
Synchronising Distributed Scraping

Author: Godfried Meesters
Student ID: 850021224

Presentation Date: August 27, 2021

Course code:
IM9906

Open University of the Netherlands
Faculty of Science, Master’s Programme in Software Engineering

Synchronising Distributed Scraping

Author: Chairperson:
Godfried Meesters dr. ir. Harald Vranken
850021224

Supervising team:
dr. ir. Hugo Jonker

Benjamin Krumnow, MSc.

Presentation Date: August 27, 2021

Course code:
IM9906

1

Abstract

Price differentiation refers to a commercial strategy of charging different prices for the
same product or service. A given e-commerce company can offer the same items through
multiple outlets, such as a website or a mobile application. There have been rumors that
there are price differences between equivalent items offered on different outlets. We would
like to verify these rumors.

To assist in comparing outlets, data needs to be collected on a large scale simultaneously.
Manual data collection can be used, however the amount of data that can be collected
manually is limited. Another problem with manual extraction is that equivalent items from
different outlets have likely not been extracted at exactly the same time.

In this study, a distributed and synchronized web scraping system is designed. An
unlimited number of web bots taking jobs in a pub/sub system can be accommodated that
synchronize to each other. To validate the design, an experiment with price differentiation
in the travel industry is conducted with a focus on flight ticket prices.

Contents

1 Introduction 3

2 Related work 7
2.1 Price differentiation on desktop browsers . 7
2.2 Price differentiation on mobile devices . 8
2.3 Mobile Device Fingerprinting . 9
2.4 Web Scraping . 9
2.5 Web Crawling . 10
2.6 Synchronization . 10

3 Methodology 12
3.1 Reasons to run an automated experiment 12
3.2 Limitations of running an automated experiment 12
3.3 Scraping Techniques . 13

3.3.1 Scraping from mobile applications 13
3.3.2 Scraping from websites . 17

3.4 Equality of products . 18

4 Design 19
4.1 Framework Requirements . 19
4.2 Architecture Design . 20

4.2.1 Initial Design . 20
4.2.2 Shortcomings of Initial Design . 22
4.2.3 Distributed Scraping . 22
4.2.4 Synchronization of Distributed Scraping 26
4.2.5 A Distributed and Synchronized Architecture 29

4.3 From Architecture to Implementation . 33

5 Validation by means of a price comparison study 36
5.1 Experiment Design . 36
5.2 Experiment Results . 37
5.3 Analysis . 40

5.3.1 Air France . 41
5.3.2 EuroWings . 44
5.3.3 Opodo . 44
5.3.4 Expedia . 46
5.3.5 Kayak . 49
5.3.6 Booking.com . 50

1

6 Conclusion 51
6.1 Future work . 51

Appendices 56

A Implementation 57
A.1 Analyst’s Guide . 57
A.2 Developer’s Guide . 59

A.2.1 Interaction via Queues . 59
A.2.2 Bot Implementation . 61
A.2.3 Controller Implementation . 64

2

Chapter 1

Introduction

Imagine you and a friend want to go on holiday to Stockholm. You meet at his place to find
flights and buy the tickets. Your friend finds the cheapest flight on his laptop: 150 EUR.
He tells you the flight details and the website he used, and then waits so you can order the
same ticket on your phone. You visit the very same site on your phone and find the flight,
but the price offered to you is 190 EUR. Both you and your friend feel cheated, but since
this is the cheapest flight, you both book your tickets anyway – yours being 40 EUR more
expensive than your friend’s ticket.

What happened here might have been price differentiation. Price differentiation [HTWH18]
describes a marketing strategy to determine the price of goods on the basis of a potential
customer’s attributes like location, financial status, possessions, or behavior. Figures 1.1
and 1.2 show that the flight price on the mobile application of Air France is EUR 10 higher
than for the same flight found on Air France’s website. This data was collected by manually
launching a query for flights from Brussels to Paris leaving on November 30, on the desktop
website. The same query was launched manually, less then one minute later, on the mobile
application of Air France, from the same IP address.

Price differences were also found on Opodo (an aggregator that compares flight ticket
prices for several airlines). Manual queries revealed that Opodo’s mobile application prices
were higher for the same flight ticket than on its website.

Is this a real price difference, or might the price difference come from the fact that we
did not check on the website and the application at the same time? Or are there other
confounding factors?

Such observations warrant further investigation. There are anecdotal reports 1 about
price differentiation in e-commerce and a study by Bertsch et al. [BMW17] that found prices
on an airline’s Android application to be up to 10% higher than prices for the same flight
tickets on its website (accessed from a mobile phone). The study by Bertsch et al. however
missed information about the circumstances in which prices were extracted, for example:
what was the time difference between extractions?

We would like to do a structural investigation of price differentiation, by creating a
framework that allows automating comparisons of different outlets against each other, in-
cluding comparison of mobile applications and websites.

Doing such a comparison study and creating a supporting framework comes with several
design decisions. It is important to look more than once to see what price is on offer, since
missing a price update might mean that we miss a price difference. At one given time there
may be no price differences at all, while another time a price difference is found; if we only
test once a day we might wrongly deduce that there are no price differences.

1https://blog.blackcurve.com/price-discrimination-is-more-common-than-you-think

3

https://blog.blackcurve.com/price-discrimination-is-more-common-than-you-think

Figure 1.1: Flight price found on Air
France website

Figure 1.2: Flight price found on Air
France mobile application

If we had to test only once a day, manually checking prices without a framework would
be feasible. However, to check prices with high granularity for multiple companies with
multiple outlets (e.g. 10 companies * 2 outlets * 4 extractions per day), using a framework
would be more efficient even though such a framework takes a considerable amount of time
to create and also maintain.

Another consideration is, when comparing prices manually, querying prices on one out-
let may not have been done at the same time as the other outlets. A price difference
found might be the result of a price update that happened on all outlets at the same
time, however this update was missed because the price from one outlet was extracted at
a different time than the price on the other outlets. With automatic extraction instead of
manual extraction, it is possible to extract prices from all outlets at (almost) the same time.

The main research question is: how to compare multiple outlets simultane-
ously?

In designing a supporting software architecture, we need to consider confounding factors.
From literature, several factors are known to possibly influence pricing. These include

the location from which a visitor is accessing an outlet; for example it was found that
changing the GPS location for the mobile ‘Uber’ application[CMW15] resulted in different

4

prices. Another influencing factor is web browser state; e.g. a customer bought an expensive
iPhone 4 on a website, after which a cookie is saved that marks the customer an ‘affluent
customer’, resulting in higher prices for subsequent purchases.

A factor that gets special consideration our study is timing. For example, the prices
extracted from Air France are not extracted at exactly the same time; between the moment
that the price was extracted from the application and the website, the price may have been
updated. This brings us to the question: How can we rule out ‘false positives’ because
extractions were not done at exactly the same time?

How can extractions be synchronized? An additional requirement is that more than two
types of outlets should be possible to compare, and web bots extracting data from every
outlet should be able to run on a cluster of machines. Therefore, distribution must also be
taken into account.

The main contribution of this study is the creation of a synchronized, distributed scrap-
ing system to compare multiple outlets:

• Our system is based on the principle of comparisons. In each comparison, two or
more outlets are compared to each other. This means that to execute a comparison,
two or more scraping bots run simultaneously, starting from a common search query.
Each bot will then return offers that match the given search query.

• Workload of a comparison can be distributed. Scraping bots can run on multiple
machines and work together on the same comparison.

• Scraping bots that work on the same comparison, can be synchronized before and after
certain phases of the data collection. Bots will wait for each other until a certain point
in the web scraping process has been reached. The design goal of the system is to
extract prices from different outlets at the same time.

After the creation of a synchronized, distributed scraping system, the system is validated
by means of a price comparison study.

A question one might ask is: what is the difference between what we are doing and
what commercial shopping comparison tools have been doing for a long time?

Shopping comparison tools collect data provided by sellers, and allow a user to compare
prices for a given product or service.

Tools used in academic price differentiation studies do not depend on data provided
by sellers; academic studies attempt to appear as a real visitor, therefore data is collected
manually or by means of a web bot.

In price differentiation studies, data can be extracted from different outlets. An outlet
can be defined as any channel through which products or services can be offered.

Several price differentiation studies use web bots that visit a given outlet with specific
parameters (e.g. with a specific Geo-location) and compare prices to the same outlet visited
with different parameters. Differentiation studies comparing multiple different types of
outlets are rare, even though finding differences between multiple different types of outlets
is an interesting research topic.

Comparing between different types of outlets poses extra challenges. For example, how
can two outlets be compared, when one outlet is a smartphone application and another
outlet is a desktop website? What if scraping bots are distributed over several machines?
How do scraping bots receive jobs and how is data collected? Besides, when multiple outlets
are compared, it is important that comparisons are synchronized. For data changing with
a high frequency (e.g. flight tickets), the moment that data is extracted from one outlet,
needs to be as close as possible to the moment data is extracted from other outlets. This
is not trivial, especially when comparing many outlets.

5

On what point in the web scraping process does synchronization need to happen? And
what happens when one scraping bot is slower in execution than other bots? Another
layer of complexity to synchronization of web bots is added, when bots are distributed over
multiple machines. Synchronization primitives from multi-threaded programming, such as
barriers and phases, could be transferred to distributed environments. However, multi-
threaded programs on a single machine do not need to take into account uncertainties such
as network connectivity between machines or differences in performance between individual
machines. In addition, scraping bots extract data from outlets that are prone to crashing
(such as apps on mobile devices) or bots continue running forever, potentially resulting in
a deadlock when a bot never reports its status as ‘finished’. There are several solutions
to prevent deadlocks. For example, each bot can be assigned a time limit before which
web scraping has to be finished. At the same time however, the time limit has to be small
enough for the data not to become stale.

When a bot finishes successfully, it will return items which are stored in a central
database. Any type of data can be stored, including but not limited to flight ticket offers.
A problem when attempting to uncover price differentiation, is that one has to be compare
offers that are equal. For example, imagine a flight offer that is cheaper than another flight
offer leaving at the same departure time, and leaving from the same departure city. Upon
inspection, however, the cheaper flight involves a train ride. Can these offers be considered
equal? Since equality of items is dependent on the type of items being compared, it is up to
the analyst to determine which items are equal; sample definitions of equality are provided
in section 3.4.

6

Chapter 2

Related work

The topic of this thesis, synchronizing distributed web scraping with the aim of uncovering
price differentiation, touches upon a broad range of subjects.

Several studies of online price differentiation have been done before that focus on un-
covering price differentiation based on different desktop browser fingerprints. These studies
are discussed on section 3.1.

A smaller number of studies have been done on price differentiation from different mobile
application fingerprints; mobile device fingerprinting could also potentially be used in price
differentiation.

Articles on web scraping techniques have also been included; a problem for example
that is also relevant to our research, is the fact that outlets are continuously evolving and
selectors need to be updated accordingly.

To design our distributed web scraping system, articles on distributed web crawling are
also included since the techniques discussed to distribute web crawling work can also be
used in distributing web scraping work over several machines.

The last section in this chapter discusses related work in synchronization. We want to
run multiple scraping bots concurrently and synchronize them between different phases; in
related work synchronization barriers are used to implement such a requirement.

2.1 Price differentiation on desktop browsers

Hannak et al. [HSL+14] investigated price steering and price differentiation on several e-
commerce websites based on browser fingerprinting. Price steering is defined as directing
users to goods with certain prices, while price differentiation is defined as serving different
prices for the same good to different fingerprints. For our study, a distinction is made
between price steering and price differentiation up to a certain level; a search query will
be launched for a given product, and the cheapest price will be extracted from the results
page. For example, if an Airline company is displaying only flight tickets of type ”flex” on
its mobile application, and showing both ”flex” and cheaper ”semi-flex” type flight tickets
on its website, then the website will be considered cheaper for the same product.

Hannak et al. [HSL+14] conducted a study with real-world users, to detect price dif-
ferentiation of 16 e-commerce websites. The study attempts to find out whether past user
behavior (did the user make a previous purchase?) is influencing future pricing.

Real-world users were asked to configure a browser proxy controlled by Hannak et al.
When visiting a web shop, the proxy fired off two requests, one with and one without user
data. In addition, a “comparison” and “control” request is executed , to account for factors
like A/B treatment, sudden updates or price differences among data centers.

7

In some cases, the price was lower when no user data was submitted, while the same
good was more expensive when the e-commerce provider had access to past user behavior.

Hupperich et al. [HTWH18] created an automated price scanner, scraping prices from
hotel and rental car providers using real-world browser fingerprints. They did find system-
atic price differentiation, when changing the location.

Mikians et al. [MGEL13] use a distributed approach to scrape e-commerce prices by
letting internet users install a browser extension called “$heriff”. They investigated price
differences based on device fingerprint, location and personal information. Users are cate-
gorized as ’affluent’ or ’budget minded’ based on their browsing and/or purchasing history.
There are indications that affluent customers are shown higher prices than budget minded
users, and that prices differ among the locations where the price request is coming from. In
addition, prices differ when a price search is originating from a price “aggregator” (a portal
where prices are compared). Noise factors like currency, shipping and taxation differences
were taken into account, which will also be taken into account for our study.

Vissers et al. [VNBJ14] researched flight price differentiation of online airline tickets,
based on Browser/OS profiles, personal profiles (users are categorized as budget minded,
affluent and flight com-parer; cookies are set accordingly and are loaded from so called
“cookie jars” that include first and third party cookies). Also the influence of location
on price was tested. After a three-week long experiment, spanning 25 different airlines,
retrieving data from two geographical locations, no consistent price differentiation could
be found. However, between individual user profiles, price differences were found; these
differences were attributed to flight prices abruptly changing, while measurements between
profiles were ‘roughly one minute apart’. Price differences were also found when accessing
the Argentinian website of American Airlines; the same flight on the Argentinian website
of American Airlines was consistently higher than on the American website, which could
be explained by an extra tax from the Argentinian government.

2.2 Price differentiation on mobile devices

Most research articles found on price differentiation only consider price differentiation within
the same outlet, accessed from different visitor profiles. There are few research articles about
price differentiation between native mobile applications and (mobile) web browsers.

Bertsch et al. [BMW17] researched flight ticket price differentiation on mobile browsers
versus native Android applications. Flight price searches are executed on native Android
applications and on mobile web browsers, both running inside an Android device emulator.
Consistently higher prices were found for the same flight ticket on mobile applications. The
interesting part of Bertsch’ research is the use of a mobile application testing framework that
is used to extract flight prices from different airline applications. With the testing framework
‘Appium’, all actions that a real user can do on a mobile application can be simulated using
the WebDriver protocol. Appium also allows for setting different properties of the device
fingerprint dynamically. And unlike other mobile application testing frameworks, Appium
is a testing framework that allows for a black-box approach, meaning that applications can
be tested as-is, without modifying the APK.

Le Chen et al. [CMW15] researched pricing algorithms when using the mobile applica-
tion of Uber. Unlike Bertsch et al, the authors did not use black-box testing framework,
but instead were able to intercept and analyse network traffic generated by the Uber ap-
plication, resulting in a list of API signatures that could be used to call the Uber back-end
directly. By sending API calls to the Uber back-end with spoofed GPS coordinates, a surge
price algorithm is observed. A geological region is divided into different sectors, each with

8

their own pricing according to supply and demand. It was found out that by moving the
GPS position by only a few meters, customers could save 50% or more. For our study,
directly calling API endpoints instead of using mobile device emulators would require less
hardware resources than running Appium and an Android emulator. However, in Le chen’s
study only one mobile application was under consideration, while in our study we would
have to extract API endpoints for 10 mobile applications.

2.3 Mobile Device Fingerprinting

Yang et al. [YY20] researched fingerprinting, i.e. uniquely detecting website visitors not
based on cookies, but based on different characteristics such as screen size that can be
revealed by JavaScript API’s. Yang et al. compared if websites served on desktop devices
but with the web browser user agent spoofed as a smartphone, are different from the
same websites served on “real” mobile browsers on a real mobile device. More specifically,
they attempted to detect tracking frameworks. It was determined that websites displayed
on mobile devices sometimes employ tracking frameworks specific to mobile devices. For
example, some mobile websites embed tracking frameworks that poll the mobile device’s
accelerometer.

2.4 Web Scraping

Thomsen et.al. [TEBS12] research the problem in web scraping that also took the majority
of work in our research: web content that is continually changing. When a website changes,
web element selectors may stop working. The authors designed a state diagram that up-
dates web element selectors semi-automatically when website content is changing. The state
diagram is based on selection functions and validation functions. Selection functions (for
example XPATH) are preferably as generic as possible to capture selections even after a
website update. Selections are passed on to validation functions (e.g. is the selection found
by the selection function textual?). The state diagram begins with the state ‘evaluate se-
lection function’ and ends with the final state ‘accept’ or ‘abort’. When a selection function
does not return anything, or when a selection function returns a selection, but the selection
does not pass validation, a process of ‘re-induce selection function’ is started to update the
selection function. Validation functions can also be ‘re-induced’. ‘Re-inducement’ can be
automatic, for example by taking outputs from selection functions and updating the vali-
dation function so that all selection function outputs pass. Re-inducement can also require
user intervention. For our study, there are some mechanisms in place to ‘survive’ website
updates and update selectors; more on that in the Design chapter.

To increase scraping performance Uzun [Uzu20] created a method to extract information
from websites that does not depend on the DOM. Using a string extraction based method
(e.g with regex) as opposed to creating a DOM tree and selecting a DOM element is found
to be up to 60x faster. With additional information such as the starting position of an
element, string based extraction of an element can be increased again by about a factor of
2.35. The problem of considering a web page as one static string, is that this extraction
method may not extract dynamic content generated by client side scripting, which is a
requirement in all websites considered by our study.

Related to our study of finding price differentiation, Oancea et. al. [ON19] attempted
to create the Consumer Price Index for Romania, with data extracted using a web bot,
scraping products from e-commerce websites that are found in the country’s official CPI.
Problems encountered included offline websites and updated websites, and bot detection.

9

The authors observed price differentiation due to geographical location. After data extrac-
tion and cleaning, similar products were clustered using distance based methods (matching
strings with Levenshtein gave the best results). Our study also has to match products,
however this is done differently (see Methodology chapter).

2.5 Web Crawling

Related to this study is the design of web crawlers. Web crawlers start with a seed URL and
crawl up till a certain depth, and distribute crawling jobs over many machines to increase
performance. Our system does not support crawling in depth, but crawling horizontally
(e.g. navigating through a product list with multiple pages) is supported. Our system
supports distributing scraping jobs over multiple machines, not with the purpose to increase
performance, but with the purpose to execute scraping jobs as simultaneously as possible.

Ye et. al. [YJHC18] discuss the design of a lightweight distributed web crawler based
on Scrapy-Redis1. Requests to be processed by Scrapy crawlers distributed over several
machines are put on a central Redis ‘requests queue’ and items generated by crawlers are
put on a central Redis ‘item queue’. Crawling tasks are created by a scheduler, or can also
be created manually by a user through a ‘crawling management component’ (which also
includes ongoing tasks and crawler status monitoring). See Design chapter on how queues
are used in our study to distribute scraping jobs.

In another study, Xie et. al. [XWGY19] attempted to classify countries all around the
world according to political, economical, financial, business environment and legal risk. To
do this, they created a distributed web crawler that crawls for example the website of the
United Nations for indicators (‘Satisfaction to government’, ‘Trust in government’, . . .) of
political risk. The distribution of crawler tasks is based on Hadoop MapReduce2. Hadoop
MapReduce is a framework for ‘parallel processing of large datasets’, where the workload
can be distributed among many machines. In our study, for the distribution of web scraping
jobs, Kubernetes is chosen instead of Hadoop MapReduce, since the author is more familiar
with Kubernetes. In this study, Singapore wins the highest credit rating.

Kc et. al. [KHT08] create a distributed crawler with one master machine and several
‘slave’ machines. To minimize network traffic, instead of sending every url to be retrieved
from the master to a selected slave, the master sends a ‘seed URL’ to the crawler machine
geographically closest to where the web server to be crawled is located. The crawled data is
compressed and sent back to the master machine. In addition to data compression, crawlers
support loop detection (preventing crawlers from running infinitely), state safety (allowing
crawlers to resume operations) and recovery from situations where the connection with
the master machine is broken. Crawlers are ‘polite’, respecting ‘robots.txt’ and pausing
between requests to the same web server.

2.6 Synchronization

A requirement of this study is to create a distributed web scraping framework that al-
lows bots that may be distributed among several machines, to synchronize to each other.
Scrapers ‘synchronize on search’, meaning that all bots are stopped just before ‘clicking the
search’ button and then have to wait for each other.

In ‘A new Exercise in Concurrency’, John A. Trono [Tro94] proposes a solution to
the ‘Santa Claus’ concurrency problem. The ‘Santa Claus’ problem involves Santa Claus

1https://github.com/rmax/scrapy-redis
2https://hadoop.apache.org

10

https://github.com/rmax/scrapy-redis
https://hadoop.apache.org

itself, elves and reindeer. The barrier synchronization aspect, common to our study’s case,
exposes itself in the requirement that Santa can only leave with his sleigh to deliver the
presents when exactly 9 reindeer arrive to pull the sleigh. Trono presents a solution where
this condition is taken care of using a reindeer counter and a semaphore on this counter
(the semaphore prevents more than 9 reindeer pulling the sleigh).

In ‘Loose Synchronization for Large-Scale Networked Systems’ Albrecht et. al. [ATSV06]
also research the synchronization concept of barriers, with ‘participants’ (processes) run-
ning on multiple machines with varying hardware specifications, communicating over slow
or unreliable TCP/IP connections. Waiting for every participant to reach the barrier, be-
fore allowing all participants to continue, could negatively influence the ‘liveness’ factor of
the entire computation process if there are participants who never or after a very long time
reach the barrier. To prevent slow or crashing participants from negatively influencing the
liveness factor, the authors introduce the concept of ‘partial barrier’. With a partial barrier,
not all participants need to arrive anymore at the barrier; continuation after the barrier
is triggered when for example 90% of participants arrive on time. In the case of our web
scraping study, it is preferred that 90% of bots reach the finish line successfully, rather than
one bot blocking everything (which is common). The authors also introduce the concept
of ‘rate of release’ to ensure that when participants receive a signal that they are allowed
to continue after the barrier, not all participants continue their work at the same time to
prevent performance problems (the authors give an example of all participants downloading
a file from one host). In the case of our distributed bot, this concept is better avoided to
make the time difference of product information extraction between each bot as small as
possible.

Barcelona-Pons et.al [BPSAP+19] designed a framework(‘CRUCIAL’) that supports
synchronization among computations executed as Functions As A Service (FAAS). FAAS
allows us to execute computations, without worrying about provisioning hardware resources.
FAAS is stateless; functions cannot communicate to each other directly. The authors
create a high-performance centralized object store, in order to let FAAS functions com-
municate and synchronize to each other. With minimal changes, existing multi-threaded
Java code can be ported to function in a distributed FAAS environment. Starting a local
Java thread corresponds to calling a server-less function. All synchronization methods from
java.util.concurrent, such as cyclic barriers and semaphores, are also available in CRUCIAL.

For the purpose of modeling and simulation of synchronization , Vijay Gehlot[Geh19]
explains Colored Petri Nets. Colored Petri Nets are used to model and simulate how
scraping is synchronized among different outlets.

11

Chapter 3

Methodology

The main research question of this thesis is how to compare multiple outlets simultaneously.
This research question can be split into the following sub-questions:

• Why automatic extraction instead of manual extraction from outlets?

• How can data automatically be extracted from different types of outlets? E.g. How
can product offers be extracted from mobile applications?

• When comparing items from different outlets, how can we be sure that the same items
are compared? When are items equal?

• How to design a distributed system that can compare outlets simultaneously?

In the following sections, these research questions are discussed. The discussion of the
software architecture to compare outlets simultaneously is put in a separate chapter 4 .

3.1 Reasons to run an automated experiment

There are several reasons why an automated experiment is chosen over a manual experiment.
An argument against an automated experiment is that pricing data could be extracted

manually from outlets. If the number of outlets and frequency of data extraction is limited,
why would one bother to develop an automated price extraction tool?

Developing a scraping bot for one outlet takes around two days, and when an outlet
changes, the scraper needs to be updated accordingly. Manually extracting information
from a given outlet takes around one minute. Furthermore, humans will not be stuck when
an outlet is updated (a simple popup with COVID-19 information can already crash a bot).

A reason why an automated experiment is chosen is the problem of simultaneity. Dif-
ferent outlets have to be compared to each other within the smallest time interval possible.
Scraper bots can be run simultaneously, either in different threads or on different (dis-
tributed) machines or a combination of both.

3.2 Limitations of running an automated experiment

Running an automated experiment comes with challenges.
These challenges include web bot detection and website cloaking [HTWH18]. Web bot

detection can be done in several ways, including behavioral difference detection between
bots and humans, analysis of traffic generated by web bots and analysis of (web browser)
properties. If a web bot is detected as such, possibly a ‘cloaked’ version of the website

12

with different content will be served, that is optimized for search engines. To avoid being
blocked or to get cloaked content, using different techniques, a web bot can be tweaked to
appear as a real user. Making a web bot appear as a real user is a cat-and-mouse game
where website owners continuously modify their tactics. Several techniques exist that make
website owners believe that their website is being accessed by a real visitor instead of a web
bot, however achieving 100% success rate is probably impossible1.

Another major problem in automated web scraping, is that outlets are continuously
changing. The slightest change to a website can break a scraper. There are techniques
to make web bots more resilient to continuously changing websites [TEBS12], however
according to our knowledge there is no method to make a web bot adapt to website changes
automatically without any human intervention at all. Hybrid smartphone applications (e.g.
Android applications utilising ‘WebView’) face the same problem.

Another limiting factor is the amount of hardware resources available. To prevent
bot detection, this study’s scraping framework only runs headful scrapers, as opposed to
headless scrapers that require less hardware resources. To run a headful scraping session on
a command-line based Linux distribution, an X-Window server has to be started to supply
a ‘virtual’ display2.

In this study’s configuration, there is only one scraping thread per machine (each ma-
chine has limited resources); in order to compare several outlets simultaneously, several
machines were needed. The cluster configuration consisted of four ‘machines’: a Kuber-
netes3 cluster with two nodes specialized in desktop website scraping, a Windows VM with
a smartphone attached and a home laptop with a smartphone attached. This enables us to
compare for a given company, for example, its German website versus its French website
versus its German mobile application versus its German mobile web browser.

A last limitation of automated scraping is the number of scraping bots that can be built
and maintained. Building and maintaining scrapers is time consuming. Ideally, scrapers
are built for all companies and all outlets in the world. However, the bots in this study are
built and maintained by one person. Creating a new bots takes several days and a bot also
needs to be maintained.

3.3 Scraping Techniques

In this study, data is extracted from three types of outlets: smartphone applications, mobile
websites that run on smartphones, and desktop websites.

3.3.1 Scraping from mobile applications

Scraping data from smartphone applications is not well researched. Therefore, part of
this study was to explore all options available to scrape information from smartphone
applications.

Intercepting and replaying HTTP web service calls

One method considered by this study to scrape data from mobile applications, is the in-
terception and replay of HTTP requests from a mobile application. The idea is to re-route
all HTTP traffic from a mobile device to a proxy server and look for useful HTTP requests
(for example, one HTTP request that retrieves all flights for a given flight itinerary).

1https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
2https://medium.com/dot-debug/running-chrome-in-a-docker-container-a55e7f4da4a8
3https://kubernetes.io/

13

https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
https://medium.com/dot-debug/running-chrome-in-a-docker-container-a55e7f4da4a8
https://kubernetes.io/

Unfortunately, when a person using a smartphone application queries for a flight, 10s
of requests can be fired to different domain names, making it challenging to find ‘useful’
HTTP requests.

In addition, requests are usually SSL encrypted. SSL encryption can be bypassed, by
forcing a mobile device to use an SSL certificate created by the proxy server, allowing the
proxy server to decrypt all requests4. Some (Android) apps try to prevent this man-in-the
middle attack, by using a technique called ‘SSL pinning’ [SR15]. With SSL pinning, an ap-
plication author embeds his own certificate to encrypt communication from his application
to his own server. SSL pinning can still be bypassed by for example reverse engineering,
but doing this for many apps is out of scope for this study.

Even after extracting useful HTTP requests, challenges remain.
To replay a HTTP request, extra effort may be required. For example, intercepted

HTTP requests could include authentication tokens that are impossible to reuse (e.g. One-
time cookies [DCAT12]) .

Another barrier to replaying HTTP requests, is the use of anti-bot frameworks. During
interception of requests to Vueling Airlines, the author discovered the use of Akamai’s
Bot Manager Premier SDK5. Bot Manager Premier SDK is using an undisclosed amount
of information originating from a mobile device to determine whether a bot is accessing
the back-end API server. The information used includes ‘device characteristics, device
orientation, accelerometer data, touch events, etc.’. This makes it very difficult to use the
API from a scraping bot.

However, when all HTTP requests of interest have been extracted, parameters are well
understood and sessions can be replayed or spoofed, this method of extracting information
from mobile apps is very efficient on hardware resources (e.g. there is no need to provision
hardware resources for an Android emulator: HTTP requests can be directly sent to the
API server).

However, because of the aforementioned difficulties and because multiple mobile appli-
cation outlets are considered in this study, another method has been chosen.

Using testing frameworks for scraping

A method which does not involve interception of backend requests, is the use of mobile
application testing frameworks. Bertsch et.al. [BMW17] extracted prices from mobile apps
with Appium. Appium is a black-box testing framework, meaning that apps do not need to
be modified in order to allow testing. Appium 6 is using vendor provided testing frameworks
(for Android: UiAutomator27), running a server that exposes its functionality through a
REST API. Tests can either be executed on a real mobile device or on an emulator.

With Appium, running tests on a mobile application is comparable to running tests
on a website, with one important difference: on a mobile application elements that are off
screen cannot be selected. This can be illustrated with an example in Figure 3.1:

4https://portswigger.net/burp/documentation/desktop/getting-started/proxy-setup/

certificate
5https://developer.akamai.com/tools/sdk/bot-manager
6https://appium.io/docs/en/about-appium/intro/?lang=en#appium-concepts
7https://appium.io/docs/en/drivers/android-uiautomator2/

14

https://portswigger.net/burp/documentation/desktop/getting-started/proxy-setup/certificate
https://portswigger.net/burp/documentation/desktop/getting-started/proxy-setup/certificate
https://developer.akamai.com/tools/sdk/bot-manager
https://appium.io/docs/en/about-appium/intro/?lang=en#appium-concepts
https://appium.io/docs/en/drivers/android-uiautomator2/

Figure 3.1: Scrolling offers on the Opodo Mobile Application

As can be seen in Figure 3.1, there are three flights available from Vueling Airlines at a
price of €67,49 per ticket. This is followed by one flight at e 79.49. However, one cannot be
sure if there is only one flight at e 79.49, because only what is on screen (in the viewport),
can be selected.

A scraping bot has to scroll down, pixel by pixel, to retrieve more possible flights. A
possible solution can be seen in listing 3.1:

Listing 3.1: Code to extract all flights from a scrollable list on a mobile device
1 async scrapeFromSearch (inputData) {
2 await t h i s . c l ickElementByResource (‘ com . opodo . r e i s e n : id / search ’) ;
3 var r e c t = await t h i s . appiumClient . getWindowRect () ;
4 var rectX = re c t . width / 3 ;
5 var rectY = re c t . he ight / 1 . 1 ;
6 var f l i gh tOf f e r sOnSc r e en = [] ;
7 var f l i g h tO f f e r s = [] ;
8 var equalCount = 0 ;
9 whi le (t rue) {

15

10 var o ldFl ightOf f e r sOnScreen = f l i gh tOf f e r sOnSc r e en . s l i c e () ;
11 f l i gh tOf f e r sOnSc r e en = [] ;
12 var p r i c e s = await t h i s . getElementsByResourceId (‘ com . opodo . r e i s e n : id / f l i g h t s p r i c e ’) ;
13 var departureTimes = await t h i s . getElementsByResourceId (‘ com . opodo . r e i s e n : id / departure hour

’) ;
14 var ar r iva lT imes = await t h i s . getElementsByResourceId (‘ com . opodo . r e i s e n : id / a r r i va l hou r ’) ;
15 var o r i g i n sDe s t i n a t i o n s = await t h i s . getElementsByResourceId (‘ com . opodo . r e i s e n : id /

depa r tu r e and a r r i va l ’) ;
16 var a i rL i n e s = await t h i s . getElementsByResourceId (‘ com . opodo . r e i s e n : id / a i r l ine name ’) ;
17 f o r (var i = 0 ; i < departureTimes . l ength && i < arr iva lT imes . l ength && i <

o r i g i n sDe s t i n a t i o n s . l ength ; i++) {
18 var f l i g h tO f f e r = new F l i gh tO f f e r () ;
19 var bounds = await departureTimes [i] . g e tAt t r ibute (‘ bounds ’) ;
20 const departureY = par s e In t (bounds . match (/\d+/g) [1]) ;
21 i f (p r i c e s . l ength == 1) {
22 bounds = await p r i c e s [0] . g e tAtt r ibute (‘ bounds ’) ;
23 const priceY = par s e In t (bounds . match (/\d+/g) [1]) ;
24 i f (departureY > priceY) {
25 f l i g h tO f f e r . p r i c e = await p r i c e s [0] . getText () ;
26 }
27 }
28 e l s e i f (p r i c e s . l ength > 1) {
29 f o r (var j = 0 ; j < p r i c e s . l ength ; j++) {
30 bounds = await p r i c e s [j] . g e tAt t r ibute (‘ bounds ’) ;
31 const priceY = par s e In t (bounds . match (/\d+/g) [1]) ;
32 i f (departureY > priceY) {
33 f l i g h tO f f e r . p r i c e = await p r i c e s [j] . getText () ;
34 }
35 }
36 }
37 i f (a i rL i n e s . l ength == 1) {
38 bounds = await a i rL i n e s [0] . g e tAt t r ibute (‘ bounds ’) ;
39 const airLineY = par se In t (bounds . match (/\d+/g) [1]) ;
40 i f (departureY > airLineY) {
41 f l i g h tO f f e r . a i r l i n e = await a i rL i n e s [0] . getText () ;
42 }
43 }
44 e l s e i f (a i rL i n e s . l ength > 1) {
45 f o r (var j = 0 ; j < a i rL i n e s . l ength ; j++) {
46 bounds = await a i rL i n e s [j] . g e tAt t r ibute (‘ bounds ’) ;
47 const a i r l i n eY = par s e In t (bounds . match (/\d+/g) [1]) ;
48 i f (departureY > a i r l i n eY) {
49 f l i g h tO f f e r . a i r l i n e = await a i rL i n e s [j] . getText () ;
50 }
51 }
52 }
53 const deptT = await departureTimes [i] . getText () ;
54 f l i g h tO f f e r . departureTime = deptT ;
55 const arrT = await ar r iva lT imes [i] . getText () ;
56 f l i g h tO f f e r . arr iva lTime = arrT ;
57 const txt = await o r i g i n sDe s t i n a t i o n s [i] . getText () ;
58 f l i g h tO f f e r . o r i g i n = txt . s p l i t (‘− ’) [0] . tr im () ;
59 f l i g h tO f f e r . d e s t i n a t i on = txt . s p l i t (‘− ’) [1] . tr im () ;
60 f l i gh tOf f e r sOnSc r e en . push (f l i g h tO f f e r) ;
61 i f (. findWhere (f l i g h tO f f e r s , f l i g h tO f f e r) == nu l l) {
62 var s c r e enshot = await t h i s . takeScreenShot (‘ OpodoAppScraper ’) ;
63 const s c r e enSho tF l i gh tOf f e r = { . . . f l i g h tO f f e r } ;
64 s c r e enShotF l i gh tOf f e r . s c r e enshot = sc r e enshot ;
65 f l i g h tO f f e r s . push (s c r e enShotF l i gh tOf f e r) ;
66 l ogge r . i n f o (‘ adding new f l i g h t o f f e r ’) ;
67 }
68 e l s e {
69 l ogge r . i n f o (‘ sk ipp ing f l i g h t o f f e r ’) ;
70 }
71 }
72 i f (. i sEqua l (o ldFl ightOf fersOnScreen , f l i gh tOf f e r sOnSc r e en)) {
73 equalCount++;
74 i f (equalCount > 3)
75 break ;
76 }
77 await t h i s . appiumClient . touchAction ([
78 { ac t i on : ‘ press ’ , x : rectX , y : rectY } ,
79 { ac t i on : ‘ wait ’ , ms : 500 } ,
80 { ac t i on : ‘moveTo ’ , x : rectX , y : rectY ∗ 0 .9 } ,
81 ‘ r e l e a s e ’ ,
82]) ;
83 }
84 return f l i g h tO f f e r s ;
85 }

In Listing 3.1, the code is shown for scraping flight offers from Opodo’s application. The
first part, which is filling out input data, is not shown; listing 3.1 only displays the second
part of the scraping process (scrapeFromSearch), which is ‘tapping’ the search button after
the origin, destination and flight date have been entered.

After tapping the search button (line 2 in Listing 3.1), a list of offers will be displayed.
All flight offers are extracted from the current view port, with the complexity that flight
offers are grouped per price and per airline. Extracted flight offers from the current view
port are added to a global list of flightOffers(declared on line 67 in Listing 3.1), after which

16

the scrolling down is executed by a fixed number of pixels (line 77 in Listing 3.1).
Scrolling is done in small steps, so as not to ‘overshoot’ any offers. Because scrolling is

done in small steps, it is possible that the same offer is found multiple times. However, only
offers that have a unique combination of airline, departure time, arrival time, and price will
be added to flightOffers (line 65).

Note that at the end of the loop (line 72), we verify whether the same list of offers is
displayed compared to the offer list before the last scroll. If there is no difference, scrolling
stops, however, because offers may not be displayed consecutively (for example there are
advertisements in between offers), scrolling is done three more times even when no new
offers have been discovered.

3.3.2 Scraping from websites

Website scraping is trivial, however appearing as a human user instead of a web bot is not.

Desktop Website Scraping

A common way to scrape the web, is to program a script that drives a headless browser.
Unfortunately, automated headless browsers can be detected as such [JKV19]. Detection is
based on deviations from ‘normal’ user behavior. This can be as simple as checking static
properties such as User Agent Strings, or can go as far as comparing behavior, such as
tracking mouse cursor movements. Researching how to bypass bot detection is out of scope
of this study. Instead, the framework ‘puppeteer-extra-plugin-stealth’8 has been used; the
author describes its purpose as follows: ‘It’s probably impossible to prevent all ways to
detect headless chromium, but it should be possible to make it so difficult that it becomes
cost-prohibitive or triggers too many false-positives to be feasible’.

It is shown that Puppeteer with headless Chrome and Plugin Stealth activated, cannot
be detected as bot (except for MQ SCREEN: ‘Use media query related to the screen’ 9). In
our experiments, for all companies researched, this setup was still detected by one company
website as a bot, namely, Opodo, which displayed a full-page advertisement instead of
displaying flight offers.

It was noticed that Opodo was triggering bot detection when scraped headless, however
when scraping in headful mode, bot detection disappeared. Therefore, even though more
resources are required, it was decided to create a headful bot that could run in a windowless
Linux container with the help of a virtual frame buffer. 10

Smartphone Website Scraping

Desktop web browsers can access websites as a mobile device. For example, Chrome Dev-
tools11 offers ‘device mode’, that can simulate a mobile viewport, limit network (e.g., 3G)
and CPU speed, put a custom Geo-location and set screen orientation. Chrome ‘Devtools’
gives an approximation to a real mobile device; it is still recommended to test a website
on a real mobile device, since for example, CPU architecture is different between desktops
and smartphones. Therefore, in this study, mobile website outlets are scraped from within
a smartphone.

8https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
9https://github.com/antoinevastel/fpscanner

10https://medium.com/dot-debug/running-chrome-in-a-docker-container-a55e7f4da4a8
11https://developer.chrome.com/docs/devtools/device-mode/

17

https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
https://github.com/antoinevastel/fpscanner
https://medium.com/dot-debug/running-chrome-in-a-docker-container-a55e7f4da4a8
https://developer.chrome.com/docs/devtools/device-mode/

3.4 Equality of products

Because product offers displayed on one outlet may be different from those displayed on
another outlet, a definition of offer equivalency is needed to help in correctly attributing
price discrimination. To be clear, the framework is only collecting data; grouping offers
that are equal is the responsibility of the analyst.

Matching products to each other that have been found by web scraping is not a triv-
ial task, since products found on the web may not have unique identifiers (such as an
International Article Number12).

We have to accept that exact matching of products is not possible. Therefore, per
product category, an approximation of equivalency will be defined.

In this study, two product categories are under consideration: flights and hotel rooms.
For a flight to be equal to another flight, the following properties have to be equal:

departure time, departure airport , arrival time, arrival airport, airline company, and flight
number. All other properties of a flight offer will be ignored.

Definition 1 (Equivalence of flights) Two flights, Fa and Fb are considered equivalent,
notation Fa ≈ Fb, if and only if all of the following hold:

• Fa.departure.time = Fb.departure.time

• Fa.departure.airport = Fb.departure.airport

• Fa.arrival .time = Fb.arrival .time

• Fa.arrival .airport = Fb.arrival .airport

• Fa.flightclass = Fb.flightclass

For a hotel room to be equal to another hotel room, the following properties must be
equal: location, hotel name, check-in time, and checkout time.

Definition 2 (Equivalence of two hotel room reservations) Two hotel room reser-
vations, Ha and Hb are considered equivalent, notation Ha ≈ Hb, if and only if all of the
following hold:

• Ha.location = Hb.location

• Ha.name = Hb.name

• Ha.check in.time = Hb.check in.time

• Ha.check out .time = Hb.check out .time

For both flights and hotel rooms, the location has to be as exact as possible; for example,
the city center and suburbs are not considered equivalent.

These definitions of equality could be extended with more properties to increase ac-
curacy, however, the amount of work to build a web bot needs to be taken into account;
more properties means a higher workload to construct and maintain a suitable web bot
that extracts these extra properties.

In any case, the price differences that are found with these equality definitions, will
always need to be verified manually to be certain that the price difference is not originating
from the fact that different products are being compared.

12https://en.wikipedia.org/wiki/International_Article_Number.

18

https://en.wikipedia.org/wiki/International_Article_Number.

Chapter 4

Design

In this chapter, the design is discussed of a distributed software architecture that can
compare multiple outlets simultaneously.

First, a section is devoted to the requirements that such a software architecture needs
to satisfy. The requirements are tailored to compare multiple outlets in the context of price
differentiation.

Already early on in the research, the need for automatic comparison of outlets became
clear, and an initial version of a program was developed to assist in simultaneous comparison
of mobile phones and desktop websites. A small price differentiation study was done that
helped with the discovery of several shortcomings in the initial design.

The initial design also made clear that a distributed software was needed, for example
to compare a mobile application on one phone and a mobile website on another phone.
Different approaches to distributing data extraction are considered.

Once the solution for distribution is chosen, synchronizing data extraction from multiple
outlets in a distributed environment is discussed.

The final synchronized and distributed software architecture is illustrated by means of
a Colored Petri Net.

4.1 Framework Requirements

The purpose of this study’s framework is the comparison of products and/or services from
multiple outlets, simultaneously. To this end, there are several requirements for the system
listed in Table 4.1

Requirement # Description

1 The system should keep running at all times.
2 Bots can be distributed over multiple machines.
3 Bots can extract data from any type of outlet.
4 Comparison of outlets should be synchronous.
5 Extracted data must be verifiable.

Table 4.1: Framework requirements

The first requirement is resilience. Because scraping bots depend on many external
factors to run properly, crashes are guaranteed to occur. For example, frameworks for
testing mobile phone applications are not designed with web scraping in mind; scraping may
crash when run for many days on a smartphone or smartphone emulator. A requirement

19

is that when a scraping bot is crashing, it will be restarted automatically for a limited
number of times. Moreover, a crash of one scraping bot cannot influence the other running
scrapers. And a crash of one bot is certainly not allowed to crash the whole system.
Network connections in a distributed cluster are not guaranteed to be stable; for example,
a bot that was deployed on a laptop connected to the internet with a 4G connection, crashed
repeatedly. Upon further inspection of the 4G connection, very short but frequent drops
in the connection were analyzed, making the bot lose connection with another machine
that was sending scraping bot commands. A requirement is that in such a case, the bot
automatically reconnects.

It should be possible to distribute several bots over several machines. The reasons for
distribution include standard benefits of distribution such as fail-over, but also the possi-
bility to allow simultaneous comparisons between more outlets by adding more machines
to the cluster. Adding a new machine to the cluster should be of minimal effort, and a
new machine should start processing scraping jobs as soon as it is added. Moreover, scrap-
ing bots distributed over multiple machines should report to a centralized log system to
efficiently keep track of errors.

The framework should support website scraping and mobile application scraping, how-
ever, it should be possible to add any other type of outlet (for example, affiliate data
feeds1).

Scraping of different types of products and/or services should be supported, including
but not limited to flight tickets and hotel room reservations.

Comparison among different outlets should be synchronous. This is especially important
for flight tickets and hotel room bookings. When two or more outlets are compared to each
other, extraction of offers should happen simultaneously; that is: there can be a maximum
delay of an analyst’s defined number of seconds between the moment offers are extracted
from one outlet and the moment offers are extracted from another outlet.

All data that has been scraped, must be verifiable, for example, by taking a screenshot
of a view of a given outlet where the offer was found. It is always possible that scraping
bots return wrong data, therefore, manual verification of previously collected prices should
be possible.

4.2 Architecture Design

In this section, the design of the software architecture will be discussed. The final software
architecture is the result of an evolutionary process, starting from a single-node design and
ending in an architecture that supports an unlimited number of scraping bots that can be
distributed over multiple nodes and that can synchronize to each other.

4.2.1 Initial Design

At the time of the initial design, there was no requirement to distribute the workload over
several nodes.

The initial design came forth from a small experiment, where the requirement was
to compare prices for five companies from its mobile application outlet and its website
outlet. After manual inspection of all offerings and after noticing that prices can change
frequently, the idea emerged that synchronization between outlets was needed. A logical
point to do synchronization was ‘synchronization on search’, which means that two bots

1https://www.postaffiliatepro.com/affiliate-marketing-glossary/affiliate-data-feed/

20

progress individually and then wait until search parameters are entered on both outlets.
An example of this can be seen in Figure 4.1.

Figure 4.1: Initial Design

As can be seen in Figure 4.1, the scraping process is split into two parts. Each bot
implements a common interface with two methods: scrapeUntilSearch() and scrapeFrom-
Search().

To execute a comparison between a mobile application and a website, first scrapeUn-
tilSearch() is called on both website scraper and application scraper. During this phase,
search parameters are entered (e.g., for flights: origin, destination, flight date). The timing
of this phase can be different among outlets: a website bot is already finished, while the
corresponding application bot is still scrolling a calendar pixel by pixel, to select the correct
flight departure date. Both bots have to reach the ‘search’ barrier, even when one bot takes
triple the amount of time of the other bot.

To launch two processes at the same time and wait for both processes to finish, the
following statement is executed:

await Promise . a l l ([appScraper . s c r a p e T i l l S e a r c h (input params) ,
webScraper . s c r a p e T i l l S e a r c h (input params)])

scrapeAppTillSearch and scrapeWebTillSearch both return promises that resolve when
filling out input data (such as departure airport) finishes without errors, or reject when an
exception occurs.

When both scraping bots reach the search button barrier, scrapeFromSearch() starts
by ‘clicking the search button’. For each outlet, the first price displayed is extracted and
returned:

const [priceApp , priceWeb] = await Promise . a l l ([
appScraper . scrapeFromSearch () , webScraper . scrapeFromSearch ()]) ;

It was assumed that the first price displayed on an offer list is the cheapest and that
the first offer in every outlet is the same.

21

4.2.2 Shortcomings of Initial Design

Running the implementation of this design for one week, comparing website versus mobile
applications for five airline companies, produced remarkable results. For example, for Air
France, mobile application prices were consistently higher than website prices as can be
seen in Figure 4.2.

Figure 4.2: Mobile application price versus Website price for Air France

However, manual inspection of the Air France’s search results (screenshots were auto-
matically taken by the framework), showed that on the mobile application, different product
offers were displayed than on the website. Scraping bots only returned the first offer found
and assumed that the website and mobile application would return the same offer list with
the first offer in the list to be the cheapest. These assumptions were wrong and explained
the price ‘difference’. Another shortcoming of the initial design was that all bots were
running on the same local machine sharing the machine’s resources. Ideally, bots can be
deployed in the cloud, except for bots that need to be deployed on premises, such as a bot
connected to a physical Android device.

In the initial design’s synchronization setup, another problem is that there is no limit on
how long a web bot can run. When a bot is in deadlock (e.g., scrolling through a calendar
infinitely), the comparison will never end.

Thus, only requirements #4 and #5 from Table 4.1 were satisfied in the initial design.

4.2.3 Distributed Scraping

To create a distributed bot comparison architecture (Requirement #2 from Table 4.1),
several options are possible.

The question asked was: how can web bots be distributed over several machines?
The idea of one central ‘controller’ emerged, where comparisons can be launched by a

scheduler, or manually by an analyst through a CLI. A comparison consists of two or more
jobs. Jobs can be processed by any scraping bot on any machine. A scraping bot will start
processing a job and return the extracted information to the controller as can be seen in
Figure 4.3.

22

Figure 4.3: Controller communicating with Scraping Bots

In Figure 4.3, there are three different servers. On server 1 and server 2 together, four
bots are deployed. On server 3, a controller is deployed through which an analyst can launch
new instances of a comparison and where new instances of a comparison are launched by
the controller’s scheduler. A comparison consists of at least two jobs that are sent to the
correct bots. In Figure 4.3, one of the jobs in a comparison requests a bot to search for
flight offers from BRU to AMS on 2021-05-01.

Scraping jobs are long running operations; when a scraping bot receives a new job,
multiple operations will be executed sequentially (e.g. navigating to a given URL and
waiting, then extracting a certain element with a timeout of 10,000ms). Therefore, the
launch of a new scraping job and the collection of prices is an asynchronous operation.

23

Figure 4.4: Interaction between Controller and Bot

In Figure 4.4, a controller sends a job to a bot. Since it takes time for a bot to collect
items, the bot will return a confirmation that a job has been received and that the job
will be processed. The controller can continue with other work. When the bot finishes the
scraping process, it sends all the collected items back to the controller.

There are different methods of launching long running operations and collecting items
produced by these operations.

Remote Procedure Calls [BN84] allow a procedure to execute remotely on another ma-
chine, while the semantics for the calling program are the same as when the procedure
is executed locally. With RPC, correlation of calls and returns is handled by the RPC
implementation. Different variations of RPC exist, for example RPC-WebSockets2 is an
implementation of RPC over the WebSocket communication protocol. A disadvantage with
RPC is that when a new machine is added, jobs from the controller will not be sent au-
tomatically to web bots on the new machine; the machine needs to be registered first. In
addition, when all machines are down, jobs are lost.

A more recent solution to executing remote operations is the cloud computing concept
of ‘Function As A service’(FAAS)[MPdF18]. The promise of FAAS is that a developer
does not need to be concerned about the deployment of hardware resources; more web bots
will be deployed and more hardware resources will be assigned when there are many web
scraping jobs. Conversely, when there are no web scraping jobs available, resources will be
released, which is suitable for this study’s use case since web scraping jobs are only created a
few times per day. In addition, web bots also fit with the stateless design of FAAS; our web
bots do not need to resume from a previous state. FAAS is well supported by commercial
cloud providers, e.g. AWS Lambda3. However, a requirement in this study is that web bots
also run on privately maintained machines, for example, a personal computer at home that
has a physical smartphone attached to it.

Yet another solution to distribute work among bots, is a message-oriented architecture
[vST16]. In a message-oriented architecture, a job is sent to a specific queue. Scraping bots
can subscribe to one or more queues and start processing these jobs. This is the architecture
that has finally been chosen. Figure 4.5 depicts how work is divided:

2https://www.npmjs.com/package/rpc-websockets
3https://aws.amazon.com/lambda/

24

https://www.npmjs.com/package/rpc-websockets
https://aws.amazon.com/lambda/

Figure 4.5: Message Driven Architecture

As can be seen in Figure 4.5, there are two queues (although there can be an unlimited
number of queues). Each scraping bot has certain capabilities, for example, one scraper
bot can scrape smartphones, while another scraper bot can only scrape websites. This is
reflected in the queues that a scraper bot is subscribed to.

The controller takes comparison definitions as input from an analyst, and can run this
comparison once or schedule the comparison to run continuously multiple times per day.
An example of a comparison definition:

{
‘ s c raper s ’ : [

{
‘ params ’ : {

‘ useRealDevice ’ : ‘ true ’
} ,
‘ s c raperClas s ’ : ‘ ExpediaAppScraper ’

} ,
{

‘ params ’ : {} ,
‘ s c raperClas s ’ : ‘ ExpediaWebScraper ’

}
] ,
‘ inputData ’ : {

‘ o r i g i n ’ : ‘BRU’ ,
‘ d e s t i na t i on ’ : ‘AMS’ ,
‘ departureDate ’ : ‘2021−07−01 ’

}
}

In this comparison, the analyst is asking the system to compare a flight from Brussels
to Amsterdam on two outlets: the mobile application and the desktop website of Expedia.

25

In addition, the analyst can supply parameters that depend on the type of outlet. For
mobile applications, the parameter ‘useRealDevice’ means that scraping is to be executed
on a real mobile device and not on an emulator.

For this comparison, the controller will split the work into two scraping jobs. One job
will be sent to the Website Scraping Job Queue, while another job will be sent to the Phone
Scraping Job Queue. An example of a job that is put on the Phone Scraping Job Queue:

{
‘ comparisonRunId ’ : 2623 ,
‘ comparisonSize ’ : 2 ,
‘ comparisonId ’ : 69 ,
‘ params ’ : {

‘ proxy ’ : ‘ 1 . 2 . 3 . 4 ’
} ,
‘ s c raperClas s ’ : ‘ ExpediaAppScraper ’ ,
‘ inputData ’ : {

‘ o r i g i n ’ : ‘BRU’ ,
‘ d e s t i na t i on ’ : ‘AMS’ ,
‘ departureDate ’ : ‘2021−07−01 ’

}
}

As can be seen in this sample, the controller adds extra information about the com-
parison the job is part of. To understand this extra information, please refer to Appendix
A.1.

Scraping jobs are taken off the queue by one of the scraping bots subscribed to the
queue. A bot will start scraping; when the bot finishes, the original job together with the
items collected by the bot, will be added to a queue collecting finished jobs. The finished job
queue is continuously polled by the controller; the controller will store extracted information
from bots in a relational database (see Appendix A.1).

A sample of a finished job:

{
‘ comparisonRunId ’ : 2623 ,

. . .
‘ items ’ : [
{

‘ p r i c e ’ : ‘151 Euro ’ ,
‘ departureTime ’ : ‘ 1 0 : 2 5 ’ ,
‘ arr iva lTime ’ : ‘ 1 1 : 2 5 ’ ,
‘ o r i g i n ’ : ‘BRU’ ,
‘ d e s t i na t i on ’ : ‘AMS’ ,
‘ a i r l i n e ’ : ‘KLM’ ,
‘ s c reenshot ’ : ‘ ht tps : // scraperbox . be/ s c r e e n s h o t s /
ExpediaAppScraper −1616834552865.png ’

} ,
. . .

] ,
}

4.2.4 Synchronization of Distributed Scraping

When a comparison is launched, the requirement is that all jobs within a comparison are
synchronized to each other. This means that offers have to be extracted from each outlet

26

at the same time.
In the initial design, there were only two scraping bots: a mobile device scraping bot

and a website scraping bot, executed in two threads on the same machine.
In a distributed design, a comparison can consist of an unlimited number of scraping

jobs over multiple types of outlets. An unlimited number of scraping bots can be deployed
on an unlimited number of machines.

A requirement of a distributed comparison framework was that the ‘synchronization on
search’ from the initial design would be supported.

‘Synchronization on search’ is an instance of a ‘barrier’[Tro94], where multiple processes
all wait for a shared condition and then continue together after that barrier. In a comparison
with only two scraping bots that run on the same machine, this could be done with one
line of code:

Listing 4.1: Syncing two bots

await Promise . a l l ([webScraper . s c rapeUnt i lSea rch () ,
appScraper . s c rapeUnt i lSearch ()])

However, when there are multiple scraper bots distributed over multiple machines, how
can scraper bots synchronize to each other?

In John A. Trono’s article ‘a new exercise in concurrency’ [Tro94], processes that need
to synchronize to each other, increment a centralized counter up to a fixed number (the
fixed number is the barrier). To prevent multiple processes to increment the counter simul-
taneously, there is a semaphore on the counter.

In the case of a comparison: when the comparison consists of n scraping jobs, the barrier
is reaching the end of scrapeUntilSearch() n times.

Barcelona-Pons et. al. [BPSAP+19] ported synchronization concepts from java.util.concurrent
to a distributed environment, where distributed processes can synchronize using a central
low-latency in-memory data store. However, existing open source solutions such as Redis
in-memory database can also be used.

Our approach to synchronization is displayed in Figure 4.6.

27

Figure 4.6: Synchronizing on Search

In Figure 4.6 , the use case is a comparison that consists of three scraping jobs, dis-
tributed over three scraping bots. The indent is that these three scraping jobs will synchro-
nize.

To do synchronization, first a new counting variable will be created in a central in-
memory data store (Redis4) and set to zero. Then for each job in the comparison, a
scraping bot will start processing the job.

A participating bot will first execute scrapeUntilSearch(). When scrapeUntilSearch() is
finished, the bot will request to increase the central data store counter associated with the
comparison it is part of. Then, the bot will wait. Other bots in the comparison will do the
same; when the slowest bot finishes scrapeUntilSearch(), then counter == 3 and all bots
will continue and start executing scrapeFromSearch().

An assumption with this approach is that all scraper bots in a comparison start pro-
cessing a job at the same time. However, a guarantee is needed that this assumption will
hold. For example, Figure 4.7 shows a situation where a mobile phone crashed.

4https://redis.io/

28

Figure 4.7: Queue 3 is Blocked

In Figure 4.7, Comparison 4 wants to synchronize among jobs 1, 2 and 3 that were
pushed by the Controller to three different queues. However, since the mobile phone device
has crashed, jobs from Queue 3 are not processed anymore; job 1 and job 2 will wait for
job 3 to finish. In the worst case, this results in the current comparison and all subsequent
comparisons utilising a mobile phone, to never finish. Therefore, some safety mechanisms
are needed to prevent de-synchronization and keep the system alive at all times. This will
be explained in the following section.

4.2.5 A Distributed and Synchronized Architecture

Synchronized scraping, while preventing deadlocks, can be accomplished in different ways.
The solution proposed here, makes use of synchronization on start, synchronization on

search, and timeouts.
To explain the proposed solution, synchronization has been modeled in a Colored Petri

Net [Geh19].
Colored Petri Nets extend Petri Nets. With Colored Petri Nets, it is possible to use a

high level programming language and to create timed models.
As in a Petri Net, a Colored Petri Net consists of ‘places’ and ‘transitions’. A restriction

is that two places cannot directly connect to each other; they always have to pass through
a transition. Below is an example of a petri net.

29

Jobs

3

Busy

Start
Job

Done

Figure 4.8: A Petri Net with two Places and two Transitions

As can be seen in Figure 4.8, there is a place called ‘Jobs’ that is initialized with three
tokens (as indicated by the superscript). A token can represent anything; in this case, a
token is a job represented by an integer.

Initially, only the transition ‘Start Job’ will be enabled. After ‘Start job’ is fired, there
will be only two tokens left in ‘Jobs’ and there will be one token in place ’Busy’. The final
state of this CPN will be three tokens in the place ‘Done’ and zero tokens in ‘Jobs’.

The term ‘Colored’ in CPN refers to the built-in programming language of CPN that
allows to declare types (called COLSETS). For example, a scraping job can be declared as
a COLSET, where tokens of type scraping job are flowing through a petri net until they
are processed. For a detailed guide about Colored Petri Nets, please see [Geh19].

In the next few pages, synchronization between scraping bots will be explained by the
CPN model depicted in Figure 4.9.

IncomingJobs

JOB

Queue

JOBList

1`[]

NextComparisonID

CID_T

1`1

Timer

E

1`e

Timer

E

1`e

jobFinished

JOB

Queue

JOBList

1`[]

Timer

E

1`e@0

Timer

E

1`e@0

IncomingJobs

JOB

Loaded

JOB

Loaded

JOB

Synced

JOB

Synced

JOB

reachedSearch

JOB

reachedSearch

JOB

Synced

JOB

Synced

JOB

ScraperJobFormQNextComparison scrapeUntilSearch

@+discrete(0,UNTIL_SEARCH_TIMEOUT)

scrapeFromSearch

@+discrete(0, FROM_SEARCH_TIMEOUT)

FormQ ScraperJob scrapeUntilSearch

@+discrete(0,UNTIL_SEARCH_TIMEOUT)

scrapeFromSearch @+discrete(0,FROM_SEARCH_TIMEOUT)

Sync Sync

j
js

js^^[j] j::js

js

i (i+1)@+discrete(MIN_JOB_DELAY, MIN_JOB_DELAY + 5)

e e
e e

j

k::js
js^^[k]

js

js

eeee

k

(i, MOBILE_APP)

(i,PC_WEBSITE)

k

j

k

j

k

j

k

j

k

j

k

k

j

j

k

j

k

Figure 4.9: Synchronization of a Comparison with two Scraper Runs

In Figure 4.9, the synchronization of a comparison with two outlets is displayed. Com-
parisons are continuously launched by means of a generator. The generator creates a new
comparison containing two scraping jobs, in this case one on a smartphone application
and one on a desktop browser. Synchronization is done in two places: scraper runs from
a comparison synchronize on start and synchronize on search. Note that this CPN is a

30

simplification of the actual implementation; in the actual implementation, more than two
simultaneous scraper runs are possible.

In the following figures, we will zoom in on each part of the CPN and explain the CPN
in more detail.

Figure 4.10: Synchronization of two Scraping Bots - Part 1

Part 1 of the synchronization process starts with the generation of a new compari-
son. Initially, the place ‘NextComparisonID’ contains one token of type CID T (CID T
is a timed integer) with initial value 1 (at time zero). This token i is forwarded to the
‘NextComparison’ transition.

In addition, after a random time (between MIN COMPARISON DELAY and
MIN COMPARISON DELAY+5), a next comparison token is created. There is a pause

between the launch of each comparison, to prevent scraping jobs from different comparisons
to interfere with each other. The length of the delay after a new comparison launch depends
on how many scraping bots are available for every outlet type, how many and what type of
outlets a comparison can consist of, the maximum time scraping runs are allowed to syn-
chronize between each other, and the maximum time each phase of a scraping run is allowed
to run. Assuming at least one bot is available for every outlet in a comparison, the delay
between comparisons is calculated with the following formula, where comparison.length
is the number of jobs in a comparison; the timeout constants are explained later in this
section:

MIN COMPARISON DELAY = (beforeSearchT imeout+afterSearchT imeout+
synchronizationT imeout · 2) · comparison.length

Back to the transition ‘NextComparison’, the scraping work is split between two scraping
bots. One job represented by a tuple (i, MOBILE APP) requesting price extraction from a
mobile application and one tuple (i, PC WEBSITE) requesting extraction from a desktop
website are sent for processing to a smartphone and a desktop scraping bot, respectively.

Now consider the PC WEBSITE scraping run. From the place ‘IncomingJobs’, a token
k of type JOB (where JOB is a tuple (comparisonId, OUTLET TYPE)) is sent to a Queue.
Initially, Queue is initialized to one token with a value of ‘[]’; then with the CPN operator
‘ˆˆ’, a new job is added to the queue when k arrives. From ‘IncomingJobs’ a token k, e.g.
(1, PC WEBSITE) will arrive; k will be added to js after which the token in Queue has
a value of [previous jobs, (2, MOBILE APP)]. The reverse happens when a job token is

31

taken off the queue (with the CPN operator ‘::’) to be sent for processing.

Figure 4.11: Synchronization of two Scraping Bots - Part 2

In Figure 4.11, a job may arrive sooner at the upper mobile application scraping pro-
cess than the other job from the containing comparison will arrive for processing to the
desktop bot. To make the two scraper runs start at the same time, synchronization is
done by sending the two scraper runs through a common ‘Sync’ transition. Next, scraper
runs are entering the input data in the place ‘scrapeUntilSearch’ which lasts a random
amount of time (generated by the ‘discrete’ function) with a maximum allowed time of
UNTIL SEARCH TIMEOUT. This is followed again by a synchronization, this time ‘on
search’, where both scraper runs wait for each other to ‘click the search button’.

32

Figure 4.12: Synchronization of two Scraping Bots - Part 3

Finally, in Figure 4.12, the scraping process is continued with the last phase of the
scraping process. In this phase, all product or service offers are collected, which takes a
maximum of FROM SEARCH TIMEOUT. If this phase takes longer, the execution will be
cut off and the scraper run will be marked as ‘errored’.

The policy to handle errors is an all-or-nothing approach. When an error in one scraper
run happens, the synchronization between all scraper runs in a comparison will stop (in
fact, all scraper runs in a comparison will stop).

In the CPN diagram, only two scraper runs are displayed, however, synchronization
between more than two scraper runs is possible; in Chapter 5 where experiments are con-
ducted, up to three outlets are compared simultaneously.

4.3 From Architecture to Implementation

The architecture defined in the last section consists of many parts, and all those parts have
to work together.

The controller is a centralized place where new jobs are generated and where jobs
processed by scraping bots are returned. Jobs are put by the controller on a queue5 based
on a central Redis database. One or more bots poll queues for jobs; a bot will start

5https://github.com/OptimalBits/bull

33

https://github.com/OptimalBits/bull

processing a job if it is capable of processing this kind of job (for example, to process a
mobile application job, the bot has to be connected to a smartphone).

All scraping bots are represented by the same Docker image that contains all dependen-
cies for website scraping (including a Chrome web browser). If mobile application scraping
support is needed, a scraping bot has to be connected to an Appium server with a smart-
phone outside of the container.

Because scraping bots are based on the same Docker image, adding a new scraping bot
is a matter of creating a new Docker container. Once a new Docker container is created, the
bot will connect to Redis and start polling for jobs. For our experiment, scraping bots were
deployed by means of a Kubernetes ReplicaSet6. Bots specialized on mobile application
scraping that needed a connection to a smartphone, were deployed as Docker containers on
dedicated machines.

Synchronization of scraping bots that participate in a comparison was also done through
a central Redis server; every comparison launched resulted in the creation of a new syn-
chronization Redis variable around which all participating bots synchronized.

More details on the implementation can be found in Appendix A. In addition, the
complete source code is open sourced7.

To finalize this chapter, a short recap is given on how the final implementation satisfies
our requirements expected from a synchronized distributed scraping system:

Requirement #1: The system should keep running at all times
When running the implementation in a price comparison study (Chapter 5) for more
than two months with 12 different bots, while individual bots regularly crashed, com-
parisons with other bots were not affected and the system never completely halted.
While the CPN model in Figure 4.8 serves as an illustration of how the compari-
son between outlets is synchronized, we do not provide a formal proof of any system
properties (for example, there is no guarantee that a deadlock will never happen).
System verification and model checking were outside of the scope of this study. We
did, however, use the simulation functionality of CPN Tools on the model in Figure
4.8, with no deadlocks detected after running the simulation from start to finish for
10 iterations.

Requirement #2: Bots can be distributed over many machines
Bots can be deployed anywhere on a Kubernetes cluster or on a dedicated machine,
and will start processing jobs as soon as they are started.

Requirement #3: Bots can extract data from different outlet types
All bots are based on a common blueprint; the implementation is only limited to
bots that can extract from mobile applications, mobile browsers and desktop browser
outlets; however bots for other outlets can be added as long as the outlet is accessible
online.

Requirement #4: Comparison of outlets should be synchronous
See the discussion in Section 4.2.5 on how de-synchronization is prevented. Moreover,
after a price differentiation study (Chapter 5) of more than two months, by verify-
ing the timestamp of screenshots taken from each offer, the time difference between
the extraction from multiple outlets was always smaller than the maximum allowed
synchronization time.

6https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
7https://github.com/godfriedmeesters/diffscraper

34

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://github.com/godfriedmeesters/diffscraper

Requirement #5: Extracted data must be verifiable
For every single item extracted, screenshots are taken. If item extractions are based
on REST requests instead of capturing screen information, JSON files containing
items are stored for verification.

35

Chapter 5

Validation by means of a price
comparison study

To verify that the synchronized distributed web scraping system can be useful in practise,
we performed a price differentiation study.

5.1 Experiment Design

Anecdotal reports and one research article [BMW17], reported that there are price differ-
ences when buying flight tickets. More specifically, the same flight ticket was found to be
more expensive on mobile applications than on websites.

We decided to verify this and created a list of the following companies for which to
compare prices:

• Air France

• Booking.com

• EuroWings

• Expedia

• Kayak

• Opodo

For each of these companies, the latest version of its mobile application is tested versus
its desktop website. In addition, for each company, its German (.de) and French (.fr)
website is compared. For the company Kayak, three outlets are compared simultaneously:
its mobile application versus its mobile website versus its desktop website.

Because this study was done during the corona crisis, it was more difficult to find flight
tickets. There were fewer flights or flights were suddenly canceled. Therefore, only flights
sufficiently far in the future were chosen, that is: scraping was started on April 24, 2021,
looking for one-way flights departing in July-August 2021. A list of comparisons was defined
(see Table 5.1 and Table 5.2), with a varying selection of departure and arrival airports.

All comparisons were launched three times per day (that is, every eight hours). We
could collect data more times per day. However, the chance of triggering bot detection
would also increase since our pool of IP addresses was limited.

Initially on April 24, for website scraping, the bots picked an IP address randomly from
four data center IP addresses. We also experimented with routing all website traffic through

36

residential IP addresses from 2021-05-27 until 2021-06-05. Mobile application scraping was
always conducted from the same Belgian residential IP address; mobile browser scraping
was done from a Germany residential IP address.

Among the scraping bots for each company, there were differences in the type and
amount of data that was returned. For Air France, Expedia, EuroWings, Kayak and
Opodo, a list of all non-stop flights was returned. On Booking.com, all hotels within 5
kilometers of the city center were returned.

Website scraping was done on a Kubernetes cluster with two nodes (total cluster capac-
ity: 4vCPUs with 8 GB RAM). One bot was deployed on each node. All website scraping
was ‘headful’, inside a Linux container with Google Chrome (‘google-chrome-stable’ on
Ubuntu 20.04) rendered to a virtual frame buffer. Before every new bot extraction, all
browser history was deleted. Moreover, to appear as a real website visitor (for example, to
create realistic user agents), Puppeteer Stealth1 was put in place.

For mobile application scraping, a home laptop connected to a Xiaomi smartphone
with Android 10.0 was used. The home laptop was running 24 hours/day, connected to a
residential 4G connection in Belgium. For every application, the latest APK on https:

//apkpure.com was installed. All mobile application scraping was done from the Belgian
residential IP address.

For mobile browser scraping, a dedicated server connected to a Motorola smartphone
(with mobile Chrome 90.x) was used. The dedicated server was located in a university data
center in Germany; scraping passed through a German residential proxy server.

5.2 Experiment Results

Scraping was started on April 24, 2021.
In total, more 5280 comparisons (measured on June 18, 2021) were executed (from the

comparison definitions defined in table 5.1 and 5.2). In total, scraping bots were started
10406 times. Of the 10406 times that scraping bots started, 6440 times scraping bots
finished successfully and 3966 times scraping bots stopped with a fatal error. The scraping
bots that finished successfully, collected a total of 55667 offers.

As can be seen in Figure 5.1, the number of collected offers per day started out small
and increased when we added more comparisons.

1https://www.npmjs.com/package/puppeteer-extra-plugin-stealth

37

https://apkpure.com
https://apkpure.com
https://www.npmjs.com/package/puppeteer-extra-plugin-stealth

Figure 5.1: Number of Collected Offers per Day

In Figure 5.2, the number of started comparisons per day can be seen:

Figure 5.2: Number of Daily Comparisons Launched per Day

A launch of a comparison means that the controller takes a comparison definition and

38

puts two or more jobs that represent the outlets being compared in the correct queue.
Scraping bots are then responsible for taking these jobs from the queue.

There are several reasons for the volatility in Figure 5.2. For example, on May 10 2021,
several new comparisons were defined, resulting in an increase in comparison runs.

Around May 18, it was discovered that an unusually high number of jobs requesting
to scrape the mobile website of Kayak were never processed. To prevent building up more
unprocessed jobs in the queue, the launch of new comparisons was stopped until the bug
was resolved. Other variations in Figure 5.2 can also be explained by the addition and
removal of comparison definitions, resulting in an increase or decrease in comparison runs.

Figure 5.3: Number of Daily Bot Extractions Launched per Day

In Figure 5.3, the number of scraper runs succeeded versus the number of scraper runs
that did not finish successfully are shown. To be clear, a scraper run represents the launch
of a bot. A scraper run can either finish successfully, return one or more offers, or it can
fail.

When one scraper bot fails, the other bots in the same comparison will also fail. When
a bot is synchronized with other bots in the comparison, and another bot fails or takes too
much time to complete a certain phase, then the bot will throw an exception FATAL ER-
ROR: synchronizationOnSearchSeconds > MAX SYNCHRONIZATION TIME, resulting
in a ‘snowball effect’ in the number of failed scraper runs.

What can be seen is that there are no errors from April 24, then around May 9 there is
a spike in errors. Upon inspection, it was found that there was a bug in the bot responsible
for website scraping (in the production environment setting the locale resulted in different
behavior than in development). There is also a spike in the total number of scraper runs,
since many solutions (which were tested by launching more comparisons) to resolve the bug
were tried.

The spike around May 24 was related to the resolution of several application scraper

39

bugs, halting of application scraper bots, and the consecutive congestion of unprocessed
scraping jobs in the queue that resulted in a large number of scraper runs to fail (see also
Figure 4.7 for an illustration of such a situation).

In general, during the entire experiment, the web scraping bots continuously encountered
errors. The most popular error was ‘element not found error’; it was impossible to avoid
this error type all-together, even though a best effort was made to update bots regularly
to reflect changing websites. Another category of errors was ‘connection failed’, which was
caused by an inactive residential proxy.

5.3 Analysis

What follows is an analysis of the data that has been collected. Tables 5.1 and Table 5.2
give an overview all comparisons executed, grouped per company.

Data set Data collection Price Difference

Company Comparison dept. orig–dest start end # price difference range

Expedia app/web 07-01 bru-ams 05-17 06-23 273 –
08-10 ams-arn 05-17 06-23 962 –
08-18 opo-bru 05-17 06-23 1045 –

FR/DE 07-01 bru-ams 05-17 06-23 495 e 13
08-01 bru-ams 05-17 06-23 560 –

AirFrance app/web 07-01 fra-cdg 04-24 06-21 448 e 13
08-01 fra-cdg 04-24 06-21 500 –
08-09 vie-ams 04-24 06-21 513 –

FR/DE 07-01 fra-cdg 05-25 06-21 500 e 1-e 5
Opodo app/web 07-01 fra-cdg 05-25 06-21 878 e 11.99-e 24.01

08-01 fra-cdg 05-25 06-21 966 e 8.99-e 21.01
08-23 cgn-prg 05-25 06-21 152 –
08-18 opo-bru 05-25 06-21 860 e 10.99-e 45.01

FR/DE 07-01 fra-cdg 05-25 06-21 882 e 4.27-e 53.96
Kayak app/web/mobile 08-18 opo-bru 06-15 06-30 5036 –

app/web 08-07 mad-fco 06-15 06-30 4919 –
08-13 ber-bcn 06-15 06-30 9623 –

EuroWings app/web 07-11 ams-ham 04-08 05-31 161 –
FR/DE 07-11 ams-ham 04-08 05-31 189 –

Table 5.1: Overview of Flight Price Comparisons

Data set Data collection Price Difference

Company Comparison check-in location start end #

Booking.com app/web 07-01 Geel 06-08 06-29 1101 –
07-01 Herentals 06-08 06-29 654 –
08-01 Herentals 06-08 06-29 799 –

FR/DE 07-01 Geel 06-08 06-29 1720 –
08-01 Geel 06-08 06-29 2104 –

Table 5.2: Overview of Hotel Price Comparisons

In Table 5.1 and Table 5.2, the first column displays the company name. The second
column contains the outlets that are compared, for example FR/DE means that the French

40

desktop website (e.g., eurowings.fr) is compared to the German desktop website (e.g., eu-
rowings.de); app/web/mobile means that the mobile application vs the desktop website vs
the mobile browser are compared. The third and the fourth columns (grouped under ‘Data
set’) explain which search parameters have been used; for flight tickets, this is departure
date and airport origin-airport destination; for hotel bookings, this is check-in date and
hotel location. Under ‘Data collection’, three columns are grouped that display the start
and end date of offer extraction, and the number of offers that have been collected in this
period from all outlets involved in the comparison. Finally, when a comparison is finished,
either a price difference is found or no price difference is found. When a price difference is
found, multiple outcomes are possible. For example, e 13 specifies that if a price difference
is found, the difference is always the same: e 13. A price difference of e 8.99-e 45.01 means
that the difference is between e 8.99-e 45.01, without saying which outlet is more expensive
(one outlet could be e 8.99 cheaper or e 8.99 more expensive than another outlet). When a
price difference is detected, it does not mean that the price of every offer is different; rather
it means that at least one price difference was detected between two equivalent offers from
different outlets.

5.3.1 Air France

Android Application versus Desktop Website

For Air France, its mobile application was compared with its desktop website (airfrance.de).
Flights were searched departing from FRA flying to CDG on 2021-07-01. Measurements

were performed from April 24 to June 21.
For flight AF1019 no price differences were found.
For flight AF1619, one price difference was found; see Figure 5.4.
On 2021-06-21 01:00, the price found on the website was 95 EUR, the price found on

the application was 108 EUR.
Flights were also searched departing from FRA flying to CDG on 2021-08-01. No price

differences were found.
In addition, flights were searched departing from VIE flying to AMS on 2021-08-09. No

price differences were found for flights KL1840, KL1838, and KL1844.

41

Figure 5.4: Flight AF1619, price on Air France mobile application vs website.

In Figure 5.4, as in all figures below, note that only pairs of data from two outlets are
shown. When there is only one data point for one outlet, nothing is shown in the graph.

German Desktop Website versus French Desktop Website

To compare the German website of Air France (airfrance.de) versus the French website of
Air France (airfrance.fr), search queries were launched again for flights departing from FRA
and flying to CDG on 2021-07-01. Measurements were executed from May 25 to June 21.

Again, the prices for flights AF1019 and AF1619 are displayed:

42

Figure 5.5: Flight AF1019, price on airfrance.de vs. airfrance.fr website

Figure 5.6: Flight AF1619, price on airfrance.de vs. airfrance.fr website.

As can be seen, for both flight AF1019 and flight AF1619, there are price differences
between airfrance.fr and airfrance.de.

43

For flight AF1019, the difference is almost always constant, except around June 20
the difference is smaller. We could not find an explanation for the price differences; the
departure airport and the arrival airport are the same, as is the departure time. The
difference is more than the different in VAT rate, which is 19% in Germany and 20% in
France.

Another indication showing that price difference is not caused by tax difference, is flight
AF1619. First, there is almost no price difference (only one Euro) between the two websites;
the price difference increases to five Euro when the price extraction time is getting closer
to the departure flight date.

5.3.2 EuroWings

Price measurements were executed from April 8 until May 31.

Android Application versus Desktop Website

For the airline company EuroWings, the Android application of EuroWings was compared
with the website of EuroWings (eurowings.de). One-way flights from AMS to HAM leaving
on 2021-07-11 were queried. No price differences were found for any flight offers displayed.

In addition, flights were searched from CGN to LON leaving on 2021-08-12. However,
because of a bug in the EuroWings Mobile Application scraping bot where flights were
returned for September 12 instead of August 12, the results from this comparison were
ignored.

German Desktop Website versus French Desktop Website

The EuroWings German desktop website (eurowings.de) was also compared with the French
website (eurowings.fr). One-way flights were searched from AMS to HAM departing on
2021-07-11. No price differences were found.

5.3.3 Opodo

For all comparisons, measurements started on May 25 and ended on June 21.

Android Application versus Desktop Website

The Android application of Opodo and the website (opodo.de) were compared for one-way
flights from FRA to CDG leaving on 2021-07-01. In Figure 5.7, most of the time the price
of the application is higher. This is confirmed by taking averages. The average price of a
flight ticket for flight LH1052 on the application is e 137.4 and the average price on the
website is e 132.9.

Price differences were also found when searching flights from FRA to CDG leaving on
2021-08-01.

In addition, flights were compared matching origin airport CGN, destination airport
PRG and departure date 2021-08-23. There was only one flight available on each outlet:
flight EuroWings EW9772. No price differences were found between the application and
website for flight EW9772.

Flights leaving from OPO flying to BRU on 2021-08-18 were also compared. From
Figure 5.8, it may not be clear whether the price is higher on the application or on the
website. The average price on the mobile application is EUR 134.64, while the average
price on the desktop website is EUR 131.85.

44

Figure 5.7: Flight LH1052, price on Opodo mobile application vs website

Figure 5.8: Flight SN3810, price on Opodo mobile application vs website

German Desktop Website versus French Desktop Website

The German website of Opodo (opodo.de on locale de DE) was compared against the
French website (opodo.fr on locale fr FR). One-way flights were searched from FRA to

45

CDG departing on 2021-07-01. In Figure 5.9, the price evolution of flight LH1052 is shown.
It can be seen that during almost the entire measurement time (from May 25 to June 21),
the price on the opodo.fr website is higher than on the opodo.de website.

Figure 5.9: Flight LH1052, price on opodo.de vs. opodo.fr website

5.3.4 Expedia

For Expedia measurements were executed from May 17 until June 23.

Android Application versus Desktop Website

Expedia’s mobile Android application versus its website (expedia.de) was compared for
flights from BRU to AMS leaving on 2021-07-01. No price differences were detected.

Comparison was also done for flights from AMS to ARN leaving on 2021-08-10. No
price differences were detected.

As a side note, no price differences between individual flight tickets were found. However,
sporadic differences in the list of flight offers were found. In Figures 5.10 and 5.11, the offer
lists are shown for the website and mobile application of Expedia. Offers were extracted on
2021-06-23. On the website, there were a total of five offers, while on the mobile application,
there were only a total of four offers.

Prices were also compared for flights from OPO to BRU leaving 2021-08-18. No price
differences were found.

French Desktop website versus German Desktop website

Expedia’s French website (expedia.fr) versus its German website (expedia.de) was compared
for flights from BRU to AMS leaving on 2021-07-01.

46

Figure 5.10: SAS flight shown on Expedia
website (extraction: 2021-06-23)

Figure 5.11: SAS flight
not shown on Expedia mo-
bile application (extrac-
tion: 2021-06-23)

The price evolution of two matching flights (KLM1720 and KLM1732) is displayed in
Figures 5.12 and 5.13.

For flight KLM1720, there are no price differences until measurement date June 17,
after which price differences start to appear.

For flight KLM1732, there are also no price differences until measurement date June 17,
after which price differences appear.

For flights KLM1720 and KLM1732, it can be observed that price differences start
appearing when measurement time is getting closer to the flight departure time.

Flights were also compared going from BRU to AMS on 2021-08-01. No price differences
were found for any matching flights.

47

Figure 5.12: Flight KLM1720, price on expedia.de vs. expedia.fr website

Figure 5.13: Flight KLM1732, price on expedia.de vs expedia.fr website

48

5.3.5 Kayak

Measurements were done from June 15 to June 30.

Android Application versus Desktop Website versus Mobile Website

Three different outlets are compared: the mobile website (kayak.de), the mobile application,
and the desktop website (kayak.de). Flights are searched leaving from OPO and going to
BRU on 2021-08-18. No price differences were found. Note that for flight SN3812, at first
the scraping bots found price differences. However, upon inspection of the screenshots
taken by the bots, it became clear that these were false positives. See Figure 5.14, where
each outlet displays flight SN3812 two times. This ‘problem’ is not found on the desktop
website.

(a) (b)

Figure 5.14: Flight SN3812 appearing twice with different prices on Kayak’s (a) mobile
application and (b) mobile website.

Android Application versus Desktop Website

The mobile application of Kayak was compared with the Kayak desktop website (kayak.de).
Flight departure airport was MAD, destination airport was FCO, and the departure date
was 2021-08-07. No price differences were found.

The mobile application versus the desktop website (kayak.de) was also compared for
flights from BER to BCN departing on 2021-08-13. No price differences were found.

49

5.3.6 Booking.com

For Booking.com, hotel room prices were compared. Measurements were done from June 8
to June 29.

Android Application versus Desktop website

Hotel rooms located in the city of Geel were queried with a check-in date of 2021-07-01 and
with a checkout date of 2021-07-02.

No price differences between equivalent hotel rooms were found.
Hotel rooms located in the city of Herentals were also queried with a check-in date of

2021-07-01 and with a checkout date of 2021-07-02. No price differences were found.
In addition, hotel rooms located in the city of Herentals were queried with a check-in

date of 2021-08-01 and with a checkout date of 2021-08-02. Again, no price differences were
found.

German Desktop Website vs French Desktop Website

The German desktop website (booking.de) was compared with the French desktop website
(booking.fr). Hotel rooms were searched in the city of Geel with check-in date of 2021-07-01
and checkout-date of 2021-07-02. No price differences were found.

The same comparison was done for check-in date 2021-08-01 and checkout-date of 2021-
08-02. No price differences were found.

50

Chapter 6

Conclusion

The motivation to start this thesis were rumors about differences in flight ticket prices
between mobile applications and websites. These rumors, however, were based on a limited
amount of manual observations that may be prone to noise, such as price fluctuations.

Therefore, we wanted to create a system to assist in price difference verification. In this
thesis the problem of scraping data using bots from multiple outlets simultaneously was
addressed.

We focused on creating a system that can extract offers from any type of outlet, including
but not limited to mobile applications, desktop websites, and mobile websites. A design is
proposed that can run on a cluster of heterogeneous machines and can host an unlimited
number of bots. Each scraping bot that is part of a comparison, can synchronize to other
bots in the comparison at several phases of the scraping process. The end result of a
comparison is a collection of offers matching a given query, extracted from each outlet
simultaneously.

Using an implementation of our design, a price comparison study was conducted. The
study compared prices from six companies in the travel industry. Flight ticket and hotel
room prices on mobile applications were compared with prices on desktop and mobile
websites.

After two months of running our system with a varied set of comparison definitions,
more than 5,000 comparisons were executed and more than 55,000 offers were collected.

Price differentiation was discovered for the majority of comparisons on Opodo.com.
Flight ticket prices on the mobile application were higher than the prices of the same flight
tickets found on the desktop website, as was its French website compared to its German
website. For Air France, we found that the flight ticket price on its French desktop website
was sometimes more expensive than on its German website; this difference increased when
prices were queried closer to the departure date of the flight in question. For Expedia, price
differences were also found between the French and German website when the measurement
date approached the departure date.

6.1 Future work

Our price comparison study was only limited to a small number of comparison definitions,
one reason being that offers had to be matched manually by an analyst instead of the
system. The determination of equivalency of items from different outlets did not make it as
a feature of the system; automatic matching based on equivalency definitions and/or fuzzy
matching, could be added as future work. Another useful extension to the system would be
dynamic browser and mobile application fingerprints, which would allow the study of the

51

effects of IP address, browser state, and other properties on pricing.
Future work could involve querying for a wider range of data, for example by running

the system for a period of three months while always looking for flights departing two
days after the measurement date. This was not possible in our study, because it had been
conducted during the corona crisis and flights were randomly canceled. In addition, our
system is not limited to flight tickets and hotel reservations; any type of offer could be
retrieved simultaneously on any type of outlet available online.

52

Bibliography

[ATSV06] Jeannie R. Albrecht, Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat.
Loose synchronization for large-scale networked systems. In Atul Adya and
Erich M. Nahum, editors, Proceedings of the 2006 USENIX Annual Techni-
cal Conference, Boston, MA, USA, May 30 - June 3, 2006, pages 301–314.
USENIX, 2006.

[BMW17] Timo Bertsch, Joram Markert, and Sebastian Wiesendahl. Research project:
Price Discrimination, 2017. Technische Hochschule Köln.

[BN84] Andrew Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Trans. Comput. Syst., 2(1):39–59, 1984.

[BPSAP+19] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard Paŕıs, Pierre Sutra,
and Pedro Garćıa-López. On the faas track: Building stateful distributed
applications with serverless architectures. In Proceedings of the 20th Interna-
tional Middleware Conference, Middleware ’19, page 41–54, New York, NY,
USA, 2019. Association for Computing Machinery.

[CMW15] Le Chen, Alan Mislove, and Christo Wilson. Peeking beneath the hood of
uber. In Proceedings of the 2015 ACM Internet Measurement Conference,
IMC 2015, Tokyo, Japan, October 28-30, 2015, pages 495–508, 2015.

[DCAT12] Italo Dacosta, Saurabh Chakradeo, Mustaque Ahamad, and Patrick Traynor.
One-time cookies: Preventing session hijacking attacks with stateless authen-
tication tokens. ACM Trans. Internet Technol., 12(1), July 2012.

[Geh19] Vijay Gehlot. From petri NETS to colored petri NETS: A tutorial introduc-
tion to NETS based formalism for modeling and simulation. In 2019 Winter
Simulation Conference, WSC 2019, National Harbor, MD, USA, December
8-11, 2019, pages 1519–1533. IEEE, 2019.

[HSL+14] Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove, and Christo Wil-
son. Measuring price discrimination and steering on e-commerce web sites. In
Proceedings of the 2014 Internet Measurement Conference, IMC 2014, Van-
couver, BC, Canada, November 5-7, 2014, pages 305–318, 2014.

[HTWH18] Thomas Hupperich, Dennis Tatang, Nicolai Wilkop, and Thorsten Holz. An
empirical study on online price differentiation. In Proceedings of the Eighth
ACM Conference on Data and Application Security and Privacy, CODASPY
2018, Tempe, AZ, USA, March 19-21, 2018, pages 76–83, 2018.

[JKV19] Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. Fingerprint surface-
based detection of web bot detectors. In Kazue Sako, Steve Schneider, and

53

Peter Y. A. Ryan, editors, Computer Security – ESORICS 2019, pages 586–
605, Cham, 2019. Springer International Publishing.

[KHT08] Milly Kc, Markus Hagenbuchner, and Ah Chung Tsoi. A scalable lightweight
distributed crawler for crawling with limited resources. In Proceedings of the
2008 IEEE/WIC/ACM International Conference on Web Intelligence and
International Conference on Intelligent Agent Technology - Workshops, 9-12
December 2008, Sydney, NSW, Australia, pages 663–666. IEEE Computer
Society, 2008.

[MGEL13] Jakub Mikians, László Gyarmati, Vijay Erramilli, and Nikolaos Laoutaris.
Crowd-assisted search for price discrimination in e-commerce: first results. In
Conference on emerging Networking Experiments and Technologies, CoNEXT
’13, Santa Barbara, CA, USA, December 9-12, 2013, pages 1–6, 2013.

[MPdF18] Sunil Kumar Mohanty, Gopika Premsankar, and Mario di Francesco. An eval-
uation of open source serverless computing frameworks. In 2018 IEEE In-
ternational Conference on Cloud Computing Technology and Science (Cloud-
Com), pages 115–120, 2018.

[ON19] Bogdan Oancea and Marian Necula. Web scraping techniques for price statis-
tics – the romanian experience. Statistical Journal of the IAOS, 35:1–10, 10
2019.

[SR15] Felipe Sierra and Anthony Ramirez. Defending your android app. In Proceed-
ings of the 4th Annual ACM Conference on Research in Information Tech-
nology, RIIT ’15, page 29–34, New York, NY, USA, 2015. Association for
Computing Machinery.

[TEBS12] Jakob G. Thomsen, Erik Ernst, Claus Brabrand, and Michael I.
Schwartzbach. Webself: A web scraping framework. In Marco Brambilla,
Takehiro Tokuda, and Robert Tolksdorf, editors, Web Engineering - 12th
International Conference, ICWE 2012, Berlin, Germany, July 23-27, 2012.
Proceedings, volume 7387 of Lecture Notes in Computer Science, pages 347–
361. Springer, 2012.

[Tro94] John A. Trono. A new exercise in concurrency. SIGCSE Bull., 26(3):8–10,
September 1994.

[Uzu20] Erdinç Uzun. A novel web scraping approach using the additional information
obtained from web pages. IEEE Access, 8:61726–61740, 2020.

[VNBJ14] Thomas Vissers, Nick Nikiforakis, Nataliia Bielova, and Wouter Joosen. Cry-
ing Wolf? On the Price Discrimination of Online Airline Tickets. In 7th Work-
shop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2014),
Amsterdam, Netherlands, July 2014.

[vST16] Maarten van Steen and Andrew S. Tanenbaum. A brief introduction to dis-
tributed systems. Computing, 98(10):967–1009, 2016.

[XWGY19] Yuantao Xie, Wen Wang, Yabo Guo, and Juan Yang. Study on the country
risk rating with distributed crawling system. J. Supercomput., 75(10):6159–
6177, 2019.

54

[YJHC18] Feng Ye, Zongfei Jing, Qian Huang, and Yong Chen. The research of a
lightweight distributed crawling system. In Shaowen Yao, Zhi Jin, Xiaohui
Cui, Bing Luo, Junfeng Wang, and Zhengtao Yu, editors, 16th IEEE In-
ternational Conference on Software Engineering Research, Management and
Applications, SERA 2018, Kunming, China, June 13-15, 2018, pages 200–
204. IEEE Computer Society, 2018.

[YY20] Zhiju Yang and Chuan Yue. A comparative measurement study of web track-
ing on mobile and desktop environments. Proceedings on Privacy Enhancing
Technologies, 2020(16):24 – 44, 2020.

55

Appendices

56

Appendix A

Implementation

In this chapter, the final system as it was developed is explained.

A.1 Analyst’s Guide

First, the system will be explained from the viewpoint of an analyst. Then, a more detailed
explanation will be given for the persons maintaining the system.

Of interest to the analyst is how she can run comparisons and collect pricing data. To
understand how she can use the system, she must understand the data model which is
organized as follows:

Figure A.1: Entity Relationship Diagram

To understand A.1, know that the basis from which scraping bots start, is a comparison.
The table ‘comparisons’ defines all comparisons that are automatically run by the system at
regular intervals (e.g., three times per day - every eight hours). An example of a comparison:

Listing A.1: Example of a Comparison

{

57

” s c r a p e r s ” : [
{

”params ” : {
” useRealDevice ” : ” t rue ”

} ,
” s c r ape rC la s s ” : ”KayakAppScraper”

} ,
{

”params ” : {} ,
” s c r ape rC la s s ” : ”KayakWebScraper”

} ,
{

”params ” : {} ,
” s c r ape rC la s s ” : ” KayakMobileBrowserScraper ”

}
] ,
” inputData ” : {

” o r i g i n ” : ”BRU” ,
” d e s t i n a t i o n ” : ”AMS” ,
” departureDate ” : ”2021−07−02”

}
}

In the comparison definition in listing A.1, three outlets of the flight comparison com-
pany ‘Kayak’ are compared:

• Its mobile application

• Its desktop website

• Its mobile website

For each outlet, the same input data is entered, namely, ‘search for all flights from BRU
to AMS that depart on July 2, 2021’. Note that IATA codes are preferred instead of more
ambiguous city names.

“An IATA airport code, also known as an IATA location identifier, IATA station code,
or simply a location identifier, is a three-letter geocode designating many airports and
metropolitan areas around the world, defined by the International Air Transport Association
(IATA).” 1

For each scraper definition, note the ‘params’ property. The following ‘params’ are
available:

• useRealDevice:

– applies to mobile application bots;

– requests a bot to use a real smartphone instead of an emulator.

• lang:

– applies to desktop browser bots;

– ’fr’ or ’de’;

1https://en.wikipedia.org/wiki/IATA_airport_code

58

https://en.wikipedia.org/wiki/IATA_airport_code

– sets a browsers’ locale to fr FR or de DE and switches to the .fr or .de version
of a website.

• proxy:

– applies to desktop browser bots;

– forces a browser to use a proxy.

• useRandomProxy:

– applies to desktop browser bots;

– when set, a scraper bot will randomly choose a proxy from its proxies.json file.

After adding a new entry in the comparison table, the comparison will be picked up
immediately by the system on the next scheduled scraping.

When the scheduler fires, all entries in the comparison table will be processed sequen-
tially. A ‘comparison run’ represents the running of a comparison at a given start time.

A comparison run will be split in two or more scraper runs, which are instances of a
scraper (which can be chosen from the Scraper table).

A scraper run has a start time, which depends on the time that a bot picks up the
scraping job from the queue; it contains the input data that will be given to the bot;
the host name which is the machine hosting the bot; and the possible errors that a bot
encountered.

When a scraper run is finished, every offer found on a given outlet will be stored in
“scraperRunResult”. The “result” column is a JSON object that represents one offer could
look like:

Listing A.2: Example of a scraperRunResult

{” p r i c e ” :”151 EUR” ,” departureTime ” : ”10 : 25” , ” arr iva lTime ” : ” 1 1 : 2 5 ” ,
” o r i g i n ” :”BRU” ,” d e s t i n a t i o n ” :”AMS” ,” a i r l i n e ” :”KLM” ,” s c r e en sho t ” :
” https : // scraperbox . be/ s c r e e n s h o t s /ExpediaAppScraper −1616455728862.png”}

In this offer, a flight offer from Brussels to Amsterdam is displayed. Note the inclusion
of a screenshot in every offer for verification.

Moreover, note that the system is only fetching data; the matching of data has to be
done manually. When all scraper runs are finished, the analyst can query the data and look
for price differentiation. It is up to the analyst to match product offers among outlets. The
definitions in section 3.4 could be used for this.

A.2 Developer’s Guide

Here, the system will be described from a developer’s point of view.
As mentioned in the design chapter, the system consists of one controller and one or

more scraping bots.

A.2.1 Interaction via Queues

The controller interacts with bots via centralized queues.

59

Figure A.2: Queue for processing smartphone scraping jobs

In Figure A.2, an overview is displayed of the queue (implemented by BullMQ2) which
is responsible for the processing of jobs destined for smartphone scraping bots. As can be
seen, there are 133 jobs sent by the controller and waiting in the queue, which probably
means that no bot is pulling jobs from this queue, probably because a bot has crashed.

On the right side of Figure A.2, we can see that the queue is based on one Redis3

in-memory database, which is shared by all scraping bots and the controller.

Figure A.3: Jobs waiting to be processed

In Figure A.3, when it has been found out that a bot has crashed, it may be decided to
remove all outstanding jobs. Since the jobs in a comparison are synchronized and should
run simultaneously, the solution is to repair any crashed bots and remove any outstanding
jobs from the queue before starting these bots again.

It is also possible to ‘retry’ jobs. When during the processing of a job an exception has
been encountered, the job will be marked as ‘failed’:

2https://github.com/OptimalBits/bull
3https://redis.io/

60

Figure A.4: Failed job

In Figure A.4, a bot marked a job as failed, because it could not find a certain element in
an Android Application. It is up to the developer to fix this error by patching the typescript
file containing the ‘BookingAppScraper’ class. After a fix, this job can be readded to the
queue by clicking the ‘Retry’ button.

A.2.2 Bot Implementation

Since outlets are prone to change, it is important to know how scraping bots can be repaired.
To understand the structure of a scraping bot, consider the following class diagram:

Figure A.5: Class diagram for a bot

Figure A.5 shows a class diagram that includes the mobile application scraping bot and
website scraping bot for the company Opodo.

61

All bots implement an interface IScraper with two methods, scrapeUntilSearch() and
scrapeFromSearch() (as discussed in 4.6; the scraping process is split into two phases).

For every type of outlet, there is a class that groups common operations. AppScraper
groups operations common to smartphone scraping. For example, it has a property

appiumClient that is used to interact with a smartphone. It has its own startClient()
method which instantiates appiumClient, and a method stopClient() that releases the
client when scraping is finished. It has methods specific to smartphone applications. For
example, the method scrollDownUntilV isible(elem) will scroll down by simulating a finger
press, scrolling down by a certain amount of pixels until elem is visible.

WebScraper groups operations common to desktop website scraping. It has a property
that represents a browser. startClient() will create a new instance of a browser, while
stopClient() will close the browser. WebScraper contains various methods related to web-
site scraping, for example clickElementByCss(cssSelector).

Bots can be launched in two modes: batch mode and interactive mode.
In batch mode, bots run as background processes and continuously wait for new jobs in

the queues they are subscribed to.
In interactive mode, an analyst can bypass the queue system and launch bot opera-

tions directly with a built-in CLI. For example, with this command, scraping will start
immediately from the Opodo mobile application:

ts−node c l i . t s s c rape OpodoAppScraper inputData . j son

Concerning the deployment of bots: each bot runs as a Docker container. A bot can run
anywhere, as long as Docker is supported and as long as there is a stable communication
channel to the job queues.

For example, in this study, there were two website scraping bots deployed in Kuber-
netes4. These Docker containers include a headful browser; no extra configurations or
dependencies are needed for website scraping.

For smartphone scraping bots, on-premises servers were required that allow bots to con-
nect to a real smartphone. Our setup included one Windows laptop connected to a physical
smartphone that runs continuously at home, and one Windows Server in a university data
center connected to a physical smartphone.

Each bot can be configured with the following environmental variables:

Listing A.3: Environmental variables in a bot

DB HOST=scraperbox . be // Redis host
DB PORT=6379 // Redis port
DB PASS=∗ // Redis password
DEFAULT PUPPETEER TIMEOUT=55000 // Timeout l ook ing f o r a DOM element
DEFAULT APPIUM TIMEOUT=25000 // Timeout l ook ing f o r and Android element
FTP USER=f t e e p e e // FTP username to upload s c r e e n s h o t s
FTP PASS=∗
FTP HOST=scrapebox . be
LOG LEVEL=debug
PULL EMULATOR QUEUE=f a l s e
PULL REAL DEVICE QUEUE=true // only p u l l j obs from smartphone queue
PULL WEB BROWSER QUEUE=f a l s e
PULL MOBILE BROWSER QUEUE=f a l s e

4https://kubernetes.io/

62

https://kubernetes.io/

APPIUM HOST=127 .0 .0 .1 // Appium s e r v e r runs l o c a l l y
DEVICE NAME=device −5554 // Name o f Android dev i ce (‘ adb dev ice s ’)
MAX SYNCHRONIZATION TIME=90 // max sync time
TIMEOUT BEFORE SEARCH=90 // timeout f o r phase 1
TIMEOUT AFTER SEARCH=180 // timeout f o r phase 2

To be noted in listing A.3 is that a connection to Redis is configured to access the
queues, and also to synchronize with other bots in a comparison.

For verification purposes, a bot is obliged to take screenshots and upload them to a
central FTP server. A bot can be subscribed to one or more queues. In this case, it is only
subscribed to a queue containing jobs that are meant to be processed by a bot connected
to a real smartphone. The interaction with a smartphone happens via an Appium server,
which is installed on the same machine. Apps will run on ‘device-5554’ (the names of all
smartphones connected to a machine can be retrieved with the command ‘adb devices’).
Next, it is specified to synchronize for a maximum of 90 time units, after which scraping
will continue (see section 4.6 for more information about synchronization). The first phase
of scraping can take a maximum of 90 time units, and the second phase an take a maximum
of 180 time units. When the first or second phase exceeds this time, the scraping will stop
and a Timeout error will be thrown. In pseudo-code, this is a simplified version of how a
bot processes jobs and synchronizes:

Listing A.4: Job processing by a Bot

realDeviceQueue . p roce s s (job) //new job a r r i v e d
{
const s c rape r : ISc raper = n u l l

. . .
i f (job . s c r ape rC la s s = ‘ OpodoAppScraper ’)

s c rape r = new OpodoAppScraper () ;
. . .

s c r ape r . s t a r t C l i e n t () ; // s t a r t mobile a p p l i c a t i o n
r e d i s . j obsStar tedFor (job . comparisonRunId)++;
whi l e (r e d i s . j obsStar tedFor (job . comparisonRunId) <
job . TotalJobsInComparison and not MAX SYNCHRONIZATION TIME reached) ;
// block

s c rape r . s c rapeUnt i lSearch (job . inputData) ; // i f s l ower than
//TIMEOUT BEFORE SEARCH, throw Timeout Exception

whi l e (r e d i s . jobsReachedSearchFor (job . comparisonRunId) <
job . TotalJobsInComparison and not MAX SYNCHRONIZATION TIME reached) ;
// block

const o f f e r s = sc rape r . scrapeFromSearch (job . inputData) ; // i f s l ower than
//TIMEOUT AFTER SEARCH throw Timeout Exception

s c rape r . s t opC l i en t () ; // stop mobile a p p l i c a t i o n

f in i shedJobsQueue . put ({ . . . job , o f f e r s }) ;

63

}

As can be seen in listing A.4, a bot will wait for new jobs. In this case, the job requested
to scrape the mobile application of Opodo, so a new instance of OpodoAppScraper is
created.

Synchronization on start is done with other bots in the same comparison. This synchro-
nization is done for a maximum of MAX SYNCHRONIZATION TIME time units, after
which the scraping process will continue.

The first phase of scraping takes a maximum time of TIMEOUT BEFORE SEARCH,
after which the execution will be cut off and the job will be marked as FAILED. The same
holds for the second phase.

Then, synchronization on search is done with other bots in the same comparison. This
synchronization is done, again for a maximum of MAX SYNCHRONIZATION TIME time
units, after which the scraping process will continue.

In the second phase, offers are collected and passed back to the controller via the
finishedJobsQueue. Offers are collected for a maximum period of TIMEOUT AFTER SEARCH
time units.

What is not visible in this code is that when one job fails, all others jobs in the same
comparison will also stop. This all-or-nothing design decision means either all jobs succeed,
or all jobs fail. This is a design decision; a more relaxed approach would allow scraper runs
to continue when other runs in the comparison failed.

A.2.3 Controller Implementation

The controller is a centralized place where new jobs are generated and where jobs processed
by bots are returned.

As with bots, the controller can be run in batch mode or interactive mode.
In batch mode, when a controller is started, a scheduler is also started that will launch

new comparisons according to a CRON specification. For example, the default setting is
0 ∗ /8 ∗ ∗∗ which means that the controller will launch new comparisons every 8 hours.
Comparisons will be taken from the ‘comparison’ table and will be launched in the order
of the table.

In interactive mode, a comparison can be launched as follows:

ts−node c l i . t s launchComparison 45 // launch
//comp . 45 from database t a b l e ‘ comparisons ’

Both batch mode and interactive mode will generate scraping jobs from a comparison
and put these in the correct queues.

The controller offers a configuration by means of environmental variables as follows:

Listing A.5: Controller environmental variables

REDIS HOST=scraperbox . be
REDIS PORT=6379
REDIS PASS=∗
PG HOST=scraperbox . be //POSTGRESQL host
PG PORT=5432
PG USER=g o d f r i e d
PG PASS=∗
PG DATABASE=d i f f s c r a p e r
LOG LEVEL=debug
CRON=0 ∗/8 ∗ ∗ ∗ // launch comparisons every 8 hours

64

MAX SYNCHRONIZATION TIME=90 //max sync time
TIMEOUT BEFORE SEARCH=90 // timeout f o r phase 1
TIMEOUT AFTER SEARCH=180 // timeout f o r phase 2

The environmental variables are similar to a bot, with the addition of a relational
database from which the controller reads predefined comparisons and stores offers returned
by bots.

The following simplified pseudocode explains how comparisons are launched by a con-
troller:

Listing A.6: Controller pseudo code

new CronJob (proce s s . env .CRON, func t i on {
f o r each (comparison in db . comparisons)
{
launchComparison () ;

const sleepTime = (t imeoutBeforeSearch + timeoutAfterSearch
+ synSeconds ∗ 2) ∗ comparison . s c r a p e r s . l ength ∗ 1000 ;

s l e e p (sleepTime) ;

}
}) ;

f unc t i on launchComparison (comparison)
{

const comparisonRunId = database . add (comparison) ;
f o r each (s c rape r in comparison . s c r a p e r s)
{

addToJobQueue ({ scraper , comparison . inputData ,
comparisonRunId , comparisonSize , . . . }) ;

}
}

In listing A.2.3, first a new CRON job is created that will fire every 8 hours. Then,
the code iterates through all entries in the comparison table to launch a new instance of
a comparison (called a ‘comparison run’). For each outlet in a comparison, a new scraper
run is launched by adding a job to the correct queue that will be picked up for processing
by a bot.

Lastly, after a scraper run is successfully processed by a bot, the extracted offers will be
put on the ‘finishedScrapes’ queue, where they will be pulled by the controller and stored
in a relational database according to the schema given in section A.1.

For those interested, the full source code can be found on the author’s GitHub reposi-
tory5.

5https://github.com/godfriedmeesters/diffscraper

65

https://github.com/godfriedmeesters/diffscraper

	Introduction
	Related work
	Price differentiation on desktop browsers
	Price differentiation on mobile devices
	Mobile Device Fingerprinting
	Web Scraping
	Web Crawling
	Synchronization

	Methodology
	Reasons to run an automated experiment
	Limitations of running an automated experiment
	Scraping Techniques
	Scraping from mobile applications
	Scraping from websites

	Equality of products

	Design
	Framework Requirements
	Architecture Design
	Initial Design
	Shortcomings of Initial Design
	Distributed Scraping
	Synchronization of Distributed Scraping
	A Distributed and Synchronized Architecture

	From Architecture to Implementation

	Validation by means of a price comparison study
	Experiment Design
	Experiment Results
	Analysis
	Air France
	EuroWings
	Opodo
	Expedia
	Kayak
	Booking.com

	Conclusion
	Future work

	Appendices
	Implementation
	Analyst's Guide
	Developer's Guide
	Interaction via Queues
	Bot Implementation
	Controller Implementation

