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1 INTRODUCTION

This report belongs to the graduation project that is part of the bachelor program Com-
puter Science at the Open University. In this project, the compliance with cookie prefer-
ences is evaluated in both a semi-automated and fully automated way.

CONTEXT

Cookies can store information such as the items in a shopping cart or whether a user
account is logged in on a certain device. In recent years, however, cookies have been
increasingly used for purposes other than these essential functionalities. Cookies can
also be used by websites to collect information about their visitors. Most websites imple-
ment consent dialogs to request permission for collecting personal data due to legisla-
tion such as the ePrivacy directive. There are other ways to collect this data, for example
browser fingerprinting, but this project focuses exclusively on the use of cookies. This is
commonly implemented by means of cookie dialogs shown on the first visit to a website.
There are various legal grounds based on which cookies may be placed. Although the in-
terpretation of current legislation is inconclusive and still an ongoing topic of discussion
among experts, consent is the only legal basis that websites can rely on for placing track-
ing and marketing cookies. The legal grounds based on which the placement of cookies
can be justified are further discussed in Section 2. Some cookie dialogs can be deceiv-
ing or overly complicated. They may use so-called dark patterns to persuade a visitor to
accept all cookies and give permission to collect their personal information.

CONTRIBUTIONS

Although the presence of cookie dialogs suggests that users can decide which cookies
they accept, the possibility exists that websites do not always fully comply with cookie
preferences. The goal of this project is to test this assumption in a systematic and auto-
mated way. To reach this goal the project is divided into two substudies, each of which is
mainly carried out by one student.

The first substudy, conducted by Koen Berkhout, concerns the compliance by websites
with the cookie preferences stated by their visitors. The main research question is ’To
what extent do websites comply with cookie preferences?’. To this end, the placement
of cookies will initially be recorded before any interaction has taken place. From there,
preferences are communicated by respectively giving and denying consent. Section 4
outlines the details of this study and the methods for semi-automatically collecting the
data. The results are used as a validation set for the web crawler that will be introduced
below. This substudy yields information about the placement of cookies and their types,
the effort to deny consent measured in clicks, and tools for conducting the experiment.

The second substudy, conducted by Maarten Meyns, concerns the ability to detect cookie
dialogs and interact with these cookie dialogs in an automated way. The main research
question is ’How can a large list of websites be visited in a controlled manner and cookies
and cookie dialogs be documented?’. Section 5 concerns the creation of a fully working
crawler that implements this functionality. Machine learning is employed to select the
correct cookie dialog and classify the buttons in the cookie dialog, and detects buttons to
accept and reject cookies. This substudy yields data on the placement of cookie dialogs
and cookies.

6



2 BACKGROUND

COOKIES

Cookies are a fundamental part of the web since their standardization process started in
1995 [Kri01]. Cookies are an additional layer to the Hypertext Transfer Protocol (HTTP),
which by itself is a stateless protocol. When a user requests a webpage, the server sends
a response and immediately disconnects. A visit may consist of multiple requests as the
user browses through a website. A new connection is initiated with each request, and is
completely independent from any previous request. For some applications, however, it
is necessary to keep track of state. One example is a shopping cart, in which items should
be persisted across multiple requests. Cookies enable web applications to maintain state
in the browser by placing a small file in which data specific to a visitor can be stored.
The cookies are sent with each response and accessible by the website. Cookies have a
set of properties, among which at least a name and a value. On each request the cookie
is enclosed in the Cookie header, and the website can read out the value of a cookie by
its name. Figure 1 models how cookies are used to transfer data between a browser and
a server. Similar behavior can be accomplished by binding state to a user’s IP address,
as part of the URL, or by using the browser’s local storage, but each of them has their
disadvantages and limitations which makes them unsuitable alternatives to cookies.

Browser Server

Inital request webpage (no cookies)

Return webpage and cookies

Request another webpage (includes cookies)

Return webpage and cookies

Figure 1: HTTP cookies (adapted from en.wikipedia.org/wiki/HTTP_cookie)

Cookies can be classified by various properties other than their purpose, for example by
provenance (first vs. third party) or duration. A detailed categorization by purpose made
by Proton Technologies AG distinguishes four types of cookies: strictly necessary, pref-
erence, statistics, and marketing.1 It is not always possible to stringently categorize a
cookie in one of these categories, as they may serve multiple purposes. According to this
website, funded by the European Union, the greatest privacy risks are presented by third-
party persistent marketing cookies. Furthermore, it states that these cookies can contain
significant amounts of information about someone’s online activity, preferences, and lo-
cation. Cookies can also be used for tracking visitors across the web. A clear distinction
can be made between first- and third-party cookies. First-party cookies are placed by
the domain the user is currently visiting, whereas third-party cookies are placed by (or
for) other domains. Websites can leverage third-party tracking cookies for mass surveil-
lance [ERE+15], for example by embedding the same tracker on multiple websites. In this
way, visits can be linked to unique users, even when these visits come from different IP
addresses.
1https://gdpr.eu/cookies/
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LEGISLATION

The 2002 ePrivacy directive, also known as ’the cookie law’, was already in force before
the GDPR and concerns the online tracking of users and confidentiality of communica-
tions.2 It requires explicit consent for placing cookies, except when strictly necessary.
The directive is a guideline along which member states must implement laws and not a
binding legislative act. The GDPR, successor of the 1995 Data Protection Directive, was
adopted in 2016 and became enforceable in 2018 in the European Union. It is is comple-
mentary to the ePrivacy directive, more specifically by defining how data can be lawfully
processed. Being a regulation, it is a binding legislative act that generally applies across
the EU. Moreover, it gives data protection authorities (DPA) the power to issue large fines
to companies who violate the regulation. Hence, it is of no surprise that cookie dialogs
have made an upsurge since its entry into force in 2018. The GDPR applies when per-
sonal data is processed, and both personal data and processing are broad concepts in
this regulation. "Personal data is any information relating to an identified or identifiable
natural person (’data subject’), and processing is any operation or set of operations which
is performed on personal data or on sets of personal data, whether or not by automated
means" [RGBZ16]. This includes, but is not limited to, collecting, storing, and disclosing
personal data. One of the implications of the GDPR is its imposition of rules on third
party trackers, which is considered using personal data for ’monitoring’ the behavior of
users [HvdSB19]. Furthermore, Hoofnagle et al. explain that the processing of personal
data requires a legal basis. The six legal bases specified by the GDPR are (1) consent, (2)
necessity for a contract, (3) mandated by law, (4) necessity to protect the life of the data
subject, (5) public task, or (6) when the interests of the data controller (the company or
website) are more important than the interest of the data subject. In most cases, the lat-
ter five legal bases do not apply when tracking users of a website, thus leaving consent
the last resort for website owners. Moreover, the GDPR requires that "consent be freely
given, specific, informed, and unambiguous" [HvdSB19]. An issue with this requirement
is that by using dark patters websites could persuade users to accept tracking cookies.

DARK PATTERNS

There is no universally accepted definition of what exactly dark patterns are. Nonethe-
less, in previous papers researchers have come up with descriptions that are useful and
usable. Gray et al. define dark patterns as "a construct where designers use their knowl-
edge of human behavior and the desires of end users to implement deceptive function-
ality that is not in the user’s best interest" [GKB+18]. Mathur et al. elaborate on this
definition by adding that "this deceptive functionality is used to coerce, steer, or deceive
users into making decisions that, if fully informed and capable of selecting alternatives,
they would not make" [MAF+19]. Gray et al. define dark patterns based on strategies they
employ to trick users into performing an action, one of which is obstruction. In the con-
text of cookie dialogs this could be the effort to make it needlessly complicated to reject
cookies, for example by requiring a disproportionate number of clicks to deny consent.

2https://gdpr.eu/cookies/
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3 RELATED WORK

In 2019, Sanchez et al. [SRDK+19] ran an experiment on a selection of 2,000 websites
from the Alexa top 1M, in which both the information presented to visitors and the actual
cookie tracking behavior is evaluated. The results show that tracking frequently occurs
and happens generally without the user’s consent, and above all often before or without
showing any notification. In approximately 4% of the test cases the website offered an
opt-out from tracking. The researchers observe that opting out from tracking is usually
not properly implemented, rejecting tracking is ineffective (’false rejections’), and com-
monly users end up being tracked with long lasting cookies in spite of having denied con-
sent. It is therefore concluded that the spirit of the GDPR is generally not complied with.
The partially automated method of data collection is similar to the approach in Section 4
to ensure that cookie dialog interaction is reliably performed. However, this study was
conducted three years prior ours, and the findings are compared with the results found
in Section 4 to learn whether the situation has changed over time.

Web bots, also referred to as crawlers, are used to automatically visit and interact with
websites, thus facilitating web measurements at scale. However, some websites actively
try to prevent crawlers from accessing their pages or serve different content upon detec-
tion. A study by Jonker et al. [JKV19] found that approximately 13% of the websites of
the Alexa Top 1M employ crawler detection techniques. These detections may rely on
browser properties and specific objects in the DOM of the browser, also known as the
fingerprint surface. Other detection mechanisms target differences in behavior between
humans and crawlers, among which keyboard and mouse events. In a comparison of 14
browser automation frameworks, they found that the detection rate varies greatly. The
least frequently detected frameworks are WebDriver, Selenium, and Chrome Headless,
each of which got detected on approximately 1% of the visited websites. Some of the
design choices in Section 5 are partially based on the findings of this study, such as the
selection of the automation framework and settings to avoid detection.

The study by Matte et al. [MBS20] conducted in 2020 indicates that many cookie dialogs
are implemented by means of Consent Management Platforms (CMPs), which collect
and propagate cookie preferences to third parties. In general, it was found that the to-
tal amount of third party cookies dropped by 22% after the introduction of the GDPR,
and the number of cookie consent dialogs increased. However, the use of CMPs does not
guarantee compliance with provided or denied consent. When visiting 22,949 websites
with an automated crawl, they found that it is not uncommon for websites to record pos-
itive consent before any user interaction has taken place. This data is used to explain the
detected presence of cookie dialogs in Section 5.

The graduation project cookie dialogs and their compliance [Aer21] conducted by Koen
Aerts covers the issue of which kind of cookies are set before consent is given. This is
an important starting point, because it allows for the detection of tracking cookies that
are set before any interaction has taken place with a user, provided that tracking cookies
can be distinguished from non-tracking cookies. To detect the cookies set by websites a
crawler was run against Tranco [LPVGT+19], a list compiled of top ranking websites aug-
mented with measures to prevent manipulation, from which a selection of only Euro-
pean websites was made. The study concludes that transparency regarding the purpose
of cookies is still below par, and that a considerable number of cookies are set for adver-
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tisement and tracking purposes before consent is given. The full scale of the violations is
unknown, because the purpose could not be determined for a large part of the collected
cookies. The results of this study will be directly compared with the results of Section 5.

In the study Automating Cookie Consent and GDPR Violation Detection, Bollinger et al.
[BKCB22] find at least one GDPR violation in almost 95% of the analyzed websites. The
failure rate is slightly lower in websites that use a Consent Management Platform (CMP),
approximately 88%. This study focuses on websites with a CMP, and classifies cookies
using decision trees trained with the XGBoost library.3 To train the classifier, the cookie
purposes are collected from consent management platforms, where website owners se-
lect the categories in which cookies fall and their purposes. However, these cookie pur-
poses could only be collected from a small set of all CMPs. This study is related to our
project, but is mainly complementary given differences in website selection. The failure
rate is compared with the results in Section 4.

As part of the study CookieEnforcer: Automated Cookie Notice Analysis and Enforcement
[KNHF22], Khandelwal et al. developed a tool that can explore a cookie dialog and reject
all cookies, even if this option is hidden in a second screen or requires numerous clicks.
Although the purpose of the crawler discussed in Section 5 differs from the CookieEn-
forcer, many of the techniques are used as a building block. This includes, for example,
the selection of potential cookie dialogs through z-index values and the use of machine
learning to classify text in a cookie dialog candidate.

3https://github.com/dmlc/xgboost
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4 COMPLIANCE WITH COOKIE PREFERENCES

4.1 INTRODUCTION

The presence of cookie dialogs conveys the impression that users can choose which kind
of cookies are placed by the websites they visit. Ideally, websites comply with the pref-
erences stated by a user, but in practice it is not clear how effective it is to give or deny
consent. This part of the project evaluates the behavior of websites regarding their com-
pliance with cookie preferences. It is important to be aware of the possibility that web-
sites intentionally ignore cookie preferences, but non-compliance could also be unin-
tentional. Creating a website often involves third-party dependencies such as external
scripts, and it is difficult for website owners to keep track of their behavior. As introduced
before, cookie dialogs may contain various dark patterns to convince a user to provide
consent, one of which is obstruction. The extent to which websites comply with cookie
preferences is examined in this substudy. In addition, the effort needed to express cookie
preferences is measured with the click count metric, which could be an indication of the
presence of a dark pattern. Furthermore, a validation set is created for the crawler that
will be introduced in Section 5.

4.2 RESEARCH

The research questions below are defined to determine whether websites comply with
cookie preferences. Websites comply if they (1) do not place ’unnecessary’ (defined in
Table 2) cookies at first, and (2) adhere to the cookie preferences stated by a visitor, re-
gardless of intentions. The main research question To what extent do websites comply
with cookie preferences? is further divided into the following subquestions.

RQ1 WHICH ACTIONS CAN BE PERFORMED IN A COOKIE DIALOG?

Three approaches are considered for determining which actions can be performed in a
cookie dialog. The first option is to make use of literature in which cookie dialogs and
possible actions are described. However, an initial exploration shows that no such lit-
erature is readily available. Secondly, actions that should in theory be possible can be
self-invented. This could result in good theoretic examples but may lack practical useful-
ness. Third, a representative set of websites can be visited to extract the possible action
from real-world cookie dialogs. This last approach is preferred, because it is considered
time efficient and has the potential to yield useful examples.

Appendix A demonstrates two typical cases. Figure 48 shows the cookie dialog that is
displayed when visiting microsoft.com. The ’Accept’ and ’Reject’ buttons are positioned
alongside each other, and there is a third option to manage cookies. Figure 49 shows
another case that is regularly encountered. Only the ’Accept all’ action can be directly
performed, whereas rejecting cookies requires considerable effort. After analyzing vari-
ous cookie dialogs such as the aforesaid cases, the following actions have been defined:

• INITIAL

This means doing nothing, i.e. before performing any cookie dialog interaction.

• ACCEPT ALL

This action can be performed in the presence of an Accept all (or similar) option.
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• DENY BASIC

This action can be performed in the presence of a Deny/Reject (or similar) option.

• DENY ADVANCED

This action can be performed in the presence of a Manage Cookies (or similar) op-
tion, by manually deselecting or objecting to all types of cookies.

RQ2 HOW CAN A SET OF WEBSITES BE VISITED IN A (SEMI-)AUTOMATED WAY TO DETECT

WHICH COOKIES ARE PLACED?

Four strategies for visiting websites have been considered to determine which cookies
are placed, ranging from manual to completely automated.

1. Manual
Visiting websites: Manual
Dialog interaction: Manual
Inspecting cookies: Manual

In this strategy, all actions are performed manually. Visiting websites by hand from a list is
time-consuming. Manual interaction with a cookie dialog is reliable, because there may
be many options that are difficult to automatically interpret for a crawler. This task can be
more reliably carried out by humans, provided that attention is paid to correctly perform
the required action without falling into a dark pattern’s trap. Manual cookie inspection
and recording is cumbersome.

2. Partially automated: JavaScript in the console
Visiting websites: Manual
Dialog interaction: Manual
Inspecting cookies: Automated

In this strategy, visiting websites and cookie dialog interaction are performed manually.
For inspecting cookies, JavaScript is run to extract cookies from the browser. However,
cookies may have an http-only flag, in which case the browser prevents the script from
retrieving cookies. This leads to incomplete results.

3. Partially automated: browser plugin
Visiting websites: Automated
Dialog interaction: Manual
Inspecting cookies: Automated

In this strategy, only cookie dialog interaction is performed manually. A browser plu-
gin can automatically navigate to the next website on a list, for example by clicking on
a ’next’-button. All cookies can be recorded, including cookies with an http-only flag,
because a plugin can retrieve all stored cookies by leveraging the browser API.

4. Fully automated: scraper
Visiting websites: Automated
Dialog interaction: Automated
Inspecting cookies: Automated

In this strategy, a web scraper is built to perform all actions automatically. Building a
scraper is a project in itself and described in Section 5 of this paper. The results may be
less reliable due to detection mechanisms employed by websites or by the misinterpre-
tation of cookie dialogs by the crawler.
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Selected strategy
To review the compliance of websites, the partially automated strategy is used by de-
veloping a browser plugin that offloads most of the labor-intensive tasks. This strikes a
balance between reliability of the results and the time required to develop the tool and
conduct the experiment. The plugin has access to a list of websites based on Tranco.
Furthermore, it automatically records the cookies set by a website upon the initial visit
before any user interaction has taken place. Which cookies are placed can be reliably de-
termined by leveraging the browser API.4 The reviewer interacts with the cookie dialog by
subsequently performing the actions of giving and denying consent as defined in RQ1.

RQ3 HOW CAN COOKIES BE CLASSIFIED?

When the placement of cookies by websites is recorded, they need to be classified to de-
termine their purpose. Without proper classification it is not possible to find out whether
a website violates legislation, because not all types of cookies require explicit consent.
There are various ways in which the purpose of a cookie can be determined.

1. Read the privacy policies and cookie statements of the visited website, and contact
the website owner if this provides insufficient data.

2. Make use of external data sources about cookies and their purposes.

3. Estimate the purpose based on properties of the cookie.

The first alternative could be an option for small experiments, but is not feasible for re-
viewing larger sets of websites. Moreover, websites do not always provide a list of pur-
poses for each cookie they use. Option 2 relies on external data sources, which need to
be accurate, have a large sample set, and be publicly available. Option 3 could be used in
case there is no information available about a cookie. For example, one could calculate
the entropy of the cookie name or value to determine the likeliness of containing a track-
ing id. However, session ids should also be unique, and this ambiguity makes this option
less reliable.

After weighing up the advantages and disadvantages, the decision was made to select
option 2. There are three sources that particularly appear when searching for cookie pur-
pose databases.

1. CookiePedia5 is a website operated by OneTrust and is the "largest database of pre-
categorized cookies" containing over 42,000,000 samples.

2. CookieDatabase6 is a joint project by Complianz and SIDN that continually re-
searches and describes cookies. The database contains approximately 15,500 sam-
ples.

3. Open Cookie Database7 is an open source project on Github that tries to describe
and classify the most used cookies. At the time of writing it contains 747 samples.

4https://developer.chrome.com/docs/extensions/reference/cookies/
5cookiepedia.co.uk
6cookiedatabase.org
7github.com/jkwakman/Open-Cookie-Database/
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Neither CookiePedia nor CookieDatabase offer an API or a downloadable database, but
appending the cookie name to a GET request on the website leads to a result page in-
cluding categorization (if any). Browser automation can be used to scrape cookie clas-
sifications from these data sources. On the contrary, Open Cookie Database provides a
downloadable comma-separated values (CSV) file which can serve as a local database.

When consulting these sources with a small sample set of cookies it was found that some-
times the classifications contradict each other. Additionally, not all cookies are known
to all sources and they may thus complement each other. For these reasons all three
providers are selected. The following categories of cookies are used: necessary, perfor-
mance, functionality, and marketing. These categories are linked to the external sources
according to the mapping in Table 1.

Category CookiePedia CookieDatabase Open Cookie Database

Necessary Strictly Necessary Functional Functional
Performance Performance Statistics/Analytics Analytics
Functionality Functionality Preferences Preferences
Marketing Targeting/Advertising Marketing/Tracking Marketing

Table 1: Cookie categories mapping

The categories describe cookies with specific characteristics. Table 2 contains descrip-
tions for each of the categories, with an additional entry for the definition of unnecessary
cookies. The descriptions are established by Optanon and taken from the CookiePedia
purpose descriptions page.8 Note that only necessary cookies are exempted from explicit
user consent.

Category Description

Necessary "These are all the cookies without which the website could not perform
basic functions. They may be set automatically when pages load, or as
a result of a user request that cannot be fulfilled without the use of the
cookie. Generally these are session cookies that expire on closing the
browser but not always. The law allows that any Necessary cookies are
exempted from any requirements for user consent."

Performance "These cookies are used to provide site owners with statistical informa-
tion about their site – which is generally used for performance measure-
ment and improvement. This is generally also known as ‘Analytics’. It
includes activities like counting page visits, dwell time, bounce rates,
technologies used to access the site, and page load speeds."

Functionality "These cookies are generally there to support site functionality that is
visible or advantageous to the user or their experience of the site. This
includes elements of persistent personalisation (remembered on sub-
sequent visits), and enhanced functionality like web chat services, sur-
veys, commenting and rating systems, and user preferences. They are
generally a mix of first and third party, session and persistent cookies."

8https://cookiepedia.co.uk/classify-cookies
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Marketing "These types of cookies are set by digital advertising businesses for the
prime or sole purpose of managing the performance of adverts, display-
ing adverts, and/or building user profiles to determine the display of
adverts elsewhere. These will almost always be third party cookies and
mostly persistent."

Unnecessary Performance + functionality + marketing (all except necessary).

Table 2: Cookie category descriptions (by Optanon, taken from cookiepedia.co.uk)

4.3 EXPERIMENT

To determine the level of compliance with cookie preferences, the cookie placement be-
havior of 400 websites from the Tranco list is examined by three reviewers. The possi-
ble actions that have been determined in RQ1 are directly translated to visiting modes.
A browser plugin (’Cookie Helper’) is developed that supports the selection of a mode,
loads a website in that mode, and records the cookies and number of clicks after the user
has performed the corresponding action (INITIAL, ACCEPT ALL, DENY BASIC, DENY AD-
VANCED). Each website is visited in all four modes, resulting in a total of 1600 visits. The
technical details of the plugin are discussed in Section 4.4.

4.3.1 GOAL

The goal of the experiment is twofold. Firstly, the compliance by websites with the cookie
preferences stated by their users is tested. More specifically, the resulting data includes
cookie counts for each of the modes segmented by cookie purpose. Analyzing which
(types of) cookies are placed in each mode yields important information to base conclu-
sions on. Moreover, the resulting data is used as a validation set for the crawler. Secondly,
the number of clicks is recorded as a quantitative measurement of the effort involved with
completing an action. Although the focus of this study is not on dark patterns, a major
imbalance between accepting and rejecting cookies is an indication of the presence of
the obstruction pattern. This pattern shall be considered present if the required number
of clicks is at least three times higher to reject all cookies than to accept them.

4.3.2 PREREQUISITES

The websites are visited by three different reviewers, and to ensure consistent results the
following guidelines are followed.

• The Tranco list generated on June 16 is used.9

• All websites are visited within a two-week time span in week 24 and week 25.

• The latest version of the Google Chrome browser is used (at present v103).

• Chrome is reset to the default settings without logged-in user and runs without any
other plugins besides the Cookie Helper.

• Chrome is set to allow all cookies, including third-party cookies.

9https://tranco-list.eu/list/Q9XG4
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• In Chrome’s security settings, the Secure DNS provider is set to Cloudflare. Using
Secure DNS enables Chrome’s built-in DNS-over-https resolver, effectively bypass-
ing DNS ad-blocking techniques such as Pi-Hole or AdGuard Home.

• Websites are visited with a direct connection, without a proxy or VPN.

4.3.3 DOMAIN SELECTION

The Tranco list is divided into four ’buckets’ according to the composition scheme in Ta-
ble 3. From each bucket, 100 random websites are visited. This number is limited due
to manual nature of this study, but is expected to yield a sufficient amount of data to
analyze. The same list of websites will be visited and the same composition of buckets
will be reused in Section 5 but expanded upon. A selection with incremental bucket sizes
is made based on the assumption that higher-ranked websites are more influential and
should therefore be more strongly represented in this study. The first bucket’s size is cho-
sen such that there is a sufficient number of websites to review after filtering (see Sec-
tion 4.3.4), and each subsequent bucket is enlarged with an intuitively chosen variable
scale factor to ensure an appropriate representation.

Bucket Range start Range end Scheme

1 1 5,000 Random 100
2 5,001 25,000 Random 100
3 25,001 100,000 Random 100
4 100,001 1,000,000 Random 100

Table 3: Bucket composition scheme

4.3.4 DOMAIN FILTERING

Initial experiments using Tranco show that there are many poor quality websites in the
list. Some are known to spread malware, host porn, are unreachable or serve no content
at all. Some are in a foreign languages other than English or Dutch and are incompre-
hensible without the use of a translation service. When using a fully automated solution
such as a crawler this may be acceptable, but when manually inspecting websites it is not.
The main goal of pre-filtering domains is to ensure that the time and effort of the review-
ers is utilized as efficiently as possible, and to minimize exposure to malicious content.
Therefore, domains are progressively filtered using the conditions below. A domain is
discarded from the bucket as soon as any of the checks fails.

1. Domain validation
The domain is parsed and checked for validity by the tldts10 package. A valid domain is
defined as a string containing only an alphanumerical sequence of characters, dots, and
dashes. It may not start or end with a dot or dash, and no consecutive dots or dashes are
allowed. The domain must end with a valid suffix (such as .nl or .com).

2. Public DNS resolvers
Websites may host inappropriate or unsafe content, for which domains are checked us-
ing 9 different secure DNS resolvers (NextDNS, Quad9, OpenDNS Family Shield, Cloud-

10https://www.npmjs.com/package/tldts
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flare Malware+Adult, CleanBrowsing, Comodo Secure DNS, Neustar Family Secure, Ad-
Guard Family Protection, and ControlD Family Friendly). The reason for selecting mul-
tiple DNS resolvers is that an initial evaluation of a list of known malicious domains re-
vealed that their results vary considerably. The domain is discarded from the bucket if
any of these resolvers returns a negative recommendation.

3. IP address data
Some websites are hosted on servers with IP addresses that are known to be a secu-
rity risk. When the domain name resolves, the resulting IP addresses are checked us-
ing Open Source Intelligence (OSINT) feeds (Squidblacklist, Bluetack, Malc0de, DShield,
Spamhaus, Yoyo, Emerging Threats, CINSScore, and Mirai). If any of the IP addresses be-
longing to the domain is in any of the feeds, the domain is considered a security risk and
discarded from the bucket.

4. Reachability
Many websites turn out to be unreachable or redirect to other domains. When a website
does not load within five seconds or redirects to an unrelated domain, it is considered
unreachable and discarded from the bucket. An unrelated domain is defined as a do-
main of which the original domain is not a substring. This implies that redirects to other
subdomains such as www are allowed.

5. Content
There are websites that only contain placeholders, ’coming soon’ pages, or are com-
pletely empty. After manually evaluating a sample set from Tranco, it was found that
webpages roughly containing at least 200 visible words can be considered non-empty.
The average word length in English is approximately 4.7 characters11, thus non-empty
pages should have at least 200 ·4.7 ≈ 1,000 characters of visible text. Moreover, to be able
to interact with cookie dialogs, the content must be in a language that reviewers under-
stand. Although language detection is possible in short fragments, it is more reliable in
longer texts. If a website’s readable content length is lower than 1,000 characters or writ-
ten in a language other than English or Dutch, the domain is discarded from the bucket.

6. Iframes
One of the metrics of the experiment is the number of clicks required in the interaction
with a cookie dialog to give or deny consent. Browser plugins can inject JavaScript into a
page to detect clicks (using event listeners). Some cookie dialogs use iframes, but event
listeners cannot be added to content loaded inside an iframe. This is a result of the same-
origin policy enforced by browsers to restrict how scripts can interact with resources on
other websites.12,13 Therefore, the source code of a website is parsed, and if it contains
the string ’iframe’ the domain is discarded from the bucket. Excluding all websites that
contain iframes is an extreme measure that may have implications for the randomness
of the domain selection and thus the generalizability of the results, which is further dis-
cussed in Section 4.3.5.

Appendix B lists the final selection of domains after applying filters and creating buckets.

11https://norvig.com/mayzner.html
12https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
13https://stackoverflow.com/a/25098153
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4.3.5 LIMITATIONS

There are certain limitations that may affect the outcomes of the experiment. It is impor-
tant to be aware of these limitations when interpreting the results.

• The selection of domains is pre-filtered. For most of the filters this does not nega-
tively affect the randomness. However, if a certain category of websites solely relies
on iframes for their consent dialogs, it is possible that these websites are systemat-
ically excluded from the buckets. This poses a threat to the validity of the outcome,
as it may negatively affect the generalizability of the results. Observing the effects in
a manual evaluation revealed that approximately 30% of the domains is discarded
by the iframe-filter, but no specific patterns or categories could be identified.

• When evaluating websites, reviewers indicate the status of the visit by manually se-
lecting a ’reason’ (further specified in Section 4.4.2). There is a risk that reviewers
evaluate situations differently, which may lead to inconsistent results. To reduce
this risk, the reviewers have jointly evaluated a set of websites to align their evalua-
tions as much as possible.

• Websites regularly change, which may also impact the placement of cookies and
thus the outcomes of the experiment. Furthermore, cookie dialogs are subject to
change due to evolving regulations. This makes it difficult to get reproducible re-
sults, and it should be taken into account that the results are a representation of
the situation at one point in time.

• Content on websites is not always controlled by website owners. Advertisement
space can be sold to various external parties and the placement of cookies can
vary between visits. Advertisements may also be dynamically interspersed at a cer-
tain time interval during a single visit, resulting in an increasing number of cookies
while a webpage is open. Similar complications occur when websites employ A/B
testing that also involves the placement of cookies. These circumstances limit the
possibility to get reproducible results.

• The results of DENY BASIC and DENY ADVANCED may not be directly comparable,
because some websites only offer one of these actions whereas others offer both.

• The external data sources used to determine the purpose of a cookie may produce
inconclusive results. One source may categorize a cookie differently than the oth-
ers, and for completeness it has been decided that both purposes count. When a
cookie’s purpose cannot be determined, it is labelled as Unknown and not counted
towards the number of violations. Section 4.7 discusses alternative approaches to
handling unclassified cookies.

• Another limitation, or risk, concerns the manual cookie dialog interaction in the
DENY ADVANCED mode. Some cookie dialogs are so complicated that it is not always
clear whether all possible options have been deselected. When there are multiple
possible paths, there may be a difference in click count between reviewers due to
the manual nature of the cookie dialog interactions. To reduce this risk, a total of
10 recordings is checked in this mode by a second reviewer.

• Some websites make use of CMPs to collect and propagate cookie preferences to
third parties. When a website is reachable but their CMP is down, there is a risk
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that the cookie preferences are not saved correctly. This risk is partly mitigated by
conducting the experiment over a period of several weeks and visiting each website
multiple times.

• Lastly, not all websites need to comply with European privacy laws. For example,
the GDPR applies to "a company or entity which processes personal data as part of
the activities of one of its branches established in the EU, regardless of where the data
is processed; or a company established outside the EU and is offering goods/services
(paid or for free) or is monitoring the behaviour of individuals in the EU."14 When
a website places cookies but does not fall in either of these categories, it does not
necessarily mean a violation of the law.

In conclusion, although the data resulting from the experiment is not guaranteed to be
without errors, it is considered largely representative of what’s on the internet.

4.4 ARTIFACTS

Four supportive tools (artifacts) have been developed to assist with conducting the exper-
iment. The stakeholders are the participants in this project, and the tools are primarily
intended to be used within the context of this experiment. However, external parties may
be interested in running their own instance of the experiment, and therefore the source
code has been made publicly available on Github.15 The tools have been tested manually
to validate that everything works as expected.

1. Domaintool: loads domains and corresponding rankings from a Tranco CSV file,
creates buckets according to the bucket composition scheme, sanitizes the buckets
in line with the domain quality filtering rules, outputs the results to the terminal,
and saves the selected domains to a persistent storage location. This application
has no dependencies on the other tools and can be used stand-alone.

2. API: provides an interface for clients such as the browser plugin to communicate
with the database. There are endpoints to get statistics, get the next website to
visit, report (POST) cookies and clicks, get a list of cookies for which no purpose has
been determined yet, and report (POST) cookie purposes.

3. Browser plugin (’Cookie Helper’): an extension for the Chrome browser that facili-
tates visiting a website in a selected mode, counting the number of clicks while per-
forming cookie dialog interactions, and recording which cookies have been placed
during a visit. The plugin is a consumer of the API.

4. Cookiepurpose: fetches cookie names from the API for which no purpose has been
determined yet, consults the three external data sources (CookiePedia, CookieDatabase,
Open Cookie Database), and POSTs the results to the API.

The API runs on a central webserver, and the domaintool, browser plugin and cookiepur-
pose applications run locally on the user’s machine. The following activity diagram shows

14https://ec.europa.eu/info/law/law-topic/data-protection/reform/
rules-business-and-organisations/application-regulation/who-does-data-protection-law-apply_
en

15github.com/koenberkhout/dark-patterns-project
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which sequence of actions should be performed to conduct the experiment using the
supportive tools, and how the resulting data is exchanged. The experiment starts with the
domaintool and finishes as soon as there are no unreviewed domains left in the database.

Domaintool API Browser plugin Cookiepurpose

Parse Tranco list, 
create buckets

Buckets

Output 
results to 
terminal

Import 
bucket lists

Bucket lists 
saved to 

persistent 
storage

Start API

Enter and 
validate API key

Unvisited 
domains in 
database

Get domain, visit 
website, and 

perform actions

Yes

Fetch unpurposed 
cookies

Cookies + clicks

Post to API

<for each mode> CookiePedia

Cookie Database

Open Cookie 
Database

Cookie names

Purposes

Post to API

<for each cookie>No

Apply filters

Figure 2: Activity diagram supportive tools

4.4.1 DOMAINTOOL

The domaintool was initially developed as a Bash script, and then rewritten to a Node
application using TypeScript which facilitates type checking during development. It is
composed of a set of modules (classes) with a manageable scope. When functionality is
needed beyond the native Node capabilities, open source libraries are first compared us-
ing a set of criteria including age, number of dependencies, development activity, weekly
downloads, stars and open issues on Github, and documentation before being selected.

The major challenge in developing this application is limited concurrency, because checks
need to be performed on potentially a large number of domains while external services
such as DNS resolvers may not be flooded with requests. Therefore, domains are checked
in chunks of 25 using a rate-limited job queue with the same number of active workers,
each of which responsible for processing one job (checking a domain). Jobs are added
to the job queue with an interval of 0.5 seconds and get immediately picked up by an
available worker. Each job has a time limit of 10 seconds, which is chosen after observing
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the average time to complete the evaluation of a domain. The next chunk of domains is
processed once all jobs in the current job queue have been completed.

0
0.5 ... 11.5

12

Job 1 (limit=10s) Job 2 (limit=10s) Job ... (limit=10s) Job 24 (limit=10s) Job 25 (limit=10s)

Figure 3: Domaintool job queue timeline

Sequentially checking 25 domains would take at most 25∗ 10s = 250 seconds, whereas
with the limited concurrency approach it takes at most 12s +10s = 22 seconds. The gen-
eral formula to calculate the maximum time needed to process a chunk containing D
domains with a rate limit of R and a time limit of L seconds per job is (D ∗R −R +L) =>
O (D ∗R). Other operations such as starting the application are negligible.

The simplified class diagram below shows how the domaintool is composed of different
classes. Each class has its own responsibility and is exported as a JavaScript module,
which is then dynamically imported where necessary. Some classes only contain static
functions (’class methods’) and need not be instantiated explicitly, but this distinction is
disregarded on purpose because in JavaScript objects are always implicitly created.

App

+ start()

index.js

1

1

Config

Bucket

+ createBuckets(entries): 
bucket[]

1

1

Parser

+ getEntries(): 
entry[]

1

1

Dns

+ check(domain)

1

*

IpData

+ checkMultiple(ips)

CustomResolver

+ dig(domain)

1

*

Content

+ check(domain)

Reachability

+ ensure(domain)

1

*

1

*

1

*

Figure 4: Domaintool class diagram

The collaboration between objects in the domaintool is shown in the sequence diagram
in Figure 5. Promises are used where no value is explicitly returned after a function in-
vocation. If any of the checks fails, the promise is rejected and the domain is discarded
from the bucket. As with the class diagram, helper functions are intentionally left out.
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:App :Bucket:Parser

entries

createBuckets(entries)

buckets

:Dns :IpData :Content:Reachability

getEntries()

:CustomResolver

Loop/par: for each domain ?  bucket

check(domain)
Par: for each resolver ?  resolvers

dig()

checkMultiple(ips)

ensure(domain)

check(domain)

Loop: for each bucket ?  buckets

Concurrently processed 
in chunks of 25 domains 
(rate-limited).

ips

Print results

start()

Figure 5: Domaintool sequence diagram

Figure 6 shows the partial results produced by the domaintool after processing one chunk.
Domains printed in green are selected for inclusion. Domains printed in red did not pass
the filters and are discarded from the bucket.

Figure 6: Domaintool results
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4.4.2 BROWSER PLUGIN

Figure 7: Browser plugin GUI

The Cookie Helper (Figure 7) is a custom-built plugin for
Chrome written in JavaScript. Its main purpose is to auto-
mate the most time-consuming actions that are involved
with reviewing websites and their cookie placement be-
havior. There are various states the plugin can be in, and
actions in the GUI may cause the state to transition to an-
other state. Once the user has entered a valid API key, it
moves to the superstate mode_initial. In this state, the
user visits the website without performing any actions
and records which cookies have been placed. In the other
modes, the user interacts with cookie dialogs. Both cook-
ies and the number of clicks are recorded. This core func-
tionality has been extensively tested by three reviewers
and shown to work correctly. The state machine diagram
in Figure 8 depicts the possible states and the actions that
can initiate state transitions.

Awaiting 
API Key

checkAndSave [invalid]

mode_X

checkAndSave [valid] / switchMode(initial)

Idle

Popup open

openExtensionPopup

Visiting 
website

next [available]

openExtensionPopup

Recording 
data

record [website visited]

[done]

[close event]

revisit

X ?  { initial, accept all, deny 
basic, deny advanced }

switchMode(X)

Figure 8: Browser plugin state machine diagram

After visiting a website, but before recording the cookies and clicks, the user must se-
lect one of the following reasons. This indicates whether special circumstances occurred
during a visit.

1. Everything okay (default)

2. Dialog, but action unavailable

3. Notice only

4. No dialog/notice at all

5. Website not loading

6. Landing page (e.g. country selector)

7. Incomprehensible language

It is unnecessary to revisit a website in any of the remaining modes when the selected rea-
son is 3, 4, 5, 6, or 7, because the outcome of the visit is expected to be identical. In these
special cases, the API automatically records the result for this website for all of the modes.
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4.4.3 API

The API enables multiple remote clients to fetch and store information, and is composed
of a MySQL database and a PHP application built with the Fat-Free16 micro-framework.
This framework provides functionality such as a routing engine and database connectiv-
ity that is by default safe from SQL injection.

Figure 9 is a model of the database that is used in the API. It is normalized to the extent
possible. The website table is filled with the domains that are selected by the domaintool.
The reason table contains the seven reasons introduced in the previous section. When a
recording is received from the browser plugin, an entry is inserted into the recording ta-
ble, and then all corresponding cookies are inserted into cookie and linked to this record-
ing. The purpose table contains all cookie names and purposes insofar as they can be
determined by CookiePedia, CookieDatabase and Open Cookie Database.

reason

PK id integer

UN description text

is_default boolean

website

PK id integer

UN rank integer

UN url text

user text

modeX_fetches integer

recording

PK id integer

FK reason_id integer

FK website_url text

mode text

date datetime

clicks integer

purpose

PK id integer

UN cookie_name text

cookiepedia text

cookiedatabase text

opencookiedatabase text

cookie

PK id integer

FK recording_id integer

website_url text

domain text

FK name text

value text

(...) misc

Figure 9: API database model

16https://github.com/bcosca/fatfree
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There are various endpoints that enable clients to get information from- and add data
to the database, which all require authentication. Hence, each call must be accompa-
nied with an API key or the response is 401 Unauthorized. Sensitive information such as
database credentials are loaded from a .env file. Endpoints have a JavaScript Object No-
tation (JSON) response type. The endpoints listed below are defined in the Router class
and implemented in the Controller.

• GET /

• GET /stats-reasons

• GET /validate-key

• GET /next-website/@mode

• POST /report-cookies/@mode/@url

• GET /unpurposed-cookie-names

• POST /report-cookie-purposes/@which

4.4.4 COOKIEPURPOSE

Once cookies have been added to the database as part of a recording, their names can
be fetched from the /unpurposed-cookie-names endpoint. Similar to the domaintool,
the cookiepurpose tool is a Node application written in TypeScript. It uses the cook-
ies’ names to determine their purpose by concurrently consulting CookiePedia, Cook-
ieDatabase and Open Cookie Database. Getting purpose data requires a different ap-
proach for each of the external sources, which is reflected in the design of the tool. Whereas
reading entries from the CSV file provided by the Open Cookie Database is straightfor-
ward, getting data from the other sources requires more effort.

CookiePedia
Although CookiePedia has the largest cookie database, they offer no possibility to pro-
grammatically access the data. An email was sent to request access to an API (if any)
or downloadable file, but the message remained unanswered. Therefore, CookiePedia
is scraped using the Chromium automation tool Puppeteer17. It is equipped with the
Stealth18 plugin to avoid detection, as some websites employ bot detection techniques to
block crawlers. The setup has been validated manually to ensure that the scraper works
as expected. This is indeed the case, either because CookiePedia does not perform bot
detection or because the scraper could not be detected.

Cookie Database
Similar to CookiePedia, Cookie Database does not have a publicly available API. A possi-
ble workaround would be to scrape the website, but the Complianz19 WordPress plugin
was found to use an undocumented API on cookiedatabase.org that allows for determin-
ing cookie purposes in bulk. Complianz is one of the maintainers of the Cookie Database
project. A solution was found after reverse-engineering the open source plugin to dis-
cover the required request format, which is reflected in the
CookieDatabase.composeRequestOptions()20 function.

17https://github.com/puppeteer/puppeteer
18https://github.com/berstend/puppeteer-extra
19https://nl.wordpress.org/plugins/complianz-gdpr/
20https://github.com/koenberkhout/dark-patterns-project/blob/main/cookiepurpose/

src/CookieDatabase.ts#L37
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The class diagram in Figure 10 models how the cookiepurpose application is composed.

App

+ start()
+ getCookieNamesToDetermine()

index.js

1

1

Reporter

+ reportCookiePurposes()1

1

CookiePedia

+ determinePurposes 
(cookienames)

CookieDatabase

+ determinePurposes 
(cookienames)

OpenCookieDatabase

+ determinePurposes 
(cookienames)

1

1

1

1

1

1

Figure 10: Cookiepurpose class diagram
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4.5 RESULTS

After visiting the 400 selected websites, it was found that the majority does not show any
cookie dialog or notice. The complete distribution of found reasons is given in Figure 11.
Note that all reasons are mutually exclusive except 1 and 2, thus the domain count is
|1∪2|+ |3|+ |4|+ |5|+ |6|+ |7| = 400. Reasons 1–4 indicate a successful visit, and reasons
5–7 indicate an unsuccessful visit. If the reason is 3 or 4, the results are the same for each
visiting mode and only the INITIAL mode is considered.
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Figure 11: Reason distribution

Henceforth, all domains with reasons 5–7 will be ignored. The valid result set for the
initial mode consists of the 386 remaining domains. Successful interaction with a cookie
dialog is required in the other three modes, thus only domains with reason 1 are included.
The result count is the total number of domains with a valid result for a specific mode.
None of the visited websites with a DENY BASIC action offered DENY ADVANCED and vice
versa. Table 4 lists the result count for each mode.

Mode Result count

INITIAL 386
ACCEPT ALL 154
DENY BASIC 126
DENY ADVANCED 134

Table 4: Result counts

4.5.1 COOKIE COUNTS

Figure 12 shows the average number of cookies placed by the visited websites, rounded
to the nearest integer. It is apparent that ACCEPT ALL results in the greatest number of
cookies, but the other modes do not differ much from each other. This indicates that
cookie dialogs are likely to be effective when the user wants to give consent, but also that
denying consent does not result in a lower number of cookies than initially placed.
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Figure 12: Average cookie counts

There are outliers in the result set that cause the average cookie counts to give a distorted
impression of the number of cookies placed in the various modes. The cookie count
distribution in Figure 13 shows these outliers and compares the results of each mode.
The left border of the box is the first quartile (Q1) and the right border is the third quar-
tile (Q3). Values higher than Q3+ 1.5 · (Q3−Q1) are considered outliers. Similar to the
average cookie counts, the distribution suggests that giving consent is probably effective,
but rejecting cookies in any of the DENY modes does not result in a substantially lower
number of cookies than initially placed.
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Figure 13: Cookie count distribution

4.5.2 COOKIE PURPOSES

Although the cookie count is the largest after ACCEPT ALL, there is still a significant num-
ber of cookies placed in the other modes. To determine the purpose of these cookies,
the categorizations of the three external sources are consulted and mapped according
to Table 1. If the purpose can be determined, it is classified as either Necessary, Perfor-
mance, Functionality, or Marketing. As discussed in Section 4.2, only necessary cookies
are exempted from explicit user consent. Table 5 lists the average number of cookies for
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each mode by purpose and bucket. It seems that the number of cookies decreases when
progressing from bucket 1–4. As can be seen in Figure 12, this is not necessarily true.

#Necessary #Performance #Functionality #Marketing #Unknown

INITIAL

Overall 2.4 3.9 0.9 4.1 2.9
Bucket 1 3.2 4.3 1.5 5.0 5.7
Bucket 2 2.7 4.7 1.4 5.7 2.9
Bucket 3 1.7 3.2 0.5 3.2 1.7
Bucket 4 1.7 3.4 0.3 2.5 1.0

ACCEPT ALL

Overall 4.9 6.4 1.7 14.3 8.1
Bucket 1 5.7 6.6 2.3 11.7 7.7
Bucket 2 4.7 6.7 1.4 14.1 6.9
Bucket 3 4.5 5.9 1.6 18.1 10.1
Bucket 4 3.5 5.8 0.8 16.1 8.2

DENY BASIC

Overall 3.4 3.4 0.8 3.1 4.9
Bucket 1 3.8 3.2 1.2 3.6 6.7
Bucket 2 3.3 3.3 0.5 1.9 3.4
Bucket 3 3.4 3.3 0.7 3.6 4.3
Bucket 4 2.3 3.4 0.1 3.5 2.5

DENY ADV.
Overall 3.6 3.7 0.9 3.7 4.9
Bucket 1 4.2 4.2 1.3 4.0 7.1
Bucket 2 3.2 3.2 0.6 1.8 2.8
Bucket 3 3.4 3.2 0.9 5.5 5
Bucket 4 2.4 4.1 0.1 3.4 2.4

Table 5: Cookie purposes by type

From this table it appears that denying consent results in a small increase in necessary
cookies and a small decrease in unnecessary cookies (performance, functionality, mar-
keting). In the INITIAL mode, only 52 out of 386 websites do not place any unnecessary
cookies, which is a failure rate of approximately 86.6%. Figure 14 shows the distributions
of the unnecessary cookies that are placed in the various modes.
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Figure 14: Unnecessary cookies distributions
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4.5.3 CLICK COUNTS

Having experienced the proliferation of cookie dialogs after the GDPR entered into force,
the first intuition is that it is considerably easier to accept all cookies than to reject them.
To test this assumption, the Cookie Helper tool recorded the number of clicks required to
interact with a cookie dialog in addition to the number of cookies placed. A visit is suc-
cessful when the action belonging to a mode can be successfully performed. Although
four distinct actions have been defined, doing nothing in INITIAL is an empty action for
which the click count is always zero. Thus, the following comparison only considers ac-
cepting and denying consent. Table 6 lists the average number of clicks needed to per-
form the action that corresponds with a certain mode.

Mode Overall Bucket 1 Bucket 2 Bucket 3 Bucket 4

ACCEPT ALL 1.1 1.2 1.0 1.1 1.3
DENY BASIC 2.1 1.7 2.1 1.9 3.8
DENY ADVANCED 33 16.9 56.6 45.7 6.1

Table 6: Average click counts

Whereas ACCEPT ALL and DENY BASIC do not require many clicks, DENY ADVANCED takes
more effort to complete. There is a large difference between the buckets in this mode, and
analyzing the individual click counts reveals that a few extreme outliers strongly influ-
ence the averages. Table 7 lists the average click counts without outliers for each bucket.

Overall Bucket 1 Bucket 2 Bucket 3 Bucket 4

Average 6.8 7.1 8.3 6.6 6.1
Outliers any > 31 254,73,67,55,51,39,38 1265,286,262 876,151,126 none

Table 7: Average click counts without outliers for DENY ADVANCED

Figure 15 shows the overall click count distribution and the distributions partitioned by
bucket for DENY ADVANCED. The outliers have been omitted for readability.
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Figure 15: Click count distributions without outliers for DENY ADVANCED
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Counting the required number of clicks in this mode was identified as a risk in Sec-
tion 4.3.5 due to potential differences between reviewers. Therefore, the number of clicks
submitted by reviewer 2 and 3 are each validated by reviewer 1 for five visited websites.
These websites are randomly drawn from the result set.

Set A: { mysql.com=10, bbc.com=67, venturebeat.com=39, discogs.com=51, cc.com=14 }
Set B: { reuters.com=15, espn.com=55, livestrong.com=73, telenet.be=27, sixt.com=12 }

Set Reviewer AVG AVG(∆) AVG(%∆) MAX(∆)

A 2 36.2 0.7 1.9% 3
B 3 36.4 1.1 3.0% 5

Table 8: Click count validation

The average number of clicks is 36.3 and the average absolute difference in clicks is 1.1.
The maximum absolute difference found is 5 (livestrong.com). The deviation is an ac-
ceptable 2.5% on average.

4.6 DISCUSSION

The results reveal that in general there is a marginally higher cookie count after rejecting
cookies than initially placed. This does not necessarily mean that doing nothing is more
effective than rejecting cookies. It was found that in most cases websites save the user’s
cookie preferences by placing one more ’preference’ cookie. This indicates that doing
nothing is as effective as rejecting cookies. In some cases, however, the purpose of the
newly placed cookie could not be determined nor inferred.

Although doing nothing is similarly effective as rejecting all cookies, this does not mean
that there are no violations. On average, 8.9 unnecessary cookies are placed before any
cookie dialog interaction has taken place. This is slightly reduced to 7.3 and 8.4 in DENY

BASIC and DENY ADVANCED, respectively. These numbers are probably on the low end,
because they do not include cookies whose purpose could not be determined. In an ideal
situation, the number of unnecessary cookies should be zero.

The observed failure rate is approximately 86.6%, while the study by Bollinger et al. found
a failure rate of almost 95% of the websites. Ideally, the situation has improved with nearly
ten percent, but Bollinger focused exclusively on websites with a CMP which may cause
an unfair comparison. Whereas Sanchez et al. refer to the placement of tracking cook-
ies despite denying consent as ’false rejections’, it is now found that these cookies were
probably already placed on page load. They also observed that the majority of the web
pages place unnecessary cookies even if users do not give consent, which is confirmed by
the findings in this substudy. Furthermore, they found that rejecting tracking is usually
ineffective, which is substantiated by the non-decreasing cookie counts in DENY BASIC

and DENY ADVANCED in Figure 12 and Figure 13. What appears to have improved in the
last three years is the ease at which users can (seemingly) opt out from tracking. Sanchez
found that only 4% of the website have a clear DENY BASIC option, whereas Table 4 indi-
cates that currently nearly 33% of the websites provides such option.
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Table 5 suggests that higher-ranked websites place more cookies than websites with lower
rankings, but this observation is contradicted by the total cookie counts in Figure 12. It is
clear that websites with a high ranking place more cookies in INITIAL than websites with
a low ranking, but the other modes do not indicate a clear trend. Note that one of the lim-
itations of this study is the use of three external data sources to determine the purpose of
a cookie, and that the resulting purpose data may overlap.

There is a strong resemblance in the cookie placement behavior between the modes af-
ter rejecting cookies. However, the effort needed to complete the actions varies greatly. It
requires on average 2.1 clicks to complete DENY BASIC, whereas DENY ADVANCED requires
on average 33 clicks. As mentioned in the results section, none of the visited websites
with a DENY BASIC option offer DENY ADVANCED and vice versa. The majority of the vis-
ited websites only present the user with a complicated cookie dialog, making it unnec-
essarily difficult to reject all cookies. There is a strong imbalance between accepting and
rejecting cookies with on average 1.1 : 33 clicks, indicating the presence of the obstruction
dark pattern.

4.7 FUTURE WORK

One of the limitations of this study is the usage of three external data sources for deter-
mining cookie purposes, with the advantage that there is more purpose data available. All
purposes count when results are inconclusive, which may lead to inconsistent results. It
would be useful to analyze the differences between the external sources, and contribute
to improve the cookie data by submitting corrections.

As discussed in Section 4.3.5, the selection of domains is pre-filtered. Whereas most of the
filters do not greatly affect the randomness, the restriction that all websites containing
an iframe be excluded may negatively affect the generalizability of the results. This was a
concession made to be able to count the number of clicks while performing cookie dialog
interaction. For additional validation of the results, the experiment should be redone
without using the restrictive iframe filter.

Cookies for which the purpose could not be determined do not fall in the categories nec-
essary or unnecessary and are thus not taken into consideration. Future research could
think of ways to determine their purpose, for example by scraping on a larger scale or by
making predictions based on calculations such as the entropy of a cookie value.

The GDPR only applies to "a company or entity which processes personal data as part of
the activities of one of its branches established in the EU, regardless of where the data is
processed; or a company established outside the EU and is offering goods/services (paid
or for free) or is monitoring the behaviour of individuals in the EU"21. Being able to au-
tomatically determine whether a website meets these requirements would improve the
generalizability of conclusions drawn based on the types of cookies placed by websites.

The artifacts that are created to support the experiment have undergone thorough man-
ual testing. An important engineering aspect that has been omitted due to time con-
straints is automated testing. The tools will not be deployed to an external production

21https://ec.europa.eu/info/law/law-topic/data-protection/reform/
rules-business-and-organisations/application-regulation/who-does-data-protection-law-apply_
en
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environment. Nonetheless, if the tools prove helpful to other projects and be used on a
larger scale, it is recommended to first make a test plan and create automated tests. This
simplifies refactoring and the addition of new functionality without introducing breaking
changes, and may increase comprehensibility for developers.

4.8 CONCLUSION

In this substudy, 400 websites have been reviewed using custom-built software tools to
determine their compliance with cookie preferences. One of the findings is that doing
nothing and rejecting cookies are similarly effective. Therefore, users are recommended
to hide cookie dialogs, for example by installing a browser extension that can hide ele-
ments in the content of the website. Although websites should not place unnecessary
cookies without consent, on average more than 8 of this type of cookies are placed on
each visit. It is therefore advisable that DPAs increase their level of surveillance and im-
pose sanctions to protect EU citizens from being excessively tracked. The large number
of clicks required to complete DENY ADVANCED suggests that data protection authorities
have righteously started imposing fines on companies that do not offer the possibility to
reject cookies with the same effort as to accept them.22,23 Here too, based on the findings
in this study, it is recommended that DPAs enforce more stringently and set examples for
other companies to do better. Given that each EU member state has its own DPA allows
for discrepancies among enforcement between countries. In theory, companies could
move from e.g. France to Ireland to avoid fines. Therefore, it is worth considering to in-
tegrate all national DPAs into one powerful European DPA.
According to the definition in Section 4.2, websites comply with cookie preferences if they
do not initially place unnecessary cookies and adhere to the cookie preferences stated by
a visitor, regardless of intentions. It has been found that the vast majority of the web-
sites does not satisfy this criterion. All this considering, the conclusion arises that many
websites do not comply with cookie preferences, and there is still a long way to go.

22https://www.theverge.com/2022/4/21/23035289/google-reject-all-cookie-button-eu-privacy-data-laws
23https://www.cnil.fr/fr/node/122962
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5 CRAWLING WEBSITES FOR COOKIES AND COOKIE DIALOGS

5.1 INTRODUCTION

In the substudy in Section 4, 400 websites were manually visited. Although 400 websites
gives an insight into the behavior around cookie dialogs, the manual nature of this re-
search limits the scaleability and elevates the risk of user error. In this substudy a larger
amount of websites is visited in an automated fashion, withing the limitations of the re-
sources available (be it time, bandwidth or other), to get a broader view of the internet
landscape. This will give an unbiased view, eliminating the chance of user error or user
bias that could possibly alter the results.

Using the data gathered, an analysis on how many websites do or do not show a cookie
dialog and what cookies were set is done. Using a ranked list will give an idea if there are
differences between more and less visited websites. The same applies to the options that
are showed in a cookie dialog. How many website show which options to the user, and
what happens after interacting with an option in a cookie dialog will give an insight into
what actually happens behind what the user can see, which and how many cookies are
being set before any interaction is done and what cookies are set or altered when a user
gives or denies consent.

Information about the design and wording of the cookie dialog, and its options, is also
saved and can give an insight into what designs choices are made. Future work will be
able to use this information to categorize each website as to what special designs are used
to get users into accepting something the website wants instead of what the user wants.

5.2 RESEARCH

To visit a large list of websites in an automated fashion a few questions are to be an-
swered:

How to performantly scale visits
Manually visiting websites is a good option if a small list of websites needs to be visited.
Each visit can be assisted by an offloading program that saves relevant information as
is done in Section 4. However, visiting each website manually takes time and can only
be scaled by adding more users, but each single user can only visit a certain amount of
websites and adding more users could add more user error as well. Scaling to a lot more
websites in an automated fashion will give a more profound unbiased analysis of the
current online landscape.

In this substudy 100,000 websites are visited in an automated fashion. This number was
deemed a good balance between visiting enough websites and being executable given the
resources available. Especially time and bandwith available were the biggest limiting fac-
tors. Given the performance of current hardware and software, this can be done without
user interaction by a home computer. Although the answer seems simple, use an auto-
mated browser and run multiple session concurrently, the answer is harder than it looks.
Keeping resource usage controllable and saving all information orderly and without fail-
ure was necessary to avoid crashes that could stop the process prematurely. Work on
keeping the automated visit undetectable was also needed to limit websites from show-
ing a different website than what a user could see, set different cookies, or even blocking
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access to the website.

How to detect a cookie dialog in an automated fashion?
In this substudy the presence of a cookie dialog will be automatically detected on each
visited website. Websites that do or do not show a cookie dialog will be compared to the
cookie being set.

Visiting a website in an automated fashion without user interaction is fairly straightfor-
ward, as is the detection of cookies being set. Detecting the presence of a cookie dialog
is harder, as is already done by other papers (like [Aer21] and [EN16]). A cookie dialog
can be implemented in numerous ways and the nature of this makes is hard to detect
automatically.

How to detect the options in a cookie dialog?
In this substudy the presence of options available in each detected cookie dialog will also
be automatically detected. Eventually the options are to be interacted with, the design
information of the options and the cookies set after interaction are to be saved. The de-
tection of the options will show what options each website makes available to the end
user and what cookies are being set after interaction.

5.3 EXPERIMENT

5.3.1 CONCEPT

1. Purpose of the experiment
The purpose of the experiment is to obtain, from a large list of websites, information
around the presence and design of the cookie dialog and the cookies being set. This
information from each website will tell if a cookie dialog is used, what options are present
on a cookie dialog, what and how many cookies are set with or without a cookie dialog,
and what and how many cookies are set before or after giving or denying consent.

2. How will the experiment work
This experiment will work by visiting a large list of websites in an automated fashion,
running fast and reliable. During each visit the presence of a cookie dialog and its op-
tions is detected. Using the detected options user interaction is executed, simulating a
user clicking on an option. Before and after interaction a screenshot, cookies, and design
information of the cookie dialog and its options is saved to an SQL database.

3. Automated browser technology
The experiment uses an automated browser to visit a large list of websites. The exper-
iment uses multiple concurrent sessions where each session will spawn a browser in-
stance and visit a website. There are a few different automated browser solutions the
could have been used here. Pyppeteer24 was extensively tested but not a valid options
since Pyppeteer can not enter iframes which was used by around 5% of the cookie dialogs.
OpenWPM25, used by Englehardt et al. [EN16] was also extensively tested using coding
already used from previous tests. Although it was a very performant solution that out
of the box saves a lot of information that was needed, because of the framework around
it, it was determined it would be too difficult to implement all the features needed and

24https://github.com/pyppeteer/pyppeteer
25https://github.com/openwpm/OpenWPM
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development was halted.

Selenium was eventually chosen for the final version. Previous coding efforts could be
reused here as well. Selenium is perhaps the most used automated browser and a lot
of documentation and problem solving can be found online. Selenium-wire26 was also
tested to easily detect redirects and easily block images and other bandwith hungry files.
It was used for a full run, but afterwards it was determined there were a lot less cookies
being detected and this was therefore repaced by the normal Selenium version. Selenium
however, comes with one mayor issue that needs to be addressed during the runs. If
a browser session is not shut down correctly, some processes and temporary data stay
behind. If too many sessions were not exited correctly the lingering processes will tax
the CPU until the system starts halting. The temporary data could fill up the hard disk
stopping further sessions. Both of these as well as running to many concurrent sessions
at the same time only results in failed visits, without a clear message to the user.

4. Detecting a cookie dialog
Some websites use a Consent Management Platform (CMP) to offload the process of cre-
ating and maintaining a cookie dialog. Hardcoding detection information from a CMP to
automatically detect a cookie dialog remains insufficient because each and every website
that integrates a certain CMP can usually customize it to their liking. CMPs can give mul-
tiple options to codewise integrate their cookie dialog into the website and every website
can decide to tweak the implementation as well.

Detecting certain keywords comes with similar problems, each website can change the
wording in a cookie dialog, the logos that are used, and the cookie dialog can be imple-
mented in the language of the website. Figure 16 shows a standard cookie dialog, and
Figure 17 shows one of the custom templates of the same CMP. The custom templates
can also be further tweaked.

And even if a CMP could be easily detectable, many websites do not use a CMP and im-
plement a cookie dialog any way they want. According to a study from 2020 [MBS20] only
6.2% of the 28,257 visited websites contained a known CMP while this substudy detected
around 36% of the websites contained a cookie dialog.

Figure 16: Standard cookie dialog from https://www.cookieinfo.net/

26https://pypi.org/project/selenium-wire/
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Figure 17: Custom cookie dialog from https://www.cookieinfo.net/

To alleviate this problem it is chosen to use certain HTML features to detect the presence
of a cookie dialogs. Specifically iframes, z-indexes and active elements. These techniques
are not solely used for cookie dialogs, but by using these techniques a list candidates is
set up that can be a cookie dialog. The text inside all of the candidates is presented to a
pre-trained machine learning model. This model predicts if any of the candidates is in
fact a cookie dialog.

5. Detecting options in a cookie dialog
The options were taken into account for the cookie dialog: ACCEPT, DECLINE, MODIFY
and SAVE. Everything that does not fit in any of these options is labeled as OTHER. Table 9
shows the declaration of each option. These options will be used by a machine learning
model and by the crawler to simulate user interaction. Figure 18 shows a cookie dialog
with the four different options in it. Some options on some cookie dialogs lead to a new
screen or new website, but this was however not pursued in this study.

Options Declaration

ACCEPT Accept all cookies
DECLINE Decline all cookies
MODIFY Modify what cookies a user will accept or decline
SAVE Save the settings for the selection of cookies
OTHER Something unrelated to the above

Table 9: Classification of options

Figure 18: Cookie dialog from https://www.nngroup.com/

As previously mentioned, each and every website that uses a CMP can adjust the cookie
dialog to its liking. The same applies to the options in a cookie dialog. Options can be
added or removed, text can be altered, a different language can be used, the wording
can be chosen to the liking of the website that implements them, and even the use of
sliders or checkboxes can be chosen. (see Figure 16 and Figure 17 for two examples from
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the same CMP). This results in making it very hard to hardcode information about the
options even if the correct CMP is detected. If the website designs its own cookie dialog
design hardcoded options cannot be used.

The different options can also be detected by hardcoded strings. This was originally used
to detect the presence of the accept and decline options on a webpage. Detecting any
of these options would then mean a cookie dialog is present. 39 English and 25 Dutch
phrases were collected for ACCEPT options and used in a initial version of the crawler.
This was however only workable for those two languages and only if it matches the exact
string. Since each and every website can determine the wording of each option making
exact strings hard to work with. The benefit of this option though was that the cookie
dialog itself would not need to be detected, if an exact match of a string is found a cookie
dialog would need to be present as well.

Eventually it was chosen to first detect a cookie dialog as previously mentioned. After a
cookie dialog is detected all HTML elements are selected that can be used for an option.
The text from all of these element are then fed into a pre-trained machine learning model.
This model predicts the option an element corresponds to.

6. Machine learning models
Although hardcoded strings were an easy solution to detect the presence of a cookie di-
alog, this could not be scaled to a lot of websites because wording can be changed by
each website and the list of websites will consist of around 30 different languages. For
both the detection of a cookie dialog and its options, it is then chosen to use a machine
learning model. A machine learning model is trained on a pre-classified list and then
when feeding the model new text it can classify if the text belongs to a cookie dialog us-
ing multiple languages. Due to the limited practical knowledge of using machine learning
models, a search was conducted to find an easy to work with implementation or library.
A classification model was used by CookieEnforcer[KNHF22] which was a good starting
point although there was no mention how this was practically used. A search for how this
model can be used quickly arrived at Simple Transformers27 an easy to use Python library
that can train and use a model only three code lines. Although CookieEnforcer used an
English only model, a better suited pre-trained model was found named XLM-RoBERTa
that is capable of using multiple languages, which is used here.

7. Other supporting technologies
To save the cookies and the design information of cookie dialogs and its options to a
persistent and reliable database, SQLite has been chosen because it is easily integrated
into a Python program.

Multiprocessing was used to spawn multiple threads at the same time. This Python li-
brary simplified the start of a subprocess, the atomical usage of global variables, and the
usage of a semaphore lock to prevent running too many CPU hungry executions at the
same time and overloading the CPU.

SimpleGUI was used to display a simple window with user options and to show the cur-
rent threads running, percentage CPU and RAM available.

8. Website list
Following a lot of previous studies [Aer21], [EEZ+15] and [KNHF22] for example and the

27https://simpletransformers.ai/
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previous Section 4 it was decided to use the Tranco list to get a large list of websites.
This list is a research based list of websites that puts the most visited websites at the top
and less visited websites at the bottom and tries to reduce manipulation by websites for
popularity. The order of the list will help determine if there are differences in cookie
dialogs, options available or cookies being set between more and less visited websites.

9. Automated browser detection
Some websites detect the presence of an automated browser. If an automated browser is
detected these websites can decide to show a different webpage not containing a cookie
dialog where for a normal user a cookie dialog was present. Also different cookies can
be set as a result. As this paper wants to show the user experience similar to reality some
precautions were taken to prevent this from happening. Undetected-chromedriver28 and
Selenium-stealth29 are two Selenium based alternatives for this problem. Although they
both reduce the detection of an automated browser, during testing sometimes only 50%
of the cookies were detected that could be found with basic Selenium. This would have
skewed the results to show less cookies being set compared to a normal user.

Eventually the least detected solution was used as explained by Jonker et al. [JKV19]. The
paper explains the details of preventing being detected as an automated browser. The
best solutions was a standard Selenium running headfull with some additional settings.

5.3.2 PROOF-OF-CONCEPT IMPLEMENTATION

The crawler has been developed as a Proof of Concept and was extensively tested. Even-
tually the crawler has been used to analyse 100,000 websites. The results of this run has
been discussed in Section 5.4

1. Environment Setup
All tests have been done on a home computer. It has an 8-core CPU capable of running
16 threads, has 64GB of RAM, an SSD hard disk and runs Windows 10 64-bit and Ubuntu
22.0.4 LTS. For further information on the programming environment, the modules used,
and settings used for the browser see Appendix D.

2. Artifacts details
The following artifacts are used to execute the automated visits:

• Populate database: To populate the database with the tables and columns that are
used and the websites to be visited

• Cookie dialog extraction: Given a browser session extract all possible cookie dialog
candidates

• Machine learning model for cookie dialogs: To train the machine learning model
using a classification of the cookie dialog candidates

• Machine learning model for options: To train the machine learning model using a
classification of the options in a cookie dialog

• Selenium: To visit the website and interact with it

• SQLite database: To save all information about the visits

28https://github.com/ultrafunkamsterdam/undetected-chromedriver
29https://pypi.org/project/selenium-stealth/

39

https://github.com/ultrafunkamsterdam/undetected-chromedriver
https://pypi.org/project/selenium-stealth/


• Crawling: To combine all artifacts into an automated, fast and stable environment

3. Populate database
The crawler uses an SQLite database where all information from each browser session
is saved (except for the screenshots, they are saved to the harddisk). The not yet visited
websites will also be prepared into this database so the crawler can read these websites
to determine which websites are still to be visited. This database will thus first need to be
filled with empty tables and columns. One of the tables is first filled with records of the
list of websites and completed with empty columns.

The database consists of four tables. elements containing information from the elements
in the website, cookies containing the information from the cookies, predictions contain-
ing all predictions made and visits containing all the visits that are made. The database
setup is further discussed in Appendix C.

4. Candidate extraction
Candidate HTML elements for the cookie dialog need to be extracted from the website
to be able to interact with them. The candidates will then be presented to the machine
learning model to predict if it is actually a cookie dialog. Cookie dialog candidates are
extracted using three different schemes: z-index, active element and iframe. The z-index
setup has been used by Khandelwel et al. [KNHF22] to detect the topmost element of a
webpage. This HTML technique is used to position an element above all other elements
of the webpage. This makes the element with the highest z-index the first element to be
viewed by the user, see Figure 19. The z-index extraction is used in two ways. First the
highest z-indexes of the whole page and second the highest z-index of each HTML layer.

Figure 19: Z-index explanation from https://tympanus.net/codrops/css_reference/z-index/

The active element is usually the element that the browser session is focused on. If a
cookie dialog is present there is a high chance the browser session is focused on this
element. An iframe is a special element and it is sometimes used to show a cookie dialog
by injecting the code into an iframe. An iframe needs to be entered by Selenium during
the session otherwise the element cannot be used or interacted with.
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At the end the candidates selection will then be finetuned and filtered. During finetuning
it is tried to get as close to the element of the cookie dialog by traversing to the child if
possible. During filtering candidates that cannot be a cookie dialog are discarded(style,
ul, il, a, svg or button), candidates that have too little text (<50 letters), candidates that
are the parent of another candidate, and candidates that are too small in physical size are
discarded as well.

To extract the option candidate elements from a cookie dialog, HTML elements are ex-
tracted that can function as a button (button, a, span and svg).

5. Machine learning models
After selecting the candidates, it should be automatically detected if a cookie dialog can-
didate is in fact a cookie dialog and what function an option candidate has, two different
machine learning models have been developed. A model is trained that can classify a
given string of text. The machine learning models are based on the use in CookieEn-
forcer [KNHF22]. Initial settings have been re-used, but the model that has been used
has been changed. CookieEnforcer uses a text classifier based on BERT.30 BERT is a natu-
ral language model that has been trained using a large dataset of unclassified text. BERT
can detect the contextual relations between words used in a text and is to be used as a
starting point to train a model using a pre-classified list of data. BERT however is limited
to the English language, to broaden the model to the use of other languages, a different
model is used that is trained on multiple languages named XLM-RoBERTa.31 This model
allows training using only one or two languages and eventually doing predictions on all
languages supported.

XLM-RoBERTa is used to develop two different machine learning models for use in the
crawling artifact. The first model will predict if a cookie dialog candidate is in fact a cookie
dialog. The second model will be able to classify the options in a cookie dialog. The
library SimpleTransformers32 is used to train the model and do predictions. This library
is simple to use in Python requiring only a few lines to get started. Further information
of the training of the different machine learning models can be found in Appendix E.

6. Automated browser detection
Techniques from Jonker et al. [JKV19] were used to limit detection of the presence of an
automated browser. Further information about the automated browser and the settings
used to prevent detection can be found in Appendix F

7. Crawling setup
Using the artifacts mentioned above, the main crawler commands the artifacts (see Fig-
ure 21 for an overview of the artifact). The crawler uses a main thread that calls in the dif-
ferent subthreads. The main thread first reads in the database if present in a list to visit.
If this is a fresh restart the database will first be populated with the websites. The main
thread starts the database thread, the GUI thread and browser sessions. The main thread
checks for aliveness of the running subthreads and also restarts the threads when too
many errors have occurred or a restart is requested. During the restart residual threads
are killed and the temp folder is reset. This need to be done because with every Selenium
session there is a possibility that the session has not exited gracefully and a lingering

30https://huggingface.co/bert-base-uncased
31https://huggingface.co/docs/transformers/model_doc/xlm-roberta
32https://simpletransformers.ai/
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process remains that eats resources indefinitely and fills the temp folder. Lingering pro-
cesses will start eating CPU resources and temporary files will fill the hard disk. Both
reasons cause the system to block itself after awhile and further browser session all end
up being unsuccessful. Unfortunately these errors do not result in a clear message, usu-
ally the website appears to not be reachable, and this only happens after visiting a larger
amount of websites.

The database thread will run a writing thread every 90 seconds. The writing thread ex-
tracts the lines from the global variables and resets them. The lines are added to the cor-
rect database table. The database thread will stop immediately when a stop is signaled by
the user After a stop is signaled either by the program, because the list of visited websites
has ended, or by the user, because of too much failed visits, the database thread stops
immediately. The writing thread however will be executed one last time after all threads
have ended gracefully or stopped with a timeout or data will be lost.

The GUI thread will show 3 buttons to pause, unpause or stop crawling. Pausing can be
helpful to temporarily free up bandwidth for other users in the network or if other actions
need to be executed during the run, because while the browser sessions are starting and
running they use a lot of bandwidth and they call focus from the OS making it hard to do
something else.

Figure 20: GUI thread

The main thread will launch as many browser threads as requested. These browser threads
will retrieve the website that needs to visited, spawn a browser instance and monitor the
instance. If a timeout occurs after 90 seconds, that would mean the browser has become
unresponsive and needs to be killed or it will take up resources indefinitely. All children
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of the thread will be killed off and a new browser instance is started with the next website.
Killing an instance does however result in temporary files being left behind.

If it is an initial visit all cookies and a screenshot is saved and the cookie dialog candidates
are prepared. The candidates are fed to the cookie dialog machine learning model. The
first positively predicted cookie dialog is used further. After a positive detection informa-
tion about the cookie dialog and a screenshot of it is saved. Then cookie dialog options
from this cookie dialog are prepared and fed into the options machine learning model.
The last occurrence of every individual type is to be saved. This is done because options
are usually positioned at the end of the cookie dialog, and if multiple predictions of the
same class is found then the last one has a higher chance of being the correct option. If
an ACCEPT option is detected then the visit continues during this session and the AC-
CEPT option is clicked and all cookies and a screenshot is saved. Otherwise this session
is finished. A screenshot after interaction can be used to check afterwards if the click has
been successfully executed.

If it is a second visit then information of the option is extracted from the database. Using
this information the option is detected and clicked on. After clicking on the option all
cookies are saved and a screenshot is saved. If anywhere in this process an iframe is
used for the cookie dialog, then the session needs to enter the iframe first before it can
continue.

During all visits errors are detected and saved into the database to prevent a revisit of a
failed website. Resources are split as much as possible. Global variables are directed by
the multiprocessing library so only one thread can use each variable at the same time
and racial problems are avoided.

For the machine learning models unfortunately using multiprocessing resulted in mak-
ing it impossible to load the models once for the whole program and share the models
between different threads, to minimize impact the models were loaded as late as possi-
ble by each thread if needed and unloaded as fast as possible. The predictions were made
atomically to reduce resource spikes.
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Figure 21: Workflow crawling

8. List of websites
The same 400 websites from the Section 4 are visited first. Added to this are the top 500
websites from each European ccTLD from the Tranco list. The same list was used in the
previous paper [Aer21]. The following countries are used: (France (.fr); Ireland (.ie); The
Netherlands (.nl); UK (.co.uk); Spain (.es); Belgium (.be); Austria (.at); Portugal (.pt); Ger-
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many (.de); Romania (.ro); Luxembourg (.lu); Switzerland (.ch); Lithuania (.lt); Hungary
(.hu); Sweden (.se); Slovenia (.si); Latvia (.lv); Italy (.it); Finland (.fi); Estonia (.ee); Czech
Republic (.cz); Slovakia (.sk); Croatia (.hr); Poland (.pl); Norway (.no); Greece (.gr); Bul-
garia (.bg)). These 27 countries will add 12,408 websites. Unfortunately not every country
ccTLD has enough websites in the Tranco list.

This list is completed to a total of 100,000 websites. To get a representative look at the
whole online happening the list of 1,000,000 websites from the Tranco list is divided into
three parts (Table 10). The 25,000 most visited websites on the list are all visited, they have
the biggest impact on the users. The remainder of the list could not be visited completely
and is divided into two parts consisting of 75,000 and the remainding 900,000 websites.
From the first part a random set of 30,000 websites are picked and from the last part a
random set of 45,000 websites are picked. This scheme was used to get a balanced view
of the 1,000,000 most visited websites.

Range start Range end Scheme Percentage used

1 25,000 all websites 100%
25,001 100,000 Random 30,000 40%

100,000 1,000,000 Random 45,000 5%

Table 10: Crawler list composition scheme

10. Protection from malicious websites
Because a home workstation was used, it was decided to use some basic protection from
malicious websites and adult entertainment. Malicious websites are filtered because they
could inject a harmfull program that damages the hardware or changes the files on the
harddisk. Because of the use of a separate OS to conduct the actual crawl this risk was
minimized, but still present. Websites containnig adult entertainment are filtered be-
cause these websites are known to sometimes be malicious especially when they are less
visited. Also because screenshots are taken the user did not want any adult or possibly
illegal material saved to the harddrive. To accomplish this a DNS provider has been used
during the crawl session that filters out DNS requests. The Family Shield from OpenDNS
has been used.33

10. Testing
Testing the artifacts was done gradually and as much individually as possible during de-
velopment. While building up the code, for each significant change in the code, the first
few websites were visited and evaluated. To set up all basic functions small crawling ses-
sions were conducted for up to 100 websites.

The gathering of the cookie dialog candidates was developed separately and tested until
most of the 250 most visited websites were successfully detected. Eventually two cookie
dialogs from this lest was not detected as a candidates.

The candidates of the 500 most visited websites were then used to train the machine
learning model for the cookie dialogs. This model was then added and used to detect the
cookie dialogs and then gather the candidates for the options in a cookie dialog. To train

33https://www.opendns.com/setupguide/?url=familyshield
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the second machine learning model the same set of websites were used. A hardcoded list
of strings was used to pre-classify as much of the options automatically as possible.

During testing several larger runs up to 2,500 websites were conducted as well. After test-
ing several methods to execute the artifact in a Windows environment is was determined
that for speed and security a Ubuntu environment would work the best. After larger tests
of up to 25,000 websites more and more problems were resolved. Eventually the full run
had to be redone multiple times.

The final run was conducted without any major problems during three sessions, because
the workstation had to be used as well.

5.3.3 LIMITATIONS

The design choices and execution of them have resulted in some limitations.

• The automated browser detection mitigations could possibly not be thorough enough,
which would mean a website could still detect its being visited by an automated
browser and show a different website or set different cookies. Detection could also
block the visit to a website entirely. This could change the results

• Some websites employ another layer of ’robot’ detection in the form of a popup
that needs to be clicked by a ’human’ in a certain way to be able to advance into the
homepage

• Some websites show another popup that blocks access to a cookie dialog, interac-
tion of this popup was not taken into account

• The detection of a cookie dialog is not 100% reliable as is the detection of options
in a cookie dialog. Which could change the results

• Although the artifact has been carfefully developed and extensively tested, it may
not work exactly as intended. Errors could still arrive that make a website visit in-
valid.

• Using a DNS provider to shield of possible malicious and adult websites could
change the results. Maybe these website are legitimate websites which are perfectly
normal to visit?

• The set up of the machine learning model is prone to error. Did enough classes
were used and were all classes labeled correctly?

• If multiple cookie dialogs are shown (which happened in 2 websites of the 500 most
visited websites), only one is taken into account

• The crawler in its current design only interacts with the cookie dialog once. An op-
tion to decline all cookies where more than one interaction is necessary is currently
not possible

• There still remain a few websites that could not be accessed and were not flagged
as unreachable. These websites show a blank page with a notice the website could
not be found
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5.4 RESULTS

5.4.1 STATISTICS OF THE CRAWLING RUN

The final crawling run was done on 100,000 sites. The run was made between July 9, 2022
and July 12, 2022. These were the statistics of the final run:

• 100,000 sites visited

• Total runtime: 67 hours

• 2.4 TB of bandwith was used

• 136,949 screenshots were made totalling 68.8 GB of data

• The SQL file was 430MB large containing 2,521,353 records

• 16 threads used on average

These are the contents of the database file:

• 143,965 total visits of which 110,356 normal visits, 4,585 timeouts, 15,050 errors,
2,110 filtered by DNS, 312 bot detections by Cloudflare, 7,056 unreachable and
13,666 in an unreadable language

• 1,564,039 cookies were saved, with 138,535 unique names

• 245,089 predictions were made of which 134,934 options and 110,155 cookie di-
alogs

• 69,517 successfull initial visits were performed, of which on 44,378 websites no
cookie dialog was detected and on 25,139 websites a cookie dialog was detected

• The machine learning model has classified 21,855 ACCEPT options , 6,577 DE-
CLINE options, 13,332 MODIFY options and 2,201 SAVE options
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5.4.2 DETECTION OF COOKIE DIALOG AND OPTIONS IN EUROPE

For all the graphs in this chapter, only European countries have been used. This will show
the cookie dialog usage inside Europe, how many cookie dialogs are used with which
technology, which options are available in a cookie dialog. From each European ccTLD
up to 500 websites have been filtered from the Tranco list. Unfortunately not every coun-
try has enough websites in the Tranco list to be visited, or some websites could not be
reached. Six countries have been discarded because of these reasons. Malta (.mt) (6),
Bulgaria (.bg) (57), Greece (.gr) (95), Cyprus (.cy) (0), Luxembourg (.lu) (181) and Austria
(.at) (157) have been discarded. Table 11 shows the number of successful visits for each
country ccTLD.

Country visited websites

Switzerland (.ch) 500
Latvia (.lv) 484
Estonia (.ee) 500
Slovenia (.si) 500
Norway (.no) 500
Hungary (.hu) 500
Lithuania (.lt) 500
Slovakia (.sk) 500
Czech Republic (.cz) 500
Portugal (.pt) 473
Finland (.fi) 468
Germany (.de) 457
The Netherlands (.nl) 500
Croatia (.hr) 500
Romania (.ro) 428
Belgium (.be) 396
Sweden (.se) 500
Poland (.pl) 476
Ireland (.ie) 468
UK (.co.uk) 498
Spain (.es) 446
Italy (.it) 497
France (.fr) 500

Table 11: List of European ccTLDs and the number of websites that have been successfully visited
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Figure 22 shows the detected occurrences of cookie dialogs for the websites visited for
each country ccTLD. The countries are ordered by the percentage of cookie dialogs de-
tected. If a cookie dialog is detected then it is split in a normal cookie dialog and an
iframe dialog. The graph shows there are big differences in the presence of a cookie di-
alog between the European countries. Most of the countries from Western Europe show
more usage of a cookie dialog (France, Italy, Spain, ...), with The Netherlands and Ger-
many being the biggest outliers. Countries that are from Eastern Europe tend to show
less cookie dialogs. Switzerland is an outlier and shows the least cookie dialogs, they are
not governed by EU laws and have implemented their own legislation. However if a vis-
itor from EU visits a website from Switzerland, then the websites has to comply to EU
rules. France is the biggest outlier that shows the most cookie dialogs, this is probably
linked to the stronger rules imposed by Commission Nationale de l’Informatique et des
Libertés (CNIL).

Looking at the technology used by a cookie dialog there are some countries that propor-
tionally use more iframes than other, but there is no clear link between the countries. The
choice between the usage of iframes or normal frames is probably arbitrarily done by a
website. Most countries however only show minor usage of iframes.
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Figure 22: Occurrence of cookie dialog and the technology of it

49



Detection of options in European countries
Figure 23 shows for each European country the detection of ACCEPT and DECLINE op-
tions in a detected cookie dialog in percentages. The countries are ordered by the per-
centage of ACCEPT options detected. If an ACCEPT option is not detected then presum-
ably the cookie dialog is only a notice and the only actual option is to close or ignore
the cookie dialog without that action making a difference. A DECLINE options can only
be detected by the crawler if it is present in the first cookie dialog screen that is shown.
There is no clear line between which countries show an ACCEPT option, but if on average
85% of the European websites show an ACCEPT option then that would mean 15% of the
websites show only a cookie notice that only tells the user cookies are used and the user
is left with a ’comply or leave’ option.

When looking at the DECLINE options, a much lower percentage than the ACCEPT op-
tion is detected here. On average a lot of websites do not use the DECLINE option in the
first screen, either hiding this option in a different screen or not presenting a DECLINE
option at all. France is the big outlier here with a big proportion of the cookie dialogs
showing the DECLINE option. As was with the higher presence of a cookie dialog, this
is probably linked to the tighter rules imposed by CNIL giving hefty fines for websites
not implementing a clear DECLINE option. Facebook recently took a hefty fine for not
implementing this option and eventually complied .34 This shows that regulation does
work, but there is still a lot of websites left in Europe that do not show a clear DECLINE
option or do not give an option at all.
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Figure 23: Detection of ACCEPT and DECLINE options in a cookie dialog

34https://www.huntonprivacyblog.com/2022/01/13/cnil-fines-big-tech-companies-210-million-euros-for-cookie-violations/
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5.4.3 DETECTION OF COOKIE DIALOG AND OPTIONS

To make all the graphs in this section the 100,000 websites that were selected from the
Tranco list have been divided into 10 buckets containing an equal amount of success-
fully visited websites, totalling 69,503 websites. Table 12 shows the composition of the
buckets. Because the Tranco list is ordered from most visited to least visited, these com-
parisons will show if there is a difference between the most and least visited websites.
If there is a trend going from more visited to less visited websites, that will show if work
needs to be done to regulate all websites and not only the more visited.

Range start Range end Number of websites

1 10373 6951
10374 20538 6951
20539 38718 6951
38719 63410 6951
63411 88356 6951
88357 170563 6951

170564 348090 6951
348091 547712 6951
547713 771411 6951
771412 1000000 6948

Table 12: Division in 10 buckets from the whole Tranco list
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Detection of cookie dialogs
Figure 24 shows the detection of cookie dialogs in the different buckets. The trend in
the graph is that the more visited websites show more cookie dialogs and lesser visited
websites gradually show less cookie dialogs (The presence drops from 50% to around
22%). First possible explanation for this is that the more visited websites (have to) follow
regulations better because regulating the most visited websites has the biggest impact on
the users. Lesser visited websites do not always follow regulation to the letter because
they are less looked at and the impact of regulating these websites is smaller. There are
also a lot of websites that only stay alive for a relatively short period of time, and by the
time these websites are looked at they are already no longer available. Second possibility
is that less visited websites have less to gain by using more cookies and do not need to
ask permission for using cookies if cookies that need permission are not used.
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Figure 24: Detection of cookie dialogs in buckets
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Options in a cookie dialog
Figure 25 shows the detection of the different options in a detected cookie dialog. The
detection of an ACCEPT option goes down a little for the less visited websites. The trend
of the DECLINE option and MODIFY option shows they are less detected on less visited
websites. The graph also shows while a good amount of websites give the possibility
of a MODIFY option, a DECLINE option is not present on a lot of websites. With less
visited websites also showing less of those options than more visited websites. In an ideal
situation all cookie dialogs should show the ACCEPT and DECLINE option. This graph
shows that a great deal of websites are not implementing these options at the same rate,
and less visited websites at even lower rates.
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Figure 25: Detection of options in the detected cookie dialogs
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5.4.4 COOKIES SET

Using the same bucket division, the graphs in this section will show the number of cook-
ies being set with or without a cookie dialog and the number of cookies being set after in-
teraction with any of the options. These will give an indication if the usage of the cookie
dialog is related to setting cookies and if selecting options has an effect on the cookies
begin set. The division in buckets will also show if more visited websites show different
behaviour than less visited websites.

Average cookies set initially
Figure 26 shows the average cookies being set for each bucket if no cookie dialog is de-
tected or initially before interaction with a cookie dialog. The graph shows on average for
all buckets more cookies are being set if a cookie dialog is detected even though no action
has been taken yet. This could be explained by the possibility of a cookie dialog setting
one temporary cookie or more to indicate no consent has been given yet. And after giving
consent this cookie can be reused or deleted depending on how the cookie(s) are used by
the website. There is however a trend for less visited websites to set even more cookies
with a cookie dialog present than without a cookie dialog present. On average 4 more
cookies are set by less visited websites with a cookie dialog present. The question is if
these cookies are legitimately used to set if no user action has taken place yet for exam-
ple or are websites setting more cookies even though a cookie dialog is present that needs
interaction?
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Figure 26: Average initial cookies set with or without a cookie dialog present
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Average cookies set after interaction
Figure 27 shows the average cookies being set for each bucket after interacting with a
cookie dialog. As should be expected most cookies are set after the crawler interacts with
a detected ACCEPT option. The trend shows that more visited websites use more cookies
than less visited websites. This could be explained because more visited websites can use
or sell more information from their visitors or can use more external advertisers to collect
data. Less visited websites could have less attention from advertisers because of the less
visitors, thus using less cookies from advertisers.
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In the next three graphs only websites are taken into account where a cookie dialog is
detect with both the ACCEPT and DECLINE option. This is done to paint a picture of
how many extra (or less) cookies are being set after interacting with the cookie dialog
and specifically with the ACCEPT and DECLINE option. On a total of 5,519 websites both
of these options were detected.

Extra cookies set after ACCEPT option
Figure 28 shows the number of websites that set a given number of extra (or less) cook-
ies, after interacting with the ACCEPT option. Going right on the graph would mean
more cookies are set after accepting, going up would mean more websites set this spe-
cific amount of extra (or less) cookies after accepting. As is to be expected most websites
set more cookies after accepting the use of cookies, this is normal behaviour. There are
however a lot of websites that set a lot more. One of the website (voetbal24.be) even sets
an unbelievable amount of 436 extra cookies after accepting.(As a sidenote 30 of those
cookies are first party and the other 406 are third party cookies). Off course this is an
outlier and the median is only 6 extra cookies set after accepting. Against all logic there
are a total of 39 websites that remove cookies after accepting the use of cookies. Three
websites even remove 6 or more websites. Why a website would remove cookies after the
user confirms the usage of cookies is incomprehensible.
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Figure 28: Number of websites that set extra cookies after interacting with the ACCEPT option

56



Extra cookies set after DECLINE option
Figure 29 shows the number of websites that set a given number of extra (or less) cookies,
after interacting with the DECLINE option. The difference between this and the previous
chart is here the DECLINE option is taken into account instead of the ACCEPT option.
Opposite to the ACCEPT option, after interacting with the DECLINE option one would
expect cookies being removed or staying the same. Cookies do not need to be deleted
if one of the cookies is used as a placeholder to set the cookie preference. Even adding
one cookie can be accepted if the meaning of that cookie is ’the user has declined using
cookies’. It is however highly unexpected that a great deal of the websites set two or more
additional cookies after declining using cookies (2,163 of 5,519 = 39%). The median how-
ever remains one cookie extra set after declining consent. The highest amount of extra
cookies set was 181.35 The highest reduction in cookies was 58.36 It is to be noted though
that the crawler uses two different visits to assess the cookies set during an initial visit
and the cookies set after interacting with the DECLINE option.
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Figure 29: Number of websites that set extra cookies after interacting with the DECLINE option

35http://www.donald.pl
36http://www.telegrafi.com
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Cookies set after ACCEPT or after DECLINE
Figure 30 shows the number of websites that set a given number of extra (or less) cookies,
after interacting with the ACCEPT option compared to the DECLINE option. A positive
number means more cookies are set after ACCEPT than after DECLINE. The two preced-
ing graphs already show what would be expected here. A lot of websites set more cookies
after accepting the use of cookies than declining the use of cookies. Just like before, some-
thing unexpected here is that there are a good number of websites that set less cookies
after accepting the use of cookies than after declining cookies. A good explanation as
to why this would happen was not found. The only thing that could affect the numbers
here is that both visits are independent from each other. Although these visits were done
relatively close to each other there could be irregularities in these websites that show a
different number of cookies than expected.
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5.4.5 FIRST AND THIRD PARTY COOKIES

Websites can set two kinds of cookies. First party cookies and third party cookies. First
party cookies originate from the domain of the website, where third party cookies origi-
nate from another domain. Most browsers are fazing out the usage of third party cookies,
block them by default. Unfortunately Chrome being one of the most used browsers (it
currently has a marketshare of 65%)37 still allows third party cookies by default (they can
be blocked by the user though), they were initially set to be blocked in 202038 and the cur-
rent prognoses is that they will eventually be blocked by default in 2024.39 Even though
third party cookies will be blocked by default eventually by all browser, they are still ex-
tensively used. The following graphs show details about the third party cookies.

Third party cookies
Figure 31 shows the average number of first and third party cookies for each bucket that
are being set no matter if a cookie dialog is detected or not. The results between a de-
tected cookie dialog and no cookie dialog differ a little but the overall trend remains the
same. Not shown in the graph, but a little more first party cookies are set without a cookie
dialog and the amount of third party cookies stays roughly the same. Like previously the
trend shows lesser visited websites set fewer cookies, the distinction between first and
third party cookies show that on average there is percentage wise an equal reduction
in first and third party cookies. Over all buckets the ratio between first and third party
cookies stays roughly the same, at around half the amount of third party cookies are set
compared to the first party cookies.
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Figure 31: The average number of first and third party cookies set

37https://gs.statcounter.com/browser-market-share
38https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
39https://blog.google/products/chrome/update-testing-privacy-sandbox-web/
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Figure 32 shows the median instead of the average. As can be seen the median is much
lower, this shows that half of the websites only set one or two third party cookies. Because
of the lower median number here compared to the average shows that websites that do
use first and/or third party cookies tend to use a great deal more cookies.
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Figure 32: The median number of first and third party cookies set
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Third party providers
Figure 33 shows for the 10 most used third party cookie domains on how many websites
a third party cookie was set from this domain. A distinction is made before and after
interacting with a cookie dialog, and if no cookie dialog is detected. The domains are
ordered according to the appearance before consent is given. As was to be expected third
party cookies are used by big advertisers: doubleclick (part of google), bing (Microsoft),
google, clarity (Microsoft) and youtube. Adnxs and nr-data are lesser known advertisers.
All of the companies from these domains invest a lot of money into advertising and are
probably using cookies to collect data from the users on other websites. This should
be perfectly fine if these cookies are set after consent is given. The graph does indeed
show that after giving consent on average these domains appear on double the amount
of websites than before consent is given. The question however is: why would cookies
from these domains be used before consent is given? Looking at the cookies there are a
lot of cookies named ’test-cookie’ that has the value ’CheckForPermission’ and expire in
15 minutes. The use of these cookies is acceptable, however an equal amount of cookies
have the name ’IDE’ and set a unique identifier in the value of the cookie. These cookies
are obviously used for tracking purposes. Equally disturbing is the amount of websites
third party cookies from these domains are present on without the presence of a cookie
dialog. What is the legitimate reason so many websites set cookies from these domains
without consent or without a cookie dialog?

The numbers on itself are also eye opening. The biggest domain doubleclick has at least
one cookie on 25% of all visited websites before consent is given, after consent on a stag-
gering amount of 53% of the websites, but even without a cookie dialog the domain is
present on 22% of the websites. The big question is why are these domains setting cook-
ies without consent is given. One of the possibilities is that these domains are injecting
cookies without the user permission when an ad is loaded.
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Figure 33: The the appearance percentage of the 10 most used third party cookie domains before or after
interacting with a cookie dialog or if no cookie dialog is detected
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Cookies set by third party providers
Figure 34 shows the average number of cookies set by each third party provider, if that
provider sets at least one cookie on that website. Most domains only need to set one or
two cookies, but linkedin for example uses on average 7 to 9 cookies on each website it is
detected on. Surprisingly before giving consent (if that option is available) most providers
on average set more cookies than after consent.
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Figure 34: The average number of cookies set by each third party provider before or after interacting with
a cookie dialog or if no cookie dialog is detected
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5.4.6 HTTPS REDIRECTS

It is safe to say security is important when visiting websites. Not only for protecting the
users computer and data on it and the login details of the user, but also for privacy rea-
sons. The correct use of a cookie dialog is important, but if the connection between the
user and server is insecure, attackers could inject scripts, images or ad content without
the user knowing. To overcome this problem the HTTPS protocol was introduced: a se-
cure version of HTTP using encryption and obfuscation of data. Using this secure pro-
tocol the user is protected from attackers.40 A website can redirect a user from HTTP to
HTTPS when visiting a website to make sure a secure connection is established. Engle-
hardt et al. [EN16] did an extensive review of HTTPS redirects in 2016. The paper sug-
gested that the use of insecure third party cookies impeded the adoption of HTTPS by
websites. Only 8.6% of the websites visited in 2016 always redirected to HTTPS. Using
HTTPS has become almost mandatory though, even if a website doesn’t use sensitive
data, an attacker can still inject scripts, images or ad content that can infect the users
computer of retrieve sensitive data. There are however still enough websites that do not
implement HTTPS. Nowadays browser tend to show a warning if an insecure connection
is used. Figure 35 shows the warning that is given by Chrome when visiting an insecure
website.

Figure 35: Example of insecure connection

40https://doesmysiteneedhttps.com/
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Redirection to HTTPS
Figure 36 shows, during the crawl of this study, how many websites stay on HTTP and
how many redirect the visit automatically to HTTPS. During this crawl 83% websites redi-
rected to HTTPS, a great deal more than the detected 8.6% in 2016. The trend shows that
the more visited websites tend to use more HTTPS on average. This could be explained by
lesser visited websites using less sensitive data, and do not see the need to use encrypted
data even though it is needed to protect the user. Compared to 2016, most website have
started using HTTPS to secure the connection, however a little push is needed to get the
last websites covered as well.
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Figure 36: How many websites stay on HTTP and how many redirect to HTTPS
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Usage of secure flag and httpOnly flag in cookies
Using HTTPS is good practice, and if HTTPS is used cookies are sent encrypted as well.
There are however two settings used by cookies that can secure them as well. Otherwise
an attacker may still use unencrypted measures to steal cookies as well. If an attacker, for
example, can steal a cookie that stores the identification of a user on a certain website,
the attacker could possibly login on that website and act as a user.

The secure flag makes sure the cookie cannot be used from an insecure HTTP connection,
making sure the cookie is always sent encrypted to a server. The httpOnly flag makes
sure the cookie cannot be accessed directly from the browser, making it impossible for
an attacker to inject Javascript and read the cookie.

Figure 37 shows for the top 10 third party domains the usage of the secure flag and the
httpOnly flag. The secure flag is used by almost all cookies from all big providers in any
situation. For the lesser known providers however the usage of the secure flag drops sig-
nificantly. The httpOnly flag is used much less, with the exception of a few big providers.
This leaves room for an attacker to steal a cookie. No big differences are seen between
the usage of a cookie dialog or before or after consent. Making this mandatory should
make the use of cookies safer. There is a possibility that non sensitive cookies do not use
secure measures, but it would still be good practice to always use these secure settings.
Why would these measures not be used for every cookie?
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Figure 37: How many cookies from each domain use the secure flag and the httpOnly flag
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5.4.7 COMPARISON TO SECTION 4

The results from the crawl are compared to the manual browsing sessions from Section 4.
Using the same 400 websites divided into the same buckets. The result will enable a brief
assessment if data collected here corresponds to manual visits. The detection of cookies
should be comparable, especially if the same options are detected and interacted with.
The crawler however was not able to go through a cookie dialog in the same way a user
could. The crawler only takes the options in the first window of a cookie dialog into con-
sideration, and a manual visit can go though all options that are displayed. And although
it is understood the crawler will not catch all exceptions to a rule and will not be able to
detect all cookie dialogs and options, manual detection of options is also prone to error.
A user might miss an option or cookie dialog that is present.

Detection of cookie dialogs
Figure 38 shows the detection of cookie dialogs during manual visit and in the crawling
session. It highlights if no cookie dialog is detected during both, if a cookie dialog is not
detected by both, or by only one. Overall in a small amount of websites a cookie dialog
was not detected by the crawler. In the less visited websites the crawler misses more
cookie dialogs compared to the manual detection of a cookie dialog. Overall on 5.8% of
the websites a cookie dialog was not detected by the crawler vs manual. The high number
can, besides being less detected by the crawler, also be explained by not using iframes in
this selection of websites. Iframes could be easiers detected by the crawler. On the other
hand on a few occasions the crawler detected a cookie dialog, while the manual crawl
did not. This can be due to the cookie dialog being very small, staying undetected by the
user.
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Detection of ACCEPT option in cookie dialog
Figure 39 shows the detection of an ACCEPT option in a detected cookie dialog during
manual visit and a detected cookie dialog in the crawling session. It highlights if no AC-
CEPT option is detected during both, if an ACCEPT option is detected by both, or by only
one. It has to mentioned that the crawler already detected less cookie dialogs compared
to the manual detection. Overall the same can be seen as the previous graph: some AC-
CEPT options were not detected during the crawling session, but were detected during a
manual visit. In all the buckets the crawler misses the same amount of ACCEPT options.
If the previous numbers are taking into account that less cookie dialogs were detected,
then only a few ACCEPT options were not detected during the crawl if a cookie dialog
was already detected. Only 8 ACCEPT options were not detected if a cookie dialog was
already detected. There could also be problems with interacting with the cookie dialog
or the options were differently classified by different users. An ACCEPT option could also
be interpreted as a ’close cookie dialog window’. Here as well the crawler detected a few
ACCEPT options that were not detected during a manual crawl, this likely because of a
wrong classification by the options machine learning model.
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Figure 39: Detection of ACCEPT option during manual visit and in the crawling session
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Detection of DECLINE option in cookie dialog
Figure 40 shows the detection of a DECLINE option in a cookie dialog during manual visit
and in the crawling session. It highlights if no DECLINE option is detected during both, if
a DECLINE options is detected by both, or by only one. According to the data the crawler
does a worse job in detecting a DECLINE option in the first two buckets.
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Figure 40: Detection of DECLINE option during manual visit and in the crawling session
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Differences in cookies set
Figure 41 shows the differences in number of cookies set during initial visit in the man-
ual crawl compared to the crawling session, after interaction with ACCEPT option, and
after interactions with DECLINE option. A positive number means more cookies were
detected during manual visit. Only websites are taken into account where both visits
were successful.

Over all the buckets in the initial visit the average and median difference in cookies being
set is usually very small (median = 0; average = 0.9). There are some outliers though
where 55 more cookies were saved during manual visit (88 vs 33) but also where 44 more
cookies were saved during the crawl session (29 vs 73). The reason for these differences
in both directions is not very clear. It could be a difference in the timing of the visit,
the website could set different cookies on a different day, it could also be because the
automated crawler was detected, or it could also be the difference in time of the visit,
some websites load more cookies the longer a visit lasts. On average though the results
seem to be comparable and reliable.

Over all the buckets after interaction with an ACCEPT option the average difference in
cookies being set is a little larger than during the initial visit, but also averages to around
zero (median = 0; average = -0.9). The biggest outlier for the manual visits had 63 more
cookies during manual visit (92 vs 29) and the biggest outlier for the crawler had 108 more
cookies set during the crawl session (40 vs 148). On average though the results seem to
be comparable and reliable.

The data after interaction with a DECLINE option is limited here, only 116 DECLINE op-
tions were detected during manual visit and during the crawling session. Over all the
buckets the average is a gain a little larger but the median is still 0 (median = 0; average =
-2.9). The biggest outlier for the manual visits had 12 more cookies during manual visit
(32 vs 20) and the biggest outlier for the crawler had 56 more cookies set (48 vs 104). On
average though the results seem to be somewhat reliable.
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Figure 41: Difference in cookies set during initial visit in the manual visit compared to the crawling
session, after interaction with an ACCEPT option and after interaction with DECLINE option
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5.4.8 COMPARISON TO [AER21]

The following is a comparison of the results to the paper from Koen Aerts [Aer21] where
this paper is a succession of. In the paper an older version of the Tranco list is filtered for
the top 500 websites using the ccTLD from each European country. In this paper as well,
the top 500 websites from each country were added to the list of website to visit using the
crawler.

In Figure 42 the same six countries are re-evaluated using the same parameters. The
only difference in this crawl is there hasn’t been made a distinction in the type of cookie
dialog that is not an iframe. Overall there is on average a reduction in cookie dialogs
shown and the technology used by the cookie dialogs are less used as iframe. Overall no
big differences were found.
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Comparison in the detection of ACCEPT option
Figure 43 shows the amount of websites from each European country an ACCEPT option
was detected compared between the study done by Koen Aerts and the crawler in this
study (Maarten Meyns). Results were ranked by the detection of ACCEPT option in this
paper. Overall more ACCEPT options were detected during this crawl run. Some coun-
tries show big rises in detection, sometimes over three times as much ACCEPT options
were detected. Unfortunately no data was found on how much cookie dialogs were found
on all European countries, the results here are thus only absolute number without calcu-
lating the detection of a cookie dialog. More detailed results around this can be found in
Figure 23. A conclusion however can be made here that some countries show a big rise
in showing ACCEPT options compared to the previous results.
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Figure 43: Comparison of the detection of an ACCEPT option between Koen Aerts and Maarten Meyns
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Comparison in the detection of DECLINE option
Figure 44 shows the amount of websites from each European country a DECLINE option
was detected compared between the study done by Koen Aerts and the crawler in this
study (Maarten Meyns). Overall in almost all countries there is a big rise in detection of
DECLINE options in this study. Previously in a lot of countries no DECLINE option was
detected at all and more DECLINE options were detected now. Difference in detection
between the crawlers could be part of the fluctuations, but the larger rise in DECLINE
options show that websites have started implementing the DECLINE option more. The
direction is clear, more and more websites have started implementing DECLINE options
but there is still a long way to go.
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Figure 44: Comparison of the detection of a DECLINE option between Koen Aerts and Maarten Meyns
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5.4.9 NO JAVASCRIPT

Although JavaScript is used to display normal website functionality, JavaScript is also
used to load in advertisements, inject cookies, and to display a cookie dialog. Disabling
JavaScript is one of the ways to reduce advertisements and cookies. By crawling the same
websites without JavaScript enabled it will be determined if less cookies are used, and
also if websites still implement a cookie dialog. If no cookie dialog is presented then no
consent can be given and less cookies should be set. Although a good deal of websites will
only show a landing page noticing the user the website does work without JavaScript the
results can still give an insight into the usage of cookies or a cookie dialog when JavaScript
is disabled.

For these results the same 100,000 websites have been revisited with JavaScript disabled.
And for all graphs in this chapter the same division in buckets are used. Although there
were different numbers of successfully visited websites in each bucket, the overall results
stay the same.

Figure 45 shows the detection of cookie dialogs in each bucket in the no JavaScript crawl-
ing session and the normal crawling session with JavaScript enabled. The graph shows
that almost all websites do not implement an alternative cookie dialog when JavaScript
is disabled. All buckets show comparable numbers, independent to whether they did or
did not show a cookie dialog with JavaScript enabled. Clearly most websites do not have
a backup system to display a cookie dialog if JavaScript is disabled. Thus these websites
cannot ask for permission to use cookies. If no permission can be given then it would be
expected that less cookies are used by those websites.
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Figure 45: Percentage of cookie dialogs detected in each bucket with Javascript enabled and without
Javascript
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Figure 46 shows for each bucket the average first and third party cookies that are set by
all websites. Compared to the crawling session (see Figure 31 a lot less cookies are set
here. Although some websites were not functional without cookies there is still a large
reduction in the amount of cookies that are set. Fortunately the reduction in cookie di-
alogs also resulted in the reduction of first and third party cookies. If the same number
of cookies would have been used then that would indicate websites do not care for ask-
ing consent and still use the cookies. The next graph will determine if the reduction of
cookies is linked to the displaying of a cookie dialog.
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Figure 46: Average first and third party cookies set for each bucket without Javascript
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Figure 47 shows for each bucket the average cookies set before interaction with a detected
cookie dialog, without a cookie dialog detected, and after interacting with the ACCEPT
option. Here as well compared to the crawling session with JavaScript enabled (see Fig-
ure 26 and Figure 27) there is also a large reduction in cookies set with or without a cookie
dialog. And even when consent is given less cookies are used. A reduction in all of these
cases suggests cookies are mainly loaded using JavaScript through either advertisements
or normal website behavior.
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Figure 47: Average cookies set for each bucket without Javascript before interacting with a detected cookie
dialog and without a cookie dialog detected
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5.5 CONCLUSION

Although the crawler did not work flawlessly, it enabled an analysis on a representative
portion of the current internet landscape. In the results the detection of cookie dialogs
and the cookies that are set before or after interaction with one of the options have been
analyzed.

For European countries, the detection of cookie dialogs and the ACCEPT and DECLINE
option show large differences between all countries. Most interesting is the detection of
the DECLINE option. This option was not detected on a large amount of websites for
all countries, only France showed a decent amount of DECLINE options due to stricter
applied rules. This shows that rules need to be applied stricter to have an easy to access
DECLINE option in most countries.

Dividing the websites into more and less visited websites showed that more visited web-
sites tend to show more cookie dialogs and DECLINE options. This shows that more vis-
ited websites are following regulations better or are forced to follow them better because
they are more looked at.

The analysis of the cookies being set shows that on average more cookies are set when
a cookie dialog is used than if no cookie dialog is used. As expected, on average more
cookies are set after giving consent to using cookies then if the use of cookies is denied.
Surprisingly some websites set less cookies after being allowed to use cookies, similarly
some websites set more cookies after disallowing the use of cookies. An unexpected and
unexplained process.

Analyzing the providers of the cookies show that some third party cookie providers were
present on a staggering amount of websites, meaning they could be able to link unique
visitors from multiple different websites. The presence of big providers before consent
and without a cookie dialog was also very large, leaving the question if these cookies are
legitimately used.

Analyzing HTTPS redirects, showed a large portion of the websites are redirecting visits
to HTTPS websites for security. The proportion of the internet that does so has risen a
lot in the last years. Security settings in cookies could however be implemented more,
especially by smaller providers or from the websites itself.

Compared to Section 4 showed the crawler worked as expected, but detection of the
cookie dialog and its options could be improved upon. There were some differences in
the number of cookies being set, but those can be normal irregularities and do not inval-
idate the results from the crawler.

Compared to the paper from Koen Aerts [Aer21] from 2021 of which this a succession
of showed that there were only small differences in the detection of the cookie dialog
(also iframes usage was significantly reduced) and ACCEPT options, but rather large dif-
ferences in the presence of a DECLINE option. This suggests that in the last year more
websites have started implementing a DECLINE option in their cookie dialog.

At the end the effect of JavaScript has been researched. A very large portion of the web-
sites rely on JavaScript to show a cookie dialog, have no backups technology in place and
thus do not show a cookie dialog if JavaScript is disabled. A big reduction in cookies set
has also been noticed with JavaScript disabled with or without a cookie dialog present
and even after interacting with the ACCEPT option. This suggests most cookies are in-
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jected using JavaScript either by advertisements or normal website behavior.

5.6 DISCUSSION

It looks like the cookie dialog landscape is rapidly changing in a positive direction. Com-
pared to last year or even during the development of the crawler some websites have
changed their cookie dialog to implement clearer options for the user. This suggests reg-
ulations are working and fines do incentivize websites to be more clear in the options
they serve. However not only big European countries and more visited websites need to
follow regulations, all websites do need to follow them as well.

Big third party providers are using cookies on a huge proportion of the websites, with or
without user permission. And although this substudy did not classify the cookies that are
being set, it is clear that providers need to be regulated more. There is a good chance
these providers are not following regulations. Not only do the websites have to be scru-
tinized in the use of cookies, cookie dialogs and its options, providers need to be looked
at as well. If a provider is allowed to set an advertisement by the website for example,
the provider also has to follow the choice of the user in the cookie dialog and if a cookie
dialog is not available the provider should not be allowed to set cookies.

HTTPS security usage is improving but should be standard on all websites, as is the se-
curity settings in a cookie. Browsers should force HTTPS encryption on all websites and
should block insecure cookies.

Third party cookies are almost only used to track users, there is almost no non-tracking
cookie behavior that cannot be executed by first party cookies. Some browsers have
started blocking third party cookies, but the biggest browser Chrome is continuously
postponing this implementation. Regulators should make blocking third party cookies
mandatory by all browsers.

Disabling JavaScript is a easy way to limit the presence of cookie dialogs and to limit the
injection of cookies. Disabling JavaScript however results in some websites not working
at all or some parts of the website to not work anymore. So this is not a workable solution
for those websites. A working extension that selectively blocks scripts could be a valid
solution. Simply automatically selecting the DECLINE option (expanded to the second
screen in the cookie dialog as well) does apparently not block the same amount of cook-
ies. And even if no cookie dialog is available there are still cookies present. Be it tracking
or not. The effect of ad blocking extensions have not been studied, but as these exten-
sion block scripts from advertisers, it is expected cookies are also reduced when using ad
blocking extensions.

5.7 FUTURE WORK

It was initially foreseen to use the data generated by the crawler concerning the design of
the cookie dialog and its options to classify all websites into the use of dark patterns. This
research will be completed in a different paper. If the date this new paper is produced on
is at a later date than this paper then the crawl could be reran to get a comparison be-
tween older data and newer data. To see if websites are changing their implementations
and to get more recent data.
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Not all cookie dialogs and not all options were detected by the crawler. There needs to
be more effort put into preparing the cookie dialog candidates as well as the options
in a cookie dialog. Extra effort needs to be put into the machine learning models. Al-
though the cookie dialog prediction has a high success rate, for the options improvement
is needed. Work also needs to be done to be able to use the MODIFY option and interact
with all options in the next dialog to deny the usage of all cookies. The SAVE option was
also used too little and was too unreliable to have a meaningful contribution.

Cookies collected during the crawling session have not been classified. Section 4 dis-
cusses the options to classify cookies and there is currently no option available to auto-
matically classify all the cookies in a fast and reliable way. Although Cookiepedia.co.uk
has a very large database of cookies, this database is not easily accessible for the end user.
Future work will need an accessible database if it would want to classify all cookies. The
analysis of the details of the cookies being set can also be expanded on. The expiry date
or the value from the cookies could also be studied.
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A COOKIE DIALOG EXAMPLES

Figure 48: Possible actions microsoft.com

Figure 49: Possible actions zeelandnet.nl
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B DOMAIN SELECTION

There are 400 selected domains divided over four buckets according to the bucket com-
position scheme from table 3.

BUCKET 1: 1-5,000

7; microsoft.com
13; linkedin.com
14; apple.com
26; office.com
51; wordpress.com
67; intuit.com
101; wellsfargo.com
113; medium.com
138; bbc.com
154; etsy.com
182; issuu.com
199; reuters.com
230; blogger.com
243; shopify.com
248; alibaba.com
272; ilovepdf.com
284; udemy.com
286; espn.com
294; steampowered.com
305; doi.org
311; unsplash.com
355; steamcommunity.com
356; snapchat.com
363; marriott.com
369; digitalocean.com
374; huawei.com
376; mailchimp.com
411; mysql.com
457; theverge.com
467; stackexchange.com
499; zoho.com
505; bankofamerica.com
510; nbcnews.com
594; nike.com
657; capitalone.com
675; redhat.com
751; gofundme.com
806; getpocket.com
853; jquery.com
857; smallpdf.com
936; timeanddate.com

954; zerodha.com
981; getbootstrap.com
1010; nintendo.com
1012; substack.com
1214; google.nl
1225; discogs.com
1239; fool.com
1256; redbubble.com
1316; citrix.com
1409; indianexpress.com
1412; instructables.com
1425; venturebeat.com
1444; tutorialspoint.com
1448; northwestern.edu
1518; enable-javascript.com
1524; fireeye.com
1573; ahrefs.com
1625; auth0.com
1628; moz.com
1667; thawte.com
1702; boston.com
1822; myfitnesspal.com
1831; pruffme.com
1918; lonelyplanet.com
2248; blackberry.com
2258; zapier.com
2284; zerohedge.com
2298; bustle.com
2502; ti.com
2503; calameo.com
2530; unpkg.com
2670; ipcc.ch
2680; zynga.com
2765; eu.com
2766; synology.com
2832; pypi.org
2872; curl.se
2897; pngtree.com
2990; pixlr.com
2991; freelancer.com
3079; livestrong.com
3118; perl.com
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3128; nairaland.com
3140; oregonlive.com
3236; metlife.com
3256; marthastewart.com
3278; gtmetrix.com
3429; telenet.be
3508; sbnation.com
3593; vodafone.com
3827; producthunt.com
4253; cc.com
4319; discovermagazine.com
4320; hwg.org
4366; xs4all.nl
4498; shell.com
4650; foodandwine.com
4675; virginmedia.com
4700; imgbb.com

BUCKET 2: 5,001-25,000

5363; rwth-aachen.de
5380; mindbodygreen.com
5467; instyle.com
5489; qvc.com
5663; owasp.org
5689; townhall.com
5800; sparknotes.com
5862; questdiagnostics.com
6052; thediplomat.com
6053; vrt.be
6161; invisionapp.com
6331; traveloka.com
6379; eatingwell.com
6563; shape.com
6601; optum.com
6634; nngroup.com
6674; pillpack.com
6837; petapixel.com
6882; solarwinds.com
6956; slashfilm.com
7017; opencart.com
7097; wonderhowto.com
7254; rijksoverheid.nl
7309; reolink.com
7316; shopstyle.com
7504; actblue.com
7613; vista.com

7789; villagevoice.com
7823; symbolab.com
7836; pch.net
8051; goodmorningamerica.com
8159; torrentfreak.com
8457; hightail.com
8510; mikrotik.com
8519; thechive.com
8635; audioboom.com
9031; bepress.com
9094; listverse.com
9154; omnicalculator.com
9333; bravotv.com
9403; nrc.nl
9446; gitbook.com
9605; annualcreditreport.com
9824; restream.io
10448; rabobank.nl
10478; celebritynetworth.com
10607; tcpshield.com
10622; mondaq.com
10969; viagogo.com
11158; wp-royal.com
11272; rapidapi.com
11339; rubyonrails.org
11386; octafx.com
11462; sixt.com
11579; onlineradiobox.com
11692; scienceblogs.com
12231; yubico.com
12351; steinberg.net
12615; tldp.org
13160; voxmedia.com
13257; vlaanderen.be
13346; toyota-europe.com
13425; virtualmin.com
13432; thebump.com
14119; realself.com
14206; nabble.com
14265; postnl.nl
14351; pixlee.com
14457; zattoo.com
14677; typingtest.com
14959; shinyapps.io
15017; ziggo.nl
15023; sce.com
15694; rubygems.org

83



15732; vestiairecollective.com
16638; proximus.be
16779; sass-lang.com
16932; terraform.io
17014; webassign.net
17564; usra.edu
17566; zf.com
18135; thecinemaholic.com
18775; reviewed.com
18918; osuosl.org
19327; sonoma.edu
19921; nyulangone.org
21512; oodle.com
21537; scrum.org
21895; unknowncheats.me
21902; willyweather.com
21992; zipcar.com
22386; smartprix.com
22548; romsfun.com
22580; teachertube.com
23223; oxygen.com
23840; taschen.com
24061; rankfirsthosting.net
24459; secure-is.nl
24586; tec-it.com
24690; versobooks.com

BUCKET 3: 25,001-100,000

25051; mailtrap.io
25966; rvo.nl
26077; sporza.be
26521; vodafone.nl
26812; lifestyleasia.com
27437; westmancom.com
28192; shockmedia.nl
29577; nomeo.be
29922; nlnetlabs.nl
30934; wallpaperscraft.com
32082; zeelandnet.nl
32121; urlebird.com
32474; wsgr.com
33237; snsbank.nl
34593; sarthaks.com
34690; readwritethink.org
35330; themortgagereports.com
35477; writing.com

35678; upload.ee
35734; techterms.com
36384; santafe.edu
37033; wma.net
37043; neliti.com
38086; powerdns.com
38579; mediamarkt.nl
38923; radaris.com
38954; menuism.com
39208; spineuniverse.com
41295; wanmacxe.com
41346; mysqltutorial.org
41368; posteo.de
42049; telemetr.io
42877; virtamate.com
43160; zetcode.com
44290; wanikani.com
44850; siemens-energy.com
45175; libsdl.org
45802; luckymodapk.com
46608; setcialimir.com
47334; nakedwines.com
48243; mudasure.com
48594; lotro.com
48957; wtguru.com
50813; oneplace.com
51115; nederlandwereldwijd.nl
51191; tips.net
51195; publicintelligence.net
51526; tindie.com
52392; videocardbenchmark.net
53437; wpsoul.com
53552; netflixtechblog.com
54522; mibbit.com
55481; practicalpainmanagement.com
55947; plusportals.com
56076; seegore.com
56280; rocketcyber.com
56289; seotoolbuy.com
57012; ogc.org
57343; techbout.com
57786; tripadvisor.be
57947; paydayloansgeorgia.net
58496; mailfence.com
58742; transcy.io
58963; wan-ifra.org
59038; positronx.io
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59226; mijnwoordenboek.nl
59255; thorlabs.com
60274; rugs.com
60629; veraxen.com
60650; letssingit.com
60685; rtrt.me
62217; thefarside.com
62608; moviemeter.nl
63371; readwritenews.com
63858; macromates.com
63931; time.nl
64252; public-sourcing.be
65643; wrestlingheadlines.com
66265; permies.com
66433; prana.com
66445; zid.com
66531; pri-li-gy.com
67469; lumc.nl
67763; rgs.org
67858; myopenmath.com
68077; lightningbase.com
68119; your-webhost.nl
68136; wolfandbadger.com
68565; madsci.org
69887; uzbrussel.be
70601; purposegames.com
70627; onlinepngtools.com
70728; ringba.com
71214; zonnet.nl
72650; techandtrends.com
73259; triphouserotterdam.nl
73503; webwinkelkeur.nl
73828; nftcalendar.io
74326; savingcountrymusic.com
74505; magicspoiler.com

BUCKET 4: 100,001-1,000,000

107256; twinery.org
110913; virgingames.com
117026; modpodgerocksblog.com
124588; trackbill.com
125603; readopm.com
127864; researchmaniacs.com
131660; starbike.com
144935; polyroche.com
146962; thebulletin.be

151524; recruitmentresult.com
152202; prijs-parfum.nl
154669; shambhala.org
162554; provalue.nl
170978; minimum-wage.org
173310; tradechaser.com
188123; sildenafilnoprescription.com
189685; motorsportsales.com
190288; skiomusic.com
191391; twagoda.com
193617; openjdk.org
201142; styledemocracy.com
218395; onepeterfive.com
221256; ricaud.com
223150; nufc.com
223470; plutodesk.com
228787; procor.be
241510; quasardata.com
259060; stadiumgaming.gg
260684; nashvillesmls.com
260686; lctraumacoalition.org
274411; ubitennis.net
280527; xolairhcp.com
285304; ledel-europe.com
286319; skepticalraptor.com
289806; microschools.com
292191; viagravpills.com
295950; viewacr.com
298018; petefreitag.com
300419; webtic.nl
312891; serversforhackers.com
335064; searchads.com
348277; newsreel.org
353569; websolid.be
363625; trans-video.net
374572; rottzgames.com
383276; lordswm.com
389740; mangabob.com
398495; socialarchitects.nl
400501; singlepanda.com
410844; nxthost.com
413135; lvhtebook.com
421802; sentencechecker.org
439470; nicetightash.com
448583; pioneers.io
463467; moviesclue.com
471964; rijksvastgoedbedrijf.nl
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472160; nlt-media.com
494768; krakenrum.com
501615; trackdrive.net
533212; thetreemaker.com
542579; qualityinfo.org
544477; technomadia.com
547441; oldgameshelf.com
548678; petrockblock.com
553409; online-cpp.com
561832; peakplex.com
569563; relume.io
569784; stoprugpull.com
571478; realmanage.com
589349; mfwbooks.com
596152; vtk.be
604583; vatcalconline.com
604674; thetechoutlook.com
609873; writemonkey.com
617953; spire.net
632193; wxblocker.com
646667; vpnnext.com
657325; tradersdiaries.com
657695; trinityacademy.org

665929; thegoaspotlight.com
667330; playemulator.com
675702; wasatch.com
705740; mmotank.com
708770; thehandprints.com
720925; pbtresourceline.com
731075; prolife.nl
764763; libmir.com
775047; mgwater.com
795643; linkdirectory.be
796623; luxuryactivist.com
800871; vistaweb.nl
811650; qfimr.com
815490; majorcitieschiefs.com
818985; maxpay.com
825194; sab.org
831196; zezam.io
852520; methocarbamolrobaxin.com
857018; nidi.nl
868046; simplywebservices.net
916741; vaarkaartnederland.nl
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C SQLITE DATABASE

SQLite database
The database consists of four tables. elements containing information from the elements
in the website and if they are visited, cookies containing the information from the cookies,
predictions containing all predictions made and visits containing all the visits that are
made. Figure 50 shows the tables and the columns of it.

cookies

visit_id
before_after
short_url
domain
httpOnly
name
path
priority
sameParty
secure
session
size
sourcePort
sourceScheme
value

elements

visit_id
site_nr
sitename
element_type
visited
result
element_text
element_css
location_x
location_y
text_color
background_color
width
height
font_size

predictions

visit_id
element_type
element_type2
element_text
prediction

visits

visit_id
site_nr
sitename
visit_type
site_url
cookie_numbers

Figure 50: Database structure

The elements table is the most important part of the database. It contains the websites to
be visited, and if it has been visited. Each website has the element type 0 meaning this
is an initial visit. During this initial visit the cookie dialog will be detected if present, and
the row will be populated with information from that visit: The visit id that is used to link
to other tables, the result of the visit and the design information of the cookie dialog if
found. If options from the cookie dialog were detected these will be saved as new rows
and flagged as not visited.

The cookies table contains the details of all cookies. Using the visit-id and element-type
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this information can be linked back to the elements table. The essential information of
each individual cookie is saved in each row. Below is a non extensive list of the informa-
tion from the cookie that is saved.

• Domain URL (a third party cookie will show a different domain URL)

• Time until expiry (-1 meaning when session ends)

• Name of the cookie

• Value stored in the cookie

• Security flags

The predictions table contains all predictions that were made. Using the same visit-id
this information can be linked back to the elements table. The prediction category, the
HTML element-type, the element-text and the prediction is saved. This data can be used
to validate each prediction.

The visits table contains a list of all visits made by the crawler containing the visit-id and
the actual URL of the visit. Not all visits are saved in all tables, and rows can be over-
written in other tables if a website is revisited. This list of unique visits can be used to
determine which websites were revisited and enables the analysis of HTTPS redirects.
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D MODULES USED FOR CRAWLING

Below is a brief summarizing of the tools used to form the crawling artifact.

Python
Python has been chosen as the coding language. Although it is a relatively new language
and is not used during the education it is chosen because it is a very easy to learn lan-
guage and is an already widely used and documented language. There are also a lot of
libraries available that can easily be integrated into this project.

PyCharm41

The Python artifacts have been written in the coding environment PyCharm. PyCharm is
an easy to use coding software that helps setting up a coding environment and helps the
user during coding, writing working code and reducing errors.

Multiprocessing42

Multiprocessing is used for running multiple thread at the same time. This library is used
to set up the threads and also maintain persistent and atomic variables between different
threads.

Sqlite343

Sqlite3 is used to connect to an SQLite database. In this SQLite database all information
from the crawl session will be saved. This library can execute queries to read or write to
a database file.

Selenium44

Selenium is used to simulate a browser session. This library uses the Chrome webdriver45

to spawn a browser session and visit a website. The webdriver can get elements from a
webpage, click on an element, get the element information and get the cookies from a
browser session. Browser side scripts can also be executed.

Simpletransformers46

Simpletransformers is used to set up a machine learning model used for the classification
of the cookie dialog and the classification of the options in the cookie dialog. This library
can train a classification model and use the model to make predictions.

SimplePyGUI47

SimplPyGUI is used to set up a simple GUI. Although everything runs in the console, this
is used to display the resources that are in use: RAM, CPU and threads. It is also used
to pause and gracefully stop the crawl session if needed and to automatically adjust the
number of threads given the resources available.

41https://www.jetbrains.com/pycharm/
42https://docs.python.org/3/library/multiprocessing.html
43https://docs.python.org/3/library/sqlite3.html
44https://pypi.org/project/selenium/
45https://chromedriver.chromium.org/
46https://simpletransformers.ai/
47https://www.pysimplegui.org/en/latest/

89

https://www.jetbrains.com/pycharm/
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/sqlite3.html
https://pypi.org/project/selenium/
https://chromedriver.chromium.org/
https://simpletransformers.ai/
https://www.pysimplegui.org/en/latest/


E MACHINE LEARNING MODELS

This is an explanation how the machine learning models were set up.

Cookie dialog model. A stripped down version of the crawling artifact is used to extract
the cookie dialogs (and subsequently the option candidates) for the first 500 websites
from the Tranco list. These 500 visits delivered 650 cookie candidates where the text from
each candidate was saved into a list. Each item from this list was manually completed
with True if it is a cookie dialog and False if it is not based on the text and a screenshot
from the page and candidate. Table 13 shows a few True examples and Table 14 shows a
few False examples.

Option text Class

"We use cookies to make interactions with our website and services easy and
meaningful, and better understand how they are used and to tailor advertising.
You can read more and make your cookie choices here. By continuing to use this
site you are giving us your consent to do this. Learn More GOT IT"

TRUE

"Zoom uses cookies and similar technologies as strictly necessary to make our site
work. We and our partners would also like to set additional cookies to analyze
your use of our site, to personalize and enhance your visit to our site and to show
you more relevant content and advertising. These will be set only if you accept.
You can always review and change your cookie preferences through our cookie set-
tings page. For more information, please read our Privacy Statement. DECLINE
COOKIES ACCEPT COOKIES COOKIES SETTINGS"

TRUE

Table 13: Example of True classification of cookie dialogs (taken from zoom.com and bitly.com)

Option text Class

"Why Bitly? Solutions Features Pricing Resources Log in Sign up Free Get a Quote" FALSE
"Brand Your Links with a Custom Domain Custom domains replace the "bit.ly"
in your short links with the name of your choosing, so you"

FALSE

Table 14: Example of False classification of cookie dialogs (taken from bitly.com)

This list was then fed into a machine learning model using the holdout method48. The
list is split into three groups. A training group using 70% of the candidates, an evaluation
group with 15% of the candidates and a prediction group using the remaining 15%. The
training group and evaluation group are used to train the model and the prediction group
will determine if the model can successfully predict unlearned data.

Using a random shuffle the groups are split and fed into the model using the following
settings:

• Number of training epochs: 6

• Learning rate: 2e-05

48https://www.geeksforgeeks.org/introduction-of-holdout-method/
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• Evaluation an train batch size: 32 (making this higher reduces the time spent but
increases the RAM used)

• Maximum sequence length: 512 (This was the highest number it could go for train-
ing the amount of text in the cookie dialog, a sliding window could also be used if
the text is larger than this but this deteriorated the results)

• Encoding: utf-8

• Evaluation during training

• No multiprocessing for evaluation (using multiprocessing gave errors)

• Data was validated each epoch

• Data was adjusted to lower case (mixing lower and higher case gave different results
for predictions even though the raw text didn’t change)

• Use early stopping techniques when mcc doesn’t improve or improvement falls be-
low 0.001 for 5 times, evaluated every 75 steps. Mcc is a coefficient based on the
evaluation data (1 meaning perfect evaluation and -1 meaning all wrong predic-
tions)

Afterwards the model was used to make predictions of the whole dataset as well to check
the validity of the model and to check if the classification dataset did not contain errors.
Training the model took around 1h 42min, 1m20s for the small prediction and around
9min was needed to do a full prediction. During training between 5-10GB RAM was used
and between 50-70% CPU.

• Prediction results of prediction data: 96 right – 2 wrong (= 2%)

• Prediction results of full data set: 643 right – 7 wrong (= 1.1%)

After evaluating the wrong predictions it was determined during the preparation 5 cookie
dialogs were wrongly classified. This actually means the model already showed better
results than a user. This resulted in the final predictions to have a 648 right predictions
and 2 wrong predictions (= 0.3%).

Options model. The previously trained machine learning model was used to derive cookie
dialog elements from the first 500 websites from the Tranco list. Elements from the de-
tected cookie dialogs were extracted if they could be an option (this can be a button, a
link, a span or an svg). This resulted in 1155 option candidate elements where the text
from each element was saved into a list. The list was manually completed with classifica-
tions using five classes depicted in Table 15.

Options Declaration

ACCEPT Accept all cookies
DECLINE Decline all cookies
MODIFY Modify what cookies a user will accept or decline
SAVE Save the settings for the selection of cookies
OTHER Something unrelated to the above

Table 15: Options list
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Table 16 is the classification of the cookie dialog found in zoom.us seen in ??.

Option text Class

Privacy Statement OTHER
DECLINE COOKIES DECLINE
ACCEPT COOKIES ACCEPT
COOKIES SETTINGS MODIFY
CONFIRM MY CHOICES SAVE

Table 16: Classification of options on zoom.us

The same setup was used as the previous model. The dataset was split into 3 groups using
the same settings but with these alterations. The number of training epochs was raised
to 25, the maximum sequence length was reduced to 64 and the stopping technique was
evaluated every 100 steps. The higher number of training epochs was needed to reach
a working model, presumably because of the higher number of classes and/or number
of entries in the dataset. The sequence length was reduced because of length of the text
on the options was a lot smaller than the cookie dialog speeding up the training process.
Training the dataset took around 1h 17min. 12s was needed to do the small predictions
and 1m20s for the full prediction. The load during training was roughly the same as the
previous training.

• Prediction results of prediction data: 171 right - 3 wrong (= 1.7%)

• Prediction results of full data set: 1144 right - 11 wrong (= 0.95%)

Validation. Websites 500-699 of the Tranco list were manually validated. Of those 140
were properly visited (the other websites produced an error, were unreachable or were
unreadable). Those 140 websites delivered 186 potential cookie dialog candidates. All
predictions for these candidates of those were correctly made: 81 contained a cookie
dialog, of which 77 were detected and correctly predicted, 4 cookie dialogs were not de-
tected. Thus the predictions are 100% correct, but on 4 websites of the 140 visited a cookie
dialog remains undetected (=2.8%). ?? show a cookie dialog with an ACCEPT, DECLINE
and MODIFY option.

The 77 detected and predicted cookie dialogs delivered 352 option candidates. These
were the predictions:

• 72 ACCEPT (1 wrong, 71 correct)

• 30 DECLINE (30 correct)

• 51 MODIFY (51 correct)

• 4 SAVE (2 wrong, 2 could have been in another category as well)

• 195 OTHER (5 wrong, 190 correct)

Most errors were options that were classified as OTHER instead of ACCEPT or DECLINE.
And due to the small occurrences of the SAVE class (in the training data) this class was
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not detected correctly. Because of the nature of the sometimes ambiguous text used by
websites it was even not always possible for a normal end user to determine what the
text from an option would mean. ACCEPT and DECLINE were usually unambiguous but
MODIFY and SAVE were not always that straightforward.

In light of this one occurrence of ACCEPT and DECLINE were not correct meaning 1 of
102 predictions were incorrect (= 1%). In one occurrence the model even detected a DE-
CLINE option that was in a different language as the other text and thus could not have
been detected by a normal user. If looking at all predictions there are 8 wrong predictions
and 344 correct predictions (= 2,3%).

Figure 51: Wrong language in option
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F SELENIUM

Setup
Windows 10 64-bit was chosen as development environment because it was the work-
station of the user developing the software. Preliminary test of the artifacts are executed
on the workstation. Simultaneous threads were kept low for stability, running too many
threads at the same time quickly halted any operation on the workstation. The full crawl
has been executed on Ubuntu 22.0.4 LTS for speed and security. Ubuntu allowed run-
ning up to 16 threads without problems, and using a fresh Ubuntu installation with no
access to the Windows workstation made sure if security issues would arise the data on
the workstation was not affected. Afterwards the Ubuntu installation could easily be re-
moved. The artifacts are written in Python using PyCharm coding environment.

Selenium
Selenium has been chosen to set up the browser sessions using the Chrome webdriver.
Selenium using the Chrome webdriver is the most used combination for automated vis-
its, is well documented and very flexible. This combination and using a headful browser
is also the least detected crawler according to Jonker et al. [JKV19]. Other settings men-
tioned were also set to avoid being detected.

Selenium alternatives
There has been a development of a few Selenium alternatives that try new methods to
stay undetected. Undetected-chromedriver49 and Selenium-stealth50 are two alterna-
tives. While these are successful in masking the presence of an automated browser, they
do however have repercussions in the setting of cookies. Sometimes 50% less cookie were
set using any of these alternatives.

Other settings
Other settings are also taken from Jonker et al. [JKV19]: Setting a common user agent
without mention of Selenium or the webdriver, hiding the webdriver information in the
browser file and hiding the webdriver in the navigator. Below are the settings used to start
the browser session.

user_agents = [ " Mozilla /5.0 (Windows NT 1 0 . 0 ; Win64 ; x64 ) AppleWebKit/
537.36 (KHTML, l i k e Gecko ) Chrome/ 1 0 3 . 0 . 0 . 0 S a f a r i /537.36" ,

" Mozilla /5.0 (Windows NT 1 0 . 0 ; WOW64) AppleWebKit/
537.36 (KHTML, l i k e Gecko ) Chrome/ 1 0 3 . 0 . 0 . 0 S a f a r i /537.36" ,

" Mozilla /5.0 (Windows NT 10.0) AppleWebKit/
537.36 (KHTML, l i k e Gecko ) Chrome/ 1 0 3 . 0 . 0 . 0 S a f a r i /537.36" ,

" Mozilla /5.0 (Windows NT 1 0 . 0 ; Win64 ; x64 ) AppleWebKit/
537.36 (KHTML, l i k e Gecko ) Chrome/101.0.4951.67 S a f a r i /537.36" ,

" Mozilla /5.0 (Windows NT 1 0 . 0 ; Win64 ; x64 ) AppleWebKit/
537.36 (KHTML, l i k e Gecko ) Chrome/ 1 0 2 . 0 . 0 . 0 S a f a r i /537.36"]

options = webdriver . ChromeOptions ( )
options . add_argument ( " user −agent=" + user_agents [ v i s i t _ t y p e ] )
options . add_argument("−− disable −automation " )
options . add_argument("−−no−sandbox " )
options . add_argument("−− disable −dev−shm−usage " )

49https://github.com/ultrafunkamsterdam/undetected-chromedriver
50https://pypi.org/project/selenium-stealth/
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options . add_argument("−− disable −browser−side −navigation " )
options . add_argument("−−dns−prefetch −disable " )
options . add_experimental_option ( " useAutomationExtension " , False )
options . add_experimental_option ( " excludeSwitches " , [ " enable−automation " ] )
options . add_argument( ’ − − useAutomationExtension= f a l s e ’ )
options . add_argument( ’ − − disable −blink −features=AutomationControlled ’ )

driver = webdriver . Chrome( service=Service (PATH_CHROME) , options=options )

driver . set_window_size (1920 , 1080)
driver . execute_script ( " Object . defineProperty ( navigator , ’ webdriver ’ ,

{ get : ( ) => undefined } ) " )

There is an automated website that shows how well the webdriver is being detected51.
Figure 52 shows the result without masking measures implemented and a headless ses-
sion. Figure 53 shows the result with masking measures implemented and a headful ses-
sion.

Figure 52: https://bot.sannysoft.com/ without masking

51https://bot.sannysoft.com/
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Figure 53: https://bot.sannysoft.com/ with masking

Reducing bandwith Bandwith was possibly a limiting factor in the size of the list of web-
sites to be visited. Several different ways were used to stop downloading images and
other bandwidth hungry files while loading a webpage. Selenium-wire52, another Se-
lenium alternative, while also helpful in documenting requests, was very successful in
blocking specific requests from the browser. Settings in Selenium were also possible to
block the loading of images. Although both were successful, the reduction in bandwith
usage resulted in a reduction in cookies being set and in the end no files were blocked
from loading in the final crawl.

Browser side scripts Browser side scripts can be executed by Selenium making it possible
to access more than with Selenium by default. There are two important situations where
browser scripting was necessary. The first one for getting all cookies in the session. Using
the webdriver method driver.get_cookies() only first party cookies can be found, but
running a script in the browser all cookies can be found. The code below returns all

52https://pypi.org/project/selenium-wire/
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cookies currently present in the browser session.

driver . execute_cdp_cmd ( ’ Network . getAllCookies ’ , { } ) [ ’ cookies ’ ]

The information about z-indexes can also only be found running a script in the browser.
The code below returns the top 30 z-index elements ranked from high to low.

driver . execute_script ( " " " return \
Array . from (document . querySelectorAll ( ’ * ’ ) ) \

.map( ( e l ) => ( { zIndex : Number( getComputedStyle ( e l ) . zIndex ) , \
element : e l } ) ) \
. f i l t e r ( ( { zIndex } ) => ! isNaN ( zIndex ) ) \
. f i l t e r ( ( { zIndex } ) => ( zIndex > 0 ) ) \
. sort ( ( r1 , r2 ) => r2 . zIndex − r1 . zIndex ) \
. s l i c e ( 0 , 3 0 ) ; \

console . table ( data ) ; " " " )
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