BACHELOR THESIS
COMPUTING SCIENCE

Fia:

a
é\9 Ny
S
orrer

MiNe €

RADBOUD UNIVERSITY

Towards finding browser
fingerprinters through automated
static analysis of JavaScript code

Author: First supervisor/assessor:
Bart van Vulpen Dr. Ir. Hugo Jonker
54800346 hugo. jonker@ou.nl

Second assessor:
Dr. Ir. Erik Poll

erikpoll@cs.ru.nl

June 14, 2020

Abstract

Online tracking has become a big part of online life, with some methods
being more insidious than others. In this thesis we take a look at the meth-
ods currently being used by browser fingerprinters, we do this by manually
analysing fingerprinting JavaScript. We then attempt to separate browser
fingerprinting JavaScript from non-browser fingerprinting JavaScript by stat-
ically analysing the JavaScript. This results in a separation of fingerprint-
like and non-fingerprint-like JavaScript. We then manually analyse the
fingerprint-like scripts further to find 13 previously unknown commercial
browser fingerprinters.

Contents

1 Introduction

2 Background & Related work
2.1 Background o
211 Glossary oL
2.2 Related work oo
2.2.1 Web Measurement Platforms
2.2.2 Top Site Rankings,

3 Methodology

3.1 Data Collection
3.1.1 Why collect data?
3.1.2 Thedatatocollect
3.1.3 Data collection tool

3.2 Finding potential fingerprinters
3.3 Determining who is a fingerprinter and who is not
3.3.1 Preparing o

3.32 Analysing o
3.3.3 Separating the commercial fingerprinters from the non-
commercial fingerprinters

4 Manual analysis
4.1 Finding potential fingerprinters
4.2 Manually checking if they actually fingerprint
43 Results.

5 Design
5.1 Preparing the files00
5.2 Detection mechanics
5.2.1 Scoring mechanismo
5.3 Automation

6 Case study
6.1 Methods
6.2 Results.
6.3 Analysisofresults

7 Conclusions

A Potential fingerprinters

29
29
30
31

34

38

Chapter 1

Introduction

Online tracking has become a big part and problem of online life. Particu-
larly insidious is browser fingerprinting, as this is done server side and the
user does not notice this unless they are looking for it. This can be first-
party tracking, which can be done for good reasons as re-authentication and
fraud prevention. First-party tracking does not have a big impact on privacy
while it does improve the functionality of the website for the individual user,
because of this it is often not seen as a bad thing. That is as long as the
first parties do not share the gathered information with third parties.

However, some of these companies also track people on websites that
they do not own, known as third-party tracking. Browser fingerprinting is
one of the ways this is done. This is done by collecting information about
a device through the browser. When a user loads a page this information
can be collected and used to construct a fingerprint. Then when the user
loads another page on the same device it will give the same fingerprint and
this way the device can be tracked online. JavaScript is often used for this
purpose.

There are tools that attempt, and (partially) succeed, to block some form
of third-party tracking, like FP-Block [TJM15] and PriVaricator [NJL15]
which both attempt to block browser fingerprinting. But to be able to
block third-party tracking it first has to be known what methods of tracking
are being used by the companies that do this. For which we need to find
these companies that are tracking. Which can be quite some work if done
manually.

This gives us the following research questions:

e Which methods are used by fingerprinters at the moment?

e Can we find these fingerprinters in an automated way?

There are overviews of companies that do some kind of third-party track-
ing and what attributes they use, but most of these are about a single type
of fingerprinting, like the one in Tracking the pixels [FBLS18]. There are
also overviews which show which companies track and what they track, like
the one in FP-Block [TJM15], but these are not up-to-date as these com-
panies change, like BlueCava! which merged with a different company, or
AddThis?, which was bought by a different company®. This may change
the methods they use to fingerprint, and thus is an up-to-date overview
needed to know what methods are used and to effectively be able to block
third-party fingerprinting.

We make the following contributions:

e An overview of the attributes used by commercial fingerprinters, as
previously given in table 1 of Fp-block [TJM15].

e A systematic way to differentiate between fingerprinting and non-
fingerprinting JavaScript based on our findings from manual analysis.

e We introduce a method using static JavaScript analysis to find previ-
ously unknown commercial browser fingerprinters.

In chapter 2 we will discuss the background and related work of this
thesis. Chapter 3 contains the methodology we used. Chapter 4 goes into
how manual analysis of potential fingerprinters works. Chapter 5 contains
the design of our automated tool to analyse potential fingerprinters. In
chapter 6 we use this tool to find fingerprinters. Chapter 7 contains our
conclusions.

"https://bluecava.com/
*https://www.addthis.com/
3https://techcrunch.com/2016/01/05/oracle-addthis/

Chapter 2

Background & Related work

2.1 Background

Browser Fingerprinting is used to identify an individual user through prop-
erties and settings of the devices they use. When talking about browser fin-
gerprinting we talk about this fingerprinting happening through a browser.
The browser already provides a server with some information in the HT'TP
header. And with script execution in the browser a lot more information
can be gathered, also information not related to the browser like screen reso-
lution and OS. With all this information a (unique) identifier, a fingerprint,
can be created for a user. This fingerprint can then be used to identify the
user on different sites and even different browsers. Unlike cookies, which are
stateful, fingerprints are stateless. This means that cookies can be easily
read and deleted by a user, as they are stored on the client side. Finger-
prints are not stored on the client side, which means a user can not simply
read or delete fingerprints.

A web scraper is a program that automatically visits sites and collects
a large amount of data from the visit, like cookies, HT'TP requests and
responses, and JavaScript that gets run during the visit.

A web crawler is a program that automatically visits sites and collects
a copy of the visited sites for later processing.

Commercial fingerprinting is offering a fingerprinting service, for com-
mercial purpose. This can be done for advertising purposes but also for
fraud prevention or authentication.

The fingerprinting surface is the collection of all methods that can be
used to fingerprint devices. This surface can not be made complete as a
small change can add or delete a certain method.

2.1.1 Glossary

A pay-level domain is the domain name that a consumer or business can
directly register, and which consists of a subdomain of a public suffix or
effective top-level domain(e.g. .nl or .co.uk). It is also called the 2nd Level
Domain, Complete Domain or Host Domain.

A backlink for a given web resource is a link from a different website
which refers to that web resource.

A class ¢ subnet is a subnet with the three most significant bits set to
1, 1, 0 and has the next 21 bits designated to number the networks. Also
known as the IPv4/24 addresses.

An abstract syntax tree is a tree representation of the abstract syntactic
structure of code, where each node of the tree denotes a construct occurring
in the code.

2.2 Related work

2.2.1 Web Measurement Platforms

There are different platforms available which can automatically measure
some form of privacy, and collect data. Here we name a few of the available
platforms which we could have used to try and find fingerprinters.

commoncrawl' uses an Apache Nutch based crawler. It also has a pub-
licly available webcrawl dataset online. However, this crawler does not exe-
cute JavaScript or other dynamic content.

webXray [Lib15] is a PhantomJS based tool that measures HTTP traffic.
Since it uses the stripped-down browser PhantomJS it has the potential to
miss a large number of resource loads. Since it measures the HT'TP traffic
we could derive most JavaScript from this measurement and thus would be
able to use this for our research.

"https://commoncrawl.org

FourthParty [MM12] is a Firefox plugin for instrumenting the browser.
It does not handle automation. It only supports a subset of OpenWPM’s
instrumentation. We could use this to detect fingerprinting.

Chameloen crawler? is a Chromium based crawler. It utilizes the Chameleon
browser Extension® to detect browser fingerprinting. It is automated, but
only detects a small part of the fingerprinting surface.

Trackingobserver [Roel4] is a Chrome extension that detects, measures
and block third-party web trackers. It does not use blacklists, but rather
detects in-browser behaviour.

FPDetective [AJNT13] is a framework for detection and analysis of browser
fingerprinting. It focuses on detecting fingerprinting instead of relying on
known fingerprinters. It only supports stateless measurements.

OpenWPM [EN16] is a web-scraper often used in research. It uses a full-
fledged consumer browser, and selenium? to drive this browser. It is made
to detect and characterize online tracking behaviour. We use OpenWPM
later in this thesis for our research.

2.2.2 Top Site Rankings

Cisco Umbrella® publishes a list that gets updated daily®. This list contains
one million entries, this lists can include any domain name. The domains get
ranked on the traffic count of itself aggregated with the traffic count of all
its subdomains. The traffic considered is DNS traffic to two DNS resolvers
owned by Cisco Umbrella. They claim these DNS resolvers amount to over
100 billion daily requests from 65 million unique users’. The domains are
ranked on the number of unique IP’s that issue DNS queries for them. The
DNS data collected is sampled and to reduce biases they apply ’data nor-
malization methodologies’, which takes in account the distribution of client
IP’s®. This method means that non-browser based traffic is also accounted
for, which also means invalid domains are also included.

https://github.com/ghostwords/chameleon-crawler

3https://github.com/ghostwords/chameleon

“https://www.selenium.dev/

Shttps://umbrella.cisco.com/

Shttps://s3-us-west-1.amazonaws.com/umbrella-static/index.html

Thttps://umbrella.cisco.com /blog/2016/12/14 /cisco-umbrella-1-million /

8https://medium.com/cisco-shifted /cisco-umbrella-releases-free-top-1-million-sites-
list-8497fbab8efe

Magestic® publishes the 'Majestic Million’ list'?, which gets updated
daily. This list is mostly comprised of pay-level domains, but for some very
popular sites subdomains are also included. The ranks are calculated based
on backlinks to websites. These backlinks are obtained by a crawl of around
450 billion URLSs over 120 days'!. The ranking of sites is based on the num-
ber of class C subnets that refer at least once to the site'?. This method
of data collection means that only domains linked from other websites are
considered, which implies a bias towards browser based traffic. However
they do not actually count the amount of actual page visits. This means
that the completeness of the data is affected by how their crawler discovers
websites.

Quantcast'® publishes a list of the most visited websites in the United
States'? daily. This list varies in size and before November 14 2018, it was
usually around 520.000 mostly pay-level domains. This included sites with
direct measurements of Quantcast trough a tracking script as well as sites
where the traffic was estimated. However they stopped doing the estimations
which reduced the size of the list to around 40.000 domains.

Alexa'® publishes a daily updated list of the top 1 million websites. This
was widely used in research. However, it was shown that this list is highly
variable and not a reliable input for studying the web. The methods used
by Alexa lead to a focus on sites that are visited in the top-level browsing
context of a web browser. They also indicate that ranks worse than 100.000
are not meaningful in a statistical way. It also means that a small change
in measured traffic can result in a large rank change'®, which negatively
impacts the stability of the list.

Tranco [PvGTT19] is a research oriented top site ranking. This list is
comprised of the other lists named here. The stability of this list is improved
upon by averaging the ranks of domains on the lists over 30 days. It is also
hardened against manipulation because of it being comprised of the four
other lists over 30 days, which makes it harder to manipulate the rank of
a site. The repeatability of studies is improved by archiving the daily lists
and giving a permanent link to list of any given day. We use Tranco later
in this thesis for our research.

“https://majestic.com/

Ohttps://majestic.com/reports/majestic-million
"https://blog.majestic.com/company/majestic-launch-a-bigger-fresh-index/
2https://blog.majestic.com/development /majestic-million-csv-daily/
Bhttps://www.quantcast.com/
Y“https://web.archive.org/web/20070705200342/http: / /www.quantcast.com/
Yhttps://www.alexa.com/
Yhttps://support.alexa.com/hc/en-us/articles /200449744

Chapter 3

Methodology

In this chapter we talk about the different methods available to 1. collect
the JavaScript files we need, which is in section 3.1, 2. find potential fin-
gerprinters, which is in section 3.2, and 3. determine which of the potential
fingerprinters actually fingerprint, which is in section 3.3.

3.1 Data Collection

3.1.1 Why collect data?

To be able to find new fingerprinters we need to know what methods are
being used. To see what methods fingerprinters are using at the moment we
need recent data, as the methods used might have changed from previous
findings. There is recent data online of web-crawls like the one by Common
Crawl!, but these do not include the JavaScript we need. Thus to be able to
find new fingerprinters based on the methods used at this moment we need
to collect new data.

3.1.2 The data to collect

To collect data we need a list of websites. To make the data related to what
a normal user might experience we use a top ranking list of websites. There
are multiple lists available that rank websites on popularity based on their
own methods. Following are a few options.

"https://registry.opendata.aws/commoncrawl/

Alexa?® publishes a daily updated list of the top 1 million websites. This
” Alexa Top 1 Million” was widely used in research. However, it was shown
by Le Pochat et al. [PvGT*19] that this list is highly variable and not a
reliable input for studying the web. The panel on which Alexa bases their
data after ”data normalization”3, is claimed to consist of millions of users.
However, Le Pochat et al. [PvGT'19] suggest that there are at most 1
million users. The methods used by Alexa lead to a focus on sites that
are visited in the top-level browsing context of a web browser. They also
indicate that ranks worse than 100.000 are not meaningful in a statistical
way. It also means that a small change in measured traffic can result in a
large rank change?, which negatively impacts the stability of the list.

Tranco® is a research oriented top site ranking made by Le Pochat et

al. [PvGT"19]. This list is comprised of the lists named here and the lists
named in section 2.2.2. The stability of this list is improved upon by av-
eraging the ranks of domains on the lists over 30 days. The score for each
domain are proportionally rescaled to the same range, to account for the
difference in length of the lists and the fact that some include subdomains
and others do not. It is also hardened against manipulation because of it
being comprised of the four other lists over 30 days, which means that to
get the same manipulation in the Tranco list you would either have to in-
fluence multiple lists, get a lot higher on one list, or hold the manipulation
longer. The repeatability of studies is improved by archiving the daily lists
and giving a permanent link to list of any given day.

For this thesis we chose to use the Tranco list over any of the other
lists because it gives a more representative of what a normal user might en-
counter, improved repeatability of the research, and is specifically designed
to avoid the pitfalls of the other lists.

3.1.3 Data collection tool

To automate the collection of data we make use of a web-scraper. There are
different web-scrapers available that we could use for this thesis. Following
are a few good options that are available.

FPDetectiveS is a framework for detection and analysis of browser fin-
gerprinters made by Acar et al. [AJN'13]. It focuses on detecting browser

Zhttps://www.alexa.com/

3https://support.alexa.com /hc/en-us/articles /200449744
“https://support.alexa.com /hc/en-us/articles/200449744
®https://tranco-list.eu/
Shttps://github.com/fpdetective/fpdetective/

10

fingerprinting itself instead of relying on information about known finger-
printers or third-party lists of fingerprinters. It is build for the analysis of
browser fingerprinters and much of the instrumentation is built to support
that. It uses two different instrumented browsers, namely PhantomJS” and
Chromium®. FPDetective only supports stateless measurements.

OpenWPM? is an open-source web privacy measurement tool made by
Englehardt et al. [EN16]. It uses an automated version of a full-fledged con-
sumer browser, Firefox!'?. It also support automatic recovery from failures
of this browser. It uses Selenium!!, which is a cross-platform web driver for
Firefox, Chrome, Internet Explorer and PhantomJS. This also give the possi-
bility to use different browsers with OpenWPM. Because a consumer browser
is used, all the technologies of a typical user are supported by the measure-
ments. PhantomJS does not have support for some of these technologies,
like WebGL and browser-plugins, so by using this browser you miss part
of the technologies in your measurements. OpenWPM stores compressed
web content in a LevelDB, this includes all executed JavaScript. Since all
executed JavaScript is stored there is no need to do extra things to avoid
losing JavaScript due to in-line JavaScript and other tricks.

For this thesis we chose to use OpenWPM as it collects all executed
JavaScript for us, giving us no worries about in-line JavaScript and other
tricks fingerprinters might to do hide their code. It also gives gives us all
the fingerprinters a normal user might encounter since it uses a full fledged
browser, not missing out on certain technologies as a result of a stripped-
down browser. And since it uses selenium this gives a more generic approach
than the other scrapers.

3.2 Finding potential fingerprinters

To find unknown fingerprinters we first need to know how to recognise fin-
gerprinters. To be able to recognise fingerprinters we need to know what
methods we can recognise them by. For this we need to have JavaScript
code of the fingerprinters. After collecting this code we can use the known
fingerprinters to see how well our tool finds known fingerprinters. We can
also see if our tool misses a lot of known fingerprinters or not. Thus we can
make an estimate on how well our tool works.

"https://phantomjs.org/
Shttps://www.chromium.org/
“https://github.com/mozilla/ Open WPM
Yhttps://www.mozilla.org/firefox /new/
"https://www.selenium.dev/

11

We are looking for commercial fingerprinters. Since they are commer-
cial they will most likely advertise their services online. We can then find
these advertisements by googling for them. Since we know from previous
papers that fingerprinting is being used for fraud detection and preven-
tion services [Lapl7], and for authentication purposes [AvO16] we can use
Google to find providers of these services, which resembles a method used
by Jonker et al. [JKV19]. All the providers we find this way are potential
fingerprinters, but not all will actually be fingerprinters. We can also not
always check this by looking at what they state on their websites as some
fingerprinters will avoid saying they are fingerprinting as it is often looked
bad upon. We can also find more potential fingerprinters by googling for
things like ’personalized ad services online’ as these kind of services also
use fingerprinting [NKJT13]. Again we do still need to confirm if they are
actually fingerprinting or not.

Another way to find potential fingerprinters is to look at the fingerprint-
ers previous papers, like FP-Block [TJM15] and PriVaricator [NJL15], have
found. This will give us companies that are known to have fingerprinted
in the past. Some of these papers also provide the fingerprinting code they
have found online of some of these companies. We can then check if this code
is still available as an indicator if these companies are still fingerprinting or
not. But we also have to actually check if these companies still fingerprint,
as they might have changed the code, but still fingerprint, or it might be
that the code is still available but not used anymore.

We can also find more potential fingerprinters while collecting the code
of the potential fingerprinters found with the previously named methods.
While collecting the code of potential fingerprinters we scrape the web to
sites that are using the services of the potential fingerprinter. These sites
can often be found online by googling which sites use a certain service of
the potential fingerprinter. While looking at the JavaScript collected from
these sites to see if we have found some scripts of the potential fingerprinter
we might find some other scripts with terms like ’ad’ or ’tracking’ in their
name. This makes these scripts look suspicious and makes them potential
fingerprinters.

For this thesis we mostly rely on the first method of simply using Google
to find companies advertising their services. This choice was made because
this method provides us with companies that are suspected to fingerprint at
this moment, instead of companies that have fingerprinted, but might not
do it anymore. The first method is also a lot more directed than the last
method in the case of scraping random sites. We did however also consider
and looked at the previously named fingerprinters by other papers.

12

3.3 Determining who is a fingerprinter and who is
not

3.3.1 Preparing

To be able to determine who is fingerprinting and who is not we first need
to be able to work with the code we gathered. The first step in this process
is to unminify and possibly deobfuscate the code as most of the code we
will gather will be minified and some will be obfuscated to a certain degree.
We can do this by using a JavaScript deobfuscator like js-beautify'?. This
unminifies the code and deobfuscates the code, if possible, for us so we can
more easily work with it.

The code that we have now is ready for manual analysis and we can
determine who is fingerprinting with it. However, there is still a problem
with the code if we want to automate this analysis process. This is a result
of calls being split up in multiple parts, this happens when for example
‘navigator.plugins’ is stored to the variable 'n’, and later in the code the call
'n.length’ is made. During manual analysis it is not too hard to see that
actually 'navigator.plugins.length’ has been called, but when you automate
this process it becomes less clear. To make the code ready for automation
we make use of an Abstract Syntax Tree (AST). We construct the AST of
the code and from this we can expand the member expressions, like done by
van Zalingen et al. [vZH18|. This way the variables can be derived and we
can see what calls are made in an automated way.

3.3.2 Analysing

To analyse who is fingerprinting and who is not we make use of the methods
which we know are used by fingerprinters. We can look through the code
to see which of these methods are being called. However, most of these
methods are not exclusively used by fingerprinters. So we need a way to
determine if some code using some of these methods is fingerprinting or
simply using them for a different purpose. We do this by using a score
mechanism which will give each script a score based on the calls the scripts
makes. A higher score is assigned for a method which is more exclusively
used for fingerprinting. This way we can count the score for all the methods
that are being used by the code and can flag them as a fingerprinter if their
score surpasses a certain threshold. These scores and the threshold we can
base on what we see from our manual analysis.

2https://github.com/beautify-web/js-beautify

13

3.3.3 Separating the commercial fingerprinters from the non-
commercial fingerprinters

To separate the commercial fingerprinters from the non-commercial finger-
printers we need to manually analyse the links and its corresponding code to
see what company is behind the code. Then we need to see if this company
offers its services online.

If the company offers their services online and that is the way the com-
pany is trying to make a profit, like AddThis'3, then we say they are com-
mercial fingerprinters. If the services are offered online but they are not
used to earn a profit, like fingerprint2.js'*, we say they are non-commercial
fingerprinters.

Yhttps://www.addthis.com/
Y“https://github.com/Valve/fingerprintjs2

14

Chapter 4

Manual analysis

As mentioned previously to build a tool that can find fingerprinters we need
to understand how we can find fingerprinters. We do this by manually
analysing potential fingerprinters and seeing why we decide who is finger-
printing and not. This gives us the methods we based our conclusions on
about who is fingerprinting and we can use these methods to make an au-
tomated tool that can do the analysis for us. But before we can get to that
point we need to know what methods are being used at the moment by finger-
printers and which of these methods separate them from non-fingerprinters.

4.1 Finding potential fingerprinters

In section 3.2 we named some different methods of finding potential finger-
printers which we use here to actually find potential fingerprinters.

The first way we find potential fingerprinters is by finding their adver-
tisements on Google. We do this by googling the terms ’fraud prevention
service online’, ’online fraud prevention service’, online fraud detection ser-
vice’, 'fraud detection service online’, and ’personalized ad service online’.
These terms give us direct hits on Google for companies advertising their
services, but also other sites that sum up companies which do personaliza-
tion, fraud detection and/or prevention, and authentication. We can then
check the sites of the companies to see if they say anything that indicates
that they are fingerprinting, these can be sentences like 'personalized in real
time using browsing behavior, location, referring URLs, and more’! or *Our

"https://uk.marketo.com/software/web-personalization/

15

system leverages device fingerprinting and velocity monitoring’.

In addition to that we can find potential fingerprinters in papers like the
ones from Fouad et al. [FBLS18], Nikiforakis et al. [NKJ*13], and Torres
et al. [TJM15]. This will give us some companies that are known to have
fingerprinted in the past. Because it is likely that these companies still have
the same business model it is also likely that they still fingerprint in one
way or another. This gives us some more potential fingerprinters.

Another way to find potential fingerprinters come from the potential
fingerprinters that we have already found. Because we have to collect up-
to-date JavaScript of the potential fingerprinters we need to scrape certain
sites that make use of their services. In addition to the JavaScript of the
potential fingerprinters we are looking for this also gives us all other executed
JavaScript from these sites. In this extra information might be some other
fingerprinters. Because we do not need to get all the fingerprinters out of this
extra set we do not manually check each script for fingerprinting. However
some of these scripts have suspicious names containing terms as 'tracking’
or ’ad’, we can see what company these scripts belong to and add them to
the potential fingerprinters as there is a good chance that if we analyse these
scripts we find some fingerprinting activities.

Using mainly the first method of simply googling for them, with a few
added by the second method of known fingerprinters, a list of 25 potential
fingerprinters was made to base the score system of our tool on, this list can
be found in figure A.1. We later base our design in Chapter 5 on this list.

4.2 Manually checking if they actually fingerprint

Now we have a list of potential fingerprinters, but to be able to determine
what methods the fingerprinters actually use and what we can recognise
them by we need to analyse which of these potential fingerprinters actually
fingerprint. To do this we first need the code that is deployed by these
companies. To get this code we google ’sites that use z’, where z is the
name of the company we are looking for. Most of the time this gives us a
list of sites that are apparently using the service of this company. However
not all sites on this list actually use this service, so we scrape the first 10
sites named to have a better chance at finding the code of this company. In
the case that we have not found the code yet in the first 10 we scrape the
next 10 sites.

*https://www.riskified.com /solution /account-protection,/

16

1

— O © 00 3O Ui Wi+

—_

12
13
14
15
16
17
18
19

Now that we have the code deployed by the companies we can analyse
it to see if they are fingerprinting or not. Because the JavaScript we get
is often minified and sometimes obfuscated we ”beautify” it before working
with it. For this we use JavaScript beautifier?, for which the code is also
available online*. This way the code should be more readable and we can
actually analyse it.

Using JavaScript beautifier we can transform the code from Figure 4.1,
which is the code we collect, into a more readable piece of code that looks
like the code in Figure 4.2

var bmo_lme=function(e){var n={};function t(o){if(n[o])return n|
o].exports;var r=n[o]={i:0,1:!1,exports:{}};return ef[o]. call(
r.exports ,r,r.exports,t),r.1=!0,r.exports}return t.m=e,t.c=n,
t.d=function(e,n,o){t.o(e,n) || Object.defineProperty (e,n,{
configurable:!1 ,enumerable:!0,get:o0})}

Figure 4.1: Minified code of a script found on bmo.com

var bmo_lme = function(e) {
var n = {};
function t(o) {
if (n[o]) return nfo].exports;
var r = nfo] = {
i: o,
1: 1,
exports: {}
i
return e[o]. call(r.exports, r, r.exports, t), r.1 = 10,
r.exports
}
return t.m = e, t.c = n, t.d = function(e, n, o) {
t.o(e, n) || Object.defineProperty (e, n, {
configurable: !1,
enumerable: !0,
get: o
)
}

Figure 4.2: Code from Figure 4.1 after beautifying

JavaScript beautifier can however not transform every piece of code into
decently readable code as we can see from the code in Figure 4.3 which also

3https://beautifier.io/
“https://github.com/beautify-web /js-beautify

17

0O Uk WD

©

11
12
13
14

15

1
2

3

went through the JavaScript beautifier.

RISKX [-0xf649 (°0xb7’)] = function(_-0x2d32de) {
var _0x27b67a = {},
-0x4d4d69 = null,
_0x43ecb53 = null,
_0x56€033 = null;
try {
var _0x49bc59 = document [_0xf649 (°0x40°)](-0xf649(°0xd9’)),
_0x20b93a = _0x49bc59[’getContext’]|(_-0xf649 (’0xda’)) ||
-0x49bcb59 [’ getContext’ | (-0xf649(’0xdb’)),
_0x58¢33c = _0x20b93a[_0xf649 (*0xdc’)](-0xf649 (*0xdd’));
_0x4d4d69 = _0x20b93a[_0xf649 (*0xde’)](-0x58¢c33c[-0xf649 (0
xdf’)]), -0x43ec53 = _0x20b93a[-0xf649(’0xde’)](-0x58c33¢c
[-0xf649 (°0xe0’)]) ;
} catch (_0x2c983b) {
_0x56e033 = _0x2c983b [’ message’ |;

_0x4d4d69 && (_0x27b67a[_0xf649 (’0xel’)] = _0x4d4d69), _0x43ec53
&& (_0x27b67a[_0xf649(’0xe2’)] = _0x43ecH3), -0x56e033 && (
_0x27b67a[_0xf649(’0xc3’)] = _0x56e033), _0x2d32de[_-0xf649(’0
xda’)] = _0x27b67a;

Figure 4.3: Obfuscated code of Riskified after beautifying

This does, however not mean that we are not able to analyse any of
the code. Some calls cannot be obfuscated, which means we might still
encounter parts of the code like Figure 4.4, from which we can determine
that the code is using the battery API, which can be used to fingerprint a
user [OEN17].

RISKX[’getBatteryJson’| = function(-0x36246e) {

RISKX [-0xf649 (*0xad’)][-0xf649 (?0xc3’)] ? _0x36246e[-0xf649 (
’0xc4’)] = RISKX|[’batteryData’][-0xf649(’0xc3’)] : RISKX]
’batteryData’|[’level’] && (_-0x36246e[’battery_charging’ |

= RISKX [_0xf649 (?0xa4’)][_-0xf649 (’0xc5°)], -0x36246e|
_0xf649 (’0xc6’)] = RISKX|[’batteryData’]|[’level’], RISKX|’
batteryData’][_-0xf649 (*0xc5’)] ? RISKX[_0xf649(’0xa4’)]]
_0xf649 (*0xc7’)] && (-0x36246e[’battery_charging_time’] =
RISKX [’batteryData’][-0xf649 (’*0xc7’)]) : RISKX[_0xf649(’
Oxa4’)][’dischargingTime’]| && (-0x36246e[_0xf649(’°0xc8’)]
= RISKX|[’batteryData’|[’dischargingTime’]), _-0xf649(’0

xc9’) = _0x36246e[-0xf649 (’0xca’)] && (-0x36246e[_0xf649
(’0xca’)] = —0x1), ’Infinity’ = _0x36246e[_0xf649(’0xc8”’
)] && (-0x36246e[_0xf649(’0xc8’)] = —0x1));

Figure 4.4: Obfuscated code from Riskified using the battery API

18

Looking at newly found JavaScript code from a previously known fin-
gerprinter, AddThis, we can find some interesting calls which might tell
us something about if they are still fingerprinting or not. We might see
some more innocent calls also often made by non-fingerprinters like screen
resolution, which we can see in Figure 4.5 and user agent.

function (e, t, n) {
"use strict";
var a = n(5),

i = n(422);
e.exports = function(e, t, n, o, r) {
var s = t || 550,

d=n || 450,

0~ O Ui W N -

—_ = e
W~ O

14
15
16

u = screen .width
¢ = screen. height ,
1 = Math.round(u / 2 — s / 2),
f = 0;
¢ >d & (f = Math.round(c / 2 —d / 2));
var p = window.open(e, a("msi") ? "" : o || "
addthis_share", "left=" + 1 4+ ",top=" + f 4+ ",width="

+ s + ",height=" + d 4+ ",personalbar=no,toolbar=no,
scrollbars=yes,location=yes,resizable=yes");
return i.push(p), !!r && p

=W N =

Figure 4.5: Code from AddThis using the screen resolution

However we might also find some more interesting calls which a non-
fingerprinting script might not make as often, like plugin enumeration, which
we can see in Figure 4.6

r = navigator.plugins;
try {
if (e = r.length, e > 0)
for (var s = 0; s < Math.min(10, e); s++) s < 5 ? n +=r
[s].name + r[s].description : o += r[s].name + r[s].
description

} catch (e) {}

Figure 4.6: Code from AddThis using the plugin enumeration

Just because some of these calls are more innocent, like screen resolution
and user agent does not mean we cannot identify fingerprinters by looking
at these functions. The way these calls are bundled with other calls can tell
us something about if the script is fingerprinting or not. In figure 4.7 we

19

10
11

12

13

14
15

can see the two named innocent calls being bundled with some other calls,
showing that the innocent calls are part of a fingerprint here.

function(e, t, n) {
var a = n(365),

i = window ;
e.exports = function() {
var e, t = a(navigator.userAgent, 16),

n = (new Date).getTimezoneOffset () + "" + navigator.
javaEnabled () + (navigator.userLanguage ||
navigator .language) ,

o = i.screen.colorDepth + "" + i.screen.width + i.
screen . height 4+ i.screen.availWidth + i.screen.
availHeight ,

r = navigator.plugins;

try {

if (e = r.length, e > 0)
for (var s = 0; s < Math.min(10, e); s++) s < 5
? n+=r[s].name + r[s].description : o 4+= r|
s|.name + r[s]. description

} catch (e) {}
return t.substr (0, 2) + a(n, 16).substr(0, 3) + a(o, 16)
.substr (0, 3)

Figure 4.7: Code from AddThis using screen resolution and user agent as
part of a fingerprint

Now that we have seen some of the calls made by a script we need to
determine if they are fingerprinting or not. To do this we look at what calls
are being made and what is being done with the information that these calls
give. If there are calls made which are rarely used by non-fingerprinters, like
battery calls and oscillator calls, this raises the suspicion of these scripts.
However we still need to see what is done with this information because
these calls also have purposes other than fingerprinting. If we see that the
script stores this information in a part of an ID or in a variable, which then
only gets used to send the information somewhere we can say this script is
fingerprinting.

We might also encounter scripts which do not call any of these functions
rarely used by fingerprinters. To see if these scripts are fingerprinting we
thus need a different approach. For these scripts we look at the more normal
calls, what they are being used for and how often they are called. If we see a
function like ’screen.width’ being called this might be because the script need
the width to display something. It might also be the case that they want
the width to use it as part of a fingerprint, thus we need to look if the width

20

is being used for a non-fingerprinting purpose like displaying something. If
this is the case the script is not using this function for fingerprinting. It can
also be the case that they first use the width to display something, but then
later on in the script use the ’screen.width’ call five more times. This means
we need to see what these five extra calls are being used for, which is quite
possibly fingerprinting.

Using these methods we have found multiple fingerprinters, of which
randomly picked 5 to investigate more closely to see what methods they
use. The results of this can be found in Figure 4.8

4.3 Results

Using this method to analyse the potential fingerprinters we can determine
that there are fingerprinters among them, and we can see which methods
they are using. In Figure 4.8 we have put 5 of these fingerprinters, which
were chosen randomly from the fingerprinters we found in section 4.2, along
with an overview of the methods they are using. We will later use this
overview in Chapter 5 for our tool.

Attribute AddThis | Fervor | Riskified | iovation | Simility
v’ v’
v’ N
v’ v’

Plugin Enumeration

User-Agent

Screen Resolution

Timezone

Browser Language

DOM Storage

Java Enabled

DNT User Choice
Cookies Enabled

JS detect: Flash Enabled
Date & Time
System/User Language

ANAYAYAYANAN

AR

NN AVAN AN AN ANANAN
<

AR

<
AR

<
NAYAYAYAN

OpenDatabase

ANANIANAN

Canvas Fingerprint v’
IndexedDB v’
Device Identifiers
IP address
Battery
WebGLRenderingContext v’
GeoLocation v’

<

AR

<

LocalStorage v’ v’

Figure 4.8: Overview of methods used by these fingerprinters

21

Based on these findings we created the following scoring system, where a
method gets a score based on how likely it is that the script is fingerprinting
if we find that method. This takes into account how often the method is
used by fingerprinters as well as non-fingerprinters. The threshold was then
set at 10 by looking at what scores different combinations would result in
and seeing if they should be seen as fingerprinting or not.

If the script uses device identifiers or bundles information together in a
single function like in figure 4.7 we give the script a score of 10.

If the script uses the battery API, a plugin enumeration, or uses the
canvas just to extract a value out of it, we give this script a score of 9 for
each.

If the script requests the screen width, height, color depth and pixel
depth, we give this script a score of 7.

If the script requests all kind of languages(browser, user, system), or the
doNotTrack user choice, we give this script a score of 5 for each.

If the scripts uses the local storage, java enabled, cookie enabled func-
tions, or the screen width, height, and color depth, we give this script a
score of 2 for each.

If a script has a total score of 10 or more we say the script is finger-
printing. We put this at 10 or more because this way if a script creates a
fingerprint it immediately has this score, however if a script collects some
information that is often used for fingerprinting it needs to collect multiple
before it actually reaches the score for fingerprinting.

22

Chapter 5

Design

Doing this collection and analysis by hand, as we did in Chapter 4, for a
large set of sites is not feasible, so we design a tool for this which collects
the data and then analyses it.

We want to analyse JavaScript files, so to do this we first need to collect
some JavaScript files. We do not want to analyse the same files multiple
times, as this would only cost more effort without bringing any benefit.
We also want the code from these files to be unminified and deobfuscated
if possible, so that we can expand the member expressions and derive the
variables. This way we can see the full calls that have been split up in the
code. This way we can actually analyse the full calls made by the script.

The first thing to do is collect some JavaScript files. For this we use
OpenWPM, which will scrape a set of websites for us, and collect links to
all the JavaScript that gets executed during its visit. It will also give us
a set of deduplicated links, which helps with not analysing the same files
multiple times.

Our tool will be available online at GitHub!.

5.1 Preparing the files

Now we want to collect the actual JavaScript files that we have the links
of so that we can collect the code from it and analyse this code. To collect
the code via the links we obtain with OpenWPM we use the python wget

"https://github.com/Bart-v-V/ThesisTool

23

package?. This will give us the JavaScript file that the link we give it points
to.

Even though we have a set of deduplicated links it is still possible that
different links provide us with the same code. To make sure we do not
analyse the same code multiple times we create a hash of the code we collect.
We then check if we have seen the hash before, in the case that we have seen
the hash before we know that we have seen the code before and do not
analyse it. If we have not seen the hash before we analyse the code and save
the hash to compare future hashes with.

Before analysing the code we want to unminify and deobfuscate the code
so that we can expand member expressions and derive variables from the
code. This way we can actually see and analyse the full calls made in the
code. For this purpose we use the python package JS Beautifier3. This takes
the code and unminifies it, and also deobfuscates it when possible.

Now we can expand member expressions and derive variables from the
code so that we can analyse what calls are being made. To do this we create
an abstract syntax tree (AST) of the code, from this AST we can then
expand the member expressions and derive the variables. For this we use
the code made by van Zalingen et al. [vZH18], which is available online*, we
updated and edited this code to fit our purpose.

5.2 Detection mechanics

We want to be able to detect which scripts are fingerprinting. To do this
we want a scoring mechanism which based on the score can tell us if a
script is fingerprinting. For this we need some kind of mechanism to detect
activities that suggest fingerprinting. So we need a list of activities that
suggest fingerprinting, similar as to what we did in section 4.3, however now
with a subset of the signs used in section 4.3 so that we can automate it.

For our list of activities that suggest fingerprinting we use some of the
signs of a fingerprinter laid out by Laperdrix in his PHD thesis [Lap17]. We
use the following signs:

1. Accessing specific functions

2. Hashing values

https:/ /pypi.org/project/wget/
3https://github.com/beautify-web/js-beautify
“https://github.com/Timvanz/static-javascript-fingerprint-classification

24

3. Creating an 1D

4. sending information to a remote address

Not all signs laid out by Laperdrix were used because some of the signs are
a lot harder to detect in an automated way, or it is hard to determine if
the sign was actually used for fingerprinting of for a different purpose in an
automated way. These four signs were chosen because we can detect them
in an automated way and from our manual analysis we have seen that we
can identify a fingerprinter with them.

For the first, "accessing specific functions’, we want to have some function
which if used, are most likely used for fingerprinting. Based on the findings
of previous papers and what we saw during our manual analysis, we choose
to interpret the following function calls as signs of fingerprinting;:

1. battery functions, consisting of 'navigator.getBattery()’, "battery.charging’,
battery.level’, ’battery.chargingTime’, and "battery.dischargingTime’.

2. plugin functions, consisting of 'navigator.plugins’, ’plugins.name’, plu-
gins.length’, and ’'plugins.description’

3. mimeType functions, consisting of 'navigator.mimeTypes’, 'mimeType.enabledPlugin’,
‘'mimeType.description’, and 'mimeType.type’

4. navigator.doNotTrack and navigator.msDoNotTrack

5. screen resolution functions, consisting of 'screen.width’, ’screen.height’,
and ’screen.colorDepth’

6. navigator.platform

7. navigator.cookieEnabled
8. navigator.javakEnabled
9. date.getTimeZoneOffset
10. window.localStorage

11. window.sessionStorage
For the other three signs we want to have specific keywords which sug-
gests that the code has any of these three signs. For the second sign, "hashing

values’, we decided on the keyword "hash”, based on what we saw dur-
ing our manual analysis. For the third sign, ’creating an ID’, we decided

25

on the keywords ”identifier” and ”userID”, based on what we saw during
our manual analysis. For the fourth sign, ’sending information to a re-
mote address’, we decided on the keywords "beacon” and ”GetDataURL”,
based on what we saw during our manual analysis. Using ”"beacon” here
means that we also catch the user of the function call ’sendBeacon()’, which
also gets used to send information to a remote address. Then we have
some keywords which are often used by fingerprinters, which are added
based on findings of previous papers. We have "ad.js” which gets used
to test if an ad blocker is installed, which is mostly used by fingerprint-
ers. ”WebGL_debug_renderred_info” and ”oscillator” are chosen because
they are almost exclusively used by fingerprinters, while they do have non-
fingerprinting functionality, it is rarely needed and thus rarely used by non-
fingerprinters.

Using obfuscation it is quite easy to avoid getting detected by our tool,
as we use the python package JS Beautifier to deobfuscate, so to avoid
detection one could simply obfuscate in a way that JS Beautifier can not
deobfuscate. We could however deobfuscate more kinds of obfuscations, as
shown by Gabry Vlot [V1018]. However we left that out of the scope of this
thesis.

5.2.1 Scoring mechanism

To determine if a script is fingerprinting, using these function calls and
keywords, we need a scoring mechanism. So we need a score for each function
call and keyword and a threshold for saying that a script is fingerprinting
using these calls and keywords. The scores we give the function calls and
keywords are based on how often a call of keyword is used for fingerprinting
in comparison to how often it is used for non-fingerprinting purposes, and
how likely they thus are to indicate a fingerprinter in comparison with the
other calls and keywords. This gave us the scoring table in figure 5.1. Most
of these function calls / keywords are related to the attributes in figure 4.8,
and the choice for the other is explained earlier in section 5.2. These scores
are however not directly related to the scores used in section 4.3, because
of the addition of the new function calls and keywords, and the absence of
some other used in section 4.3, we chose to determine the scores in table 5.1
from the ground up. We do however see that when a method has a higher
score compared to another method in section 4.3, it also has a higher score
in tableb.1 compared to that other method.

For numbers 1 through 4 we count the score given to this function once
one of the considered calls has been made. This has been done because these
calls are often used for fingerprinting without using all of the calls, however

26

Function call / Keyword Score
1. | battery 12
2. | plugins 7
3. | mimeTypes 6
4. | navigator.doNotTrack and navigator.msDoNotTrack 8
5. | screen resolution 4
6. | navigator.platform 6
7. | navigator.cookieEnabled 4
8. | navigator.javaEnabled 4
9. | date.timeZoneOffset 1
10. | window.localStorage 2
11. | window.sessionStorage 2
12. | "hash” 6
13. | ”identifier” 4
14. | 7userID” 6
15. | ”beacon” 6
16. | ”GetDataURL” 4
17. | 7ad.js” 8
18. | ”WebGL_debug renderred_info” 9
19. | ”oscillator” 12

Figure 5.1: Scoring table

these calls still have non-fingerprinting purposes, so we chose this way to not
automatically flag a script as fingerprinting which uses multiple of these calls
while also not flagging a script as non-fingerprinter because they only use one
of the calls. For number 5 we only count the score if all the calls are made,
this has been done because ’screen.width’ and ’screen.height’ are often used
for non-fingerprinting purposes, however ’screen.colorDepth’ is used a lot less
for these purposes, so by only counting the score if all the calls are made we
avoid counting the score for the calls for non-fingerprinting purposes, while
still counting the score if it is more likely to be for fingerprinting. For the
others we count the score if they occur in the code.

We constructed the scoring table in figure 5.1 using the following steps:

1. We started with the first entry and gave it a score of 2, this way we
could go higher or lower for the next entries.

2. For the next entry we compared it to the scores of existing entries to
see which score it should get, based on how likely the entry is to be
used by a fingerprinter compared to how likely it is to be used by a
non-fingerprinter.

27

3. Up the score of other entries if the score of an entry should be between
two other entries of which the score have no integer in between.

Now we are able to obtain a total score for a script by adding all the
scores of that script together. We then want to determine if the script is
capable of fingerprinting using this score. For this we need a threshold. We
ran our tool on 20 manually analysed scripts, of which 10 fingerprinting and
10 non-fingerprinting, for the non-fingerprinting scripts it gave total scores
in the range of 0-16. While for the fingerprinting scripts it gave results in
the range of 19-71. Based on these results we set out threshold on 17.

Scripts that get a score greater or equal to the threshold are flagged as
sufficient information, meaning that this script collects enough data to be
able to fingerprint, thus meaning that this script is possibly fingerprinting.
Scripts under the threshold are flagged insufficient information meaning
that this script does not collect enough information to fingerprint. If we
encounter a script we have already analysed it gets flagged as duplicate. If
we fail to collect a script, for whatever reason, we flag it as fails.

5.3 Automation

We want to automate this process because doing it manually for a large
number of links is not feasible. For this we need a part that collects the
code, a part that hashes the code and checks if we have seen it before, a
part that creates the AST, expands the member expressions and derives the
variables, and a part that counts the scores and flags the scripts accordingly.

These first two, collecting the code and hashing, we can combine together
in a single python script. To this we can also add the score counting for the
keywords. After that we need a different script which creates the AST,
expands the member expressions and derives the variables, for which we use
a JavaScript script. Last we need a script which counts the score for the
function calls, add this to the previous calculated score for the keywords and
determines if the script is fingerprinting. For this we use another python
script.

Then finally to be able to do this for a large number of links we create
a bash script which runs these three scripts for each link.

28

Chapter 6

Case study

To see how well our tool from Chapter 5 actually works, we use it in a case
study. This will show the things our tool does right and the shortcomings
of our tool.

6.1 Methods

To run our tool we need to have data to put into it. We need to provide our
tool with a set of links to JavaScript scripts to do its job. To collect these
links we used OpenWPM [EN16]. OpenWPM needs a set of sites to go to,
we used the Tranco list [PvGTT19] to get this set of sites.

We used the Tranco list created on 28 October 2019, which is available
online!. From this list we took a total of 10.000 sites that we used. To
get these 10.000 we took the first 5.000 sites and used a python program
using the python random() function to get 5.000 numbers between 5.000
and 20.000. Then we grabbed the 5.000 sites from the Tranco list that
corresponded with the random numbers generated and added these to the
top 5.000 sites.

These 10.000 sites were then used as input for OpenWPM, which was
setup go to each of these sites and browse to one extra page for each site.
It was also setup to collect the links to all the JavaScript that was executed
and to not run in headless mode. We ran OpenWPM in its stateless mode
and used the standard Firefox browser with Flash enabled.

"https://tranco-list.eu/list/ KWVW

29

OpenWPM gives us a set of links which is deduplicated. But because
we had to split up the data collection with OpenWPM into multiple parts,
due to storage space limitation, it is possible to have a link in multiple sets.
This means that when we combine these sets to get the full set over the
10.000 there might be duplicate links, so we deduplicated the full set before
moving on.

This gave us a set of 85.041 distinct links to JavaScript files, on which
we ran our tool.

We then took a part of the list of links flagged as sufficient information
and manually looked at them to see if we could find commercial finger-
printers. This was done by first filtering out some known non-commercial
fingerprinters and known commercial fingerprinters, including those in Fig-
ure A.1, that got flagged by our tool. Then we looked at the link and code
to see if we could find the company behind it, if we found a company we
looked at the code to confirm it was actually fingerprinting. If the script
was actually fingerprinting we looked to see if the company was offering its
services online, if it does offer its services online we say it is a commer-
cial fingerprinter and add it to our list of previously unknown commercial
fingerprinters.

6.2 Results

After our tool analysed the links provided it flagged these scripts in the
following way:

flagged 9.835 scripts as sufficient information

flagged 41.262 scripts as insufficient information

found 29.098 duplicate scripts

failed to collect 2.391 scripts

2.455 scripts that we lost, which was discovered after further inspection

Using a part of the set of links from the scripts flagged as sufficient
information and our method to find commercial fingerprinters we found 13
commercial fingerprinters which were previously unknown to us, namely:

1. Getintent?
https://getintent.com/

30

2. PubMatic?
3. Monetate®
4. Adform®

5. Akamai®

6. Ptengine”
7. Meetrics®
8. ONEcount?
9. Duo'?

10. PerimeterX!!
11. Sophi'?

12. GumGum!?

13. TalkingDatal4

6.3 Analysis of results

Our tool has given us the results shown above, now we will look at what
these results actually mean and what they do not mean.

The result sufficient information means that the script we analysed col-
lects enough information to be able to fingerprint. This does not necessarily
mean that this script actually fingerprints. Some of these scripts might be
tracking in a different way instead of actually fingerprinting. Another op-
tions is that these scripts are run to collect certain statistics, so they might
collect some of the information a fingerprinter would, but never actually

3https://pubmatic.com/
“https://monetate.com/
"https:/ /site.adform.com/
Shttps://www.akamai.com/
"https://www.ptengine.com/
Shttps://www.meetrics.com/en/
https://www.one-count.com/
Yhttps://duo.com/
"https://www.perimeterx.com/
2https:/ /sophi.io/#top
Yhttps://gumgum.com/
“http://www.talkingdata.com/

31

create a fingerprint. Included in the list of scripts flagged as sufficient infor-
mation are multiple previously known fingerprinters.

Insufficient information means that the analysed script does not collect
enough of the information we looked at to create a fingerprint out of that.
However, we have not looked at every possible piece of information that
can be used to create a fingerprint. This means that even though our tool
flagged it as insufficient information it might actually create a fingerprint
using information that our tool does not look at. The script can also be
too obfuscated or split up calls without dots. It is also possible that not
all member expressions are expanded and thus we miss them. Included in
the list of insufficient information are scripts from Riskified, which due to
their obfuscation are not flagged as sufficient information, even though they
collect enough information and actually are fingerprinting.

Duplicate means that the script produced a hash which was also pro-
duced by a script we previously analysed. This most likely means that it
is also the same script as we previously analysed, but than with a different
link. However there is a chance to get the same hash with a different script
as the output of the hash function is a static size. We have 1632 different
possible hash results and 85.041 scripts which are hashed. This means that
there is a 85.041/1632, which is about 1 in 4 - 1036, chance that there is a
hash collision, which is negligible.

Fails means that the tool somehow failed to collect the code. This can
be for a few different reasons, the first is that the link is in such a weird
format that the python wget package can not understand it and will thus
not be able to download the code. Another possibility is that the link we
have gives us a 401 not authorized error, in which we are also not able to
access the code. We can also get a timeout error if the download takes too
long, which can be the case if the link can not be reached. The wget package
also has a limit of the length of the link it can handle, which means that
some of the link were simply too long for the wget package and it thus failed
to collect the code.

Our tool reported a total of 2.391 scripts it failed to collect. However, if
we add the total amount of scripts our tool reported on we see something
weird, as it reported on a total of 82.586 script, while we put in a list of
85.041 scripts, which means we lost a total of 2.455 script somewhere. On
further inspection it seems that all these scripts give decoding errors. This
then results in our tool not being able to analyse them, and because of that
our tool did not flag these scripts at all.

32

Finding 13 previously unknown commercial fingerprinters in a part of the
list flagged as ’sufficient information’ means that our tool actually flagged
these fingerprinters correctly. However there are also still a lot of non-
fingerprinters(e.g. analytical scripts and other trackers) flagged as sufficient
information. Which means that our tool works, but more like tool that
makes a preselection of scripts then a fingerprinter finder, as there is still
quite some manual work to do to actually find the fingerprinters.

Next to the 13 previously unknown commercial fingerprinters we also
found multiple questionable scripts which might be fingerprinting, but we
are not totally sure they are actually fingerprinting. Because we are not
totally sure they are not added to the list of previously unknown commercial
fingerprinters.

33

Chapter 7

Conclusions

We have shown in Chapter 6 that it is possible to partially separate fin-
gerprinters from non-fingerprinters using static JavaScript analysis. It is
however harder to separate some fingerprint-like activities, like analytical
scripts and different tracking, from actual fingerprinters this way. So it
looks like it is not possible to separate those from the fingerprinters without
errors using static JavaScript analysis. It does however work as a prese-
lection. This can be useful to reduce the amount of work needed to find
the actual fingerprinters. In section 6.3 we used our methods to identify 13
previously unknown commercial fingerprinters, which we manually verified
were actually commercial fingerprinters, this shows that our method works.
So this method works, but it is probably not too useful as we speculate that
there are better alternatives like the way FP-Detective [AJNT13] did, where
they can also find unknown fingerprinters but they look more towards a
single method being used. Looking at a single method used might not find
you the same fingerprinters and it might also not find you the same amount
of fingerprinters. However it does result in a lot less noise in the list of suf-
ficient information scripts. And thus requires less manual work after using
the tool. Which makes it easier to find the actual fingerprinters in the list
of sufficient information, and we speculate that it would also require less
manual work to find the same fingerprinters we found by running a tool
focused on a single method multiple times, looking for a different method
each time. As these are speculations, this is something that would have to
be looked into to see how well it actually works.

34

Bibliography

[AJN*13]

[AvO16]

[EN16]

[FBLS18]

[TKV19]

Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz,
Seda F. Giirses, Frank Piessens, and Bart Preneel. Fpdetective:
dusting the web for fingerprinters. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, pages 1129-1140. ACM,
2013.

Furkan Alaca and Paul C. van Oorschot. Device fingerprinting
for augmenting web authentication: classification and analy-
sis of methods. In Stephen Schwab, William K. Robertson, and
Davide Balzarotti, editors, Proceedings of the 32nd Annual Con-
ference on Computer Security Applications, ACSAC 2016, Los
Angeles, CA, USA, December 5-9, 2016, pages 289-301. ACM,
2016.

Steven Englehardt and Arvind Narayanan. Online tracking: A
1-million-site measurement and analysis. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vi-
enna, Austria, October 24-28, 2016, pages 1388-1401. ACM,
2016.

Imane Fouad, Nataliia Bielova, Arnaud Legout, and Natasa
Sarafijanovic-Djukic. Tracking the pixels: Detecting web track-
ers via analyzing invisible pixels. CoRR, abs/1812.01514, 2018.

Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. Finger-
print surface-based detection of web bot detectors. In Kazue
Sako, Steve Schneider, and Peter Y. A. Ryan, editors, Com-
puter Security - ESORICS 2019 - 24th European Symposium
on Research in Computer Security, Luxembourg, September 23-

35

[Lapl7]

[Lib15]

[MM12]

[NJL15]

[NKJT13]

[OEN17]

[PvGT+19]

27, 2019, Proceedings, Part II, volume 11736 of Lecture Notes
in Computer Science, pages 586-605. Springer, 2019.

Pierre Laperdrix. Browser Fingerprinting: FEzxploring De-
vice Diversity to Augment Authentication and Build Client-
Side Countermeasures. (Empreinte digitale d’appareil: explo-
ration de la diversité des terminauzr modernes pour renforcer
Pauthentification en ligne et construire descontremesures coté
client). PhD thesis, INSA Rennes, France, 2017.

Timothy Libert. Exposing the hidden web: An analysis of
third-party HTTP requests on 1 million websites. CoRR,
abs/1511.00619, 2015.

Jonathan R. Mayer and John C. Mitchell. Third-party web
tracking: Policy and technology. In IEEE Symposium on Se-
curity and Privacy, SP 2012, 21-28 May 2012, San Francisco,
California, USA, pages 413-427. IEEE Computer Society, 2012.

Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Pri-
varicator: Deceiving fingerprinters with little white lies. In
Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi,
editors, Proceedings of the 24th International Conference on
World Wide Web, WWW 2015, Florence, Italy, May 18-22,
2015, pages 820-830. ACM, 2015.

Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
Cookieless monster: Exploring the ecosystem of web-based de-
vice fingerprinting. In 2018 IEEE Symposium on Security and
Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages
541-555. IEEE Computer Society, 2013.

Lukasz Olejnik, Steven Englehardt, and Arvind Narayanan.
Battery status not included: Assessing privacy in web stan-
dards. In José M. del Alamo, Seda F. Gilirses, and Anupam
Datta, editors, Proceedings of the 3rd International Workshop
on Privacy Engineering co-located with 38th IEEE Symposium
on Security and Privacy, IWPEQSP 2017, San Jose, CA, USA,
May 25, 2017., volume 1873 of CEUR Workshop Proceedings,
pages 17-24. CEUR-WS.org, 2017.

Victor Le Pochat, Tom van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczynski, and Wouter Joosen. Tranco:
A research-oriented top sites ranking hardened against manipu-
lation. In 26th Annual Network and Distributed System Security

36

[Roel4]

[TJM15]

[V1o18]

[VZH18|

Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society, 2019.

Franziska Roesner. Security and Privacy from Untrusted Appli-
cations in Modern and Emerging Client Platforms. PhD thesis,
University of Washington, 2014.

Christof Ferreira Torres, Hugo L. Jonker, and Sjouke Mauw. Fp-
block: Usable web privacy by controlling browser fingerprinting.
In Giinther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl,
editors, Computer Security - ESORICS 2015 - 20th European
Symposium on Research in Computer Security, Vienna, Aus-
tria, September 21-25, 2015, Proceedings, Part II, volume 9327
of Lecture Notes in Computer Science, pages 3—19. Springer,
2015.

Gabry Vlot. Automated data extraction; what you see might
not be what you get. Master’s thesis, Open University, the
Netherlands, 2018.

Tim van Zalingen and Sjors Haanen. Detection of
browser fingerprinting by static javascript code classica-
tion. University of Amsterdam, 2018. Research Project,
https://rp.delaat.net/2017-2018 /p82/report.pdf.

37

Appendix A

Potential fingerprinters

Here we listed the 25 potential fingerprinter which we found in section 4.1.
The potential fingerprinters were mostly found by googling, with AddThis,
iovation, and LexisNexis coming from previous papers. We use this list in
section 4.2 to find actual fingerprinters.

AddThis Kount Kaspersky
https://www.addthis.com/ https://www.kount.com/ https://usa.kaspersky.com/
RSA Emailage FRISS
https://www.rsa.com/ https://emailage.com/ https://www.friss.com/
IPQualityScore TransUnion LexisNexis
https://www.ipqualityscore.com/ | https://www.transunion.com/ | https://www.threatmetrix.com/
Simility Riskified Signifyd
https://simility.com/ https://www.riskified.com/ https://www.signifyd.com/
Sift Forter FraudLabs Pro
https://sift.com/ https://www.forter.com/ https://www.fraudlabspro.com/
DupZapper Bolt PPC Protect
https://dupzapper.com/ https://www.bolt.com/ https://ppcprotect.com/
iovation Ensighten Tealium
https://www.iovation.com/ https://www.ensighten.com/ https://tealium.com/
AdRoll Fervor Adscore
https://www.adroll.com/ https://www.createfervor.com/ https://www.adscore.com/
Matomo

https://matomo.org

Figure A.1: Potential fingerprinters found during the manual analysis of
section 4.1

38

