ru, LinkedIn, ok.ru, Instagram and GitHub request
the credentials in one step.

• Google and Yandex request the credentials in two steps.

• The user needs to explicitly grant access to the social media account when using Facebook,
Google, VKontakte LinkedIn, ok.ru, Yandex, Instagram and GitHub SSSO when this is
used for the first time for a web application. This is optional for Google.

• All SSSO providers redirect back to the web application upon successful authentication.

Figure 6.1: (Pinterest) A small pop-up shown
when the user already has an account to the web
application and is not logged in when Google
SSSO is used.

When the browser instance is already logged
into the user’s account for the SSSO provider,
then it is not needed to supply the creden-
tials for the SSSO account. The user only
needs to grant explicit access to its social me-
dia account, figure 6.2 for VKontakte and fig-
ure 6.3 for LinkedIn. We found that this was
the same for every SSSO provider.

Another scenario is that if the user
granted access to the web application earlier
and the current browser instance is logged
into the user’s account for the SSSO provider.
The user only needs to click the SSSO button
to authenticate and sign in.

53

https://www.pinterest.com

Example 6.1
The flow in the authentication process for Facebook’s SSSO is as follows when the current
browser instance is not logged into the user’s Facebook account.

The user visits Spletnik and clicks the Facebook SSSO button to start the authenti-
cation process.

1. the browser is directed to Facebook’s SSSO authentication page
2. the user supplies the email address or phone number and password and clicks a

button to login
3. if this is the first usage of Facebook’s SSSO for this web application, the user

needs to grant explicit access to the user’s Facebook account for the web appli-
cation

4. the browser is redirected to the web application again if the all previous steps
are successful

During the authentication process the URL starts with:

https://www.facebook.com/login.php?...

54

https://www.spletnik.ru/

Example 6.2
The flow in the authentication process for Google’s SSSO is as follows when the current browser
instance is not logged into the user’s Google account.

The user visits Stopgame and clicks the Google SSSO button start the authentication
process.

1. the browser is directed to Google’s SSSO authentication page
2. the user supplies the email address or phone number and clicks a button for the

next step
3. the user supplies the password and clicks a button to login
4. optionally, if this is the first usage of Google’s SSSO for this web application,

the user needs to grant explicit access to the user’s Google account for the web
application

5. the browser is redirected to the web application again if the all previous steps
are successful

During the authentication process the URL starts with:

https://accounts.google.com/signin/...

55

https://www.stopgame.ru

Some SSSO providers, among Google, show a small pop-up with a button to click to au-
thenticate with the SSSO provider such as in figure 6.1. This only seems to be the case when
the user already used this SSSO provider for this web application and is currently logged out
of the web application. When this button is clicked, the user is authenticated to the web
application without any further interaction needed.

Figure 6.2: Granting explicit access to the web application
with VKontakte SSSO.

Figure 6.3: Granting explicit ac-
cess to the web application with
LinkedIn SSSO.

Interaction with the SSSO Provider In modern web applications everything can be
made clickable, buttons are not declared in the HTML with regular button tags, CSS is used
for complex styling and JavaScript can trigger all kinds of events to change the state of the
application. This is confirmed by inspecting the elements used for the interaction with the
authentication pages or iframes used by SSSO providers. For example, Google uses a form
with regular inputs for the email address, however for the submit buttons div-elements are
used. Example 6.3 shows the complexity of an element that needs to be clicked. In this
particular case identification is easy because of the unique id-attribute. We suspect that each
SSSO provider has it own design and that no generic selectors can be found. Luckily this covers
all instances for the usage of a SSSO provider.

To confirm this we investigated all elements for which it is needed to interact with when
using SSSO for each SSSO provider that will be supported by Shepherd. We found that:

• Regular input elements are used to enter data.

• The type element of an input element is not always correctly used. For example an input
with type email that can also accept a telephone number. Or an input that requires an
email address that has the type text.

• Clickable elements can be button, input or div elements.

• Buttons mostly have the correct type attribute.

• Class attributes are not reliable for selecting the elements. These can be used for other
elements too and could result in selecting the wrong elements. Modern CSS mostly uses
reusable classes for multiple components.

• The ID attribute can be a good candidate for selecting a specific element, however if
generated IDs are used they can change. A good indicator is that when numbers are used

56

Example 6.3
An HTML div element used as a button to submit the user name in the authentication process
for Google SSSO.

<div role="button" id="identifierNext" class="U26fgb O0WRkf zZhnYe e3Duub

C0oVfc nDKKZc DL0QTb M9Bg4d" jscontroller="VXdfxd" jsaction="click:cOuC

gd; mousedown:UX7yZ; mouseup:lbsD7e; mouseenter:tfO1Yc; mouseleave:Jyw

Gue; focus:AHmuwe; blur:O22p3e; contextmenu:mg9Pef;touchstart:p6p2H;

touchmove:FwuNnf; touchend:yfqBxc(preventMouseEvents=true|preventDefaul

t=true); touchcancel:JMtRjd;" jsshadow="" jsname="Njthtb" aria-disabled

="false" tabindex="0">

<div class="Vwe4Vb MbhUzd" jsname="ksKsZd"></div>

<div class="ZFr60d CeoRYc"></div>

<content jsslot="" class="CwaK9">

Volgende

</content>

</div>

or the IDs are made up of random characters, these could be generated and could change
with every request and are thus not reliable as CSS-selectors.

• Language based selection for keywords is not reliable, for example Google adjusts the
language presumably on IP-range or browser or OS preferences.

Based on our findings we think it is best to create CSS selectors for each HTML element that is
needed to interact with and for each SSSO provider individually. It is recommended to validate
the found selectors when using Shepherd because the implementation by the SSSO provider is
presumably under active development.

Figure 6.4: (SlideShare) An example of a bro-
ken Facebook SSSO implementation

Broken SSSO Implementation We en-
countered multiple cases of broken Face-
book SSSO implementations, figure 6.4. The
browser is redirected to the correct URL of
the login page or iframe, however the cor-
rect elements that are needed to interact with
could not be found and a message is shown
that the implementation by the web applica-
tion is incorrect. There is also no automated
redirection back to the web application.

We did not experience any other broken
SSSO providers besides Facebook, we con-
clude for now that when the elements that are needed to interact with are absent or an error
message is displayed, the SSSO implementation is flawed.

6.2.3 Conclusions

In this section, we investigated authenticating to a SSSO provider from the perspective of a
human user. We found that from a human perspective a general flow can be described for
multiple SSSO providers, that it is needed to precisely identify the elements to interact with

57

https://www.slideshare.net/login

during the authentication process and that broken SSSO implementations can be detected
when authenticating to an SSSO provider.

6.3 Automating Social Single Sign-On

In the previous section we investigated authentication to an SSSO provider from a human
perspective. In this section we will discuss how we realized our findings in a design and imple-
mentation that resulted in a module for Shepherd to authenticate using SSSO. To prove that
these methods work we tested this module for each supported SSSO provider on 10 domains.

6.3.1 The SSSO Login Module

In the previous section we identified two possible approaches for the authentication flow. First
is to authenticate to an SSSO provider and then visit the domain under investigation, the
browser instance is already logged in. Second is to authenticate to the SSSO provider when
using SSSO to authenticate to the web application, the browser instance is not logged in yet.

Design Decisions The first approach can be realized by authenticating to each SSSO provider
first and store all cookies. When an SSSO provider is searched on a domain, then at least the
authentication cookies for that SSSO provider should be stored in the browser. With this
approach we suspect the following difficulties:

• It is possible that the authentication cookies for the SSSO provider expire and thus
expiring the session.

• Additional tests need to be added to verify if the session with the SSSO provider has not
expired.

• Presumably more cookies are stored which could affect security research on cookie prop-
erties and the results could be less pure caused by unnecessary cookies.

The second approach always requires to authenticate to the SSSO provider for each domain.
This results in more interaction when authenticating, however compared to the detection of
SSSO this is a minimal penalty in scanning speed. Other considerations are:

• Only the required cookies are stored in the browser.

• This way we make sure the session for the SSSO provider has not expired.

• This makes the implementation less complex, it is not needed to determine what flow to
use or take multiple scenarios into account.

We also decided to start each attempt to authenticate to a domain using SSSO in a new
browser instance. The result of a login attempt can be a set of cookies stored by the browser.
When a new browser instance is used for every attempt, the set of cookies will not be cluttered
with cookies from previous attempts. The current implementation authenticates to all SSSO
providers that are detected, this behavior can be easily changed. After the last attempt, the
browser instance is kept alive because the subsequent module tries to handle any account
creation procedures and the browser should be left in an untouched state in order not to abort
these procedures.

58

Module Results The SSSO login module uses the results of the SSSO detection module.
The SSSO detection module stores clickable elements in an action chain that trigger the entry
point for the SSSO authentication to show. This action chain is used as the entry point for this
module to start the authentication to an SSSO provider and also illustrates how modules can
pass information to each other and build on top of each other. The SSSO login module stores
the entire set of cookies for each SSSO provider if it successfully authenticated. This cookie
set can then be used by a subsequent module to recreate the authenticated state.

Implementation This module relies heavily on functionality implemented in the core classes
of Shepherd which results in lean classes with a clear responsibility and a minimum amount of
code. The generic authentication flow maps easily to a corresponding architecture. An SSSO
login base class implements the authentication flow and provides reusable code for subclasses
for each SSSO provider. This provides the option to easily extend the Shepherd framework
for other SSSO providers or to make changes to them and existing classes could be used as a
template. A simplified UML class diagram of this module is provided within the appendix.

6.3.2 Testing the SSSO Login Module

To have any metrics on the performance and reliability of the SSSO login module and to
find weaknesses, we tested this module for each SSSO provider supported by Shepherd on ten
domains. We used a random sample from the top 10,000 from the Alexa ranking and continued
until we had enough samples for each SSSO provider. If a domain supports multiple SSSO,
these were all taken into account if needed. We used Shepherd to scan for domains supporting
SSSO and to authenticate to the detected SSSO providers. We manually verified the results
using the screenshots and if needed we authenticated manually and compared the results, for
example when the screenshots were inconclusive.

Results We managed to find 10 different domains for 9 of the 10 SSSO providers. We
experienced difficulty to find usage of Instagram SSSO for which we only managed to find 4
domains in the given time. We found that:

• In all cases an SSSO button was found, Shepherd tried to login.

• Incorrect setup of SSSO was found for Facebook, Google and LinkedIn, each in one
instance and for ok.ru in two instances.

• In two cases wrong SSSO buttons for Yandex were identified. These links were presumably
to share content or used in clickable ads. However Shepherd tried to login into the account
and this resulted in an error message, which we found erratic behavior.

• LinkedIn and mail.ru detected suspicious behavior. Mail.ru uses CAPTCHAs in this case
and for LinkedIn it was needed to provide a verification code sent to an email address.
Both these cases were experienced only once we could login in subsequent domains for
these SSSO providers.

• We did not encountered any blocked accounts, however we can give no assurance when
the amount of domains in a scan increases.

• If we do not take falsely identified SSSO buttons, that is another module, broken im-
plementations and detection of suspicious behavior into account, this module managed
successfully login in 85 cases.

The full results of this test can be found in the appendix.

59

6.3.3 Conclusions

We are convinced that this module provides a good basis for use in the Shepherd project
to automate the authentication using SSSO. This module is easily extensible for other SSSO
providers. However we see room for improvements and more features, such as:

• Adding detection for errors or wrong configuration during the authentication process.
Depending on the SSSO provider this could be done on patterns in the URL or searching
for known errors in the HTML DOM.

• Detection of CAPTCHA usage or other countermeasures for suspicious behavior.

• Extending the modules with the option to first authenticate to the SSSO provider, fol-
lowed by deduction of the cookies used to authenticate to the SSSO provider and adding
detection of and switching to the flow when this flow for SSSO is followed. However this
makes the SSSO login module more complex.

6.4 Account Creation

6.4.1 Problem Description

The second sub-problem in this chapter is handling additional account creation actions, such as
filling in registration forms or simply that the user needs to agree to the terms and conditions.
For humans this is an easy task however for machines this is entirely different. First of all, these
processes are not designed to be easy solvable for machines and secondly, counter measures are
taken in web application to prevent bots from creating accounts easily that could be used for
malicious purposes.

In a substantial amount of cases signing in with the SSSO provider and granting the web
application access to user’s account is sufficient to create a new account. Zhou and Evans [11]
found that in about 44 % of the domains they investigated additional actions were needed to
actually create an account, and also the authenticated perspective.

Zhou and Evans [11] also mentioned the complexity of the post-login account creation
procedures. Their solution was to only process forms whereby all pre-populated fields were left
untouched and to process fields in a specific order. For fields that required input they used
heuristics, however no further information was given on this. Their solution seems to be an
underestimation of the problem of processing forms, which can be a meticulous job, however
they managed to create accounts automatically in 66 % of the cases where additional account
creation was needed. Their research focused on the top 20,000 in the U.S. and as such we
suspect that they did not took multiple, or at least not much, other languages into account.
They investigated why they failed in the account creation procedures however they did not tried
to find solutions. Presumably these were deemed unsolvable which is not explicitly stated.

In this section, we will verify this percentage, investigate the account creation procedures,
what automated account creation countermeasures can be expected and the prevalence.

6.4.2 Observations

The research from Zhou and Evans [11] dates back to 2014 and therefore we should at least
verify and possibly update the percentage of domains that require additional account creation
handling.

Account Creation Needed To investigate if their observations are still valid we conducted
a small study on 225 domains that integrate SSSO and were picked randomly from the top
10,000 from the Alexa ranking. We authenticated manually and performed all steps needed to

60

Example 6.4
The case that no account is linked to the SSSO account on Twitch.

Directly after redirection back to the web application the user is shown that no account
is linked to the credentials provided by the SSSO provider and the user needs to link
an account or create a new account.

Example 6.5
Account creation steps without the use of HTML forms on ResearchGate and Blablacar. The
user is supposed to select one element by clicking it.

61

https://www.twitch.tv
https://www.researchgate.com
https://www.blablacar.fr

stay logged in. For 100 out of 225 domains it was required to perform additional actions to
create the authenticated state. This confirms the findings of Zhou and Evans [11], 44 %.

Account Creation Procedures We conducted a small study on the 100 domains requiring
additional account creation which we identified earlier. For this we authenticated manually
using SSSO and created accounts for all domains. We encountered the following scenarios:

• When the user is redirected back to web-application a message is shown that it is needed
to link an account or create a new account, thus following the regular account creation
procedures such as in example 6.4. In 28 out of the 100 domains we experienced this
scenario.

• In one or multiple steps in the account creation procedures HTML forms are not used.
The user needs to click a specific element, which can be anything, to proceed, as in
example 6.5. We experienced these design solutions in 8 out of 100 domains.

• 24 out of the 100 domains use CAPTCHAs and Google’s reCAPTCHA is mostly used,
example 6.6. This CAPTCHA system seems to adjust its behavior when it is used often
in a short amount of time by one computer.

• Verification of the supplied email address by clicking a link in an email or entering a code
and verification by SMS is experienced both in 7 out of 100 cases, example 6.7. This
number seems a bit low to us, however we did not verified if an email was sent to the
email addresses that belong to the SSSO account, presumably temporary accounts are
created in a number of cases.

• Some web-applications require specific data such as a telephone number. This poses a
barrier because the telephone numbers could be country specific, example 6.8. Supplying
random phone numbers could result in an unknown person being called or send text
messages by an unknown organization. This is something which conflicts with our ethical
standards. The same holds true for credit card numbers or bank account. In some cases
it is required that the user already needs to have an existing account or must be known by
the organization, example 6.8. In an initial observation we noticed the request for a social
security number and this is also something we do not wish to supply or guess. We found
that for 3 domains a telephone number was required, in 6 cases institutional credentials
were needed and in one case a bank account or credit card number was required.

• For one domain it was needed to register via an app first.

• Other observations are that whatever we tried to register, it just seems to fail without
any clear reason or the registration process was broken, it was unclear what data to enter
even when the website was translated. We experienced this in 8 cases.

The full results of this short survey can be found in the appendix.

6.4.3 Registration Forms

Forms seem to be the only possible steps that seem suitable for automated processing at a first
glance. However, when we performed the quick survey on account creation procedures in 6.4.2,
we observed the following issues which could hinder automated processing of forms:

• Not all forms have a submit button or not a button that is logically the submit button
of a form when it is inspected with the developer tools in a browser. In those cases the
forms behavior is presumably controlled by JavaScript.

62

Example 6.6
Google’s reCAPTCHA when suspicious behaviour was detected on Imgur

Example 6.7
Email verification on Goo and verification by SMS on Carousell.

63

https://www.imgur.com
https://www.goo.ne.jp/
https://sg.carousell.com/

Example 6.8

A form which requires a telephone number in a specific format on Rozee and a form whereby
valid institutional credentials are needed on ResearchGate.

• Forms might be controlled by JavaScript to show, hide or create new input elements when
the form is filled and data might be loaded asynchronously.

• Input elements are used outside form elements.

• Input elements have no label attached with the for attribute of a label.

• Forms can make use of HTML5 form validation or custom solution using JavaScript and
CSS classes to visualize the errors for humans.

• Regular expression can be used in a pattern attribute of an input for validation.

• Front-end frameworks can provide complex styling and behavior and make use of pseudo-
elements to create elements for visual purposes only, especially for selects, radio buttons
and checkboxes.

• Form inputs can be without any type attribute or an incorrect type attribute. For
example the type attribute has the value text, however the form validation requires an
email address.

• Name attributes are used, not used or could be empty in input elements.

• The Web Content Accessibility Guidelines (WCAG) do not seem to be followed and the
WAI-ARIA attributes do not seem to be widely used in forms.

For most humans these issues do not pose any barrier however our observations could hinder
interpretation of a form by a machine. We devoted section 6.5 almost entirely to the problem
of form processing.

64

https://www.rozee.pk
https://www.researchgate.net
https://www.w3.org/TR/WCAG20/
https://www.w3.org/WAI/standards-guidelines/aria/

6.4.4 Conclusions

In this section we investigated the account creation procedures that could be required to au-
thenticate to a web applications after authenticating to an SSSO provider. 41 out of the 100
domains we investigated are not hindered by the usage of CAPTCHAs, SMS or email verifi-
cation, the need for specific data or complex or difficult interaction for the account creation
procedures. CAPTCHAs bypassing methods exist [37, 38, 39] and might be usable within
the Shepherd project. However, should it not be respected that automated account creation
in those cases is not desired? We also inspected forms to decide whether or not these might
be suitable for automated processing by a machine, we suspect that this is only possible in a
limited number of cases. Overall we are convinced that automated account creation on a large
number of unknown web applications will be difficult to solve.

6.5 Processing Forms with Formasaurus

We decided to only handle forms that are used in the account creation processes based on
our findings in 6.4. We also suspect that classifying forms and form fields and identifying the
correct form to fill in any given language is a too big problem to solve in the given time. We
opted to find and use an existing tool to at least experiment with automated form processing.
The only candidate tool we could find was the Python library Formasaurus.

6.5.1 Formasaurus

Formasaurus uses machine learning to classify forms and form fields and the developers state
that they successfully classify 88.9 % of the forms and that fields are classified correctly for 76
%. Formasaurus is trained on at least 1000 forms, mostly randomly selected from the Alexa
top 1 million ranking. How Formasaurus classifies forms and fields is explained on the project
page. Formasaurus’ developers mention that usage of CSS and JavaScript to change behavior
in forms limit its capacities which is to be suspected because the detection and classification
is based on HTML source. Usage of machine learning instead of keywords or other heuristics
could help to overcome the language barrier for processing forms that can be used with any
language.

6.5.2 Shepherd’s Account Creation Module

In this section we shall explain our choices made for the integration of Formasaurus in the
Shepherd project. A simplified UML class diagram for the account creation module is provided
in the appendix.

Scanning for Forms In Shepherds account creation module we use Formasaurus to detect
and classify forms and their fields. In the survey in section 6.4 we observed that in most cases
no more than 3 steps are performed in the account creation steps. However it is also needed to
take form fields that appear after interaction with the form into account. We decided that the
number of scans for forms should be configurable and that 10 scans is an appropriate number
to start with.

Processing a Form Each form that is detected in a scan is classified by Formasaurus. A con-
figuration file provides control over the form classification that are processed. A Formasaurus
form object only provides information about the form, it does not provide the actual form ele-
ment. It is essential that the correct form element is found in the HTML, this is done by trying
to create an as specific as possible CSS selector based on the information in a Formasaurus
object. This selector is also used to provide an explicit boundary for the selection of form

65

https://formasaurus.readthedocs.io/en/latest/howitworks.html
https://formasaurus.readthedocs.io/en/latest/howitworks.html

fields, these should not be outside the form to prevent processing the wrong elements. When a
form element can be found, this module tries to find all form fields and tries to determine the
submit element.

Processing a Form Field First it is needed to construct an as specific as possible selector
for each form field. If an element can be found this module tries to collect as much information
from the Formasaurus object and the HTML source for correct processing of an input, such as:

• The type of the tag.

• The type attributes if it is an input tag, for example radio or password.

• The value of the name attribute.

• The value of the ID attribute.

• If a form field is an input, has it a value set?

• The action that should be performed, clicking, sending text or selecting a value.

• If this element is classified as a submit element by Formasaurus.

To control which classes of form fields should be processed a configuration file is used. This
configuration file also contains the data to enter for each class of form field. Just as Zhou and
Evans [11] we leave pre populated fields untouched.

Submitting a Form Formasaurus tries to classify an element as a submit element, however
there is no guarantee that it can find such an element. We decided that if no submit element
is found by Formasaurus, to search for a submit element based on keywords. Difficulty with
this is that this needs a survey on a large number of registration forms in a large number of
languages. This also means that the chance of clicking the wrong element increases, especially
when multiple forms are present. However this is just a fallback and a best effort attempt.

Module Results This module requires that the state of the browser instance is untouched
directly after successful authentication to the SSSO provider in order not to abort or disturb
the account creation process. The account creation module does not store any information for
other modules. For each scan for forms this module logs what form classifications are detected,
which could be useful for testing purposes.

6.5.3 Testing and Tuning the Account Creation

We saved 100 registration forms picked from domains requiring additional account creation
handling that we identified earlier. This could be more extensive forms or just simple forms
where the user only needs to agree with the terms and conditions. We used this module to detect
and process these forms. We observed if the form are correctly detected, what classification
is assigned by Formasaurus and visually observed if the forms and the fields are correctly
processed. Goals of this analysis are:

• Determine how difficult this problem is.

• Finding the most suitable configuration for the form classes that should be processed.
This is also to prevent wrong forms being processed, search forms should not be processed
for example.

• Clearly find limitations in our approach.

• Finding any weaknesses or bugs in this module.

66

Form Classification Results How Formasaurus classifies registration forms can be of use on
how to configure this module. Processing less form classifications reduces the risk of processing
the wrong form, however this also increases the risk of missing forms. Only 39 out of the 100
forms are correctly identified as registration form, a number that does not surprises us given the
diversity in the forms. This module also logs if Formasaurus detected CAPTCHAs, however
this failed in this in all cases.

Classification Number of Forms

registration 39

Form not detected or not sure which form 17

other 14

login 8

join mailing list 6

contact/comment 7

password/login recovery 7

order/add to cart 1

search 1

Table 6.1: Results from the classification of forms.

An improvement in the form processing algorithm might be processing all forms, whereby forms
with the highest likelihood of being a registration form first, thus following the order from table
6.1.

Form Processing Results Our findings from the visual observation are:

• Check boxes that are checked should not be unchecked.

• When multiple forms are found, the wrong form could be processed. A much more
advanced method is needed to correctly identify the form that needs processing. A
possible solution could be finding the element that actually has focus using JavaScript.

• Custom form elements from front-end frameworks are difficult to assess if these are cor-
rectly processed due to CSS and pseudo elements.

• A substantial amount of fields are misclassified, which strengthen our conclusions from
6.4.

• The method to find the correct submit element for a form when Formasaurus failed to
find one needs more refinement.

6.5.4 Conclusions

This module provides only a proof of concept solution for automated form processing and
our findings confirm our suspicions from section 6.4, automated form processing is a difficult
problem to solve and a study on its own. Experimenting and trying to improve this module
might provide mediocre results, however we leave this as future work. This also makes us
wonder how Zhou and Evans [11] reached a success rate of 66.4 %. Their research was done
in 2014 and we have no conclusive data to provide an answer. Maybe then more regular forms
and less automated account creation countermeasures were used.

67

6.6 Verification of the Authenticated State

6.6.1 Problem Description

In this section we investigate the options to verify the authenticated state in order to decide
on the best approach for solving this problem or to improve current methods.

Currently Shepherd uses the following methods to verify the logged in state:

• Searching for the existence of certain keywords, such as user credentials on the landing
page and the current page.

• Searching for the existence of a logout element on the landing page and the current page.

• Searching for password fields.

The success rate of this implementation is around 60 %. Any improvements in verifying the
authenticated state greatly increases the amount of domains that can be assessed on security.

There are some aspects of the Shepherd project that need to be taken into account when
deciding on the verification methods:

• The verification methods need to be repeatable, as these will also be used to verify if the
user is authenticated when Shepherd tries to detect the set of authorization cookies.

• This repeatability implies that the methods also needs to be fast.

• The verification methods should not depend on clicking any elements that could trigger
navigation or other unknown side effects that could alter the, logged in, state of the web
application.

The same approach to verify the authenticated state was taken by Zhou and Evans [11]. They
additionally searched the set of cookies in the browser for hints if the user is logged in, such as
usernames, email addresses or profile images.

6.6.2 Observations

To find improvements for the verification methods we manually investigated 100 domains ran-
domly selected from the top 10,000 from the Alexa ranking that at least integrate one of the
SSSO providers supported by Shepherd. We authenticated to all these domains using SSSO
and, if needed, followed the account creation procedures. Then we examined each domain for
suitable properties to verify the logged in state.

Cookies Searching the cookie set for any indication of the authenticated state could be a
good candidate. One limitation is that Shepherd also uses the verification methods to deduce
the set of cookies that create the session. In that process cookies are loaded and removed in
the browser instance to calculate this set of authentication cookies.

We found that 20 out of the 100 web applications store information in a cookie that could
indicate that the user is authenticated. To make sure this is an appropriate method we also
checked if the information could not be found after we logged out of the application, this seems
to be correct. In example 6.9 is the user’s email address clearly visible.

We also noticed that the value for a cookie attribute can be stored using percent-encoding,
such as in example 6.10. When searching for any hints on the authenticated state this must be
taken into account. More information on percent-encoding is provided by The Internet Society.

68

https://tools.ietf.org/html/rfc3986

Example 6.9
The attributes of a cookie stored by a browser after authenticating to MarineTraffic with Google
SSSO. The email address indicates the authenticated state.

name: AUTH

value: EMAIL=destuntmanhendrikjan@gmail.com&CHALLENGE=CPQvn8l1gT8LrCxP...

domain: www.marinetraffic.com

expires: session

path: /

httpOnly: true

secure: false

sameSite: unset

Example 6.10
Example of an email address stored with percent encoding in a cookie value.

user: %7B%22display_name%22%3A%22HendrikJan%20DeStuntman%22%2C%22...

The HTML DOM Web applications often show the users name somewhere to create a more
personalized user experience. This can be permanently visible such as in figure 6.5, or after
clicking on or hovering over an element such as in figure 6.6. The users credentials can also
be found in the HTML source and not be visible to the user as in figure 6.7. The credentials
can also be placed in attributes of HTML elements, for example the data attribute used in a
button to pass data to JavaScript when it is clicked or the value attribute of an input element.

It is good practice that all the users data is removed from the DOM when the user is
logged out of the web application and thus it is possible to use this behavior to determine if
the browser instance is in an authenticated state or not.

Figure 6.5: Visible user name
in Yandex.

Figure 6.6: The username only
visible after user interaction
on Twitch.

Figure 6.7: The username only
visible in the HTML DOM on
Freepik.

When searching the HTML DOM for user data, script and style elements should also be
taken into account. In that cases node.textContent instead of node.outerHTML or node.innerHTML
should be used in JavaScript. An explanation on this is provided by The Mozilla Foundation.
All attributes of an element also need to be taken into account, this is easily covered with
node.outerHTML.

We found an email address in the DOM on 13 domains, the surname and given name in 55

69

'https://www.marinetraffic.com/'
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent#Differences_from_innerText

and 70 domains respectively and a combination of surname and given name on 52 domains. In
theory 75 out of the 100 domains can be verified using this method.

Figure 6.8: (Booking) A log in element. Figure 6.9: (Daily Mail) A logout element.

Login/Log-out Elements Web application often show a login element on the landing page
when the user is not logged in, figure 6.8, and a logout element when logged in, figure 6.9.
When using specific elements to draw a conclusion on the authenticated state, the visibility
should also be taken into account. A common approach in web development is to have a login
element always present in the DOM, when logged in it is present in the DOM however not
visible to the user. The visibility should be taken into account in this case. We found that a
login element is shown on 72 domains and a logout element on 11 domains. In theory 73 out
of the 100 domains can be verified using this method.

Automated Redirection Some web applications immediately redirect the user to a specific
account page when the landing page is requested and the user is logged in. This behavior
can be found for example on for example on Doodle, figures 6.10 and 6.11. We observed this
behavior in 6 out of the 100 domains.

Figure 6.10: (Doodle) The logged out land-
ing page.

Figure 6.11: (Doodle) The automatically
redirected page when the landing pages is
requested.

The methods discussed so far cover 95 out of the 100 domains theoretically, and can be easily

70

https://booking.com/
https://www.dailymail.co.uk
https://www.doodle.com
https://doodle.com/
https://www.doodle.com

extended with patterns to detect login forms or elements such as account buttons. Another
option is to calculate the side by side difference of the HTML from the logged in and logged
out state. However we do think that we should give a meaning to the difference between the
HTML files, the difference could be caused by changing content or different ads that are shown.
Therefore we did not investigated this method any further.

6.6.3 Conclusions

The methods used by Zhou and Evans [11], detection of automated redirection, and in the
Shepherd project together should provide enough coverage to verify the authenticated state for
a substantial percentage of domains.

6.7 Automating the Verification

In the previous section we described methods how we could verify the authenticated state
that cover a substantial percentage of domains. In this section we discuss how we used these
methods in the SSSO verification module. To prove that these methods work we tested this
module on the domains we investigated in the previous section.

6.7.1 Shepherds SSSO Verification Module

The authenticated state could leave a fingerprint in a web application in a manner of speaking,
we described these in section 6.6. For the verification module we decided to create a class,
Fingerprint, that searches the HTML DOM and the set of cookies for hints on the authenticated
state or unauthenticated state. This search is performed twice, with and without the set of
cookies that was stored by the SSSO login module. In this process also the URLs are stored.
Afterwards the results of both the searches and the URLs are compared and a conclusion is
made whether or not the set of cookies creates the authenticated state. A simplified UML
diagram for this module can be found in the appendix.

Design Decisions We decided not to use any confidence factor for a specific method. The
reason is that we could not decide how to apply these. The user’s credentials in the HTML
DOM and the absence of these when logged out is a good method, but why should it have
higher confidence over automated redirection? Therefore we decided to treat all methods as
equal.

Implementation Decisions We also opted to use as much JavaScript as possible for all
searches in the HTML DOM. This is known to be faster than Python over Selenium because
this needs extra communication between Python, Selenium and the browser. When testing we
experienced that this module did not slowed us down and one search is mostly done in just a
couple of seconds. Speed is important for this module because the scans might be repeated a
large number of times to deduce the set of authorization cookies in the security scan.

To decide if a web application redirects when authenticated we decided to simply compare
the URLs, if any difference is found, than some redirection is done. Some web application
use the same URL for the logged out and authenticated state, however HTTPS is used when
authenticated. With this simple method this is taken into account.

Module Results This module depends on the results of the SSSO login module, only for
successful SSSO login attempts the verification is performed. This module stores for which
SSSO provider it could verify the authenticated state for use in subsequent modules and this
is also written in the logs for debugging purposes.

71

Example 6.11
The user’s credentials in an attribute of an image tag.

<img src="https://cdn.igromania.ru/-Engine-/SiteTemplates/igromania/images/

misc/default_avatar.png" alt="HendrikJan DeStuntman [FB]"

title="HendrikJan DeStuntman [FB]" class="uprofile_av">

6.7.2 Testing Shepherds Verification Module

To provide metrics on the performance and reliability on the methods for the verification of
the authenticated state, we tested Shepherd’s verification module on all domains used in the
analysis in section 6.6. We manually authenticated to each web application using SSSO and ran
the verification module directly afterwards. During this process we also did a visual inspection.

Results The verification failed in 6 cases that are not related to this module.

• The framework failed in 2 cases.

• A cache loading time-out was experienced in 1 case.

• In 2 cases the authentication to the web application failed.

• In one case we could not load the page because of bot detection.

From the remaining 94 cases we observer that the session was not properly restored after
loading the cookies and refreshing the page. In some cases this could be fixed by a forced cache
refresh, pressing ctrl + f5, however this was only tried to find a cause and is not included in
the results. We experienced this in 11 cases and we are not sure if this can be fixed at all and
this needs further investigation.

This leaves 83 domains in which the verification methods failed in 10 cases, approximately a
success rate of 84 %. In 6 cases none of our current methods work and in 4 cases the credentials
could not be found in the HTML DOM which we could find by manual inspection. In three
cases the user’s credentials were found in an attribute of an image tag, example 11. A cause
for the failed detection of the credentials in an image tag could be that it has not been loaded
yet. Lazy loading or creation by JavaScript could also be the cause that the credentials in a
data attribute, example 12, could not be found. For this we do not have a solution.

Conclusions This module performs reasonably well, however there is room for improvement.
We included a pattern for detection of login forms and sign-up elements. Adding more patterns
is relatively straight forward however can be time-consuming. Our main concern is the fact
that 11 out of the 100 domains did not restored the authenticated state correctly after loading
the cookies, resolving this issue could increase the performance of this module.

6.7.3 Conclusions

We are convinced that the combination of the methods already in Shepherd and those used by
Zhou and Evans [11] bundled together with the URL comparison in this module provide simple
and easy extensible methods to verify the authenticated state. The methods have shown to be
reliable and cover most cases.

We do have an extension for this module in mind. Some web applications show the user
an account page with the users credentials directly after authentication. If this URL is stored

72

Example 6.12
The user’s credentials in a data attribute of a body tag.

<body data-user-guest="false" data-user="{"firstName":null,"

lastName":null,"email":"destuntmanhendrikjan@gmail.com

","id":"78998420","phone":null}"

class="_frontend">

...

</body>

directly after the authentication has been done, and optionally after processing registration
forms, this could be used when verification on the landing page failed. However this is future
work.

6.8 Results and Discussion

In this chapter we investigated to what extent it is possible to automatically create the per-
spective of the authenticated user for any website or web application using any SSSO provider
supported by the site in question.

Automated authentication to a SSSO provider can be done in almost all cases the element
that triggers the entry point for the authentication is correctly identified. Handling the account
creation procedures seems to be a major challenge which can not be solved easily. Verification
of the authenticated state, which is important, has a success rate of approximately 84 % if we
are able to recreate the authenticated state.

56 % of the domains do not require any additional account creation. When we take broken
implementations and bot detection into account, Shepherd will not be able to authenticate
anyway, and apply the success rate of 84 % from the verification, Shepherd is able to create
the authenticated state in approximately 47 % of all domains that integrate SSSO if this is
correctly detected and the SSSO provider is supported by Shepherd. However a study on a
larger number of domains will provide more reliable numbers.

73

Chapter 7

Conclusions and Future Work

Our study enables session security research from the perspective of an authenticated user on a
large number of domains by leveraging SSSO. We preferred to have more statistical evidence
on this however this was hindered by external factors which limited our study. This could be
the subject of a supplementary study or future work, for example a study on at least 10.000
domains from the top of the Alexa ranking or another suitable top list ranking.

We thoroughly explored the problem of detecting entry points of SSSO authentication
processes for automation. We were only able to detect SSSO buttons on 15 out of 25 websites
with SSSO detection in a small test. This low number can mostly be attributed to the amount of
related problems that still need to be addressed, and the stability of the underlying technologies
need to improve in order to actually improve our results.

Currently Shepherd does not support any Chinese SSSO provider. We managed to create
a Chinese social media account on Sina Weibo, however we failed to use it for any domain, we
did not investigate this any further. Adding support for Asian SSSO providers could increase
the reach of Shepherd.

A limitation with the biggest impact is that we could not automate the handling of ad-
ditional account creation procedures. This is required in 44 % of the domains, however we
suspect that the success rate will stay quite low and any effort is better spent elsewhere.

During testing we experienced bot detection by internet service providers such as CloudFlare
and Quantcast which results in not loading the page at all if a Google reCAPTCHA is not
processed correctly or that it is needed to wait. Although we experienced this in only a small
number of cases we suspect that this could pose a problem when scaling up. Finding methods
to circumvent this detection could be an assurance that Shepherd will not be blocked on (a
large number) domains.

74

Bibliography

[1] Maurits Martijn. Maybe Better If You Don’t Read This Story on Public WiFi. 2014. url:
https://medium.com/matter/heres- why- public- wifi- is- a- public- health-

hazard-dd5b8dcb55e6 (visited on 11/16/2018).

[2] HackerOne. HackerOne: Hacktivity Dashboard. url: https://hackerone.com/hacktivity
(visited on 03/23/2019).

[3] Frank Piessens. “A Taxonomy of Causes of Software Vulnerabilities in Internet Software”.
In: Citeseer. 2002.

[4] Graeme Burton. Security experts Hit Out At Google Over Refusal To Patch Android
Security Flaw Exploited By Ransomware. 2017. url: https://www.computing.co.uk/
ctg/news/3010407/security-experts-hit-out-at-google-over-refusal-to-

patch-android-security-flaw-exploited-by-ransomware (visited on 02/28/2019).

[5] Charlie Osborne. Second time lucky: Cisco pushes fix for failed Webex vulnerability patch.
2018. url: https://www.zdnet.com/article/cisco-pushes-new-patch-to-fix-
failed-fix-for-severe-webex-vulnerability/ (visited on 02/28/2019).

[6] Antonio Nappa et al. “The attack of the clones: A study of the impact of shared code on
vulnerability patching”. In: 2015 IEEE symposium on security and privacy. IEEE. 2015,
pp. 692–708.

[7] Dan Goodin. Unsafe cookies leave WordPress accounts open to hijacking, 2-factor bypass.
2014. url: https://arstechnica.com/information-technology/2014/05/unsafe-
cookies - leave - wordpress - accounts - open - to - hijacking - 2 - factor - bypass/

(visited on 11/10/2018).

[8] Raphael Satter. Yahoo issues another warning in fallout from hacking attacks. 2017. url:
https://apnews.com/cb14057fa1b24569bed73ae369d9132b/apnewsbreak- yahoo-

issues-new-security-warning-users (visited on 06/06/2018).

[9] Robert McMillan. Yahoo Triples Estimate of Breached Accounts to 3 Billion. url: https:
//www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-

billion-1507062804 (visited on 04/13/2019).

[10] Julia Carriew. Facebook says nearly 50m users compromised in huge security breach.
2018. url: https://www.theguardian.com/technology/2018/sep/28/facebook-50-
million-user-accounts-security-berach (visited on 11/10/2018).

[11] Yuchen Zhou and David Evans. “SSOScan: Automated Testing of Web Applications for
Single Sign-On Vulnerabilities.” In: USENIX Security Symposium. 2014, pp. 495–510.

[12] Mohammad Ghasemisharif et al. “O Single Sign-Off, Where Art Thou? An Empirical
Analysis of Single Sign-On Account Hijacking and Session Management on the Web”.
In: 27th USENIX Security Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, 2018, pp. 1475–1492. isbn: 978-1-931971-46-1. url: https://www.usenix.
org/conference/usenixsecurity18/presentation/ghasemisharif.

75

https://medium.com/matter/heres-why-public-wifi-is-a-public-health-hazard-dd5b8dcb55e6
https://medium.com/matter/heres-why-public-wifi-is-a-public-health-hazard-dd5b8dcb55e6
https://hackerone.com/hacktivity
https://www.computing.co.uk/ctg/news/3010407/security-experts-hit-out-at-google-over-refusal-to-patch-android-security-flaw-exploited-by-ransomware
https://www.computing.co.uk/ctg/news/3010407/security-experts-hit-out-at-google-over-refusal-to-patch-android-security-flaw-exploited-by-ransomware
https://www.computing.co.uk/ctg/news/3010407/security-experts-hit-out-at-google-over-refusal-to-patch-android-security-flaw-exploited-by-ransomware
https://www.zdnet.com/article/cisco-pushes-new-patch-to-fix-failed-fix-for-severe-webex-vulnerability/
https://www.zdnet.com/article/cisco-pushes-new-patch-to-fix-failed-fix-for-severe-webex-vulnerability/
https://arstechnica.com/information-technology/2014/05/unsafe-cookies-leave-wordpress-accounts-open-to-hijacking-2-factor-bypass/
https://arstechnica.com/information-technology/2014/05/unsafe-cookies-leave-wordpress-accounts-open-to-hijacking-2-factor-bypass/
https://apnews.com/cb14057fa1b24569bed73ae369d9132b/apnewsbreak-yahoo-issues-new-security-warning-users
https://apnews.com/cb14057fa1b24569bed73ae369d9132b/apnewsbreak-yahoo-issues-new-security-warning-users
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.theguardian.com/technology/2018/sep/28/facebook-50-million-user-accounts-security-berach
https://www.theguardian.com/technology/2018/sep/28/facebook-50-million-user-accounts-security-berach
https://www.usenix.org/conference/usenixsecurity18/presentation/ghasemisharif
https://www.usenix.org/conference/usenixsecurity18/presentation/ghasemisharif

[13] Yogesh Mundada, Nick Feamster, and Balachander Krishnamurthy. “Half-baked cook-
ies: Hardening cookie-based authentication for the modern web”. In: Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security. ACM. 2016,
pp. 675–685.

[14] Yusuke Takamatsu, Yuji Kosuga, and Kenji Kono. “Automated detection of session man-
agement vulnerabilities in web applications”. In: 2012 Tenth Annual International Con-
ference on Privacy, Security and Trust (2012), pp. 112–119.

[15] Hugo Jonker et al. “Shepherd: Enabling Automatic and Large-Scale Login Security Stud-
ies”. In: arXiv preprint arXiv:1808.00840 (2018).

[16] OWASP. Session Management Cheat Sheet. 2017. url: https://www.owasp.org/index.
php/Session_Management_Cheat_Sheet (visited on 11/16/2018).

[17] The Internet Society. Hypertext Transfer Protocol – HTTP/1.1. 1999. url: https://
tools.ietf.org/html/rfc2616 (visited on 12/05/2018).

[18] The Internet Society. HTTP State Management Mechanism. 2011. url: https://tools.
ietf.org/html/rfc6265 (visited on 04/13/2019).

[19] OWASP. Session hijacking attack - OWASP. url: https://www.owasp.org/index.
php/Session_hijacking_attack (visited on 06/29/2019).

[20] Adam Barth. HTTP state management mechanism. Tech. rep. 2011.

[21] Rorot. Session Hijacking Cheat Sheet. 2015. url: https://resources.infosecinstitute.
com/session-hijacking-cheat-sheet/ (visited on 12/10/2018).

[22] Dafydd Stuttard and Marcus Pinto. The web application hacker’s handbook: Finding and
exploiting security flaws. John Wiley & Sons, 2011.

[23] Andrew Whitaker and Daniel P Newman. Penetration Testing and Network Defense:
Penetration Testing 1. Cisco Press, 2005.

[24] OWASP. Cross-site Scripting (XSS) - OWASP Cross-site Scripting (XSS). 2018. url:
https://www.owasp.org/index.php/Cross- site_Scripting_(XSS) (visited on
11/10/2018).

[25] OWASP. Session hijacking attack - OWASP Session hijacking attack. 2014. url: https:
//www.owasp.org/index.php/Session_hijacking_attack (visited on 11/10/2018).

[26] OWASP. Session fixation. 2018. url: https://www.owasp.org/index.php/Session_
fixation (visited on 11/10/2018).

[27] Michael Olson. Research Study: Consumer Perceptions of Online Registration and Social
Sign-in. 2011. url: https://www.janrain.com/blog/research-study-consumer-
perceptions-online-registration-and-social-sign (visited on 05/10/2018).

[28] Kelsey Goings and Paul Abel. The Value of Social Login. 2013. url: http://www1.
janrain.com/rs/janrain/images/Industry-Research-Value-of-Social-Login-

2013.pdf (visited on 01/09/2019).

[29] Dinei Florencio and Cormac Herley. “A large-scale study of web password habits”. In:
Proceedings of the 16th international conference on World Wide Web. ACM. 2007, pp. 657–
666.

[30] Pavol Sovis, Florian Kohlar, and Jörg Schwenk. “Security analysis of openid”. In: Sicher-
heit 2010. Sicherheit, Schutz und Zuverlässigkeit (2010).

[31] Christian Mainka et al. “Automatic recognition, processing and attacking of single sign-on
protocols with burp suite”. In: Open Identity Summit 2015 (2015).

76

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://www.owasp.org/index.php/Session_hijacking_attack
https://www.owasp.org/index.php/Session_hijacking_attack
https://resources.infosecinstitute.com/session-hijacking-cheat-sheet/
https://resources.infosecinstitute.com/session-hijacking-cheat-sheet/
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Session_hijacking_attack
https://www.owasp.org/index.php/Session_hijacking_attack
https://www.owasp.org/index.php/Session_fixation
https://www.owasp.org/index.php/Session_fixation
https://www.janrain.com/blog/research-study-consumer-perceptions-online-registration-and-social-sign
https://www.janrain.com/blog/research-study-consumer-perceptions-online-registration-and-social-sign
http://www1.janrain.com/rs/janrain/images/Industry-Research-Value-of-Social-Login-2013.pdf
http://www1.janrain.com/rs/janrain/images/Industry-Research-Value-of-Social-Login-2013.pdf
http://www1.janrain.com/rs/janrain/images/Industry-Research-Value-of-Social-Login-2013.pdf

[32] Rui Wang, Shuo Chen, and XiaoFeng Wang. “Signing me onto your accounts through
facebook and google: A traffic-guided security study of commercially deployed single-
sign-on web services”. In: Security and Privacy (SP), 2012 IEEE Symposium on. IEEE.
2012, pp. 365–379.

[33] Wanpeng Li and Chris J Mitchell. “Security issues in OAuth 2.0 SSO implementations”.
In: International Conference on Information Security. Springer. 2014, pp. 529–541.

[34] Wanpeng Li and Chris J Mitchell. “Analysing the security of Google’s implementation of
OpenID Connect”. In: International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer. 2016, pp. 357–376.

[35] Quirin Scheitle et al. “A long way to the top: significance, structure, and stability of
internet top lists”. In: Proceedings of the Internet Measurement Conference 2018. ACM.
2018, pp. 478–493.

[36] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. “Detecting near-duplicates
for web crawling”. In: Proceedings of the 16th international conference on World Wide
Web. ACM. 2007, pp. 141–150.

[37] Ismail Akrout, Amal Feriani, and Mohamed Akrout. “Hacking Google reCAPTCHA v3
using Reinforcement Learning”. In: CoRR abs/1903.01003 (2019). arXiv: 1903.01003.
url: http://arxiv.org/abs/1903.01003.

[38] Ye Wang and Mi Lu. “An optimized system to solve text-based CAPTCHA”. In: CoRR
abs/1806.07202 (2018). arXiv: 1806.07202. url: http://arxiv.org/abs/1806.07202.

[39] Ahmad B. A. Hassanat. “Bypassing Captcha By Machine A Proof For Passing The Turing
Test”. In: CoRR abs/1409.0925 (2014). arXiv: 1409.0925. url: http://arxiv.org/
abs/1409.0925.

77

http://arxiv.org/abs/1903.01003
http://arxiv.org/abs/1903.01003
http://arxiv.org/abs/1806.07202
http://arxiv.org/abs/1806.07202
http://arxiv.org/abs/1409.0925
http://arxiv.org/abs/1409.0925
http://arxiv.org/abs/1409.0925

Appendices

78

Appendix A

SSSO Detection Experiments

A.1 Prevalence of SSSO On The Web

The following experiment was conducted to validate the results of an experiment done by
Ghasemisharif et al. [12] regarding the prevalence of SSSO on the web. We manually inves-
tigated websites hosted by 2000 web domains on July 4 2019, which were randomly sampled
from the Alexa Global Top 1M list of July 3 2019. We also extended the original experiment
by further investigating the authentication systems of these websites.

A.1.1 Sampling

We used a list of 2000 web domains as our sample, which was generated in the following way:

• we downloaded the Alexa Global Top 1M list of July 3 2019
• we shuffled the list in a random way, and took the 2000 first entries

A.1.2 Process

During the experiment, we made sure that we had not been authenticated yet by any SSSO
provider or website. The following steps were executed for every domain:

1. If the domain was a subdomain of a known service that hosted websites that cannot
have their own authentication system (e.g. username.tumblr.com), the website was not
deemed a target, and skipped.

2. To determine whether a website was hosted on this domain, we executed the following
steps until a page was loaded by the browser:

• type domain name in address bar of web browser
• type domain name with ”www.” prepended in address bar of web browser
• use a search engine or DNS recon tool to find if a website is hosted on this domain
• otherwise the website is deemed unavailable.

3. If a website was discovered in the previous step, we searched the website for any evidence
of an authentication system, resulting in one of the following outcomes:

(a) none: no evidence of an authentication system was found
(b) closed: a user could log in, but there was no way for a user to register an account
(c) public: a user could log in, and there was a way for a user to register an account

4. If any evidence of SSSO authentication was discovered in the previous step, we identified
which SSSO providers were supported by the website.

Note that one should be careful when using a VPN while conducting this experiment, because
some websites or countries may block any attempts to access a website when using a VPN.

79

ranking domains not a target unavailable none closed public

1-100k 192 0 0.00% 10 5.21% 91 47.40% 11 5.73% 80 41.67%

100k-200k 209 3 1.44% 8 3.83% 117 55.98% 12 5.74% 69 33.01%

200k-300k 183 4 2.19% 1 0.55% 102 55.74% 8 4.37% 68 37.16%

300k-400k 214 5 2.34% 3 1.40% 122 57.01% 16 7.48% 68 31.78%

400k-500k 212 12 5.66% 9 4.25% 123 58.02% 9 4.25% 59 27.83%

500k-600k 192 5 2.60% 5 2.60% 111 57.81% 7 3.65% 64 33.33%

600k-700k 210 11 5.24% 4 1.90% 135 64.29% 8 3.81% 52 24.76%

700k-800k 199 11 5.53% 4 2.01% 132 66.33% 11 5.53% 41 20.60%

800k-900k 184 11 5.98% 5 2.72% 123 66.85% 3 1.63% 42 22.83%

900k-1M 205 7 3.41% 4 1.95% 137 66.83% 7 3.41% 50 24.39%

1-1M 2000 69 3.45% 53 2.65% 1193 59.65% 92 4.60% 593 29.65%

Table A.1: Results of our investigation of authentication systems in experiment A.1. All
percentages indicate the prevalence among domains with a rank within the stated range.

ranking SSSO domains SSSO% public SSSO%
1-100k 33 192 17.19% 80 41.25%

100k-200k 20 209 9.57% 69 28.99%
200k-300k 19 183 10.38% 68 27.94%
300k-400k 12 214 5.61% 68 17.65%
400k-500k 14 212 6.60% 59 23.73%
500k-600k 9 192 4.69% 64 14.06%
600k-700k 11 210 5.24% 52 21.15%
700k-800k 8 199 4.02% 41 19.51%
800k-900k 6 184 3.26% 42 14.29%
900k-1M 7 205 3.41% 50 14.00%
1-1M 139 2000 6.95% 593 23.44%

Table A.2: Prevalence of SSSO authentication in experiment A.1. All percentages indicate the
prevalence of SSSO for a certain range of rankings within a group of results.

A.1.3 Analysis

We found that 139 domains hosted a website with SSSO authentication (6.95% ± 1.11%, CI
95%), which is similar to the result of 6.3%, reported by Ghasemisharif et al. [12]. We also
found that 593 domains hosted a website with user registration (29.65% ± 2.00%, 95% CI),
which means that we expect to be able to use SSSO authentication for 23.57% (± 3.41%, CI
95%) of websites with user registration.

Figure A.1: Percentages of websites with user
registration and SSSO.

Figure A.2: Percentages of websites with
SSSO among websites with user registration.

80

As shown in table A.3, we observed several strong correlations between the ranking of a
website and the prevalence of authentication systems, that are statistically significant, including
the trend observed by Ghasemisharif et al. [12] that a website with a better ranking is more
likely to support SSSO authentication. We can argue that this trend is driven by the following
related trends:

• a website with a better ranking is more likely to have an authentication system
• a website with a better ranking and user registration is more likely to support SSSO

Y corr(ranking, Y) p-value

none/domains 0.96 <0.001

auth/domains -0.92 <0.001

closed/domains -0.75 0.011

public/domains -0.85 0.002

ssso/domains -0.95 <0.001

ssso/public -0.83 0.003

Table A.3: Correlation analysis of results of experiment A.1 using Spearman rank correlation.

We also confirmed the dominance of Facebook as an SSSO provider among websites listed
in the Alexa Global Top 1M list, followed by Google, Twitter, and a long tail of other SSSO
providers, as shown in table A.4, and figure A.3.

provider count websites w\ SSSO all websites provider count websites w\ SSSO all websites
facebook 107 76.98% 5.35% ok.ru 4 2.88% 0.20%
google 66 47.48% 3.30% steam 4 2.88% 0.20%
twitter 27 19.42% 1.35% yahoo 4 2.88% 0.20%
vk 11 7.91% 0.55% qq 4 2.88% 0.20%
linkedin 6 4.32% 0.30% instagram 3 2.16% 0.15%
amazon 5 3.60% 0.25% mail.ru 3 2.16% 0.15%
microsoft 5 3.60% 0.25% yandex 3 2.16% 0.15%
wechat 5 3.60% 0.25% weibo 3 2.16% 0.15%

Table A.4: List of SSSO providers most commonly found on websites during experiment.

Figure A.3: Integration of different SSSO providers by websites among experiment’s results.

A.1.4 Conclusions

We have validated the findings of Ghasemisharif et al. [12], and also discovered some new trends
correlating the ranking of a website and authentication systems.

81

A.2 Clicking SSSO Buttons To Initiate Authentication Process

The following experiment was conducted to confirm hypothesis 5.1, which states that a user
only needs to click an SSSO button to initiate an SSSO authentication process.

A.2.1 Sampling

The sample used for this experiment was a list of 139 domains that hosted a website with SSSO
authentication, taken from experiment A.1. The conditions of randomness were not violated
because the sample used in A.1 was generated in a random way.

A.2.2 Process

During the experiment, we made sure that we had not been authenticated yet by any SSSO
provider or website. The following steps were executed for every website from the sample:

1. We identified all entry points for SSSO authentication on a website.
2. We executed the following steps for every entry point:

(a) is SSSO authentication process part of website’s own authentication system?
(b) check hypothesis:

• positive: user needs to click an SSSO button to initiate SSSO authentication
• negative: otherwise

Note that one should be careful when using a VPN while conducting this experiment, because
some websites or countries may block any attempts to access a website when using a VPN.

A.2.3 Analysis

We found 396 different entry points for SSSO authentication processes on 139 websites. We
found more entry points among websites with a better ranking. This can be attributed to the
trend that popular websites are more likely to let users log in with SSSO, which we observed
in experiment A.1. We discovered an average of 2.85 entry points per website with SSSO
authentication. No statistically significant correlation was found between the rank of a website
with SSSO authentication, and the amount of entry points discovered on that website.

ranking 1-100k 100k-200k 200k-300k 300k-400k 400k-500k 500k-600k 600k-700k 700k-800k 800k-900k 900k-1M 1-1M

domains w/ SSSO 33 20 19 12 14 9 11 8 6 7 139

entry points 87 47 79 23 41 25 48 15 16 15 396

avg. per domain 2.64 2.35 4.16 1.92 2.93 2.78 4.36 1.88 2.67 2.14 2.85

Table A.5: Distribution of entry points among domains with SSSO authentication.

We made the following observations:

• hypothesis 5.1 was true for 382 out of 396 entry points (96.46% ± 1.82%, 95% CI)
• no entry points of an unrelated third party service were found during this experiment

ranking 1-100k 100k-200k 200k-300k 300k-400k 400k-500k 500k-600k 600k-700k 700k-800k 800k-900k 900k-1M 1-1M

entry points 87 47 79 23 41 25 48 15 16 15 396

H5.1 = true 85 47 79 22 33 25 45 15 16 15 382

Table A.6: Results of experiment A.2 investigating hypothesis 5.1.

82

We discovered 14 entry points of SSSO authentication processes on 5 different websites for
which hypothesis 5.1 was false. In all but one of these cases, users were expected to identity
themselves beforehand, as demonstrated in figure A.4, which may happen when SSSO authen-
tication is implemented by using protocols such as Mozilla BrowserID, OpenId, or OpenId
Connect. This way of handling SSSO authentication is only used by a small amount of unpop-
ular SSSO providers, and these SSSO providers may also implement SSSO authentication in a
way that conforms with our hypothesis, as is shown in figure A.5.

Figure A.4: (darxton.ru) Users need to iden-
tify themselves beforehand by providing their
mail.ru email address.

Figure A.5: (emigrantforum.ru) Users are
redirected to web page hosted by mail.ru after
clicking on SSSO button.

In the other case where our hypothesis failed, a Chinese website presented users with a
QR code that was embedded on its own website. Users need to scan this QR code with a
mobile device to initiate SSSO authentication. The use of QR codes is more prominent in
Chinese culture, and the most popular Chinese SSSO providers support the use of QR codes
for handling SSSO authentication.

Figure A.6: (ipmtalk.com) Example of a QR code being used to log in with WeChat.

We also would like to note that we are aware of other situations where hypothesis 5.1 does
not hold up, but such cases were not observed during this experiment. In one case, users
needed to agree with a ’Terms of Use’ before being able to register a new account using SSSO
authentication. In another case, users were required to choose a username before they were
able to register a new account.

A.2.4 Conclusion

We conclude that hypothesis 5.1 is true in almost all situations. Situations where the hypothesis
does not hold up are not common or significant enough to invalidate its usefulness.

83

https://darxton.ru/personal/
http://emigrantforum.ru/
https://www.ipmtalk.com/login/login/index.html

A.3 Redirection of Browser After Clicking SSSO Buttons

The following experiment was conducted to confirm hypothesis 5.2, which states that if a user
has not been authenticated yet by the SSSO provider, and clicks on an SSSO button, then
the browser is redirected to a web page for authentication by the SSSO provider. Due to our
interest in avoiding several pitfalls related to SSSO detection, we also investigated these web
pages for evidence that hints at which application we are trying to use SSSO authentication
for.

A.3.1 Sampling

The sample used for this experiment was a list of 382 entry points of authentication pro-
cesses which we discovered during A.2. All of these entry points were SSSO buttons for which
hypothesis 5.1 was found to be true.

A.3.2 Process

The following steps were executed for every entry point in our sample:

1. click the SSSO button
2. check hypothesis:

• positive: browser opens web page for authentication by SSSO provider
• negative: otherwise
• did an error occur, and if so, why?

3. any evidence hinting at the service that we are trying to use SSSO authentication for?

A.3.3 Analysis

We found that hypothesis 5.2 was true for only 332 out of 382 entry points (86.91% ± 3.38%,
95% CI), which can be attributed to a large amount of broken SSSO authentication processes.
After clicking an SSSO button, an error message or behaviour indicative of a faulty implemen-
tation was observed in 50 out of 382 cases (13.09% ± 3.38%, 95% CI):

• in 34 cases, SSSO authentication was badly integrated by the service provider’s website
• in 16 cases, SSSO authentication was misconfigured on the SSSO provider’s end

We found no correlation between the ranking of a website, and the likelihood of an SSSO
authentication process being broken, as can be seen in figure A.8.

Figure A.7: A warning message is shown to
notify users that SSSO authentication is mis-
configured on the SSSO provider’s end.

Figure A.8: Chart displays the rate of errors
among websites belonging to different rank-
ings.

84

At least one SSSO authentication process was broken for 27 out of 139 websites (19.42% ±
6.58%, 95% CI), and all SSSO authentication processes were broken for 8 out of 139 websites
(5.76% ± 3.87%, 95% CI). Actual error rates might be higher than reported, and thus present
a lower bound, because of the following reasons:

• the amount of configuration errors might be higher, because we could not identify these
if the browser wasn’t redirected to a web page for authentication by the SSSO provider
due to an integration error
• the amount of integration errors might be higher, because we only clicked on SSSO

buttons, and did not follow through with the whole SSSO authentication process

Hypothesis 5.2 held true in all other cases. This implies that we can reliably validate SSSO
buttons, on condition that SSSO authentication is initiated by clicking on the SSSO button,
and that SSSO authentication is integrated and configurated correctly. As such, we can also
use this method to identify the entry points of SSSO authentication processes that we can
automate.

Figure A.9: (wacom.com) Display name of
application is shown when being authenti-
cated by SSSO provider.

Figure A.10: (scake.com.tw) No visual infor-
mation to identify application is shown when
being authenticated by SSSO provider.

We also expressed our concern about several potential pitfalls related to SSSO detection.
The web page of the SSSO provider that we are redirected to after clicking an SSSO button
usually contains evidence of which service we are trying to use SSSO authentication for. In 323
out of 332 cases (97.29% ± 1.75%, 95% CI), we found evidence that could be used to identify
the application, or the third party service that was used by that application to integrate SSSO
authentication:

• in 303 cases (91.27% ± 3.04%, 95% CI), evidence was found in the URL
• in 190 cases (57.23% ± 5.32%, 95% CI), evidence was found within the page itself

In the remaining 9 cases where we could not find any evidence, specific SSSO providers were
used, such as Amazon Pay, and thus we can anticipate for which SSSO providers we won’t find
any evidence.

We can use this information to fingerprint common third party services that are embedded
on other websites to avoid confusing SSSO buttons of other services with SSSO buttons of the
targeted website.

A.3.4 Conclusions

Based on these findings, we conclude that hypothesis 5.2 can be used to reliably validate SSSO
buttons when SSSO authentication is integrated correctly. In addition, we can examine the
web page that we are redirected to, to avoid the pitfalls related to SSSO detection listed in
section 5.4.

85

https://wacom.com/
https://www.scake.com.tw/

A.4 Locations of Components Related To Authentication

In this experiment, we investigated the locations of elements related to authentication on
a website, in order to confirm hypothesis 5.3, which states that we can expect to find SSSO
buttons in locations where we also expect other components related to authentication to appear.

A.4.1 Sampling

Our sample was a list of 139 domains that were found to be hosting websites that had integrated
SSSO during experiment A.1.

A.4.2 Process

The following steps were executed for every website from the sample:

1. identify all pages of the website
2. for each page, determine the following:

(a) at which search depth did we find the page?
(b) which locations of the page contain which components related to authentication?

A.4.3 Analysis

First of all, we observed that the search depth for login pages and registration pages is typically
a depth of 1. For some websites, the registration page was found at a search depth of 2, in
which case, the registration page was referenced from the login page. However, a significant
amount of websites did not have a login page or registration page.

• 66.00% ± 13.13% (confidence level 95%) of websites are had a login page
• 64.00% ± 13.30% (confidence level 95%) of websites are had a registration page

page n depth=0 depth=1 depth=2 depth=3

login 33 1 3.03% 32 96.97% 0 0.00% 0 0.00%

registration 32 0 0.00% 27 84.38% 5 15.63% 0 0.00%

Table A.7: Contains data about the amount of websites with dedicated login and/or registra-
tionpages, and how these are distributed among different search depths.

We found that any component related to authentication could be in almost any location.
However, we noticed a trend that all 16 SSSO buttons that we found were near a username-
password form, or a registration form. This observation led to hypothesis 5.4.

A.4.4 Conclusions

Besides identifying the typical locations of where we can find components related to authenti-
cation, we also found that login pages and registration pages are usually referenced from the
main page. Not all websites with user authentication have login pages and registrations, in
which case, the user has to log in, or register, from the main page.

86

A.5 Recognition of SSSO Buttons Using Keywords

This experiment was done to confirm hypothesis 5.5, which states that we can use keywords to
recognize SSSO buttons, as described in section 5.6. In addition, we further investigated the
collected data to confirm the helpfulness of heuristics listed by Zhou and Evans [11], and to
identify new ones, which could help us with filtering and sorting potential candidates of SSSO
buttons.

A.5.1 Sampling

Our sample was a list of 50 domains that were found to be hosting websites that had integrated
SSSO during experiment A.1.

A.5.2 Process

The following steps were executed for every domain in the used sample:

1. We identified each SSSO button on the website.
2. For each SSSO button that we identified in the previous step, we determined the following:

• does the element’s source contain a reference to its SSSO provider? (hypothesis 5.5)
• which keywords related to its SSSO provider do parts of the element contain?

– visible text
– id/class attributes
– outer HTML

• which other keywords related to authentication can we find?

A.5.3 Analysis

We investigated a total of 126 different SSSO buttons on 50 different websites. Hypothesis
5.5 held true for 122 out of 126 SSSO buttons (96.83% ± 3.06%, 95% CI). We could not use
keywords to identify SSSO buttons on 3 different websites, because they were disguised as a
normal sign-in button, with not even a visual clue that they were SSSO buttons. These buttons
would be confused with a more traditional SSSO buttons.

We compared the effectiveness of 3 different methods of searching elements for keywords.:

• by only observing visual text, we would be able to recognize 63 out of 122 recognizable
SSSO buttons (51.64% ± 8.87%, 95% CI)
• by only searching the ID and/or class attributes of an element, we would be able to

recognize 80 out of 122 recognizable SSSO buttons
• by searching the full outer HTML of an element, we were able to recognize all 122

recognizable SSSO buttons

In addition, searching the complete outer HTML of an element has the benefit of finding more
keyword matches, which we believe can help us differentiate between incidental candidates, and
great candidates. The most common keywords for recognizing SSSO buttons were the names
of SSSO provider’s, such as facebook, twitter, and google. In addition, common abbreviations
of these names should be used to cover more SSSO buttons.

A.5.4 Conclusions

We can use keywords to recognize keywords, as stated by hypothesis 5.5, however, for it to
be effective, we need to search an element’s full outer HTML. Another precondition for our
search method to be effective, is using a wide range of different keywords that cover all common
variations.

87

A.6 Persistent CSS Selectors

We conducted this experiment to investigate the effectiveness and the ability of different CSS
selectors to reference elements in a persistent way.

A.6.1 Sampling

The sample used for this experiment was a list of 10 domains that hosted a website with SSSO
authentication, taken from experiment A.1. The conditions of randomness were not violated
because the sample used in A.1 was generated in a random way.

A.6.2 Process

The following steps were executed for every domain in the used sample:

1. we identified every element of interest on the website, which includes the following:

• SSSO buttons
• login buttons
• registration buttons

2. For each element of interest that we discovered in the previous step, we would determine
whether or not the following selectors would work:

• id-based selectors
• class-based selectors
• persistent selectors, as described in section 5.7

A.6.3 Analysis

We identified 51 different elements of interest on 10 websites, and found that:

• id-based selectors could be used in 10 out of 51 cases (19.61%)
• class-based selectors could be used in 43 out of 51 cases (84.31%)
• persistent selectors could be used in all cases

A.6.4 Conclusions

We have determined that persistent selectors, as described in section 5.7, can be used to reliably
reference HTML elements in a persistent way.

88

A.7 Action Sequences For Clicking on SSSO Buttons

During this experiment, we investigated the sequences of interactions that were needed to click
on SSSO buttons and other elements of interest.

A.7.1 Sampling

For this experiment, we used a sample of 50 different domains with an authentication system
and user registration, which we found during experiment A.1. The conditions of randomness
were not violated because the sample used in A.1 was generated in a random way.

A.7.2 Process

The following steps were executed for every domain in the used sample:

1. We identified every element of interest on the website, which includes the following:

• SSSO buttons
• login buttons
• registration buttons

2. For each element of interest that we discovered in the previous step, we would determine
the following:

• what’s the type of the element: login button, registration button, SSSO button?
• which page was the element found on: main, login, registration?

3. We then determined which steps it would take to interact with the button (e.g. ”click,
click”, or ”hover, click, click”).

A.7.3 Analysis

We found 232 different action chains on 50 different websites, of which the distribution is
described in table A.8. Almost all action chains consisted of clicks. We only found a single
element where the cursor had to placed on top of it.

action chain n

click 173

click, click 42

click, click, click 12

hover, click 3

hover 1

Table A.8: Distribution of different action chains.

89

We were able to find all types of each button on each page. However, we observed the trend
that only action chains on the main page consisted of more than one step, and that we could
always directly click any elements of interest on login and registration pages, as shown in A.9.

page n=1 n=2 n=3 n=4 n=5

main 73 31.60% 45 19.48% 12 5.19% 0 0.00% 0 0.00%

login 61 26.41% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

registration 46 19.91% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Table A.9: Distribution of chain lengths found on different pages.

When we only looked at the data for SSSO buttons, we noticed that we found no action
chains with a single step on the main page, while we only found action chains with a single
step on the login and registration page.

page n=1 n=2 n=3 n=4 n=5

main 0 0.00% 10 28.57% 5 14.29% 0 0.00% 0 0.00%

login 12 34.29% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

registration 8 22.86% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Table A.10: Distribution of chain lengths found on different pages (SSSO buttons only).

We also found that our action chain had to access the contents of an iframe only once.

A.7.4 Conclusions

We have determined that most action chains tend to be shorter, and that the page plays an
immense role when it comes to the length of an action chain. Action chains found on login
and registration pages tend to consist of a single step. Interactions where we need to place the
cursor on top of an element are not very common.

90

A.8 Finding URLS of Relevant Pages

In experiment A.4, we identified the main page, login page, and registration page as pages
where we should search for SSSO buttons. To find the URLs of these pages, there are several
methods that we can employ. In this experiment, we determined whether or not we could
extract references to login pages

A.8.1 Sampling

For this experiment, we used a sample of 20 different domains with an authentication system
and user registration, which we found during experiment A.1. The conditions of randomness
were not violated because the sample used in A.1 was generated in a random way.

A.8.2 Process

The following steps were executed for every domain in the used sample:

1. We identified each login button, registration button, and SSSO button, that would result
in a new page being loaded, when clicked upon.

2. For each button that we discovered in the previous step, we would determine the following:

• what’s the type of the element: login button, registration button, SSSO button?
• what kind of page was loaded: login page, registration page, ssso provider’s page?
• where can we find URL of page: HTML attribute, JavaScript?
• what is the URL?

A.8.3 Analysis

We found 75 different buttons on 20 websites, that would result in a new page being loaded
when clicked upon. We could extract the URL in the following cases:

• in 69 out of 75 cases (92.00%), the URL was the value of an HTML attribute
• in 6 out of 75 cases (8.00%), the redirection was implemented using JavaScript

A.8.4 Conclusions

We can extract most URLs for login and registration pages by checking the HTML attributes
of a login or registration button. When the URL is not stored as an HTML attribute, we can
click the button.

91

Appendix B

SSSO Login Experiments

domain fb go vk tw ok li ya ma in gh

letyshops.com OK OK

pons.com OK

eodev.com OK

uploadboy.com OK OK

neoseeker.com OK OK

pptcloud.ru 1 OK OK 1

mangahere.cc OK

tonkosti.ru OK OK OK

eurogamer.net OK

bsnl.co.in OK

cdkeys.com OK

netbarg.com 1

toggl.com OK

lazada.co.th OK

goodreads.com OK

allaboutcircuits.com OK

obrazovaka.ru OK

kommersant.ru OK OK

stranamam.ru OK OK OK OK

onedio.ru OK

drive2.ru OK

yaklass.ru OK OK

superjob.ru OK OK OK OK

english-films.com OK

disqus.com OK

altema.jp OK

lonelyplanet.com OK

sidereel.com OK

thairath.co.th OK

genius.com OK

start.me OK

elperiodico.com OK

hinative.com OK

trud.com 1 OK

sibnet.ru OK OK OK

92

domain fb go vk tw ok li ya ma in gh

spcs.me OK OK

fotostrana.ru OK OK

gisher.org OK OK OK

leetcode-cn.com OK OK

csdn.net OK

openstreetmap.org OK

hostinger.com OK

codeproject.com OK

onesignal.com OK

os.tc OK

qiita.com OK

codecademy.com OK OK

juejin.im OK

nasdaq.com OK

codeprojecte.com OK

mediaexpert.pl 1

justia.com OK

lynda.com OK

cadenaser.com OK

jusbrasil.com.br OK

c-sharpcorner.com 4

rutube.ru 3, 4

tcrain.ru OK

hh.ru OK

apteka.ru 2

mysku.ru OK

gdeposylka.ru OK

baby.ru OK

rulit.me OK

coop-land.ru 2

yaklass.ru OK

promodj.com OK

ask.fm OK

twitcasting.tv OK

Table B.1: All domains used for testing Shepherds SSSO login module and all results.

fb = Facebook, go = Google, vk = VKontakte, tw = Twitter, ok = ok.ru,
li = LinkedIn, ya = Yandex, ma = mail.ru, in = Instagram, gh = GitHub

1. Successfully authenticated, however SSSO not set up correctly or broken.

2. SSSO button wrongfully identified.

3. Elements needed to interact with not detected for mail.ru. This is corrected.

4. Suspicious behavior detected.

93

Appendix C

SSSO Account Creation
Experiments

Alexa Rank Domain Observations

30 netflix.com 1

175 ebay.de

318 mi.com

336 box.com 1, 6

496 znanija.com 3

537 goo.ne.jp 1, 3, 4

545 discogs.com

613 viva.co.id 1, 3, 8

620 snapdeal.com 5

673 bild.de

729 kizlarsoruyor.com

746 sputniknews.com 1, 4

890 news.com.au

1058 abc.net.au

1131 online-convert.com

1220 aimer.tmall.com 4

1289 freelancer.com 2

1526 mvideo.ru 3, 4, 5

1554 thedailybeast.com 2

1576 gitlab.com

1667 metacritic.com

1700 livestrong.com

1735 lavanguardia.com

1742 shopee.com.my

1828 jalopnik.com

1885 islcollective.com

1934 lining.tmall.com 4

1957 icook.tw

2127 gainreel.tmall.com 4

2191 shopee.co.th

2359 globaltestmarket.com 3, 7

2468 earthmusic.tmall.com

94

Alexa Rank Domain Observations

2656 maniform.tmall.com 4

2989 qoo10.sg 1

3045 ticketmonster.co.kr 1

3077 qatarairways.com 1, 3

3078 yandex.ua 3

3168 kicker.de 1, 9

3220 jackjones.tmall.com 4

3247 marinetraffic.com

3320 alexa.com 1, 7

3387 3bmeteo.com 1

3664 citethisforme.com 1

3708 newgrounds.com 3

3719 careerbuilder.com

3878 alternativeto.net

4020 tes.com 2

4054 myspace.com 1, 3

4336 interpals.net

4344 591.com.tw 1, 5

4391 freecharge.in 5

4432 thenounproject.com

4520 plataformaarquitectura.cl

4796 byu.edu 1, 2, 7

4806 residentadvisor.net

4937 pcloud.com

4977 wgmods.net

5082 healthunlocked.com 2

5089 ebay.com.hk 3

5222 gktoday.in 1

5496 zalo.me 4

5720 tvtime.com 1, 10

5859 publico.es

5941 jav101.com

6029 society6.com 3

6067 gbatemp.net

6162 lepoint.fr 1

6212 bizoninvest.com 1, 3, 4

6242 main.jp 1, 7

6318 pinkbike.com 1, 3

6435 teamwork.com 2

6581 aptoide.com 3

6730 asiae.co.kr

7078 giallozafferano.it 1, 3, 9

7561 b17.ru 2, 9

7610 avon.com

7682 qobuz.com 3

7853 typeform.com 3, 4

8018 asos.fr

95

Alexa Rank Domain Observations

8092 research.net 1

8124 reg.ru 1

8178 geocaching.com

8197 surfearner.com 1

8326 geogebra.org 1, 3

8610 audiofanzine.com 3

8699 postype.com 1

8854 mysku.ru 3

8872 pinkoi.com 3, 4

9100 vktarget.ru 1, 7

9243 womantalk.com

9297 toolbox.com 9

9560 dobreprogramy.pl

9606 free3d.com

9608 antena3.com 2, 8

9625 kinja.com

9640 wacom.com 3, 4

9685 listal.com 3

9897 kwork.ru

9945 laravel-china.org

9998 tekstowo.pl

Table C.1: Domains used for investigation of the account creation procedures and the results.

1. Account creation is required, clicking a specific element is the entry point to enter this
procedure.

2. Non-HTML form usage.

3. CAPTCHA usage.

4. Email/SMS verification.

5. Telephone number is required.

6. Credit card or bank account number is required.

7. Existing account needed which can not be created.

8. Authentication failed with unclear reason.

9. Broken implementation.

10. Accounts need to be created in an app.

96

Domain Classification Observations

juejin.im detection failed

elPeriodico.com login 1

codeproject.com other 2

openstreetmap.org registration

coop-land.ru registration 3

openedu.ru join mailing list 4

hh.ru registration

jusbrasil.com.br registration

ask.fm registration 5

gisher.org password/login recovery

fotostrana.ru detection failed

qiita.com registration 5

cadenaser.com other 6

Lynda.com login 2

mediaexpert.pl registration 1

mysku.ru contact/comment

wikium.ru join mailing list 8

hinative.com contact/comment

dmm.com login 7

ImmobilienScout24.de other

Miami Herald.com contact/comment

pagesjaunes.fr join mailing list 7

osreinos.com other

carousell.com registration

stopgame.ru contact/comment

walkerland.com.tw contact/comment 1, 5

mlive.com other 5, 7

reg.ru join mailing list

toster.ru registration

bigbasket.com other 7

orcid.org other 7

philips.com registration 5

dream-singles.com order/add to cart

buquebus.com detection failed

cssbuy.com registration 5

imgur.com contact/comment

wikia.com registration 6

nicovideo.jp registration

alibaba.com other 5

vinted.fr join mailing list 6

corriere.it registration 1, 5

pearltrees.com registration

techrepublic.com registration

mintmanga.com registration

windguru.cz login

uefa.com registration 9

larazon.es registration 9

97

Domain Classification Observations

onesignal.com registration 5

rozee.pk registration

hackerearth.com other

fossil.com password/login recovery 5

gusto.com registration 5

momomall.com.tw login

resumegenius.com detection failed

podbean.com registration

urcosme.com contact/comment

bananamall.co.kr registration 5

boulanger.com registration

morhipo.com registration 9

jarir.com registration 2

yesstyle.com join mailing list

buenastareas.com password/login recovery

kimovil.com detection failed

adorama.com password/login recovery

ucoz.net registration

mos.ru registration

foxford.ru detection failed

mvideo.ru detection failed

proprofs.com password/login recovery

neowin.net registration

lostfilm.tv detection failed

tving.com detection failed

hatenablog.com registration

creativecow.net password/login recovery 4

realtor.ca detection failed

fiverr.com registration

irecommend.ru registration

tripadvisor.fr other

codechef.com registration

game.co.uk password/login recovery 5

agame.com detection failed

fifa.com detection failed

vide-greniers.org other

expedia.ca other

smutty.com registration

mackolik.com Can determine what form is filled

allaboutcircuits.com detection failed

halloweencostumes.com registration

myshared.ru detection failed

accorhotels.com other 7

giantbomb.com registration

career.ru registration

stoloto.ru detection failed

98

Domain Classification Observations

pons.com other

eodev.com login

mangahere.cc login

geizhals.de search 5

thestar.com registration 5

yonhapnews.co.kr detection failed

Table C.2: Domains for the forms used for testing form processing.

1. Submit failed.

2. Unchecks checkboxes.

3. Eternal loop on radio buttons.

4. Wrong submit button.

5. Miss classified input.

6. Can not determine if custom checkboxes are processed correctly or failed.

7. Wrong form processed.

8. Crash on CSS selector, caused on too many spaces in the markup in the markup.

9. Field(s) not processed or detected.

99

Appendix D

SSSO Verification Experiments

rank domain verification options

109 booking.com DOM, visible sign up, sign up

175 ebay.de DOM, cookies

318 mi.com 1

392 olx.ua DOM, visible logout, logout

639 uzone.id DOM, visible login, login, visible logout, logout

659 yandex.com.tr DOM, visible login, login

667 fb.ru redirected

673 bild.de DOM, visible logout, logout

683 trustpilot.com DOM

755 codepen.io 2

843 v2ex.com visible logout, logout

883 mynet.com DOM, cookies

1029 britannica.com visible logout, logout, visible sign up

1033 doodle.com DOM, visible login, login, redirected

1038 prnt.sc DOM, visible login

1058 abc.net.au cookies

1131 online-convert.com DOM, visible login, login, visible logout, logout, visible sign up, sign up

1227 retailmenot.com DOM, logout, visible sign up, cookies

1294 mangakakalot.com 3

1735 lavanguardia.com 4

1809 vemale.com 5

1867 nymag.com 6

1869 tripadvisor.co.uk DOM

1922 oantagonista.com 6

2117 gumtree.co.za DOM, logout

2202 k2s.cc visible logout, logout

2451 hamgardi.com DOM

2693 tunein.com visible account, account, visible sign up, sign up

2942 gogoanime.in visible login, login, visible logout, logout, visible sign up, sign up

3009 uploadboy.com visible logout, logout, visible account, account, visible sign up, sign up

3093 manualslib.com DOM, visible login, logout, cookies

3219 pensador.com DOM, visible login, login, visible logout, logout, login form, cookies

3247 marinetraffic.com DOM, visible logout, logout, visible account, account, cookies

3387 3bmeteo.com 6

100

rank domain verification options

3438 indeed.co.in DOM, visible logout, logout, visible account, account

3443 lightinthebox.com visible login, login, visible logout, logout, login form
3499 top1health.com visible login, login, visible logout, logout

3505 hola.org DOM, visible logout, logout, visible account, account,
visible sign up, sign up, cookies

3658 themuse.com DOM, logout, visible sign up, sign up

3664 citethisforme.com logout

3747 topuniversities.com DOM, logout

3878 alternativeto.net visible logout, logout

3988 esporte.uol.com.br DOM, visible logout, logout, login form, cookies

4391 freecharge.in 7

4665 daftsex.com visible logout, logout

4674 bible.com DOM, visible logout, logout, visible sign up, sign up, redirected

4739 digit.in login, logout

4806 residentadvisor.net DOM, logout, visible sign up

4962 svyaznoy.ru 5

4975 bitrix24.net visible login, login, logout, login form

4977 wgmods.net DOM, visible login, logout

5089 ebay.com.hk DOM, visible login, login, cookies

5151 podio.com DOM, visible logout, logout, visible account, account, redirected

5282 elsiglodetorreon.com.mx visible login, visible logout, logout

5295 heureka.sk DOM

5340 ntv.ru visible login, login

5633 rome2rio.com visible login, login, sign up, login form

5659 klix.ba 1

5736 citethisforme.com logout

5969 2ememain.be DOM, visible login, login, visible logout, logout

6057 ad.nl 6

6329 homeaway.com DOM, visible login, logout, account

6337 rusplt.ru 1

6567 forumfree.it DOM, visible login, visible logout, logout

6572 telegraaf.nl 6

6589 rabota.ua DOM, visible login, login, logout, sign up

6661 hunker.com visible login, login

6712 lastminute.com DOM

6730 asiae.co.kr cookies

6784 seedr.cc cookies

6858 zoon.ru 1

6971 olx.ph 7

7002 gordonua.com DOM, cookies

7610 avon.com DOM

7679 longdo.com DOM visible account, account, login form

7739 roosterteeth.com visible login, login, logout, visible sign up, sign up

7853 hackerearth.com DOM, visible login, login, login form, cookies, redirected

7855 teepublic.com 8

7869 dochub.com 6

7903 buenastareas.com DOM, logout, cookies

101

rank domain verification options

8018 asos.fr 6

8096 goodhouse.ru visible login, cookies

8124 reg.ru 6

8240 travelask.ru DOM, visible login, login, logout

8277 hdlava.me visible login, login, visible logout, logout

8347 wikihow.it DOM, visible login, login, cookies

8591 dokumen.tips visible login, login, visible logout, logout, visible sign up, sign up

8869 gingersoftware.com DOM, visible login, visible logout

8872 pinkoi.com DOM, visible login, logout, account, visible sign up, sign up

8935 igromania.ru 5

9098 myprotein.com DOM, visible logout, logout

9560 dobreprogramy.pl DOM, login

9608 antena3.com 6

9614 womany.net DOM, visible login, login

9625 kinja.com 1

9634 philstar.com 6

9761 brilliant.org visible login, logout, account, visible sign up, sign up, redirected

9840 beyazperde.com 5

9897 kwork.ru DOM, visible login, login, logout, visible sign up, sign up

9998 tekstowo.pl 6

Table D.1: Domains used for testing Shepherd’s verification module.

1. Can not verify, none of our methods worked.

2. Error in Shepherds framework.

3. Failed due to caching issue.

4. Failed to detect log in element. (Might be due to language.)

5. Failed to detect credentials in DOM. (Often image elements.)

6. The session is not restored after loading the cookies and refreshing the browser.

7. The authentication process failed.

8. Could not load page, detected as bot.

102

Appendix E

UML Class Diagrams

Figure E.1: Simplified UML class diagram for the SSSO login module in Shepherd only showing
a subset of all login subclasses.

103

Figure E.2: Simplified UML class diagram for the account creation module in Shepherd

Figure E.3: Simplified UML class diagram for the verification module in Shepherd

104

Appendix F

Looking back on the project

F.1 Jelle

My biggest challenge within this project was to decide what my contributions should be, that
is, what my research should be. The Shepherd project has numerous aspects. The initial
assignment was to extend Shepherd with a module to use Single Sign-On to authenticate to
websites.

Without any clear decision made Alan focused on detection of SSSO and contribution to
the framework. I decided to study all three main key aspects of automated authentication
with SSSO, namely: The actual authentication to an SSSO provider. To what extent it is
possible to solve the problem of automated account creation in the context of the Shepherd
project. How the verification methods of the authenticated state could be improved. Deliver
working modules for these three key aspects. These problems tend to be more pragmatic than
scientific in my opinion, the scientific component is more a large scale study what we failed to
accomplish.

The difficulties within the team resulted that I got quite unhappy in the project and at
times frustrated. In my opinion this were mostly caused by the slow progress we made and at
the end of the project still missing a large scale study that would have made our work a much
more substantial to the Shepherd project. This has left me unsatisfied.

From this I learned that I should address problems within the team at an earlier stage to
protect the project and myself.

I am still prepared to do any supplementary work to the thesis or project to make our
contributions more substantial. For example: Still try to perform a large scale scan. Improve-
ments to the thesis. Improvements to the Shepherds SSSO login modules. This should be
accompanied by strict agreements and deadlines.

This project was my first encounter with the field of web scraping and Python. Web
scraping is an interesting field and touches my current field of interest in web development. I
gained some first hand experience with Python and I liked the language.

From personal experience from working in small teams I tend to prefer an agile approach.
I have had good experience with this in small teams, 2- 10 members. By using small feature
branches that are reviewed and done within a couple of weeks, fast progress is made early and
other developers could use each other code soon and get more involved. In this project, for
example, a lot of framework code was pushed to the repository after 10 months, and then it
was available to start building on top of this. Reviewing each other’s code is also something I
highly recommend in this type of project to keep everyone up to date, this might be especially
true for students. In my experience progress is faster and wrong decisions in these types of
projects are earlier detected and solved.

In my opinion, Alan is a capable Python developer with a good sense for well thought over
implementation and architectural solutions, and his experience with web scraping was a good

105

contribution to this project. His reliability is his main shortcoming what might be caused by
little job experience or his burnout. This is one of the causes of slow progress in this project
and is something that Alan must improve in order to function well within a team. In my
experience his current reliability is not accepted in a job situation.

F.2 Alan

Overall, this thesis project has been a very bittersweet experience. There was a lot of frustra-
tion, too much time and effort was spend on this project, but at the same time, I learned a lot,
and it really got me interested in research.

I think a lot of the experienced problems are inherent to the subject matter, and its com-
plexity. Generic web scraping, dealing with the Web and browser technologies, and the hetero-
geneity of websites are all difficult things to handle. When we decided to take on this project,
we couldn’t have anticipated this unavoidable obstacle of complexity.

Another source of problems was the different technologies that were used during this project.
Selenium, webdrivers, and browsers are all complex technologies and sadly, not without flaws.
Throughout this project, we constantly had to struggle with the instability and bugginess of
these technologies. We had to extend browsers with extensions to achieve some of the wanted
behaviour, and find workarounds to circumvent the limitations of these technologies.

Last but not least, our thesis project lacked a real sense of direction since the beginning. For
too long, my focus wasn’t on doing science, but on building a software product. Not because I
wanted to, but because it was a necessary step to implement a proper software solution to tackle
our research problem. It wasn’t until after more than a year that I was able to really pinpoint
a subject to focus upon. In the mean time, I had worked on so many different problems, that
it feels like I worked on 3 or 4 different theses.

I was very ambitious when we started this project, but these problems made it difficult for
me to consistently keep working on this project. 6 months or so into the project, this eventually
led to a heavy burnout, where I could not work on the thesis project as much as I should have.
Although I did keep working on the project most of the time. I did not stay in contact with
Jelle and the rest of the team as much as I should have. A lot of the time, there was not
much to say, but there definitely were moments where I should’ve been available, but wasn’t.
I feel sorry for Jelle, as I think that my actions might’ve resulted in this project taking longer,
postponing his graduation.

A book called ’Writing for Computer Science’ by Justin Zobel really helped me make heads
or tails of everything. It helped me understand how to approach my research problem from
a scientific perspective: formulate hypotheses, collect evidence, and bind everything together
with proper arguments. It was the first time that I finally knew what I was supposed to do.
It’s a shame that I only started reading this book after a year had already passed. Perhaps a
course that really explored doing research, designing and analyzing experiments, etc. would’ve
better prepared me.

There wasn’t enough time left to bring this project to a conclusion that I’m satisfied with,
but I’m also relieved that I can leave this behind me.

106

	Introduction
	Aim, Scope, and Contributions of Study
	Context of Study
	Overview of Thesis

	Background
	Web Session Management
	Web Session Hijacking
	Web Session Security
	Social Single Sign-On
	Web Crawling
	Browser Automation Tools
	Summary

	Related Work
	SSO Security
	SSO Detection
	The Shepherd Project
	Summary

	The Shepherd Framework
	Introduction
	Problem Description
	Shepherd's Architecture
	Apps and Modules

	Stable Web Pages
	Summary

	Automated Detection of Social Single Sign-On Authentication
	Overview
	Prevalence of SSSO On The Web
	Problem Description
	Observations
	Conclusions

	Integration of SSSO Authentication
	Problem Description
	Observations
	Conclusions

	Detection of SSSO Authentication
	Problem Description
	Observations
	Conclusions

	Locations of SSSO Buttons
	Problem Description
	Observations
	Conclusions

	Recognizing SSSO Buttons
	Problem Description
	Observations
	Conclusions

	Clicking on SSSO Buttons
	Problem Description
	Observations
	Conclusions

	Finding URLs of Relevant Web Pages
	Problem Description
	Observations
	Conclusions

	Searching for SSSO Buttons On A Page
	Problem Description
	Observations
	Conclusions

	Searching for SSSO Buttons On A Website
	Problem Description
	Observations
	Conclusions

	Discussion and Final Conclusions
	Evaluation
	Future Work
	Conclusions

	Automated Authentication via Social Single Sign-On
	Overview
	Commonalities and Differences in Authenticating to Different SSSO Identity Providers
	Problem Description
	Observations
	Conclusions

	Automating Social Single Sign-On
	The SSSO Login Module
	Testing the SSSO Login Module
	Conclusions

	Account Creation
	Problem Description
	Observations
	Registration Forms
	Conclusions

	Processing Forms with Formasaurus
	Formasaurus
	Shepherd's Account Creation Module
	Testing and Tuning the Account Creation
	Conclusions

	Verification of the Authenticated State
	Problem Description
	Observations
	Conclusions

	Automating the Verification
	Shepherds SSSO Verification Module
	Testing Shepherds Verification Module
	Conclusions

	Results and Discussion

	Conclusions and Future Work
	Appendices
	SSSO Detection Experiments
	Prevalence of SSSO On The Web
	Sampling
	Process
	Analysis
	Conclusions

	Clicking SSSO Buttons To Initiate Authentication Process
	Sampling
	Process
	Analysis
	Conclusion

	Redirection of Browser After Clicking SSSO Buttons
	Sampling
	Process
	Analysis
	Conclusions

	Locations of Components Related To Authentication
	Sampling
	Process
	Analysis
	Conclusions

	Recognition of SSSO Buttons Using Keywords
	Sampling
	Process
	Analysis
	Conclusions

	Persistent CSS Selectors
	Sampling
	Process
	Analysis
	Conclusions

	Action Sequences For Clicking on SSSO Buttons
	Sampling
	Process
	Analysis
	Conclusions

	Finding URLS of Relevant Pages
	Sampling
	Process
	Analysis
	Conclusions

	SSSO Login Experiments
	SSSO Account Creation Experiments
	SSSO Verification Experiments
	UML Class Diagrams
	Looking back on the project
	Jelle
	Alan

