
Research Internship

Camouflaging OpenWPM

Author:
David Roefs
s4666623

Supervisors:
dr. ir. Hugo Jonker

Benjamin Krumnow, MSc

Reviewer:
dr. ir. Erik Poll

Presentation date:
11-06-2021

June 2021

Abstract

Web bot detection followed by web page alteration might influence results of large-scale research
on the web. While research has been done to mitigate this threat in respect to web bot
fingerprinting, interaction based web bot detection has not yet been thoroughly investigated
in the literature. In this work, an extensive analysis is performed in order to identify means
by which interaction can be observed by web sites. This is followed by the implementation of
HLISA, a new API that replaces the Selenium interaction API in order to make web bots that
interact with web pages less detectable.

Contents

1 Introduction 3

2 Related work 4

3 Analyzing interactions 6
3.1 Scope & limitations . 6
3.2 State model . 7
3.3 What the detector can observe . 9

3.3.1 Interaction properties exposed . 9
3.3.2 Mouse movements . 10
3.3.3 Clicking . 11
3.3.4 Scrolling . 11
3.3.5 Typing . 12
3.3.6 Leaving and entering . 12

3.4 Comparison of simulated and human interactions 13
3.4.1 Mouse movements . 13
3.4.2 Clicking . 14
3.4.3 Scrolling . 15
3.4.4 Typing . 16
3.4.5 Leaving and entering . 17

4 Mitigating detection 18
4.1 Mouse movement . 18

4.1.1 Hiding tactic . 18
4.1.2 Implementation . 20

4.2 Clicking a button . 21
4.2.1 Hiding tactic . 21
4.2.2 Implementation . 21

4.3 Scrolling . 22
4.3.1 Hiding tactic . 22
4.3.2 Implementation . 23

4.4 Typing . 23
4.4.1 Hiding tactic . 23
4.4.2 Implementation . 24

4.5 Leaving and entering . 24

5 Validation 25
5.1 First validation . 25

5.1.1 Selenium detector implementation . 25
5.1.2 Results . 26

5.2 Google reCaptcha . 27

1

6 Conclusion 29

Appendices 33

A Ethical considerations 34

B A selection of browsing events 36

C Comparison of simulators 37

2

Chapter 1

Introduction

Websites do not treat all visitors in an equal manner. One factor influencing treatment is
whether the visitor is a human or a web bot. Content that is expensive to serve, like images or
video, are better preserved for the intended audience. Serving adverts to bots is a lost cause,
and so is tracking bots with the intent of creating a detailed profile. Considering 50% of web
traffic consists of web bots [RD15], it makes sense for web site owners to distinguish between
bots and regular users. Technology for this is already available, as web bot detection is its own
field and industry [ASLN20].

While there are valid and important use cases for distinguishing web bots from regular users,
this distinction may pose a problem for large-scale research on the web, since this depends on
the use of web bots. For example, OpenWPM is a web bot built for privacy measurements of
websites [EN16]. It has been used in over 70 studies1. If sites serve OpenWPM different content
than humans, results of the studies might be incorrect. That this threat is not just theoretical,
is supported by findings from recent studies. Englehardt and Narayanan concluded that Phan-
tomJS, a different web bot, receives less advertisements [EN16]. Jonker et al. [JKV19] found
differences between responses to web bots and responses to human visitors, and differences in
responses to different web bots. Goßen [Goß20] found sites that reacted differently to Open-
WPM after the removal of a property identifying OpenWPM as a web bot. Finally, the results
of Krumnow et al. [KJK21] indicate OpenWPM being detected on ∼12% of the 100,000 top
websites of the Tranco list. Sometimes, detection is specifically tailored to detect OpenWPM.

Krumnow et al. investigate the effect of making OpenWPM less detectable [KJK21] on web
site responses. They found, amongst other, that 14% of sites detect bots on the front page, a
number which increases to 19% if subpages are subsequently visited. Jansen [Jan21] provides
an initial investigation of the prevalence of web bot detection based on the interaction patterns
of a visitors. This interaction based bot detection turned out to be more difficult to identify
than browser fingerprinting-based bot detection: access to fingerprint attributes unique to web
bots is clear proof of bot detection, while there is no such clear delineation for interaction based
detection.

Contributions. The main contributions of this work are:

• An extensive evaluation of how browser events enable interaction based detection,

• HLISA, a Python package that replaces the Selenium ActionChains API with an API
that makes interaction based detection harder.

Methodology. The current work focuses on mitigating interaction based detection of Open-
WPM. To achieve this, first an analysis will be performed to identify all means by which
interaction can be detected. Then a Python package will be created that can be used in
combination with OpenWPM and limits the difference between interaction of OpenWPM and
humans. Methodology of each of these steps is further detailed in their chapters.

1https://webtap.princeton.edu/software/, retrieved 2-04-2021

3

https://webtap.princeton.edu/software/

Chapter 2

Related work

This work builds directly on other work in the field of web bot detection mitigation, but also
on other categories of research: research into human-computer interaction and research in
detecting web bots by their interaction patterns. The latter two categories will be discussed
first.

Real human interaction. As a major goal of this work is to mimic human interactions,
it is apparent that knowledge of how humans interact should be incorporated in this work.
The most prominent model of human interaction in the field of human-computer interaction
is undoubtedly Fitts’ law [Fit54], the famous model for the difficulty of reaching a target by a
means of user input, difficulty = log2(

2l
s) with l the length of the movement and s the target

size. Fitts’ law can be used to verify models of human interaction and as a guideline when
creating new models when movement time, distance and accuracy are involved. The law is
shown to hold over a wide range of conditions [PA97] and for tasks like mouse movements
[SM04] and scrolling [HCBM02].

Considering mouse movements, many studies into different aspects of the movement have
been performed. Grahma et al. [GM96] found that the idea of a pointing movement consisting
of two phases, introduced by Woodworth [Woo99], also holds for digital pointing. Phillips et
al. [PT01] studied mouse movement trajectories, contributing concrete statistics on aspects like
overshoot distances and angles of approach. Angle of approach is a factor in the duration of a
movement as Whisenand et al. [WE96] and Lee et al. [LB13] showed.

Noordzij [Noo19] simulated human typing interaction to investigate fragmentation of files on
a hard disk. The simulation needed to approach human interaction properties to such a degree
that functions like autosaving by a text editor or deleting temporary files by the operating
system happen on moments comparable to a situation with a human typist. A difference with
the current work is the observing party. The simulation in Noordzij’s thesis is not aimed at
observers actively trying to discriminate between a human and a simulator, and can therefore
be less detailed. Such details have been subject of research by Alves et al. [ACdSS07], who
compared slow and fast typists in order to find how important automation is in the task of
typing. Along with their findings, they published detailed statistics on typing patterns. These
statistics are valuable for both bot detection and bot detection mitigation.

Detecting bots by interaction properties. In order to mitigate interaction based detec-
tion, it is important to know how bots can be detected via interaction. Barik et al. [BHRJ12]
show how bot detection by mouse movements can be used to detect bots in games that run in
a web browser. They implemented bots with different kinds of interaction properties which are
also exhibited by real bots, contributing a classification of bots too. They show also advanced
bots can be recognized. Gianvecchio et al. [GWXW09] also classify bots in online games and
show bots have limited variety in their interaction patterns compared to humans. Chu et

4

al. [CGK+13] introduce interaction based detection to websites in order to block bots, utilizing
cursor movements and keystrokes.

It is also possible to detect individual users by their interaction properties. Krátky et
al. [KC18] created a system that correctly identifies a user from a group of 100, with a 95%
accuracy. Increasing the group size to 2000 reduces accuracy to 80%. Earlier, Ahmed and
Traore [AT07] already concluded mouse movements can be used to recognize users to enhance
security of applications, building on other user identification methods based on mouse move-
ment or typing dynamics. This shows that even mimicking human interaction perfectly might
not be enough to prevent being identified as a web bot.

Jansen [Jan21] created an overview of methods for interaction based detection. After manu-
ally investigating web bot detection scripts and creating a framework to automatically recognize
interaction based detection using those findings, Jansen showed interaction based detection is
being used in practice on the internet, indicating the need for web bot detection mitigation.

Bot detection mitigation. Vlot [Vlo18] and Jonker et al. [JKV19] identified properties that
facilitate fingerprinting web bots. Goßen [Goß20] builds on this work by analyzing the stability
of OpenWPM’s detectable properties, investigating measures to counter fingerprinting those
properties and ultimately creating a plugin that removes one of the most prominent properties
from OpenWPM’s fingerprint. This is a first step into creating a version of OpenWPM that
is harder to detect. Krumnow et al. [KJK21] identified more properties that allow detecting
OpenWPM, including categories of interactional properties, as part of a broader investigation.
These identified categories of interactional properties are: typing, scrolling, mouse clicking and
mouse movement. The properties have been inferred by analyzing the Selenium API. The
current work analyses all events that can be triggered in browsers in an attempt to find even
more detectable interactional properties. The combination of all found properties are used in
the current work to create a library that limits the interactional properties web bot detectors
can observe from OpenWPM, as was left as future work by Krumnow et al.

5

Chapter 3

Analyzing interactions

Web bot detectors analyze properties of visitors to discriminate between web bots and hu-
mans. The presence or absence of a single property, like a specific user agent string or the
webdriver attribute can be enough to conclude a visitor is a web bot. In case no single
property distinguishes the web bot from humans, combinations of properties (also known as a
browser fingerprint) may still suffice to make this distinction [JKV19]. A specific combination
of properties can reveal whether the visitor is a web bot or a human.

Another approach to detect web bots is to analyze the interactions of the visitor on the
web page. Interactions, like moving the mouse or typing on the keyboard, reveal large amounts
of information about the visitor performing the actions. Whether interaction on the web page
by the visitor is present is in itself a property of the visitor, as web bots may not perform
interactions at all. As such, the absence of interactions alone can, and has been used, as a web
bot detection method [PPLC06].

In this work however, the way of interaction itself is the sole subject of investigation. It is
assumed that interaction is present, and the question is whether this interaction stems from
a human or from a web bot. In contrast to the methods discussed earlier, the task is not to
detect the presence of a (set of) properties, but to classify the observed interactions in either
“interactions produced by a human” or “interactions produced by a web bot”.

This chapter consists of an analysis of how the task of classification can be performed in
the context of who will be performing this classification. Therefore, after setting the scope of
the analysis, a state model is presented which divides both web bot operators and web site
operators in groups depending on the techniques they use. Then, an extensive summary will
be made of interactional properties that can be used in the classification task. This is followed
by a comparison of human and web bot interactions, which shows how one can differentiate
between humans and web bots.

3.1 Scope & limitations

It has already been stated that in this analysis, only the way of interacting – not the presence
or absence of interaction – is considered. Interactions on a website can be divided in two
categories:

• intra-page interactions: interactions within a page, e.g. duration of key presses and
mouse clicks, mouse movement, etc.

• inter-page interactions or behavior: interactions over multiple pages, e.g., time spent
on one page, number of pages visited, path over the site, etc.

Inter-page behavior has been subject of many studies [WLS19], but is not subject of this
analysis.

6

Intra-page interaction can be divided into two sub-categories: actions, and chains of ac-
tions. Actions are expressions of intra-page interaction, like moving the mouse or typing on a
keyboard. Chains of actions are sequences of actions, including timings between actions and
other events. A chain of actions can consist of a single action. Such a chain of actions still
differences from an action, as the action stands on its own, while the chain of actions with one
element also considers the context of that action.

In Figure 3.1 two cursor trajectories are visualized. Both trajectories start in point A and
end in point C, both going through point B. The difference between both trajectories is that
the gray trajectory is a chain of two actions: a movement from A to B, and a movement from
B to C. The black trajectory is a chain of one action: a movement from A to C.

Clearly, initiating two movements instead of one has consequences for the observed cursor
movement. This also follows from Fitts’ law: 2× log2(

2l
s) 6= log2(

2×2l
s), with l being the length

from one point to the next, and s being the size of the point. This difference between the gray
and black cursor move actions can be accounted for by both web bot operators and web site
operators, as l and s are properties of the web page the movement is performed at.

What cannot be accounted for is the context of the actions, which is present in chains of
actions. The duration of the pause between the two cursor movements in the gray trajectory
depend on the semantics of the web page, and the intention of the user. These variables are
unknown. Therefore, only actions are considered in this analysis, while chains of actions are
left for future work.

Figure 3.1: Two separate cursor moves in gray and one cursor move in black.

Finally actions can be divided into atomic event actions and composite actions as defined
by Krumnow et al. [KJK21]. Both atomic and composite actions are part of the analysis. The
scope is visualized in figure 3.2.

Web bot
detection

Behavioral
detection

Intra-page
detection

Actions

Atomic event actions

Composite event actions

Chains of
actions

Inter-page
detection

Chains of
actions

Fingerprinting Properties of user agent

Figure 3.2: Taxonomy of web bot detection. Red edges indicate the current scope.

3.2 State model

As stated in the introduction of this chapter, bot detection based on interaction properties is
a classification problem. Both a human and a web bot produce interaction properties and it
is up to the website to discriminate between these two kinds of visitors based on the observed
interaction properties. Thus, not only what can be observed is important to analyze, but also
the party that observes the interactions is a factor which influences the result of classification.

7

Regular web bot
interaction

Detect bot-specific
interaction
properties

Randomize
interaction
properties

Detect deviations
from human
interaction

Simulate an
individual’s way of

interaction

Identify user profiles

Use multiple profiles

Web bot Web site

S4

S3

S2

S1

D3

D2

D1

S
im

u
la
to
r
le
ve
l D

etector
level

Figure 3.3: A model of the detection/simulation arms race for page interaction.

In this analysis, the observing party – the owner of the web page – is called the detector
and the opposing party, the party operating the web bot, is called the simulator.

Both the detector and the simulator can be in a certain state. The state space can be seen
as an “arms race” between both parties. If one party takes a significant step in techniques used,
it transitions to the next state level. This implies the party has a large advantage over the other
party. This model is inspired by the state diagram of Storey et al. [SRMN17] in their article
about ad blocking. An important difference is that in the interaction based detection model,
an arms race exists for every category of interaction. The detector can defeat the simulator by
using a new category of interaction in state D1, even if the simulator is in state S4 in other
categories of the interaction based detection model.

In the model, the arms race starts when detectors start to detect bot-specific interaction
properties. The simulator, in order to prevent being detected by the bot-specific interaction
properties it elicits, has to react by making the interaction properties more random. The
detector can try to also recognize these randomized interaction properties, creating a mini-
arms race between state S2 and D1.

To end this min-arms race, the detector can turn the approach around. Instead of only
detecting interaction properties specific to bots, it detects interaction properties that deviate
from human behavior. Now, the simulator also has to raise the bar and starts to simulate
human like interaction.

Faced with human-like interaction, the detector can escalate one last time. Now, the
detector starts to recognize the individual interaction properties of visitors. Visitors that elicit
interaction properties attributed to a known bot are classified as bots. The simulators can
counter this by simulating new and unique visitors, that are not yet classified as a bot. In
a last attempt, the detector can start to use lists of interaction properties that are known to
belong to a human by using third party services.

But tracking individual users is already subject of interest of privacy activists2, browser
vendors3 and academic research [EN16]. Identifying individual visitors might also be ille-
gal [Bor16]. If anonymity on the web stays preserved, the simulators will ultimately win the

2https://privacybadger.org/
3https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop

8

https://privacybadger.org/
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop

arms race – the detector will only see yet another visitor that interacts like a human.
In practice, lots of detectors and simulators exist which are all on different levels in the

state space. For an analysis of such simulators, see Appendix C.

3.3 What the detector can observe

OpenWPM, the web bot subject of this analysis, uses Firefox in combination with Selenium
and custom tooling to crawl. Using Firefox helps to get results that are representative. By
using Firefox, the page is loaded and rendered in a completely standard way. This is also an
important advantage to remain undetected. Users that do not enable JavaScript are seen as
suspicious [CGK+13], as bots often have JavaScript disabled. The large disadvantage of enabled
JavaScript is that it introduces a rich set of events for the detector to monitor interaction of a
user. Intra-page interactions can only be observed by the detector through these events.

Therefore, in the rest of this chapter, all existing events will be analyzed to see which kind
of interaction properties they enable the detector to observe, and how this can be used to detect
web bots. As implementation specific details of events differ for different browsers, Firefox will
be used as reference when it comes to specific details of events, as Firefox is currently the only
browser supported by OpenWPM.

3.3.1 Interaction properties exposed

Firefox as used in OpenWPM exposes interaction properties via events. A listing of events is
given in the Event reference4 of the MDN Web Docs. This incomplete5 list contains 356 events.
They are analyzed to determine which intra-page interaction properties can be observed by the
detector. Although the complete list is analyzed, interaction might be observed in unexpected
ways by using (combinations of) events in specific ways. As will be seen in later chapters, some
methods to observe interaction are not apparent. Therefore, the findings in this chapter may
be incomplete.

A first selection of events is performed by only selecting events that reveal any properties
of interaction to the detector. This selection is done by evaluating all events based on their
category, name, and in case of doubt their documentation. Touch actions are not selected,
even though they let the detector observe touch interactions. Selenium implements a touch
API6 but using touch actions will make the fingerprint more unique, therefore, those are not
recommended to use. When touch actions are not used, touch events will also reveal no
information to the detector.

After the first selection, 57 events remain. These events are listed in Appendix B. Many
of the selected events are clearly related to interaction, like mouse move events and key press
events. Other events may seem unrelated to interaction at first. For example, the event
transitionstart is included, which indicates a CSS transition started. This event is included
because information can leak indirectly via this event. A CSS transition can be started when
the mouse hovers over the element, at which point the transitionstart event is fired. The
detector can place (hidden) elements on the page, and from the order and timing of the events
infer the movements of the mouse.

The selection can be further reduced by removing events that provide the same information
as other events. For example, after a more thorough investigation, the transitionstart

event is removed as it provides no additional information over the mousemove event. The
second selection brings the list down to 10 events. Grouped into the four categories found

4https://developer.mozilla.org/en-US/docs/Web/Events
5On the page it is stated: “This page lists many of the most common events you’ll come across on the web”
6https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.touch_

actions.html#module-selenium.webdriver.common.touch_actions

9

https://developer.mozilla.org/en-US/docs/Web/Events
https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.touch_actions.html#module-selenium.webdriver.common.touch_actions
https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.touch_actions.html#module-selenium.webdriver.common.touch_actions

by Krumnow et al. [KJK21] and one additional one, the events that leak unique properties of
action-based interaction are:

• Mouse movements:

– mousemove

• Mouse clicking:

– dblclick

– mousedown

– mouseup

• Scrolling:

– scroll

– wheel

• Typing:

– keydown

– keyup

• Leaving and entering:

– visibilitychange

– blur

The remaining events will now be discussed per category.

3.3.2 Mouse movements

When the cursor is moved from position a to position b, the mousemove event is fired. The
event produces data, most noticeably the new x and y position of the cursor. In theory, this
event would fire every time the cursor moves at least one pixel. In practice when constantly
moving the cursor on a high speed from one side of the screen to the other, only once every 17
milliseconds an event is fired on average.

How detailed the detector can observe the cursor movement depends on the cursor move-
ment speed. If a user takes 30 seconds to cross a 1920x1080 pixel screen at constant speed,
approximately every moved pixel receives its own event. In this case, the detector has a detailed
view of the cursor trajectory. If it takes the user only 3 seconds to cross the screen, 90% of the
pixel locations are “lost” as no event is fired at those locations. The detector now will have a
general idea of how the trajectory looked. If the cursor crosses the screen in 300 milliseconds,
the detector is left with only 1% of the pixels passed. These three levels of detail are visualized
in figure 3.4.

Figure 3.4: Level of detail of a movement trajectory for different cursor movement speeds,
created with artificial sampling of pixels that are not removed. The movement is directed from
left to right with a constant speed. The top line has 99% of all pixels removed, the second line
has 90% of the pixels removed, on the bottom line, no pixels are removed. Please not that in
a real measurement, the distance between pixels that are not removed would not be of equal
distance, creating a much more irregular pattern.

The image shows that even at high movement speeds, the detector can observe the general
movement trajectory. Compared to the most detailed variant however, subtleties in the trajec-
tory are lost and cannot be observed by the detector.

10

The loss in subtleties is even larger for cursor speed. Cursor speed can be approximated by
calculating the distance the cursor has moved since the last event and subsequently dividing
this number by the time between the last and current event. In figure 3.4, the cursor speed
is constant. If the cursor speed increases during the movement, the sampled points have an
increasingly large distance between them. This is discussed in more detail in section 4.1.
An average speed can only be calculated between two events. Therefore, with high cursor
movement speeds only few average speeds can be calculated. Adding to that the uncertainty
introduced by the delay between fired events (the delay can range from 5 to 88 milliseconds
in 230 samples), the detector finds itself with a limited view on cursor movements. Still, even
this limited view is powerful, as will be elaborated on in section 3.4.1.

3.3.3 Clicking

In this category, three events are relevant:

• mousedown

• mouseup

• dblclick

The mousedown and mouseup are the most interesting click events. The mousedown event
is fired when the user presses down any standard mouse button. The mouseup event is fired
when the user releases that mouse button. Both events provide the location of the click.

Taken together, the mousedown and mouseup events reveal how a user clicks. The time be-
tween the mousedown and mouseup event is the dwell time of a click. Together, the mousedown,
mouseup and mousemove events reveal whether a visitor moves the mouse while clicking.

The dblclick event is an event that only just falls within the category of action-based
interaction. It fires after two click events have already fired, if the time between the two clicks
was smaller than a threshold. This threshold is defined by the operating system when a user
clicks, and defined by Selenium when the Selenium webdriver clicks7. As the detector can see
the individual clicks without the event already, the main contribution of the dblclick event
is that the detector can observe when the visitor intended to doubleclick. The user aims to
click twice within the double click threshold if evoking a dblclick event is desired. Knowing
the user intended to doubleclick, the detector can analyze the earlier click or mousedown and
mouseup events to classify the double clicking interaction properties.

The dblclick event can also be used in static fingerprinting. The threshold to regard two
clicks as a double click is defined by Selenium to be around 600ms. This is higher than the
default of 500ms for Windows8 and some Linux distributions, making Selenium stand out by
firing the dblclick event if the delay between clicks is between 500 and 600 milliseconds.

3.3.4 Scrolling

In this category, two events are relevant:

• scroll

• wheel

7The specification states: “The definition of a double click depends on the environment configura-
tion(...)”https://w3c.github.io/uievents/#event-type-dblclick

8https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setdoubleclicktime

11

https://w3c.github.io/uievents/#event-type-dblclick
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setdoubleclicktime

The scroll event fires when the viewport9 is moved over the page. In contrast to the
mousemove event, the scroll event is always fired when the viewport moves. This enables the
detector to observe the scrolling interaction properties in great detail.

Different methods to scroll in a browser have their own event. When using an arrow key,
events for the pressing and releasing of that key are fired. When using the mouse wheel, the
wheel event is fired. This event allows the detector to observe how far the wheel is turned. In
Firefox on Linux, one tick of scrolling with the mouse wheel scrolls 57 pixels.

Firefox offers, and enables by default, a browser feature called “smooth scrolling”. When
this feature is enabled, the scroll tick is divided into parts by Firefox to let the viewport slide
more smoothly over the document. If the feature is disabled, there is just one wheel and one
scroll event. The detector can easily detect whether the feature is enabled by the difference
in events fired. When it is determined whether the feature is enabled or disabled, scrolling
interaction can be analyzed.

3.3.5 Typing

In this category, two events are relevant:

• keydown

• keyup

The keydown and keyup events fire when a key is pressed, and when a key is released
respectively. The events provide the key for which the event was fired. As such, the detector
can observe for every key when it was pressed and released with a precision up to 1 millisecond10.

When a user types, the typing usually is not limited to one character. Typing is therefore
considered here as an action that involves a continuous input of characters. ‘Continuous”
should not be interpreted too strictly here, as there may be short pauses in the typing action.
Humans sometimes pause while typing as typing and thinking about what to type can not
always be done at the same time [ACdSS07]. As pauses are part of the typing process, it is
considered part of the same action here.

The detector can observe precisely the manner in which a visitor types by calculating the
timings between different key pressed and key releases. The time between a key press and a
subsequent release is the dwell time. The time between the release of a key and the key press
of a (probably different) key the flight time. The detector can also count the amount of key
presses in a timeframe to calculate the average typing speed. Presses of special keys such as the
backspace and del key indicate typing accuracy.

Taking these factors together, a detector can get a detailed view of the typing interaction
properties of a visitor.

3.3.6 Leaving and entering

In this final category, two events are relevant:

• visibilitychange

• blur

While evaluating the list of events, two events surfaced that do not fit in either of the four
categories of interaction on web pages identified by Krumnow et al. [KJK21]. Those events

9The viewport is the part of the document currently visible in the user agent
101 millisecond is the default value, which can be changed in the Firefox configuration under

privacy.resistFingerprinting.reduceTimerPrecision.microseconds

12

are about giving focus to an element on a page, or the page itself, indicating the visitor is
multitasking.

The visibilitychange event fires when the visibility state of the pages changes for the
visitor. The completeness of the visibility state is severely limited. According to the current
specification11, the visibility is only set to hidden if:

“1. The user agent is minimized.

2. The user agent is not minimized, but [the] doc[ument] is on a background tab.

3. The user agent is to unload [the] doc[ument].

4. The Operating System lock screen is shown.”

The last point is not implemented in either Firefox or Chrome. This means the detector can
only conclude the visitor is not looking at the page if either the visitor minimized the browser
window or when a different tab is currently visible to the user.

The blur event is similar, but differs slightly. It indicates an HTML element has lost focus.
This can happen if another element gets focus, which can happen for example when a user
clicks on that element. If the document12 is taken as element, blur fires on specific actions.
Roughly, it fires whenever the user performs an action outside the web page.

The events allow the detector to see if the visitor performs any actions outside the document,
and how often is switched. How these and the previously discussed categories of interaction
can be used to classify web bots will be subject of the upcoming section.

3.4 Comparison of simulated and human interactions

In Section 3.3 five categories through which interaction properties can be observed have been
discussed. For every category, JavaScript events that provide the detector with information
have been identified. In this section, human interaction will be compared to the way of inter-
action of Selenium for as far as it can be observed through the selected JavaScript events.

3.4.1 Mouse movements

Two key distinctive properties of Selenium mouse movements are the trajectory of the move-
ment and the speed of the movement. Selenium moves in a perfectly straight line between
the start and endpoint of the movement. The movement is also nearly instantaneous. This is
completely different from human movements, which are curved, shiver and take some time to
complete. The difference in trajectory is visualized in figures 3.5 and 3.6

11The below list is a verbatim copy of the specification, see https://www.w3.org/TR/page-visibility/

#dom-visibilitystate
12Essentially an element that contains the complete page

13

https://www.w3.org/TR/page-visibility/#dom-visibilitystate
https://www.w3.org/TR/page-visibility/#dom-visibilitystate

Figure 3.5: A human cursor trajectory. Figure 3.6: A Selenium cursor trajectory.

Two other distinctive properties are the initial location of the cursor and the start time
of the actions. For humans, the cursor might be on any location when a new page is loaded.
Selenium however, always has the cursor in the top left corner when it starts. Movement and
other interactions also only start after Selenium deems the web page ready to receive actions13.
A detector can exploit this by ensuring the page is displayed to the user, but remains being
seen as “loading” by Selenium. A human is likely to start exhibiting interaction if the page is
displayed, while Selenium will wait until the page is loaded. Both properties are out of scope,
as they are not part of an action. Rather, they are properties of combinations of actions, and
fall under the chains of actions category of interactions.

A final distinctive property is spontaneous cursor movements. Selenium will never move
the cursor when it is not instructed to do so. As a result, it will only move as part of an action
with a goal, like clicking on a button. Humans may accidentally move the mouse, changing the
cursor location without intention. However, for this to be a good web bot detection method,
there should not be too many people that do not move the mouse accidentally, as they would
all falsely be classified as a web bot. The usability of the method should thus be verified with
a number of humans of different demographic populations, which is out of scope for this work.

3.4.2 Clicking

To compare human and Selenium clicking, a simple experiment was performed. In the ex-
periment, 100 clicks are performed by Selenium and a human. The results of Selenium clicks
are presented in Figure 3.7 and Table 3.1. The results of the human clicks are presented in
Figure 3.8 and Table 3.2.

The distribution of click locations within an element in Figure 3.7 clearly shows the distinc-
tive pattern of Selenium clicks. Selenium always clicks on one out of four pixels in the middle
of the element. Figure 3.8, shows the human distribution of clicks. Not a single of the 100
clicks are on one of the four pixels Selenium frequently clicks on. This is to be expected, as
with 25 × 100 = 2500 pixels in this button, the chance of hitting on of the four pixels in the
middle is small, even with the small bias to the middle of the button the human click data
shows.

When it comes to clicking, Selenium again stands out by its speed. The dwell time of a
click is only 3 milliseconds on average. Compared to the average 93 milliseconds for a human
in the experiment, Selenium can not be mistaken for a human when at least a few clicks are
provided. Out of 100 human clicks, only one had a dwell time of 3 milliseconds14. Selenium on
the other hand, had only 2 dwell times larger than 6 milliseconds out of 100 clicks. 96 clicks

13https://www.w3.org/TR/webdriver2/#navigation, last visited June 3, 2021
14This might even have been an error in measuring, as the second lowest human dwell time was 32 milliseconds

14

https://www.w3.org/TR/webdriver2/#navigation

had a dwell time of 4 or lower. This property alone can reveal Selenium after 2 clicks with high
certainty.

Taken together, these detection features can reveal Selenium with high chance in just one
click.

Figure 3.7: Visualization of Selenium click lo-
cations within a button. Black indicates the
button surface, white indicates pixels on which
was clicked and red indicates pixels which were
clicked more than once.

Mean SD

x 49.56 px 0.50 px
y 13.43 px 0.50 px
dwell 2.66 msec 1.96 msec

Table 3.1: Statistics of Selenium
clicking interaction.

Figure 3.8: Visualization of human click lo-
cations within a button. Black indicates the
button surface, white indicates pixels on which
was clicked and red indicates pixels which were
clicked twice.

Mean SD

x 51.99 px 19.64 px
y 15.21 px 5.85 px
dwell 92.53 msec 18.03 msec

Table 3.2: Statistics of human clicking
interaction.

A different method to leverage the mouseup and mousedown events is to watch for one or
more mousemove events during the time the mouse button was pressed. Selenium never moves
the mouse while clicking, as it is not programmed to do so. Users might move their mouse
during a click. To get a reliable test, multiple kinds of mouses would need to be tested, as
heavier mouses with low sensitivity settings are less likely to expose this kind of interaction
properties. Even more important is the user itself. As larger user studies are out of scope, this
is left for future investigation.

3.4.3 Scrolling

In its API, Selenium only directly supports touch based scrolling. As OpenWPM simulates a
desktop user, using touch based scrolling is not a preferred way to scroll. It is possible however
to use JavaScript to scroll. But when JavaScript is used to scroll, the scrolling movement is
instant, can span enormous distances and never needs to be corrected. Additionally, it does not
evoke wheel events, indicating no mouse or touchpad was used to scroll, making the scrolling
method more suspicious.

Although Selenium’s way of scrolling is different from a user scrolling with a mouse wheel,
it is not easy for a detector to implement detection routines. A human can also evoke scrolling
movements that are instant, cover enormous distances and do not need to be corrected via for
example the search function in a browser. Using the scroll bar is also possible, and so is using
anchor links. The possibilities to use the middle mouse button or arrow keys to scroll further
complicate detection. Firefox might also scroll when the page is reloaded. All these methods
to scroll can be detected. But in contrast to the other detection methods, all other possibilities

15

have to be ruled out. This is much more complex than confirming one possibility, as suffices
for the other detection methods.

3.4.4 Typing

Like clicking, typing reveals the dwell time of a button press. It also reveals flight time. A
short experiment has been performed, in which the Selenium and human keydown and keyup

events are monitored.
The maximum dwell and flight times for Selenium are 3 and 2 milliseconds respectively.

This again contrasts to the human dwell time, of which the mean is again 100 times higher.
The flight times are not compared, because it is complex to measure flight time for humans,
and it is clear without measurements that flight times of Selenium differ from human flight
times.

Not only the flight times are different, the order of events also differs between Selenium and
fast typing humans. Selenium always evokes a keyup event after a keydown event. A human
typing with two fingers on a low speed will likely show the same pattern, although this should
be tested with more than one human. In contrast to Selenium and slow typing humans, a
human typing with 10 fingers at a high speed interleaves keydown and keyup events. Keys are
pressed down before earlier pressed buttons are released. In the experiment it is observed that
a human typing with 10 fingers on a high speed (600 characters per minute) more often has two
buttons pressed at once than no buttons pressed at all. Selenium on the other hand, always
releases the previous key before pressing a new one. A human typing with 2 fingers showed,
apart from a large difference in speed, almost the same pattern as Selenium in the experiment.
A major difference being that for capital letters, two buttons where pressed at the same time
by the human, while Selenium never presses more than one key at the same time.

To type a capital letter, it is required on the standard US-international keyboard layout to
either press the Caps Lock -key, or to hold the shift-key while pressing the character that should
be capitalized. This reveals yet another property specific to Selenium. Selenium can “press”
capital keys, as if they existed on the keyboard. As a result, Selenium can be detected with
high accuracy after both a capital and non-capital key have been pressed. As both pressing the
Caps Lock key and leaving the browser window can be detected, a visitor sending capital and
non capital letters without other events is either Selenium or a human using special software,
like accessibility tools. Diacritics are also revealing Selenium instantly with high precision.
Apart from the problem that Selenium “presses” the key without using modifier keys, an even
more severe problem exists. When the keydown event is fired, JavaScript includes an attribute
with the code of the key that was pressed. This attribute is empty when Selenium sends a
character with a diacritic like é, while for a human with the US-international keyboard layout
the codes are Quote followed by KeyE.

Although out of scope of this analysis, it is interesting to notice that the keyboard setting
of visitors can be inferred via this method, due to the additional key presses required for special
keys.

Besides profiling users based on one or two key presses, more advanced profiles of typing
can also be made. Alves et al. [ACdSS07] provided statistics on typing properties regarding
opening a new sentence or a new word and more special cases in typing a text. These statistics
are discussed in more detail in Section 4.4.

Another important aspect to typing is the accuracy of typing. Humans tend to make typing
errors and correct them, either by using the backspace key to redo the typing or by moving the
cursor and correcting the error. Selenium does not make typing errors, which can be deemed
suspicious. Due to time constraints, this is not looked into further in this analysis.

Some types of text input fields elicit special typing rhythms, like username and password
fields. As a password is a set of characters that is frequently used, it may be typed much

16

faster than other texts. It might also be that a password is typed slower, as the user reads
the complex password from a post-it. In any case, the typing method will differ from standard
text fields in which the user types a text in a natural way. Using and mitigating such advanced
detection techniques are left for future work.

3.4.5 Leaving and entering

Events indicate whether the visitor can still see the web page of the detector (visibilitychange)
and if the web page is still focused on (blur). Both events reveal specific interaction of a vis-
itor. Selenium will never fire either of these events, as the task of Selenium is on the page,
not outside it. Depending on the web site, human visitors may switch between applications or
browser windows. Although the absence of this switching does not definitively proof anything,
it may help in creating a risk profile of a visitor.

Some special cases exist though. visibilitychange fires if a webdriver (Selenium) con-
trolled window is minimized by the user of the web bot. Selenium will continue its tasks, which
can lead to Selenium performing actions on a web page that is known to be invisible to any
real user. This trivial to test property will instantly reveal Selenium. It is not likely to happen
though, as web bots are implemented to relief a human from having to perform the interaction,
so one would expect no user interaction to occur.

A problem with these events might arise in the future, as the draft specification for page
visibility more concretely states that a hidden state should be returned if the document is
not visible to the user: ”Return visible if: (...) Any of the doc[ument]’s viewport contents are
visible to the user. Otherwise, return hidden.”15. If a web bot operator runs multiple headful16

browser instances of OpenWPM, only one is visible to the user. All others are hidden behind
the browser instance that is visible, creating a situation where all but one instances can be
detected at all times.

15https://w3c.github.io/page-visibility/#dfn-determine-the-visibility-state
16Running the instances headless might solve this problem, but headless instances are more detectable via

other properties [Vlo18, JKV19, Goß20]

17

https://w3c.github.io/page-visibility/#dfn-determine-the-visibility-state

Chapter 4

Mitigating detection

In Chapter 3 it has been shown that interaction based detection is an accessible and effective
method to detect web bots that use Selenium for within-page interaction. In order to reduce the
effect of web bot detection on results gathered by OpenWPM, a Python package, Human-Like
Interaction Selenium API (HLISA), is developed. The aim of the package is to simulation
human like interactions, which would place this package between state D2 and D3 of the
detector model.

From a technical perspective, the HLISA package replaces the ActionChains class17 of the
existing Selenium API for interaction. The set of methods exposed by HLISA is a superset of
the existing methods in the ActionChains class. An end-user can replace the ActionsChains

objects with HL ActionsChains objects in existing code to switch from the standard Selenim
API to HLISA. This makes OpenWPM harder to detect while the functionality will be equal,
except for time duration. The HLISA methods require more time to execute, as humans are
substantially slower than bots.

In this chapter, all functions the HLISA replaces are discussed. This is done by listing every
interactional property, then the hiding tactic, then implementation level details.

4.1 Mouse movement

4.1.1 Hiding tactic

In section 3.4.1 it was shown the cursor moves of Selenium are easy to distinguish from human
cursor moves. To make the cursor movement look more human like, first of all the straight line
is replaced by a curved line. The line is based on a quadratic Bézier curve that has a horizontal
bias. This means the horizontal movement is too large in the beginning to end up in the right
place. This is compensated for at the last third of the curve. This creates a curve that is not
just a straight line with a curve, but a curve that changes its direction midway.

Whisenand and Emurian observed that horizontal movements are performed faster [WE97]
than vertical movements. Therefore, the bias is made horizontal. This is too simplistic, as
many more factors have a role in movement [WE96, WE97, LB13, PT01]. The bias will likely
depend multiple factors, and turn into a vertical bias in some occasions.

Additionally, a “shivering” movement is added to the curve. This transforms the curve from
a perfect mathematical curve into a more natural curve, with small distortions in all directions.
As can be seen in Figure 4.1, a movement with a curve is still clearly different from a human
cursor movement as visualized in Figure 4.2.

17https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.action_

chains.html#module-selenium.webdriver.common.action_chains

18

https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.action_chains.html#module-selenium.webdriver.common.action_chains
https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.action_chains.html#module-selenium.webdriver.common.action_chains

Figure 4.1: A perfect curve. Figure 4.2: A human cursor trajectory.

Finally, the overall movement speed is reduced. Instead of performing a movement in a
fraction of a second, it is done at a speed which is easy to reproduce by a human. The movement
speed increases until 70% of the curve has been traversed. After that, the movement quickly
slows down.

Both the curve direction and movement speed change in the last third of the curve. To-
gether, this simulates a “correction”. After an initial large movement in the general direction
of the target, the movement is refined and carried out with greater precision (the slower move-
ment) to end up at the target. This correction was observed in the experiments carried out for
Chapter 3 and has been covered by Grahma et al. [GM96].

Speeding up

Slow
ing

dow
nHorizontal bias

C
orrection

phase

Movement shivering

Speeding up

Slow
ing

dow
nHorizontal bias

C
orrection

phase

Movement shivering

Figure 4.3: Overview of characteristics of mouse movements simulated by HLISA.

There are plenty of other factors in mouse movement, like overshoot [PT01], angle of ap-
proach [PT01, WE97, WE96, LB13], target shape [WE97], target size [PT01] and direction
of movement, either in the difference between horizontal and vertical [LB13] or between left
and right directed movements [PT01]. Individually they might already provide a detector with
enough information to detect humans with a reasonable certainty. Combined they can provide
the detector a rich set of aspects to detect humans by their specific characteristics. Certainly,
the mouse movement hiding tactic provided here is not sufficient to counter all detectors in
state level D2. Web bots that use these tactics by mouse movements are harder to detect
nonetheless.

19

4.1.2 Implementation

The curve in the movement is based on a quadratic Bézier curve. The first and last point are
given, but the intermediate point (the only control point of this type of Bézier curve) needs
to be calculated. To create the described horizontal bias, the intermediate point is hardcoded
to be at 50% of the height and 82% of the width of the total distance. The 82% was selected
as it created a movement visually similar to the observed human curves. As mentioned in
the previous section, this can be improved upon. For reference: to create a straight line, the
intermediate point should be at 50% height and 50% width. For a curve without bias, the
height should be equal to the width. The curve will not go over the intermediate point, it will
only go into that direction as if it is attracted by the point. Only in the 50% height and 50%
width case, the line will go over the point. In this case the point has no effect on the curve.

The shivering movement is created by sampling from a random distribution. This distribu-
tion, with mean 0 and standard deviation 0.6 mostly returns values between -2 and 2. For every
part of the movement, this random value is added to the curve creating a movement deviating
away, but always coming back to, the perfect mathematical curve. The random values that
are added to the curve are recorded and in the last part of the movement they are compen-
sated for. Because of this compensation, the movement ends at the location that was given
to the movement function. The compensation becomes stronger as the movement progresses,
which corresponds to human movement which also is more precise near the end. A movement
trajectory produced by HLISA is presented in figure 4.4.

Figure 4.4: Cursor trajectory by HLISA. Figure 4.5: A human cursor trajectory.

The mouse movement speed is based on two factors. The first factor is the location of the
intermediate point. The intermediate point is passed when half of the movement time is over.
Therefore, if the location of the intermediate point is further than 50% of the total horizontal
distance, more horizontal movement will be covered in the first half of the movement as in the
second. This is an unwanted side effect of the Bézier curve logic, as it makes that the movement
speed is not completely dependent on the other factor which is specifically created to control
the mouse movement speed. Although this is a disadvantage, the movement speed can still be
controlled by adjusting the second factor in order to account for the movement speed difference
created by the intermediate point. As the intermediate point is fixed, the unwanted influence
is also fixed and can therefore be accounted for without complicated measures.

The second, and main factor that controls the mouse movement speed is the definition of
the sampling function. This is the main way to control the movement speed. n points that are
on the Bézier curve are calculated. The distance between every point that is calculated is equal,
except for the difference that is caused by the first factor discussed in the previous paragraph.
m points are then sampled from the n points by the sampling function. The sampling function
controls the speed, because speed = distance

time , and time is fixed, while distance is controlled by

20

the sampling function as it determines how much distance exists between points. Not selecting
a point increases the distance between the previously selected point and the next point that
will be selected.

The sampling function can be replaced by any mathematical function. To get a constant
and low speed, all points are selected. To get a constant and high speed, every 4th point is
selected. Acceleration and deceleration are introduced by selecting increasingly many points
for a decelerating movement, and increasingly less points for an accelerating movement. In the
current implementation, after every a points, a new point is selected. a is increased with 5%
after a new point is selected. This is done until 70% of the points are processed, after which
a is decreased with 10% after each new new point that is selected. This creates a movement
that first accelerates in an exponential fashion, until it quickly decelerates in the last part of
the movement, also in an exponential fashion, as described in the hiding tactic section.

4.2 Clicking a button

4.2.1 Hiding tactic

In Section 3.4.2 it has been shown Selenium click actions can be easily detected. To prevent
detection, the Selenium click() command is replaced with a more realistic version in HLISA.
If an element is passed to the click command, the new command first moves the mouse to a
random position on the given element. Thereafter it clicks and holds the button for a random
time in a given interval.

For the location and press duration, first a random distribution was used. As can be seen
in Figure 4.6 this is easy to recognize as simulated interaction. One can simply compare the
amount of clicks in the border region with the amount of clicks in the center of the button, and
the new bot detection method is operational. As state level D3 is the target level of the HLISA,
a different approach was taken. The random numbers are taken from a normal distribution.

The distribution was acquired by recording human mouse clicks18 on a web page specifically
set up for this purpose. The unrealistic environment may contribute to the distribution being
not representative. But a normal distribution for mouse clicks is not completely realistic to
begin with as Barik et al. [BHRJ12] have shown that human clicks are not always normally
distributed with the center of the button as mean. The research by Barik et al. also showed
that standard deviations depend on specific buttons and other factors, which cannot all be
accounted for given time constraints.

Besides the distribution, this way of clicking has a more important limitation. Humans
sometimes miss the button and click besides it. This is not accounted for in this HLISA
command. It could be extended to do so, but this is difficult as the program needs to guarantee
the misclick does not cause any side effects.

4.2.2 Implementation

To get a location in an element to click on, a function is defined that receives an element
and returns coordinates within that element. When querying the bordering coordinates of an
element, the Selenium API and JavaScript return a square box around the element. But
elements can have different shapes. For example, a button can be round. Tested with
style="border-radius: 12px;", 8852 of 10,000 randomly generated coordinates were in
the button and 1148 outside the button when using the borders as given by JavaScript.

To account for this, it is verified whether the chosen point is in the button. If the point is
not in the button, a new point is sampled and the check is performed again. This happens up
to 10 times, after which it is assumed that the button is not clickable at all. The function can

18From one user only

21

Figure 4.6: Random distribution visualized.
Black indicates the button surface, white in-
dicates pixels on which was clicked and red
indicates pixels which were clicked twice.

Mean SD

x 50.99 pixels 30.37 pixels
y 14.81 pixels 8.40 pixels

dwell 112.11 msec 28.64 msec

Table 4.1: Statistics clicking interaction
based on a random distribution.

Figure 4.7: Normal distribution visualized.
Black indicates the button surface, white in-
dicates pixels on which was clicked and red
indicates pixels which were clicked twice.

Mean SD

x 50.45 pixels 18.55 pixels
y 14.13 pixels 5.45 pixels

dwell 103.36 msec 16.36 msec

Table 4.2: Statistics of clicking interac-
tion based on a normal distribution.

thus be expected to fail approximately once in a billion clicks. The functionality also prevents
the web bot from clicking on an element that is not visible. This sometimes happens if the
element is hidden or overlapped by another element, for example when an image is placed over
a button, or when a buttons visibility is set to hidden. In those instances, Selenium clicks on
the button while HLISA does not click but issues a warning to the web bot operator instead.

4.3 Scrolling

4.3.1 Hiding tactic

Selenium does not provide commands to scroll. Selenium users can use JavaScript to scroll.
To make using HLISA easy, additional commands to scroll are implemented in HLISA. These
follow the scrollTo() and scrollBy() JavaScript functions in syntax to make migration easy.
The commands can not be used like normal ActionChain commands as is usual in Selenium, as
the commands are converted to JavaScript. In contrast to ActionChain commands, JavaScript
calls are executed directly, which makes them incompatible.

The JavaScript scrollTo() and scrollBy() functions take either one options argument
or an x and y argument. The options argument allows to specify the scrolling method. Only
the standard scroll method is implemented, leaving the argument with only one option. For
this reason, the argument is left out completely.

To be consistent with the JavaScript functions, the new scrollTo() and scrollBy() func-
tions should take two arguments, x and y. The x argument is to specify horizontal movement,
while the y argument is to specify vertical movement. For now, the new scrollTo() and
scrollBy() commands accept both the x and y arguments, but moving horizontal (using the
x argument) is not yet supported. It depends on how the site is built whether the user is
able to scroll horizontal with the mouse, or the scrollbar has to be used, resulting in different
interaction properties. As scrolling horizontal is rare, this functionality is left unsupported for
now.

22

4.3.2 Implementation

To simulate human like mouse scrolling interaction, some factors have to be taken into account:

1. One mouse scroll tick scrolls a predefined amount of pixels, 57 in Firefox,

2. There is some time between every scroll tick, depending on the scrolling speed of the
user,

3. After a couple of scroll ticks, the user has to replace the finger used to scroll back to the
top or bottom of the scroll wheel in order to continue scrolling.

The newly implemented HLISA scroll to() and scroll by() commands both perform
the actual scrolling by calling a newly defined scroll function. This function is not accessible in
the public part of HLISA. The function takes the amount to be scrolled and starts scrolling in
even steps of 57 pixels with a pause of (0.05 + r / 200) milliseconds in between the steps, where
r is a random value ranging from 0 to 1. Although not based on studies or observational data,
the formula with these constants creates interaction that seems to be quite human like. After
seven scroll ticks, a random pause with a mean of 500 milliseconds and a standard deviation
of 100 milliseconds is added to create the finger replace effect.

A limitation of this implementation is that in standard Firefox, smooth-scrolling is enabled.
If this is not disabled in the settings of Firefox, the scrolling interaction looks different. It is
easy to detect whether the smooth-scrolling is enabled, and as smooth-scrolling is default, it
can be suspicious to use a different scrolling method.

Also, because one scroll tick scrolls a fixed amount of pixels, it is not possible to scroll less
than this fixed amount without looking suspicious. Therefore, the amount of pixels that is
scrolled can differentiate from what was given as parameter up to the fixed amount minus one.

As was stated in Section 3.4.3, detecting non-human like scrolling is difficult. But if the
HLISA is to be improved, implementing smooth-scrolling is one of the most important features
to implement first.

4.4 Typing

4.4.1 Hiding tactic

To counter the recognition of Selenium by the dwell time, a delay is added between the pressing
and releasing of a key. This is the same solution as is used for clicking. Additionally, as typing
is seen as one action, flight time needs to be accounted for as well. This is done by adding a
delay between all key presses and subsequent key releases. On certain moments, extra delay is
added, which will be elaborated on in Section 4.4.2.

The other mayor problem with Selenium typing interaction is missing modifier key presses
to create certain characters. The HLISA package prevents detection by pressing shift keys
during the typing of special characters that for the US-International keyboard layout require
the shift key to be pressed. The following characters that require a pressed shift key are
supported:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ! @ # $ % ^ & * () _

+ { } | : > ?

This means many characters are not supported, as for example all characters with diacritics
require the pressing of modifier keys in the US-International keyboard layout. For characters
with diacritics there is the additional problem of the empty code attribute. This is always
instantly detectable and can not be circumvented by pressing additional keys. As such, those
keys are not supported by HLISA.

23

Location Time (seconds) Implemented

Natural language Formal Mean Std dev
Opening a sentence . ˆa 1.3 1.0 Yes
Closing a sentence aˆ. 1.7 0.7 Yes
After closing a sentence .ˆ a 0.6 0.4 Yes
Before comma aˆ, 1.8 1.0 No
After comma ,ˆ a 0.17 0.04 No
New word after comma , ˆa 0.6 0.36 No
Opening a word a ˆa 0.47 0.21 Yes
Within a word aˆa 0.21 0.03 Yes
Closing a word aˆ a 0.20 0.08 Yes

Table 4.3: This is an excerpt of Table 3 of the article of Alves et al. [ACdSS07]. The syntax is,
according to the description of the original table: “’a’ stands for any letter, “ ” for spacebar,
and “ˆ” for absolute pause. Periods and commas are indicated as such.” The most right
column shows whether the timing is used in the HLISA implementation.

4.4.2 Implementation

The dwell and flight times are random numbers from a normal distribution. The distribution is
again based on a small experiment. The additional delays that are added on special moments
are based on research by Alves et al. [ACdSS07]. They included a table with special moments
and corresponding statistics. In Table 4.3, which is an excerpt of a table from the study of
Alves et al. it is shown which of their findings have been implemented in HLISA.

There are more factors that introduce delays described in the work of Alves et al., like
pauses after a certain number of words, but they have not been implemented as they depend
on the cognitive load of the writer. Delays before and after commas have not been implemented
although it can be considered within scope. These pauses were left out because the typing speed
is already fairly low, even though the statistics of the group “Fast” have been used.

All delays are based on random numbers from a normal distribution. Because such numbers
can be negative, the number selection process is slightly altered. The random number is used,
unless it is smaller than a minimum. If it is smaller, a random small number is added to make
the original random number larger than the minimum. This is done in such a way that the
original random number can not become larger than the mean. The values that are added are
uniform random numbers to make sure the shape of the distribution is not altered too much.

4.5 Leaving and entering

Although the events that indicate whether a user has hidden the browser tab or has selected
another screen are interesting, they do not pose a high threat to simulators. OpenWPM with
Selenium never switches away from the document it is interacting with. This can be used in a
risk assessment by the detector, but not switching away does not prove a visitor is a bot.

To prevent web bot detection by fingerprinting, it is advisable for the simulator to use
headful OpenWPM [JKV19]. But if this window is minimized by the user, and Selenium is
still performing actions, a web bot detection script can immediately detect Selenium is active.
Therefore, a user should never minimize such a window. Bringing another window in the
foreground has no effect, as the blur event is not fired in this case when Selenium is active.

When the new page visibility draft19 comes into effect, behavior of events may change.
Depending on the change, countermeasures might have to be taken.

19https://w3c.github.io/page-visibility/#dfn-determine-the-visibility-state

24

https://w3c.github.io/page-visibility/#dfn-determine-the-visibility-state

Chapter 5

Validation

5.1 First validation

In Section 3.4, five categories of interaction that can be used to detect Selenium have been
discussed. In Chapter 4 countermeasures have been presented to mitigate detection. To test
the performance of these countermeasures, a simple detector was implemented that detects
Selenium by the properties discussed in Section 3.4. As it detects interaction properties specific
to Selenium, the detector has level D1 according to the detector model. Both Selenium and
HLISA are tested against this detector to see if the assumptions hold.

5.1.1 Selenium detector implementation

The simple detector, called “Selenium detector” is an extension of the DetectOpenWPM
project20 by Krumnow et al. [KJK21]. It implements tests for three out of five categories
of interaction: clicking, moving the mouse and typing. Scrolling was not implemented, as this
is considerable more difficult than the other four. As was stated in Section 3.4.3, observing
a Selenium-like scroll is not enough. All other possible causes of the scrolling event have to
be ruled out. Leaving and entering is also not tested for, as the suspicious behavior is only
triggered in combination with a mistake of the bot operator, which cannot be tested for in this
small experiment. All implemented tests will now be discussed per interaction category.

Test for Selenium mouse movements There is quite a lot that can be tested in mouse
movements. One property of movement interaction should be enough to detect Selenium.
Therefore, it is tested whether the mouse movement consist of one straight line. On a web
page, two HTML buttons are presented. The test consist of clicking on both buttons. The
line between the buttons is monitored. Between every two mousemove events, the slope of that
movement is calculated. If the slope differs 0.03 or more from the last slope, it is considered
to be a non-straight line. In that case, the Selenium detector gives the verdict “OpenWPM
detected”.

Test for Selenium clicking Mouse clicks that are either less than 2 pixels out of the center
of a button, or which have a dwell time lower than 5 milliseconds are marked as “suspicious”.
When the amount of suspicious clicks is higher than 20%, the verdict “OpenWPM detected”
is given, otherwise the verdict “OpenWPM not detected” is given. At least 6 clicks have to
be performed before a verdict is given, because before 6 clicks one click will immediately cause
the percentage to be 20% or higher.

20Which will be published after responsible disclosure https://github.com/bkrumnow/DetectOpenWPM

25

https://github.com/bkrumnow/DetectOpenWPM

Test for Selenium typing For typing, the dwell and flight times are monitored. If the dwell
time is lower than 2 milliseconds, or if the flight time is lower than 5 milliseconds, a button
press is marked as suspicious. At least 3 presses have to be performed before a verdict is given.
Again, OpenWPM is said to be detected if the amount of suspicious presses is larger than 20%.

Limitations

The tests trigger quickly, as a low number of suspicious moves already leads to a detection
verdict. But the findings from the previous chapters have been followed, and as such false
positives are statistically unlikely to occur.

Unfortunately, in special circumstances false positives may still occur. Special hardware
that emulates standard interactions might evoke such false positives. Most prominently, ac-
cessibility tools either in software or hardware might trigger detection. Think of a speech
recognition tool that types text into a text box. Or a virtual keyboard. Onboard21, a virtual
keyboard “useful for tablet PC users and for mobility impaired users”, was tested in the typing
test and got the verdict “OpenWPM detected” 5 out of 10 times. This shows that this has to
be accounted for in detectors that are used in production, to keep the web accessible.

5.1.2 Results

To find the false positive and false negative rates of the detector, two separate experiments
were performed. They are discussed below. Two implementation problems surfaced during the
experiments. The mouse movement test and the test that evaluates the location of a click in
the button did not work due to a programming mistake in combining the tests. These two
tests have been left out.

False positives testing

First it is tested whether the detector falsely classifies a human as a web bot. The visitor
is classified as a web bot by the detector if one out of the three tests22 returns the verdict
“OpenWPM detected”. For a human with either Firefox and Chromium, this happens 0 out
of 10 times. The results are shown in Table 5.1.

Verdict OpenWPM interaction API Browser used by human

Selenium HLISA Firefox Chromium
Detected 10 0 0 0
Not detected 0 10 10 10

Table 5.1: Closed test results for false positives.

False negative testing

To test for false negatives, the process was repeated but the classification method was changed.
The visitor is classified as a web bot only if all of the three22 tests return the verdict “OpenWPM
detected”. This change will make the detector more prone to give a false negative. But no
false negatives were given, as can be seen in Table 5.2.

21https://launchpad.net/onboard
22Two tests in practice, as the mouse movement test was disabled.

26

https://launchpad.net/onboard

Verdict OpenWPM interaction API Browser used by human

Selenium HLISA Firefox Chromium
Detected 10 0 0 0
Not detected 0 10 10 10

Table 5.2: Closed test results for false positives.

5.2 Google reCaptcha

In order to perform a small but real-world test, Google reCaptcha23 v2 with a checkbox, called
simply reCaptcha in the remainder of this chapter, was tested for its interaction based detection
capabilities. In contrast to a classical CAPTCHA test, reCaptcha offers the visitor a checkbox
that can be clicked. Based on “advanced risk analysis techniques”23, a user might pass the
CAPTCHA just by clicking the checkbox.

reCaptcha is widely used and has been subject of research in the past, among others by
Sivakorn et al. [SPK16]. They concluded Google’s tracking cookies play a crucial role in the
reCaptcha service. After creating a system that automatically creates cookies that seem to
originate from a legitimate user, Sivakorn et al. concluded that regardless of IP or size of
browsing history, the first reCaptcha that can be passed with just clicking in the checkbox
appears after 9 days.

This method was repeated manually. A new virtual machine was used. Browsing was done
manually in a manner similar to the reported method of Sivakorn et al. After 14 days, the first
reCaptcha was passed by only clicking in the checkbox. As browsing was not done every day, it
might be that the threshold for reCaptcha to trust a cookie still is 9 days, as is reported in the
paper of Sivakorn et al. After those 14 days, 99 cookies clearly belonging to Google services
are present on the virtual machine. Even though sometimes a reCaptcha can be passed just
by clicking the checkbox, in most cases the reCaptcha puzzle has to be solved.

With the cookie in place, the role of interaction can be evaluated.

reCaptcha and simulated interaction. Sivakorn et al. used different mouse interaction
methods, going as far as using JavaScript functions to click the reCaptcha checkbox. They
reported the used interaction method does not have a negative influence on the risk analysis.

This was in 2016 and before Sivakorn et al. disclosed their findings to the reCaptcha
team. The reCaptcha team is reported to have altered reCaptcha in response to the dis-
closures [SPK16]. On the introduction of reCaptcha, the reCaptcha product manager said
“even the tiny movements a user’s mouse makes as it hovers and approaches a checkbox can
help reveal an automated bot”24. Did this interactional detection method find its way to the
new reCaptcha version?

To answer this question, standard Selenium was used in combination with OpenWPM
0.15.0, stealth-extension by Goßen [Goß20] and the created Firefox profile (which contains
the Google cookies). OpenWPM was instructed to visit https://my.malwarebytes.com/en/

login/, fill in fake credentials and finally to click on the reCaptcha checkbox. This checkmark
appeared and no puzzle had to be solved 3 out of 3 times. For completeness, the test was
repeated with the standard Selenium API replaced by HLISA, which had the same result.

The tests were also performed without using stealth-extension by Goßen [Goß20]. This
often resulted in some sort of super-reCaptcha, a standard reCaptcha but instead of one or
two puzzles, 15 puzzles have to be solved before one is allowed to pass the reCaptcha. Later,

23https://developers.google.com/recaptcha/
24https://web.archive.org/web/20151002161845/http://www.wired.com/2014/12/

google-one-click-recaptcha/

27

https://my.malwarebytes.com/en/login/
https://my.malwarebytes.com/en/login/
https://developers.google.com/recaptcha/
https://web.archive.org/web/20151002161845/http://www.wired.com/2014/12/google-one-click-recaptcha/
https://web.archive.org/web/20151002161845/http://www.wired.com/2014/12/google-one-click-recaptcha/

when the cookies in the profile were 4.5 months old, the reCaptcha on the test site could also
be passed without the stealth-extension.

It was also possible to pass the reCaptcha from another computer, in a private window,
(hence, no cookies, but the same IP-address) in standard Firefox, with human interaction.
After changing the IP-address from residential to a campus address, passing the reCaptcha
was not possible without solving a puzzle.

In a final test, the screen resolution and IP-address were changed25. The standard Selenium
API was used, and the stealth-extension was not installed. Still, reCaptcha let the bot go
through just by clicking on the checkbox. Apparently, profiling by cookies is still one of the
most important factors in reCaptcha.

25Again, from residential to campus

28

Chapter 6

Conclusion

Although other aspects of web bot detection prevention have received considerable attention,
the threat of web bot detection by considering interaction properties, as well as the mitigation
of this threat, have not.

In Chapter 3 it has been shown that standard JavaScript events provide a rich source of
information about visitor interaction properties to web site owners. Furthermore, interaction
properties for standard Selenium based web bots are clearly distinct from standard human
interaction properties. Simple tests can reveal a web bot that uses the Selenium interaction
API, defeating other measures like modifying the fingerprint or other distinct features like the
webdriver attribute. This reveals a large set of possibilities for web bot detectors – and the
dangers for web bot operators who need to remain undetected.

In Chapter 4, HLISA, a replacement for the standard Selenium interaction API, was pre-
sented. Although HLISA can be improved upon, the difference between the standard Selenium
interaction API and HLISA is significant.

This is supported by findings in Chapter 5, in which a simple detector detects the standard
Selenium interaction API with high accuracy, while HLISA remains undetected. With the same
detector it is also shown that when implementing a web bot detector, care has to be taken to
not falsely identify humans using special software or hardware tools as web bots, to keep the
web accessible.

In an experiment concerning Google’s reCaptcha, interaction properties did not seem to be
evaluated. This is in line with earlier findings. It is interesting that such a widely used security
tool by a resource-rich entity does not include a simple yet effective source of information in its
consideration. To what extend other services use interaction properties has not been evaluated.

Future work. Although earlier work indicates interaction properties are used to detect web
bots, it is unclear whether this detection method is widely used. It is hard to determine this,
as web bot detectors keep their methods secret and many other factors influence detection. If
interaction properties are shown to be used, the effectiveness of HLISA can be evaluated on
the identified web bot detectors. Apart from how effective HLISA is in practice, it is clear that
HLISA can be improved in multiple ways. This has been discussed in earlier sections in more
detail, and is summarized in Table C.1 in Appendix C.

29

Bibliography

[ACdSS07] Rui Alves, São Castro, Liliana de Sousa, and Sven Strömqvist. Influence of typing
skill on pause-execution cycles in written composition. Writing and Cognition:
Research and Applications, 01 2007.

[ASLN20] Babak Amin Azad, Oleksii Starov, Pierre Laperdrix, and Nick Nikiforakis. Web
runner 2049: Evaluating third-party anti-bot services. In Clémentine Maurice,
Leyla Bilge, Gianluca Stringhini, and Nuno Neves, editors, Detection of Intru-
sions and Malware, and Vulnerability Assessment - 17th International Conference,
DIMVA 2020, Lisbon, Portugal, June 24-26, 2020, Proceedings, volume 12223 of
Lecture Notes in Computer Science, pages 135–159. Springer, 2020.

[AT07] Ahmed Awad E. Ahmed and Issa Traoré. A new biometric technology based on
mouse dynamics. IEEE Trans. Dependable Secur. Comput., 4(3):165–179, 2007.

[BHRJ12] Titus Barik, Brent E. Harrison, David L. Roberts, and Xuxian Jiang. Spatial game
signatures for bot detection in social games. In Mark Riedl and Gita Sukthankar,
editors, Proceedings of the Eighth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE-12, Stanford, California, USA, October
8-12, 2012. The AAAI Press, 2012.

[Bor16] Frederik Zuiderveen Borgesius. Singling out people without knowing their names
- behavioural targeting, pseudonymous data, and the new data protection regula-
tion. Comput. Law Secur. Rev., 32(2):256–271, 2016.

[CGK+13] Zi Chu, Steven Gianvecchio, Aaron Koehl, Haining Wang, and Sushil Jajodia.
Blog or block: Detecting blog bots through behavioral biometrics. Comput. Net-
works, 57(3):634–646, 2013.

[EN16] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site mea-
surement and analysis. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, pages 1388–1401. ACM, 2016.

[Fit54] Paul M Fitts. The information capacity of the human motor system in controlling
the amplitude of movement. Journal of experimental psychology, 47(6):381, 1954.

[GM96] Evan D. Graham and Christine L. MacKenzie. Physical versus virtual pointing.
In Bonnie A. Nardi, Gerrit C. van der Veer, and Michael J. Tauber, editors,
Conference on Human Factors in Computing Systems: Common Ground, CHI ’96,
Vancouver, BC, Canada, April 13-18, 1996, Proceedings, pages 292–299. ACM,
1996.

30

[Goß20] Daniel Goßen. Design and implementation of a stealthy OpenWPM web scraper.
http://www.open.ou.nl/hjo/supervision/2020-d.gossen-bsc-thesis.pdf,
2020.

[GWXW09] Steven Gianvecchio, Zhenyu Wu, Mengjun Xie, and Haining Wang. Battle of
botcraft: fighting bots in online games with human observational proofs. In Ehab
Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors, Proceedings of the
2009 ACM Conference on Computer and Communications Security, CCS 2009,
Chicago, Illinois, USA, November 9-13, 2009, pages 256–268. ACM, 2009.

[HCBM02] Ken Hinckley, Edward Cutrell, Steve Bathiche, and Tim Muss. Quantitative
analysis of scrolling techniques. In Dennis R. Wixon, editor, Proceedings of the
CHI 2002 Conference on Human Factors in Computing Systems: Changing our
World, Changing ourselves, Minneapolis, Minnesota, USA, April 20-25, 2002,
pages 65–72. ACM, 2002.

[ITK+16] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu,
Jean Michel Picod, and Elie Bursztein. Cloak of visibility: Detecting when ma-
chines browse a different web. In IEEE Symposium on Security and Privacy, SP
2016, San Jose, CA, USA, May 22-26, 2016, pages 743–758. IEEE Computer
Society, 2016.

[Jan21] Mitchel Jansen. Recognising client-side behavioral detection of web bots. 2021.

[JKV19] Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. Fingerprint surface-based
detection of web bot detectors. In Kazue Sako, Steve A. Schneider, and Peter
Y. A. Ryan, editors, Computer Security - ESORICS 2019 - 24th European Sym-
posium on Research in Computer Security, Luxembourg, September 23-27, 2019,
Proceedings, Part II, volume 11736 of Lecture Notes in Computer Science, pages
586–605. Springer, 2019.

[KC18] Peter Krátky and Daniela Chudá. Recognition of web users with the aid of bio-
metric user model. J. Intell. Inf. Syst., 51(3):621–646, 2018.

[KJK21] Benjamin Krumnow, Hugo Jonker, and Stefan Karsch. All browsers are equal...
or is openwpm less equal than others? 2021.

[LB13] Byungjoo Lee and Hyunwoo Bang. A kinematic analysis of directional effects on
mouse control. Ergonomics, 56, 09 2013.

[Noo19] Robbert Noordzij. Synthetic fragmentation experiments using wildfragsim. 2019.

[PA97] Réjean Plamondon and Adel M. Alimi. Speed/accuracy trade-offs in target-
directed movements. Behavioral and Brain Sciences, 20(2):279–303, 1997.

[PPLC06] KyoungSoo Park, Vivek S. Pai, Kang-Won Lee, and Seraphin B. Calo. Securing
web service by automatic robot detection. In Atul Adya and Erich M. Nahum,
editors, Proceedings of the 2006 USENIX Annual Technical Conference, Boston,
MA, USA, May 30 - June 3, 2006, pages 255–260. USENIX, 2006.

[PT01] James Phillips and Thomas Triggs. Characteristics of cursor trajectories controlled
by the computer mouse. Ergonomics, 44:527–36, 05 2001.

[RD15] Nathan Rude and Derek Doran. Request type prediction for web robot and inter-
net of things traffic. In Tao Li, Lukasz A. Kurgan, Vasile Palade, Randy Goebel,

31

http://www.open.ou.nl/hjo/supervision/2020-d.gossen-bsc-thesis.pdf

Andreas Holzinger, Karin Verspoor, and M. Arif Wani, editors, 14th IEEE Inter-
national Conference on Machine Learning and Applications, ICMLA 2015, Mi-
ami, FL, USA, December 9-11, 2015, pages 995–1000. IEEE, 2015.

[SM04] R. William Soukoreff and I. Scott MacKenzie. Towards a standard for pointing
device evaluation, perspectives on 27 years of fitts’ law research in HCI. Int. J.
Hum. Comput. Stud., 61(6):751–789, 2004.

[SPK16] Suphannee Sivakorn, Iasonas Polakis, and Angelos D. Keromytis. I am robot:
(deep) learning to break semantic image captchas. In IEEE European Symposium
on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24,
2016, pages 388–403. IEEE, 2016.

[SRMN17] Grant Storey, Dillon Reisman, Jonathan R. Mayer, and Arvind Narayanan. The
future of ad blocking: An analytical framework and new techniques. CoRR,
abs/1705.08568, 2017.

[Vlo18] Gabry Vlot. Automated data extraction: what you see might not be what you
get, 2018.

[WE96] Thomas G. Whisenand and Henry H. Emurian. Effects of angle of approach on
cursor movement with a mouse: Consideration of fitt’s law. Computers in Human
Behavior, 12(3):481–495, 1996.

[WE97] Thomas G. Whisenand and Henry H. Emurian. Analysis of cursor movements
with a mouse. In Gavriel Salvendy, Michael J. Smith, and Richard J. Koubek,
editors, Design of Computing Systems: Cognitive Considerations, Proceedings of
the Seventh International Conference on Human-Computer Interaction, (HCI In-
ternational ’97), San Francisco, California, USA, August 24-29, 1997, Volume 1,
pages 533–536. Elsevier, 1997.

[WLS19] Shengye Wan, Yue Li, and Kun Sun. Pathmarker: protecting web contents against
inside crawlers. Cybersecur., 2(1):9, 2019.

[Woo99] Robert Sessions Woodworth. The Accuracy of Voluntary Movement. The Macmil-
lan Company, 1899.

[YVD+19] Kai-Cheng Yang, Onur Varol, Clayton A. Davis, Emilio Ferrara, Alessandro Flam-
mini, and Filippo Menczer. Arming the public with AI to counter social bots.
CoRR, abs/1901.00912, 2019.

32

Appendices

33

Appendix A

Ethical considerations

Usage of HLISA for malicious purposes. Multiple parties can profit from HLISA. The
intended party, researchers using OpenWPM to conduct studies on privacy and security on the
internet, would profit from being able to process sites as they are presented to human users.
The results of their studies will be influenced less by sites that serve deviating content to bots.

Web bot operators with malicious intent can also profit from HLISA. For readability, they
are split into two groups and discussed separately.

The first group consists of high threat level parties: parties with large budgets and in-
house expertise. Their goals, such as manipulating the public opinion [YVD+19] requires bots
to go undetected. State actors, which have the budget and expertise, might be interested,
and have been accused in the media, to perform such activities [ITK+16] The consequences of
such activities can be considerable. But these parties do not gain much by the publication of
HLISA, as they can easily implement such a library themselves.

The second group of malicious parties have a low to moderate budget and a similar level
of expertise. They are individuals or small groups who want to bypass bot detection with a
specific goal such as scraping a website. These actors might not have a lot of time, budget or
they might lack the specific knowledge, as web scraping is only a side interest to them. This
group may be quite large if we assume at least part of the 133,000 views on a question on
how Google reCAPTCHA v2 works26 are from actors trying to circumvent this bot detection
measure.

According to an inventory made in Appendix C, if HLISA was to be published it would be
among the most easy to use libraries, and the most complete library in regard to functionality.
As such, malicious parties of the second group can profit from its publication. But in practice,
it is unclear in which circumstances a party will profit from HLISA. The other simulators
evaluated in Appendix C are often made to bypass Google’s reCaptcha, but in Chapter 5 it
has been shown that reCaptcha still does not utilize interaction properties.

The notion that malicious parties might profit from the publication of HLISA, although
it is unclear in which regard, should not be taken lightly. Therefore, HLISA will only be
made public when the subject of hiding interaction properties becomes more widely known to
researchers performing large-scale measurements on the web, for example after a publication
about the subject.

Accessibility of the web. In this work, detection of web bots by means of interaction
properties has been discussed several times. Although it is trivial to detect web bots using this
methods, detectors should be cautious to not falsely classify people using accessibility tools
as web bots. The methods described to detect web bots are not ready for use in production
environments, and should not be used in those environments.

26https://stackoverflow.com/questions/39422453/human-like-mouse-movements-via-selenium

34

https://stackoverflow.com/questions/39422453/human-like-mouse-movements-via-selenium

Unintended use of the model. HLISAis made to be difficult to distinguish from humans.
It is therefore made to appear like the most standard web browsing human. As a result, it not
representative of a real human. Furthermore, the statistics on human interaction presented in
Chapter 3 are not the result of an experiment with many people from diverse groups, and are
inadequate to be used as such.

35

Appendix B

A selection of browsing events

• Document:

– copy

– cut

– dragend

– dragenter

– dragleave

– dragover

– dragstart

– drag

– drop

– fullscreenchange

– gotpointercapture

– keydown

– keypress

– keyup

– lostpointercapture

– paste

– pointercancel

– pointerdown

– pointerenter

– pointerleave

– pointermove

– pointerout

– pointerover

– pointerup

– scroll

– selectionchange

– selectstart

– touchcancel

– touchend

– touchmove

– touchstart

– transitionend

– transitionrun

– transitionstart

– visibilitychange

– wheel

• Element:

– auxclick

– blur

– click

– contextmenu

– dblclick

– focusin

– focusout

– focus

– mousedown

– mouseenter

– mouseleave

– mousemove

– mouseout

– mouseover

– mouseup

– select

• Window:

– resize

– focus

36

Appendix C

Comparison of simulators

Before creating HLISA, an inventory of publicly available code and libraries with similar func-
tionality was made. The inventory is limited to code and libraries that can be easily found on
the public internet.

Ease of use. Only two libraries besides HLISA can be imported and used with Selenium
without needing to modify anything. But these libraries are limited in their functionality. The
other pieces of code and libraries would need to be rewritten to work with Selenium as they
are primarily a solution for a different problem, or because it is a code example and not a full
solution. In most cases, the code can best be used as inspiration in a completely new codebase,
reusing only the parts that are most difficult to implement from these libraries. As the libraries
or code pieces are often of high quality, this would greatly benefit the writer of a new library;
but a lot of work will still need to be done. As has been discussed in Chapter 4, managing
Selenium specific problems is also a time consuming part of implementing a library to mitigate
bot detection.

Completeness. None of the evaluated libraries are complete. At most, two categories of
interaction are supported per library. Within a category of interaction, the libraries often lack
simulation of features that are easy to use for detectors. HLISA supports all four identified
categories of interaction, but also lacks certain features within the categories. Most notably, in
contrast to HLISA, BezMouse supports the simulation of accidental right, double or no mouse
clicks. But these functions can be problematic when programming the web bot, as the program
no longer is deterministic. For the intended purpose of BezMouse, like aim bots, this is not a
problem. But when crawling it can be a problem.

In conclusion, HLISA is similarly easy to use as the ready to use publicly available libraries
for simulating human interaction. But in contrast to these and other publicly available li-
braries, it is most complete. This holds for the supported categories of interaction as well as
functionality to simulate interaction realistically. Finally, in contrast to the other libraries,
HLISA was made for web bots and is therefore more suitable than some of the other libraries,
having support for specific Selenium-specific problems.

37

Functionality Package

H
M

M
a

P
y
C
li
ck

b

B
ez
M

o
u
se

c

p
y
H
M

d

S
cr
o
ll
er

e

C
li
ck

B
o
t
f

T
y
p
in
g
g

[N
o
o
1
9
]

H
L
IS

A

Mouse movement functionality
Realistic mouse movement speed X X X X X
Movement accelerates/decellerates X X X X
Movement shivering X ?h X
Curve in movementij X X X ?h X X
Moves to random location in elementi X
Might overshoot the target X
Acounts for target size
Acounts for target distance
Acounts for direction of movement

Click functionality
Realistic dwell timei ?h X X
Realistic flight timei X X X X
Simulates accidental right click X
Simulates accidental double click X
Simulates accidental no click X
Simulates accidental misclick

Scrolling functionality
Pause between scroll ticks X X
Pause for finger replacement X X
Realistic scroll distance in tick X X
Supports Firefox’s smooth scrolling

Keyboard functionality
Flight timei X X X
Dwell timei X
Simulates pauses in longer texts X
Simulates typing errors
Special interaction in password fields
Correct usage of modifier keys X

Other features
Selenium ready X X X
Accounts for visibility of elements n/a n/a n/a n/a n/a n/a X
Data based on experiments or sources X X X X

Table C.1: An overview of packages and functionality. A ‘X’ indicates the functionality is
present in the package or code piece.

a“Human-like mouse movements”: code piece to use B-splines https://stackoverflow.com/a/48690652
bPython package to generate human mouse movements https://github.com/patrikoss/pyclick
cPython code to simulate human mouse movements https://github.com/vincentbavitz/bezmouse
dPython package to imitate human mouse movements https://pypi.org/project/pyHM/
ePython package to simulate human scrolling https://github.com/hayj/Scroller
fJava code for an autoclicker https://github.com/amSangi/ClickBot/
g“type like a real person”: code piece for typing https://stackoverflow.com/a/15238748
hThe project links to source code that is incomplete
iAbsence of this feature triggers interaction based bot detection in a simple interaction based bot detector
jPreviously reported to be required to bypass Google reCaptcha https://stackoverflow.com/a/37220168

38

https://stackoverflow.com/a/48690652
https://github.com/patrikoss/pyclick
https://github.com/vincentbavitz/bezmouse
https://pypi.org/project/pyHM/
https://github.com/hayj/Scroller
https://github.com/amSangi/ClickBot/
https://stackoverflow.com/a/15238748
https://stackoverflow.com/a/37220168

	Introduction
	Related work
	Analyzing interactions
	Scope & limitations
	State model
	What the detector can observe
	Interaction properties exposed
	Mouse movements
	Clicking
	Scrolling
	Typing
	Leaving and entering

	Comparison of simulated and human interactions
	Mouse movements
	Clicking
	Scrolling
	Typing
	Leaving and entering

	Mitigating detection
	Mouse movement
	Hiding tactic
	Implementation

	Clicking a button
	Hiding tactic
	Implementation

	Scrolling
	Hiding tactic
	Implementation

	Typing
	Hiding tactic
	Implementation

	Leaving and entering

	Validation
	First validation
	Selenium detector implementation
	Results

	Google reCaptcha

	Conclusion
	Appendices
	Ethical considerations
	A selection of browsing events
	Comparison of simulators

