
ADVANCED FILE FORMAT VALIDATION

FOR FILE CARVING

WITH APPLICATION TO THE PST FILE FORMAT

by

Mart Peters

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, Faculty of Science
Master Software Engineering

to be defended publicly on Tuesday July 13th, 2021, 14:00.

Student number: 852116739
Course code: IM9906
Thesis committee: Dr. Bastiaan Heeren (chairman), Open University

Dr. Ir. Hugo Jonker (supervisor), Open University
Ir. Vincent van de Meer (2nd supervisor), Open University

CONTENTS

1 Introduction 2
1.1 Contributions . 3

2 Background 4
2.1 NTFS file system . 4

2.1.1 Fragmention . 5
2.1.2 File deletion . 5
2.1.3 Sparse files . 5
2.1.4 File recovery (undelete) . 6

2.2 File carving . 6
2.2.1 Current challenges for file carving . 7

3 Related work 8

4 Methodology 11

5 Current state of file validation 13
5.1 File validation techniques . 13
5.2 Current challenges with file format validators . 15
5.3 File format validation reference implementation 16

6 File format analysis 18
6.1 File format specifications . 18
6.2 Concepts used in file formats . 22
6.3 File life cycle . 27

7 File format validation feasibility 28
7.1 File format validation requirements . 28
7.2 File format validation principles . 29
7.3 Mapping between validation principles and file format concepts 32

7.3.1 Relation between validation principles and validation techniques . . . 32
7.3.2 Relation between file format validation techniques and file format con-

cepts. 34
7.4 Necessary file validation principles . 37

7.4.1 File signature . 37
7.4.2 Recognizable data structures . 37
7.4.3 Ability to match data with the same file. 38

7.5 Additional file validation format principles. 38
7.5.1 Ability to detect invalid/corrupt data . 39
7.5.2 Ability to check consistency across the complete file. 39

i

7.6 Challenging file format concepts for validators 39
7.7 Validation case study: WAD file format . 40

7.7.1 WAD file format specification. 41
7.7.2 WAD file format validation feasibility . 42
7.7.3 Usability of the feasibility method . 44

8 PST file format validation 46
8.1 PST file format specification. 46

8.1.1 Logical organization of the PST file format 46
8.1.2 Physical organization of the PST file format 48

8.2 PST file format validator feasibility . 50
8.2.1 Identified file format concepts . 50
8.2.2 Minimum set of required file format concepts for validation 51
8.2.3 Additional file format concepts for validation 52
8.2.4 Challenging file format concepts for validators 52
8.2.5 PST file format validation feasibility . 53

8.3 File validator for the PST format . 54
8.3.1 Design of a PST format file validator. 54
8.3.2 Functionality and limitations . 61

8.4 Proof-of-concept implementation . 63
8.4.1 Verification . 64
8.4.2 Results . 65

9 Conclusion, discussion and future work 67
9.1 Answers to the research questions . 67

9.1.1 RQ1: Which existing file carving techniques can be used in a file for-
mat validator? . 67

9.1.2 RQ2: What kind of concepts are used in file formats?. 67
9.1.3 RQ3: What concepts are necessary for a file format validator? 68
9.1.4 RQ4: How can this be used to design a file format validator for a com-

plex format? . 68
9.2 Conclusions . 69
9.3 Discussion . 69
9.4 Limitations and future work . 70

Bibliography i

A File format investigation iii
A.1 Image . iii

A.1.1 JPG. iii
A.1.2 PNG . iv

A.2 Audio . v
A.2.1 MP3 . v

A.3 Video. vi
A.3.1 AVI . vi
A.3.2 MKV . vii

ii

A.4 Documents . ix
A.4.1 Office Open XML File format (docx, pptx, xlsx) ix
A.4.2 EPUB . ix

A.5 Archive . x
A.5.1 Tar . x

A.6 Database . xi
A.6.1 SQLite . xi

B PST File format xiii
B.1 Grammar . xiii
B.2 List of fields. xiv

iii

ABSTRACT

File validation is a technique to recognize and validate file formats in an arbitrary stream of
data. File validation thus can be used to recover deleted files without relying on metadata of
the file system, as file validation directly analyses an arbitrary stream of data. Furthermore,
this technique can be used to recognize valid combinations of file fragments. Recovery
and reconstruction of fragmented files is very challenging, however, file validation offers a
potential path to success.

In this thesis we investigate how file format specifications can guide file format valida-
tion. We propose a method to determine whether file format validation is feasible and how
this can be achieved using existing validation techniques.

To answer this question we approached this problem from a file format perspective, be-
cause file format validation relies on properties of a file format. We analyzed popular file
formats of commonly used file types to identify and generalize commonly used file format
concepts across the different file format specifications. The analysis resulted in the identi-
fication of commonly used file format concepts.

Existing file validation techniques rely on properties of a file format. Our findings were
that these properties can be translated into the identified file format concepts of our re-
search, this resulted in the identification of a relation between file format concepts and file
validation techniques.

A file validator is required to recognize and validate files. We identified a list of necessary
validation principles to support these requirements. A validation principle can be imple-
mented by using specific validation techniques, this dependency provides the linking pin
between the file validator requirements and file format concepts.

This resulted in a method to determine the feasibility of file format validation. The
method consists out of identifying the used file format concepts by analyzing a file format
specification. Based on the identified file format concepts, the corresponding file valida-
tion techniques are determined.

To verify the proposed method we apply the method on a complex file format. The PST
file format is identified as a suitable candidate, because related work found out that PST
files are frequently fragmented on a system. The PST file format is used for storing e-mails
and calendar items of Outlook.

The conclusion of the method is that file format validation is feasible for the PST file
format, because the file format contains sufficient file format concepts. We implemented a
PST file validator using the suggested validation techniques provided by the method. The
implemented PST validator was able to recognize file fragments and can be used to recon-
struct file fragments into the original file.

Our proposed method can determine file format validation feasibility and identifies
which validation techniques can be used in the implementation of a file validator. This
means that a file format specification can provide guidance on the implementation of a
file validator. We consider the proposed method a starting point, since it might not be
complete. However, our method allows the addition of new validation techniques and file
format concepts in case these are identified.

1

1
INTRODUCTION

File carving is a technique to recover deleted files without using file system metadata. How-
ever, file carving is limited in handling corruption in its input stream. In such cases, a file
carver will determine the input is corrupt or, in the worst case, recover a corrupt file. In
general, file carvers are not always able to locate the specific point of corruption, only to
ascertain that the result is corrupt. Interestingly, there is a technique which is able to locate
such corruption: file format validation. File format validation is to validate a file by check-
ing whether it adheres to the specification of its format. The last point where it matches the
specification is then the last point where the file was still considered valid.

File format validation relies on the specification of the file format being validated. While
specifications of different files obviously differ, the set of ‘ingredients’ used in specifications
overlaps – though specific concepts may go by different names. Moreover, similar concepts
will likely support similar validation strategies, even for wildly different file formats. This
raises the question:

To what extent can a file format specification guide file validation?

The following research questions are composed in order to answer this main question:
RQ1. Which existing file carving techniques can be used in a file format validator?
RQ2. What kind of concepts are used in file formats?
RQ3. What concepts are necessary for a file format validator?
RQ4. How can this be used to design a file format validator for a complex format?

RQ1: Which existing file carving techniques can be used in a file format validator? File
carvers recover deleted files from a file system, in order to do this file carvers must be able to
identify files. A file carver must determine the beginning and ending of a file and therefore
should recognize and validate the contents of a file. This functionality is closely related
to the behavior of a file format validator. Therefore, it is interesting to investigate which
existing file carving techniques are used and how these can be applied in the context of file
format validation. We performed a literature research to answer this question, because this
question is about what existing file carving techniques are available, finding out what the
status quo is.

2

RQ2: What kind of concepts are used in file formats? File format validation relies on the
internal file structure that is dictated by a file format specification. A file format specifica-
tion thus affects how a file is stored on a storage medium and therefore interesting to inves-
tigate the specifications of different kinds of file formats. The goal is to investigate whether
file formats use similar concepts and to identify which concepts are used. Furthermore,
these discovered concepts are analyzed with regard to what extent these concepts affect
the added value of using file format specific knowledge. This provides insight on the feasi-
bility of creating a file validator for a specific file format. In order to answer this question
we performed an investigation on different file formats of common file types. The reason
of using common and different file types is to get a complete and representative view of
how file formats are organized.

RQ3: What concepts are necessary for a file format validator? Once the concepts used
in file formats are identified, the next step is to investigate how the identified file format
concepts affect file format validation, since file format validation might not always be pos-
sible for a given file format. The requirements and functionality of a file validator is studied
to form a view on which validation principles are used to support the requirements. These
necessary requirements form the baseline that is used to determine whether file valida-
tion is feasible. The next step is to investigate the relation between file format concepts
and file validation principles, because if there is such a relation this could give an answer
to the main question: to what extent a file format specification guide file validation. File
validation techniques rely on specific properties of a file format. The file format concepts
required to enable validation techniques are investigated. This approach forms the basis
for a method to investigate the file format feasibility of a file format.

RQ4: How can this be used to design a file format validator for a complex format? The
method to determine file validation feasibility is based on the findings of research ques-
tions RQ1, RQ2 and RQ3. The proposed method is applied on a complex format to deter-
mine the usability and possible limitations of the proposed method.

1.1. CONTRIBUTIONS
In summary, this study has the following contributions:

• Assessment of known validation techniques
• Identification of commonly used file format concepts in file format specifications of

popular file formats of common file types.
• Method to determine how a file format specification can guide file validation.
• Application of the method on a complex file format which uses a lot of commonly

used file formats.

3

2
BACKGROUND

File validation is a method that can be used to recover deleted files and file carving is the
practice of recovering deleted files. Therefore, studies related to file carvers can be interest-
ing from a file validation point of view. To understand how deleted files can be recovered, it
has to be clear how files are stored on a storage medium (Hard disk, SSD, USB Flash drive,
etc.). File systems are responsible for storing and deleting files on a storage medium.

Furthermore, certain file system features can affect the way a file is stored on a storage
medium. To recover deleted files, certain techniques and principles are used. The tech-
niques and principles that are currently used and known are introduced.

2.1. NTFS FILE SYSTEM
File systems are responsible for storing files on a storage medium. NTFS is a file system and
uses the following concepts: a hard disk is divided into sectors (sometimes referred to as
blocks), the size of a sector is a property of the hard disk. Most of today’s hard drives use a
sector size of 512 bytes [Lin18]. Russon et al. [RF04] and Lin et al. [Lin18] documented how
the NTFS file system operates. Similar to other file systems, NTFS uses clusters to allocate
disk space for files. Clusters consists of a number of sectors, usually a number of the power
of two. The number of sectors used for a cluster is fixed when the volume is formatted.
NTFS has two types of cluster numbers:

• LCN: Logical Cluster Number. The first cluster number of the file system starts with
0. The LCN is the number of a cluster relative to the NTFS file system.

• VCN: Virtual Cluster Number. Clusters belonging to a file are referenced in the Master
File Table (MFT) using VCNs. The MFT is used by the file system to store metadata
of a file, metadata of a file stored in a MFT record. A VCN is the number of a cluster
relative to a file. VCNs start from 0, which are sequentially increased by 1 until the
last cluster allocated to the file.

Files of which the data is stored in the MFT record of the file are called resident files,
these files do not use allocated blocks [vdMJvdB20]. Files of which the data is too large to
fit in the MFT record of the file are called non-resident files. The data of non-resident files
is stored in allocated blocks by the file system. References to these blocks of data are called
data runs and are stored in the MFT record of the file. Data runs are a sequential list of clus-
ter sequences. A data run consists of a starting cluster and a length of consecutive clusters.

4

The starting cluster of a run is the offset relative to the starting cluster of the previous run.
Data runs are stored in the MFT entry of a file.

2.1.1. FRAGMENTION

As explained in the previous section, the NTFS file system stores files on clusters. When a
file is stored in a sequence of consecutive clusters, the file is not fragmented. If this property
is not satisfied, than the file is fragmented. Fragmentation can occur in different manners
and can lead to different degrees of fragmentation. There are two aspects to take into ac-
count [vdMJvdB20]:

• Amount of fragments
• Amount of fragments which are out of order

A sequence of consecutive clusters belonging to the same file are called fragments.
These fragments can be stored in order on disk, with sections of empty data or data from
other files in between. However, these fragments can also be present out of order on the
disk. A fragmentation point is the last cluster belonging to a fragment.

Another aspect of fragmentation, is the amount of fragments of the file. The amount
of fragments and the amount of fragments that are out of order, affects the complexity of
recovering deleted files.

2.1.2. FILE DELETION

The following happens on NTFS when a file is deleted: a flag in the corresponding MFT
entry of the file is set to indicate the file has been deleted. Other data located in the MFT
entry is not changed yet. MFT entries are reused, so until the MFT entry is reused, the
original data of the deleted file remains in the MFT entry. In case of a resident file, the file
data is completely stored within the MFT entry and is still present in case the MFT entry
is not reused yet. In case of non-resident files the clusters in which the data is stored is
administrated in the MFT entry using data runs. Clusters used by the non-resident files
can be overwritten once non-resident files are deleted. Until the clusters are overwritten
the data of deleted non-resident files is still present on the storage medium. Because of
this property it is possible to recover deleted files.

2.1.3. SPARSE FILES

A file can consist solely out of zeros or can contain a part that consists of a sequence of
zeros. The areas containing zero data is called sparse data [Lin18]. NTFS can save disk
space, by only writing nonzero data to disk and does not allocate disk space for storing
sparse data [Lin18]. To make a file sparse on NTFS, the sparse attribute of the file needs
to be set [Lin18]. A normal data run in a MFT record of NTFS contains a starting cluster
address and the length of clusters of the data run. Sparse data is stored using a sparse data
run. A sparse data run only specifies the length of the sparse data run, without a start-
ing address of a cluster. A sparse data run does not occupy disk space, this means that a
sparse data run can only be used if the sparse data is contiguous and at least the size of
a cluster, since the length of a data run is specified in the number of clusters. This is be-
cause a cluster is the smallest segment of disk space NTFS can allocate. This property is
also confirmed during testing with marking areas as sparse data using the fsutil tool (tool

5

from Microsoft that allows file system operations 1). If the specified range of sparse data is
not big enough, the data on disk does not change. A file is either sparse or not sparse by
changing the sparse attribute. The amount of sparseness can be expressed by indicating
how much data of the complete file consists of sparse data. Please note that the sparse data
can be scattered across the file and can exist out of multiple sections of sparse data. All the
required administration of sparse sections is located in the MFT. This means that if a sparse
file is deleted, the locations of sections which contain sparse is lost. Since the sparse data
itself is not written on disk, it becomes a challenge to recover a file containing sparse data.

2.1.4. FILE RECOVERY (UNDELETE)

Data runs specify at which locations (clusters) the data of a file is stored. Therefore, the
original file can be restored, by copying the data from the clusters mentioned in the data
runs. However, this can only work in case the referenced clusters have not already been
overwritten by another file. When a file is deleted the used clusters are made available in
the $BITMAP attribute of NTFS. So after deletion the $BITMAP attribute of NTFS indicates
that the used clusters of the deleted file are available. However, if the $BITMAP attribute
indicates that one of the clusters of the deleted file is in use again, it is highly likely that the
data of the deleted file is already overwritten by another file, because clusters of a deleted
file should be free (not allocated). In this case that specific part of the data of the deleted
file is lost, this makes it impossible to completely recover the deleted file. The procedure
mentioned above describes how an undelete action can be implemented for NTFS. This
only works if the MFT records of the deleted file and the corresponding clusters containing
the data are still intact. Since the MFT entry also contains information regarding the sparse
data (since this information is stored in the data runs of the MFT records), this method can
also work for sparse files. In case the MFT record of the deleted file is no longer present, an
undelete action cannot be performed. Since sparse data locations are stored in the MFT,
this information is also lost. In this case we have to resort to a practice called file carving to
restore the deleted file.

2.2. FILE CARVING

File carving is the process of reconstructing files without using information regarding the
file structure of the files from a file system [Lin18]. File carving only uses the available
block(s) of binary data. File carving globally consists of two steps:

1. Acquisition consists of finding the fragments that belong to a file that is been recon-
structed.

2. Validation/Verification To rule out false positives, the reconstructed files have to be
validated and verified whether the files have valid file structures. Fragments of files
under recovery can be stored out of order on the disk. Thus in order to successfully
reconstruct the file, the correct sequence of fragments has to be found. Validation
can also be used to reorder recovered fragments of a file under reconstruction in case
of a fragmented file.

1https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil

6

2.2.1. CURRENT CHALLENGES FOR FILE CARVING
File carving restores the data of deleted files by going through the raw data of a storage
medium, without using the metadata of the file system. During file carving the clusters of
the storage medium are analyzed sequentially. In case a file is stored sequential in con-
secutive clusters, files can easily be restored. However, due to the use of file systems and
optimizations of file systems, this is not always the case. If files are not stored sequentially
in consecutive clusters, the complexity of restoring the file is increased. The following con-
cepts affect the complexity of restoring files using file carving [vdB+14]:

• Fragmentation
• Fragment recognition
• Fragment reordering (out of order fragmentation)
• Performance (limiting the search space)
According Garfinkel [Gar07] conventional file carvers have two limitations:
• Only restore non fragmented files, these are files with data stored consecutively and

in order.
• No extensive validation is performed on the recovered data. As a result the recovered

data also contains invalid data that cannot be used (false positives).

Fragmentation Conventional file carvers use magic strings to identify the header and
footer (or file size) of a file and restore the file starting from the header up to the data of the
footer (or the file size) [PM09, Gar07]. All the data located between the header and footer is
also included, even if this data contains data that belongs to another file. Thus this method
can only restore data that is stored consecutively and in order. Fragmented files can be ac-
cessed by file systems, since they keep track of where the fragments are stored on the disk.
However, in case of file carving the information from the file system is not available.

The degree of fragmentation affects the complexity of restoring and reconstructing files.
Files can be fragmented in 2 or more fragments and the fragments can be stored out of
order on the storage medium. Van der Meer [vdMJvdB20] investigated fragmentation on
NTFS using a corpus of 220 laptops. Findings were that the degree of fragmentation and
out of order fragmentation where non-negligible.

Fragment reconstruction Fragment recognition is the ability to recognize data fragments.
When data is fragmented, the fragments of a file need to be recognized in order to identify
to which fragment the data belongs. Recognized fragments can be used to reconstruct the
files under recovery. During the reconstruction of a file the fragments of the same file need
to be recognized and possibly also need to be reordered in case the file was fragmented and
out of order.

Performance Another aspect that forms a challenge is performance. Performance is re-
lated to how much effort, which can be computational power or time, it takes to perform
an analysis. For instance, if the file carver returns a lot of false positives, it will potentially
cost additional time to filter out the false positive results. However, if the file carving is
very thorough and returns a lot of valid results, this can take a lot of time to perform. This
long duration can be a problem. Trying out all the possible combinations of two fragments
until the file is valid, can potentially cost a lot of time. Limiting the amount of possible
combinations (search space) would improve the performance.

7

3
RELATED WORK

This thesis investigates file format validation using file format structures. Knowledge of
file format structures could be used during file carving to recover deleted files. Golden and
Roussev introduced the use of file format structures in a file carver [RIR05]. Their file carver,
which is called Scalpel, used a database of header and footer data structures of specific file
formats. Scalpel analyses the raw data of a storage medium under recovery, without using
information from the file system. When a known file header is recognized and the file size
is determined, which can be based on file size metadata or the presence of a file footer,
the data can be recovered. The data is recovered by copying the header structure and the
data directly after the file header until the size of the file is reached. One limitation of this
approach is that this method only works for files that are contiguously stored on the storage
medium. Fragmented files cannot be recovered with this method [PM09, RIR05, Gar07].

As mentioned above, the first generation of file carvers can only recover deleted files
that are stored contiguously. A limitation of the first generation of file carvers, like Scalpel,
is that it is not able to recover fragmented files. To address this limitation, Garfinkel et
al. [Gar07] introduced the concept of object validation. Object validation is the process of
determining which byte sequences form a valid file that adheres to a specific file format
specification. Object validation uses the internal file structure to determine whether files
are valid. Object validation is a superset of file validation, since valid byte sequences of
files embedded in other files can also be recognized. For instance, a JPEG picture that is
stored in a Word document. The approach to recover fragmented files is to provide byte
sequences to the validator. The validator provides feedback whether the provided combi-
nation of data sequences is valid. Garfinkel describes a method, bifragment gap carving,
for carving files that are fragmented into two fragments. Bifragment gap carving assumes
that in case a file is fragmented into two fragments, that data not belonging to the file un-
der recovery is between the two fragments of the file under recovery. This data in between
the two file fragments is called the gap. By shifting the dimensions of the gap until the val-
idator succesfully validates the two fragments combined, the gap can be identified. Using
this method a fragmented files with two fragments can be recovered. Garfinkel introduced
the concept of combining a file carver with an object validator to recover and reassemble
fragmented files.

A continuation on the research of Garfinkel et al. [Gar07] for carving fragmented files
using validators is provided by Cohen [Coh07]. Cohen considers the carving problem as a

8

mathematical problem by creating a mapping function between the file bytes (file under
recovery) and the image bytes (storage medium). The mapping function is determined
by using a discriminator. The discriminator uses the internal file structure to determine
whether a proposed mapping function is valid or has to be modified. The discriminator is
also known as validator, as introduced by Garfinkel [Gar07]. In the approach of Cohen, the
discriminator is used to efficiently determine the correct mapping function. In the end the
mapping function is used to recover the file.

Pal et al. [PM09] identified the following limitations using the bifragment gap carving
method as introduced by Garfinkel [Gar07]: the method does not scale with fragmented
files that have large gaps in between and the method is not designed for fragmented files
with more than two fragments. To address these limitations, Pal et al. introduced the smart-
carver architecture. The smartcarver architecture supports file carving of both fragmented
and unfragmented files. The smartcarver architecture divides a file carver into 3 compo-
nents: preprocessing, collation and reassembly. File format validation can be used in the
collation component in which raw data is identified as a specific file type. File format val-
idation can also be used during the reassembly component in which the discovered frag-
ments of a file are reassembled, by merging data together based on file structure of a file
format. Poisel et al. [PT13] performed a literature study on current file carving techniques.
Poisel et al. state that the main challenges for existing file carving applications are accuracy
and performance. Poisel et al. state that approaches that use the structure of file formats,
also known as file signature approaches, are highly efficient for recovering fragmented files.
File signature approaches that are based on discriminators and mapping functions are par-
ticularly useful for file formats with a fixed structure and recognizable features. This thesis
investigates which concepts a file format should have to apply file format validation with
file signature based approaches.

Related work provides several proof of concepts for using information of file format
structures for file carving. Garfinkel et al. successfully applied the approach of file for-
mat validation in combination with file carving for the following formats: ZIP, JPEG and
Microsoft OLE [Gar07]. Cohen also successfully applied his mathematical approach with
using the mapping function for the ZIP and PDF file format [Coh07]. Wei et al. [WZX10] cre-
ated a file carver to recover fragmented RAR files. The file carver uses a validator that uses
the internal file structure of the RAR file format. The validator is used as a discriminator for
determining the mapping function as introduced by Cohen [Coh07]. Chen et al. [CZX+08]
created a file carver to recover fragmented PDF files. This file carver uses file validation
techniques that also use file format specific structures, similar as Garfinkel [Gar07] and Co-
hen [Coh07]. Yang et al. [YXLS17] created a file carver that uses file format information for
the AVI file format. The AVI file carver can identify and reorder frames (fragments) from
an AVI file to carve fragmented AVI files. The identification of frames is based on file for-
mat information and the reordering of the frames is based on data structures that contain
properties (metadata) of frames sizes and frame locations.

Furthermore, related work shows that file format specific approaches provide an added
value when compared with generic file type approaches. Veenman et al. [Vee07] introduced
two models for recognizing file types: Type-All and type-X recognition. The type-All model
tries to recognize multiple file types, the type-X model only tries to recognize one specific
file type. The conclusion of Veenman was that the type-X model had better results, since
the type-X model was better able to distinguish the features of similar file types. A simi-

9

lar conclusion was drawn by Roussev and Garfinkel [RG09], who performed a study with
a bottom-up approach, by starting with examining specifications of popular file formats.
Based on this approach, Roussev et al. concluded that specialized methods are required for
each specific file type to correctly distinguish different file formats. Distinguishing differ-
ent file formats is a requirement for reassembling fragmented files, because if file formats
of fragments are incorrectly recognized, this can lead to difficulties when the fragments are
reassembled into the original file.

Related work identified that restoring fragmented files using file carving is a challenge,
since this requires recognition of fragments and reassembly of these fragments [PM09,
Coh07, Gar07]. To what extent fragmentation actually forms a problem in the real world,
depends on the degree of file fragmentation. Van der Meer et al. [vdMJvdB20] investigated
file fragmentation on the NTFS file system by analyzing file fragmentation on a corpus of
220 Windows laptops. Van der meer et al. investigated the degree and presence of out of or-
der fragmentation for file formats. The majority of the files are stored contiguously. When
files are fragmented, the majority of the files are fragmented in two fragments. Files that are
fragmented in two fragments can be restored by using the bifragment gap carving method
as introduced by Garfinkel [Gar07]. However, Van der Meer et al. found out that a specific
group of file formats (jpeg, tif, flv, pdf, ppt, pptx, pst, accdb, db, SQLite , 7z, rar and zip)
are fragmented more often and out of order when compared with other file formats. Ac-
cording to Van der Meer et al. the reconstruction of this specific group of file formats is not
sufficiently supported by current tooling. One of these identified file formats is the PST file
format. Our work investigates how to create a file format validator using data structures for
the PST file format.

10

4
METHODOLOGY

In order to answer the main research question, we have chosen to approach this from a file
format specification perspective. Because file validation relies on properties of a file for-
mat and these properties are defined in file format specifications. The expected outcome
of this approach is to identify general concepts that are commonly used across different
file format specifications. If we are able to identify general concepts, we can investigate
whether a relationship exists between the general concepts and the currently known vali-
dation techniques. We expect that there is such a relation, since validation techniques also
rely on specific properties of a file format. If these specific properties happen to be part
of the identified general concepts, we can answer our main research question. Because
a file format specification can be studied for the presence of commonly used file format
concepts. Once these file format concepts are identified, the concepts can be used to de-
termine which validation techniques are suitable. As a result the file format specification
thus can potentially guide file format validation.

An alternative approach would be studying existing file validator implementations. We
did not choose for this approach, because we expect that this does not give a complete
picture of the situation. If file validators of only one specific file format were analyzed, we
expect to recognize commonly used practices for validating the same file format. However,
if the chosen file format does not cover a lot of potential file format concepts, we potentially
miss concepts that do exist in other file formats.

Another approach would be to analyze file validator implementations of different file
formats. In this case we potentially miss common practices among file validators, since the
chosen file formats might be completely different from each, which potentially results in
the use of very different and specific file validator implementations. Another aspect might
be that a file specific property is used by a validator, which in general cannot be applied in
file validators of another format.

The target is to identify common practices and commonly used file format concepts to
identify which approaches can be reused in the implementation of a new file format val-
idator. In order to overcome the limitations of the two mentioned alternative approaches
and accomplish the target, a third option was chosen: identify general concepts that are
commonly used across different file formats by analyzing file format specifications of dif-
ferent common file types of popular file formats. As mentioned before, this method allows
the identification of general concepts that are commonly used in different file format spec-
ifications. This method also has limitations, since the list of identified concepts can be

11

incomplete. The completeness of the list of identified concepts depends on the file format
specifications that are selected for analysis. During the selection of the file formats this
aspect was taken into account, by using a diverse selection of file formats of different file
types and multiple file formats for each file type. This reduces the risk, however it still does
not guarantee a complete list. We consider this risk acceptable, due to the used selection of
file formats. Furthermore, the list of identified concepts can always be extended once more
file formats are investigated. The chosen approach allows this flexibility towards additions
in the future.

Once the commonly used file format concepts are identified, the relation between the
existing validation techniques and the file format concepts is identified. We choose for
this approach because we expect it is very likely this relation is present, because the vali-
dation techniques rely on properties of file formats and we expect these properties can be
identified as general file format concepts. If new file format concepts are discovered dur-
ing the analysis of new file format concepts in further investigations, these new file format
concepts can also be mapped to validation techniques. Therefore we expect our proposed
method allows flexibility with regard to newly discovered file format concepts. This flexi-
bility is another reason why we have chosen for a method that uses the approach from a
file format specification perspective.

Once we identified a method to determine how a file format specification can guide
file format validation, this method still needs to be validated. This is achieved by applying
the proposed method on a complex file format. We expect the proposed method provides
insight on which validation techniques can be used in the design of a new file format val-
idator. Once this design is created based on the validation techniques that are identified
by the proposed method, we actually implement the designed file format validator. This
implementation is validated by testing the behavior of the implemented file validator. If
this implemented file validator behaves correctly we consider this a proof of concept for
our proposed method.

Since the implemented validator is only a proof-of-concept, we are not going to exten-
sively test the implementation. Each functionality that can detect a different type of cor-
ruption is tested to verify whether the validation works. For this we make use of a relative
simple and small valid file and under analysis and the validator must detect this is valid.
In further testing, the valid file is manually altered to introduce corruption at specific and
known locations. It is verified whether the validator is able to detect the introduced corrup-
tion at the expected location of several cases. This functionality is also tested with a larger
PST file on which several file operations are executed, such as deletion of items, in order to
test the resilience of the validator against the dynamic properties of the PST file format.

12

5
CURRENT STATE OF FILE VALIDATION

We perform a literature research in order to understand what the current state of the art
with respect to file validation is and answer RQ1:

RQ1. Which existing file carving techniques can be used in a file format val-
idator?

The literature research focused on two areas:
• File validation techniques and strategies which are applied during file format valida-

tion
• File format specific implementations of file format validators
Studies of file validation techniques and strategies provide insight and an overview on

what is currently known and used in the field. This current state of the art provides insight
on which concepts of file formats are used by the file validation techniques and strategies.
This knowledge is useful when analyzing the different concepts that are present in file for-
mats. In this thesis an analysis of used concepts in different file formats is executed. The
currently known file validation techniques and strategies provide context and insight on
what to look out for during the analysis of the different file formats.

Studies of file format specific implementations of file format validators are applying
the currently known techniques and strategies for file validation. This literature provides
a reference on how the techniques and strategies can be applied on a specific file format.
Additionally, these studies give insight on which other file format specific optimizations are
possible. Therefore, studies of file format specific implementations of file format validators
provide additional context on which file format properties to look out for when investigat-
ing the file format specifications.

5.1. FILE VALIDATION TECHNIQUES
Garfinkel [Gar07] uses the term object validation for the process of validating sequences
of carved bytes of a specific file format. Object validation is considered a super set of file
validation, because a file can be embedded in another file. For instance, a JPEG file that is
embedded in a PST file. Object validation tries to check whether a sequence of bytes is still
a valid file that can still be opened by, in the case of PST files, Outlook. Outlook should be
able to open the file without any error messages and should be able to display uncorrupted
information.

13

In file carvers the steps to perform acquisition and validation are not always clearly
separated. Sometimes these steps are embedded within the file carver itself. In case of the
term object validation, the separation between acquisition and validation becomes more
apparent. In this concept a file carver can consist out of an acquisition part combined with
several object validators for each supported file format.

The following summary of the current state of the art validation techniques is compiled
based on the work from Lin et al. [Lin18], Van den Bos et al. [vdB+14] and Garfinkel [Gar07]:

Header and footer validation if a file format contains static sections that can be recog-
nized as header and footer, a file validator can use these sections to validate a file. A
shortcoming of this method is that the data between the header and footer is con-
sidered as part of the file, without actually validating this data. So this method only
works if the file is not fragmented and stored contiguously.

Magic Number Matching A technique used for recognizing the data structure of binary file
formats, magic numbers are used. A specific file format, for instance GIF files, always
start with the ASCII string "GIF" and end with byte 0x3B.

Container structure validation uses the internal structure that the file format dictates, of
container files to validate files. A file format can use a specific layout of the file and
have specific sections at specific locations. This layout can be validated against the
file format definition to validate the file.

Data Dependency Resolving The file structure of file formats can contain fields that pro-
vide information regarding the contents of the file. For instance, a length field that
specifies the size of the entire file. A file format can also contain references to other
parts in the file, for instance using an absolute file offset within the file. This infor-
mation can be used by validators to make sure that the file does not contain incon-
sistencies.

Validating with decompression Once the structure is validated, the actual contents within
these structures still have to be validated. It could be that the file format encodes or
compresses data in specific sections. These compressed/encoded data sections can
be validated by checking whether they can be successfully decompressed/decoded.
This allows the validator to verify whether the contents of the sections are corrupt.
For instance, when the decoding of a MPEG file is successful it is likely that the movie
is (partly) view-able. If decoding of the file fails, the location of the error can also
provide information regarding the location of corrupted or missing data. Theoreti-
cally it is still possible that data is successfully decoded or decompressed but does
not contain any information that makes sense. It depends on the type of informa-
tion whether automatic detection of sensible information is possible. For instance,
if it is known that the data should contain human readable text, this property can be
verified by checking the presence of invalid characters (non human readable text).

Algorithm Output Analysis File formats can use encoding or compression on the data stored
in the file. When analyzing a block of data it is possible to determine whether it is
likely that the data was compressed or encoded in a specific way by using bit se-
quence matching.

Internal verification checking Internal verification uses the actual contents of the file to
verify parts of the file under recovery. For example, files can contain information
about length and a cyclic redundancy code (CRC) of the contents. This CRC field from
the raw binary data, can be used during the verification of the file that is recovered

14

from the file carving process. The validator can compute the CRC value of a specific
section of data and compare this value with the stored CRC value of the file.

Semantic validation Uses the semantic information that is stored in the file. For instance,
if it is known the file contains text about a certain topic in a specific language, this
information can be used to determine whether it is likely that other recovered text
sections also belong to the same file. Garfinkel also indicates this approach is cur-
rently hard to automate [Gar07].

Manual validation It is possible that a recovered file passes all the validation checks and
has a valid file structure and can successfully be opened, but still does not contain
human readable text. The process of inspecting the recovered data with human eyes
is called manual validation. This is required to detect false positives that slip through
automatic validation.

Bifragment Gap Carving (BGC) [Gar07] tries to identify the header and footer of the file
under recovery. If the header and footer including the data in between is not valid,
it is assumed a gap of data is in between the two fragments of the header and footer.
The method each time tries a different gap size between the two fragments in order
to find the gap size. Once the gap size is found, the file can be recovered by leaving
out the gap between the two fragments. This technique is used at file carver level and
not directly by a file validator. However a file validator can assist the bifragment gap
carving technique in identifying when the file is valid.

Metadata Based Data Recovery [PT13] uses information from the file system about the
file under reconstruction that might be left after the file was deleted. In case a file is
deleted this information is not always available, in this case we have to resort to the
techniques mentioned above.

5.2. CURRENT CHALLENGES WITH FILE FORMAT VALIDATORS
Cohen states that general purpose programs (such as Outlook for PST files) may be used as
validators, however the usability of the results of this approach is limited [Coh07]. This is
due to the following factors:

• General purpose programs might not expect that provided files are corrupt. It could
be that general purpose programs do not perform a complete integrity check of the
file, as a result corrupt files might not be detected.

• Another approach of a general purpose program when handling a corrupt file, is to
attempt to recover the provided file. Detected errors in the file might not be reported.

• Additionally most general purpose programs fail to pinpoint the location of the errors
that caused the corruption in a file.

This indicates that there is room for improvement with regard to the issues mentioned
above, for validators that provide more detailed feedback regarding the state of a file. A file
under reconstruction, ideally is checked sector by sector until the point of fragmentation
is detected, since from that point the file structure is no longer valid. The reconstruction
process can try appending different blocks of data until the file structure is valid again,
the number of combinations can be very big which make it impractical to recover the file.
Additional information and assumptions from the environment can be used to reduce the
number of possible combinations, this improves the performance of reconstructing the
file. Cohen mentions that these assumptions can be derived from the file structure of the
file format and lead to two types of constraints:

15

Positive constraint A positive constraint limits the amount of possibilities by identifying
a sector of data that belongs to the current sequence of data in the file and can be
appended to the file is reconstructed (for instance an identified file header).

Negative constraint A negative constraint limits the amount of possibilities by ruling out
candidates that belong to the current sequence of data in the file. For instance when
its likely that the sector belongs to another type of file.

Additionally, information regarding the used file system can provide information about
sector sizes, which may lead to other assumptions that files only begin at sector boundaries
and that fragmentation only can occurs on sector boundaries.

5.3. FILE FORMAT VALIDATION REFERENCE IMPLEMENTATION
Chen et al. [CZX+08] build a PDF file carver, by applying the findings of Garfinkel [Gar07]
and Cohen [Coh07] in practice. The lessons learned and techniques used in the research
of Chen et al. are interesting for creating a new file format validator, because this study is
focused on creating a file carver except targeted at another file type. The PDF file carving
method of Chen et al. consists of five validation methods:

1. Header/file length/maximal offset of objects/footer validation The validator searches
for the header of the PDF file, by searching for a magic string. Also the footer is
searched by using a magic string. These magic strings are properties of the PDF file
format. PDF files can be organized using two different methods: linearized and non-
linearized. The following approach is applicable for linearized PDF files: The length
of the PDF file is stored in the data. The length value is used to check whether at the
end of the file the magic string indicating the end of the file is present. If this is the
case it is validated that the PDF file is intact. For non-linearized PDF files another
approach is applicable: the internal cross-reference table of the PDF file is used to
determine the maximal offset of the objects in the table. If an object is found at the
location of the maximal offset, the PDF file is considered complete. If the the valida-
tions mentioned above fail, the PDF file is marked as fragmented.

2. Internal structure validation The internal structure of the PDF file format contains
a cross-reference table referring to objects that are present at certain locations in the
PDF file. The objects in the cross-reference tables are tested for completeness and
availability. Another step is seeking for fragments of a PDF file. To successfully find
a fragment of the PDF file a fragment must be large enough to contain at least one
complete object of the cross-reference table and one or two fragmented objects. In-
complete objects are put together by appending fragments, if the validator now de-
tects a complete object the two fragments are placed in the correct sequence. This
process is repeated until the PDF file is complete or is marked broken, in case the
next fragment of the sequence cannot be found.

3. Entropy difference validation Entropy is the amount of randomness or uncertainty
of a piece of information. This entropy value can be used as a signature to identify
different file types. The entropy value can be used to indicate which data belongs
to each other and identify boundaries of data. For instance, compressed data has a
specific entropy value, when some non-compressed data occurs after the sequence
of compressed data this can be detected, because non-compressed data has another
entropy value. The difference of the entropy value between two segments of data
determines whether it should be considered as data that belongs together. However

16

entropy cannot identify the exact fragments of the PDF file.
4. Validating with zlib/deflate decompression Data in PDF files is most of the time

compressed using the Flate data compression method. Two fragments of data seg-
ments are put together and decoded using the decompression method, if this suc-
ceeds the two segments belong together. This process can be repeated to find other
fragments that belong to the same data sequence.

5. Character table validation Boundaries of fragments of a fragmented PDF file contain
characters. Based on the knowledge of the file format it can be determined whether
the last couple of characters of a fragment and the first characters of a fragment be-
long to each other.

17

6
FILE FORMAT ANALYSIS

In this chapter we investigate RQ2:

RQ2. What kind of concepts are used in file formats?

In order to answer this research question we perform an investigation on a selection
of file formats, to find out which concepts a file format typically contains and how these
concepts can affect the accuracy of file format validation. The file formats selected for this
analysis consist of popular and well documented file formats from the following categories
defined by Van der Meer [vdMJvdB20]:

• Image: JPG, TIFF, PNG
• Audio: MP3, OGG
• Video: AVI, MKV
• Documents: Office Open XML, EPUB
• Archive: ZIP, TAR
• Database: SQLite
The categories are the same categories as introduced by Van der Meer. Requirements

for the investigated file formats are that each category had to be represented by one or
more file formats and the availability of documentation for each file format. Furthermore,
the file formats must be commonly used in order to acquire a representative view of which
file formats are typically present on a system.

The goal of the file format investigation is to map the identified concepts in the physical
layout of a file format to validation techniques in this chapter.

Please note that this chapter only contains a selection of the investigated file formats
in order to understand which concepts are present in a file format. However, more file
formats were investigated in order to find file format concepts and the other investigated
file formats can be found in Appendix A. More file formats were investigated to come to
a more substantiated conclusion with regard to the identified file format concepts and to
prevent that we miss certain file format concepts that were not present in selection of file
formats.

6.1. FILE FORMAT SPECIFICATIONS
To identify which concepts are used in each different file format, not every detail of each file
format has to be understood. Therefore, only the aspects of a file format that are relevant

18

in the context of file format validation are described.
Please note that the terminology of the file format descriptions follows the file format

specification of each file format. As a result similar concepts in different file formats can
use different names or naming conventions in this chapter. This is intentional, because
this allows the reader to easily locate the original terminology in the corresponding file
format specification. Another reason is to identify which file formats use similar concepts
and mapping this to the original terminology of each different file format.

Each file format is described by a schematic diagram that represents the physical lay-
out of a file format. Figure 6.1 contains all the used concepts that are used to describe the
schematic diagram of a file format. The following notation is used in the schematic dia-
grams:
Dark grey area Sections of data that contain recognizable byte sequences, such as magic

strings.
White area Sections of data that do not contain recognizable byte sequences.
Black arrows Indicate the presence of a reference in a section to a specific other location

in the file.
Boxed white sections Indicate the name of a section, which is a specific area in a file.

Sometimes a section consists of multiple other sections, for instance in case of a list
or a parent-child relation within a file.

Green arrows Indicate the data covered by a corresponding CRC value, the black line indi-
cates the location of the CRC value.

Figure 6.1: Overview of file format diagram concepts

Please note that not all details of each file format are discussed. For instance, not every
field of a header or section is explained. Only information relevant in the context of file
validation or required to understand how the file format works is mentioned. This in gen-
eral also applies to omitting the details of how information is encoded, since this does not
provide an added value for understanding the organization of a file format.

TIFF The TIFF file format1 consists of different sections. These sections are not identifi-
able by recognizable byte sequences. Instead, the TIFF file format uses absolute file offsets
to refer to each different section within the file.

Figure 6.2 provides a schematic overview of the file format. A TIFF file starts with an
image file header at the start of the file. Only the image file header is recognizable due to a
specific byte sequence at the start of the image file header. The image file header contains

1https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf

19

an absolute file offset to the first Image File Directory (IFD). The location of the image file
directory can be anywhere in the file, as long as it is after the image file header. There can
be multiple IFD’s, the file format dictates that at least one IFD has to be present. The IFD
structure is not recognizable based on the byte sequences. Each IFD contains a reference
to the next IFD (if another IFD is present), by using an absolute file offset.

Each IFD contains at least one directory entry. A directory entry, also known as TIFF
field, has a specific tag and datatype and a reference to the value data. The value section
contains the corresponding data of a TIFF field. There is a vast number of different tags
available, the order of the tags must be ascending in the IFD entries. The TIFF fields re-
quired in the IFD depend on the image type stored in the TIFF file. Certain data values of
the file can be compressed or encoded, for instance values containing the image data. TIFF
supports multiple methods of compression: LZW, JPEG, Huffman, PackBits or no compres-
sion.

The TIFF file format does not make use of recognizable byte sequences to identify sec-
tions within the file format, only the image file header at the beginning of the file is recog-
nizable. Instead of recognizable byte sequences, the sections can be found based on the
use of absolute file offsets. From a file validation point of view these offsets cannot be used
as identifiers for the different sections, since an absolute file offset is an arbitrary bit string.
Furthermore, it is difficult to verify an absolute file offset to another field, because it is dif-
ficult to verify whether the referred field is correct, since the field itself is also an arbitrary
bit string.

The TIFF file format contains a large number of different field types (Directory entry
and value). Not each different field type of the file format is explained, because fields are
structured and used the same for each type of field. Only the type of information stored in
each type of field is different. This can also be seen in Figure 6.2, there are no differences
between the different directory entries, which are also known as TIFF fields. Therefore, the
knowledge of all the different field types is not required to understand how the file format
is organized.

Figure 6.2: TIFF file format diagram

OGG The OGG file format2 is a container format that encapsulates data, for instance au-
dio data (using the Vorbis codec). The OGG file format consists of pages that contain data,
these pages are called ogg pages. Pages can be used stand-alone and contain all the infor-

2https://tools.ietf.org/html/rfc3533

20

mation required for a decoder to recognize, verify and handle the page, without requiring
the other pages of the bitstream.

Figure 6.3 provides a schematic overview of the ogg file format. As mentioned before,
an ogg file consists of a sequence of ogg pages. Each logical stream contained in an ogg file
starts with a beginning of stream (BOS) page and ends with an end of stream (EOS) page.

Each page starts with a page header followed by one or more ogg segments. Page struc-
tures are recognizable and contain the following information: the current position of the
data in the stream, the meaning of this position depends on the used codec of the encap-
sulated data. A bitstream serial number is a unique serial number that identifies the logical
bitstream, since an ogg file can contain multiple tracks in case of an audio file. A page se-
quence number, which is the sequence number of a logical bitstream, in case of audio, an
audio track. Also a CRC checksum of the page is present in the page header, this checksum
can be used to verify the contents of the page including the page header (excluding the
value of the CRC field itself). An encoder puts the audio data in the page data structures,
in case of the vorbis encoder the data is Huffman encoded. The ogg encapsulation process
splits the audio data into different segments, the maximum size of a segment is 255 bytes.
An OGG page contains a sequence of segments, segments do not have a header. However,
the number of segments and length of each segment contained in the page, is stored in the
page header of. The data of the segments is accessible by using the lengths of the segments
that are stored in the page header.

The ogg segments stored within the pages are stored directly after each segment and do
not contain any specific recognizable byte sequence between the segments. As a result the
ogg segments itself are not recognizable. The data stored within the ogg segments depend
on the used codec when creating the ogg file. Pages itself are recognizable and verifiable
using the CRC value, the maximum size of a page is 64 KB and are usually between 4-8 KB.
This could be a challenge in case the file system uses smaller clusters than the maximum
size of a page. Because, it is not possible within pages to detect from which exact part the
data is no longer valid, it is only possible to verify the complete page.

Figure 6.3: OGG file format diagram

Zip Zip files are used to contain (compressed) files.
Figure 6.4 contains a schematic overview of the zip file format. The zip file format3

mandates a local file header for each file contained in a zip file. Each file stored in a zip
file has a preceding and recognizable local file header. The local file header contains the
following metadata: the CRC value of the uncompressed data of the file stored in the zip
file. Also the files sizes of both the compressed data and compressed data of the file and the
file name are stored in the local file header.
3https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

21

After each local file header, the compressed or non compressed data of the file entry
is located. Each file entry in a zip file has a corresponding central directory header record
entry in the central directory section. The central directory structure is located at the end
of a ZIP file. The central directory consists of file header entries. A file header entry is
recognizable and contains the following metadata: the compression method of the entry
and a CRC checksum of the data. Also the compressed size and uncompressed size and file
name of the file is contained in the file header entry. The relative offset of the local header
with respect to the start of the zip file is also stored in the file header entry.

At the end of the central directory structure, a Zip64 end of central directory record is
located. The structure is recognizable. This record contains the following metadata: the
total number of entries in the central directory. The size in bytes of the central directory.
Furthermore, the relative offset of start of central directory with respect to the start of the
zip file is stored in the Zip64 end of central directory record.

Data compression may be used for the data segment of each file entry. The method that
is typically used for compression is deflate.

The data sections in Figure 6.4 are marked as unrecognizable, because of the following
reasons: the data can be stored uncompressed and the size of the data section is arbitrary.
The arbitrary file size can be larger than the cluster size of a file system, this can lead to
challenges during validation. If the data is uncompressed the validator cannot always de-
tect which data belongs together and from which point the data is no longer valid. Invalid
data can be detected due to the presence of a CRC value of the uncompressed data. How-
ever, the validator can still not always pinpoint the exact location from which the data is no
longer valid, because it is not always possible to detect from which point encoded/com-
pressed data no longer is valid. Therefore, the data section is marked as unrecognizable.

Although almost every field present in the zip file format specification is described in
the preceding text. Only the fields that are relevant with respect to file format validation or
fields that are required to explain how the zip file format works are mentioned in the text
above and Figure 6.4.

Figure 6.4: ZIP file format diagram

6.2. CONCEPTS USED IN FILE FORMATS
Analysis of the different file formats indicates that file formats use similar concepts. It could
be that not all concepts are present in each file format. However, in general similar con-
cepts and structures can be found in different file formats. These concepts typically lead
to the use of certain structures of the data in the file format. These structures can be rec-
ognized and verified by a validator. These structures typically contain metadata of the file,

22

this metadata can be used by a validator to validate the file under analysis. The concepts
shown in Table 6.1 can be found in file formats.

Table 6.1: Concepts used in file formats

Sections Hierarchy/Structure
References Error detection
Encoding Metadata

The concepts mentioned in Table 6.1 are typically implemented using magic strings
or specific byte sequences. This can range from fixed hard-coded values that are always
present in a specific area in the file format, to a limited set of valid values at specific lo-
cations. Checking all the possibilities of the limited set of valid values for the fields of the
data structure can be used as a byte sequence signature to detect the presence of the spe-
cific data structure. These specific byte sequences can typically can be found in the header
or other sections of a file format. The file format itself can also contain information from
which other references or identifiers of the file can be retrieved or extracted. This informa-
tion can be used to find other parts of the file under recovery. The following list summarizes
the applications each identified concept in the analyzed file formats:
Sections clusters (mkv), segments (jpg), pages (ogg, SQLite), frames (mp3), blocks (pst) or

chunks (png, avi), file entries (zip, tar, epub, ooxml)
References Absolute file offsets (tiff, zip, avi, mkv, ooxml, epub), page numbers (SQLite)
Encoding image data compression (jpg, tiff), Deflate (png, ooxml, epub, zip), Huffman

encoding (mp3, ogg/vorbis), codec specific compression in case of containers (avi,
mkv, ogg).

Hierarchy/Structure Specific ordering (jpg, tiff, png, mp3, ogg, avi, mkv, ooxml, epub,
zip, tar), hierarchy (avi, mkv, ooxml, epub), recurring structures (mp3, ogg, avi, mkv,
ooxml, epub, zip, tar)

Error detection CRC validation (png, mp3, ogg, ooxml, epub, zip), other type of checksum
(tar)

Metadata file size (avi, SQLite), section size (png, avi, mkv, ooxml, epub, zip, tar, SQLite),
information regarding the structure of the contents (ogg, avi, mkv, ooxml, epub, zip,
SQLite)

Sections. Sections are specific areas in a file format. Typically, sections have a specific
and sometimes recognizable data structure that forms the section. Examples of sections
are file headers and file footers (trailers). A File header is a section specified by the file
format that is located at the beginning of the file. A file footer is a section specified by the
file format that is located at the end of the file. File headers and footers are very commonly
used within file formats, even if the file contains almost no structure. File headers typically
also contain a file signature, this can be used to recognize a specific file format. Therefore,
the file header and footer are identified as a separate concept.

Typically, a file format also has sections to store data that is contained in the file, such
as audio/video data. These sections are sometimes called clusters (mkv), segments (jpg),
pages (ogg, SQLite), frames (mp3), blocks (pst) or chunks (png, avi). These sections can
have a specific signature, dimensions or location, this depends on what is specified by the
file format.

23

Sometimes these sections contain a CRC value. The CRC value can be used to validate
the content of the section, in this case the validator can validate the contents of the section.
In case there is no CRC value available, the validator can only check whether the section
adheres to the specification of the file format.

The size of a section can vary between file formats. It is possible that the file format
allows long sections, this could affect the accuracy of a validator. The validator can detect
when a section is not valid, but to indicate from which point the section is no longer valid
could be a challenge. For instance, the length of a field containing arbitrary data is known
and the file format dictates that at the end of the data section a specific data structure has
to be present. In case the structure at the end of the section is not found, this could mean
that somewhere between the expected data structure and the beginning of the data section,
the data is no longer valid (possibly due to fragmentation). Since the data is arbitrary, it is
difficult to pinpoint from which point the data is no longer valid. In case the sections are
small, this uncertainty can be acceptable. However, when big data sections are allowed this
also implies a higher uncertainty, thus less accuracy to indicate from which point the file is
no longer valid.

Sections could contain information regarding the length of a section. This can be in
the form of a specific field that contains the length of a section, however the file format
specification can also specify that the length of a section has a specific length. In this case
the length of a section is a property of the section. The length property is important to
identify sections, because if the length of a section is unknown it is difficult to identify the
start and end of a section. In case the start and ending of a section are recognizable, the
length property can also serve as a double check to verify that the data between the start
and ending of a section is consistent with the specified length.

A file format can also contain unrecognizable sections. Unrecognizable sections are
sections that do not have recognizable byte sequences to recognize the location of a sec-
tion, when looking at the raw data. SQLite for instance uses page structures of which is
known to have a specific size. However, some of these pages can contain a specific page
type that does not have a recognizable byte sequence at the start of a page. In terms of val-
idation it is not possible in this case to distinguish the difference between data belonging
to the same SQLite file or whether the data is from another file. Another example is used in
the tiff file format, the Image File directory can be seen as a section that contains directory
entries, however this section does not contain recognizable byte sequences to recognize
this structure. The tiff file format uses file offsets to locate the different sections within the
file. Thus, in case these offsets are invalid, for instance due to fragmentation, there are no
means to find the section that is referred to.

References. The file format can specify structures that contain references to other parts
of the file. The file format can use for instance an absolute file offset from the start of the
file or use identifiers to refer to other parts of the file. The zip file format for instance uses
relative file offsets in the central directory to refer to the location of the local file headers of
each file entry.

Another type of reference is the use of unique identifiers. Unique identifiers can be used
to recognize and identify a specific section. An example of the use of unique identifiers is
used in the ogg file format. The ogg file format uses page sections that contain a bitstream
serial number, which is a unique serial number that identifies the logical bitstream. Fur-

24

thermore, a page sequence number, which is the sequence number of a logical bitstream
(in case of audio, an audio track) is located in the page data structure.

References can be checked and validated by a validator. These references can also be
used to identify and combine fragments of a fragmented file together.

Encoding. A file format can specify that data, which can be located in sections, has to
be encoded using a specific algorithm. Also compression can be used in specific sections
of the data. A file format validator can check whether sequences of data are encoded by
decoding the data sequence.

An example of the use of compression algorithms is the use of the deflate method in zip
files. An example of encoding can be found in the ogg file format: data stored in ogg files
is encoded depending on the used encoder during the creation of the ogg file. Also other
formats like JPG, PNG and MP3 use encoding. However, file formats do not always have to
use encoding or compression. An example of this is the tar file format, this archive format
can store other files within the tar file. The files stored within the tar file are not modified
by compression or encoding, instead the original raw data of the archived file is stored in
the tar file.

Hierarchy/Structure. The file format can dictate a specific structure or hierarchy with re-
gard to the sections mentioned earlier. For instance, a file format can specify that a file
always starts with a header section, followed by a data section and ends with a footer sec-
tion. So not all possible combinations of sections are allowed by the file format in this
case. The structure can be defined ranging from very detailed and strict to very simple and
straightforward. The more structured a file format is specified, the more this structure can
be validated by a validator.

A file format can specify a hierarchy for the sections that are stored within a file. For
instance, the ooxml file format uses a specific naming scheme that has a defined hierarchy
for the file entries. The ooxml file format is layered on top of the zip file format, but has
specific rules regarding the names of the file entries and directory structure for the files
stored in the zip file. Another example that uses hierarchy is the AVI file format: stream
headers are always stored in the hrdl list structure and video frame data is always stored in
te movi list structure.

A file format can specify a specific order in which data sections have to be present in
a file. For instance, the JPG file format specifies a specific ordering, the file starts with a
SOI section followed by a frame section and ends with a EOI section. The JPG file format
also specifies, the contents and order of the segments within the frame segment. This file
format does not allow another sequence of sections. However, file formats do not always
have a strict order for each section and allow more freedom with regard to the ordering
of sections. For instance, the PNG file format uses sections called chunks. Some chunks
can be placed in any order and other chunks have to be in a specific order/location. For
instance, the image header chunk (IHDR) and the image trailer chunk (IEND) need to be
in a specific order and location. There are also file formats that have almost no restrictions
on the ordering of sections. For instance, the SQLite file format uses pages as sections and
only specifies that the file has to start with a database header structure, there are no rules
regarding the ordering of the other pages in the file.

Note that the difference between ordering and hierarchy is subtle. Hierarchy can be

25

seen as a constraint that results in a specific ordering, however ordering does not have
to be hierarchical. Hierarchy is a parent-child relation between different sections in a file
format. This hierarchy is a concept that is layered on top of the physical data. This means
that the physical data first has to be parsed to be able to verify the rules of the hierarchy.
The ordering of data sections can already be verified by analyzing the physical data. This is
the difference between hierarchy and ordering.

Another type of ordering is the recurrence of specific data structures. For instance, a file
format can specify that specific structures have to occur at certain intervals, for example
the mp3 file format have a recurring sequence of frames. These frames start with a frame
header and is followed by frame data, this is a very strict order of data section sequences.

The structure property (hierarchy/ordering/recurrence) can be checked by a validator.
If the structure no longer adheres to the format this could be an indication that there is a
fragmentation or corruption point reached in the data.

Error detection. The file format can specify fields that contain information of internal
verification mechanisms, such as CRC checksums of specific parts of the data. For instance,
sections or even the complete file. These CRC values can be used by a validator to validate
parts of the data of the file under recovery, by calculating the CRC checksum of the raw data
and by comparing the calculated value with the CRC value stored in the file.

The data coverage of the CRC checksum can vary between different file formats. For
instance, the zip file format contains CRC checksums in each local file header for each file
that is stored within the zip file. In this case the CRC checksum can be used to verify each
file entry separately. If the file contained in the zip file is very big, the span of the CRC
checksum is also big. However, there are also file formats that have CRC checksums on
smaller amounts of data. For instance, the ogg file format has CRC checksums for each
page section and also the mp3 file format can contain a CRC checksum for each frame
section. The usability of the CRC checksum for pinpointing the location in a file that is
corrupt, depends on the span of data of which the CRC checksum is calculated.

Metadata. The file format can specify fields that contain information regarding the data
contained in the file. For instance, the size of a field or data section or information regard-
ing the amount of data contained in the complete file. Examples of this are, information
about the amount of data structures used in a file or the last issued unique identifier within
the file.

For example, the database header in the SQLite file format contains the following meta-
data: the database page size and the amount of page sections stored in the database file.
Another example is the header structure for each file in the tar file format, this header con-
tains the size of the file and the name of the file which is contained in the tar file. Each
local file header in the zip file format contains the compression method of the entry and
the compressed size and uncompressed size and file name of the file contained in the zip
archive. The AVI file format uses an AVI main header structure, this structure contains
metadata of the AVI file, such as the file size, the total amount of frames stored in the file
and the video dimensions in pixels.

As indicated by the investigated file formats, the range of information stored in the
metadata can be very broad. The properties stored in the metadata of the file can be veri-
fied by a file format validator to detect inconsistencies.

26

6.3. FILE LIFE CYCLE
Another relevant concept with regard to file formats, is the file life cycle of a specific file
format. There are two types of life cycles:

• Single write: Files that are only written once upon creation of the file. For instance,
audio and video files.

• Multiple write: Files that are rewritten multiple times during the life time of the file.
For instance, documents, presentations and e-mail archive file formats.

A file format can contain specific concepts, in order to support multiple write life cy-
cles. A file that is updated during its life cycle can contain sections which can be rewritten.
This can be due to performance considerations. For instance, if a new email is added to
an email archive, you want to prevent that the whole archive is rewritten from scratch. If
a file format supports the reuse of data sections, the file format can also contain adminis-
tration regarding allocated and available data sections. This could introduce another layer
of complexity with regard to fragmentation. If a file format supports the reuse of data sec-
tions and does not clean the old contents of the data sections, fragmentation on a file level
occurs (internal fragmentation). When restoring a file that can contain old and incomplete
data sections of deleted data of the file itself, this introduces additional complexity during
validation of the file.

In order to correctly validate files that support its own data allocations, the internal
administration that contains the allocated and free data sections need to be parsed. In
order to parse the allocation administration, the validator must be file format aware. The
file format validator must take into account that non allocated data sections can contain
valid, invalid, incomplete or no data. The file format validator must only verify the data
sections which are allocated according the allocation information of the file.

File format concepts that can be used to support a multiple write life cycle are sections
and metadata. The metadata concept is used to store the internal administration that is
required to support a multiple write life cycle. Another property of the multiple write life
cycle is that the file is only partially updated or data is appended to the file, to support
this behavior the file must be organized in different sections. Thus the sections file format
concept is typically used in file formats that support a multiple write life cycle.

Please note that the majority of the investigated file formats in Section 6.1 has a sin-
gle write life cycle. Additional research might be required to further identify the relation
between file format concept usage and the life cycle of a file format.

27

7
FILE FORMAT VALIDATION FEASIBILITY

This chapter introduces a method that can be used to determine whether the creation of
a file format validator is feasible for a specific file format. The concepts used in file for-
mats that were identified in the previous chapter are used for this. A mapping between file
format validation and the identified file format concepts is described in this chapter. As a
result an arbitrary file format specification can be analyzed for the presence of specific file
format concepts. The identified file format concepts in combination with the method, can
be used to determine the feasibility and added value of file format validation.

The previous chapter analyzed files from a file format specification point of view to
identify file format concepts. This chapter focuses on the concepts that are required to
construct a file validator, from a file validation point of view.

7.1. FILE FORMAT VALIDATION REQUIREMENTS
File carving is the technique of retrieving deleted files without using information from the
file system. During file carving the storage medium is read cluster by cluster. Typically, a
file header is used to determine whether a specific file is detected [PM09, Gar07]. The file
can be stored contiguously on the storage medium, but can also be incomplete, corrupt
or fragmented. The added value of a file format validator is to provide information about
the validity of the detected file during file carving. Ideally the file format validator indi-
cates from which point in the data the file is no longer valid to detect fragmentation points.
However, if the data is no longer valid according the validator, this could also indicate that
the file under recovery is corrupt. In this case the reason for this does not always has to
be fragmentation. Fragmentation only occurs at cluster boundaries of the file system, this
property can be used to distinguish between corruption and fragmentation. If a validator
can distinguish between corruption points and fragmentation points, this information can
be used to identify fragments of a file of a specific file format.

File format validation is a technique that can be used to recover fragmented files. In
order to do this, a file format validator must be able to indicate whether a file under recov-
ery is valid or not. In this case a file carver needs to provide data to the validator until the
data forms a valid file, this approach potentially takes a long time, because of the size of the
search space. However, if a file validator is able to pinpoint from which location the data is
no longer valid, this information could be used to identify fragments. When file fragment
identification is possible, this reduces the amount of combinations (search space) the file

28

carver must check to recover a file, this improves the performance. Thus when using a val-
idator in the context of file carving, file fragment identification and reconstruction is the
added value of a validator in terms of performance and usability.

The majority of the files under recovery are stored non fragmented. In these cases the
files under recovery consist out of one part and there are no fragments that have to be re-
organized in order to be recovered, only the beginning and ending of the file needs to be
identified. However, files that are fragmented and thus consist out of multiple fragments,
need to be reconstructed to recover the fragmented file. The problem that file format vali-
dation for fragmented files must solve is:

• File fragment identification
• File fragment reconstruction

A file validator needs to be able to identify which file format is provided in order to
validate the file according the corresponding file format specification. Recognizable data
structures can be used by a validator to identify information within a file itself. Further-
more, the validator must be able to detect until which point the data belongs to the same
file, this ability improves the detection of fragment boundaries. This ability can assist dur-
ing the reconstruction of different fragments and differentiating the fragments of different
files of the same file format.

One step further is to be able to verify the contents that are stored in the file, because a
file can be valid according to its file format specification, but can still contain invalid data.

7.2. FILE FORMAT VALIDATION PRINCIPLES
The previous section introduced two problems that must be solved by file format valida-
tion: file fragment identification and the reconstruction of a file using identified fragments.
The following file validation principles are identified to address these problems:

1. File signature: Allows the file format to be recognized by a file format validator.
2. Recognizable data structures: Allows a file format validator to recognize data struc-

tures within a file.
3. Ability to match data with the same file: Allows a file format validator to match data

to a specific file.
4. Ability to detect invalid/corrupt data: Allows a file format validator to detect invalid

or corrupt data within a file.
5. Ability to check consistency across the complete file: Allows a file format validator

to perform consistency checks on file level.

The file signature and recognizable data structures validation principles are used to
support the file identification requirement. The ability to match data with the same file,
corrupt data detection and the consistency check validation principles are used for sup-
porting the identification and reconstruction requirements.

File signature First of all a file format has to be recognizable, because this enables the
selection of the corresponding file format validator and the possibility to detect files of a
specific file format. In order to do this, the presence of a file signature is required. A file
signature can be a sequence of bytes that is specific for the file format. This is the absolute
minimum requirement to be able to recognize a file format.

29

Recognizable data structures The next principle to look for in a file format are data struc-
tures. Examples of data structures are:

• File header
• File segment within the file
• File footer

Recognizable data structures can be used to detect and identify parts of a file. File headers
and file footers can for instance be used to determine the start and end of the file. Further-
more, the file format can dictate specific structures at specific intervals or locations in the
file. Examples of these are headers and footers.

A file format can also specify data structures between the header and footer, these
data structures can be seen as sections (sometimes also called: clusters, segments, frames,
blocks or chunks) that have their own structure. If these structures are strict, they could
potentially be validated by a validator. If the data no longer adheres to the structure or
required interval defined by the file format, this could be an indication that there is a frag-
mentation or corruption point reached in the data. Data structures need to have a specific
signature (byte sequence / magic string) in order to be recognized by a validator, other-
wise the validator is not able to validate the data structures. An example of recognizable
data structures are fragments (sections) containing audio data in the MP3 file format, these
fragments appear at a specific interval and have a specific structure.

Ability to match data with the same file This ability is required to detect fragmentation
or corruption points of the file during file carving. This ability is used to identify fragments
and can also be used to reconstruct fragments. During file carving the data of a file is pro-
vided cluster by cluster, the file format validator must be able to determine whether two
successive clusters belong to the same file, in order to identify fragments. This ability can
also be used during the reconstruction of a file by validating two successive fragments.

There can be several concepts present in a file format that can be used to determine
whether the next data still belongs to the same file:

• Encoding
• File format structure/hierarchy
• Fields that contain the length/size of data segments

A file format can specify that specific segments contain encoded data. This property can
be used to check until which point the data is still encoded, if this check fails this can be
an indication of a fragmentation or corruption point. Another property that can be used,
is the presence of a physical layout specified by a file format. A file format can specify a
global structure, to which a file has to comply. The physical layout can be used to identify
whether a file is still valid with respect to the file format specification. The required phys-
ical layout of the file format can specify structure and/or hierarchy that can be verified for
consistency. If the structure or hierarchy is no longer consistent with the file format, this
could also be an indication of a fragmentation or corruption point. A file format can spec-
ify that only specific hierarchies are valid or dicatate a specific sequence of data structures.
These properties can be validated by a validator. Another example is that a file format can
specify that specific fields contain data regarding the length of data segment or that fields
have a specific lengths. A validator can check these length properties to validate whether
the data is still adheres to the file format.

30

Ability to detect invalid/corrupt data This property has overlap with the previous ability,
since this ability can also be used to determine whether the next data still belongs to the
same file. However, this ability specifically refers to the availability of internal verification
mechanisms specified by the file format. The difference with the previous ability is that this
ability not only checks for valid hierarchy or data structure sequences, but actually verifies
the data contained in the segments. This is a significant difference, since a data segment
can be valid according the specified data structure (for instance, a valid footer and header
section), but the actual data contained in the data segment can be invalid. The following
concepts can be used for internal verification:

• Internal verification mechanisms
• Restrictions imposed by the file format on the content of data structures

Internal verification mechanisms are typically present in the form of CRC values. The file
format can specify the presence of a CRC value of a specific section of the file. These CRC
values can be used to compare the CRC value with the computed CRC of the data. If the
check passes, this is an indication the data is still valid and part of the file. If the check
fails this can be an indication of a fragmentation or corruption point. If the data format
specifies data structures in a specific format, these data structures can also be validated for
consistency with respect to the restrictions imposed by the file format. If this consistency
check fails, this can be an indication of a fragmentation point. An example of this is that
a specific field is only allowed to have a limited set of valid values. If this field does not
contain a valid value, this could be an indication of a fragmentation or corruption point.

Ability to check consistency across the complete file A file can consist out of valid seg-
ments, however combining valid segments in a random order does not have to result in a
valid file. The file format can contain metadata which enables validation on file level. The
following concepts can be used on as check on file level:

• CRC checksum of parts (or complete) of the file
• Absolute (or relative) file offsets within the file
• Unique identifiers (numbers, names) for data sections
• References to other sections in the file
• File size metadata
• Data structure/hierarchy at file level

A file format can specify CRC values of larger parts of the file than the earlier mentioned
segments of a file. Once more parts of the file are recovered or even the complete file, this
allows validation on file level instead of on section level.

A file format can use references to other sections in the file, references can be imple-
mented by using absolute or relative file offsets within the file. These file offsets can be
used to check the consistency within the file, by comparing the physical position in the file
under validation with the file offset stored in the file.

References can also be used to identify and combine fragments of a fragmented file
together. References to other sections in the file can also be implemented by using unique
identifiers. A file format can specify that data structures have a unique identifier, these
unique identifiers can be used to validate the consistency of the file.

A file format can specify areas that contains file size metadata. File size metadata can
be regarding segments of the file or even the complete file size. This metadata can be used
by a validator to validate the consistency of the file. An example of this metadata, is the

31

complete file size. In case the complete file size metadata is present, this value can be
compared with the amount of data that is recovered.

The techniques described above can also be used on fragment level, this can be seen as
the ability to match data with the same file, however some metadata can only be verified
in case the complete file is available. For instance, the verification of a reference is only
possible if the location that is referred to is part of the recovered data, this is not always
the case. Furthermore, some metadata, like file size or the amount of sections, can only be
verified in case the complete file is available. Therefore this ability is identified as a separate
ability.

7.3. MAPPING BETWEEN VALIDATION PRINCIPLES AND FILE FOR-
MAT CONCEPTS

Section 5.1 contains a list of existing file format validation techniques. In order to apply
these validation techniques, certain file format concepts need to be present in the file for-
mat. Section 6.2 contains a list of identified file format concepts that were found during
the file format analysis. Table 7.1 contains the mapping between validation techniques and
the required file format concepts. This table also contains the mapping between validation
techniques and the identified file validation principles, that are introduced in Section 7.2.
These file format validation principles are used to recognize and reconstruct fragments, in
order to successfully carve fragmented files using file format validation. In order to bridge
the gap between file format validation principles and file format concepts, there are two
intermediate relations identified: the first one is the relation between file format validation
principles and file format validation techniques. The second one is the relation between
file format validation techniques and file format concepts.

Table 7.1 provides an overview about which file format concepts can enable the use of
specific file validation principles. Section 7.4 provides the minimum set of required file val-
idation principles for file validation, using Table 7.1 the corresponding file format concepts
that enables these file validation principles can be found.

7.3.1. RELATION BETWEEN VALIDATION PRINCIPLES AND VALIDATION TECH-
NIQUES

Section 7.2 introduced the file validation principles. These file validation principles can
be supported by file validation techniques. This sections describes which file validation
techniques can be used to support a specific file validation principle.

File signature A file signature is something that can identify a file format. A file format
can use a specific header and/or footer, therefore the header/footer validation technique
can be used to identify a file format. Furthermore, a file specific magic number (or string)
is typically present in a file format specification, therefore the magic number matching
validation technique can also be used to identify a file signature.

Recognizable data structures In order to recognize and identify data structures of a spe-
cific file format, the following validation techniques can be used: Header/Footer validation,
magic number matching and container structure validation.

32

Header/Footer validation relies on the specific data structure of a header and footer,
therefore this technique can be used to recognize data structures.

Typically, the recognizable part of a data structure are specific sequences or locations
of values in the data. These recognizable data values can be identified by using the magic
number matching technique.

Container structure validation checks the properties of data structures that are speci-
fied in a file format, for instance the length of a field or the type of data that is stored in
a field of a data structure. As a result, the container structure validation technique can be
used to identify recognizable data structures.

Ability to match data with the same file Several validation techniques can be used to
match data with the same file, it depends on the data under analysis which technique is
most suitable.

In case data the is compressed, the validation with decompression technique can be
used. If the data is encoded, the algorithm output analysis technique can be used.

If the data is not encoded or compressed, the data dependency resolving technique
can be used, this technique uses information retrieved from the file data to check the con-
sistency of the file under analysis, for instance by checking references or the length of a
section.

If the file format uses container structures, the container structure validation technique
can also be used. Container structure validation checks the specified properties of a con-
tainer data structure. For instance, the length of a field or a value within a field of a con-
tainer data structure. When data is matched to the same file, container data structures need
to be valid. If this is not the case, this could be an indication the data does not match with
the same file.

Ability to detect invalid/corrupt data In order to detect invalid/corrupt data, internal
verification mechanisms are used, this can be accomplished by using the internal verifica-
tion checking validation technique. An example of an internal verification mechanism is a
comparing a CRC value of the data with a calculated CRC value.

Another method of detecting invalid data is by using the container structure validation
technique. This technique can be used to verify whether the structure of the data structures
is correct and contains valid values in case these are specified by a file format. For instance,
a field in a data structure can have a specific length and value.

Ability to check consistency across the complete file Multiple validation techniques can
be used to check the consistency of a complete file. The following techniques can be used
to verify the consistency across the complete file or parts of the file: semantic validation,
internal verification checking, algorithm output validation, validation with decompression,
data dependency resolving and container structure validation.

Semantic validation can be used to verify whether the semantic information is consis-
tent across the complete file. Internal verification checking can be used in case there is
information available of the complete file (or parts of the file), for instance a CRC value
of the complete file. Algorithm output validation can be used to verify whether the com-
plete file can be decoded and is consistent. Validation with decompression has a similar
approach except it tries to decompress compressed data of the complete file.

33

If the complete file is available this also allows the data dependency resolving technique
on a file level, instead of on a fragment. If a complete file is available, all references can be
validated or metadata of the file on file level. Metadata can for instance contain informa-
tion about the amount of data structures of a file or the file size, these can only be checked
if the complete file is available.

Container structure validation can be applied within sections itself, but can also be ap-
plied on structures that exists out of multiple sections across the complete file. For in-
stance, if a file format consists of multiple container structures that are nested in each other.

Since a file can consist out of different sections with different properties for each sec-
tion, the used validation technique depends on which part of the file is analyzed. For in-
stance, a zip file consists of a section containing references and sections of compressed
data. Validation with decompression can be used for the compressed data sections and
data dependency resolving technique for verifying the references.

7.3.2. RELATION BETWEEN FILE FORMAT VALIDATION TECHNIQUES AND FILE

FORMAT CONCEPTS

The next step in mapping validation principles to file format concepts, is the dependency
between the file format validation techniques and file format concepts as introduced in
Section 6.2. In order to apply validation techniques, specific file format concepts need to
be present. Section 5.1 contains the list of validation techniques, the following techniques
are not applicable since they do not apply in the context of file format validation: manual
validation, Bifragment Gap Carving and Metadata Based Data Recovery.

Manual validation relies on manual actions and is not used in combination with a (au-
tomatic) file format validator. Bifragment Gap Carving (BGC) is a technique than can use
a file format validator to identify a gap between two file fragments of the same file, this
technique is a method to solve the reconstruction problem of file fragments on a file carver
level. Thus Bifragment Gap Carving is not directly applicable within file format validation.
Metadata Based Data Recovery relies on the availability of metadata of the file system on
which the data under recovery is stored. This technique cannot be applied in a file for-
mat validator, since a file format validator handles the data of the file under recovery and
does not use information of the file system. Furthermore, metadata based recovery is also
a technique which is applied on a file carver level, not on file validation level.

Header and footer validation Relies on the use of recognizable data structures that are
required to recognize the header and footer sections that are used to identify a file under
recovery. This means that the required file format concept to apply header and footer vali-
dation is the sections concept.

Magic Number Matching Relies on the usage of recognizable values (magic numbers,
magic strings) in a file format. Typically magic numbers are used in combination with
recognizable data structures. Data structures are recognizable due to the usage of magic
numbers. Therefore, if a file format uses the sections concept, the magic number matching
validation technique can be applied to recognize data structure.

Please note that magic number matching can also be used without sections, for in-
stance in order to recognize a file signature. So recognizable data structure requires magic

34

numbers, in order to be recognizable. But magic numbers do not necessarily require data
structures, since magic numbers can appear anywhere in a file format.

Container structure validation Validates the structure of container data structures. This
requires recognizable data structures to validate the content of a data structure, thus the
sections file format concept is required.

The container structure validation technique can also be used to verify a hierarchy
within a file format, this allows container structure validation on file level.

Data Dependency Resolving Multiple file format concepts can be used to apply data de-
pendency resolving: references, metadata and hierarchy/structure.

The references file format concept can be used to verify the reference, by checking
whether a specific data structure is present at the location the reference is referring to.
Metadata can also be used for applying the data dependency resolving technique, for in-
stance the size of a specific data structure can be checked. If a file format uses a specific
hierarchy, this hierarchy can also be used by data dependency resolving to check whether
the hierarchy is valid within a file.

Validating with decompression Relies on the usage of data compression. This technique
tries to successfully decompress data to validate the data. In order to do this the data must
be compressed, thus the encoding file format concept is required.

Algorithm Output Analysis Is a different approach to validating with decompression.
This technique tries to match data together by applying bit sequence matching of data that
was encoded using a specific algorithm, for instance encoded video data. Thus this method
relies on the presence of the encoding file format concept.

Internal verification checking The internal verification checking technique relies on the
presence of error detection, for instance CRC checksums or other types of checksums that
can be used to validate the contents of the data. The technique computes the checksum
of the data and compares this with the checksum that is present in the file itself. Thus the
internal verification checking technique requires the error detection file format concept.

Semantic validation Uses semantic information from the file format. For instance, the
language that is present in a file. In order to apply semantic information the following
file format concepts can be used: metadata and sections. Metadata can be used to ex-
tract semantic information, such as the language. This semantic information can be used
to check whether the data contains the same language. Semantic information can differ
among different sections, therefore the sections file format concept can be useful to differ-
entiate which semantic information applies to that specific section.

35

Table 7.1: File validation and file format concepts mapping

Validation principle Validation technique File format concept

File signature Header/footer validation Sections
Magic number matching Sections

Recognizable data structures Header/footer validation Sections
Hierarchy/Structure

Magic number matching Sections
Hierarchy/Structure

Container structure validation Sections

Ability to match data with same file Validating with decompression Encoding
Algorithm Output Analysis Encoding

Data Dependency Resolving References
Metadata
Hierarchy /Structure

Container structure validation Sections

Invalid/corrupt data detection Internal verification checking Error detection

Container structure validation Sections

File consistency Semantic validation Sections
Metadata

Internal verification checking Error detection

Algorithm Output Validation Encoding
Validation with decompression Encoding

Data dependency resolving References
Metadata
Hierarchy/Structure

Container structure validation Hierarchy/Structure

36

7.4. NECESSARY FILE VALIDATION PRINCIPLES

In order to determine whether file format validation is feasible and to what extent it has
added value are two different subjects. The added value depends on the level of detail the
feedback is provided by a file format validator, regarding from which point the file is no
longer valid. Creating a score model that gives an accurate indication of the added value is
difficult, since this analysis is not straightforward and highly depends on the context and
conditions. However, it is possible to specify an absolute minimum set of requirements to
perform file format validation.

As mentioned in Section 7.1 a file validator must solve the following problems: file frag-
ment identification and file fragment reconstruction. This means that in an arbitrary bit
stream a file format must be recognized by a validator. Furthermore, the validator must
also be able to indicate from which point the data is no longer valid, possibly due to cor-
ruption or fragmentation. In order to fulfill these requirements, the following concepts are
the minimum requirements that have to be present in a file format to perform file format
validation:

• File signature
• Recognizable data structures
• Ability to match data with the same file

A false negative is rejected data that actually belongs to the file. A false positive is ac-
cepted data by the validator that actually not belongs to the file.

The concepts mentioned above are required to verify whether data still adheres to the
file format specification, on a structural and hierarchical level. These concepts do not pro-
vide validation on the contents stored within the file. This means that if data contains the
correct structures with respect to the file format specification, the information stored in the
file could still be invalid or unreadable.

7.4.1. FILE SIGNATURE

The file format needs to have at least recognizable byte sequences or magic strings that can
be used to recognize the file format. These values do not necessarily need to be present
in the header, but also other data structures can be used, as long as they can be used to
recognize the file format. If the file format cannot be recognized from a file’s raw data, it
is not possible to validate the data with regard to a file format specification, since it is not
clear which file format specification should be used to perform the validation.

7.4.2. RECOGNIZABLE DATA STRUCTURES

Recognizable file format structures can be used to verify whether the data still adheres to
the file format. If the file format contains no distinguishable features, the data can be any-
thing, this makes it impossible to create a file format validator. Please note that the defini-
tion of recognizable is as broad as possible, this does not has to mean that the structures
need to have headers and footers. For instance, if it is known that a specific section of the
file format is always encoded in a specific manner, this property can also be used to recog-
nize the data structure and sections within the file.

37

7.4.3. ABILITY TO MATCH DATA WITH THE SAME FILE

This concept is a continuation of the previous concept. Since the previous concept can be
used to determine from which point the data no longer belongs to the same file. However,
if these data structures allow big sections of arbitrary and undefined data, the file format
validator has no means to verify this data. For instance, if a file format specifies a file struc-
ture that has a recognizable header and footer and allows an arbitrary data section with an
undefined length in between, it is impossible to indicate from which point the data section
is no longer valid. This can even be a problem if the length of the data section is specified by
the file format, the validator can check the presence of the footer at the expected location
using the length attribute. However, the problem arises when this footer is not present at
the expected location, because this means that from some point in the data section the data
of the file is no longer valid. In case the data section contains no properties that can be ver-
ified by the validator, the corruption point can be anywhere in the data section, this creates
a degree of uncertainty. The amount of uncertainty a file format validator has, should be at
least in the range of the cluster size, because fragmentation occurs at cluster boundaries. If
the uncertainty of the file format validator is a multitude of the cluster size, the added value
of the file format validation is restricted.

7.5. ADDITIONAL FILE VALIDATION FORMAT PRINCIPLES

The remaining principles can be used as additional checks on top of the mentioned prin-
ciples in the previous section, the remaining principles are not required:

• Ability to detect invalid/corrupt data
• Ability to check consistency across the complete file

The validation principles above are not part of the minimum required set of validation
principles, because file validation is also possible without application of the additional vali-
dation principles. The additional principles offer more precision and information, however
they do not have to be present in order to validate a file format. The availability of more val-
idation principles is always better, however this is not always realistic. Since a file format
does not always allow the usage of each validation principle. In order to prevent that vali-
dation is considered unfeasible for a lot of file formats, we differentiate between minimum
and additional validation principles. Validation is feasible if only the minimum require-
ments are present, but the level of detail might be restricted compared to a file format that
also allows the additional validation principles.

Both validation principles mentioned above can be used to check the contents of the
file. The proposed minimum set of validation principles is used to validate the file on
standalone data structure (segment) level, but does not state anything about the contents
stored in the file. The two remaining additional principles provide means to check the file
on a content level. If a file is validated according the minimum set of validation principles
the file adheres to the structure that is mandated by the file format specification. The file
however can still contain corrupted data stored in the data structures itself, since this can
occur without breaking the rules of the file format specification. The additional validation
principles also verify the contents stored in the file.

38

7.5.1. ABILITY TO DETECT INVALID/CORRUPT DATA

This ability is not a minimum requirement for file format validation, because if there are
no internal verification mechanisms specified by the file format, the file format validator
could still depend on other concepts to validate the file. For instance, the validity of data
structures and hierarchy of data structures. Internal verification mechanisms typically pro-
vide information about the consistency of the data stored in the file. If internal verification
mechanisms are not available, the file format validator cannot verify whether the data is
corrupt or valid. If a corruption point occurred somewhere in the data stream, this could
be detected by an internal verification mechanism, however this can also be accomplished
by verifying data structures. For instance, if a data section has a header and a footer (or a
specified length) these data structures can be used to detect corruption points. An internal
verification mechanism goes further than this, since it can check whether data is corrupt
or valid and thus can be used to provide a confirmation on top of the data structure con-
sistency check (double check). Internal verification mechanisms are very useful since they
provide confirmation about the correctness of the data of a specific section, but from an
absolute minimum requirement viewpoint, they are not required. The trade-off of omit-
ting internal verification mechanisms is that there is no guarantee that a file that adheres
to the file format specification, contains valid contents. It is possible that a file contains
valid ranges of data structures, but the data contained in those data structures is invalid.

7.5.2. ABILITY TO CHECK CONSISTENCY ACROSS THE COMPLETE FILE

The techniques and principles mentioned in this category, provide additional means to val-
idate the integrity of a file on top of the validation of standalone data structures, therefore
this ability is not a requirement for file format validation. A trade-off of omitting this prin-
ciple is, that a file validator cannot longer detect the following case: a file that consists of
valid segments does not have to result in a valid file, because combining valid segments in
a random order can be valid according the file format specification but does not have to re-
sult in a valid file. The ability to check the consistency across the complete file can be used
to check the consistency of the file on top of (double check) the data structure validation.
Therefore, this principle is not a minimum requirement.

7.6. CHALLENGING FILE FORMAT CONCEPTS FOR VALIDATORS
The principles mentioned above all contribute to the identification of positive and nega-
tive constraints as introduced by Cohen [Coh07]. A file format can provide structure and
restrictions that specify positive and negative constraints that can be used during valida-
tion by a file format validator. However, if the file format does not specify recognizable
structures and does not impose structures and restrictions, less constraints can be identi-
fied. The absence of negative and positive constraints, potentially results in a less effective
file format validator. The following concepts in a file format can be a problem for file format
validators:

1. Undefined length of sections: If the file format allows sections of undefined length
that are not marked with recognizable structures. The length of a section can be spec-
ified by field or dictated by the file format, in this case the completeness of a section
can be checked. However if the data can be of arbitrary length and does not recogniz-
able data at the beginning and ending, the dimensions sections cannot be identified.

39

This can for instance form a problem in case sections are validated using a CRC value,
but also during the validation of structures with regard to the file format specification.

2. Uninitialized/Undefined data: If the file format allows sections of undefined data,
the validator cannot verify the data since the data can be anything. For instance, if
the file format can reuse data sections, but does not specify that the data of a section
has to be cleared when the section is freed. Or when a file format can allocate new
data sections that still contain old (undefined) data.

3. Non-encoded data: Decoding can be used to check which data belongs together. If
the file format allows long sections of non-encoded data, it is more difficult to identify
from which point the data no longer belongs together. For instance, if a file format
allows data sections with non encoded data that has the size of a couple of clusters
and a CRC value is available, the CRC value can be used to check if the data is consis-
tent. However, the exact corruption point cannot be identified. Since the corruption
point can be at any place in the non-encoded data stream. This property increases
the amount of uncertainty of a file validator.

4. Unrecognizable data structures: File format validation relies on the recognition of
data on byte sequence level. If the file format contain sections, that cannot be recog-
nized on byte sequence level, this forms a problem for file format validation. Since if
the file format validator cannot recognize the sequence, it can also not check whether
the sequence is valid with respect to the file format.

To what extent these file format concepts actually form a problem during validation
depends on the situation in which the concepts occur in the file. As mentioned in the con-
cepts above, if the size of the data affected by the concepts described above is smaller than
the cluster size of a file system, the impact on file validation is limited.

The presence of uninitialized or undefined data does not have to be a problem in case
the file validator is aware of the location and presence of these sections. In order for the
file validator to be aware of this, the file format specification must specify the location of
uninitialized or undefined data or specify in which section of the file the location of the
uninitialized or undefined data is stored (metadata file format concept). In case the loca-
tion of uninitialized or undefined data is stored in the metadata of the file, the validator
must be able to parse this information from the file data.

Unrecognizable data structures form a problem that cannot be solved by applying other
concepts, because file validation relies on the recognition of byte sequences in a stream of
arbitrary data. If the byte sequences are not recognizable the file validator cannot function.
The same applies to the presence of sections with an undefined length, because in this case
the validator can also not recognize the presence of a specific data structure and as a result
cannot validate the conformance to the file format specification.

7.7. VALIDATION CASE STUDY: WAD FILE FORMAT
This chapter introduced a method on what to look out for when analyzing a file format
specification. The method can be used to determine whether file format validation is fea-
sible and can have an added value for identifying corruption points. In this chapter the
WAD file format is analysed to determine whether the identified concepts and categories
are usable and complete enough to do a feasibility study for creating a validator for a file
format.

The method to analyze a file format specification with regard to the feasibility of file

40

format validation is applied to the WAD file format. The categories for analyzing the feasi-
bility identified in Section 7.4 and 7.5 for creating a file format specific validator are used
in combination with Table 7.1. The WAD file format specification is analyzed to identify
which file format concepts, as introduced in Section 6.2, are present. The identified file for-
mat concepts of the WAD file format are mapped to the different file validation principles
using Table 7.1.

The goal of this exercise is to verify the usability of the identified validation principles
in combination with the file format concepts, by using Table 7.1. The WAD file format is
used as a case study, if the method of combining file format concepts with file validation
principles is correct, this serves as a proof of concept of the method.

7.7.1. WAD FILE FORMAT SPECIFICATION
The WAD file format is used by doom and games based on the doom engine for storing
data. The following information is retrieved from the Doom Wiki1. WAD is an acronym
which stands for Where’s All the Data. The WAD file format consists of 3 segments:

• Header
• Directory
• Raw data of the resources stored in the WAD file (lumps)
Figure 7.1 provides a schematic overview of the WAD file format.

Figure 7.1: WAD file format diagram

Header data structure The header consists of 3 fields:
• Magic string, ASCII string ("PWAD" or "IWAD")
• Number of entries in the directory (Integer value)
• File offset to the location of the directory structure (Integer value)
The ASCII string ("PWAD" or "IWAD") can be used for recognizing the file format and

detecting the header of a WAD file. The header also contains a field that contains the num-
ber of entries in the directory structures and contains a file offset to the location of the
directory.

Directory data structure The directory data structure contains file entries of the resources
that are stored in the WAD file. Each entry in the directory structure has a fixed length and

1https://doomwiki.org/wiki/WAD

41

the number of directory entries is specified in the header of the WAD file. A directory entry
contains three fields:

• File offset to the start of the data of the resource (4 bytes integer value)
• File size of the resource (4 bytes integer value)
• Name of the resource (8 bytes ASCII string)
The directory structure does not contain byte sequences which can be used to identify

and recognize directory entries. The only restriction the file format specifies is a specific
length and that each entry contains 2 integers followed by 8 bytes containing an ASCII en-
coded string. Also the number of entries can be derived from the file header. So the only
information the file format provides regarding the directory structure is the number of en-
tries and the length and data types of the entries. Only this information can be used to
validate the directory structure. Both the header and directory do not contain CRC values
that can be used to validate the data. There seem to be restrictions and naming conven-
tions for the naming of the resource. If there is a limited set of valid values for the name of
the resource this string can be used as a magic string to recognize directory entries.

Resource data Resource data must be of a specific type (for instance, a level map or a
sprite). A data resource is called a lump. Lump items are of a specific type, lump types may
use markers that can be used as magic strings to recognize. The format of most of the data
lump types consists of a series of integer values, without any magic strings or specific byte
sequences. The file format sometimes specifies a hierarchy for data lumps, for instance
when using map data lumps. However, the sequence of data lumps is not always restricted
in the WAD file format.

7.7.2. WAD FILE FORMAT VALIDATION FEASIBILITY

The WAD file format contains the following file format concepts as introduced in Sec-
tion 6.2:

• Sections: header, directory and lumps
• References: file offsets in directory to lumps and file offset of the directory in the

header
• Metadata: number of file entries, data resource lengths and resource name

Necessary file validation principles The minimum set of required file validation princi-
ples for validation are: file signature, recognizable data structures and the ability to match
data with the same file.

• File signature: The file format uses sections and the file signature of the WAD file
format is present in the header.

• Recognizable data structures: The WAD file format contains sections that use data
structures: file header (recognizable), file directory (recognizable to some extent,
since this depends on the available possible valid entries for the name field) and data
lumps. Data lumps can be identifiable to some extent, this highly depends on the
type of data and to what extent the file format specifies identifiable sections for each
type of data lump.

• Ability to match data with the same file: The WAD file format uses references and
sections. These references cannot always be verified, since the section it is referring

42

to is not always recognizable. Furthermore, the WAD file format does not use en-
coding or compression, so this property cannot be used to match data together. The
file format structure is limited and difficult to recognize based on byte sequences.
The file format does not specify a strict hierarchy. There are fields that contain the
length of data segments. However, the identification of those field can be challenge,
since the file format does not contain any magic strings to identify the beginning and
ending of data structures.

The WAD file format thus satisfies the file signature validation principle, but not every
data structure is recognizable. Furthermore, the ability to match data with the same file
is limited, due to the lack of file format concepts that can be used to support to ability to
match data with the same file.

Additional file validation principles The additional set of file validation principles are:
the ability to detect invalid/corrupt data and the ability to check consistency across the
complete file.

• Ability to detect invalid/corrupt data: The WAD file format does not contain internal
file verification mechanisms (error detection), such as CRC values. The sequence of
data structures is not always restricted and depends on the type of data. For instance,
the map format contains requirements with regard to the data structures that are
required and also the sequence is specified.

• Ability to check consistency across the complete file: The WAD file format does not
contain a CRC value on the complete file contents. However, the WAD file format
does contain references (file offsets) to refer to other parts of the file. The directory
structure contains references to the start of data lumps stored in the file. These ref-
erences can be verified to determine whether a known data structure starts at this
location. However, the possibility to verify references is limited, since the identifica-
tion of the start of a data lump might not always be possible. The ability to recognize
the start of a data lump varies between the type of data lump.

The WAD file format is very limited in recognizing invalid or corrupt data, due to the
lack of error detection. Furthermore, the ability to check consistency across the complete
file is also limited. Despite of the use of references by the file format, these references can-
not always be used for consistency checking. Since this references cannot always be veri-
fied, because the referred section is not always recognizable.

Challenging file format concepts for validators
1. Undefined length of sections: The file format specifies the length of data structures.

In case the length of a data lump is arbitrary, the lump contains a field that contains
the length. However, the recognition of the field containing the length of the raw data
can be a challenge.

2. Uninitialized/Undefined data: The file format specification does not mention any-
thing about allocating new data. It looks like the WAD file format is used as an archive
that does not contain unused data sections and therefore does not contain uninitial-
ized data.

3. Non encoded data: The file format does not use encoding or compression.
4. Unrecognizable data structures: The file format contains unrecognizable data struc-

tures. The file header is recognizable by using a magic string, but the other data

43

structures like the raw data lumps and the directory are not recognizable. At best
the directory can be recognized, by detecting a series a ASCII strings at certain in-
tervals. However, the data lumps sections cannot easily be recognized, since most
of the data lumps contain a sequence of integers without any recognizable markers
or magic strings. Typically, the majority of the content in the WAD file is lump data,
which can be difficult to recognize.

WAD FILE FORMAT VALIDATION FEASIBILITY

The minimum required set of concepts for file format validation is not met. The file sig-
nature is present, but the used data structures within the file are not always recognizable.
The ability to match data with the same file is also limited and not always possible. The
additional validation principles can also not be supported for the WAD file format.

Furthermore, the file format contains properties that make it more difficult and com-
plex to perform file format validation.

Therefore, the creation of a WAD file format validator that is able to provide detailed in-
formation of the location of fragmentation points or the recognition of WAD file fragments
is not feasible. The file format does not provide enough structure and concepts that can be
used by validation techniques to verify the validity of a WAD file.

7.7.3. USABILITY OF THE FEASIBILITY METHOD

The validation principles identified in Section 7.2 to analyze the feasibility of creating a file
format validator, that can identify fragmentation or corruption points, were applied on a
new file format that was not included in the file format concept identification investiga-
tion in Chapter 6. During the analysis of the WAD file format specification, the used file
format concepts were identified. These file format concepts could be used to identify val-
idation principles by identifying the corresponding validation techniques. The validation
techniques provided a mapping between the used concepts in the file format specification
and the consequence with regard to validation and verification.

The file validation principles are derived from a file validator point of view, by answering
the question what should a file validator be able to do. The other point of view is from a
file format specification perspective. By analyzing a file format specification, file format
concepts could be identified. File format concepts are used by file validation techniques,
thus a link between file validation techniques and the required file format concepts can
be made. File validation principles can make use of different file validation techniques to
achieve a file validation principle. As a result another link between file validation principles
and file validation techniques can be identified. These two connections result in a mapping
between file validation principles and file format concepts.

Due to this mapping, the file validation principles can be used to come to a substan-
tiated conclusion with regard to the feasibility of creating a file format validator. The file
validation techniques are the available methods that can be used to perform file valida-
tion. If there is no available file validation technique to verify a specific part of a file format,
file format validation is not feasible. The unavailability of a validation technique can be
detected by using the mapping in Table 7.1.

The proposed method seems to be complete for analyzing the WAD file format spec-
ification. However, the WAD file format used to test the method is relative simple and
has a single write life cycle. In order to further validate the completeness of the proposed

44

method, the method is applied on a complex file format with a multiple write life cycle: the
PST file format.

45

8
PST FILE FORMAT VALIDATION

The Personal Storage Table (PST) file format is an open proprietary file format, which is de-
veloped by Microsoft. Documentation for the PST file format is publicly available [Mic20].
The file format is used by Microsoft Outlook to store e-mails and calendar items.

The PST file format is an interesting target for file format validation, because research of
Van der Meer [vdMJvdB20] discovered that PST files are frequently fragmented. A corpus of
220 Windows laptops was analyzed and the findings were that 35.8% of the present PST files
were fragmented. Furthermore, a significant amount of PST files was fragmented in more
than 2 fragments and these fragments were stored out-of-order. The amount of fragments
and the degree of fragments that are out-of-order increase the complexity of recovering
a deleted file using file carving. The combination of the complexity and the relative high
amount of fragmented PST files, makes the PST an interesting target from a file carver point
of view.

Another reason that makes the PST file format an interesting target is in the context of
digital forensics. PST files can contain e-mails and calendar items that can contain useful
information or evidence in case of digital forensics.

8.1. PST FILE FORMAT SPECIFICATION

8.1.1. LOGICAL ORGANIZATION OF THE PST FILE FORMAT
A PST file contains a message store, which is used for storing folder objects. Folder objects
contain message objects, an example of a folder object is a mailbox. A message object is
a set of properties that represent an email message, appointment or contact. A message
object has an attachment table that represents the attachments attached to the message
object. An attachment is represented by an attachment object, this object is a set of prop-
erties that represent a file, structured storage or a message object. The properties of the
different objects (Folder object, Message object, Attachment Object) combined provide all
the information of a specific item stored in the message store. The PST file format contains
the following logical layers:

• Messaging layer: Message store, Folders, Messages, Attachments
• LTP Layer: Heap, BTree, Property bags, Tables
• NDB Layer: Node database, lower-level storage of the PST file format
The logical layers have a hierarchy and are build on top of each other. The lowest logical

46

Figure 8.1: PST file logical structure, source: [Mic20]

level is the Node Database (NDB) layer. In order to understand how the different logical
layers interact and depend on each other, the layers are introduced from bottom to top.

Node database layer The Node Database (NDB) layer is a logical representation of the
lower-level storage of the PST file format. The data stored in the PST file is accessible using
nodes. Nodes provide an abstraction that is used to reference to data that is stored in the
PST file that is interpreted from higher logical layers, thus not by the NDB layer itself.

Nodes are used to divide the data stored in the PST file into the different logical streams.
A node consists of a stream of bytes and a collection of subnodes. The stream of bytes of the
node is stored in the NDB layer as a data block. The collection of subnodes is stored using
a subnode binary tree. The NDB layer contains a database of nodes. In order for higher
logical layers to access the nodes that are required to access the lower-level storage of the
PST file format, the NDB layer uses two binary trees:

• NBT: the Node Binary Tree contains the references to all of the accessible nodes of
the PST file and contains information about which blocks need to be combined to
form nodes. The NBT is optimized for locating a specific node efficiently.

• BBT: the Block Binary Tree contains the references to all of the data blocks that are
used in the PST file. The BBT is optimized for locating a specific block efficiently.

By using both binary trees, the NDB layer can access the corresponding data that be-
longs to a specific node. The references to the roots of both the NBT and BBT are stored in
the header of the PST file. The NDB layer consists of the following components:

• PST file Header
• File allocation information
• Blocks
• Nodes
• Node Binary Tree (NBT)
• Block Binary Tree (BBT)

Blocks are used to store data of the PST file, more information about blocks is provided
in the block data structure section.

47

Lists, Tables and Properties layer On top of the NDB layer, the Lists, Tables and Prop-
erties (LTP) layer is implemented. The LTP layer adds higher-level concepts on top of the
NDB layer to provide the structures that are required to represent messaging related ob-
jects, such as Folder Objects, Message objects and Attachment objects. The LTP layer has
two core elements: the Property Context (PC) and the Table Context (TC). The PC is a col-
lection of properties and the TC is a two-dimensional table, this table contains property-
value pairs.

Messaging layer On top of the LTP layer the messaging layer is located. The messaging
layer contains the higher level abstraction that uses both the LTP and NDB layers to han-
dle folder objects, message objects and attachment objects. The messaging layer defines
how the PST file is allowed to be modified. Furthermore, the messaging layer provides an
interface that allows operations on the PST file.

8.1.2. PHYSICAL ORGANIZATION OF THE PST FILE FORMAT
The concepts introduced in the previous chapter are logical layers, which are abstract views
on the actual data that is eventually stored in the PST file. This chapter discusses how the
data is physically stored in the PST file. Figure 8.2 and 8.3 provide a schematic overview of
the PST file format. Appendix B contains the grammar of the PST file format, this provides
a more detailed description of the fields present in the PST file format. A PST file physically
consists of the following parts:

• Header element: contains metadata of the PST file and information on how to access
the data sections that contain the message store, which in its turn contains the e-
mails and attachments. The header contains the location of the root of both binary
trees, the NBT and BBT, which are used in the NDB layer.

• Allocation information at specific intervals (AMap, PMap, FMap, FPMap)
• Data sections, are sections of data of roughly 250 kilobytes in size. These data sec-

tions contains the allocations that are used by the PST file format to store data. Each
allocation is aligned to a 64-byte boundary and is always a multiple of 64 bytes. The
data section can contain non allocated (free) data and allocated data that is used to
store two types of structures: the page and block data structures. The page and block
data structures are used to store the metadata of the NDB layer and contain the data
of the objects that are stored in the message store.

Each logical layer introduces new concepts and does not introduce new data structures,
because it uses the existing data structures from the lower levels. As a result, there are
only two different types of data structures that in the end contain all the information of
the different layers. The NDB layer is the lowest logical layer and uses two types of data
structures, the page and block data structure. These two structures are used to store the two
binary trees, the Block Binary Tree (BBT) and the Node Binary Tree (NBT), and the nodes.
Thus, from a physical organization point of view there are only two types of data structures
present in a PST file, besides the PST file header: the page and block data structures. This
overview can be seen in the schematic overview of the PST file format in Figure 8.3.

Please note that the PST file format allows the deletion and reuse of areas within a PST
file, as a result free sections can be present. These free sections are marked as the grey
shaded sections in Figure 8.3. The file format has to keep track of the allocation status
of the PST file, because the file format supports the reuse of data sections, this explains

48

Figure 8.2: PST file format structure, source: [Mic20]

the presence of the allocation information (AMap, PMap, FMap, FPMap) that is present at
specific intervals.

Figure 8.3: PST file format diagram

The PST file format only uses two types of data structures besides the PST file header:
the page data structure and the block data structure. The page and block data structure are
organized as follows:

Page data structure A page is a fixed size data structure of 512 bytes, which can represent
several types of metadata. Pages are used to store allocation metadata and the binary tree
data structures of the BBT and NBT, which are located in the NDB layer. A page trailer is
located at the end of each page. In the page trailer is specified what type of page the data
structure is. For instance, binary tree information or allocation metadata. The page trailer

49

also contains an identifier of the page and a CRC checksum of the page contents. The page
type determines what kind of information is stored in the page. The file format specifies
the structure of the page for each type of page.

Block data structure A block consists of a variable size data structure between 64 and
8192 bytes. Blocks are the fundamental unit of data storage used in the NDB layer. Blocks
are always multiples of 64 bytes and aligned on 64-byte boundaries. Blocks are used for
storing two types of data: storing raw data and representing the sub nodes which can be
contained within a node. The first part of a block structure contains the data that is con-
tained in the block. At the end of each block, a block trailer is located. The block trailer
contains information about the amount of data in bytes of the block, an identifier and a
CRC checksum of the data stored in the block.

8.2. PST FILE FORMAT VALIDATOR FEASIBILITY
The method to analyze a file format specification with regard to the feasibility of file format
validation is applied to the PST file format. First the file format specification is analyzed
for the use of file format concepts. Table 7.1 is used to map these file format concepts to
validation principles. The method in Chapter 7 specifies which validation principles are
the minimum requirements to create a file format validator.

8.2.1. IDENTIFIED FILE FORMAT CONCEPTS
The previous section described the structure of the PST file format, by analyzing the PST
file format specification [Mic20]. The following file format concepts are identified:

Sections The PST file format uses recognizable data structures: file header, page data
structure and block data structure. The file header contains a file signature that can be used
to identify the file header structure. The page and block data structures have a recognizable
trailer structure at the end of a page and block data structure. This trailer can be used to
identify a page or block data structure.

Hierarchy/Structure In order to access all the data that is stored in the PST file, the PST
file format uses two binary trees: the NBT and BBT. A Binary tree is a hierarchical structure.
Furthermore, the PST file format specifies that data structures regarding the allocation data
are present at a specific location and interval. The interval of these data structures is also
a property that can be seen as the hierarchy/structure file format concept. The PST file
format thus contains two properties that make use of the hierarchy/structure file format
concept.

References References are used in the PST file format to access the data that is stored in
the different data blocks. The PST file format specifies the presence of two binary trees: the
NBT and BBT. Both trees are used to get the data that belongs to a specific node.

The NBT contains references to all of the accessible nodes in a PST file. Each reference
in a node is identified by a Node ID. Each node uses a data block structure that contains the
references to the subnodes of the node, the block ID (BID) of the data block containing the
references is stored in each node.

50

The BBT contains references to all of the data blocks that are used in a PST file. Refer-
ences to a data block contain the unique ID of the block and the absolute file offset of the
data block.

Error detection All the data structures used in the PST file contain CRC values: Header,
Block data structure and Page data structure.

The header data structure contains a field that contains the CRC value of the header,
this CRC value covers the complete header except for the field containing the CRC value
itself.

Both the page and block data structures have a trailer data structure located at the end
of the data structures. This page and block trailer contain a field that contains the CRC
value that covers the data of the page and block, the CRC value does not cover the data
contained in the trailer.

Encoding The PST file format supports two different cipher algorithms to encode the
data stored in data blocks. This feature is optional and can be enabled by the client that
uses the PST file. The encoding is only used to obfuscate the data stored in the data blocks,
the data block trailer is not encoded. Also other data structures, such as pages and the
header are not encoded.

Metadata The header data structure of the PST file format contains the following meta-
data: encryption method (the encoding cyphers as mentioned in the encoding paragraph),
file size and the locations (references) of the root of the NBT and BBT.

Furthermore, the allocation status of data sections in the PST files is stored in specific
page data structures. Also the sizes of the data blocks and locations, absolute file offsets,
are stored in page data structures.

Block trailers contain the length of the data stored in the block.

8.2.2. MINIMUM SET OF REQUIRED FILE FORMAT CONCEPTS FOR VALIDATION

The PST file format uses the following file format concepts: sections, hierarchy/structure,
references, error detection, encoding and metadata. In this chapter the file format concepts
are mapped to the different validation principles using Table 7.1.

• File signature: The PST file format uses sections and has a recognizable file signature
(magic string) that is located in the header data structure.

• Recognizable data structures: The PST file format contains several recognizable data
structures:

– File Header
– Pages, which can be recognized due to the recognizable byte sequences that are

present in page trailers
– Data blocks, which can be recognized due to the recognizable byte sequences

that are present in the block trailers.
Only the following data structures are used in the PST file format, the file header, page
and block data structures. The file header, page and block data structures make use
of the sections file format concept. The PST file format uses the hierarchy/structure
file format concept, due to the usage of the two binary trees (BBT and NBT) and the

51

specific interval and locations of data structures containing file allocation informa-
tion.

• Ability to match data with the same file: The sections file format concept is used
in the PST file format, due to the use of the header, data block and page data struc-
tures. The file format can use encoding for the raw data of the data blocks, however
this is not required. The PST file format also uses references in the form of absolute
file offsets, these references can also be verified due to the use of recognizable data
structures. The metadata file format concept is also used, the sizes of each section are
specified are present in the data of the PST file. The hierarchy/structure file format
concept is present in the form of two properties in the PST file format: the two binary
trees and a specified interval and location of data structures containing allocation
information.

The minimum set of required validation principles is covered by multiple file format
concepts. This means that multiple validation techniques can be used to support the vali-
dation principles.

8.2.3. ADDITIONAL FILE FORMAT CONCEPTS FOR VALIDATION

• Ability to detect invalid/corrupt data: The error detection file format concept is used
in the form of CRC values that are present in the header, data block and page data
structures. The CRC value can be used to validate the content of the data contained
in the data structure, by computing the CRC value of the data present in the file under
validation and comparing this value with the CRC value present in the data structure.
The file format also specifies which values are valid for specific field, for instance the
valid values allowed in the page type field of a page trailer data structure. The sections
file format concept is also used, which enables the checking of the data structures of
the sections.

• Ability to check consistency across the complete file: All file format concepts that
can support the file consistency validation principle are present in the PST file for-
mat. As a result multiple validation techniques can be used to validate the consis-
tency at file level. The file size (metadata) of the PST file is present in the header and
can be checked. References can be checked across the complete PST file, both bi-
nary trees can be traversed to check for completeness and consistency. The interval
of the allocation information (hierarchy/structure) can be validated across the com-
plete file.

8.2.4. CHALLENGING FILE FORMAT CONCEPTS FOR VALIDATORS

The following categories increase the complexity to validate a file:
1. Undefined length of sections: The PST file format allows the presence of unused

sections of data in a PST file. The length of the unused sections is undefined. The
AMap structures indicate which parts of the data section are allocated, but in case
of PST fragments, this AMap data structure might not always be available. Allocated
data sections of the PST file always have a defined length (blocks and pages).

2. Uninitialized/Undefined data: PST files can allocate more storage space if required,
when this happens the data that is present in the newly allocated area is undefined,
the file format only specifies the initialization of the corresponding the AMaps and if
required PMap, FMap and FPMap data structures.

52

3. Non encoded data: The PST file format allows encoding of data sections, however
this is not required. Thus in theory the data sections of a PST file can be non encoded.
This property can make it more complex to detect from which point the data in a data
section is no longer valid, because decoding cannot be used to determine whether
data still belongs together. This means that other techniques have to be used to find
the corruption point.

4. Unrecognizable data structures: The PST file format has recognizable data struc-
tures (based on magic string and byte sequence matching) for the file header and
page data structures. However the block trailers cannot directly be recognized, since
these block trailers do not contain a fixed or limited selection of valid possible val-
ues, similar to page trailers. The contents of a block trailer can be derived once more
information of the corresponding block is available.

8.2.5. PST FILE FORMAT VALIDATION FEASIBILITY

The minimum required set of concepts for file format validation are met. The file signature
is present and the used data structures within the file are recognizable and contain a well
defined structure. The ability to match data with the same file is present and several tech-
niques can be used to accomplish this with file format validation. The header and page
data structures are recognizable. The block data structures are also recognizable, but only
if the contents of specific fields of the block trailer are known, if these are unknown it is not
possible to recognize data block data structures.

The additional file format concepts are also present in the PST file format. It is possible
to detect corrupt and invalid data in PST files. It is also possible to verify the consistency
across the complete PST file by using file format validation.

However, the file format also contains properties that make it more difficult and com-
plex to perform file format validation. These properties are present, because the PST file
format has a multiple write life cycle. As a result of this, a PST file can contain data sections
that are no longer in use, because data sections can be freed for reuse. Another aspect of
the multiple write life cycle is that this property seems to have impact on the fragmentation
of PST files. Van der Meer et al. [vdMJvdB20] found that the fragmentation rate of PST files
compared to other file formats, is relative high (35.8%). A potential relation between frag-
mentation and the multiple write life cycle makes sense, because each time data is written
to a file and a file increases this could lead to fragmentation. Since, if the file size increases
of a PST file and there is no adjacent data cluster available on the storage format, this leads
to a fragmented file.

Furthermore, the file format provides allocation information about which sections are
freed and which sections should contain valid data structures. The PST file format valida-
tor can use the allocation information to rule out certain areas of the data, this strategy
addresses the presence of challenging file format concepts to some extent.

4096 bytes is a common cluster size of a file system. The maximum data structure size
within a PST file is 8192 bytes and page data structures have a fixed size of 512 bytes. This
means that in the worst case a page data structure can be stored in 2 different clusters and a
block data structure at most in 3 different clusters. This limits the uncertainty of combining
fragmented files together. This makes the reconstruction of a block or page data structure
straightforward, because of the limited amount of clusters involved and the presence of a
CRC value that can be used to verify the reconstruction. In theory a PST file can consist out

53

of reserved (allocated) areas that do not contain data structures yet, in this case only the
allocation information is present at intervals of 253,952 bytes. This property can be used
as an upper boundary for the amount of clusters that needs to be checked for detecting
the end of a PST file. The limited size of the data structures in a PST file with respect to
the cluster size, the amount of involved clusters is restricted, this makes validation less
complicated.

The creation of a PST file format validator that can provide detailed information of the
location of corruption points and the recognition of PST file fragments is therefore feasible.
The file format provides enough structure and concepts that can be used to verify the valid-
ity of a PST file. The resolution of corruption detection can vary between 512 or 8192 bytes
in case of corruption within a data structure. The corruption resolution is close to the most
common cluster size, 4096 bytes, on which fragmentation point can occur. If there is an
area of non allocated data in between the upper limit is 253,952 bytes, which is quite big in
comparison with the cluster size of 4096 bytes. However, this also means that this part does
not contain any data, as a result the validator could use this property to reconstruct the
PST file by adding these sections automatically without any data. Furthermore, the added
complexity of the multiple write life cycle make the PST file format an interesting use case.

8.3. FILE VALIDATOR FOR THE PST FORMAT
A file validator indicates whether provided data is a valid PST file with respect to the PST
file format. Furthermore, the file validator indicates from which point the data is valid and
from which point the data no longer contains a valid PST file format structure.

Messages and attachments are stored across separate data blocks that are interpreted
by combining the information from the NDB layer and LTP layer, which are stored across
separate pages in the PST file. As a result of these properties, the data of the messages
and attachments are scattered across the PST file. This property provides challenges for
restoring messages or attachments directly from the PST file itself.

The physical organization of the PST file is an interesting part from a file validation
perspective, because in terms of file validation, the file might be corrupt or incomplete and
as a result of that higher level views might not be available, since the required lower level
data is missing. When validating the file format, only the lower level data structures can
be validated at first. The lower level data structures must be complete and valid, otherwise
it is impossible to validate the higher level layers. Therefore, the validator at first can only
validate at the level of the header element, pages and block structures.

From data structure perspective the PST file only has three type of data structures on
which other abstractions are build:

• Header element
• Page element
• Block element

8.3.1. DESIGN OF A PST FORMAT FILE VALIDATOR

Figure 8.4 gives an overview of the different steps that are involved during the validation
of a PST file. This figure also shows the relation between the identified data sections of the
PST file and the different steps involved to accomplish this. The validator consists of the
following steps:

54

• Step 1: Header and page recognition: used to identify and validate header and page
data structures.

• Step 2: Reference extraction: used to find references, which are required to find block
data structures

• Step 3: Block recognition: used to identify and validate block data structures
• Step 4: File consistency validation: validate the PST file based on the identified pages

and blocks.

Figure 8.4: PST validation architecture

Step 1: Header validation The header element is the first data structure of each PST file.
Figure 8.5 contains an overview of how a header structure is validated. The data is handled
cluster by cluster, in each cluster the presence of a header is checked. A PST file header
contains a recognizable byte sequence, a magic string, which is used to recognize the PST
file format. The PST file header can be validated by calculating the CRC value of the data
contained in the header and comparing this value with the stored CRC value in the header.
The file header also contains metadata of the PST file: File size, references to the root of
the BBT and NBT and the absolute file offset of the last AMap, which contains allocation
information. The following validation techniques are used for recognizing the file header:
Magic number matching and internal verification checking.

Magic number matching is used to identify the file header and file format. Container
structure validation is used to retrieve the CRC value of the header element. Internal verifi-
cation checking is used to validate the contents of the header. If the content of the header
is valid, the metadata that is stored in the header element, such as file size, can be used by
the validator.

55

Figure 8.5: PST Header validation

56

Step 1: Page validation As mentioned in the previous chapter, a page element consists of
the page itself and the page trailer. Figure 8.6 contains an overview of the different steps in-
volved during page validation. The validator uses the page trailer to recognize and validate
a page. A page trailer contains the following fields: ptype, ptyperepeat, wSig, dwCRC and
bid.

The page trailer contains information about which type of page it is, the pagetype is
stored in the ptype and ptyperepeat field. The page types are specified by the file format,
there are 7 types of pages, so there are only 7 valid values possible for the fields related to
the page type in the page trailer. These 7 values are used as signatures (magic strings) for
recognizing page trailers. Thus the magic number matching technique is used to find page
trailers.

Once these page trailers are found, the CRC checksum that is present in the page trailer
is used to validate the content of the page data (internal verification checking technique).
The size of the page is fixed and the trailer has a fixed size, as a result it is clear which part
contains the data of the page. The value of the bid field depends on the page type. In
case the page type is an AMap, PMap, FMap or FPMap the bid field contains the absolute
file offset, otherwise the field contain the unique identifier of page (bid), these values are
verified (container structure validation).

The wSig field of the page trailer contains the page signature of the page. This value
is always 0 in case the page type is AMap, PMap, FMap or FPMap. For the remaining page
type the page signature can be calculated by using the absolute file offset and bid value. The
correct value of the wSig field is determined and verified (container structure validation).

As a result, all the values of a page trailer can be validated to check whether a page
trailer structure is valid. Also the page data can be validated by using the CRC value stored
in the page trailer. These two methods combined allow the validator the validate page data
structures.

57

Figure 8.6: PST page validation

58

Step 2: Reference extraction References are used to recognize block trailers. Block ref-
erences are stored in BBTENRTY records. A BBTENTRY contains a BREF record, the data
size of the block and a reference counter. BBTENTRY records are stored in block binary tree
(BBT) pages. These pages can be recognized by a specific ptype (ptypeBBT) in the page
trailer. Only leaf BBT pages contain block references, these can be recognized by the value
of the clevel field of a BBT page structure, which has to be 0.

A BREF record contains the mapping of a BID to the corresponding absolute file offset
(IB) in the PST file. The BID and IB values are used for finding block trailers.

A BBTENTRY thus contains the bid, absolute file offset and data size of the block. The
bid and absolute file offset can be used to calculate the wSig field of a block trailer. This
means that the cb, bid and wSig values of a block trailer are known, these values can be
used to recognize the corresponding block trailer (magic number matching and container
structure validation).

When the validator finds a valid leaf BBT page, the block references are retrieved. These
references are used by the validator to search for valid block trailers and thus finding data
blocks in the PST file. Figure 8.6 contains the reference retrieval step that is executed during
page validation.

Step 3: Block validation Blocks have a variable size between 64 and 8192 bytes and are
always a multiple of 64 bytes. Like pages, blocks also have a trailer located at the end of the
block which is called the block trailer. The block trailer contains metadata of the block, this
metadata can be used by the validator to validate the block.

The block trailer contains the following fields: cb, wSig, dwCRC and bid. The cb field
is the length of the data contained in block data structure. The wSig field is calculated by
using the absolute file offset and bid value of the block. The dwCRC field contains the CRC
value of the data of the block. The bid field contains the unique block ID of the block, the
bid field contains the value that is used for calculating the wSig value.

Please note that block trailers do not contain a fixed signature, like the different page
types in the page trailer. This means that block trailers cannot directly be recognized by a
validator, since the block structure does not contain recognizable byte sequences, like the
page trailer does. Blocks are thus harder to recognize and validate by the validator.

In order to find a block trailer, the values of the fields in a block trailer must be known.
The PST file format uses references. References contain information from which the values
of a block trailer can be determined. A reference contains the block identifier (BID) and the
absolute file offset (IB) of a block. Once the absolute file offset and the bid are known, the
value of the wSig field in the block trailer can be calculated by using the block identifier and
absolute file offset. Also the bid field of the block trailer is known, since the block identifier
is stored in a reference. The data size of the block data is also stored in a reference. As
a result, all of the fields of a block trailer can be found or derived from a reference. The
values of these fields are used to recognize a block trailer (magic number matching), the
layout of the block trailer is used (container structure validation) to determine what the
value of block trailer must be. Figure 8.7 contains the different the steps involved during
the validation of blocks.

Once a block trailer is recognized by a validator, the CRC value of the block trailer is
used to validate the data that is stored in the block (internal verification checking). If the
block trailer is recognized, the block trailer is valid. If the CRC check passes, the data in the

59

block is valid. As a result, blocks can be validated by using these two checks.

Figure 8.7: PST Block validation

Step 4: File integrity The validator can check the integrity of the PST file by verifying
various aspects for consistency:

• Specific data structures at specified intervals in the PST file, mandated by the file
format

• Consistency of data structures by using CRC checksums in the header, page and block
data structures.

• Verifying references: presence of a valid block structure at the location of the refer-
ence.

• Verifying absolute file offsets with respect to the start of the PST file.

60

The PST format mandates specific pages at specified intervals, this must be checked by
the validator. The PST format mandates that a PST file starts with a header and expects
the occurrence of four different data structures containing allocation information (AMap,
PMap, FMap and the FPMAP page) at a specific interval. Depending on the size of the
PST file, the file format expects a certain amount of these structures, please refer to the
grammar of the PST file format to see the intervals of the data structures. If these page
data structures not occur at the intervals specified by the file format, the PST file is not
valid. This information can be used to give an indication from which part the PST data
is no longer valid (corruption point). However the accuracy using this method is limited,
since the data structure with the smallest interval has an interval of 253,952 bytes (AMap).

Between the data structures that are mandated by the file format, the file format spec-
ifies that the remaining available space is used as data section. Data sections can contain
undefined data, when a part of the section is not allocated or contains page or block data
structures. The allocation map (AMap) page structure indicates which parts of the data sec-
tion are allocated. The information in the AMap can only be trusted if the AMapValid field,
located in the root structure of the PST header, indicates that all the AMaps in the PST file
are valid. Allocations in the data section are always multiples of 64 bytes, as a result each bit
in the AMap represents 64 bytes and every allocation is aligned to a 64-byte boundary. The
allocated parts of the data section are validated whether they contain valid page or block
structures. If a specific part of the data section does not contain valid data and the AMap
indicates the section is allocated, this is an indication that the data is no longer valid from
that point onward.

The PST file contains data structures (BBTENTRY) that contain references to blocks.
These references also contain an absolute file offset, that is relative to the beginning of the
PST file. These references must be checked to verify the correct page or block is present
at the specified file offset. This can be accomplished because each page and block has a
unique identifier (BID) that can be found in the trailer of a page or block structure and
this BID is also located in the reference. The validator checks every retrieved reference, by
verifying whether a valid block data is present at the location specified by the reference. If
there is no block data or corrupt block data present, a corruption point is identified.

8.3.2. FUNCTIONALITY AND LIMITATIONS
The file validator is able to recognize and validate file fragments of the PST file format.
However, there are some limitations and properties of the PST file format which have to be
taken into account.

Allocated data structures As mentioned in Section 8.1 the PST file format allows the reuse
of sections. This means that a PST file can contain freed pages and blocks. The PST file
format keeps track of which sections of a PST file are allocated and which sections are freed.
It is possible that a freed page or block is partly overwritten with new data, as a result a valid
page trailer or block trailer can be left, but the data part can be corrupt and the CRC check
will fail. The validator has to take allocation into account in order to prevent false detection
of invalid data structures. When pages and blocks are validated, they must be located in
an allocated part of the PST file. The validator must allow invalid data structures in freed
sections. Therefore, the validator can only report corruption in allocated sections of a PST
file.

61

As a result allocation information has to be available for the validator to function cor-
rectly. The allocation information is retrieved during page validation, as can be seen in
Figure 8.6. Allocation information is stored in AMap pages, these pages are stored in inter-
vals of 253,952 bytes. The validator can recognize corruption in PST file fragments correctly
when the fragment starts with a PST header or an AMap page. Without allocation informa-
tion, the validator can only recognize valid page and block data structures, but the validator
cannot detect invalid data structures, since this requires allocation information. This is a
limitation of the validator.

Fragment recognition Because it is possible to recognize page data structures, the file
validator is also able to recognize file fragments of a PST file. This means that the pro-
vided data does not have to contain a file header in order to recognize the PST file format.
Data blocks cannot be directly recognized, since the recognition of data blocks requires ad-
ditional information (retrieved from references) that has to be extracted from recognized
pages.

However, a PST file is allowed to contain invalid pages and blocks, since sections can
be reused and overwritten in a PST file. In order to make sure that a corrupt data structure
is correctly identified as file corruption, the allocation information of the PST file must be
available.

Fragment recognition is possible by identifying pages and blocks without allocation in-
formation. However, if the allocation information is not available, the validator cannot
identify corruption correctly. For fragment recognition this might be sufficient, because we
are only interested in recognition. In order to combine fragments and actually validate the
data, allocation information is required, in order to make sure that corrupt data is detected
in an allocated part of the file.

File format validity vs file validity Data provided to the file validator can contain valid
PST file format data structures. However, this does not mean that the detected PST file
format contains a valid PST file that successfully can be opened by an application which
supports the PST file format.

The data within the PST file format can also be invalid. The file validator is limited in
checking the consistency of the PST file with regard to the file format. As mentioned before,
the PST file contains two binary trees, these trees can be checked for consistency. The data
of the binary trees is stored in pages that are spread across the complete PST file, this is
especially problematic when a fragment of a PST file is detected, since this means that not
all the data of the binary trees is present, which makes the validation of the binary trees
impossible. This means that PST file fragments are only validated on data structure level.
The integrity of the complete NDB layer, the lowest logical level in the PST file format, can
only be validated if the complete binary trees are available.

Even if the complete PST file is provided, only the lowest logical level (the NDB layer),
is validated. The logical layers on top of the NDB layer are not validated.

In the context of file carving this limitation does not have to be an issue. The goal of file
carving is recovering deleted files from a storage medium. If corrupt PST files are deleted,
they are also corrupt if they are recovered.

62

8.4. PROOF-OF-CONCEPT IMPLEMENTATION
The previous sections described how the header, page and block elements of a PST file can
be recognized and validated. Also the validation of consistency at file level is discussed. All
these techniques combined form the basis of the PST validator implementation. In order to
verify the correctness of the validation strategies and concepts that are introduced in Chap-
ter 8.3.1 a proof-of-concept version of the validator is implemented. Figure 8.4 contains an
overview of the different steps that are performed in the PST validator.

Figure 8.8 gives an overview of the different steps that are involved in validating a PST
file. The validator has to go through the data of the PST file twice.

The first time the validator can only find valid pages, since the references for finding
blocks first have to be retrieved from recognized pages. Figure 8.6 provides an overview of
the steps involved during page validation and please refer to Section 8.3.1 step 1 for more
information regarding page validation. Please note that references may only be retrieved
from valid and allocated pages, because the references might not be valid in case they are
retrieved from non allocated pages.

Once all references for the blocks are retrieved, the second run can search for valid
blocks, by searching for the block trailers using the information from the references that
is retrieved from valid and allocated pages. Figure 8.7 provides an overview of the steps
involved during block validation and please refer to Section 8.3.1 step 3 for more informa-
tion regarding block validation. The recognized blocks do not contain references or other
metadata that can be used by the validator, therefore it is not required to run the validator
once more through all the data of the PST file, since this does not result in finding more
blocks or pages of the PST file.

Once all the data structures of the PST file have been found and validated, file con-
sistency validation can be performed. The validator uses several rules to find corruption.
Once the first corruption point is detected, the validator looks no further than the first de-
tected corruption point, however the validator still tries to find corruption before the first
detected corruption point, since this might give a more accurate indication from where the
corruption occurs.

The following rules are used for corruption detection:
• CRC check fail of allocated pages (Page validation).
• CRC check fail for identified blocks (Block validation).
• CRC check fail for an identified file header (Header validation)
• All found block references must refer to a valid block at the specified location in the

PST file (Integrity check).
• Recurring structures mandated by the file format must be present at the specified

locations in the PST file (Integrity check)

63

Figure 8.8: PST validator implementation

8.4.1. VERIFICATION
In order to verify that the implemented proof-of-concept PST validator is functioning as
expected, the validator is tested. The goal is to verify that the strategies for validating the
header, page and block data structure function correctly. In case a data structure is corrupt,
the validator should be able to detect this.

Since the goal of the testing is limited to the basic functionality to verify the correctness
of the validation strategies, stress testing and extensive performance tests are out of scope.

Tests were performed on a selection of PST files that are created using Outlook 2019,
version 16.0. The PST Data structure viewer which is part of the PSTSDK from Microsoft1

is able to display the complete structure of the PST file, this includes a view of both binary
trees. This allows us to verify whether the proof-of-concept PST validator is able to detect

1https://archive.codeplex.com/?p=pstsdk

64

all the present page and block data structures, this check was done on a PST file of around 2
megabytes that contains 1 email message which contains a PDF attachment. The detected
page and block structures are compared based on the reported file offset and unique iden-
tifiers of the pages and blocks. Also the references contained in the pages retrieved by the
validator are compared with the references displayed by the PST Data structure viewer. Fur-
thermore, corruption was added by manually altering a few bytes in the PST file at specific
locations to test the header, page and block validation. The validator was able to detect the
manually added corruptions in header, page and block data structures.

The PST file of 2 megabytes is not a representative open world example. In order to
overcome this limitation we also tested with a more representative case. However, it is not
straightforward to acquire a representative PST file due to the multiple write life cycle of
a PST file. For instance, a PST file that has been in use for multiple years has undergone
multiple write and delete actions, which result in the presence of artifacts of freed sections.
It is a challenge to produce a PST file for testing which has undergone actions that are sim-
ilar and representative to years of usage. Therefore, we decided to limit the testing to a
manually created PST file that has undergone several file operations such a deletion and
creation. This PST file contains contains 343 emails and is 64 megabytes in size. First the
original valid file was validated by the validator, after that corruption was manually added
in several random locations. The validator was able to locate the corrupted sections.

These tests show that the proof-of-concept validator can correctly detect corruption in
the cases that were tested using a simple PST file and a more complex and representative
PST file. The testing is sufficient to test the validity of the concepts that are introduced in
the design of the header, page and block validation. However, we still recommend more
extensive testing with open world examples in case the validator is going to be used in
the field. We addressed this risk by testing the validator using a more complex file that
has undergone multiple file operations, but this potentially still does not cover all possible
scenarios of a open world PST file.

8.4.2. RESULTS

The implemented PST file validator is a proof-of-concept, to verify that file format valida-
tion for the PST file format is possible. The implemented validator is able to detect corrupt
pages and block data structures, furthermore the validator uses other properties of the file
format such as the recurring data structures and the use of references to validate a file. As a
result the validator is able to identify and validate fragments of a PST file. The validator can
also be used to recognize valid combinations of different file fragments.

However, there is still room for improvement. Aspects of the validator that could be
improved are the performance of the validator and file carver integration. We consider
file carver integration and performance optimizations out of scope for a proof of concept
validator, because our target was to demonstrate that file validation for the PST file format
is possible and how this could be achieved. Furthermore, the implemented PST validator
and introduced strategies can be used as a starting point for an implementation of a PST
file validator. Therefore, we consider the current limitations with regard to performance
and file carver integration acceptable.

Another conclusion is that the PST file format provides enough structure and file format
concepts that enable the implementation of a validator that is able to verify the PST file for-
mat. Furthermore, the file format allows corruption detection at data structure level. The

65

biggest possible data structure in a PST file is a block data structure which has a maximum
size of 8192 bytes. A typical cluster size of a file system is 4096 bytes, thus the corruption
detection is comparable in magnitude with a typical cluster size.

66

9
CONCLUSION, DISCUSSION AND FUTURE

WORK

9.1. ANSWERS TO THE RESEARCH QUESTIONS
The research questions are answered in this section in order to answer the main question:
to what extent can a file format specification guide file validation?

9.1.1. RQ1: WHICH EXISTING FILE CARVING TECHNIQUES CAN BE USED IN A

FILE FORMAT VALIDATOR?
A literature research has been performed in Section 5.1 and the following list of existing file
carving techniques exists and can be used in a file format validator:
Header and footer validation Searches for the header and footer of a file format and re-

covers the header, footer and the data in between.
Magic Number Matching Searches for recognizable bytes sequences of a specific file for-

mat in an arbitrary data stream.
Container structure validation Validates the internal structure of data structures as spec-

ified by the file format.
Data Dependency Resolving Dependencies and relations present in a file format are checked,

for instance: reference checking and validation of the field lengths.
Validating with decompression Compressed sections in a file format can be decompressed

to check whether the section can successfully be decompressed.
Algorithm Output Analysis Tries to match data together by determining whether the data

is encoded by the same algorithm using bit sequence matching.
Internal verification checking Uses the internal verification mechanisms of a file format

to validate the contents of a file.
Semantic validation Uses semantic information in order to match data together, for in-

stance the language of a document.

9.1.2. RQ2: WHAT KIND OF CONCEPTS ARE USED IN FILE FORMATS?
In Section 6.1 and Appendix A different file format specifications of commonly used file
types were analyzed. This analysis provides insight on how file formats are organized. Sec-
tion 6.2 summarizes the identified concepts in different file formats. The conclusion was
that file formats do use similar concepts and the following concepts are identified:

67

Sections Data structures that belong together in a file, such as a frame in a MP3 file.
References Data that refers to other locations within the file, for instance absolute file off-

sets or unique identifiers.
Encoding Data that is encoded using a specific algorithm, for instance audio/video en-

coding or compression.
Hierarchy/Structure Data structures or sections in a file that occur in a specific sequence

or hierarchy.
Error detection Internal verification mechanisms that enable error detection in the data

of a file, for instance CRC values.
Metadata Data stored in a file that contains information regarding the file itself, for in-

stance file size, section size or the amount of sections. Please note that the type of
information stored in this concept is very broad and can be very file specific.

9.1.3. RQ3: WHAT CONCEPTS ARE NECESSARY FOR A FILE FORMAT VALIDA-
TOR?

A file validator must be able to identify and validate fragments of a file of a specific file
format. Validation principles are introduced in Section 7.2, these principles are used to
support the identification and validation of fragments. The feasibility of a validator is deter-
mined by verifying to what extent the validator supports the different validation principles.
Section 7.4 describes which validation principles are necessary to perform file validation.

In order to answer RQ3 a mapping is created between the validation principles and the
validation techniques, which is discussed in Section 7.3.1. Since validation techniques de-
pend on the availability of file format concepts, the relation between a file format specifi-
cation and the feasibility of a validator is identified.

Table 7.1 provides the complete overview of the relation between file format concepts
and the validation principles. This table combined with the knowledge of what validation
principles are required for a validator as mentioned in Section 7.4, provide the answer to
what concepts of a file format specification are necessary for a validator.

9.1.4. RQ4: HOW CAN THIS BE USED TO DESIGN A FILE FORMAT VALIDATOR

FOR A COMPLEX FORMAT?
Chapter 8 describes the application of the introduced method on the PST file format. The
PST file format specification is analysed to identify the file formats concepts that are present
in the PST file format. Table 7.1 is used to identify which validation techniques could be
used with the identified file format concepts in the PST file format. The conclusion of ap-
plying the method was that the creation of a validator for the PST file format is feasible.

The next step is to verify the conclusion of the method that the creation of validator for
the PST file format is feasible. In order to verify this conclusion a PST validator is designed
and implemented based on the validation techniques identified by the mapping described
in Table 7.1. Section 8.3 describes the design and implementation of the PST validator.
The implemented PST validator is able to identify and validate file fragments of the PST
file format. These two properties are required for a validator. The proposed method for
determining file format validation feasibility thus also works on a complex file format that
has a multiple write life cycle.

The specification of the PST file format shows it provides for detailed structure. More-

68

over, the components used in the specification closely match those found in the analysis of
file format specifications (Chapter 6). Thus, the PST file format specification is exquisitely
suited to use as a litmus test for our approach. The resulting proof-of-concept implemen-
tation of a PST validator illustrate the feasibility of the approach. In more detail, the PST
validator is able to correctly determine the section in which the corruption point occurs in
a closed test.

9.2. CONCLUSIONS
The answer to the main question is based on the answers and conclusions that are drawn
from the research questions.

Main question: To what extent can a file format specification guide file validation? A
file format specification can be used to directly implement a file validator in an ad-hoc
fashion, which is based on the properties of the file format. However, a more systematic
approach is possible by applying the method we introduced in Chapter 7. The method gives
insight on the feasibility of validation for a given file format specification, furthermore it
also provides guidance on which existing file validation techniques are possible to validate
the file format.

The introduced method can be used to guide the implementation of a file validator
based on the file format specification. However, this also means that the extent of guid-
ance depends on the file format specification. If the file format specification does not use
file format concepts that can be used by a corresponding validation technique, the method
cannot identify which validation techniques to apply in a validator. In this case the out-
come of the method is that file validation is not feasible for that specific file format.

Thus, the extent to which a file format specification can guide validation depends on
whether file validation is feasible for the given file format specification. If file format valida-
tion is possible for a given file format, the proposed method allows guidance in the design
of a validator. The extent to which guidance can be provided by the file format specification
depends on the amount of used file format concepts. If multiple file formats concepts are
used in a file format specification this allows the usage of multiple validation techniques
in the design of a file validator. The extent of file validation guidance thus depends on the
amount of identified file format concepts in a file format specification.

9.3. DISCUSSION
The method introduced in Chapter 7 opens up new doors for the field, the following cases
can now potentially be handled:

The added value of the method introduced in Chapter 7 is that it allows re-usage of
existing knowledge, by quickly identifying possible validation techniques, which improves
the efficiency of developing validators for new file formats. Furthermore, a file format spec-
ification can be analyzed to determine whether file validation is possible at all, this allows
identification of file formats that have an insufficient amount of concepts and structure.

Another view is that the identified file format concepts can be used to create a file for-
mat that allows easier recognition, validation and reconstruction of fragmented files. In
particular, we advise to incorporate at least the following characteristics into a file format
to make future file formats more recoverable: The use of recognizable sections which are

69

smaller than the typical cluster size of a file system that contain an internal verification
mechanism such as CRC validation. With regard to the reconstruction of fragmented files
we recommend the use of unique identifiers which identify the file itself and the sequence
of the sections within a file.

Finally, we see an application of our findings for anti-forensics by deliberately mak-
ing file recovery hard. Since our method provides an overview of possible validation tech-
niques and the corresponding required file format concepts. This allows the construction
of a file format which lacks file format concepts that allow recognition, validation and re-
construction.

Related work of Roussev and Garfinkel [RG09] concluded that a specialized approach
is required for recognizing a specific file type in order to correctly distinguish different file
formats. Our method can be used for developing specialized validators for specific file for-
mats, based on the present file format concepts.

Furthermore, there are already several successful implementations of specialized file
format validators that can be used to reconstruct fragmented files, such as the ZIP and PDF
file format [Coh07], RAR files [WZX10] and AVI files [YXLS17]. Our method can be used
to identify new file formats that potentially also allow reconstruction of fragmented files,
based on the analysis of file format specifications. This is interesting because currently
one of the challenges for file carving is the recovery of fragmented files. Van der Meer et
al. [vdMJvdB20] investigated which file formats are typically fragmented on a system. The
identified file formats in this list are a good starting point to apply our method on to verify
whether validators could be designed that allow reconstruction of fragmented files of other
file formats.

The conclusion of the PST file format investigation we performed was that it is possible
to create a file format validator for the PST file format. Furthermore, we came up with a
design and implementation for a PST file validator. Our findings were that this validator
is able to recognize and validate PST file fragments. In related work there are currently no
other validators that are able to recognize and validate file fragments of the PST file format.
Further integration of this validator with a file carver is recommended in order to investi-
gate whether it is possible to recover fragmented PST files. This could be a novelty, since
current available tooling does not seem to be able to recover fragmented PST files. The im-
pact of recovering fragmented PST files would be beneficial for digital forensics, since from
a digital forensics point of view you want to gather as much information as possible.

9.4. LIMITATIONS AND FUTURE WORK
This thesis introduced a method to determine file format validation feasibility. This method
is based on currently known validation techniques and file format concepts that were iden-
tified as a result of a file format investigation we performed in this thesis. The introduced
method to determine file format validation feasibility provides a starting point, but further
refinement is still possible. The current selection of file formats analyzed in the file format
investigation performed in this study does not guarantee completeness of the identified file
format concepts. In case more file formats are investigated there could be more concepts
discovered or this provides more evidence that the current list is complete. The same ap-
plies to validation techniques that are currently used. If there are more file format concepts
and validation techniques identified, these must be added in the mapping that was created
in Table 7.1.

70

Another step would be to investigate whether it is possible to automate the process of
file format specification analysis and application of the method to determine file format
validation feasibility, because the current method involves a lot a of manual steps. The
proposed method also provides guidance on how to implement a file validator, thus the
added value of automation could be that file format validators are automatically generated
based on the provided file format specification.

The integration between a file carver and a file format validator has not been investi-
gated in this study. In order for a file carver to fully benefit of the added value of file format
validation, the file carver needs to use information retrieved from the file format validator.
The file format validator could have more information available regarding the fragments
that limits the search space during the reconstruction of file fragments. For instance, the
validator could have information regarding the unique identifiers that are present or miss-
ing in a file fragment. In this approach a validator provides more information to the file
carver, instead of only returning whether a file is valid or not.

The application of the proposed method to determine file format validation feasibility
of the PST file format showed that the PST file format provides a lot of structure and file
format concepts. The proof-of-concept PST validator already shows promising results in
stand-alone tests, however further testing of the validator with open world PST files is rec-
ommended. Currently the validator is able to recognize and validate fragments of PST files.
The next step would be to integrate the PST validator with a file carver to create a file carver
that is able to recover fragmented PST files. In related work we did not find implementa-
tions to recover fragmented PST files. If academic publications are a good representation
of the current knowledge available in digital forensics, than the proof-of-concept PST val-
idator definitely has an added value for digital forensics for the recovery of fragmented PST
files.

Another aspect that is not covered in this study is sparse file support in validators. The
administration of sparse files is located in the administration of NTFS, thus this informa-
tion is not always available during file carving. However, the PST file format contains meta-
data about the allocations in a file format. This information could be used to allow the
presence of sparse file data in a file in non allocated sections. Sparse data is not physically
stored on a storage medium, the validator could take this property into account during val-
idation. The presence of sparse data cannot be recognized by a validator, because a section
containing sparse data is not physically stored. The validator should take this into account
during the validation of references, since offsets are affected in case sparse data is present.
The validator should restore the sparse data, by placing zeroes in the area of the sparse data,
this addresses the incorrect offset problem. Sparse data that occurs in an allocated section
is more difficult to recognize. However, the PST file format has a CRC value and the length
of an allocated section available. This might provide enough information to implement
sparse data support for the PST validator, further research is required to verify this.

71

BIBLIOGRAPHY

[Coh07] Michael I Cohen. Advanced carving techniques. Digital Investigation, 4(3-
4):119–128, 2007. 8, 9, 10, 15, 16, 39, 70

[CZX+08] Mo Chen, Ning Zheng, Ming Xu, Yongjian Lou, and Xia Wang. Validation
algorithms based on content characters and internal structure: The pdf file
carving method. In 2008 International Symposium on Information Science
and Engineering, volume 1, pages 168–172. IEEE, 2008. 9, 16

[Gar07] Simson L Garfinkel. Carving contiguous and fragmented files with fast object
validation. digital investigation, 4:2–12, 2007. 7, 8, 9, 10, 13, 14, 15, 16, 28

[Lin18] Xiaodong Lin. Deleted file recovery in ntfs. In Introductory Computer Foren-
sics. Springer, 2018. 4, 5, 6, 14

[Mic20] Microsoft. [MS-PST]: Outlook Personal Folders (.pst) File Format, 2020. 46,
47, 49, 50, xiii

[PM09] Anandabrata Pal and Nasir Memon. The evolution of file carving. IEEE signal
processing magazine, 26(2):59–71, 2009. 7, 8, 9, 10, 28

[PT13] R. Poisel and S. Tjoa. A comprehensive literature review of file carving. In
2013 International Conference on Availability, Reliability and Security, pages
475–484, 2013. 9, 15

[RF04] Richard Russon and Yuval Fledel. NTFS documentation, 2004. 4

[RG09] Vassil Roussev and Simson L Garfinkel. File fragment classification-the case
for specialized approaches. In 2009 Fourth international IEEE workshop on
systematic approaches to digital forensic engineering, pages 3–14. IEEE, 2009.
10, 70

[RIR05] Golden G Richard III and Vassil Roussev. Scalpel: A frugal, high performance
file carver. In DFRWS. Citeseer, 2005. 8

[vdB+14] Jeroen van den Bos et al. Gathering evidence: Model-driven software engi-
neering in automated digital forensics. PhD thesis, Universiteit van Amster-
dam [Host], 2014. 7, 14

[vdMJvdB20] Vincent van der Meer, Hugo Jonker, and Jeroen van den Bos. A contemporary
investigation of NTFS file fragmentation. Digital Investigations, 2020. 4, 5, 7,
10, 18, 46, 53, 70

[Vee07] Cor J Veenman. Statistical disk cluster classification for file carving. In Third
international symposium on information assurance and security, pages 393–
398. IEEE, 2007. 9

i

[WZX10] Yingjie Wei, Ning Zheng, and Ming Xu. An automatic carving method for rar
file based on content and structure. In 2010 Second International Conference
on Information Technology and Computer Science, pages 68–72. IEEE, 2010.
9, 70

[YXLS17] Yitao Yang, Zheng Xu, Liying Liu, and Guozi Sun. A security carving approach
for avi video based on frame size and index. Multimedia Tools and Applica-
tions, 76(3):3293–3312, 2017. 9, 70, vi, vii

[YYP+12] Byeongyeong Yoo, Byeongyeong Yoo, Jungheum Park, Jungheum Park,
Sungsu Lim, Sungsu Lim, Jewan Bang, Jewan Bang, Sangjin Lee, and Sangjin
Lee. A study on multimedia file carving method. Multimedia Tools and Ap-
plications, 61(1):243–261, 2012. v

ii

A
FILE FORMAT INVESTIGATION

This appendix contains the remaining investigated file formats that are mentioned in Chap-
ter 6. This appendix uses the same conventions for the schematic diagrams as introduced
in Section 6.1.

A.1. IMAGE

A.1.1. JPG
The JPG file format1 specifies that a JPG file consists of different parts. Parts within a JPG
file are identified by the use of markers. Markers are specific byte sequences of two bytes.
Each JPG file starts with a start-of-image (SOI) marker and ends with a end-of-image (EOI)
marker at the end of a file. The file format consists of different parts, which are segments in
the file data. Segments are identified by a marker at the start of a segment. The structure of
each type of segment is defined in the file format.

Figure A.1 provides a schematic overview of the file format. The file format dictates a
specific structure and a strict ordering of segments. For instance, the file starts with a SOI
marker and ends with a EOI marker with a frame segment in between. The frame segment
itself starts with a recognizable frame header and contains scan segments that start with
a recognizable scan header. The frame header contains information about the data stored
in the frame section, like the dimensions of the image and the used coding scheme. Each
frame header also contains a unique component identifier. Compression/encoding is ap-
plied on specific segments that contain the image data of the file. JPG supports two types
of encoding: Huffman coding and arithmetic coding. The size of the segments depend on
how the file is stored, the file format does not specify a fixed segment size. Furthermore,
the file format does not make use of CRC checksums.

The sections containing the encoded image data can be difficult to recognize, because
these sections can be larger than the cluster size of a file system. The only property this
section has, is that it is Huffman or arithmetic encoded. It can be a challenge to recognize
from which point in an encoded section the data is no longer valid.

The JPG file format contains more markers than the ones mentioned in Figure A.1. Also
the frame and scan sections are simplifications of the JPG specification. These items have

1https://www.w3.org/Graphics/JPEG/itu-t81.pdf

iii

been omitted because they are not required to understand the properties and used con-
cepts of the JPG file format. Furthermore, the majority of a JPG file will consist out of the
encoded image data section.

Figure A.1: JPG file format diagram

A.1.2. PNG
The PNG file format2 consists of a recognizable PNG signature followed by a sequence of
chunks. The recognizable PNG file signature is used to identify the bytes following as a
PNG image. The data after the PNG file signature, consists of a series of chunks belonging
to the PNG file. A chunk is a sequence of bytes that belong together. Furthermore, there are
different types of chunks specified by the file format. Please note that the PNG signature
is not a chunk, the PNG signature is a fixed value of 8 bytes to identify the start of a PNG
image.

Figure A.2 provides a schematic overview of the PNG file format. As mentioned before, a
PNG file always starts with a recognizable PNG signature followed by a sequence of chunks.
Chunks are identifiable based on the specific byte sequences used for each different chunk
type. A chunk contains fields, these fields contain at least the following information: the
length of data field of the chunk (maximum length around 2 gigabytes), the type of the
chunk, followed by the data contained in the chunk. A chunk contains a CRC value of the
data contained in the chunk and the chunk type, the CRC value is stored at the end of each
chunk. The layout and content of each type of chunk is specified by the file format. Some
chunks are optional, but the file format dictates that the following chunks are required: the
image header (IHDR) chunk, the image data (IDAT) chunk and the image trailer (IEND)
chunk.

Some chunks have restrictions regarding the ordering and location, however there are
also chunks that do not have restrictions regarding the ordering. Data in the chunks can
be compressed/encoded using the deflate method and stored in the zlib format depending
on the chunk type. For instance, the image data (IDAT) chunk contains compressed image
data.

The IDAT chunk containing the image data can be larger than the cluster size of a file
system. The beginning of the IDAT chunk is recognizable, due to a recognizable byte se-
quence to identify each chunk. However, when the IDAT chunk is larger than the cluster
size of the file system, it can be a challenge to determine whether data still belongs to the
same chunk. The CRC value can be used to verify the contents of the IDAT chunk, but in
case this CRC check fails it is difficult to pinpoint from which point within the IDAT chunk
the data is no longer valid.

2https://www.w3.org/TR/PNG/

iv

The PNG file format contains more chunk types than the IHDR, IDAT and IEND chunk.
Not every chunk type within the PNG file format is described. However, to understand how
the PNG file format works the introduction of other chunks is not required. Furthermore,
Figure A.2 describes a valid PNG file, since the IHDR, IDAT and IEND chunks are the min-
imum requirements of a valid PNG file. The majority of a PNG file will consist out of the
image data, the IDAT chunk. The chance that corruption occurs within the IDAT chunk is
therefore larger and probably is the biggest challenge when validating PNG files, this prob-
lem can be understood by using Figure A.2.

Figure A.2: PNG file format diagram

A.2. AUDIO

A.2.1. MP3
[YYP+12] The MP3 file format3 uses a frame data structure to store the contents of the file.
Each frame contains a recognizable byte sequence to identify the start of a frame. A MP3
file consists of a series of frames, as a result a MP3 file consists of a repeating sequence of
frame data structures.

Figure A.3 provides a schematic overview of the layout of a MP3 file. The file format
consists of a sequence of frames. Each frame starts with a recognizable frame header fol-
lowed by frame data. A frame header contains the bitrate and sampling frequency of the
audio stored in the frame data, the size of the frame data can be calculated based on the
used bit rate and sampling frequency. Furthermore, the frame header indicates whether a
CRC checksum of the frame data is available, the CRC checksum can be used to verify the
frame data. The CRC value is stored at the end of each frame header and before the frame
data. Audio data stored in the frame is encoded using Huffman encoding.

The frame data containing the huffman encoded audio data is unrecognizable. The
maximum size of a frame can be calculated by using the following formula [YYP+12]: (144*bit
rate/ (Sampling frequency + Padding)). The maximum bit rate of a MP3 file is 320000 bytes
and the lowest sampling frequency is 32000 Hertz. This means that the maximum frame
size is: (144 * 320000 / (32000 + 0)) = 1440 bytes. As long as the 1440 bytes stays within the
cluster size of a file system, this does not have to be a problem. Since the CRC value can be
used to validate the contents of a frame. This means that a validator can detect when the
next cluster of a file system no longer forms a valid MP3 file. However, it can be a challenge
to detect the difference between two MP3 files stored after each other, since the file format
does not contain unique identifiers to identify the frames within the MP3 file.

The MP3 file format uses several steps before the audio data is encoded and is written

3https://www.iso.org/standard/25371.html

v

to a MP3 file. This process is not described, since we are only interested in how the data is
organized in a MP3 file. Furthermore, not every detail of the frame header is described.

Figure A.3: MP3 file format diagram

A.3. VIDEO

A.3.1. AVI
The AVI file format4 is based on the resource interchange file format (RIFF). AVI files start
with a RIFF header. This RIFF file header contains a file signature, this file signature is a
four-character code (FOURCC). FOURCCs are used to identify sections in the file format.
The file header also contains the file size of the file. File data is located after the file header.
File data consist out of two types of data structures: a chunk data structure, which contains
data (audio, video or text) and a list data structure, which contains other lists or chunks.
Data structures can be recognized due to the use of FOURCCs.

Figure A.4 provides a schematic overview of the AVI file format. As mentioned before,
the file starts with a RIFF header. Furthermore, the file format specifies the presence of two
mandatory list chunks for AVI files: stream headers list (hdrl chunk) and a stream data list
(movi chunk). These lists have to occur in the sequence as specified by the file format. The
data structure of the hrdl and movi list is specified by the file format.

The stream headers list starts with a AVI main header structure, this structure contains
metadata of the AVI file, such as the file size, the total amount of frames stored in the file
and the video dimensions in pixels. Stream headers contain information about stream data
in the file.

Stream data contain the actual video frames and audio samples. The stream headers
that are stored in the hrdl list, describe the stream data that is contained in the stream data
(movi) list. The movi list contains a list of the actual video frames. A chunk containing
a video frame or an audio sample starts with a recognizable and specific byte sequence
(FOURCC), for instance "00dc" for a compressed video frame. A frame header contains the
size in bytes of a frame [YXLS17]. Optionally, an AVI file contains an index (idx1) structure,
which contains a list of the frame offset relative to the start of the file (absolute file offset)
and the frame size for each frame stored in the AVI file. The AVI file format does not contain
CRC values that can be used to verify the contents of the file.

The data sections in Figure A.4 are marked as unrecognizable. Although the data chunks
start with a recognizable byte sequence, for instance "00dc" for a compressed video frame,
the length of the data chunks is arbitrary and can be larger than the cluster size of the
file system. The length of a data chunk is stored in the trunk itself and can be used to

4https://docs.microsoft.com/en-us/windows/win32/directshow/avi-riff-file-reference

vi

check whether another chunk is present at the end of the current chunk, by checking for a
FOURCC of the next chunk. However, it is not possible to verify the contents of the data,
since there is no error checking present in the file format. Also, if the data becomes corrupt
from a certain point within the data section, it is not possible for a validator to pinpoint
from which position the data is no longer valid within the data chunk. This property com-
bined with the possibility that the size of a chunk is larger than the cluster size of a file
system, resulted in that the data chunk is marked as unrecognizable in Figure A.4.

Figure A.4 is a simplified overview of an AVI file. Not all the details and fields stored
within each type of chunk are discussed. Also the used encoding is not mentioned, be-
cause this depends on the used codec during the creation of a AVI file. The stream header
contains a FOURCC that specifies which codec needs to be used to decode the data. The
AVI file format can contain data that is encoded by a selection of encoders. The used doc-
umentation from Microsoft and Yang et al. [YXLS17] does not mention which selection of
encoders is supported.

Figure A.4: AVI file format diagram

A.3.2. MKV
The Matroska (MKV) file format5 is based on the Extensible Binary Meta Language (EBML).
EMBL can be seen as the binary equivalent of an XML structure and as a result of this the
sections within an MKV file are recognizable.

Figure A.5 contains a schematic overview of the MKV file format. Each MKV file starts
with a recognizable EBML file header. The file format uses different sections, with a hier-
archical structure. At the top level, the file consists of an EBML header and one (or more)
segment. A segment consists of multiple other sections, including a collection of cluster
sections. Please note, that not all the other sections that are present in a segment are ex-
plicitly mentioned.

Clusters can be identified by a specific ID. Clusters contain the audio and video data.
These clusters contain the following information: timestamp information and optionally
the position, which is a file offset. The size of the previous cluster is also stored in a cluster
data structure. Furthermore, the file format can optionally make use of CRC checksums.
A recommendation from the MKV specification is to split the audio and video data across

5https://datatracker.ietf.org/doc/draft-ietf-cellar-matroska/

vii

multiple clusters and to store no more than 5 seconds or 5 megabytes of data in each cluster
segment.

An MKV file thus consists of a sequence of cluster elements (repeating structures). Each
cluster contains a SimpleBlock or BlockGroup element, this element contains for instance
the frame data of a video. The encoding of audio and video data depends on the used
codecs. Matroska is a container file format and does not state anything about which en-
coding should be used in the MKV file format. Instead, the MKV file format can be used
to store audio and video data from different codecs. The file format specifies fields that
contain metadata about which codecs were used to the store audio and video data. Fur-
thermore, a selection of fields has a specific order defined by the file format.

The frame data element within a SimpleBlock element is indicated as an unrecogniz-
able element. This has the following reasons: the frame data element itself can be of a
arbitrary size, although the file format specification recommends to store no more than 5
seconds or 5 megabytes of data in each cluster segment. Thus the length of the section
containing the frame data can be longer than the cluster size of a file system. Furthermore,
the data within the frame data depends on the used codec. As a result it can be a challenge
from a file format validation perspective, to recognize which data still belongs to the same
encoded data section within the element containing the frame data.

When analyzing an MKV file, the biggest part of the file will consist out of audio and
video data. Therefore, the focus of explaining how the MKV file is organized is on explaining
how audio and video data is stored in an MKV file. MKV supports more features, such as
subtitles and chapters. These features are implemented using similar concepts as how the
audio and video data is stored in the MKV file format. By only explaining how the audio
and video data is stored within the file format, it is clear which concepts are used and how
the file format works. Figure A.5 as a result does not cover all the features that are present
in the MKV file format and is a simplified view of the actual file format.

Figure A.5: MKV file format diagram

viii

A.4. DOCUMENTS

A.4.1. OFFICE OPEN XML FILE FORMAT (DOCX, PPTX, XLSX)
The structure of the file format is described in the Open Packaging Conventions, which is
described in part 2 of the ECMA-376 standard6. The Office Open XML file format (OOXML)
is layered on top of the zip file format. Thus, an OOXML file is basically a zip file containing
a collection of files.

OOXML files can contain multiple objects that are called parts. In case of a Word doc-
ument, it can for instance contain a XML document containing the markup and a picture
that is embedded in the Word document. Parts are stored as zip items in the zip file. Nam-
ing conventions are specified by the OOXML specification to identify the parts and to spec-
ify the hierarchy and relation with other parts. Parts can also be split into multiple pieces,
in this case the pieces are stored as multiple separate zip items (files) in the zip container.
The file format mandates that a content types stream is present in the form of a specific
zip item in the root of the zip file. This content types stream is a XML file that contains the
mapping between parts (zip items) and the content type of each part. The content types
stream also indicates which type of file the OOXML is, for instance a Word document or
Powerpoint presentation.

Since the OOXML file format uses the zip file format as a container, please refer to the
ZIP file format paragraph and Figure 6.4 to learn more about the zip file format.

The description above provides a simplified overview of how the OOXML file format
works. For instance, not every detail and rule about the contents of the zip file is intro-
duced. However, given the information described above, it is clear that on top of the zip file
format the OOMXL file format has an additional set of requirements and rules. These rules
described above, give insight on how resources of an OOMXL file are organized.

From a file validation point of view, the additional requirements and rules of the OOMXL
file format could be used to verify whether the data of the OOMXL file is valid. This should
be done after checking whether the data forms a valid zip file in the first place, since the
OOMXL file format is contained within a zip file, because if the OOMXL file does not form
a valid zip file it also not a valid OOMXL file.

A.4.2. EPUB
EPUB files are stored in an EPUB container. An EPUB container is a ZIP based file format
that is defined in the OCF ZIP Container specification7. The EPUB container is basically a
ZIP file with specific rules regarding the contents of the ZIP file.

Since the EPUB file format uses the zip file format as a container, please refer to the
ZIP file format paragraph and Figure 6.4 to learn more about the zip file format. In order
to recognize a zip file as an epub file format, the first file entry in the zip file is always the
"mimetype" file, the contents of the mimetype file contain a recognizable string that is used
to identify the epub file format. Furthermore, the root directory of the zip file must contain
a "META-INF" directory containing a container.xml file. This container.xml file is used to
identify EPUB packages within the zip container. An EPUB package is a set of resources
that represent a publication, for instance a book. The set of resources of an EPUB package
are defined in a package document. The package document is an XML that contains the

6https://www.ecma-international.org/publications/standards/Ecma-376.htm
7https://www.w3.org/publishing/epub/epub-ocf.html

ix

details of the resources of an EPUB package.
The description above provides a simplified overview of how the EPUB file format works.

For instance, not every xml file that is stored in the META-INF" directory is introduced.
However, given the information described above, it is clear that on top of the zip file format
the EPUB file format has an additional set of requirements and rules. These rules described
above, give insight on how resources of an EPUB file are organized.

From a file validation point of view, the additional requirements and rules of the EPUB
file format could be used to verify whether the data of the epub file is valid. This should be
done after checking whether the data forms a valid zip file in the first place, since the epub
file format is contained within a zip file, because if the epub file does not form a valid zip
file it also not a valid epub file.

A.5. ARCHIVE

A.5.1. TAR

The tar file format8 is used as an archive/container to store files in. A tar file consists of
a series of file entries that are preceded by corresponding header structure. The tar file
format does not alter the data of the files stored within a tar archive.

Figure A.6 provides a schematic overview of the tar file format. Each file using the tar
file format starts with a recognizable header structure (Ustar) that contains a magic string.
This magic string can be used to recognize the header structure. Each file stored in the
archive is proceeded by this header structure. A header structure contains metadata of the
file stored in the tar archive. The metadata of the file contains the following information:
file size, the name of the file (including directory, if any). After this header structure, the
raw data of the file contained in the tar archive is stored. At the end of a tar file, the end of
archive indicator (2 blocks of binary zeroes) should be placed. The tar file format uses no
compression or encoding, the data of the files contained in a tar file are not altered. The
file format contains error checking facilities. Each header has a field that contains the sum
of all bytes contained in the header block, this allows basic error checking on the contents
of the header. There are no error detecting facilities present for the file data section of each
file entry.

As mentioned before, there are no error checking facilities for the file data for each file
entry. Furthermore, there is no encoding or compression used on the file data for each file
entry, the file data is stored unaltered within a tar file. As a result, it can be a challenge to
recognize corruption within the file data of each entry. Especially when files contained in
the tar archive are larger than the cluster size of a file system. It depends on the type of
file that is stored in the tar file, if a validator exists for that specific file type, this validator
could be used to check the consistency of the specific file entry within the tar file. The tar
file format does not add a lot of recognizable data structures on top of each entry.

The tar file format is pretty straightforward, almost every aspect is described in this
section. Some fields were omitted, because they are not relevant in the context of file vali-
dation or not required to understand how the tar file format works.

8https://www.gnu.org/software/tar/manual/html_node/Standard.html

x

Figure A.6: TAR file format diagram

A.6. DATABASE

A.6.1. SQLITE

The SQLite file format9 is used to store a SQLite database in a single database file. The
database file consists of a series of data structures called pages. The size of a page is fixed,
thus all pages within a database file have the same size and each page is of a specific type.

Figure A.7 provides a schematic overview of the SQLite file format. Each database file
starts with a recognizable database header data structure that contains the following meta-
data: the database page size and the amount of pages stored in the database file. The com-
plete file size of the database can be derived from the page size and the amount of pages
used in the database file. Each page is of a specific type, there are the following page types:
Lock-byte page, freelist page, b-tree page, payload overflow page and pointer map page.
The page size is always a power of two between 512 and 65536 bytes. Each page in the
database file is numbered, references to pages are implemented using the page number of
the corresponding page.

The lock-byte page is only present at a specific location, if the file is larger than a specific
size and there is only one lock-byte page (if applicable). The specification does not mention
anything about a recognizable byte sequence for the lock-byte page type.

The free list page contains a list of pages that are free (possibly because of deleted in-
formation). The amount of free list pages is stored in the header and also the reference
to the first free list page is stored in the header. The free list pages refer to each other by
using a linked list. The specification does not mention anything about a recognizable byte
sequence for the free list page type.

B-Tree pages start with a b-tree page header. The first byte of the b-tree page header
describe the type of b-tree page. Only a limited set of values is valid for this field, thus these
values can be used as recognizable byte sequences. B-tree pages contain the data that is
stored in the database.

Payload overflow pages contain the data does not fit in a B-tree page. Payload overflow
pages are linked lists and the first 4 bytes of the payload overflow page contain the page
number of the next payload overflow page. The remaining space in the page is available for
storing overflow data of the B-tree page. Payload overflow pages do not contain a recogniz-
able byte sequence.

Pointer map pages are pages that contain references (page numbers) to other pages.
Each entry in this list contains a page type (1-byte) followed by a page number (4-bytes).
Pointer page maps do not have a header or recognizable byte sequence.

9https://www.sqlite.org/fileformat.html

xi

Furthermore, the file format does not use encoding or compression or contain CRC
values or other error checking facilities. The file format does not specify a specific sequence
regarding the ordering of pages, the only requirement is that the file has to start with a
database header structure.

Some of the page types can be recognized, such as b-tree pages. However, not all of the
page types can be recognized or validated. For instance, the free list page type. Therefore,
Figure A.7 contains page sections that are recognizable and unrecognizable. It is also possi-
ble to have free pages (grey shaded section) in a file, these pages are unused. As mentioned
before, the data of the database is contained within b-tree pages. Thus, it is possible that
the majority of the pages in a database file are b-tree pages, which are recognizable. If the
page size is larger than the used cluster size of the file system, this can be a challenge for
detecting fragmentation by a validator. Since it can be difficult to detect fragmentation or
corruption within a page, because there are no error checking facilities present in the file
format.

Only the lower level of the SQLite file format is described in this section, this lower level
contains the b-tree layer. The b-tree layer is used to implement the capabilities of SQL, how
this is accomplished is not described. In order to understand how the data is organized at
file level, it is not required to know how the b-tree layer is used to implement SQL capa-
bilities. Therefore, this information is omitted. Furthermore, not every detail or field of
each page type is described, only the information relevant in the context of file validation
or information that is required to understand the file format is mentioned.

Figure A.7: SQLite file format diagram

xii

B
PST FILE FORMAT

This chapter describes the internals of the PST file format. Information in this chapter is
based on the documentation of the PST file format provided by Microsoft [Mic20].

B.1. GRAMMAR
• <PSTfile> ::= <Minimal> | <Minimal> <AdditionalStorage>
• <Minimal> ::= <Header> <Reserved> <DList> <AMap> <PMap> <Data>
• <Header> ::= <dwMagic> <dwCRCPartial> <wMagicClient> <wVer> <wVerclient>

<bPlatformCreate> <bPlatformAccess> <dwReserved1> <dwReserved2> <bidUnused>
<bidNextP> <dwUnique> <rgnid> <qwUnused> <root> <dwAlign> <rgbFM> <rg-
bFP> <bSentinel> <bCryptMethod> <rgbReserved> <bidNextB> <dwCRCFull> <rg-
bReserved2> <bReserved> <rgbReserved3>

• <rgnid> ::= <nid> | <rgnid> <nid>
• <nid> ::= <nidType> <nidIndex>
• <root> ::= <dwReserved> <ibFileEof> <ibAMapLast> <cbAMapFree> <cbPMapFree>

<BREFNBT> <BREFBBT> <fAMapValid> <bReserved> <wReserved>
• <BREFNBT> ::= <BREF>
• <BREFBBT> ::= <BREF>
• <AdditionalStorage>::= AdditionalData | <AdditionalData> <AdditionalData> <Addi-

tionalData> <AdditionalData> <AdditionalData> <AdditionalData> <AdditionalData>
<AdditionalData> <PMap> | < 128MB AdditionalStorage> <FMap> | < 8GB Addition-
alStorage> <FPMap>

• <AdditionalData> ::= <AMap> <Data>
• <Data> ::= <Datablock> | <Page> | <Data> <Datablock> | <Data> <Page>
• <Page> ::= <Page Content> <Page Trailer>
• <Page Content> ::= <AMapPage> | <PMapPage> | <DListPage> | <FMapPage> | <FPMap-

Page> | <BTPage>
• <AMap> ::= <AMapPage> <Page Trailer>
• <AMapPage> ::= <rgbAMapBits>
• <PMap> ::= <PMapPage> <Page Trailer>
• <PMapPage> ::= <rgbPMapBits>
• <DList> ::= <DListPage> <Page Trailer>

xiii

• <DListPage> ::= <bFlags> <cEntDList> <wPadding> <ulCurrentPage> <rgDListPageEnt>
<rgPadding>

• <rgDListPageEnt> ::= <DLISTPAGEENT> | <rgDListPageEnt> <DLISTPAGEENT>
• <DLISTPAGEENT> ::= <dwPageNum> <dwFreeSlots>
• <FMap> ::= <FMapPage> <Page Trailer>
• <FMapPage> ::= <rgbFMapBits>
• <FPMap> ::= <FPMapPage> <Page Trailer>
• <FPMapPage> ::= <rgbFPMapBits>
• <BBT> ::= <BTPage> <Page Trailer>
• <NBT> ::= <BTPage> <Page Trailer>
• <BTPage> ::= <rgentries> <cEnt> <cEntMax> <cbEnt> <cLevel> <dwPadding>
• <rgentries> ::= <BTENTRY> | <BBTENTRY> | <NBTENTRY> | <rgentries> <BTENTRY>

| <rgentries> <BBTENTRY> | <rgentries> <NBTENTRY> * (all entries in the rgentries
are of the same type, either BBTENTRY, BTENTRY or NBTENTRY)

• <BTENTRY> ::= <btkey> <BREF>
• <BBTENTRY> ::= <BREF> <cb> <cRef> <dwPadding>
• <NBTENTRY> ::= <nid> <bidData> <bidSub> <nidParent> <dwPadding>
• <BREF> ::= <bid> <ib>
• <Page Trailer> ::= <ptype> <ptypeRepeat> <wSig> <dwCRC> <bid>
• <Datablock> ::= <Block data> <Padding> <Block Trailer>
• <Block Trailer> ::= <cb> <wSig> <dwCRC> <bid>
• <bid> ::= <A><bidIndex>

B.2. LIST OF FIELDS
The following fields are used in the PST file format (unicode variant):
dwMagic (4 bytes) fixed value magic string " 0x21, 0x42, 0x44, 0x4E ("!BDN")".
dwCRCPartial (4 bytes) CRC value of the 471 bytes of data starting from wMagicClient field
wMagicClient (2 bytes) fixed value magic string " 0x53, 0x4D ".
wVer (2 bytes) File format version.
wVerclient (2 bytes) Client file format version.
bPlatformCreate (1 byte) fixed value 0x01.
bPlatformAccess (1 byte) fixed value 0x01.
dwReserved1 (4 bytes) Value must be ignored and must be initialized to zero.
dwReserved2 (4 bytes) Value must be ignored and must be initialized to zero.
bidUnused (8 bytes) Unused padding used in the Unicode version of the PST file format.
bidNextP (8 bytes) Next page BID. BidIndex values of pages are allocated using this counter.
dwUnique (4 bytes) Monotonically increasing value that is modified each time the header

of the PST file is modified.
qwUnused (8 bytes) Unused space that must be set to zero.
dwAlign (4 bytes) Unused alignment bytes that must be set to zero.
rgbFM (128 bytes) Deprecated FMap, this field is no longer used and must be set to 0xFF,

the field should be ignored by readers.
rgbFP (128 bytes) Deprecated FPMap, this field is no longer used and must be set to 0xFF,

the field should be ignored.
bSentinel (1 byte) fixed value 0x80.
bCryptMethod (1 byte) Indicates which method is used to encode the data within the PST

xiv

file.
rgbReserved (2 bytes) Reserved field that must be set to zero.
bidNextB (8 bytes) Next BID, the value of this field is a monotonic counter that indicates

which BID is assigned for the next allocated block. BID values increase in increments
of 4.

dwCRCFull (4 bytes) CRC value of the 516 bytes of data starting from the wMagicClient
field up to the bidNextB field.

rgbReserved2 (3 bytes) Value must be ignored and must be initialized to zero.
bReserved (1 byte) Value must be ignored and must be initialized to zero.
rgbReserved3 (32 bytes) Value must be ignored and must be initialized to zero.
nidType (5 bits) Identifies which type of the node is represented by the NID (Node ID).
nidIndex (27 bits) Identification part of the NID (Node ID).
dwReserved (4 bytes) Value must be ignored and must be initialized to zero.
ibFileEof (8 bytes) Size in bytes of the complete PST file.
ibAMapLast (8 bytes) Contains the absolute file offset to the last AMap page of the PST file.
cbAMapFree (8 bytes) Total amount of free space in all AMaps combined.
cbPMapFree (8 bytes) Total amount of free space in all PMaps combined, PMap is depre-

cated therefore the value must be set to zero.
fAMapValid (1 byte) Indicates whether all of the AMaps that are stored in the PST file are

valid.
wReserved (2 bytes) Value must be ignored and must be initialized to zero.
rgbAMapBits (496 bytes) AMap data.
rgbPMapBits (496 bytes) PMap data.
bFlags (1 byte) Flags related to DList.
cEntDList (1 byte) contains the number of entries in the rgDListPageEnt array.
wPadding (2 bytes) Padding bytes, always zero.
ulCurrentPage (4 bytes) If the backfill complete is active in bFlags, this field contains the

AMap page index that is used in the next allocation. If the backfill complete is not
active in the bFlags field, this value contains the AMap page index that is attempted
for backfilling in the next allocation.

rgPadding (12 bytes) Unused padding, always zero.
dwPageNum (20 bits) AMap page number.
dwFreeSlots (12 bits) Total number of free slots of the AMap.
rgbFMapBits (496 bytes) FMap data.
rgbFPMapBits (496 bytes) FPMap data.
cEnt (1 byte) The number of BTree entries stored in a page.
cEntMax (1 byte) The maximum number of entries allowed in the page data
cbEnt (1 byte) BTree entry size in bytes.
cLevel (1 byte) The binary tree depth level of this page, leaf pages are zero.
dwPadding (4 bytes) Padding, always zero value.
btkey (8 bytes) The value of the key of the BTENTRY record.
cb (2 bytes) The amount of bytes of data the data section of the block contains.
cRef (2 bytes) The amount of references to this block.
bidData (8 bytes) The value of the BID of the data block.
bidSub (8 bytes) The value of the BID of the subnode block.
nidParent (4 bytes) contains the NID of the parent Folder object’s node if applicable.

xv

bid (64 bits) Block ID
nid (8 bytes) Node ID
ib (64 bits) Byte index, this value is used to indicate the absolute offset within the PST file

relative to the start of the PST file.
ptype (1 byte) Indicates the type of data of the page.
ptypeRepeat (1 byte) the same value as the ptype field.
wSig (2 bytes) Page signature (in case of a page) or block signature (in case of data block)
dwCRC (4 bytes) CRC value of the page data, the page trailer is not included. In case of a

data block this field contains the CRC value of the amount of bytes of raw data.
Padding (4 bytes) reserved, padding is used to guarantee the data block is always a multi-

ple of 64 bytes. The content of the padding field is undetermined and not guaranteed
to be zero.

A (1 bit) part of the bid value, reserved bit which is always 0.
B (1 bit) part of the bid value.
bidIndex a monotonically increasing value that is part of the bid value, that uniquely iden-

tifies the BID with the PST file.

xvi

	Introduction
	Contributions

	Background
	NTFS file system
	Fragmention
	File deletion
	Sparse files
	File recovery (undelete)

	File carving
	Current challenges for file carving

	Related work
	Methodology
	Current state of file validation
	File validation techniques
	Current challenges with file format validators
	File format validation reference implementation

	File format analysis
	File format specifications
	Concepts used in file formats
	File life cycle

	File format validation feasibility
	File format validation requirements
	File format validation principles
	Mapping between validation principles and file format concepts
	Relation between validation principles and validation techniques
	Relation between file format validation techniques and file format concepts

	Necessary file validation principles
	File signature
	Recognizable data structures
	Ability to match data with the same file

	Additional file validation format principles
	Ability to detect invalid/corrupt data
	Ability to check consistency across the complete file

	Challenging file format concepts for validators
	Validation case study: WAD file format
	WAD file format specification
	WAD file format validation feasibility
	Usability of the feasibility method

	PST file format validation
	PST file format specification
	Logical organization of the PST file format
	Physical organization of the PST file format

	PST file format validator feasibility
	Identified file format concepts
	Minimum set of required file format concepts for validation
	Additional file format concepts for validation
	Challenging file format concepts for validators
	PST file format validation feasibility

	File validator for the PST format
	Design of a PST format file validator
	Functionality and limitations

	Proof-of-concept implementation
	Verification
	Results

	Conclusion, discussion and future work
	Answers to the research questions
	RQ1: Which existing file carving techniques can be used in a file format validator?
	RQ2: What kind of concepts are used in file formats?
	RQ3: What concepts are necessary for a file format validator?
	RQ4: How can this be used to design a file format validator for a complex format?

	Conclusions
	Discussion
	Limitations and future work

	Bibliography
	File format investigation
	Image
	JPG
	PNG

	Audio
	MP3

	Video
	AVI
	MKV

	Documents
	Office Open XML File format (docx, pptx, xlsx)
	EPUB

	Archive
	Tar

	Database
	SQLite

	PST File format
	Grammar
	List of fields

