
A Measured Evaluation of
Artificial Filesystem Aging Tools

by

Zowie van Dillen

Student number: 851876552
Course code: IB9906
Defense date 1 September 2021
Thesis committee: prof. dr. Tanja Vos, Open University

dr. ir. Hugo Jonker (supervisor), Open University
ir. Vincent van der Meer (supervisor), Zuyd Hogeschool

Abstract
Filesystems accumulate file fragmentation over the course of years of active use. This
phenomenon is known as “filesystem aging”. For validating the performance of algo-
rithms related to filesystem aging, it is a huge benefit to have a tool that can help gener-
ate filesystem aging in a comparatively short period of time, such as a single day. These
tools exist, and are known as “artificial aging tools”.
In this thesis we compare the performance of several artificial aging tools: Geriatrix,
Impressions and Compilebench. The comparison is based upon howmuch they fragment
the filesystem, as well as upon how realistic the filesystems they generate are.
We conclude that, by ourmetrics, Impressions generates filesystem agingmost efficiently.
We also conclude that all of the aging tools produce allocation patterns that are dissimilar
to the allocation patterns of computers that were aged the normal way.

1

Contents
1 Introduction . 4
2 Background . 5

2.1 Storage and filesystems . 5
2.2 Fragmentation . 5
2.3 Filesystem Aging . 6
2.4 Artificial Aging Tools . 7

3 Related work . 8
3.1 Measuring File System Aging and Realism 8
3.2 Artificially Aging File Systems . 9

4 Methodology . 11
4.1 Metrics . 11

4.1.1 Amount of fragmentation . 11
4.1.2 Realism . 14

4.2 Aging Tool Experiments . 16
4.2.1 Preparing Partitions . 17
4.2.2 Operating System. 17
4.2.3 Aging Tool Parameters. 18
4.2.4 Data Collection . 20
4.2.5 Deriving Statistics . 20

4.3 Comparison over time . 21
4.3.1 Acquiring the Necessary Data 21

5 Analysis of authentically aged filesystems . 23
5.1 Data culling . 23
5.2 NTFS partition size . 24
5.3 Total storage size . 25
5.4 Fullness . 26

2

5.5 Aggregate layout score. 28
5.6 Out-of-Orderness . 30
5.7 Fragmentation gap size . 31

6 Experiment Results. 32
6.1 Realistic value ranges . 32
6.2 Aging tool results . 34
6.3 Performance over Time . 36

6.3.1 Filesystem fullness . 36
6.3.2 Aggregate Layout Score . 37
6.3.3 Grep Tests . 38

7 Conclusions . 41
7.1 Artificial filesystem aging tools. 41
7.2 Data segregation proposal. 42

8 Future Work . 43
8.1 Improvement of the comparison . 43
8.2 Validating and analyzing unusual observations 43

A Additional realistic value range tables . 44
B Reflection . 46
References . 47

3

1. IntRoduction
When a filesystem is actively being used, it accrues file fragmentation over time. This is
known as aging. All filesystem formats currently in use (outside of experimental envi-
ronments) are prone to aging, although some filesystem formats age more quickly than
others.
For research into filesystem aging and for developing algorithms to help combat it, it is
useful to be able to measure the effects of an algorithm. Researchers might for exam-
ple wish to validate that a new strategy to prevent fragmentation does indeed lead to
less fragmentation. However, getting the data that is necessary for those measurements
is not easy. Under normal circumstances a filesystem ages over the course of years of
use. If a researcher wants to measure the impact of a new algorithm, then the authentic
way to get an aged filesystem requires using the experimental filesystem algorithms for
several years. Clearly, this authentic way of aging filesystems is too slow for practical
applications. To get results acceptably quickly, the filesystem has to be aged artificially.
A number of tools have been made for aging filesystems artificially. These tools have
different goals and different strengths and weaknesses. Many aging tools only try to
achieve a high degree of file fragmentation, whereas other aging tools also try to also get
a realistic amount of the lesser known types of fragmentation.
In this thesis, we provide a comparison of a selection of artificial aging tools. Our con-
tributions are:

• We provide a comparison of the performance of Impressions [AAA09], Geriatrix [KNG18]
and Compilebench [Mas07], of which two out of three are the most often-cited ar-
tificial aging tools that work on modern computers. We both compare them based
upon how much fragmentation the various tools yield, as well as how realistic the
filesystems they generate are.

• We provide insights into all of the metrics used in this project and how they appear
on real computers.

• For a number of metrics, we establish what ranges of values are realistic on NTFS
computers that were aged the normal way.

• We introduce a new metric, the normalized average gap size, which helps to gain
some additional insight into the distribution of files across a storage volume.

• Based upon our observations, we propose amanner of segregating data for fragmentation-
related research.

4

2. BacKgRound
2.1. StoRage and filesystems
For long-term storage, operating systems store files on storage devices such as hard drive
disks (HDD) or solid state drives (SSD). To determine how and where the files should be
placed within the storage device, an organizational scheme is needed to structurize the
available space. These schemes are known as filesystem formats.
Generally, each operating system has its own filesystem formats and most operating sys-
tems do not offer good support for the filesystem formats of other operating systems,
although some filesystem formats are almost universally supported, such as FAT. In the
last decades, Windows has had NTFS as its main filesystem format.
A single storage device can also hold multiple filesystems. The storage device is then split
into partitions, which each hold an individual filesystem. On modern computers, a stor-
age device is always organized into at least one partition. Partitions are sometimes also
referred to as “storage volumes”. The term “storage volume” is somewhat more abstract
than the term “partition”, but they usually refer to the same thing.
Filesystems divide a partition into many small sections known as blocks. Blocks are the
smallest unit of allocation of a filesystem, so the data of a file in the filesystem is always
spread across a whole number of blocks. At the time of writing, blocks are almost always
4 KiB large. Note that one kibibyte (KiB) is 1024 bytes (210), as opposed to a kilobyte (KB),
which is 1000 bytes.

2.2. FRagmentation
When a new file is created or an existing file is extended, the filesystem needs to allocate
blocks to the file. Whenever possible, a file is allocated as a single contiguous sequence of
blocks. Any contiguous sequence of blocks is usually called an extent, so in other words,
the filesystem tries to allocate a file as a single extent. When there is not enough space
available to allocate a file as a single extent, the file is broken into fragments. The file is
then said to be fragmented.
Hard drive disks can rapidly read subsequent blocks, but may need to do a mechanical
movement known as a disk seek to read a non-subsequent block. This makes random
reads very slow compared to subsequent reads, and hence it is preferred to minimize the
amount of random reads. Whenever a file is broken into multiple fragments this leads
to an increased amount of random reads and therefore makes it take longer to read the
entire file. Because of this, it is beneficial to avoid fragmentation as much as possible on

5

a HDD.
SSDs are also affected by fragmentation, although not as much as HDDs. Larger reads
and writes generally allow for more efficient usage of the bus that connects the SSD to the
RAM. Fragmentation breaks one large file into multiple smaller fragments, which means
that what could be one large read or write is now multiple smaller ones. This effect is not
nearly as significant as the effects of fragmentation on a HDD, but it exists nonetheless.
It must be mentioned that fragmentation is a word more broad than what we have de-
scribed thus far, and is commonly used to refer to many phenomena that slow down disk
accesses or waste disk space. Fragmentation is usually categorized into internal frag-
mentation, external fragmentation and data fragmentation [Ran69]. However, we do not
believe internal fragmentation and external fragmentation to be relevant for comparing
artificial filesystem aging tools, and data fragmentation is simply fragmentation as it has
been described in the previous paragraphs. Hence, we will not use this categorization.
Conway et al. categorized fragmentation differently, into categories we deemed more
relevant for this project [CBJ+17, CKJ+19]:

• Intra-file fragmentation is what is most commonly thought of when speaking of
fragmentation. This refers to fragmentation within a file, which means that the
subsequent blocks of a file are not placed adjacent in physical memory.

• Inter-file fragmentation refers to fragmentation between different files that are strongly
related to each other, but which are located apart in physical memory. Although
it does impact performance, inter-file fragmentation is only rarely considered in
research.

• Free space fragmentation refers to fragmentation between free sections on a disk. A
file systemwith minimal free space fragmentation will have a single large extent of
free space, whereas a file system with a large amount of free space fragmentation
will have its free space scattered across the disk, broken into tiny sections. In most
situations free-space fragmentation only affects write performance and not read
performance, however Kadekodi et al. found that free-space fragmentation also
has a strong impact on the aging of some types of SSD [KNG18].

2.3. Filesystem Aging
Over time, as a filesystem keeps being written to, it will almost inevitably accrue frag-
mentation. This gradual process of accruing fragmentation is known as filesystem aging.

6

The rate at which filesystems age depends on the filesystem format and the operating
system. Generally speaking, filesystem aging is not as much of a concern as it used to
be. Although old filesystem formats such as FAT did not take any measures to prevent
fragmentation, all modern filesystem formats use some strategy to minimize filesystem
aging. Nevertheless it must be said that filesystem aging is not a solved problem. Filesys-
tems do still age, albeit much more slowly than they once did. Some operating systems,
such as Windows, automatically defragment the drive when it is found to be fragmented
enough to warrant it.

2.4. ARtificial Aging Tools
Under normal circumstances, it may take years before a storage volume is significantly
aged. However, when someone is researching filesystem aging, having to use a volume
for several years before getting any data on the performance of an algorithm makes for
rather slow feedback. Artificial filesystem aging tools are computer programs used to
automatically age a storage volume. Using one of these programs, one can generally age
a filesystem over the course of a day rather than over the course of years.

7

3. Related woRK
3.1. MeasuRing File System Aging and Realism
Layout score The most common technique for measuring the degree of fragmentation
is the layout score. The layout score quantifies the amount of fragmentation within a
single file and was introduced by Smith and Seltzer to help validate their file system aging
tool [SS97]. It is the fraction of blocks in a file that are placed contiguously in memory.
When a file has a layout score of 1, there is no fragmentation whatsoever and all of
its blocks are located contiguously. A file with a layout score of 0 has no contiguously
allocated blocks whatsoever. The same concept can be applied to entire file systems,
which is called the aggregate layout score. Aggregate layout scores measure the amount
of fragmentation in a file system, but they do not directly give any indication of how
realistic the aging patterns of a file system are.
Grep test Conway et al. used what they called a “grep test” to measure the performance
impact of file system layouts [CBJ+17, CKJ+19]. In a grep test, it is measured how long it
takes to complete a recursive grep in the root directory of the file system. This operation
searches through all the files in the file system for a random string. The time taken is
then divided by the amount of storage space the file system is using to normalize it, so
that the results between different file systems are more comparable.
Grep tests measure a combination of intra-file and inter-file fragmentation. They are
also heavily affected by the time it takes to traverse file-system-related datastructures.
When Kadekodi et al. [KNG18] investigated why a grep test was running over seven
times slower on an aged file system, they found that the grep algorithm was spending
most of its time on looking up file system datastructures, and not on actually accessing
the file contents.
Degree of out-of-orderedness In an investigation intoNTFS, Van derMeer et al. [vdMJvdB21]
introduced several metrics for the convolutedness of file systems. They had made the ob-
servation that later fragments of a fragmented file are often placed before the earlier
fragments. They called this out-of-order fragmentation. In their investigation, almost
half the fragmented files were placed out-of-order. To measure this phenomenon, they
introduced the degree of out-of-orderness. The degree of out-of-orderness is a percentage
that indicates how many of the fragments of a file are placed out-of-order.

8

3.2. ARtificially Aging File Systems
Smith and Seltzer’s tool The article of Smith and Seltzer [SS97] lays much of the
foundation of the field of artificial aging algorithms. In it, they introduce their tool for
artificially aging file systems, which uses file system snapshots to try to recreate the
aging of an authentically aged file system. A number of snapshots of an authentically
aged file systemhave to be gathered beforehand. Smith and Seltzer’s tool will replay these
snapshots in order, creating and deleting files to recreate the state of the next snapshot.
Each file created and deleted contributes towards aging the file system, so eventually, this
process will cause significant aging. Although it does successfully age the file system, it
was found that these replays lead to a much less fragmented file system than the original
file systems they were based upon.
Compilebench To assess how well Btrfs resists aging , a research team at Oracle de-
veloped Compilebench [Mas07]. Compilebench is a file system aging benchmark that
ages the file system by repeatedly running git operations on the source code of the Linux
kernel and compiling it.
Impressions Agrawal et al. [AAA09] developed a framework for generating file system
images that are statistically accurate, which they called the Impressions framework. This
framework is not just for aging file systems but for generating them from scratch. It lays
an emphasis on generating the file system in a small amount of time and can generate a
twelve gigabyte image in half an hour. To attain this level of performance it relies on sta-
tistical models to generate the file system. For example, when generating files, it decides
the size of a file by sampling a probability distribution. The Impressions framework can
be configured to generate fragmented file systems by setting the desired degree of frag-
mentation. To fragment the file system, it will create and delete temporary files during
the normal file system generation process until the requested degree of fragmentation
is met. However, this method will always lead to the same degree of fragmentation, so
it cannot be used to compare the effectiveness of the anti-fragmentation strategies that
different file systems use. Specifically for those situations Impressions contains a second
method for aging the file system. In this second method, it will run a specified work-
load and afterwards report the degree of fragmentation that the file system has in the
end. If the same workload is executed on different types of file system, then the resulting
fragmentation statistics will be comparable.
Geriatrix Kadekodi et al. [KNG18] developed Geriatrix, a framework specifically de-
signed for aging file systems and capable of generating the forms of fragmentation that
solid state drives (SSD) greatly suffer from. Traditionally, fragmentation tools focus on
the slowdown that results from files being scattered across the disk. Hard disk drives take

9

a lot longer to load data when sequential blocks of logical memory are not placed next to
each other on physical memory because the mechanical arm needs to be repositioned to
start reading from the new location in physical memory. SSDs do not suffer significant
slowdowns from this form of fragmentation. However, SSDs have fragmentation issues
of their own, which derive from the hardware implementation.
An SSD is meant to fulfill the same role as an HDD although it makes use of very different
hardware, so SSDs contain a layer in the device firmware called the flash translation layer
(FTL). This layer helps translate between HDD-centered external interactions and the
flash memory based hardware implementation. The FTL performs tasks such as address
remapping, garbage collection and wear leveling. To do this, it keeps its own internal
datastructures, which are complex and structurally similar to a file system. Just like a
file system these datastructures can become fragmented and cause slowdowns. The FTL
can age very quickly when both disk space utilization and free space fragmentation are
high. Geriatrix continuously ensures both of these conditions, thereby creating exactly
the circumstances that greatly speed up FTL aging.
Unlike Impressions, Geriatrix not only generates intra-file fragmentation but also free
space fragmentation accurately. In an evaluation it was found that Geriatrix can accu-
rately recreate the impact of nine years of fragmentation in only seven hours.
TraceGen Du et al. [DHSS21] developed TraceGen, a framework that generates real-
istic file system images that are intended for tests and training in the field of computer
forensics. TraceGen works with what are called “stories” in the field of forensics. These
are essentially step-by-step plans that build up realistic file systems. The resulting file
systems are intended to contain a few clues for forensics to find, but TraceGen is also
written to add a lot of realistic clutter to the file system, as to not make it too easy to find
the clues. Although it is not the primary goal of TraceGen to generate file system frag-
mentation, its usage of the computer will inevitably result in fragmentation nonetheless.
TraceGen works by playing the instructions in the story back on a virtual machine, so
its results are expected to be more realistic than other artificial aging tools, although it is
also expected to be slower than the others.
TraceGen is not publicly available at the time of writing, but there are plans to distribute
a future version of the framework under an open source license.

10

4. Methodology
4.1. MetRics
In this study, we compare the filesystems generated by different aging tools to see which
performs better. Performance is not a single-dimensional quality in this context. Perhaps
one aging tool generates the most intra-file fragmentation, but that does not necessarily
mean that it also generates the most realistic filesystems. To show the quality of an
artificially aged filesystem, we will provide an overview of a variety of different metrics
rather than attempting to capture the full complexity of fragmentation quality in a single
metric.
Metrics used in this study fall into two categories. Firstly this study contains metrics for
measuring the amount of fragmentation. These are useful for when it is desired to simply
generate a lot of fragmentation reasonably quickly. Secondly this study also contains
metrics that give somewhat of an indication of how realistic the fragmentation statistics
generated by an aging tool were. Realism data is based upon a comparison between the
artificially generated filesystems and data from the WildFrag database [vdMJD+19], a
non-public database containing file metadata from over 200 personal laptops, almost all
belonging to students in higher education.

4.1.1. Amount of fRagmentation

Percentage of fragmented files

The percentage of fragmented files is a simple yet still useful metric for indicating how
well an aging tool has aged a filesystem. Although it may not be immediately apparent,
there is room for discussion in the definition of this metric. As a percentage, the equa-
tion for this metric is essentially a fraction with the amount of fragmented files as its
numerator. The denominator of this fraction is, however, open to discussion. There are
four apparent options for the denominator [vdMJvdB21]:

1. The denominator is the total number of entries in the filesystem tables.

2. The denominator is the number of data files in the filesystem.

3. The denominator is the number of files with blocks assigned.

4. The denominator is the number of files with at least two blocks assigned.

The second option is the most obvious option, but perhaps not the most practical option.
Resident files and files with only one block cannot be fragmented but would still con-

11

tribute towards lowering the percentage when this option is used. The same is true for
the first and the third option: Both count files and filesystem entries that cannot possibly
be fragmented. The fourth definition is deemed most relevant for measuring fragmenta-
tion, since it only counts files that can be fragmented. In this thesis, we use both the first
and the fourth option.
Aggregate layout score

The aggregate layout score [SS97] is the most important metric for determining how
much an aging tool has aged a filesystem. The aggregate layout score measures the
amount of intra-file fragmentation across the entire filesystem. Before we provide a def-
inition for aggregate layout score, we will first provide a definition for ordinary layout
scores. These only measure the amount of fragmentation in a single file.

Definition 4.1 (Layout score [SS97]). The layout score is the amount of locations where a
file is fragmented (calculated as extents−1) divided by the amount of locations where a file
could be fragmented (calculated as blocks−1). This is then inversed so that unfragmented
files have a layout score of 1.0 and completely fragmented files have a layout score of 0.0.

layout score= 1− extents−1
blocks−1

This equation only applies for files with more than one block. For files with only one block
or no blocks at all, the layout score is defined to be 1.

The aggregate layout score is similar to the layout score, but uses summations of the
entire filesystem. Please note that this is not simply an average of all the layout scores
of the filesystem.

Definition 4.2 (Aggregate layout score [SS97]). The aggregate layout score is the amount of
locations in a filesystemwhere a file is fragmented divided by the total amount of locations in
the filesystemwhere a file could be fragmented. This is then inversed so that filesystemswith
no fragmentation whatsoever have a layout score of 1.0 and filesystems that are completely
fragmented have a layout score of 0.0.

aggregate layout score= 1− ∑𝑘
𝑖=1(extents𝑖−1)

∑𝑘
𝑖=1(blocks𝑖−1)

where 𝑘 denotes the total number of files with more than one block, “ blocks𝑖” denotes the
amount of blocks of the 𝑖-th file with more than one block, and “ extents𝑖” similarly denotes
the amount of extents of file 𝑖.

12

This equation only applies if a filesystem contains at least one file with more than one block
allocated to it. Otherwise, the aggregate layout score is defined to be 1.

As an example: an aggregate layout score of 0.7 means that in 30% of the locations in a
filesystem where it is possible for there to be a fragmentation gap, there are in fact gaps,
and in 70% of those locations there are no gaps.
Grep test

A Grep test captures a combination of the intra-file fragmentation, inter-file fragmenta-
tion and the complexity of the file system [CBJ+17]. In a Grep test, a recursive Grep is
performed from the root of the filesystem. This operation will go through all folders and
files in the filesystem, looking for all appearances of a given text pattern. The duration
of a Grep is a means of representing the impact of the aging of a filesystem in a com-
paratively realistic usage situation, as opposed to comparatively theoretical metrics like
layout scores. The fact that it simultaneously measures all the various factors that affect
real-world usagemakes it a useful metric for comparing how the various aged filesystems
would differ in practice.
Grep tests are also a practical way of measuring inter-file fragmentation. Inter-file frag-
mentation is fragmentation between files that are strongly related to each other. There
are a variety of ways that files can be strongly related to each other. For example, a pro-
gram might always load two files directly after each other. If the placement of these files
is optimized so that they can efficiently be read in sequence, the amount of necessary
disk seeks can be minimized, leading to better read performance. We are not aware of
any metrics specifically for measuring inter-file fragmentation, but using Grep tests, we
can get a glimpse of the impact of inter-file fragmentation as well as the impact of file
system complexity, even if we do not have any metrics for measuring these factors in
isolation.

Definition 4.3 (Grep test [CBJ+17]). A Grep test is performed by running the command
grep -r "$searchtext" at the root of a filesystem and measuring the time it takes for
the operation to finish.

A defragmented copy of the filesystem is made and Grep is run at the root of the defrag-
mented filesystem with the same invocation as before. Once more, the time it takes for Grep
to finish is measured and the results between the two invocations of Grep can then be com-
pared to derive what impact fragmentation had on the performance of the filesystem.

In these experiments we performed Grep tests using random strings of eight alphanu-
meric characters as the argument for Grep.

13

4.1.2. Realism

The following metrics are used to measure the realism of the generated fragmentation.
These metrics mostly pertain to the way that fragmented files are placed in memory.
However, the fragmentation-pattern-related metrics discussed in this section don not di-
rectly measure realism. To determine whether or not the values for the various metrics
are realistic or not, we will determine the realistic value ranges from WildFrag and com-
pare the results against these realistic value ranges. If the results of any particular metric
lay entirely outside of the realistic value range, it is deemed unrealistic.
Out-of-orderness

Out-of-orderness is ametric that indicates howoften fragmentation is out-of-order, which
means: How often the fragment after a fragmentation gap appears earlier in physical ad-
dress space than the fragment before the fragmentation gap. This metric is used to see
if the fragmentation generated by artificial aging tools is differently laid out across the
storage volume than fragmentation gotten by normal computer usage.

Definition 4.4 (Out of Orderness [vdMJvdB21]). The out-of-orderness of a filesystem is
the ratio of the number of times the next fragment occurs prior to the current vs. the total
number of fragmentation gaps:

out of orderness= backwards gaps
total gaps

Normalized average gap size

The term “gap size” refers to the distance between two subsequent fragments of a frag-
mented file. Similarly to out-of-orderness, we use this metric to see if we can find differ-
ences between the placement of artificial fragmentation and normal fragmentation.
It is obvious how this should be measured in the case of in-order fragmentation. For out-
of-order fragmentation there is some room for discussion. Van derMeer et al. [vdMJvdB21]
describe three ways to measure the gap size for gaps between out-of-order fragments:

1. Tail-head distance: The distance between the last block of the first fragment and
the first block of the second fragment. In case of out-of-order fragmentation, this
means the length of both fragments counts towards the gap size.

2. Carving distance: How far a file carver would have to search for the second frag-
ment when it is has already found the first fragment. In case of out-of-order frag-
mentation, this is the distance from the beginning of the first fragment to the end

14

of the first fragment and only counts the length of the second fragment towards
the gap size.

3. Shortest distance: The shortest distance between two fragments. In case of out-of-
order fragmentation this is the distance from the beginning of the first fragment
to the end of the second fragment.

In the context of fragmentation research, the first definition is the most practical. When
a process reading a file runs into a fragmentation gap, it essentially jumps from the last
block of the first fragment to the first block of the second fragment. The distance of this
jump measured by the first definition.

Definition 4.5 (Gap size). The gap size is the distance between the anterior and the posterior
fragment. The distance is measured from the highest block address of the anterior fragment
to the lowest block address of the posterior fragment.

The following function calculates the gap size of the gap between fragment 𝑖 and fragment
𝑖 +1 of file f:

gapsize(𝑓, 𝑖) = |head(frag𝑓(𝑖 +1)))− tail(frag𝑓(𝑖)))−1| for 𝑖 < numfragments(𝑓)

Where f denotes the file, 𝑖 is a number referring a fragment within file f, fragf(𝑖) gives the
𝑖-th fragment of file f, head(𝑥) and tail(𝑥) respectively give the block address of the first and
last block of a fragment, and numfragments(𝑥) gives the amount of fragments in file 𝑥.

Note the absolute marks in the definition of gap size: Gap size does not differentiate
between in-order and out-of-order fragmentation.
To use this metric in the comparison, the average gap size of a whole filesystem is taken
and subsequently normalized so that it can be compared against filesystems of a different
size.

Definition 4.6 (Normalized average gap size). The normalized average gap size of a filesys-
tem fs is calculated by dividing the sum of all gap sizes of all files f by the total amount of
gaps across the entire filesytem, and then normalizing the result by dividing it by the size of
the filesystem:

norm_avg_gap_size(fs) = 1
size(fs) ⋅

∑numfiles(fs)
f=1 ∑numfragments(f)−1

𝑖=1 gapsizefs(f, 𝑖)

∑numfiles(fs)
𝑘=1 (numfragments(𝑘)−1)

15

with gapsize(f, 𝑖) and numfragments(𝑥) defined as before, and where fs denotes the filesys-
tem, numfiles(fs) denotes the amount of files in filesystem fs, numfragments(𝑥) denotes the
amount of fragments in file 𝑥 of filesystem fs and size(fs) denotes the size of filesystem fs in
blocks.

When a filesystem has no gaps and therefore the denominator would be zero, the normalized
average gap size is defined to be zero. A filesystem is assumed to have storage space, so size𝑓
is not allowed to be zero.

Notably, each storage volume in WildFrag is treated as an independent filesystem in this
experiment.

4.2. Aging Tool ExpeRiments
A comparison of aging tools requires data. To get this data, we have conducted a series
of experiments where each artificial aging tool is used to generate an aged filesystem.
The various aging tools were subsequently compared based upon statistics derived from
these experiments.
The following procedure has been applied for each individual experiment:

1. A filesystem is prepared by formatting a disk partition with NTFS.

2. The filesystem is aged with one of the aging tools.

3. Information about the aged filesystem and all of its files are gathered in a SQLite
database with PriFiwalk [vdMJD+19]

4. The database collected with PriFiwalk is used to derive values for the various met-
rics.

5. The results are compared to the authentic filesystem data from theWildFrag database
to determine whether they are realistic or not.

In this section we will discuss the steps one to four as well as a number of topics that
arise upon taking a closer look.
For step 1, we discuss filesystem formats in section 4.2.1, as well as discuss the size of
partitions and similar matters. We discuss the execution environment of the experiments
in section 4.2.2. Step 2 is discussed in section 4.2.3, and step 4 and 5 are discussed in
section 4.2.4 and 4.2.5 respectively.

16

4.2.1. PRepaRing PaRtitions

Before an experiment can be carried out, a filesystem must be prepared to conduct the
experiment on.
All experiments were run on a freshly formatted disk. Experiments were run on the
same 4 TB external hard drive disk, which was split into 45 partitions of exactly 64 GiB
and formatted with NTFS. Note that these partitions were formatted on Windows, in
case it makes any difference with the Linux NTFS formatter. By recommendation of a
supervisor, a full reformat was performed, which involves overwriting the old data with
zeroes, so that no remainders of data could possibly interfere with the results.
The size of 64 GiB was chosen because it is reasonably large, but not too large, because
aging tools take substantially longer to age a filesystem the larger the filesystem is. The
specific size of 64 GiB was chosen because it is, by programming standards, a nice round
number.
All of the disks used in the experiments were formatted with the NTFS filesystem format,
which has been the default format for Windows operating systems for several decades. It
is worth mentioning that Windows Server operating systems have been moving to using
ReFS as their default since 2012, however ReFS is still not included in Home editions
of Windows. Although some of the aging tools run on Unix platforms, the fact that all
of the partitions use the same filesystem format helps to make them more comparable
with each other. Furthermore, the specific choice of the NTFS format helps to make it
comparable with the data available from WildFrag, which also consists almost entirely
of NTFS volumes.

4.2.2. OpeRating System

The programs being tested were developed for Unix operating systems and cannot be
natively run on Windows. Because the data from WildFrag consists almost entirely of
filesystems in the NTFS format, a decision had to be made on how the programs should
be run.
NTFS is a filesystem format that is native to Windows. Linux, however, also provides
a custom implementation of an NTFS driver for the sake of increasing its ability to in-
teract with Windows. Although the Linux NTFS implementation is fully featured, it is
nonetheless not exactly the same as theWindowsNTFS driver. We expect that the drivers
use slightly different strategies for allocating files and combatting fragmentation, which
might taint the results of the experiments. If the Linux NTFS drivers were to be used to
generate filesystem images from the Unix programs then the results might not be prop-
erly comparable to the authentic filesystem data taken from WildFrag or the filesystem

17

images generated by the Windows NTFS drivers.
Another option is to run all experiments onWindows and use theWindows NTFS drivers
for everything. This ensures consistency among the various filesystem images and thereby
allows for better comparisons. The trouble is, of course, that Unix programs normally
cannot be run on Windows. Fortunately, this becomes possible with the Windows Sub-
system for Linux (WSL). WSL is an optional Windows component that provides a Linux
shell and allows for command-line interface based Linux programs to be run. The first
version of WSL was only a compatibility interface, but the second version contains a
full-fledged Linux kernel, which allows for virtually all Linux programs to be run with-
out subtle compatibility problems. The Windows file tree is accessible from the WSL
environment by default. This is implemented with a compatibility interface that inter-
acts with the normal Windows NTFS drivers.

4.2.3. Aging Tool PaRameteRs

In principle, it is ideal if all aging tools are configured to do exactly the same amount of
work or a very similar amount of work. This helps make the results more comparable.
In practice, this is very difficult to achieve, because the various aging tools all behave
differently. One benchmark compiles a code repository while the others fill a disk with
generated files. Naturally, they also use different types of parameters to determine how
much work they should do.
Figure 1 shows the tweakable parameters of each program. All of the programs havemore
parameters than shown in the table, but the parameters left out of the table are generally
filesystem paths and other settings where there is a not a lot of potential for debate over
what value should be filled in. Some of the programs take chance distributions as a
parameter, but these will be kept to their default values. The parameters in the table are
adjusted between different experiments, and with only these parameters the programs
have been configured so that all of the tools are doing a similar amount of work.
Compilebench is relatively straight-forward and take the number of operations it should
carry out as a parameter. The other aging tools have parameters that are more difficult
to compare. Impressions is somewhat unusual in this project because it takes the final
layout score as a configuration setting, whereas the layout score is a dependent variable
for the other aging tools.
Notably, in the article that introduces Impressions [AAA09], a second mode for frag-
menting the file system is briefly mentioned, which does not take the layout score as a
parameter but instead runs a certain workload and reports the layout scores in the end.
We have not been able to find any further mentions of this mode in the program’s docu-

18

mentation nor in its source code. We have reached out to the authors for clarification on
how to use this mode, but have not received a response.
A similar amount of work can be defined in multiple ways. It could be similar in the
amount of data written, the amount of processor operations or the amount of time taken.
In this context we will be using the last definition. Our goal is to let all of the programs
run for a similar duration. Since the aging tools are generally single core programs that
use as much processing power as they can get for most of their runtime, two aging tools
that are allowed to run approximately equally long will have used the processor approx-
imately equally much. Moreover, durations are a very common and relatable type of
measurement.
In the first stages of research, we have used the example settings from the documentation
of the various aging tools. We measured the amount of time it took for each tool to
generate a file system with these settings and used this to estimate approximately how

Aging Tool Parameter Description

Impressions
Layoutscore Target layout score.

Suggested: 1.0

FSused Size of the filesystem that will be generated
Suggested: 20 MB (for volume of 100 MB)

Randseeds Random seed

Geriatrix
-i

Number of runs over the file system size (e.g. a
value of 100 on a disk of 64 GB would mean 6.4
TB is written)
Suggested: 1000

-u Disk fullness as a number between 0 and 1
Suggested: 0.8

-r Random seed
Suggested: 42

Compilebench -r The number of iterations
Suggested: 30 or 150

-i
The amount of directories that the benchmark
will start with.
Suggested: 10 or 30

Table 1: An overview of the tweakable parameters that the various aging tools provide. Random seeds
have also been included as an indication of which programs are known to be deterministic. Suggested
values have been included for all parameters except Randseeds from Impressions (which was too long).

19

long the tool will run per unit (per iteration, per GB written or per layout score point).
We then estimated which values we should give to the parameters so that the aging tools
would all run approximately equally as long as the others.
When estimating how long it will take a tool to run per unit by using the time that it
takes to generate one filesystem, we implicitly make the assumption that there is a linear
relation between the duration of a run of a tool and the amount of work it was asked to
do. This assumption is not quite true, since the tools are, after all, intended to age the
filesystem. A tool will be able to finish one operation more quickly on a fresh filesystem
than on an aged one, so the cost per operation will slowly increase as the run goes on.
Because of this, it may take several estimates before we narrow in on an invocation that
causes a tool to run for the desired duration. When any experiment deviates from our
expectations, we refine the parameters and rerun the experiment. Using this method, the
aging tools will eventually all carry out a similar amount of work.

4.2.4. Data Collection

After an aging tool has completed its run, PriFiwalk [vdMJD+19] is used to create a
database which contains information about the filesystem and all of its files. Notably
these databases contain no information about the actual contents of the files.

4.2.5. DeRiving Statistics

To derive statistics from the database generated by PriFiwalk, we have developed a Python
program that takes a PriFiwalk database as its input and generates two CSV files with
metrics of each filesystem1. The CSV files contain the values of metrics such as the ag-
gregate layout score for each filesystem, as well as simple counts such as the amount of
files, the amount of sparse files and the amount of files without blocks. These CSV files
were subsequently imported into LibreOffice Calc, where all further data analysis was
done.
Moreover, we analyzed theWildFrag database to learn about the various metrics and find
insights into what is realistic. The findings of this data analysis can be found in section 5.
For determining what is realistic, we ended up creating a table of 5-number summaries
of all the metrics that the aging tools are being compared upon. The statistics from the
filesystems generated by the various aging tools were compared against the realistic value
ranges found in this table, and any value that was entirely outside of the value range (i.e.
below the minimum or above the maximum) was deemed unrealistic.
1The source code can be found at https://github.com/Fruitsalad/prifiwalk-measure-tool

20

4.3. CompaRison oveR time
For large-scale experiments, it is highly beneficial to have a tool that generates fragmen-
tation efficiently, so that more runs can be done within the same amount of time. In
situations where an aging tool is used to validate an algorithm intended to reduce aging,
it is beneficial for the developers to be able to get feedback within a reasonable time-
frame, and as such, it is good to have an aging tool that reaches the expected degree of
aging relatively quickly.
The aim of this project is mainly to compare the capabilities of each of the aging tools,
but since we are already repeatedly measuring these aging tools, this is also a good op-
portunity to show which aging tools are faster and which are slower. In this section, we
will discuss our methodology for creating a series of graphs that visually compare how
well each of the aging tools performs after a certain amount of time has passed.

4.3.1. AcquiRing the NecessaRy Data

To be able to create a graph that shows how well an aging tool performs over time
There are several ways to get the necessary data:

1. It is possible to get the data by configuring all of the aging tools to run for a long
time and running each of them once. The aging tools can be paused in the middle
of their runs to take measurements and the graph for each aging tool can be based
upon different measurements made during the same run.

2. It is possible to get the data by running each of the aging tools multiple times. In
this approach, the aging tools fully complete their execution and measurements
are only taken afterwards. The graph for each aging tool can be based upon mea-
surements taken after different runs of the same aging tool, with each run taking
a different amount of time.

Both methods have their advantages and disadvantages.
An important advantage of the first approach is that it makes it possible to get manymea-
surements in a short time span. There only needs to be one run of each tool, and within
that run, the aging tool can be paused to take measurements at a very high frequency if it
is found to be desirable. The second approach does not allow for this. Measurements can
only be taken after a run has been completed, so it will take 𝑛 runs to take 𝑛 measure-
ments. This means that it may take five times as long to take five measurements using
the second approach as it would take to take fifty measurements using the first approach.
Clearly, the first approach is preferable for generating a lot of data.

21

However, the first approach also has an important disadvantage: It is difficult to im-
plement. While the second approach requires no special technology, the first approach
requires a pausing mechanism. BothWindows and Linux provide a mechanism for paus-
ing a running process: Linux provides the signal SIGSTOP and theWindows API provides
the undocumented function _NtSuspendProcess. Unfortunately, a simple application
of these mechanisms is not suitable for this situation. The problem is open file pointers:
Pausing a program does not cause it to relinquish its open files. Because all of the aging
tools are constantly writing to files, it is very likely that they will still have a file pointer
open if they are paused at an arbitrary point in time. The issue with open files is that
the disk must be unmounted from Windows to be able to run the program that takes the
measurements. When files on the volume are still open, it is only possible to forcibly un-
mount a volume, which will close all the open files from that disk and most likely crash
the aging tool that had a file open.
Another option is to implement a pause functionality into each of the aging tools. This
allows for timing the interruption better, as the aging tools can be paused specifically
when they do not have any files open. All of the aging tools would have to be individually
modified to implement this change. Fortunately, that is possible, since the source code
of each of the aging tools is publicly available.
There is another potential issue with the first approach. The assumption is implicitly
made that each of the aging tools is continuously aging the filesystem. This is not nec-
essarily true. Measurements taken in the middle of a run of an aging tool do not have
to be representative of the final results that this aging tool would ever provide. This is
because an aging tool might use a strategy that divides the process into various stages
where a representative result is only obtained after the final stage has finished. Fortu-
nately, although all of the aging tools included in this project do work in various stages,
this only appears in the form of short preparatory stages before the actual aging process
starts. Once the aging itself starts, all of the aging tools work continuously, so we do not
believe this concern applies for the specific tools that have been included in this project.
Altogether, we consider the first option to be the better option, mainly because it is very
difficult to configure the aging tools to run for a similar amount of time. This is sig-
nificantly worsened by the fact that the only way to see if the aging tools are properly
configured to run for a similar amount of time is to let them finish their execution and
see how long it took. Aging a 64 GiB partition takes quite a while, so this is a rather
time-intensive process. Because of this, the choice was made to use the first option.
To collect the data necessary for the graphs, we use the same metrics and techniques as
discussed in section 4.2.5.

22

5. Analysis of authentically aged filesystems
To learn more about how each of the metrics appear in real data, we conducted an inves-
tigation into each of them using theWildFrag database. The realistic value ranges of each
of the metrics was determined, which can be found in the conclusions. In this section we
analyze each metric in more depth and spend some time looking for correlations between
a few of the metrics. Moreover, we define groupings for filesystem sizes and degrees of
fullness and use these to find more correlations in the WildFrag data.

5.1. Data culling
Based upon first inspections of the data in WildFrag, we filtered out large amounts of
filesystems which we believed to be irrelevant for determining the performance of arti-
ficial filesystem aging tools. An overview of the constraints we selected and the amount
of filesystems that were filtered out can be seen in table 2.

Constraint Culled
Filesystem must be NTFS 4
Partition size must be at least 25 GB 362

Table 2: An overview of the requirements for partitions included in this data analysis

The second constraint was mainly put in place to remove boot partitions from the dataset.
It also culls out smaller partitions, which often serve a special purpose, such as storing
photographs or a disk image of a virtual machine. The focus here is to research fragmen-
tation in general purpose partitions, since that is the type of partition which artificial
aging tools will most likely be imitating. Hence culling smaller partitions is desirable.
After culling, 368 volumes remain, of which 198 volumes are on SSDs and 170 on HDDs.

23

5.2. NTFS paRtition size

Figure 1: NTFS partition sizes in WildFrag
Histogram

Figure 2: The amount of
partitions per storage device

Histogram

Partitions of less than 25 GB are by far the most common in
WildFrag. These are almost all special-purpose partitions,
such as boot partitions and Windows recovery partitions.
Above 25 GB, the most common filesystem sizes for student
laptops are slightly below 128 GB, 256 GB, 500 GB and 1000
GB, as can be seen in figure 1. This should be no surprise
for readers familiar with the current storage device mar-
ket as these are the most common sizes currently available
for SSDs and HDDs. Partition sizes were usually somewhat
smaller than the size of the storage device because most de-
vices were divided into more than one partition, as can be
seen in figure 2.
The largest SSD partition in the dataset is 750 GB and the
largest HDD partition is 2 TB. The average size of all SSD

24

partitions (larger than 25 GB) was 225 GB and for HDD partitions 814 GB.
Taking the data from figure 1 into consideration, we divide the partitions into different
groupings based upon their size. We will use these groupings to report on size correla-
tions in the rest of this section, and later in the conclusions we will use them again to
compare artificially aged filesystems against similarly sized filesystems from WildFrag.

Lower bound Upper bound Count Percentage
25 GB 100 GB 26 7%

100 GB 150 GB 55 15%
200 GB 300 GB 118 32%
450 GB 550 GB 35 9%
950 GB 1050 GB 105 29%

remainder 29 8%

Table 3: Partition size groupings.
Lower bound is inclusive, upper bound is exclusive.

Table 3 shows the various partition size categories as well as the amount of partitions
that were not placed in any of the categories. Categories were placed around the peaks
in figure 1 so that a handful of categories, each less than 100 GB large, still contain 92%
of the datapoints. The remaining 8% of partitions were of unusual sizes, often in clusters
of two or three partitions, but never enough to justify a new category.

5.3. Total stoRage size
Twice in this paper we group entire computers by their storage size instead of individual
partitions. These groupings can be seen in table 4 and were derived in a similar manner
as the partition size categories.

Lower bound Upper bound Count Percentage
200 GB 300 GB 40 19%
450 GB 550 GB 32 15%
950 GB 1050 GB 20 9%

1100 GB 1150 GB 38 18%
1200 GB 1300 GB 56 26%

Table 4: Total storage size groupings.
Lower bound is inclusive, upper bound is exclusive.

25

Figure 3: Fullness per partition (in WildFrag)
Histogram

5.4. Fullness
Figure 3 shows how common each degree of fullness is across all partitions in WildFrag
(that were not culled). The strongest pattern that can be seen in this graph is that SSD
partitions tend to bemore full andHDDs tend to be less full. In fact, manyHDDpartitions
are near-empty. This occurs due to two factors:

1. HDD partitions are larger, as seen in figure 1

2. 76% of computers with a HDD also had an SSD

Concerning the first factor, it should be no surprise that disk fullness correlates with
the amount of available storage space. The second factor implies that hard drive disks
were usually used as secondary storage. SSDs are preferred for their faster access speeds,
and hence computer users presumably tend to put as much data as possible on the SSD,
leaving the secondary HDD largely empty.

26

Figure 4: Disk space usage across computers in WildFrag.
Please note that these numbers are per-computer and not per-volume, unlike earlier graphs.

Cumulative histogram with upside-down y-axis

Figure 4 shows how much disk space most computer users actually use. As can roughly
be seen in the graph, the median used disk space is 220 GB. This graph is also a source of
practical consumer advice: Although 50% of computers had more than a terabyte of disk
space, 99% of students did not actually need that much space. Not a single student used
more than 1.1 TB of space.
Based upon the statistic that the median used disk space is 220 GB, one might expect that
computers with less than 300 GB of disk space will have a very high fullness. Figure 6
shows that this is not entirely true: In the group of computers with approximately 256
GB of storage space, only 20% of computers had a fullness above 80%, and only 10% had
a fullness above 90%. On average the fullness of computers in the 256 GB group is still
much higher than for computers with more storage space, but it is clear that the median
of used space in the 256 GB group is lower than the median among all computers. It turns
out, even if it almost goes without saying, that people with less storage space on their
computer are more conservative with their storage space than others.
Figure 5 displays a clear correlation between storage space and fullness: For computers
with more storage space the average fullness is lower than for computers with less stor-
age space. This correlation is greatly amplified by the two small bubbles for computers
with very large amounts of storage space, but even looking at only the big bubbles, the
correlation is still apparent.

27

Just like with partition sizes, it proved useful to group partitions by their fullness. Be-
cause figure 3 does not show any strong patterns in the frequency of different degrees
of fullness, the decision was made to divide the full range of filesystem fullness into five
equally sized groupings of 20%.

Figure 5: The average degrees of fullness across
various groupings of total storage space.

The size of a bubble indicates the
amount of computers in a group.

Figure 6: Fullness distributions across
various groupings of total storage space.

Darker coloring means the fullness
is higher.

† Small group (less than twenty computers)

5.5. AggRegate layout scoRe

Figure 7: Aggregate layout scores across
all volumes in WildFrag.

Histogram

On modern computer systems, aggregate layout
scores are almost always very high. Only 2% of
computers had an aggregate layout score lower
than 0.99, as can roughly be seen in figure 7. The
lowest aggregate layout score in all of WildFrag is
held by an SSD partition of approximately 100 GB,
at 0.926. In contrast, in Smith and Seltzer’s 1997
paper [SS97] they measured a filesystem degrade
from an aggregate layout score of 0.99 to a score of
0.81 in only seven months. It must be mentioned,
however, that their computer used Fast Filesystem
and not NTFS.

28

Figure 8: Aggregate layout scores in
different partition size groupings.

Histograms

A possible factor in the high aggregate layout scores
measured across all computers in WildFrag is the fact
that Windows automatically defragments filesystems
nowadays. Notably, this is not only true for HDDs,
Windows also defragments SSDs under certain condi-
tions [Han].
Figure 8 shows how aggregate layout scores are dis-
tributed in all of the different partition size groupings.
The group of 25 GB to 100 GB is somewhat anomalous,
but amongst the other groups there is a very clear shift
towards 1.0 as the partitions get bigger. In fact, the few
2 TB partitions in WildFrag all had a layout score of
exactly 1.0, meaning that there was no fragmentation
whatsoever. These partitions are not depicted in fig-
ure 8.
The unusually high amount of filesystems with an ag-
gregate layout score of 1.0 in the smallest grouping
seems to be because those partitions are used for a spe-
cial purpose. All but one of them had a size of either
exactly 32 GiB or exactly 64 GiB. We have not been able
to find out what the exact purpose of these partitions is.
Above 64 GiB, the only partitions with an aggregate lay-
out score of exactly 1.0 were HDD partitions with a low
fullness. Those partitions do not seem to be heavily
used, since almost all of them were near-empty, with
a fullness below 0.5%. It is apparently very unusual for
a filesystem that is in day-to-day use to have no frag-
mentation at all, even with automatically scheduled de-
fragmentation.

29

5.6. Out-of-ORdeRness

Figure 9: Out-of-orderness across partitions in WildFrag.
Histogram

.

Figure 10: Out-of-orderness distribution
per fullness category

Box plot

The out-of-orderness of a partition is the fraction
of fragmentation gaps where the fragment after the
gap is placed earlier in physical memory than the
fragment before the gap. Figure 9 shows that out-
of-orderness is generally neatly distributed around
0.32, meaning that, on average, there is a 32%
chance that a randomly chosen gap is out-of-order.
The peak at 0.0 consists entirely of partitions with
no fragmentation or very little fragmentation.
In figure 10 some irregularities can be seen in the
lower fullness categories, but above 40% fullness
the distributions start to close in on 0.32 more con-
sistently. In the lowest fullness category, the low
first and second quartile marks are due to partitions
with no fragmentation.
We have no explanation for why out-of-orderness
is distributed around the number 0.32.

30

5.7. FRagmentation gap size

Fullness Mean NAGS
0% to 20% 0.020
20% to 40% 0.060
40% to 60% 0.086
60% to 80% 0.093
80% to 100% 0.105

Figure 11: Average NAGS per
fullness category

“Normalized Average fragmentation Gap Size” (NAGS) is the
rather lengthy name of a metric introduced in section 4.1.
It is used to measure how large fragmentation gaps are on
average. The average is calculated per partition and normal-
ized by dividing it by the size of the partition.
Figure 12 shows the NAGS distribution across all partitions,
grouped by their fullness category. As shown in the graph,
gap sizes are on average generally between 5% and 10% of
the size of the partition. On partitions that were less than
40% full, gap sizes were usually smaller than that.

Figure 12: NAGS across different fullness
categories.

Please note that only the range 0.00 to 0.50 is
shown. No partition had a NAGS above 0.50.

Figure 13: NAGS across different fullness
categories, showing only partitions with a size

between 100 GB and 200 GB.

31

6. ExpeRiment Results
6.1. Realistic value Ranges

Metric Realistic value range
MIN 25% MEDIAN 75% MAX

size 101 GB 125 GB 127 GB 127 GB 127 GB
fullness 81% 88% 90% 95% 99%

Files
number of files 154,288 265,415 320,626 405,727 746,481
average file size 137 kB 199 kB 228 kB 273 kB 3,471 kB
% of files ≥ 2 blocks 35% 41% 45% 49% 74%
% of files empty 0.36% 0.79% 2.14% 2.85% 9.76%

Fragmentation (amount)
aggregate layout score 0.98099 0.99117 0.99192 0.99414 0.99977
% of files fragmented 0.29% 6.18% 7.11% 8.03% 10.12%
% of files ≥ 2 blocks fragmented 0.58% 13.65% 15.75% 17.74% 25.23%

Fragmentation (miscellaneous)
out of orderness 16% 31% 34% 39% 49%
norm. avg. gap size 4.3% 7.3% 8.6% 9.5% 11.5%

NTFS features
% of files sparse 0.14% 0.56% 0.76% 0.93% 1.51%
% of files compressed 0.01% 0.26% 0.43% 1.65% 31.67%
% of files hardlinks 2.75% 4.53% 5.28% 7.80% 18.39%

Figure 14: Realistic value ranges based upon partitions from 100 GB to 200 GB with fullness above 80%

Table 14 shows a five-number summary for a selection of fragmentation and filesystem-
related statistics. These statistics were derived fromWildFrag partitions between 100 GB
and 200 GB with a fullness of at least 80%.
The size and fullness constraints were chosen based upon findings from section 5. For
comparisonwith the artificially aged filesystems, which are all 64 GiB, it would have been
ideal to be able to derive realistic value ranges from 64 GiB partitions. Unfortunately, as

32

found in section 5, most filesystems of less than 100 GB were anomalous and not statis-
tically similar to general-purpose filesystems. The decision was made to use filesystems
between 100 GB and 200 GB to derive the realism statistics because this is the nearest
range with a significant amount of non-anomalous filesystems.
Similar tables of five-number summaries given other constraints on the selection of filesys-
tems can be found in appendix A.

33

6.2. Aging tool Results

Impressions Geriatrix Compilebench

size 68.7 GB2 68.7 GB2 68.7 GB2

fullness 88% 91% 22%
running time 11h 30min 12h 12h

Files
number of files 216,223 539,800 1,074,778 HIGH
avg. file size 277 kB 115 kB LOW 13 kB LOW
% of files ≥ 2 blocks 61% 50% 50%
empty files 18 (0.0%) LOW 0 (0.0%) LOW 410 (0.0%) LOW

Fragmentation (amount)
aggregate layout score 0.973 LOW 0.987 0.920 LOW
% of files fragmented 33% HIGH 20% HIGH 18% HIGH
% of files ≥ 2 blocks f. 54% HIGH 40% HIGH 36% HIGH
recursive grep duration 4.13 min/GiB 4.32 min/GiB 2.89 min/GiB
defrag. grep duration 1.23 min/GiB 1.77 min/GiB 4.04 min/GiB

Fragmentation (miscellaneous)
out of orderness 39.6% 34.6% GOOD 10.8% LOW
norm. avg. gap size 3.6% LOW 22.4% HIGH 2.0% LOW

NTFS features
sparse files 0 LOW 0 LOW 0 LOW
compressed files 0 LOW 0 LOW 0 LOW
hardlinks 0 LOW 0 LOW 0 LOW

LOW : This statistic is lower for the artificially aged filesystem than the lowest real value.
HIGH : This statistic is higher for the artificially aged filesystem than the highest real value.
“GOOD”: This statistic is in the second or third quartile of the realistic value range (i.e. somewhat close to the
median).

Table 5: Statistics of the filesystems generated by the various aging tools, and an indication of how this
compares against the realistic value ranges for partitions between 100 GB and 200 GB with over 80%

fullness.

268.7 GB is 64 GiB

34

Table 5 shows an overview of the statistics of partitions generated by the various aging
tools. These were compared against the statistics in table 14 and values that were found
to be outside of the realistic value range were marked in red. Outliers in the category
“Fragmentation (amount)” were not marked in red because the aging tools were intended
to age the filesystems a lot and it would be unfitting to make it seem like filesystems with
unrealistically large amounts of fragmentation are a bad result.
Impressions was instructed to achieve the aggregate layout score of 0.83, but did not come
close to reaching its target despite finishing its execution after eleven hours and thirty
minutes. The other aging tools were not instructed to achieve any particular degree
of fragmentation and are assumed to have generated a filesystem that was as aged as
possible. Even if it is to be expected, it is still to be noted that aging tools tend to produce
filesystems with an unrealistically high degree of fragmentation.
None of the aging tools generate filesystems that make use of NTFS features, which was
quite as expected since all of the tools are written to be independent of filesystem format.

35

6.3. PeRfoRmance oveR Time
In this section, we show how each of the aging tools performs over time, as discussed
previously in section 4.3. The thought behind this was to create a graph where the “sweet
spot” of running times of each tool would be clearly visible, as well as a comparison that
would allow us to definitively recommend one aging tool for aging a filesystem in less
than a certain amount of time, and another aging tool for situations where more time is
available. Regrettably the results did not show anything of the kind. Nevertheless, we
will share the results we found. It still provides some enlightenment about the workings
of each aging tool.

6.3.1. Filesystem fullness

Figure 15: Filesystem fullness of each aging tool, measured throughout a twelve hour run of each aging
tool.

The various artificial aging tools filled up the filesystems at wildly different rates, as can
clearly be seen in figure 15. Geriatrix was the fastest to fill up the filesystem, reaching the
intended fullness after only three hours. Afterwards, Geriatrix keeps the fullness stable
and busies itself with fragmentation-related work.
Compilebench similarly started by filling up the filesystem, however it did this at a much
slower pace than Geriatrix, finishing after approximately four hours. When this is done,
it starts to carry out random operations such as compiling cloning, or deleting a code
repository in an attempt to age the filesystem.
Unlike the other two aging tools, Impressions does not work in stages. It gradually fills
up the filesystem and finishes its execution when the targeted fullness is reached.

36

6.3.2. AggRegate Layout ScoRe

Figure 16: Aggregate layout scores of each aging tool, measured throughout a twelve hour run of each
aging tool.

Aggregate layout scores stayed surprisingly high for most aging tools. A high aggregate
layout score indicates a low degree of fragmentation, so this is not a good thing. The
lowest aggregate layout score in all of WildFrag was 0.926. Most of the artificial aging
tools did not get nearly this low.
Compilebench reached the lowest aggregate layout scores despite never reaching a high
filesystem fullness. Its aggregate layout score drops down to 0.94 in the first hour and
then fluctuates around 0.93.
Even though Impressions was instructed to generate a filesystem with a layout score of
0.815, and even though it finished its run after eleven hours and thirty minutes, it did not
actually come close to reaching the targeted aggregate layout score. Instead, its aggregate
layout score stayed at 0.97.
Lastly, Geriatrix had the highest aggregate layout scores, but had a very slow but consis-
tent downwards movement that indicates that it might eventually reach a low aggregate
layout score.

37

6.3.3. GRep Tests

(a) Impressions

(b) Geriatrix

(c) Compilebench

Figure 17: The duration of Grep tests, generally measured every two hours throughout a twelve hour run
of each aging tool. Solid lines indicate the duration on the artificially aged partition and dotted lines

indicate the duration on a defragmented copy of that partition.

38

For each aging tool, the time it took to go through the artificially aged filesystem with
Grep was measured after generally every two hours of aging. This was also done on
a defragmented copy of the filesystem so that the impact of the artificial aging can be
assessed by comparing the performance on the aged filesystem with the performance on
the defragmented filesystem. The results can be seen in figure 17.
Grep tests were done only every two hours because defragmenting a 64 GiB partition and
going through the entire filesystemwith Grep both in the aged and the defragmented ver-
sion could take up to twelve hours for one aging tool. These durations were surprisingly
dissimilar from the durations in the paper that proposed Grep tests [CBJ+17]. Their Grep
tests almost always took less than a minute per gibibyte.
The results in figure 17 correlate very strongly with filesystem fullness. It might be obvi-
ous, but the fuller the filesystem, the longer it takes Grep to go through it. To reduce the
impact of fullness and more clearly show the impact of fragmentation, we have also in-
cluded figure 18, which shows how many times longer the Grep test took for the original
filesystem than for the defragmented copy.
Unexpectedly, it consistently took longer to Grep through the defragmented copy of the
Compilebench partition than the aged original. We have gone through some efforts to
confirm that this was not simply a data analysis mistake or due to wrongly conducted
defragmentation. Although the aggregate layout score of the original is consistently
around 0.93 and the aggregate layout score of the defragmented copy never went below
0.99997, the defragmented copy is still slower in Grep tests. Grep tests are affected by so
many factors that it makes it rather difficult to find the cause of this unusual phenomenon,
so we have not been able to find the reason for it.

Figure 18: For each artificial aging tool, how many times longer a Grep test takes for the original
partition than for the defragmented copy.

39

Impressions shows a steady growth, where grepping through the fragmented partition
consistently takes thrice as long as the defragmented partition. The Grep duration of
Geriatrix fluctuates somewhat more but is always the longest of the three. Nonetheless it
is only 2.5× as long as the duration on the defragmented copy in the end. The duration on
the defragmented copy of the Geriatrix partition very clearly correlates with the fullness
of the partition, and stops growing once Geriatrix is done filling up the filesystem.

40

7. Conclusions
7.1. ARtificial filesystem aging tools
Out of the three artificial aging tools beingmeasured, we have found that Impressions ap-
pears to generate fragmentation the most efficiently. This is apparent from its aggregate
layout score and percentage of files fragmented in table 5, as well as the large difference
between its aged and defragmented Grep test scores in figure 18. Compilebench got the
lowest aggregate layout score, but strangely enough performs the worst in almost all of
the other metrics.
Geriatrix is said in its article to produce large amounts of free space fragmentation. Re-
grettably, free space fragmentation was not within the scope of this comparison due to
time constraints. What we did measure is that Geriatrix produced an immensely high
normalized average gap size, so its approach to aging certainly does not produce the
most realistic allocation patterns.
Not only Geriatrix was unrealistic. All of the artificial aging tools produced statistical
outliers in either out-of-orderness or normalized average gap size. This indicates that the
allocation patterns of all the measured artificial aging tools produce are not particularly
realistic. In many situations it is not necessarily important how realistic the allocation
patterns are. For anyone who simply wishes to generate a filesystem with a high degree
of fragmentation, both Impressions and Geriatrix will be satisfactory.
However, becausemeasuring performance on a filesystemwith unrealistic allocation pat-
terns and potentially other unrealistic qualities could lead to results that deviate from the
performance on authentically aged filesystems, it might be desirable to test at least once
with a more realistically aged filesystem. Moreover, none of the aging tools compared
in this thesis are appropriate for applications within contexts such as digital forensics
research, where realism is crucial. For situations in which a highly realistic artificially
aged filesystem is desirable, the artificial aging tools that were included in this compar-
ison will not be satisfactory. We believe that a slower simulation-based approach, such
as TraceGen [DHSS21] and the approach suggested by W. Hueting [Hue21], may lead
to more realistic filesystem images. Unfortunately we cannot confirm this at the time
of writing due to TraceGen not being publicly released as of yet and because Hueting’s
implementation of his suggested approach is not sufficiently stable.
Furthermore, the following observations were made in regards to the performance of
artificial aging tools:

• Most artificial aging tools did not manage to get the aggregate layout score lower

41

than 0.97, which means that they did not fragment the filesystem as much as they
were expected to. The tool Impressions specifically failed to age the filesystem as
much as it said it would, reaching an aggregate layout score of 0.973 instead of the
targeted 0.83.

• All artificial aging tools saw the biggest drop in their aggregate layout score in
the first hour of their run. After the first hour the aggregate layout score either
stagnated or decreased only slowly.

• Despite the aggregate layout scores being higher than expected, they were still
lower than those of most authentic NTFS filesystems, and the percentage of files
fragmented was also always higher than on real computers.

• For filesystems generated by artificial aging tools, the distribution of allocations
across the storage partition was very different from authentic filesystems, as is
apparent from the unusual values for the normalized average gap size.

• Artificial aging tools generate very few empty files (i.e. files with no data) when
compared to real filesystems, or even none at all.

• None of the aging tools being tested made any use of features specific to the filesys-
tem format, which somewhat reduces their comparability to real filesystems.

Concerning fragmentation, we have observed that artificial aging tools manage to gen-
erate a lot of fragmentation especially in the form of the percentage of files fragmented
(section 6.2) and their performance in Grep tests (section 6.3.3). Aggregate layout scores
were unexpectedly high but still lower than most real systems.
Concerning realism, we have observed that there is sufficient room to improve upon the
realism of artificial filesystem aging tools. We find the observation concerning normal-
ized average gap sizes especially important, since it indicates that the allocation patterns
of artificial filesystem aging tools are dissimilar from the allocation patterns that result
from years of authentic use of a computer system.

7.2. Data segRegation pRoposal
We found that there is an important distinction between filesystems which are regularly
used for general purposes on one hand and filesystems that are only rarely used as well as
special-purpose filesystems on the other hand. We suggest that researchers take care to
separate these types of filesystems so that more meaningful statistics can be derived for

42

computers that see a significant amount of use. For example, in the analysis of aggregate
layout scores in section 5.5 and the analysis of out-of-orderness in section 5.6, it is clearly
visible that there is a pattern that applies in general, and a very different second pattern
that only applies for filesystems that are not heavily used. Taking the average of these
peaks in the data lead to a number that is simply less meaningful than the averages for
each type of filesystem individually.
Filesystem fullness, the appearance frequency of NTFS features and the aggregate layout
score are good indicators for telling which category an NTFS filesystem belongs to. Un-
used filesystems will have a very low fullness and special purpose partitions tend to not
use special NTFS filetypes, such as sparse files or hardlinks.

8. FutuRe WoRK
8.1. ImpRovement of the compaRison
The comparison in this thesis could be improved upon in several ways.
As was already mentioned in the conclusions, we did not measure free space fragmenta-
tion even though one of the aging tools is said to produce substantially better free space
fragmentation in the article it was introduced in. Because of this, adding free space frag-
mentation as a metric is a clear option for improvement.
Secondly, for determining the quality of an output in regards to its realism, it could be
helpful to have more metrics that are specifically intended for making the filesystems
generated by artificial aging tools more comparable against authentically aged filesys-
tems. Examples include the number of directories, metric that provide insights into the
realism of file contents, statistics of each filetype or more metrics that provide insights
into the distribution of files across the storage volume.

8.2. Validating and analyzing unusual obseRvations
Several observations were made that could use a deeper analysis.
In section 5.6 it was found that out-of-orderness is relatively neatly distributed around
0.32 in NTFS. However, we did not find the reason for this phenomenon. A deeper anal-
ysis could help unveil the reason why this metric gravitates around this specific number.
In section 6.3.3, it was found that the aged filesystem being generated by Compilebench
consistently performed better than a defragmented copy of that filesystem, which ran
counter to our expectations. A deeper analysis could uncover the reason for this.

43

Appendices

A. Additional Realistic value Range tables

Realistic value range
Metric based upon partitions from 100 GB to 200 GB

MIN 25% MEDIAN 75% MAX
size 101 GB 125 GB 127 GB 127 GB 199 GB
fullness 24% 59% 76% 90% 99%

Files
number of files 12 187,130 240,927 319,569 746,481
average file size 62 kB 200 kB 228 kB 303 kB 16 MB
% of files ≥ 2 blocks 35% 42% 46% 50% 79%
% of files empty 0% 0.47% 0.78% 2.51% 9.76%

Fragmentation (amount)
aggregate layout score 0.9357 0.9919 0.9944 0.9982 1.0000
% of files fragmented 0.3% 4% 6% 8% 33%
% of files ≥ 2 blocks frag. 0.6% 9% 14% 16% 57%

Fragmentation (miscellaneous)
out of orderness 16% 30% 34% 37% 49%
norm. avg. gap size 3.1% 6.6% 7.9% 9.3% 12.9%

NTFS features
% of files sparse 0% 0.56% 0.80% 0.97% 1.51%
% of files compressed 0% 0.25% 0.42% 0.78% 31.67%
% of files hardlinks 0% 5.09% 7.99% 13.67% 24.91%

44

Realistic value range
Metric based upon all partitions above 25 GB

MIN 25% MEDIAN 75% MAX
size 27 GB 228 GB 255 GB 983 GB 2000 GB
fullness 0% 21% 43% 74% 100%

Files
number of files 3 47,278 203,887 318,495 1,548,772
average file size 2 kB 232 kB 381 kB 1,570 kB 135,279 kB
% of files ≥ 2 blocks 11% 46% 51% 65% 97%
% of files empty 0% 0.15% 0.53% 1.34% 19.13%

Fragmentation (amount)
aggregate layout score 0.92571 0.99891 0.99976 0.99999 1.00000
% of files fragmented 0% 0.09% 0.72% 2.50% 33.33%
% of files ≥ 2 blocks fragmented 0% 0.17% 1.41% 4.66% 57.14%

Fragmentation (miscellaneous)
out of orderness 0% 28% 33% 39% 100%
norm. avg. gap size 0% 2.4% 6.1% 9.2% 43.1%

NTFS features
% of files sparse 0% 0.01% 0.12% 0.37% 7.41%
% of files compressed 0% 0% 0.10% 0.33% 31.67%
% of files hardlinks 0% 0% 5.85% 13.95% 28.78%

45

B. Reflection
This project generally did not go that well. Most of the work I have done has regrettably
not been included in the final thesis. This includes approximately thirteen other aging
tool experiments, a few aging tools that were not included in the end, as well as a number
of avenues of research that turned out to be dead ends. In general, I would say that I had
the poor luck during this project of repeatedly betting on avenues of research that turned
out to be unfruitful. For instance, I had originally intended to run the experiments on a
cloud server, but it was decided that experiments should be run on Windows, and I was
not able to rent a Windows cloud instance affordably. Running aging software on my
own hardware was not such an appealing prospect, so I eventually ended up buying an
external HDD to run the experiments on.
Another example of an unfruitful avenue is the way in which the experiments over time
were performed. I had previously spent a lot of time trying to make each of the aging
tools run a similar amount of time as the other aging tools. This turned out to be much
more difficult than I had expected it to be, and I abandoned that avenue in favor of pausing
the aging tools each hour.
I believe I was already a capable programmer prior to starting this project, but because
this project mainly revolved around running the aging tools and getting things to work, I
feel that I have greatly strengthened other IT skills in which I was never quite as strong.
Over the course of this project I have spent a great deal of time with the commandline,
shellscripts, Powershell and SSH. Previously I had never had a need to use them quite so
thoroughly, but now I feel like I have a decent grasp on them.
Although the initial goal of this project was to compare other aging tools against Huet-
ing’s simulator, I ended up not including Hueting’s simulator in the final comparison
mostly due to time constraints. In its current state, Hueting’s simulator is very unsta-
ble (crashing after about 15 minutes) and hardly manages to age the filesystem before it
crashes. Improving upon Hueting’s simulator had been one of the goals of this project,
but in the end I did not have sufficient time for it. If it were more stable, Hueting’s sim-
ulator is assumed to perform somewhat similarly to Compilebench, although somewhat
more realistic but significantly slower. Because it tries to simulate only programming,
it will very likely create an abnormally large amount of very small files, which is not
necessarily realistic.

46

RefeRences
[AAA09] Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Generating realistic impressions for file-system benchmarking. ACMTrans.
Storage, 5(4):16:1–16:30, 2009. 4, 9, 18

[CBJ+17] Alexander Conway, Ainesh Bakshi, Yizheng Jiao, William Jannen, Yang
Zhan, Jun Yuan, Michael A. Bender, Rob Johnson, Bradley C. Kuszmaul,
Donald E. Porter, and Martin Farach-Colton. File systems fated for senes-
cence? nonsense, says science! In Geoff Kuenning and Carl A. Wald-
spurger, editors, 15th USENIX Conference on File and Storage Technologies,
FAST 2017, Santa Clara, CA, USA, February 27 - March 2, 2017, pages 45–58.
USENIX Association, 2017. 6, 8, 13, 39

[CKJ+19] Alex Conway, Eric Knorr, Yizheng Jiao, Michael A. Bender, William Jan-
nen, Rob Johnson, Donald E. Porter, and Martin Farach-Colton. Filesystem
aging: It’s more usage than fullness. In Daniel Peek and Gala Yadgar, edi-
tors, 11th USENIX Workshop on Hot Topics in Storage and File Systems, Hot-
Storage 2019, Renton, WA, USA, July 8-9, 2019. USENIX Association, 2019.
6, 8

[DHSS21] Xiaoyu Du, Chris Hargreaves, John Sheppard, and Mark Scanlon. Trace-
gen: User activity emulation for digital forensic test image generation. Dig-
ital Investigation, 2021. 10, 41

[Han] Scott Hanselman. The Real and Complete Story — Does Windows
Defragment your SSD? https://www.hanselman.com/blog/the-real-and-
complete-story-does-windows-defragment-your-ssd
Note: The author of this article is a Microsoft employee. 29

[Hue21] Wouter Hueting. Feasibility of simulating the java programming process.
2021. 41

[KNG18] Saurabh Kadekodi, Vaishnavh Nagarajan, and Gregory R. Ganger. Geri-
atrix: Aging what you see and what you don’t see. A file system aging
approach for modern storage systems. In Haryadi S. Gunawi and Ben-
jamin Reed, editors, 2018 USENIX Annual Technical Conference, USENIX

47

ATC 2018, Boston, MA, USA, July 11-13, 2018, pages 691–704. USENIX As-
sociation, 2018. 4, 6, 8, 9

[Mas07] Chris Mason. Compilebench, 2007.
https://oss.oracle.com/~mason/compilebench/. 4, 9

[Ran69] Brian Randell. A note on storage fragmentation and program segmenta-
tion. Communications of the ACM, 12(7):365–ff, 1969. 6

[SS97] Keith A. Smith and Margo I. Seltzer. File system aging - increasing the rel-
evance of file system benchmarks. In John Zahorjan, Albert G. Greenberg,
and Scott T. Leutenegger, editors, Proceedings of the 1997 ACM SIGMET-
RICS international conference on Measurement and modeling of computer
systems, Seattle, Washington, USA, June 15-18, 1997, pages 203–213. ACM,
1997. 8, 9, 12, 28

[vdMJD+19] Vincent van der Meer, Hugo Jonker, Guy Dols, Harm M. A. van Beek,
Jeroen van den Bos, and Marko C. J. D. van Eekelen. File fragmentation
in the wild: a privacy-friendly approach. In IEEE International Workshop
on Information Forensics and Security, WIFS 2019, Delft, The Netherlands,
December 9-12, 2019, pages 1–6. IEEE, 2019. 11, 16, 20

[vdMJvdB21] Vincent van der Meer, Hugo Jonker, and Jeroen van den Bos. A contempo-
rary investigation of NTFS file fragmentation. Digital Investigation, 2021.
8, 11, 14

48

	Introduction
	Background
	Storage and filesystems
	Fragmentation
	Filesystem Aging
	Artificial Aging Tools

	Related work
	Measuring File System Aging and Realism
	Artificially Aging File Systems

	Methodology
	Metrics
	Amount of fragmentation
	Realism

	Aging Tool Experiments
	Preparing Partitions
	Operating System
	Aging Tool Parameters
	Data Collection
	Deriving Statistics

	Comparison over time
	Acquiring the Necessary Data

	Analysis of authentically aged filesystems
	Data culling
	NTFS partition size
	Total storage size
	Fullness
	Aggregate layout score
	Out-of-Orderness
	Fragmentation gap size

	Experiment Results
	Realistic value ranges
	Aging tool results
	Performance over Time
	Filesystem fullness
	Aggregate Layout Score
	Grep Tests

	Conclusions
	Artificial filesystem aging tools
	Data segregation proposal

	Future Work
	Improvement of the comparison
	Validating and analyzing unusual observations

	Additional realistic value range tables
	Reflection
	References

