
Feasibility of
Simulating the Java Programming Process

A thesis submitted in partial fulfillment of the requirements for
the degree of Bachelor of Science

by

W. B. Hueting

Student number: 851920848
Course code: IB9902
Thesis committee: chairperson (TBD), Open University

dr. ir. Hugo Jonker (supervisor), Open University

Abstract

Fragmentation patterns on digital storage media could help forensic researchers to create
file carvers and file- and operating system designers to improve their products. Fragmen-
tation patterns are created by writing and deleting actions and relate to the software used.
Researchers currently have to analyse real storage media over time to discover the semantics
of these patterns. This is a time-consuming and privacy-invading method.

The goal of this research is to find a method to artificially create fragmentation patterns on
storage media using user-behaviour workload. The method uses publicly available data on
computer use instead of an underlying model to to generate input.

This research finds a method and implements a proof-of-concept that uses publicly available
software development processes contained in a Git repository as input to simulate user
behaviour workload.

The results show that small basic repositories can be used as input for a user-behaviour-
workload-simulator, but more research on the characteristics of Git repositories is necessary
to widen the pool of repositories that can be used as input.

1

Contents

1 Introduction 4

2 Background 7

2.1 Version Control Systems . 7

2.1.1 Repository. 8

2.1.2 Branching and Merging . 10

2.1.3 Diff chunks . 13

2.2 Automating user interface interaction . 14

3 Related work 16

4 Automatically replaying a git repository 18

4.1 Simulation procedure . 19

4.2 Repository interaction . 20

4.3 Interaction with user interface . 20

4.4 Communication between host and VM . 22

4.5 Dealing with the IDE . 23

4.6 Handling branching and merging . 25

5 Validation 26

6 Conclusions and future work 29

2

6.1 Conclusions . 29

6.2 Future Work . 30

6.2.1 Research. 30

6.2.2 Engineering . 31

Bibliography 32

A Simulation procedure 34

B Communication protocol 36

C Implementation difficulties 38

C.1 AutomationID. 38

C.2 Onedrive. 38

C.3 Limitation of used hardware . 39

D Reflection on process 40

3

Chapter 1

Introduction

Digital storage devices have become one of the most important tools of everyday life. In
the information age we currently live in, user data has become one of the most important
trade goods. Governments’, businesses’ and individuals’ use of computers and smartphones
increases everyday, depending more and more on digital storage devices. According to
Eurostat 1the percentage of people who use a computer or the internet on a daily basis has
increased from 80 to 90 percent.

The information contained on these digital storage devices is not limited to pictures, text
files and video’s of a user. The process of writing to and deleting from the storage device
creates patterns which could be used by digital forensic researchers to design and create file
carvers, answering questions such as: what programs are used?, how long has it been used?
and who has used it? File system and operating system designers could use this metadata
for the optimisation of file- and operating systems.

A single storage device doesn’t give nearly enough meta-information to derive such patterns.
To discover these patterns and their semantics, data on a large amount of storage devices is
necessary. In an ideal situation, storage devices of real-life users, who have been using them
for years, are examined to derive usage patterns and information. Unfortunately, acquiring
sufficient data to generalise usage patterns requires such a sizeable amount of used and
usable storage devices, that acquisition becomes an obstacle to research. This is further
exacerbated by privacy legislation, which requires consent for extracting usage patterns from
each device.

A way to overcome these problems is to use synthetic experiments. Instead of acquiring real-

1https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Digital_economy_
and_society_statistics_-_households_and_individuals

4

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Digital_economy_and_society_statistics_-_households_and_individuals
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Digital_economy_and_society_statistics_-_households_and_individuals

life data, in an experiment, use of a storage device is simulated. A problem with this method
is whether the generated behavior is sufficiently approximating actual behaviour. Typically,
such simulators rely on a mathematical basis to generate behaviour supposedly mimicking
actual usage patterns. This pushes the question of realism to the mathematical basis.

Another approach is to simulate in full detail actual device usage. This has the clear advan-
tage of approximating actual device usage quite reasonably, provided accurate data on device
usage is available.

Sources of data on computer workload are free available on the internet. An example is the
e-mail data set of Enron Corpus containing over half a million e-mails from 158 employees
from the years prior to the collapse of the company. A great source of data but for the purpose
of generating significant workload, drafting and sending e-mails is to lightweight.

We note that programming is a device-intensive task, involving typing, compilation / run
cycles, debugging, using version control, etc. Moreover, thanks to the popularity of version
control systems and open source, there is a treasure trove of data available on the construc-
tion of programs. More specifically, in recent years, GitHub has become a popular and
free version control back-end for many smaller and larger open source projects. As such, it
provides sufficient data for creating a realistic simulation of programming.

This project is a follow-up of the Synthatic Fragmentation Experiments using WildFragSim
project by Robbert Noordzij [Noo19]. Noordzij’s project resulted in a simulator that has a
high level of realism in feeding input into the virtual machine. Noordzij achieved this by
performing all processing on the host machine, and interacting with the virtual machine
only via the regular mouse and keyboard interfaces. In this project, we aim to go extend his
work into a simulation of user-behaviour workload.

Contributions. The main contributions of this thesis are:

• We posit that the data of a software development process, as captured by a version con-
trol system, provides sufficiently detailed and rich data to create a valuable simulation.

• We provide a practical exploration of using such data to simulate the a software de-
velopment process.

• We provide a proof-of-concept implementation for replaying software development
projects based on data stored in a version control system.
Our proof-of-concept tool supports directly importing a project from GitHub, branch-
ing and merging in Git, replaying development in the Eclipse IDE, and committing.
Support for continuous integration / continuous deployment is beyond the scope of
this proof-of-concept tool.

5

This thesis finds a method to generate user behavior workload by replaying the programming
process mimicking a programmer. We make use of GitHub, a website containing lots of pro-
gramming projects with a detailed development history. The core idea is to let the simulator
replay the entire development history i.e. starting an IDE, typing of code and adding the
newest version to the version control system.

This research does not involve creating user profiles to be realistic. However, to study the
workings of the method, a simple programmer profile will be established. To scope the
research, it focuses on replaying Java projects with Eclipse as the IDE.

6

Chapter 2

Background

2.1. VERSION CONTROL SYSTEMS

Version control systems (VCS) are a class of software tools that assist a software team manage
changes in source code over time. Every change to the code between versions(commit)
is saved as a file containing changes relative to its parent (deltafile) and saved in a special
database. Version control systems are further dividable into Central Version Control Systems
(CVCS) and Distributed Version Control Systems (DVCS).

In CVCSs there is one truth, one central location of the entire project’s history and interacting
with the history requires a network connection. An example of a popular CVCS is Subversion
(SVN) 1. As opposed to CVCSs, DVCSs do not rely on a single place for the full history of
the project. Everybody’s working copy of the code is also a repository that can contain the
full history of the project. This means that interacting with the repository only happens
locally and no network connection is necessary. An example of a popular Distributed Version
Control System is Git 2.

To allow sharing of- and working locally with the entire history, Git has to think differently
about saving changes. SVN thinks of the information they keep as a set of files and the
changes made to each file over time (delta file).

Fundamentally, Git does save delta files3 4, but on a conceptual level thinks completely
different about changes. Every time you make a commit of your project in Git, it takes a snap-

1https://subversion.apache.org/
2https://git-scm.com/
3http://git-scm.com/book/en/Git-Internals-Packfiles
4http://git-scm.com/book/en/Git-Internals-Git-References

7

shot of what all your files look like at that moment and stores a reference to that snapshot.
For efficiency, Git doesn’t store unchanged files again, but instead adds a reference to the
identical file it has already stored.

Thinking about data this way gained some benefits and are the reasons Git is so popular.

• You are always working in a local repository, no network connection is necessary to
browse the history.

• Every snapshot is checksummed and referred to by that checksum.
• Branching is very lightweight.

A Git project consists of three main sections (figure 1); the working directory, staging area
and the repository. The working tree is a version of a software project loaded in memory to
use and modify. The staging area is a file containing information about what will go into your
next commit. The repository is where Git stores the metadata and database for the project.
The repository is what is copied when a project is cloned to another computer.

Figure 2.1: Sections of Git project

2.1.1. REPOSITORY

When a commit is made, Git checksums the subdirectories placed in the staging area and cre-
ates a tree object containing these checksums. Then a commit object containing metadata,
such as the author and the committer, and a pointer to the tree-object is made. Committing
three files results in five objects in the repository; a commit object, a tree object and three
"blobs" containing the contents of the staged files. Because everything is checksummed and
referred to it by that checksum, it is impossible to change files without git knowing about
it. This is one of pillars of Git and guarantees the integrity of files. Referencing to checksums
also has the advantage when a file is staged that is the same as a file in the repository. Git will
not make a new blob for this file but references to the already present blob in the repository.

8

This will keep memory use to a minimum.

Figure 2.2: Commit; white: commit object, blue: tree object, yellow: blobs

After making changes to the files and committing again. The created commit object will
contain the checksum of the previous commit as a reference. Doing this a couple of times
will create a tree of commit objects with the initial commit as its root.

Git also creates a pointer called a branch. This pointer points to the commit(or version of
project) you are currently looking at. This initial pointer is named "master" by default.

9

2.1.2. BRANCHING AND MERGING

The concept of branching is to divert from the main line to work on the files without messing
with the main line and allows multiple users to do different work on the same project. Nearly
all VCSs support branching but is often an expensive process requiring to make a full copy
of the source code, which can take a while with large projects. Creating a branch in Git is
a very lightweight process. All it takes is adding a pointer pointing to the commit diverting
from. This makes branching in Git nearly instantaneous.

Figure 2.3: After the creation of branch "testing", two branches exist in the repository.

Figure 2.4: After both branches have committed a different commit. Two commit objects reference the same
parent commit.

Once work has completed on a branch, it can be added to another branch. This process is
called merging. Merging comes in two flavours; fast-forward and merge-commit.

Fast-forward merging is used when merging a branch with a branch that points to an an-
cestor. In this case, the branch pointing to the ancestor is moved or fast-forwarded to the
same commit as the newest branch is pointing to.

Merge-commit is used when merging a branch with a branch that is pointing to a commit

10

Figure 2.5: Before fast-forward merging c2 and c4. c2 is ancestor of c4.

Figure 2.6: After fast-forward merging. Branch "master" is fast-forwarded to branch "hotfix"

that is not an ancestor, but has a common ancestor. This means that the changes have to be
combined and can result in a merge-conflict. A merge-conflict arises when the two branches
contain different changes of the same object referred to in the common ancestor. When this
happens the committer can make a choice which version to use or change the files before
merging again. If the merge-conflicts are resolved or no merge-conflicts arise, a new commit
containing a new snapshot consisting of the combinations of the two snapshots pointed to
by the two branches is created.

11

Figure 2.7: Before merge-commit. Merging c4 and c5 with common ancestor c2.

Figure 2.8: After merge-commit. New commit object c6 containing new snapshot that is the combination
of c4 and c5.

12

2.1.3. DIFF CHUNKS

We are interested in the differences between commits. Git is capable of determining the
changes between commits and blobs and shows these changes as diff chunks. A diff chunk
contains the actual changes between blobs and some metadata. For changes between
commits (patch), the output shows metadata of the commit and one or more diff chunks.

The metadata of a diff chunk shows information such as; if a file has been created, deleted,
renamed, changed or merged. If it is adapted and the changes are textual. It shows what
lines are adapted. The diff chunk is the basis for the input for the simulator. In figure9,
an example of a commit is given including a single diff chunk. This patch is the result
of running the command: git log –patch a400f600ad8e8146717683427a2517b0fc819eb2
31c1c94dc35066c6327535b984b55961701dc396 in this repository 5.

Figure 2.9: Changes of commit with diff chunk

The first three lines are metadata of the commit followed by the commit message. The diff
chunk starts on the line beginning with diff and shows what blobs it concerns. Between the
"@@" are the lines affected followed by the textual changes. In this commit the line "Heap
Sort Algorithm" in the old file is changed to "Heap Sort Algorithm. Implements MinHeap".

5https://github.com/TheAlgorithms/Java.git

13

2.2. AUTOMATING USER INTERFACE INTERACTION

There are various ways to automate user interface action. Roughly speaking, either the user
interface is entirely processed by the automation, or there is a specific API that opens up the
user interface to scripting.

Microsoft provides such an API in the .NET framework, the UIAutomation framework.6. This
API addresses the needs of assistive technology products and automated tests frameworks.
It provides programmatic access to information about the user interface (UI). This enables
products like screenreaders and automated test scripts to interact with the UI.

UIAutomation discloses all the elements in the UI in a tree structure with the desktop as its
root element. The root element for example has application windows as its children and
those application windows have buttons and menu-items as its children.

The framework exposes every element in the UI as an AutomationElement. An Automa-
tionElement contains all properties of the UI element e.g. an AutomationID, a name property,
a controltype (e.g. button or checkbox) and controlpatterns (e.g. click a button or check a
checkbox).

Writing scripts to interact with these AutomationElements requires the discovery of the
properties of AutomationElements in already existing applications. With these properties,
the framework is able to find the elements in the UI. To discover these properties Microsoft
made Accessibility Insights7 available. With this program you can discover the properties
of UI elements.

6https://docs.microsoft.com/en-us/dotnet/framework/ui-automation
7https://accessibilityinsights.io/

14

Figure 2.10: Screenshot of AccessibilityInsights with the focus on the menu-item "Nieuw"

In Figure 2.10 we have put the focus on the "Nieuw" menu-item from the drop-down list
under "Bestand" in the Notepad application. On the left we can see the branch from root-
element "Bureaublad 1" to the menu-item we have our focus on. In the middle we find a
selection of properties of the menu-item (e.g. AutomationID and ControlType). With its place
in the UI-tree in combination with its properties, we can uniquely identify the correct UI
element within the UI. On the bottom, we can see what actions are allowed on the element.
In this case, the menu-item can be invoked via the InvokePattern. When we have found the
correct UI element, we can can also get its location on the screen using x- and y-coordinates.
These coordinated can be used to guide the mouse to a point on the screen.

15

Chapter 3

Related work

Generating realistic computer workload has been a subject of study for many years. One of
the many types of realistic workload is user behaviour. User behaviour encapsulates the order
of user interactions at the higher levels [HK99, Fis01]. These interactions are, for example,
the commands the user runs on the system or his habits in using a particular feature e.g.
usage of keyboard, mouse, touch and speech.

Workload generation can be done by copying real data or by data generated by a model.
A model is a rule-set derived from (typically) real data, which produces synthetic data. As
synthetic data is produced by a rule-set containing generalisations and assumptions based
on real data [HHK00], it can, at best, provide an approximation to real-world data. This
makes the use of synthetic data controversial and frowned upon [CMCU04, Gan95].

In literature, a very large amount of work exists on the characterisation, modeling and
simulation of workload generators (e.g. to peer-2-peer file sharing [GDS+03], malicious
and unwanted traffic [BV14], live streaming media [VAM+02], YouTube [AS10], web proxy
caches [BW02], IDS-training [GVUK06]). Unfortunately, we cannot say the same thing about
generation of realistic workload. On the contrary, several works whose title alludes to produc-
ing a realistic workload still use model-based workload generation [AAM04, HCSJ04]. Other
works mention the desire to use realistic data, but were unable to due to a variety of reasons,
e.g., privacy constraints, or insufficient amount of realistic data [CMCU04, GVUK06, JSL+05].

However, for certain specific categories of work, sufficient data has become publicly available.
In particular, user data on software development is publicly available via public version
control systems (VCS), such as GitHub and GitLab. These VCSs contain a large quantity
of publicly available software projects and their entire development history. This readily
available development history can be used as a basis for a workload generator. This requires

16

parsing the history of these software projects for re-playing them. While there are several
tools to parse these histories, they all focus on source code analytics [ZW04, FPG03].

Finally, Noordzij worked on a spiritual predecessor of this project [Noo19]. His approach was
to keep the simulated machine free from any processing. To that end, his implementation
sends scan codes via the virtual machine’s keyboard interface. Output from the virtual ma-
chine is processed via screenshots. This is rather cumbersome and fragile: many factors can
cause screenshots to subtly change, bringing the simulation to a halt. The clear benefit is
that all processing of simulator output happens outside the simulation, and thus does not
impact the simulation. An interface within the simulation could greatly simplify and stabilise
this aspect, but comes at the expense of realism. We will investigate alternative approaches
to processing simulator output.

17

Chapter 4

Automatically replaying a git repository

We want to give the simulator a large workload to see what the effects of the write and delete
actions are on the storage medium. Our approach is based on simulating input taken from
a Git repository. This means that the Git repository needs to be downloaded and parsed
to provide input to the simulation. To ensure the experiment remains clean, we need to
distinguish between the computational effort of providing input to the simulation and the
simulation itself. In case the goal is to maximize the workload, both tasks can be executed in
the same environment. If the goal is to approximate the workload of a software development
process, the simulation environment should not be “polluted” by the workload needed to
provide input to the simulation.

The latter is the goal of this study. We want to approximate the development process as a
programmer would: using an IDE and a VCS to code, compile and commit.

As a consequence, we need an environment where the development process is simulated
and an environment where the simulator is controlled by downloading, interpreting and
converting the original repository. To make the experiment and production of data more
scalable and practical, a virtual machine (VM) is used to run the operating system where
the simulation takes place. The use of a VM also adds the advantage that allows us to easily
revert to an earlier stage of simulation or to the initial starting conditions using snapshots.

Scope and limitations. This research main focus is to correctly replay a the development
process contained in a Git repository. To further scope the research, only Java code is replayed
and is executed on Eclipse as the IDE. All other non-Java files in the repository are copied
from the original to the simulated repository. The generated projects are committed to a local
repository. We do not download and add external non-default libraries as there is no default

18

method to do this for Java. Specific solutions do exist, but there is no common standard
used by all projects (in contrast to e.g. CPAN for Perl, CTAN for LaTeX, and pyPI for Python).
As a consequence of not adding external libraries, we do not compile the replayed code.
Because only projects using the default libraries will compile and we would therefor need to
distinguish default-library projects from non-default-library projects. We also do not support
Maven of Gradle based projects. Finally, the simulator is to support UTF8 character encoding
where possible. However, this proof-of-concept focuses on realism by simulating typing via
the keyboard interface. This introduces a complication for UTF8 characters not present on
the current keyboard layout, which we leave to future work.

4.1. SIMULATION PROCEDURE

To replay the development history of a repository, the commits contained in the repository
need to be replayed as a programmer would. At first we need to download and parse the
repository, start the VM and initialize the IDE. When the environment is ready, the commits
can be replayed in chronological order. Each commit following the general programming
procedure: (code -> compile)1..n -> commit. The code step includes creation, deletion,
update or rename/relocation of code.

The commits in the repository are structured as a directed acyclic graph which could contain
multiple parallel development lines. These different development lines are represented by
different workspaces in the IDE. To make this work, we need to accommodate branching
and merging. Each time a branch is encountered, a new workspace and repository has to be
created. Each time a merge is encountered, the concerning workspaces and repositories need
to be merged. A merge is encountered as a commit so the merge action is contained in the
code step. A branch is encountered as a commit having multiple children. As a consequence
of replaying multiple parallel development lines in chronological order, we sometimes have
to change the workspace we are working in. The change of workspace needs to be done
before the commit is replayed.

Combining the above steps results in the simulation procedure represented in appendix A.

Each step of the procedure has its own challenges and solutions and are outlined in the
following sections.

19

4.2. REPOSITORY INTERACTION

To use the data confined in the repository, we need to discover and parse the data into user
interface interactions. Git offers a rich toolset for the CLI to download and interact with a
repository. The actions to discover and parse data are executed on the host. As such, there
is no need for realism, so all actions can be executed via Powershell scripts.

We will use publicly available Git repositories as input for the simulation. Once the repository
is cloned, we extract the entire commit history (using Git’s logging tools) from the repository
as a text file. This text file contains all commits with metadata in chronological order. The
contained diff chunks together represent the entire development history.

This file is then parsed into a directed acyclic graph of separate commits, each with their own
metadata (name+email of the committer, reference to parent commit, Boolean indicating
whether this was a merge).

Where to parse the development history? There are two ways to divide parsing develop-
ment history between host and simulation:

1. The host parses each commit and feeds the simulation only what is currently needed;
2. The helper program parses each commit inside the virtual machine.

Letting the host parse the commit seems desirable. However, it requires host and simulation
to be synchronised with respect to the current state of the virtual machine. Parsing commits
on the virtual machine does not such strict synchronisation.

Both approaches increase the computational efforts of the virtual machine. The former via
a more complicated and intensive way of communicating, the latter via the extra parsing
jobs. We choose to perform parsing on the virtual machine, as it significantly reduces the
requirement for synchronisation.

4.3. INTERACTION WITH USER INTERFACE

As previously stated, a program on one operating system needs to control the simulation on
another operating system. Our preference is for a way where the controlling program inputs
the necessary actions as an actual user would, without interfering with the simulation. This
means interpreting the UI by finding and clicking the correct elements, and coding with a
realistic typing rythm.

Interpretation of the UI can be done via image recognition, as shown by Noordzij [Noo19].
He managed to do this by supplying the program with images to find on a snapshot of the

20

to-be-interpreted UI. Unfortunately, he ran into the problem that the program was unable
to locate the correct elements, when the visual representation of the elements changed, for
example, by a software update. The program needed to be resupplied with new images.

If we want to use this method, we have to supply the program with the correct images to
find throughout the entire software development process. This is hard, as there may be
user-defined UI elements (e.g., labels, as shown in Figure 4.1). This means that images for UI
image recognition cannot be created in advance, but need to be created on the fly. Moreover,
it is plausible that multiple representations of a single element (e.g., a function- or method-
name) exist within the UI (as shown in Figure 4.2). Distinguishing between multiple such
instances requires context of each instance. Since functions (in general) can be arbitrarily
nested, there is no guarantee how much context suffices. Because of these disadvantages,
image recognition is not a viable approach to use for interaction with the user interface.S

Figure 4.1: User-defined UI elements "Voor-
beeldProject", "extraVoorbeeldPackage" and
"VoorbeeldClass.java".

Figure 4.2: Two user-defined UI elements
"VoorbeeldClass.java" exist within the UI.

We need a context-aware approach to interpret the VM’s user interface without relying on
its visual representation. Within the VM, context is available. UIAutomation can provide us
with the context necessary to find the correct UI elements. As such, it stands to reason to
use a helper program located on the VM. However, using a helper program incurs a disad-
vantage: it influences the result of the simulation, since running the helper program adds
to the workload. To gauge the impact of a helper program, we performed an experiment to
measure memory- and disk-use of such a helper program.

Experiment: validation of helper program. To determine its impact, a small helper pro-
gram was developed1 that retyped publicly available books2 as textfiles. The program needs

1https://github.com/WHueting/HelperProgramTest
2https://www.gutenberg.org/

21

https://github.com/WHueting/HelperProgramTest
https://www.gutenberg.org/

to find and invoke the correct user interface elements via UIAutomation.

To retype the book, first notepad has to be started. This is done by finding the shortcut for
notepad on the desktop. After invoking the shortcut, notepad is started with an empty page
ready for input. The program then start retyping the entire book. After its completion, the
book has to be saved. The save button on the notepad window has to be found and invoked.
This results in a save-window to enter a name for the created textfile. The corresponding
name is typed in the correct textbox and is confirmed by the "return" key. All the typing is
done by sending corresponding keystrokes to the active window or application.

Using Visual Studio’s diagnostic tools we determined that the program used 18 MB of mem-
ory and on average 2% of the CPU with peaks up to 4%. To determine if the resource usage
increased when input increases, we tested the program with multiple books. This increase
in input did not lead to an increase in resource usage.

The results of this experiment suggests that the impact of a small helper program is negligible.
As such, we choose to make use of this approach that uses the UIAutomation framework. Of
course, an experiment of this limited scale cannot be generalised without proviso. To validate
this approach, experiments need to be done to measure the impact of such a helper program
on a representative scale. These experiments are outside of the scope of this research.

4.4. COMMUNICATION BETWEEN HOST AND VM
To make use of the helper program, the host outside of the VM needs to exchange files with the
helper program running on the VM. There are various ways for host and VM to exchange files.

In general, files are exchanged via a shared folder. This general method is not suitable for us
to use. A shared folder between host and a VM is not a typical shared folder, but a separate
channel to pass files. The helper program is therefor not able to see or react to these changes.3

Another method to exchange files is to use a shared USB drive. A problem with this method
is that the host and the VM cannot simultaneously connect to the USB drive. Extra software
is necessary for handling the synchronisation and connections. Although this method could
work in a local setup, it does not for a distributed setup, where one host provides input for
multiple VMs. Such a case allows for parallelisation of testing. However, this cannot be done
on one machine, as the workload of one VM affects the resources available to an other one.
A solution for this is to share a USB drive over an IP connection. To accommodate this, extra
external software needs to be installed.

A shared USB drive over IP in between the host and VM is not necessary as we can connect

3https://forums.virtualbox.org/viewtopic.php?f=2&t=100160

22

https://forums.virtualbox.org/viewtopic.php?f=2&t=100160

the host and VM directly using a TCP/IP connection. Implementing a TCP/IP connection
requires no extra software, but a small addition to the existing host and client program.

As mentioned in section 5.1, we have chosen to implement a simple communication pro-
tocol. When the client is ready, it sends a request to the host. The host responds with the
next task to be executed until the repository is simulated. When the clients receives the task
to replay a commit, extra information is necessary. The textual contents of the commit to
be parsed are then requested from the host. Occasionally, a file is encountered that cannot
be replay on an IDE (e.g. a JPEG). The clients then makes a request for the file and places
it in the repository. The corresponding sequence diagram can be found in the appendix B.

Because our program is a proof of concept, no security measures such as encryption or
authorization are taken in regards to the TCP connection.

4.5. DEALING WITH THE IDE
The main function of an IDE is to support the programmer with trivial tasks. To do this, an
IDE needs to have some knowledge about the programming environment and to work prop-
erly, adds rules and restrictions to the environment and actions made by the programmer.

Git as a version control system does not need to have knowledge about the programming
concepts, it just saves a file directory and is "dumb" in comparison to an IDE. This difference
in knowledge creates additional challenges in translating a Git repository into actions on an
IDE. To overcome these challenges, some information extracted from a Git repository needs
to be supplemented, deleted or altered to be executed on an IDE. Some of the encountered
challenges and solutions are outlined below.

We have chosen to use Eclipse as our IDE as we already have experience with this partic-
ular IDE. In Eclipse, Java-classes are contained within a package and a package in turn is
contained within the source directory of a project. Next to to the source directory, the JRE
library is also present in the project folder. In some Git repositories, the project folder or even
the package folder is missing. To overcome this challenge, a default project and/or default
package is created when it is missing in the original repository. The extra created folders
need to be taken into account with the creation of following Java-classes and files.

Another challenge that requires us to keep track of state, is that Eclipse puts restrictions on
names of packages and files. Eclipse does not allow, for example, spaces in the names of
Java-classes. Git could not care less if a name of a file contains a space. As a solution, we
replace the spaces with an underscore. The replacements also need to be taken into account
in future alterations. Next to that, the UIAutomation Framework finds the UI elements via
its name. Above changes in the input also impact the way we locate the UI elements.

23

Eclipse also supports the programmer by making suggestions and predictions about meth-
ods to use. This function is called Content Assist and is shown in Figure 4.3. With the right
key combinations, Eclipse can unintentionally insert the proposed methods, altering the
input that leads to coding errors. Our preference is to leave this function turned on and use
it, but this requires us to predict on the fly when such a suggestion is made. This is beyond
the scope of this research and as a consequence, we turn this function off in our simulations.

Figure 4.3: Example of suggestions made by Eclipse, a carriage return inserts the suggestion

To help the programmer type, Eclipse provides the programmer with a function to automat-
ically closes and inserts:

• quotation marks
• parentheses
• square and angle brackets
• braces

For example When a brace ("{") is typed and followed by a carriage return, Eclipse inserts the
closing brace ("}") automatically on the new line. The closing brace is yet to be encountered by
the simulator and also typed when encountered. In the end, a lot of extra symbols are present
in the code leading to errors. For the sake of realism, we want to leave this function turned
on, but we then have to anticipate when Eclipse automatically inserts the concerning symbol.
This is also beyond the scope of this research and this function is turned off in our simulations.

24

4.6. HANDLING BRANCHING AND MERGING

To accommodate branching in the simulator, we first have to recognize when branching
occurs. As previously stated, branching occurs when multiple commits reference the same
parent. So we have to check if there is a commit that is referenced as a parent by more
than one commit. There are multiple points in the simulation where we can determine if
branching occurs.

One approach is to wait until a commit has to be parsed that has the same parent as a
previously replayed commit. This approach has some practical disadvantages. It is possible
that after a branch has been made, the chronologically next one or more commits belong
to the master. When we find out that branching has occurred, the state of the to-be-copied
workspace is one or more commits ahead. We thus need to revert to the parent commit
where branching occurred before we can begin replaying the concerning commit. While
this can be addressed on-the-fly, this adds unnecessary overhead and complexity. Another
problem with this approach occurs when juggling multiple branches. In this case, we have
to know in which workspace to replay the next commit.

Another approach is to check if a commit is referenced by multiple future commits right
after it has been replayed and if so, branch the workspace in advance as needed. This makes
sure that all needed workspaces are ready for their next commit and no further actions are
required. Via this approach, we can also distinguish workspaces by expected commit so we
can always uniquely identify the correct branch.

Once a branch has been discovered, a copy of the project and workspace has to be made. One
approach is to literally make a copy of the workspace and switch between the workspaces.
But to make branching a practical way of development, the branches need to be merged
in to a single project again. Merging two workspaces in Eclipse is practically impossible.
As merging is inherently connected to branching, Git provides us with the tools to merge
repositories. To use these tools, we have to make repositories out of our workspaces.

Egit is a plugin created for Eclipse that adds a user interface for Git and the Git tool-set to
Eclipse, making interaction with a repository from Eclipse possible. We can use this plugin to
easily commit the created code, switch to or create another workspace and clone the needed
repository to this workspace.

Next to that and with realism in mind, Egit is a very popular plugin recommended for Eclipse
used by many programmers. So usage of this plugin adds to the realism of the simulation.

25

Chapter 5

Validation

The goal of the tool is to automatically replay the development process contained in a Git
repository. To validate if the tool does what it is designed to do, we have given it a small
repository1 containing several commits, a branch and a merge to replay.

It took the simulator 45 minutes to successfully complete the entire development history of
Git repository. Although a small error was encountered, it did not influence the remainder of
the simulation. This result shows that we have achieved the goal of automatically simulating
the development process. From this we can conclude that our approach is feasible. The
simulation of this repository can be viewed on YouTube2.

After achieving our original goal, we want to know what the limits of our proof-of-concept
are. To test this, we have given it the multiple repositories to replay. We have handpicked
repositories from Github that meet the requirements and have chosen to categorize the
repositories by number of commits.

• Small: < 10 commits
• Medium: 10 – 100 commits
• Large: > 100 commits

In Table 5.1, we show the results of the repositories simulated. We note the number of lines
of code, the number of executed commits and total runtime of the simulations.

1https://github.com/jacobbrunson/BasicLighting
2https://www.youtube.com/watch?v=YpKmVG1cyBc

26

https://github.com/jacobbrunson/BasicLighting
https://www.youtube.com/watch?v=YpKmVG1cyBc

Repository # LOC # commits total runtime Result

Small
1. ROC-DEV/inleiding-java 11 6 11:24 correctly simulated
2. jacobbrunson/BasicLighting 199 7 42:07 Simulated (with error)

Medium
3. brianway/java-learning 8 8 16:19 Error while processing
4. EmmanueleVilla/SimpleServiceLocator 1148 8 1:37:48 Error while processing

Large
5. TheAlgorithms/Java 612 11 1:02:14 Error while processing

Table 5.1: Validation results

Discussion.

2. jacobbrunson/BasicLighting
The repository was simulated successfully, but a small error was encountered. Normally,
the simulator takes the .gitignore from the original repository and overwrites the .gitignore
that was automatically generated by Eclipse. This did not happen in this simulation as the
directory of the repository was not compatible to be simulated. A small adjustment to the
directory structure had to be made. As a consequence, the .gitignore did not overwrite the
automatically generated .gitignore, but was placed a level lower. The result was that the
automatically generated .gitignore was used and the .project file was ignored. This file is
necessary to automatically import Java-projects in Eclipse after cloning.

3. brianway/java-learning
In the first couple of commits, no Java-classes were present so no code was written. In the
eighth commit, the first Java-class is encountered and the simulator started to code. On the
eighth line of the class, a symbol that was not present on the keyboard lay-out had to be
typed. The concerning keystrokes send to the application resulted in an unexpected ALT-
combination that made changes to the UI. The simulator then could not find the necessary
elements and stopped.

4. EmmanueleVilla/SimpleServiceLocator3 and 5. TheAlgorithms/Java
These repositories both encountered the same problem; unresponsive software. The hard-
ware used could hardly manage running two instances of Windows resulting in a regular
occurrence of 100% CPU usage. This made Eclipse run very slow and at times unrespon-

3Video of simulation available on request

27

sive what lead to synchronsation error between the simulator and the UI, stopping the
simulations.

28

Chapter 6

Conclusions and future work

6.1. CONCLUSIONS

Usage of a file system changes how data is stored. On a pristine file system, new files are
stored consecutively. After a period of use, some files will have grown, others shrunken, old
files will be removed, new ones added. All this induces a certain scattering of data over the
storage medium. Exactly how data is scattered, is relevant for researchers into file recovery
and file system design. Ideally, such data would be taken from systems used in the real
world. However, to accurately generalise findings, data on a large number of systems is
needed. Moreover, collecting data from a real-world system is labour-intensive. Collecting
data from real systems does not scale sufficiently. Consequently, data has been gathered from
simulations of computer use. Current simulations typically use a simple model of low-level
disk interaction (reading a file, writing a file, deleting a file). The problem with this approach
is the fidelity of the model: to what extent does the model capture real-world disk usage?

This research introduced a new method and showed the feasibility of generating sought stor-
age media. The method uses publicly available data on computer use as basis for simulations
instead of an underlying model. We have created a method that replays the development of
a Git repository. We designed and developed a proof-of-concept that succeeded in replaying
different small repositories. The method uses a virtual machine as a system under test,
providing an isolated and clean storage medium that can be analysed after the simulation
and is easily reverted to an earlier state to replay a simulation under different conditions. The
only limitation being a client program installed on the storage medium that is responsible
for the interaction with the user interface of the VM and IDE. To mimic a user, the commits
are executed on a popular IDE through its user interface. A typing algorithm, developed by
others, is used to program with a basic typing rhythm using pause time, keystroke burst, and

29

a break schedule. The proof-of-concept successfully replayed small (five to ten commits)
Java repositories with a proper directory structure on Eclipse as the IDE.

The output of the method is a local copy of the input repository. Analysis of the input repos-
itories and locally generated output repositories showed the feasibility of this approach. This
method has the potential to be used in situations where simulators with a mathematical basis
are inadequate, such as the previously described creation of storage media patterns. Extra re-
search is required to show how close simulator approximates real fragmentation patterns and
to identify other situations where this approach is more applicable than other approaches.

6.2. FUTURE WORK

Many implementation and improvements are left to the future due to the amount of pos-
sibilities to improve en extend the method.

6.2.1. RESEARCH

This research mainly focuses on Java repositories executed on Eclipse. As described in section
4.5, there are differences between Eclipse and Git regarding knowledge about the program-
ming paradigm. Although most of the encountered conflicts have been resolved in the soft-
ware, we encounter new unexpected erroneous situations with every new repository we sim-
ulate. As simulations of large repositories (>100 commits) take hours if not days to simulate, a
lot of time is needed to discover, categorize and solve all of the possible erroneous situations.

Next to that, we have only tried to simulate Java repositories on Eclipse. To fully capitalize on
the data contained on Github, support for other programming languages and IDEs should
be added. Different programming languages and IDEs implement different concepts and
structures. This might lead to more or less erroneous situations. Extra research is necessary
to discover these concepts and structures and to write new protocols for the simulation of
the programming process with new programming languages on different IDEs.

The biggest shortcoming of the simulator is that it does not compile the replayed code as
there is not a general method of adding libraries to a project in Java/Eclipse. To overcome
this, a different programming language or IDE need to be used that do have a general and
centralized method of adding libraries.

As a consequence of the method we use to feed keystrokes to the IDE. We can only feed
keystrokes matching the functional layout of the keyboard. For example, we can not feed
Korean symbols when the functional layout is set to US International. As many reposito-
ries contain for example Asian or Cyrillic characters, more research is necessary to find a

30

method that does not care about the nature of characters. Thus widening the pool of possible
repositories to simulate.

To further widen the pool of possible repositories, support for projects made with Gradle
of Maven should be added. As these framework impose extra rules on directory structure
and require certain files (e.g. pom.xml in Maven) to exist, extra research is necessary to
implement these frameworks.

Interaction with the user interface is done with a client program installed on the storage
medium, contaminating the created storage medium. We have already established that
context is necessary and that can only be found within the VM. More research has to be done
to decrease the impact on the storage medium, while maintaining the same functionalities.

6.2.2. ENGINEERING

As this is the first version of a simulator taking a Git repository as input, many improvements
can be made.

The scale of simulations can be extended. With the current simulator, a single repository
is simulated at a time. The host of the simulator could be extended with the possibility of
controlling multiple VMs, thus generating multiple storage media simultaneously.

We want the simulator to produces user-behaviour workload. To better approximate this
type of workload, different functionalities can be added to the simulator:

• When the simulator starts a simulation, it does not stop until the entire repository is
simulated. Breaks between programming sessions should be added, such that the
simulator stops and/or shuts down for a while after working for some amount of time.

• No programmer starts an IDE, programs for a couple of hours and at the end of the
workday, shuts down. Every programmer encounters problems that requires Google
or StackOverflow. A function should be added that browses to popular programming
website at random intervals.

• Users also listen to music while working. Streaming services are very popular these days
and a function should be added to turn on/off a streaming service and change music.

• Typo’s do not exist in the current simulator, all the code is copied from the original
repository. A function could be added to make typo’s while coding and correcting
them later on.

• In the current simulator the programming is done linear, but in a regular programming
process, programming is done non-linear. Classes, methods and attributes are in-
serted where they are necessary. A function should be added to make the programming
non-linear.

31

Bibliography

[AAM04] Spyros Antonatos, Kostas G Anagnostakis, and Evangelos P Markatos. Generating
realistic workloads for network intrusion detection systems. In Proceedings of the
4th international workshop on Software and performance, pages 207–215, 2004. 16

[AS10] Abdolreza Abhari and Mojgan Soraya. Workload generation for youtube.
Multimedia Tools and Applications, 46(1):91, 2010. 16

[BV14] Sebastian Bauersfeld and Tanja EJ Vos. User interface level testing with testar;
what about more sophisticated action specification and selection? In SATToSE,
pages 60–78, 2014. 16

[BW02] Mudashiru Busari and Carey Williamson. Prowgen: a synthetic workload
generation tool for simulation evaluation of web proxy caches. Computer
Networks, 38(6):779–794, 2002. 16

[CMCU04] Ramkumar Chinchani, Aarthie Muthukrishnan, Madhusudhanan Chan-
drasekaran, and Shambhu Upadhyaya. Racoon: rapidly generating user
command data for anomaly detection from customizable template. In 20th
Annual Computer Security Applications Conference, pages 189–202. IEEE, 2004. 16

[Fis01] Gerhard Fischer. User modeling in human–computer interaction. User modeling
and user-adapted interaction, 11(1-2):65–68, 2001. 16

[FPG03] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history
database from version control and bug tracking systems. In International
Conference on Software Maintenance, 2003. ICSM 2003. Proceedings., pages 23–32.
IEEE, 2003. 17

[Gan95] Gregory R Ganger. Generating representative synthetic workloads: An unsolved
problem. In in Proceedings of the Computer Measurement Group (CMG)
Conference. Citeseer, 1995. 16

32

[GDS+03] Krishna P Gummadi, Richard J Dunn, Stefan Saroiu, Steven D Gribble, Henry M
Levy, and John Zahorjan. Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload. In Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 314–329, 2003. 16

[GVUK06] Ashish Garg, S Vidyaraman, S Upadhyaya, and K Kwiat. Usim: a user behavior
simulation framework for training and testing idses in gui based systems. In
Proceedings of the 39th annual Symposium on Simulation, pages 196–203. IEEE
Computer Society, 2006. 16

[HCSJ04] Félix Hernández-Campos, F Donelson Smith, and Kevin Jeffay. Generating
realistic tcp workloads. In Int. CMG conference, pages 273–284, 2004. 16

[HHK00] Helmut Hlavacs, Ewald Hotop, and Gabriele Kotsis. Workload generation by
modeling user behavior. Proceedings of OPNETWORKS 2000, 2000. 16

[HK99] Helmut Hlavacs and Gabriele Kotsis. Modeling user behaviour: A layered
approach. In MASCOTS’99. Proceedings of the Seventh International Symposium
on Modeling, Analysis and Simulation of Computer en Telecommunication
Systems, pages 218–225. IEEE, 1999. 16

[JSL+05] Daniel R Jeske, Behrokh Samadi, Pengyue J Lin, Lan Ye, Sean Cox, Rui Xiao, Ted
Younglove, Minh Ly, Douglas Holt, and Ryan Rich. Generation of synthetic data
sets for evaluating the accuracy of knowledge discovery systems. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery
in data mining, pages 756–762, 2005. 16

[Noo19] Robbert Noordzij. Synthetic fragmentation experiments using wildfragsim. Open
Universiteit, 2019. 5, 17, 20

[VAM+02] Eveline Veloso, Virgílio Almeida, Wagner Meira, Azer Bestavros, and Shudong
Jin. A hierarchical characterization of a live streaming media workload. In
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment, pages
117–130, 2002. 16

[ZW04] Thomas Zimmermann and Peter Weißgerber. Preprocessing cvs data for
fine-grained analysis. In MSR, volume 4, pages 2–6, 2004. 17

33

Appendix A

Simulation procedure

34

35

Appendix B

Communication protocol

36

37

Appendix C

Implementation difficulties

C.1. AUTOMATIONID
The AutomationID property uniquely identifies an AutomationElement from its siblings
and can be used to find the needed AutomationElement in the tree 1. In theory, developers
of Windows applications give an AutomationIDs to UI elements to make their application
compatible with the UIAutomation Framework. In practice, a different reality is true. Automa-
tionElements often lack an AutomationID and with the majority of AutomationElements
that do have an ID, the ID appears not to be unique or changes every time the element is
created. The use of the AutomationID therefor is not practical and a combination of other
properties is necessary to uniquely identify the correct element.

C.2. ONEDRIVE

Onedrive is a service from Windows Live and comes with every Windows installation. It is
used to save files in the cloud or to easily share them with others. Files are by default saved
in Onedrive and even the desktop resides in Onedrive. As mentioned, the desktop is the root
of the tree of the UIAutomation Framework. It appears that, when Onedrive is enabled, the
AutomationElements can no longer be found programmatically and no longer matches with
the information given by AccessibilityInsights. To be able to execute the simulations, we have
disabled Onedrive on the VM.

1https://docs.microsoft.com/en-us/dotnet/framework/ui-automation/
use-the-automationid-property

38

https://docs.microsoft.com/en-us/dotnet/framework/ui-automation/use-the-automationid-property
https://docs.microsoft.com/en-us/dotnet/framework/ui-automation/use-the-automationid-property

C.3. LIMITATION OF USED HARDWARE

In the beginnen of this research, I tried installing an image of Windows 10 on a VM running
on my personal machine. After installation, the VM and the containing instance of Win-
dows10 ran very slowly. The cause was an insufficient amount of RAM. My personal machine
had 8GB of RAM installed and a single instance of Windows10 required a minumum of 4GB.
An increase of RAM was necessary and I increased the amount of RAM to 24GB. Windows
now ran a lot smoother. But after installing all the necessary software and starting Eclipse on
the VM, I again noticed a drop in performance. It appeared that CPU-usage was at a 100%.
This was a problem I could not overcome without buying a new laptop and was the cause for
a great amount of erroneous situations. Eclipse regularly did not respond in a timely fashion
what caused the simulation to fail.

39

Appendix D

Reflection on process

In the beginning of the project, the prospect of the amount of work I had to put in, demo-
tivated me massively. As writing was never a favourite thing for me to do, I lacked the needed
writing skills and wanted this paper to be finished as soon as possible. I expected from myself
that every sentence I put to paper was instantly perfect. My expectations did not line up with
reality. I had a lot of frustrating nights, sitting hours in front of the computer not knowing
what to do or write. Every night without progress decreased my motivation even more. I had
never done such a project before and I did not know where to start or how to do it.

My supervisor encouraged me to stop writing and begin to create a working proof of concept.
Throughout the development of the proof of concept, I started to understand the problem
more and more. The better I understood the problem, the more I could scope and mold the
research. When I had a working proof of concept, I understood the problem and had all the
information to start writing. But even with an better understanding of the problem, I had
a lot of trouble putting my ideas to paper. I wanted to share a lot of very detailed solutions of
problems I encountered throughout the development of the proof of concept. My supervisor
made me realize I needed to do a step back and write in terms of concepts instead. Step
by step, the paper started to take form. Although the frustrating nights did not disappear
entirely, I could handle my frustrations more with the progress I had made.

After the choice to use the UIAutomation Framework, part of the .NET Framework, I chose
to develop the proof of concept in C#. I had no experience with C# prior to this research.
In the beginning I had a hard time configuring the environment correctly. Many frustrating
hours were spend on downloading and handling NuGet packages and assembly references.
But through solving the problems I encountered, my understanding of Windows and .Net
has greatly increased. So all in all I am very glad that I chose to use a language I hadn’t use

40

before and it made me in general a better programmer.

This research started a few weeks prior to the start of the Covid-19 pandemic, which im-
pacted our lives massively. Working from home, curfew and a lack of social gatherings had an
impact on my mental health. The combination of the Covid-19 situation and the frustration
I experienced working on the research, resulted in a complete lack of motivation and put
progress to a full stop for a couple of months.

All in all, this process required me to make a huge step in writing, which I believe I made. And
next to that, it helped me handle my frustrations more and grow as a person. The writing
process was a hellish experience in which I had multiple moments where I wanted to quit. I
experienced my entire educational career from elementary school up to this point as torture
and I would have never thought that I would come this far, thus it makes me so proud that
I persevered and finished it.

41

	Introduction
	Background
	Version Control Systems
	Repository
	Branching and Merging
	Diff chunks

	Automating user interface interaction

	Related work
	Automatically replaying a git repository
	Simulation procedure
	Repository interaction
	Interaction with user interface
	Communication between host and VM
	Dealing with the IDE
	Handling branching and merging

	Validation
	Conclusions and future work
	Conclusions
	Future Work
	Research
	Engineering

	Bibliography
	Simulation procedure
	Communication protocol
	Implementation difficulties
	AutomationID
	Onedrive
	Limitation of used hardware

	Reflection on process

