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ABSTRACT

This thesis examines the added value of GUI testing to the field of security analysis. Be-
cause in an increasingly digital world, software security is more important than ever. It is
important to find those vulnerabilities before they are exploited. Unfortunately, using dedi-
cated tooling to search for security vulnerabilities is not always within reach of the software
developers. That is why implementing security analysis in GUI testing would enable devel-
opers to find vulnerabilities that otherwise would have gone unnoticed.

To enable security analysis, the GUI testing tool TESTAR was extended with the ability
to detect SQL injection and XSS vulnerabilities, HTTPheader misconfigurations and ses-
sion token invalidation. The performance of TESTAR’s security analysis was measured by
running it against the OWASP benchmark. Code coverage was measured in a real world
application using OpenCover. These results were compared to those of the dedicated secu-
rity analysis tool OWASP ZAP. Token validation analysis was tested in a synthetic scenario
created for this research, no comparison was made to dedicated tooling because none of
them supported this scenario. Showing that TESTAR is able to do types of security analysis
that are not feasible with dedicated security analysis tooling.

TESTAR was not able to beat the dedicated tools, but was able to match their perfor-
mance for misconfigurations and performed sufficiently in others. The biggest limitation
of this approach was the lack of attack services, because TESTAR is limited to the GUI. This
research showed, that GUI testing is able to deliver added value to security analysis. In
particular for applications that are analyzed with dedicated tooling at a late stage in their
development or not analyzed at all.
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1
INTRODUCTION

In an increasingly digital world, security vulnerabilities are more important than ever. Find-
ing and patching these vulnerabilities before someone takes advantage of them is a critical
part of keeping the web safe. Finding those vulnerabilities however, requires time and effort
that could be spent elsewhere. This means finding vulnerabilities has a resource budget.
Automated tooling reduces the resources that need to be spend on finding these vulner-
abilities. That is why automated tooling for finding those vulnerabilities can increase the
security of the web drastically.

However, even with automated tooling, there are a lot of websites out there with security
vulnerabilities. This is at least partially because security tools are not accessible enough
for software developers [SDM20]. Another reason could be the lack of priority for security
analysis in organizations.

GUI testing is a way of testing that uses the same graphical user interface (GUI) a human
user would use to test an application. When an automated GUI testing tool is used, the tool
will click through the application looking for bugs or expected behavior. In this document,
we propose a research that explores the option of integrating security analysis in automated
GUI testing.

What makes this combination interesting is that a GUI tester interacts with a system
in a way a human would. Meaning that a GUI tester interacts with the system in the way
the system was intended to be interacted with. Making it a lot easier to test for certain
vulnerabilities, ones requiring scenario’s navigating though the application for example.
This enables a GUI tester to do kinds of security analysis that are not feasible with dedicated
security analysis tooling. Like analysing whether a session token is invalidated after logout.

If this type of analysis was sufficient it would also be possible to do the same analysis
during normal browsing. A possible future for this type of analysis could be a security anal-
ysis extension in a browser that warns the user when a website has vulnerabilities. Another
possibility is the use in the GUI testing tools themselves, making security analysis more
accessible for software testers.

This research is aimed at answering the question: "What can GUI testing contribute to
the field of security analysis?". To answer this question, two hypothesis are tested. The first,
"A GUI tester is able to do security analysis", and the second: "Security analysis with a GUI
tester contributes to the safety of the web". The first hypothesis can be proven by enabling a
GUI testing tool to do security analysis. This is something that should be possible because a

2



GUI tester interacts with the system in much the same way a pen-tester would. The second
hypothesis can be answered in two ways. Either a GUI tester is easier to use and enabling
security analysis using a GUI tester would bring security analysis to a larger audience. Or a
GUI tester is better in certain types of security analysis. For example security vulnerabilities
that require multiple UI (User Interface) steps to run into.

In regular GUI testing, a script is used to guide the testing tool through the system. A
resent trend is scriptless GUI testing, where the testing tool finds its own way through the
system. TESTAR is an open source tool that does scriptless GUI testing, TESTAR is one of
the most comprehensive tools within this category according to Vos et al. [VAR+21]. That is
why TESTAR is the tool that will be used for this research.

In this research some background knowledge is given about the GUI testing tool TESTAR,
the web interface WebDriver, and the most common web vulnerabilities according to the
OWASP top 10. After that, some related work will be discussed. This includes research
into automated testing, the vulnerabilities themselves and similar projects from the past.
Then follows the chapter domain analysis, where the different vulnerabilities are analysed
to select a set that could be implemented in TESTAR. After that, the research itself will be
discussed including the algorithms for vulnerability detection that will be implemented
in TESTAR. As well as a way of validating those abilities using a benchmark. The chapter
is followed by Design and Development, where some of the development chooses will be
elaborated. This chapter goes deeper into the development of the framework used to test
vulnerabilities with TESTAR. After that the results of the validation will be analysed and the
research question will be answered. A summary of the results of this research is given in the
conclusion. Finally the thesis ends with a future work chapter.

3



2
BACKGROUND

2.1. LIST OF ABBREVIATIONS
In this thesis, several domain specific abbreviations were used. That is why a list of those
abbreviations is included below 2.1.

Abbreviation Meaning

CDP Chrome DevTools Protocol
CIL Common Intermediate Language
CSP Content-Security-Policy (header)
DAST Dynamic Application Security Testing
GUI Graphical User Interface
IAST Interactive Application Security Testing
SAST Static Application Security Testing
SQL Structured Query Language
SSRF Server Side Request Forgery
SUT System Under Testing
UI User Interface
XSS Cross Site Scripting

Table 2.1: List of abbreviations

2.2. PROCESSES

2.2.1. GUI TESTING

GUI (Graphical User Interface) testing is a way of testing certain software by inspecting the
GUI of the Software. GUI testing is aimed at making sure the functionalities of software
application behaves as intended. A user won´t see the source code when visiting a web-
site, instead it sees a graphical representation of what the code implies, a GUI tester will
see the same 1. Because a GUI tester works with the same end-result as the user, it can

1https://www.guru99.com/gui-testing.html
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detect a niche of errors no other tool can. An example of this would be unexpected render
behaviour, because this is only detectable when looking at the end result of the render.

There are two kinds of GUI testing, scripted GUI testing and monkey testing. With
scripted GUI testing, the user defines a path through the application that the GUI tester
will follow. A disadvantage of this technique is that once the application changes, the path
needs to be re-established. With monkey testing, this path is not specified in advance. The
GUI testing tool will instead chose its own navigational path trough the application. Ad-
vantages of this approach are that the tool only needs limited configuration and there is
no testing script to update if the application changes. Another advantage is that a monkey
tester will test everywhere on an application, not only the parts someone deemed neces-
sary to test.

2.2.2. SECURITY ANALYSIS
Software security analysis is a process with the purpose of determining the security state
of software. This can be done by hand, for example with pen-testing or with automated
tooling. In this thesis, the focus is on finding vulnerabilities in web applications with auto-
mated tooling.

Two major types of tools for finding security vulnerabilities are Static Application Se-
curity Testing (SAST) tools and Dynamic Application Security Testing (DAST) tools. SAST
tools are white-box tools and use the source code of a system for security analysis. DAST
tools on the other hand, implement a black-box approach. They interact with a system to
find security vulnerabilities and have no need for knowledge of the source code. Both SAST
and DAST tools have their pros and cons, and it depends on the situation and what you are
trying to find which is better.

For our research the focus is on DAST tools. GUI testers and DAST tools both interact
with the system from the outside, without knowledge of the internals. Because of this, it
makes sense to compare the security analysis potential of GUI testing tools to that of DAST
tools and leave SAST tools out of scope.

2.3. TOOLS

2.3.1. TESTAR
TESTAR is a tool which has been designed to shift the understanding of GUI testing. The
goal is to "go from developing scripts to developing intelligent AI-enabled agents". TESTAR

allows the scriptless automated GUI testing of desktop, web and mobile applications 2.
From 2010 till 2013 the project FITTEST ran. FITTEST stands for Future Internet Testing

and was a European project. The project´s goal was to "address these testing challenges,
by developing an integrated environment for automated testing, which can monitor the
Future Internet." 3. After the project ended in 2013, TESTAR was continued by the Universi-
dad Politecnica de Valencia, Utrecht University and the Open University The Netherlands
for further development. The program was funded through various national and European
enterprises.

TESTAR works by running in a continuous loop, called the ’inner loop’. This inner loop
is started when TESTAR is ready to start a testing sequence. The inner loop starts by getting

2https://testar.org/about/
3http://crest.cs.ucl.ac.uk/fittest/project.html
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the state, this detects all the available widgets on a website. After that TESTAR will derive
the actions that can be executed based on the widgets found. Then TESTAR will select an
action to execute and execute that action, the way TESTAR selects the action depends on the
protocol used. The protocol describes how TESTAR should behave. TESTAR has protocols
that are completely random, protocols that are machine learning based, and protocols that
are somewhere in between. The last step in the inner loop is getting the verdict. This is
where the oracles reside in TESTAR. All the information gathered within the iteration of the
loop can be processed and a verdict can be given. After getting the verdict, a new iteration
will start [VAR+21]. This process continues until the predefined end of the sequence is
reached. The inner loop is included in Fugure 2.1.

Figure 2.1: Inner loop of TESTAR

2.3.2. OWASP ZAP
OWASP ZAP is a DAST tool developed by the OWASP foundation, it is free and open source.
ZAP was started in 2010 and is still actively developed. The motivation for ZAP was to de-
liver a simple pen-testing tool to developers to detect vulnerabilities in an early stage [OWA].

The testing process for OWASP ZAP is devided into two stage, the ’Spider’ and the ’Active
Scan’. The Spider is the crawler that maps the application. After running the spider, the
Active Scan can be executed. This Active Scan interacts with the system and can analyse
SQL injection and XSS vulnerabilities for example. To do the active scan, a section of the
crawled application needs to be selected.

2.3.3. OWASP BENCHMARK
The OWASP Benchmark project is a benchmark made by the OWASP foundation for valida-
tion of security analysis tools. The benchmark exists of a web application written in Java,
that has deliberate vulnerabilities build in, and a result generator to generate a score based
on the output of the benchmark.

6



The benchmark contains 2.740 test cases, divided over eleven vulnerability categories.
These test cases are pages in the web application. The pages are grouped by category, this
makes it possible to only run the benchmark for certain vulnerabilities. These test cases
are either vulnerable or not. By comparing the results of the security analysis tool, with the
expected results of the benchmark, a score can be tied to the benchmark [Owa16]. This
comparison can be done by the result generator for tools supported by the benchmark. If
the benchmark is used with unsupported tools like TESTAR, the results need to be generated
with custom code.

2.3.4. SELENIUM WEBDRIVER
Selenium WebDriver is a tool for browser automation. This enables an application to in-
teract with a browser natively 4. That is important for this research because TESTAR uses
WebDriver to interact with the SUT if the SUT is a website. Because WebDriver acts like an
interface between TESTAR and the browser, TESTAR is dependent on WebDriver for infor-
mation all about the SUT. The browsers supported by WebDriver are: ’Chromium/Chrome’,
’Firefox’, ’Edge’, ’Internet Explorer’ and ’Safari’. This wide range of support makes it possi-
ble to automate GUI testing on multiple platforms. The interaction between a GUI tester
and a website using WebDriver is depicted in Figure 2.2.

Figure 2.2: WebDriver chain of command

WebDriver also enables the application to read and manipulate things which are nor-
mally only available to the browser. This access is provided by the Chrome DevTools Pro-
tocol (CDP) 5. Unlike the name suggests, CDP is available in Chrome, Edge and Firefox.
CDP provides access to a set of tools developers can normally use in the browser. Like in-
sights in the network traffic, cookies and local storage. This access makes it possible to use
WebDriver for security analysis.

2.3.5. OPENCOVER

OpenCover is a tool for measuring code coverage in .NET applications 6. While code cover-
age is often related to unit testing, it can be interesting to measure code coverage outside
of this scope. OpenCover offers the option to measure code coverage while the application
is in use. This enables OpenCover to measure the code coverage while manually testing,
acceptation testing or in our case, security analysis. OpenCover was the only tool found
that has this ability for .NET applications and is free.

OpenCover works by modifying the Common Intermediate Language (CIL) of the SUT 7.
This is the language .NET applications get compiled to. OpenCover adds its own CIL in-
struction to the compiled SUT code. These instructions are able to detect execution. This

4https://www.selenium.dev/documentation/webdriver
5https://www.selenium.dev/documentation/webdriver/bidirectional/chrome_devtools/
6https://github.com/OpenCover/opencover.
7https://blog.many-monkeys.com/open_cover_first_beta_release/.
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way OpenCover is able to detect what part of the SUT is executed. One of the biggest ad-
vantages of this technique is that is does not require setup in the source code of the SUT.
This is because OpenCover is able to run on an already compiled version of the SUT.

2.4. HTTP HEADERS
HTTP headers are a way of communicating additional data in an HTTP request or response.
These headers can influence the behaviour of the server and client. Some headers can even
have security implications if not set correctly. For this research, those are the headers of rel-
evance. Some of these headers are listed in the table 2.2 below. Followed by an explanation
for each of the headers in the table. This list of security related headers is not complete,
but it contains a large enough variety of headers to prove the concept of detecting HTTP

headers reliably.

Header Prevents

Strict-Transport-Security Header is present
X-Content-Type-Options Contains ’nosniff’ flag
X-Frame-Options Header is present
X-XSS-Protection Conaints ’1; mode=block’ flag
Set-Cookie Contains ’secure’ flag if header is present

Table 2.2: Security headers

2.4.1. STRICT-TRANSPORT-SECURITY
Visiting a website without an encrypted connection is undesirable because it enables third
parties to intercept the connection using a man in the middle attack. This risk exists every
time a website is visited over HTTP, even is the website immediately redirects to HTTPS. That
is were the Strict-Transport-Security header comes in to play. This header tells the browser
to only connect using HTTPS. The browser stores this information, and the next time the
user navigates to the HTTP version of the website, the browser will connect to the HTTPS

version instead 8.

2.4.2. X-CONTENT-TYPE-OPTIONS
The X-Content-Type-Options header tells the browser what to do if the Content-Type header
is missing. The Content-Type header tells the browser how to handle the content, an image
for example should be displayed, not executed 9.

If the Content-Type header is missing, the browser will use MIME Type Sniffing, eval-
uating what needs to be done to properly display the content. This becomes a problem
when the image was injected with code in its metadata, the browser could think that the
best thing to do is execute the metadata instead of displaying the image.

To avoid this behaviour and make sure the browser will not use MIME Type Sniffing to
evaluate the content, the X-Content-Type-Options header can disable sniffing. The header
should have the value ’nosniff’ to prevent this kind of injection attacks.

8https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
9https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
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2.4.3. X-FRAME-OPTIONS
The X-Frame-Options header defines whether the browser is allowed to render frames. The
HTML tags that can be disabled by this headers are: ’<frame>’, ’<iframe>’, ’<embed>’ and
’<object>’. These tags allow a different site to be loaded as part of the initial site. Disabling
these tags prohibits click-jacking attacks10. There are two possible settings for the X-Frame-
Options header, ’DENY’ and ’SAMEORIGIN’. The first disables the rendering of all frames,
and the second only disables frames if they serve a different website than the initial one.

The X-Frame-Options header is made obsolete by the Content-Security-Policy header.
However, the header should still be included for older browsers.

2.4.4. X-XSS-PROTECTION
The X-XSS-Protection header stops a page from loading when a reflected XSS attack is de-
tected. This sounds great however the header never achieved full adoption. Firefox never
supported the header and is not planning on doing so either. This header is replaced by
the Content-Security-Policy header in modern browsers. Older Browsers still rely on this
header to protect against XSS however 11.

2.4.5. SET-COOKIE
One example of a header with an impact on the systems security is the Set-Cookie header.
The Set-Cookie header can have a ’secure’ flag. This flag will make sure the cookie is only
sent over an encrypted connection (HTTPS). If this flag is not set, the cookie could be sent
over an HTTP connection, enabling third parties to steel the cookie with eavesdropping.
This is especially a problem if it concerns session cookies. If the secure flag is enabled
however, the cookies will only be send over HTTPS, preventing this from happening 12.

2.4.6. CONTENT-SECURITY-POLICY
Several of the mentioned HTTP headers are replaced by the Content-Security-Policy header.
This header specifies what resources are allowed to load on the page. This header replaces
among others the earlier mentioned X-XSS-Proteciton and the X-Frame-Options header 13.
This header is used by newer websites and browsers. However because the header was
added as recently as 2013, adoption is not self-evident yet. This means that the old headers
should still be supported by the websites.

10https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
11https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
12https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
13https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

9



3
RELATED WORK

3.1. VULNERABILITY DETECTION

3.1.1. SQL INJECTION

Injection vulnerabilities come in many shapes and forms, but they all have the same ba-
sis. Somewhere in the application, there is an ability to insert code that will be executed by
some part of the system. According to Haldar et al. some of the most prevalent attacks are:
’Command injection’, ’Cross Site Scripting’, ’Hidden field tampering’ and ’Cookie poison-
ing’ [HCF05]. Command injection is user input that contains a executable command that
is injected into the program. The most common case is SQL injection, where the command
is part of an SQL query.

Detecting SQL injection with an automated tool has been done before by Kals et al. in
their paper SecuBat [KKKJ06]. Kals et al. explain that SQL injection vulnerabilities can be
analysed by injecting a single quote in an input field. Based on the exception that is re-
turned, the likelihood of an injection vulnerability can be estimated. Kals et al. analysed
the responses of the server to indicate the likelihood of the presence of SQL injection vul-
nerabilities. This simple implementation of SQL injection has potential for its use in a proof
of concept.

Schwartz et al. detect SQL injection a different way, they use ’Taint Analysis’ [SAB10].
Schwartz et al. describe Dynamic Taint Analysis as tracking information between source
and sink. They describe that in taint analysis, data is tainted at the source and tracked
trough the system. Depending on the taint policy, operations that are triggered by tainted
data taint more data. So a specific subset of related data to the input data becomes tainted.
Newsome et al. introduce the concept of dynamic taint analysis [NS05]. It is based on the
promise that input data should never be used as jump address of format string in the code
execution. If this does happen, it is a sign of vulnerability exploitation.

There are a couple of disadvantages of this system however. First, this approach re-
quires a tool to actively monitor the execution of a program. Valgrind [NS03] was the tool
used in their research. Another disadvantage is that, when this technique is used in runtime
for the detection of attacks, the attack already happened when it is detected. Advantages
of this technique is that there is a low false positive rate, and the tool does not have to have
any knowledge of the source code.
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3.1.2. CROSS SITE SCRIPTING

The detection of Cross Site Scripting however, is more complex than just validating input
sanitation. For detecting XSS, the use of machine learning model might be needed. Garn
et al. have done so [GRG+19]. This article describes a model for detecting XSS with an ac-
curacy of almost 80%. To validate this model, the researchers have done a real world evalu-
ation on sex web applications. This paper could be interesting for this research because we
could use this model to detect XSS or compare our results to their method.

A simpler implementation of XSS vulnerability detection is offered by Kals et al. [KKKJ06].
In their paper, they detect XSS by triggering an alert pop up.

1 <script >alert(’XSS ’)</ script >

They were not only able to detect XSS vulnerabilities, they were also able to evade XSS san-
itation. By encoding part of the XSS input, filters had trouble detecting the malicious input
as such. The example of the encoded XSS Kals et al. used is shown below.

1 &#60; ScRiPt &#62; alert &#40; ’ XSS ’&#41;&#60;/ ScRiPt &#62;

Image tags can also be misused for XSS. Kals et al. showed that they were able to inject a
script by using an image tag [KKKJ06]. With this method, the script is not directly given as
input. Instead a path to a page that contains the malicious script is supplied. The example
Kals et al. gave is shown below.

1 <IMG SRC= JaVaScRiPt : document .forms [2]. action =& quot;http :// evil.
org/evil.cgi&quot;>

Vogt et al. introduce a client side version of Dynamic Taint Analysis [VNJ+07]. The
tainted data here, is the sensitive client side data like session cookies. The idea is that this
analysis is done by the browser which checks the flow of tainted information to third par-
ties. So the taint analysis will be triggered when someone tries to steal the cookies with an
XSS attack. Whenever the cookies are send to a third party, the user is prompted with the
ability to stop the action.

3.1.3. HEADERS

The session hijacking vulnerabilities that Drakonakis et al. have researched would make a
great candidate for testing our framework [DIP20]. What makes this research so suitable is
the large number of functionalities that it requires. The paper starts by eavesdropping on
network traffic, making sure no cookies are send over a non encrypted connection. So our
framework should be able to eavesdrop, analyse the presence of encryption and read the
cookies. The paper continues by automatically signing in to websites. While automated
login is out of scope for our research, the ability to script an oracle is not. In The Cookie
Hunter, the network data from the login process is used to observe if the application is
vulnerable for session hijacking. Our application should be able to use the data collection
within its oracles to enable similar functionality. After that the researchers log out and use
the cookies in different compositions to try and regain access to their lost session. So to
replicate this research, our framework should be able to manipulate the cookies.
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3.1.4. SESSION SECURITY DETECTION
Calzavara et al. have been looking at web session attacks in their paper "Surviving the
Web" [CFST17] The study shows how common attacks on web sessions work, and how they
could be avoided. The emphasis of their research is on the possible ways to increase session
security. Solutions they propose contain HttpOnly and Content-Security-Policy cookies.
The takeaway for this research however, is that session cookies are at risk of being stolen
and the way sessions are handled is an important part of application security.

3.1.5. OUTDATED COMPONENT DETECTION
The detection of outdated javascript libraries is done by Lauinger et al. in their paper "Thou
Shalt Not Depend on Me" [LCA+18]. Lauinger et al. did not only analyse the web for out-
dated JavaScript libraries, they also define a step by step guide on how to do so. This is
important for this research because by detecting outdated components, we can detect a
large array of vulnerabilities we cannot detect natively. Being able to do so for JavaScript
components would be great. Unfortunately this seems to be quite complex, Lauinger et al.
Have used GitHub to obtain reference files from a list of packages to detect the versions a
specific web application uses.

3.2. RESEARCH THAT AUTOMATES CERTAIN TASKS

3.2.1. LOGGING IN
A lot of websites have login functionality, meaning a large part of the website is not acces-
sible without logging in. For automated testing tools, this can be a challenge, because what
is not accessible, cannot be tested. TESTAR supports pre-specified actions, the user can
define a login sequence with this feature. When the login page is reached, this sequence
will be triggered, and TESTAR will be logged in to the website [VAR+21]. This approach will
work fine while testing one or a hand full of websites, but does not scale well at all. A login
sequence has to be defined for every website individually.

Jonker et al. created Shepherd [JKKS20], a tool for automated login for websites. Based
on the ’BugMeNot’ data set, the researchers have found a way for automatic logins that has
a lot higher success rate than previous attempts. A tool like this makes it possible to do
post-login scanning on a large scale.

Calzavara et al. in "Measuring Web Session Security at Scale" [CJKR21], build on top of
the Shepherd tool to do large scale web session analyses, analysing the password strength
and session invalidation.

Drakonakis et al. have created a login framework in their paper The Cookie Hunter [DIP20].
Their method is scanning the website for login forms, and filling each of them out with the
credentials. In addition to login, account creation is done.

3.2.2. FRAMEWORKS
The list of possible vulnerabilities with HTTP configuration is endless. That is why Calzavara
et al. wrote "Postcards from the Post-HTTP World" [CFN+19]. In their paper they define
8 definitions for an HTTP vulnerability. These definitions make it possible to detect a well
defined and well scoped vulnerability.

Drakonakis et al. have developed an automated, black box framework for exploring
cookie-hijacking susceptibility [DIP20]. Drakonakis et al. use this framework in a study on
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25.000 domains and discovered that almost half of them are vulnerable. Drakonakis et al.
do not only demonstrate the need for analysing cookie related vulnerabilities, Drakonakis
et al. also explain how they were able to analyse this vulnerability. This paper is especially
interesting because a large part of The Cookie Hunter research, overlaps with the proposed
research in this paper.

3.3. SECURITY ANALYSIS TOOL BENCHMARK

3.3.1. BENCHMARKING SECURITY ANALYSIS TOOLS
The OWASP foundation has designed a benchmark for testing the accuracy, coverage and
speed of automated software security scanners. This benchmark makes it possible to com-
pare different tools and understand their strengths and weaknesses. The OWASP Bench-
mark is a runnable web application that contains thousands of test cases [Owa16]. The
benchmark can translate the results into a graph that visualizes the tools performance. In-
dicating the True and False positive rate of the vulnerability scanner.

Amankwah et al. have used this benchmark to do an analysis of different vulnerabil-
ity scanners [ACKT20]. The tools they compared were Acunetix, WebInspect, AppScan,
OWASP ZAP, Skipfish, Arachni, IronWASP and Vega. One of the results of this paper is a
graph indicating the True and False positive rates of these vulnerability scanners 3.1.

Figure 3.1: Tool performance in OWASP WBE graph (taken from Amankwah et al. [ACKT20])

A vulnerability scanner is good if it has a high true positive rate, and a low false positive
rate. The blue line trough the middle is where the result the tool would guess everything.
The distance from that line indicates how good the tool is. In this graph ZAP is shown top
right and IronWasp is shown bottom left. However, both tools are equally far from the line.
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The results of Amankwah et al. show that, from the tools that have been tested, no tool
performed significantly better or worse than any other tool.

Lim Kah Seng et al. have researched the qualities of different security vulnerability scan-
ners more toroughtly [SIS18]. They used the OWASP top 10 to categorize their findings, but
did not use the OWASP benchmark. Instead they compared 46 different security vulnera-
bility scanners based on hundreds of applications and benchmarks. They did not run all
these benchmarks themselves, they combined the results of existing papers. Making their
research an excellent reference for comparing specific security analysis tools to each other.
Because of their clear focus of the methodology, its possible to compare the results to a new
tool without having to rerun all the benchmarks for the existing tools.

3.3.2. CODE COVERAGE

One of the metrics that will be used to quantify the performance of different security anal-
ysis tools is code coverage. This means the amount of source code that is executed in a
certain scenario. In the context of this research, it is the amount of source code of the SUT
while running security analysis tools. Therefore, the code coverage of the SUT needs to
be measured in runtime. This is something that requires additional tooling. As Horvath
et al. describe, there are two kinds of code coverage, bytecode coverage, and source code
coverage [HGB+19]. The big difference is that bytecode analysis can be done on compiled
code, while source code analysis requires recompiling the SUT. According to Chen et al,
this requirement makes the SUT no longer resemble the field behavior and is therefore less
ideal [CSX+18]. Chen et al. made use of the code coverage tool JaCoCo because it is widely
used in both research and practice. They did however found a few inconveniences with
this tool. The results for instance were incomplete. Only the modules that were directly
invoked were measured in the code coverage. The modules that were invoked indirectly,
meaning by other modules, were not measured. A similar problem was found by Horvath
et al. [HGB+19]. However, JaCoCo still seems to be the best Java code coverage tool at the
moment.

3.4. COST OF SECURITY ANALYSIS

3.4.1. USE OF SECURITY ANALYSIS TOOLS

The previous section shows that there are many security analysis tools out there. The prob-
lem with these tools however is that they are not used enough. Smith et al. [SDM20] have
researched the impact of usability of static security analysis tooling on the use by software
developers. Because this research was focused on SAST tools and this research is focused
on DAST tools, not all their findings apply here. Some of their findings are however trans-
ferable. They state that the integration of tools in the development workflow is one of the
reasons security analysis tools are not used more effective. This is a problem that could
be solved by integrating Security Analysis in another process, like GUI testing. Smith et al.
conclude their paper with a list of recommendations about how security tools should inter-
face with the user to be effective. Security tools need to show how to fix the faults they find,
integrate the alerts into editable code, integrate with existing workflows and contextualize
the results. The last recommendation involves adding variables to the message to place the
message in context. DAST tools have no access to the code and therefore no knowledge of
the root of the problem, Because of that, showing how to fix the vulnerabilities and inte-
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grating them with editable code does not apply to DAST tools. Because this research is a
proof of concept for security analysis, usability itself is not a priority. However, the fact that
integration into the workflow is a hurdle for the use of security analysis tools shows that
there is a demand for security analysis integration in existing processes, like GUI testing.

3.4.2. COST OF SECURITY ANALYSIS
To add to the case for good integration of security analysis tools in the development work-
flow, Curphey et al. have analysed the cost of fixing vulnerabilities [CA06]. In their paper
they emphasize the importance of finding vulnerabilities in an early stage. They explain it
using a graph like the one in Figure 3.2. In this graph they show that the earlier vulnerabil-
ities are found in the development process, the cheaper they are to repair. Fixing vulnera-
bilities found early in the testing stage, a lot cheaper that fixing vulnerabilities found in a
later stage. Because of this, they emphasize the value of finding the low hanging fruit in an
early stage.

The takeaway for this research is that part of the value of security analysis in a GUI tester
is that it is often already integrated in an early stage of the development workflow. Every
vulnerability found in this early stage yields a cost benefit, even if a GUI tester is only able to
find the low hanging fruit. This still applies if the GUI tester is accompanied by a dedicated
security analysis tool in a later stage. It also shows that the performance of the GUI testing
tool does not have to be on par with existing security analysis tools to add value.

Figure 3.2: Abstract representation of the cost of repairing vulnerabilities (from [CA06])

15



4
DOMAIN ANALYSIS

This chapter is aimed at defining the vulnerability scope for this research. Trying to answer
what vulnerabilities from the OWASP top are suitable for analysis with a GUI testing tool.
Followed by a reasoning of which of those vulnerabilities should be implemented in the
proof of concept for this research.

4.1. VULNERABILITIES
The OWASP foundation was created in 2001 with the objective to make the wolds software
more secure. One of the means of doing this is releasing the OWASP top 10 every few years.
This top 10 contains a list of 10 of the most critical security risks to web applications ac-
cording to the OWASP foundation. This list is determined based on data from different
sources, including security firms, bug bounty programs and a sector wide survey [owa21].
The ranking within the list is based on the impact of the vulnerabilities, and the frequency
of occurring. This list is relevant for this research because it gives us an idea on what would
be interesting vulnerabilities to analyse. The latest iteration of this list is the OWASP top 10
for 2021 [owa21]. The vulnerability categories are listed in Table 4.1.

place category

1 Broken access control
2 Cryptographic Failures
3 Injection
4 Insecure Design
5 Security Misconfiguration
6 Vulnerable and Outdated Components
7 Identification and Authentication Failures
8 Software and Data Integrity Failures
9 Security Logging and Monitoring Failures

10 Server-Side Request Forgery

Table 4.1: OWASP top 10 - 2021 [owa21]

To know what vulnerabilities make scenes to look for with a GUI tester, the suitability
of the vulnerabilities needs to be determined. This is done by giving some explanation
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for each of the vulnerabilities of the OWASP top 10, and examine why they are or are not
suitable for analysis using a GUI tester.

4.1.1. BROKEN ACCESS CONTROL
Broken access control is a flaw that enables unauthorised access to resources from authen-
ticated users 1. The category of broken access control is a broad category. It includes the
tempering with JWT tokens and brute forcing of authentication for example. A large part of
these vulnerabilities are not suitable for detection with a GUI testing approach. There are
however vulnerabilities in this category that would be possible to analyse, some examples
of them are elaborated further below.

Missing access controls is one of the examples of broken access control that can be
analysed by a GUI tester. It would be possible to try and call every POST, PATCH, PUT or
DELETE endpoint encountered in the application without a security token. The GUI testing
approach would contribute by discovering and identifying all the endpoint. It would also
enable the oracle to put the endpoint in context, making an educated guess about whether
an endpoint should be secured based on where in the application it is used. The method of
categorizing the endpoints based on their use in the frontend is unique to the GUI testing
approach and could yield interesting results.

A second example is the ability to view or edit someone else’s account by manipulating
the session identifier. This could be done by identifying user or resource identifiers and
changing them to other known user or resource identifiers. This is something that could
be tested using a GUI tester. The advantage of a GUI tester is that they generate legit calls
during their GUI testing process. These calls can be modified with different resource and
user identifiers, making it unnecessary to build up from the ground up.

A last example is the elevation of privilege, by acting as a user while not being logged
in as one. The GUI tester could record parts of a test run while logged in as user or admin.
After that, the GUI tester could try and replicate parts of those runs without the necessary
privileges. Using a scriptless GUI tester in this way would make scene because the GUI
tester explores the application by itself. Meaning it can generate logical sequences within
the portal without users having to interfere. Because dedicated security analysis tools do
not follow the application flow like a GUI tester does, this approach is limited to GUI testers.

This shows that broken access control is something that is partially suitable for analysis
using a GUI testing approach.

4.1.2. CRYPTOGRAPHIC FAILURES
Cryptographic Failures are caused by the use of insufficient or old cryptographic algo-
rithms 2. This could include the use of HTTP connections and old versions of TLS. Some
of the options for analysing cryptographic failures are the checking of the handshake in-
formation and whether the protocols that are specified really are the protocols that are
accepted.

The advantage of a GUI tester in such a scenario is that the GUI tester is navigating the
application anyway. This means that all analyses can be done on a extensive part of the
SUT. If the analysis can be done without interfering with the GUI testing process, it would
require no extra runtime. An example of a cryptographic failures that can be analysed in

1https://owasp.org/Top10/A01_2021-Broken_Access_Control/
2https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
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the background by a GUI testing tool is the presence Strict-Transport-Security HTTP header.
This header makes sure that an encrypted connection is always used.

These are also some limitations to the GUI testing approach. A GUI tester often uses
an interface to interact with the SUT, in TESTAR’s case this is WebDriver. This limits the
access the GUI tester has to certain information. WebDriver does not expose handshake
information for instance. There are workarounds, but evaluating them is outside the scope
of this thesis.

In summary, there are cryptographic failures that are suitable for analysis using a GUI
tester.

4.1.3. INJECTION
An injection vulnerability is the ability to insert code or values that will change the be-
haviour of the system in an unintended way. For example by executing the code or ma-
nipulating privileges 3. According to Haldar et al. some of the most prevalent attacks
are: Command injection, Cross site scripting, Hidden field tampering and Cookie poison-
ing [HCF05].

Command injection is a form of injection where user input contains a command in a
way that the program will execute that command. The most common case of this is SQL
injection. In this case, part of an SQL statement is injected into the code. As an exam-
ple we take a login screen where the user fills in the username. To get this data from the
database, the following query is constructed. "SELECT * FROM user WHERE user_name
= ’user_input’;". If the user would insert "name’ or 1 = 1’"; the resulting query would be
"SELECT * FROM user WHERE user_name = ’name’ or 1 = 1’;". This expression will always
be true, so all the users will be returned from the database.

XSS is another prevalent vulnerability. In this case, the server computer is not the target,
but the client machine, in JavaScript. There are two kinds of XSS, stored XSS and reflected
XSS. The former kind works with JavaScript code that comes from the server, because the
attacker was somehow able to get this code in the database. An example where such a
situation could occur would be a forum, where anybody can write anything. The latter
works a bit different. It is called reflected XSS and with reflected XSS the user has to click
on a link containing the script. What both kinds have in common however is that they get
JavaScript code as input, and try to execute is, an example is shown below.

1 <script >alert(’XSS ’)</ script >

This example is harmless, because it only trows an alert pop-up. However, the JavaScript
code that is injected could also have malicious intent, stealing cookies for example.

The problem with injection vulnerabilities however, is that detecting them is a field on
its own. While there is no reason this could not be done while GUI testing, it would be very
hard to detect these vulnerabilities with high accuracy within the scope of this thesis. That
is why this research should not be aimed at doing SQL injection at the level of dedicated
security analysis tools. This thesis should be aimed at proving that TESTAR is able to do
security analysis and that it could be able to do it at the level of dedicated security analysis
tools.

A possible way of detecting SQL injection would be to escape the SQL statement using a
’ and look for an exception indicating that the input is not sanitized. This method was used

3https://owasp.org/Top10/A03_2021-Injection/
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by Kals et al. [KKKJ06].

For Cross Site Scripting, there are two possible approaches. Executing XSS and detect-
ing the presence or lack of presence of XSS mitigation measures. Kals et al. used the first
method by trying to inject and detect an alert pop up [KKKJ06]. The second way of de-
tecting possible Cross Site Scripting vulnerabilities could be by detecting the lack of HTTP

headers that are supposed to prevent XSS.

In conclusion, GUI testing tools are able to do SQL injection and XSS vulnerability anal-
ysis. However, the scope of implementing injection vulnerabilities within this research
should be aimed at the proving the concept, not the best way of detection itself. Because
detecting injection vulnerabilities is a field by itself.

4.1.4. INSECURE DESIGN

Insecure Design is a broad category about missing or ineffective control design 4. This cate-
gory is specifically about design and not about implementation. Because it is only possible
to test the implementation with web scraping, this category is not suitable for analysis us-
ing a GUI tester.

4.1.5. SECURITY MISCONFIGURATION

Security Misconfiguration is a problem with the configuration of security aspects of a sys-
tem 5. While most of this broad category will not be within the scope of this research, there
are security misconfigurations that are detectable using GUI testing.

An example of this is the presence of HTTP headers and HTTP header flags. The GUI
tester triggers the endpoints of the SUT like they would be triggered in normal operation.
Because of this, all the HTTP headers that would be present in normal operation can be
analysed on every call. This also applies to every security misconfiguration that can be de-
tected from the client side. The GUI testing approach has the most value for configurations
that apply to every call, because they are able to analyse every call during the GUI testing
process.

Another example of a misconfiguration that would be suitable for analysis using a GUI
tester would be the reveals of stack traces to users. If an exception is triggered in the back-
end, does the exception contain a stack trace? This is a problem because it exposes infor-
mation about the flaws and the inner structure of as system. That is information that could
be used by an attacker to gain knowledge needed to exploit vulnerabilities. If an exception
can occur during the usage of the system, a GUI testing tool would be a good candidate for
triggering and analysing it.

In summary, GUI testing is a suitable way of testing certain security misconfigurations.
Because of its ability to constantly analyse the results of these configurations during normal
use.

4.1.6. VULNERABLE AND OUTDATED COMPONENTS

Vulnerable and Outdated Components can impact the security of a system because issues
that are known to exist and have been resolved in newer versions of the components, are

4https://owasp.org/Top10/A04_2021-Insecure_Design/
5https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
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still present in the applications 6. Checking this would require a data source with the latest
version of all components and access to the component versions used by the website.

Lauinger et al. [LCA+18] have shown that it is possible to detect Java Script libraries
without access to the source code. While it is possible, a black box approach for detecting
libraries is very complex. A white box approach on the other hand, is not. So while it would
be really interesting to detect component versions using a GUI tester, it would also be very
complex. But most important of all, it would not add any value to the field of security
analysis.

4.1.7. IDENTIFICATION AND AUTHENTICATION FAILURES

Identification and Authentication Failures are flaws that enable someone to be misidenti-
fied for someone else 7. The system is unable to verify an identity securely.

There are many identification and authentication failures that a GUI tester would be
able to analyze. For instance, invalidating a session on logout. The GUI tester could re-
member the token before logout and try to use the same token after logout to access the
site again. If the token still works, the session never really ended.

Another example is, does the system allow brute force attacks or does it stop the attacker
at some point? To continue on that subject, are there other automated attacks allowed?
For instance, can we run a list of default usernames and passwords without the system
protesting? Those are vulnerabilities that a GUI tester could analyse quite well.

The last example of an identification and authentication failure a GUI tester could anal-
yse is weak password rules. Trying to set a series of passwords to figure out the password
policy for example. Or as a last example, look for exposed session identifiers in the URL.

This shows that there are a lot of identification and authentication failures that could be
analysed using GUI testing. However there are disadvantages to using a GUI tester for these
vulnerabilities. The GUI tester would require SUT dependent setup for example. Pointing
the GUI tester to the right pages and fields to complete the scenarios.

4.1.8. SOFTWARE AND DATA INTEGRITY FAILURES

Software and Data Integrity Failures originate from infrastructure and code that have a lack
of protection against integrity violations 8. This can easily arise when trusting code or data
from untrusted sources, like user input. This is not something that can be checked by scrap-
ing a web page, so this type of vulnerability is not suitable for detection using a GUI testing
tool.

4.1.9. SECURE LOGGING AND MONITORING

Secure logging and monitoring helps to detect active security breaches 9. Logging and
monitoring are very hard to test with web analysis, because it requires access to the logs.
That is why this category is also not suitable for analysis using a GUI tester.

6https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
7https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
8https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
9https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
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4.1.10. SERVER SIDE REQUEST FORGERY
Server Side Request Forgery or SSRF is an attack where an attacker can make the server side
of an application make a call to a third party system 10. Detecting SSRF will be outside of
the scope for this research.

4.1.11. RECAP
The vulnerabilities that could be identified with TESTAR can be classified into two cate-
gories. First, there are vulnerabilities that are passively detectable, like detecting the pres-
ence of Security headers. Secondly, there are vulnerabilities that are actively detectable,
like the invalidation of a session after logout, as we can see in Table 4.3. The list of vul-
nerabilities is not complete, this is the overlap of vulnerabilities that are featured by the
OWASP foundation [owa21] and vulnerabilities that would seem suitable for analysis using
a GUI tester. Because of the grouping by OWASP categories, some vulnerabilities overlap,
like the HTTP header related vulnerabilities 5 (Strict-Transport-Security header), 8 (X-XSS-
Protection header) and 11 (HTTP security headers).

place category analysable?

1 Broken access control ✓
2 Cryptographic Failures ✓
3 Injection ✓
4 Insecure Design
5 Security Misconfiguration ✓
6 Vulnerable and Outdated Components
7 Identification and Authentication Failures ✓
8 Software and Data Integrity Failures
9 Security Logging and Monitoring Failures

10 Server-Side Request Forgery

Table 4.2: OWASP top 10 [owa21], with analysability

4.2. WHAT VULNERABILITIES SHOULD WE ANALYSE?
Now that there is a clear picture of what vulnerabilities could be analysed using a GUI
tester, the question arises, what should be implemented in TESTAR during this research?
The numbers used to refer to the vulnerabilities in this sections will be the numbers from
Table 4.3. The passively analysable vulnerabilities could be analysed during a normal GUI-
testing session. The actively analysable vulnerabilities would have to interrupt a GUI test-
ing session or start a separate TESTAR instance.

4.2.1. PASSIVELY ANALYSABLE VULNERABILITIES
The passively analysable vulnerabilities are interesting because they would not have to in-
fluence the GUI-testing session. TESTAR could sniff and analyse all the network traffic on
the background and report any vulnerabilities that appear during a normal GUI testing ses-
sion. This would add value to TESTAR, even if it is not explicitly used to do security analysis.

10https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
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Nr vulnerabilities category

Actively analysable vulnerabilities
1 Missing access controls Broken access control
2 View or edit someone else’s account Broken access control
3 URL modification Broken access control
4 Elevation of privilege Broken access control
6 SQL injection Injection
7 XSS Injection

12 Session invalidation Identification and Authentication
13 Brute force protection Identification and Authentication
14 Automated attack protection Identification and Authentication
15 Weak password rules Identification and Authentication

9 Enabled default accounts Security Misconfiguration

Passively analysable vulnerabilities
5 Strict-Transport-Security header Cryptographic Failures / Security Misconfiguration
8 X-XSS-Protection header Injection / Security Misconfiguration

10 Stack-trace reveals Security Misconfiguration
11 HTTP security headers Security Misconfiguration
16 Exposed session identifiers Identification and Authentication

Table 4.3: Vulnerabilities that could be analysed using a GUI tester

There are five vulnerabilities within the category ’passively analysable vulnerabilities’.
Numbers 5 (Strict-Transport-Security header), 8 (X-XSS-Protection header) and 11 (HTTP

security headers) are all HTTP header related, so analysing HTTP headers would be a quick
win in this category. Another benefit of analysing HTTP headers is that TESTAR would be
able to do as good a job as any other HTTP headers analysis tool and it is not necessary
to configure anything application specific. This makes analysing the HTTP headers a clear
example of something TESTAR should analyse.

Next in this category is number 10, ’Stack trace reveals’. This is a vulnerability to get ex-
ited about because TESTAR is made to trigger exceptions. Because of this, TESTAR has a clear
advantage over dedicated security analysis tools. TESTAR would not only be able to analyse
this vulnerability, TESTAR might actually be better at this than dedicated security analysis
tools. Detecting stack trace reveals can be split into two challenges. Finding the stack trace
if it occurs, and identifying the stack-trace as such. With the potential of analysing this
vulnerability with TESTAR, it is clear that this vulnerability has to be analysed.

The last vulnerability in this category is number 16, ’Exposed session identifiers’. This is
a harder choice within this category. There are many forms of session identifiers, and iden-
tifying a session identifier in an URL is easier said than done. TESTAR would need to classify
any value in the URL as either a session identifier or not a session identifier. If this classifica-
tion process is not absolutely perfect, there will be either false positives or false negatives.
It would be possible that there is a scenario in which TESTAR is able to correctly identify
exposed session identifiers, but identifying most exposed session identifiers correctly is a
whole other problem. The problem here is detecting the session identifier without knowl-
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edge on what the session identifier might look like. That is why this vulnerability will not
be within the scope of this research.

4.2.2. ACTIVELY ANALYSABLE VULNERABILITIES
Actively analysing vulnerabilities can be done with security oracles. This is an override
within TESTAR that executes a specific action based on a specific trigger. There are a couple
of disadvantages of testing these vulnerabilities. First, this will interrupt the normal GUI-
testing process, that is why this type of analysis should probably be used in its own session.
This means that analysing these security vulnerabilities alters the flow and adds time to the
testing process. Additionally, these triggers are application specific, not every application
has its password reset screen on the same URL or look the same. Likewise, the elements
that will be interacted with require additional mapping. Not every password input field
has ’password’ as element identifier for example. This makes the process of doing active
security analysis with TESTAR take some effort, which takes away from the added value of
this security analysis.

That being said, there are many vulnerabilities that could be tested this way. Besides,
TESTAR can already execute preprogrammed sequences, like logging in and filling out forms.
This would make TESTAR a good candidate for executing security related sequences. Be-
cause of the limited added value in comparison to the passive security analysis, and the
limited resources available for this research, not all vulnerabilities will be implemented.
Instead, some of the vulnerability detection oracles will be implemented, proving that it is
possible and leaving a framework for implementing other vulnerability detection oracles
in the future. The following section will iterate over the actively analysable vulnerabilities
that are going to be implemented within this research and elaborate on why they are good
candidates. Due to time constraints, the other actively analysable vulnerabilities were not
implemented.

SQL INJECTION

SQL injection is a field on its own, and it is not reasonable to expect cutting edge SQL in-
jection performance in this research. However, the concept of SQL injection is not that
complicated. By sending a malicious string as input to the server, actions on the database
can be performed. For this concept it does not matter if the string is added directly or via
an input field. Inputting strings in input fields is something that GUI testers are able to do
quite well, so proving that TESTAR has the ability to do a form of SQL injection detection
should not be far-fetched.

Injection attacks have the second greatest criticality of all web vulnerabilities according
to the OWASP top 10 [owa21]. This is why it would be a good idea to take SQL injection
as one of the vulnerabilities used to demonstrate the potential of GUI testing in the field
of security analysis. That is why SQL injection vulnerability detection will be implemented
within this thesis.

XSS
XSS has a lot in common with SQL injection. Like SQL injection, XSS falls in the third most
critical category of web vulnerabilities according to the OWASP top 10 [owa21]. XSS also
makes use of input values to inject malicious code. Unlike SQL injection however, this
code is executed in the GUI itself. Because XSS is a security vulnerability in the GUI, it is a
natural point where security analysis and GUI testing overlap.
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Not all XSS would be equally difficult to implement though. Reflected XSS does not
store any values and executes code at the moment of injection. This takes away the variable
of time and order of execution. Stored XSS requires a two stage process, starting with one
step of injecting the code, and a second step of the code being executed. Because of this
two step process, Stored XSS has added complexity that will be out of scope for this thesis.
Reflected XSS however is a good candidate for implementing in TESTAR and falls in the
scope of this research.

SESSION INVALIDATION

The last active vulnerability that will be implemented within TESTAR is Session Invalidation.
Session tokens are used to identify the client session. This way the server knows who is
interacting with the system and what resources they can access. If the session is ended by
a user logging out, the server should not accept the token anymore, because the session
has ended. If the token is later retrieved from the client computer in some way, the token
cannot be used to continue the session. That is a scenario that is not desirable and can be
classified as a security vulnerability.

Because this is a vulnerability that is not easily checked with existing security vulnera-
bility tools it can increase the contribution GUI testing can make to the field of security
analysis. A second reason is the complexity of this vulnerability. It requires a scenario
where TESTAR logs in to an application, gets the token from the cookies and logs out of
the application. After that, TESTAR has to set the cookie manually and redirect to a page
of the application where a session is required. The complexity of this scenario can show
TESTAR’s potential to automatically test a variety of security oracles. Because this increases
TESTAR’s contribution to the field of security analysis and shows the potential TESTAR has,
this vulnerability will be implemented within this research.

RECAP

For this section, the vulnerabilities are summarized one more time, this time with one of the
following categories in Table 4.4. ’Yes’ has been used for vulnerability detections that will
be implemented within this research, and ’No’ has been used for vulnerabilities that will
not be implemented within this research. All the vulnerabilities mentioned seem possible
to implement in TESTAR, so they might be implemented later. The vulnerabilities that will
be implemented are: ’5. Strict-Transport-Security header’, ’6. SQL injection’, ’7. XSS’, ’8.
X-XSS-Protection header’, ’11. HTTP security headers’ and ’12. Session invalidation’.
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Nr description implement

Actively analysable vulnerabilities
1 Missing access controls
2 View or edit someone else’s account
3 URL modification
4 Elevation of privilege
6 SQL injection ✓
7 XSS ✓
9 Enabled default accounts

12 Session invalidation ✓
13 Brute force protection
14 Automated attack protection
15 Weak password rules

Passively analysable vulnerabilities
5 Strict-Transport-Security header ✓
8 X-XSS-Protection header ✓

10 Stack-trace reveals
11 HTTP security headers ✓
16 Exposed session identifiers

Table 4.4: Vulnerabilities and whether they should be analysed with TESTAR
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5
METHODOLOGY

This research is aimed at showing how TESTAR can contribute to the field of security anal-
ysis. To accomplish this, TESTAR will first be extended with the vulnerability detection
abilities proposed in the previous chapter. These vulnerabilities are: ’SQL injection’, ’XSS’,
’HTTP header misconfiguration’ and ’session token invalidation’. To validate these abilities,
TESTAR is run against a benchmark.

To measure the real contribution TESTAR is making to the field of security analysis, it is
important to compare TESTAR to existing security analysis tools. That is why existing DAST
tools are also run against the benchmark to compare the results to those of TESTAR. Both
TESTAR and these tools are also used on a real web application, to measure and compare the
code coverage. Part of the value of using TESTAR is the lack of cost and knowledge required
to set up a second tool, so the setup processes of the tools are also compared.

5.1. FINDING VULNERABILITIES USING TESTAR
5.1.1. HTTP HEADERS
HTTP headers are returned by the server for every request. To find vulnerabilities regarding
misconfigured HTTP headers, the network traffic has to be analyzed and the present head-
ers need to be validated. During this analysis, as many endpoints have to be called in as
many ways as possible to get the best coverage of the SUT. Because TESTAR already gener-
ates this network traffic during GUI testing, we only needed to listen to network traffic and
validate the headers.

An alternative to using the GUI testing algorithm would have been to modify or make
our own algorithm. This could have created a more optimal form of network traffic for HTTP

header analysis. We still decided to use the original GUI testing algorithm because one of
the strong points of TESTAR is the ability to explore a website. Designing an algorithm that
outperformed the TESTAR algorithm is out of scope for this thesis.

5.1.2. XSS INJECTION
To analyze Cross Site Scripting vulnerabilities using TESTAR, we need a way of finding XSS
vulnerabilities in general. The first way is to test the ability to detect Cross Site Scripting
vulnerabilities in an application by trying to execute XSS. The second way is by checking for
the absence of Cross Site Scripting protection, like the X-XSS-Protection header. Because
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this header is controversial, we decided to go with the first approach of trying to trigger XSS.
The approach we have used is derived from the work of Kals et al., they tried to trigger an
alert box to see if the application was vulnerable to XSS [KKKJ06]. Our approach has a slight
modification however, we used different alert texts for every alert, to identify the source of
the injection.

To enable TESTAR to detect XSS vulnerabilities, we needed to replace the random text
generator with a dedicated security text generator. This generator will generate script tags
with alert boxes instead of random text. A second modification was the detection and iden-
tification of the alert boxes if they appeared, to determine the presence of XSS.

5.1.3. SQL INJECTION

Detecting SQL injection is a field by itself, and creating a GUI testing tool that can reliably
detect SQL injection is out of scope for this research. That does not make it useless to try
and detect SQL injection with TESTAR however. The most dangerous SQL injection vulner-
abilities are those that are easiest to find.

To detect SQL injection, we chose to break queries instead of manipulating them. Adding
two quotes enables code to be injected into an existing query, this is dangerous because this
gives people the ability to manipulate your database. Adding one quote however will make
executing the query impossible, like Kals et al. demonstrated [KKKJ06]. An error response
from the server would indicate that something has gone wrong and that the application is
possibly vulnerable to SQL injection.

Extending TESTAR with this ability builds on the security text generator used for the XSS
detection. This security text generator was extended with the ability to inject single quotes.
A second adjustment needed to be made to detect the error response created by the SQL
injection. To do that, we extended the network listener to detect when an SQL injection
was actually executed, and if it resulted in a HTTP 5xx response.

5.1.4. SESSION INVALIDATION

The last ability TESTAR is extended with is the ability to detect session invalidation vulnera-
bilities. These tokens are sent by the server to the client when a user logs on to a portal. It is
best practise to store those tokens as cookies, however session storage or even local storage
are also known to be used in some implementations. For this research a scenario where the
tokens are stored in cookies is assumed. This is to simplify the implementation which sole
purpose is to prove the concept.

For TESTAR to be able to detect this vulnerability, it first needs to login on the applica-
tion. Once it gets a session token, TESTAR will need to store that session token somewhere
safe. At the same time, a web page will be loaded from inside the portal, the URL of this
web page will also need to be stored by TESTAR. The next step is for TESTAR to logout, this
will redirect TESTAR to a page outside the portal and remove the session token from the
cookies. Now TESTAR still has the token and will attempt to see if it still works. It does this
by adding the token to the clients cookies and navigating to the URL from inside the portal
that has been saved. If TESTAR navigates successfully to inside the portal, the token is not
invalidated on logout. On the other hand, if TESTAR is not able to successfully navigate to
that page, the session token is invalidated properly.
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5.2. VALIDATION AND EXPERIMENT DESIGN
To validate TESTAR’s new abilities and compare TESTAR to existing security analysis tools, a
series of experiments was executed. First, TESTAR and the existing security analysis tools
were run against a benchmark, this validated TESTAR’s abilities to detect XSS, SQL injection
and header misconfiguration. This also made it possible to compare TESTAR’s abilities to
those of existing security analysis tools. The second experiment ran both TESTAR and dedi-
cated security analysis tools against an existing application to measure the code coverage.
This would give an indication on the relative code coverage of TESTAR in comparison to
dedicated security analysis tools. The last experiment was intended to measure TESTAR’s
ability to detect session token invalidation. During the experiments, the set-up complex-
ity of both TESTAR and the dedicated tools was recorded to enable a comparison of set-up
complexity.

5.2.1. SECURITY ANALYSIS TOOL

The dedicated security analysis tool used to compare TESTAR to was OWASP ZAP [OWA].
This tool was the only free tool that would work without any problem on a Windows sys-
tem. Other tools in the running were Arachni and Wapiti, but it was not possible to get
them working within the constraints of this research. Wapiti did not function for unknown
reasons, it was likely due to problems with existing dependencies on the computer used for
this research. Arachni did function, but was not able to test localhost URL s, making it com-
plex to run against SUTs that ran on the same machine. Because of the limited resources
available for this research, the decision was made to continue with a single dedicated secu-
rity analysis tool.

5.2.2. BENCHMARK

For the benchmark the OWASP benchmark project was used. This is a benchmark that is
created by the same organization that maintains the OWASP top 10, and enabled us to test
XSS, SQL injection and header misconfiguration. The 1.2 version of this benchmark was
used for this experiment. This version contains 504 tests for SQL injection, 455 tests for XSS
and 67 for secure cookie flags. The secure cookie flag was used to test TESTAR’s ability to
detect HTTP header configurations. Because the secure cookie flag is communicated within
the set-cookie header, it is probable that TESTAR would perform similar in analysing other
HTTP headers. Each of the tools was run against the benchmark for every vulnerability
twice to get a result that was representative of the abilities of the tools, resulting in six runs
per tool.

The benchmark contains many more test cases for different vulnerabilities, but only the
vulnerabilities that were implemented in TESTAR were analysed. The benchmark provides
a list of the test cases and expected results, that way it is possible to compare the output of
TESTAR and ZAP to calculate a score.

The way TESTAR navigates the SUT was altered to make it run the benchmark more ef-
ficient. TESTAR was able to interact with every widget (element) on a page twice. It was also
not able to interact with a widget for the second time before every widget was interacted
with the first time. This made sure TESTAR has interacted with every widget on the page
at least once before clicking a submit button. This also resulted in TESTAR running every
test case in the benchmark at least once before repeating. The alteration was made to min-
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imize TESTAR’s runtime on the benchmark. It does however mean that the results of the
benchmark say something about TESTAR’s ability to detect vulnerabilities once the location
of the vulnerability was navigated to, not about TESTAR’s ability to find all vulnerabilities in
an application.

5.2.3. CODE COVERAGE
To be able to say something about how good TESTAR is at exploring an application the code
coverage was measured. To measure the code coverage of running applications OpenCover
was used. OpenCover is a tool for calculating test coverage for .NET applications. Another
tool considered for measuring the code coverage was JaCoCo. The main difference be-
tween the tools is that OpenCover is compatible with .NET applications while JaCoCo is
compatible with Java applications. Because of the available experience, working with .NET
applications was preferred.

The SUT used for this experiment is the open source web CMS Blogifier 1. This is an
open source .NET 6.0 application that contains a couple of advantages that makes it very
suitable for measuring the code coverage. The first advantage is that Blogifier supports
SQLite databases, eliminating the need to run a separate database. Another advantage is
that Blogifier uses Blazor WebAssembly instead of JavaScript for its front end. This means
that the front-end does not need to be hosted separately and that the front-end code is
measured in the code coverage measurements. The last advantage of this software is that
it requires minimal setup, one Blogpost was created before each test to make sure the tools
were able to reach a reasonable part of the application.

Only one SUT was used because it has proven difficult to find open source .NET ap-
plications that were suited for this research. Because of the time limitations of the thesis,
the decision was made to only use one application for measuring code coverage. However,
another application that was considered as SUT was NopCommerce 2. An open source
e-commerce application written in .NET. This application did however pose a fatal flaw.
Because it is an e-commerce platform, it requires a lot of setup to enable the tools a chance
to explore the whole application. This setup needs to be reset between every test run to get
consistent results. Because this application was so big, it was already hard to get consistent
results. That is why this application was eventually not used as SUT.

Both TESTAR and OWASP ZAP were run against the SUT multiple times, this ensured
consistent results for both tools. Before each run the database was reset and one blog post
was created. While OWASP ZAP was run twice, TESTAR was run eight times This ensured
consistent results over different configurations of TESTAR. The configurations were com-
binations of the protocols ’webdriver_generic’ and ’webdriver_statemodel’, and sequence
limits 100 and 200. Each combination was executed twice.

5.2.4. TOKEN INVALIDATION
To validate TESTAR’s ability to analyse token invalidation, both a SUT with and without to-
ken invalidation were required. Because tempering with the cookies in production envi-
ronments did not feel right, an in house application was altered to fit both of these use
cases. The application is built in .NET and makes use of JWT tokens. For this experiment,
three versions of the application were created. The first invalidated the session token on

1https://github.com/blogifierdotnet/Blogifier
2https://github.com/nopSolutions/nopCommerce
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logout, when the token was used again, it was not accepted by the application. The sec-
ond version of the application did not invalidate the token, allowing TESTAR to continue
exploring the application after logout. The third implementation did invalidate the token,
but waited 10 seconds to do so. This is to simulate applications with asynchronous token
invalidation. TESTAR was run twice on each of the applications to make sure the results
were consistent.

5.2.5. EXPERIMENT OVERVIEW
So we ended up executing six experiments to answer our research question. These experi-
ments are listed in the table below 5.1.

Nr experiment SUT

1 HTTP headers OWASP Benchmark
2 XSS OWASP Benchmark
3 SQL injection OWASP Benchmark
4 Code coverage Blogifier
5 Token invalidation Custom application
6 Setup time Blogifier

Table 5.1: Experiments

5.3. ALGORITHM DESIGN

5.3.1. HTTP HEADERS
To detect HTTP headers with TESTAR, we will use WebDriver to listen to all the network traf-
fic between the client and the server of the SUT. This is done by extracting the DevTools
from WebDriver instance used. These DevTools allow the setting of a listener for specific
events. The event that is interesting for HTTP header analysis is the
’Network.responseReceivedExtraInfo’ event. This event is triggered every time the server
responds to a network request, this response includes the HTTP headers. A code example
for retrieving the HTTP headers is shown below.

1 public void addListener ( DevTools devtools )
2 {
3 devTools . addListener ( Network . responseReceivedExtraInfo (),
4 responseReceived -> {
5 Headers headers = responseReceived . getHeaders ();
6 // process headers
7 });
8 }

When a request comes in, the headers are processed. In the case of TESTAR, these head-
ers need to be stored until TESTAR is ready to give a verdict. This is because it is possible for
multiple network requests to be executed in one TESTAR inner loop.

For this research, six HTTP headers were analysed. These headers are listed below in
Table 5.2. These headers and their required rules are derived from Mozilla [Moz]. The set

30



of headers implemented in this research does not contain all the headers used for web
security. It does however contain some fundamental headers and is a large enough set to
demonstrate TESTAR’s abilities.

Nr description requirement

1 Strict-Transport-Security Header is present
2 X-Content-Type-Options Contains ’nosniff’ flag
3 X-Frame-Options Header is present
4 X-XSS-Protection Conaints ’1; mode=block’ flag
5 Set-Cookie Contains ’secure’ flag if header is present

Table 5.2: HTTP headers that will be analysed

When TESTAR is forming a verdict, the headers from the past request need to be anal-
ysed. Each header should comply to the rules above for each request. An example for an
oracle that validates the Set-Cookie header can be found below. This method would be
called by TESTAR’s getVerdict() method.

1 public boolean validateSetCookieHeaders (Map <String , String >
headers ) {

2 for (Map.Entry <String , String > header : headers )
3 if ( header . getKey (). equals ("Set - Cookie ")) {
4 if (! header . getValue (). contains (" Secure ;")) {
5 // vulnerability found
6 return true;
7 }
8 }
9 }

10 // no vulnerability found
11 return false;
12 }

5.3.2. XSS
To analyse XSS vulnerabilities without access to the source code, it is necessary to try and
trigger XSS vulnerabilities on the SUT. To do so, TESTAR had to be extended to inject some-
thing that could be detected on execution. Kals et al. ran in to the same problem with and
provided alert boxes as the solution [KKKJ06]. By injecting the code below, an alert box was
triggered when the application was susceptible to XSS.

1 <script >alert(’XSS ’)</ script >

Using this technique with TESTAR introduces added complexity. First, TESTAR needs to
be able to detect the alert boxes when they are thrown. Then TESTAR needs to be able to
determine if the alert box is thrown because of an XSS vulnerability. Lastly, TESTAR needs to
interact with the alert box to make it disappear again.
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Because this approach was overly complex, a different approach was used. Instead of
the alert boxes used by Kals et al. [KKKJ06], logging was used.

1 <script >console .log(’XSS ’)</ script >

By making the XSS write records to the console log, it did not interfere with the ex-
ploration of the SUT. TESTAR was able to continue testing while XSS exceptions appeared
automatically in the log in the background. A code sample to enable TESTAR to read the
logs and determine if XSS vulnerabilities were present is shown below.

1 public boolean validateXss ( WebDriver webDriver )
2 {
3 logs = webDriver . manage ().logs ().get( LogType . BROWSER );
4 for ( LogEntry entry : logs) {
5 if (entry. getMessage (). contains ("XSS"))
6 {
7 // XSS vulnerabilities found
8 return true;
9 }

10 }
11 // no XSS vulnerabilities found
12 return false;
13 }

For an attacker it is much more interesting to execute code on someone else’s computer
than on their own. That is why reflected XSS is often hidden in links. That is why it makes
sense for TESTAR to add the ability to analyse XSS vulnerabilities in the URL. To do so, TESTAR

looks at if there are parameters parsed in the URL. In the example below we see a URL with
two parameters.

1 https :// mywebpage .com/page? parameter1 = value1 & parameter2 = value2

TESTAR needs to detect the presence of URL parameters, it does this by looking for and &
signs in the URL. If the URL does contain a string, TESTAR will replace all the characters
between an = and a & or the end of the URL with a predetermined injection string. A code
example that shows how this works is shown below.

1 public String getXssUrl ( String url)
2 {
3 String injection = "<script > console .log (%27 XSS %20 detected

!%27) ;</ script >";
4 if (url. contains ("?"))
5 {
6 url = url. replaceAll ("=.*" + "&", injection + "&");
7 url = url. replaceFirst ("[^=]*$", injection );
8 }
9 return url;

10 }

After manipulating the URL, TESTAR navigates to this new URL. The XSS is often not
executed while loading the new page, the XSS from the URL might only be executed when
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the value from the URL is used. That is why TESTAR explores the new page again to see if the
URL is vulnerable to XSS.

Something that stands out in the code example above, is the fact that the special char-
acter in the injection string are replaced with %27 for ’ and %20 for a space. This is because
some special characters need to be encoded to be interpreted correctly in an URL.

This method of finding XSS vulnerabilities does not cover all XSS vulnerabilities. One
of the ways TESTAR will not find an XSS vulnerability is when it uses filters to filter out the
script tags. This makes it impossible to inject XSS using script tags, however there are many
more ways to evade XSS filters. One of the ways to evade XSS filters is by decoding the XSS,
this technique was used by Kals et al. [KKKJ06]. There are however a lot more methods of
filter evasion, a large part of them is listed by the OWASP foundation 3.

The current implementation of TESTAR does not make use of filter evasion, this means
that it cannot detect XSS injection vulnerabilities when a filter is used. Even though the XSS
vulnerabilities can still persist. A second limitation of the current implementation is that it
only tests from fields and URL s. There are more ways of injecting reflected XSS, but TESTAR

will not be able to find them at this point. This decision was made to reduce the complexity
of the implementation, enabling it to fit into the scope of the thesis.

5.3.3. SQL INJECTION
Finding SQL injection with an automated tool can be done in one of two ways. The first is
by analysing the source code, this does not require the actual execution of SQL injection,
but requires access to the source code. The second method is by executing SQL injection
attempts and analysing the response to determine SQL injection vulnerabilities. Because
TESTAR is a GUI testing tool, which does not have access to the source code, it makes use
of the second method for detecting SQL injection. The second constraint of this research is
that the intention is not to break the SUT. So the SQL injection method used should be non
destructive.

Kals et al. offered a solution to this problem in their paper Secubat [KKKJ06]. They pro-
posed that breaking an SQL injection string could determine the presence of SQL injection
vulnerabilities. This eliminated the need of actually running SQL queries on the database.
Instead they introduced a quote in the injection string. If the input value was a normal
string, the query would look like this:

1 SELECT * FROM user where username = ’user123 ’ limit 1;
2 SELECT * FROM user where value = ’12’3’ limit 1;

If the input value contained classic SQL injection like "’ OR 1 = 1’", the query would look
like this:

1 SELECT * FROM user where username = ’’ OR 1 = 1’’ limit 1;

But if the SQL injection just contains a single quote, the query would look like this:

1 SELECT * FROM user where value = ’’’ limit 1;

The main difference between the first two queries and the last query is that the first two
queries can actually be executed. For the last query, that is not possible. The SQL server will
trow an exception, and the web server will not be able to execute the request. Because this

3https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
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exception is unexpected, the request will likely return an HTTP 500 exception, indicating
that something went wrong on the server side.

For detecting SQL injection vulnerabilities with TESTAR using this method, an HTTP lis-
tener needs to be added to WebDriver, this listener listens to the responses after an SQL
injection attempt was done. A code example getting the status code with WebDriver can be
found below.

1 public void addListener ( DevTools devtools )
2 {
3 devTools . addListener ( Network . responseReceivedExtraInfo (),
4 responseReceived -> {
5 int statusCode = responseReceived . getStatusCode ();
6 // process process status code
7 });
8 }

Because the injection of the value and sending the value to the server can occur in dif-
ferent inner loops, it is not enough to analyse the exceptions only when SQL injection is
performed. If the injection is done on a form field that is submitted many inner loops later,
the relevant response is the response of the submit request. To mitigate this issue, TESTAR

looks for 500 responses for 10 inner loops after the injection attempt.
A second limitation of this approach is that the escape character used in this case might

be different on different databases. This means that the approach has to be extended to
include more escape characters, or be altered depending on the type of database the SUT
uses. This limitation is accepted within the scope of this thesis and no further effort was
taken to mitigate it.

One of the options looked into for detecting SQL injection vulnerabilities was the anal-
ysis of stack traces. The stack traces contain detailed information about what exactly went
wrong in the system. By analysing the stack trace it is possible to determine if the error
derived from SQL injection. However, it is best practice in software engineering to not ex-
pose the stack traces. This is due to the fact that they give attackers a lot of information
about bugs in the system, increasing the chance of exploitation. In cases were the stack
traces were exposed however, they could have decreased the false positive rate. Stack trace
analysis was still not implemented because different frameworks and languages generate
different stack traces. This makes determining if a given stack trace is originating from an
SQL injection difficult. Because the stack traces should not be exposed in the first place
and the complexity of analysing them, analysing the stack traces was deemed out of scope
for this research.

TESTAR does not determine what the cause of the 500 exception was, it only detects that
a 500 exception has occurred after an injection attempt. This means that unrelated 500
exceptions could be flagged as possible injection vulnerabilities. To prevent this in the fu-
ture, scenario tests can be used, where TESTAR finds out what field is responsible for the
500 exception. After that, TESTAR can inject different values to determine if the 500 is SQL
injection related. An example of such an injection is "’ and 1 = 1’", this performs SQL in-
jection but is not expected to trigger a 500 exception while doing so. If a 500 exception is
still returned, the exception is not likely to indicate an SQL injection vulnerability, but orig-
inates from something else. A code example of that query can be seen below.
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1 SELECT * FROM user where value = ’’ and 1 = 1’’ limit 1;

5.3.4. SESSION TOKEN INVALIDATION
Session token invalidation is a vulnerability where a lot of TESTAR’s abilities come together.
TESTAR needs to navigate, read cookies, set cookies, login, log out and do all of this auto-
matically based on a predefined sequence. A flow diagram of this predefined sequence is
shown in Figure 5.1. This predefined sequence will be elaborated further in the following
section.

This sequence starts by logging in to the website. At this point, session tokens will be
set as cookies. Because it is unknown to TESTAR at this point, which of the cookies is the
session token, TESTAR will copy all of the cookies and store them. TESTAR will also store the
current URL to redirect to later. After this, TESTAR will logout of the web application. At this
point, the session tokens should be invalid. The cookies snapshot will be restored to the
logged in state. A code sample for taking and restoring cookies snapshots using WebDriver
is shown below.

1 private Set <Cookie > cookies ;
2

3 public void takeCookieSnapshot ( WebDriver webDriver )
4 {
5 cookies = webDriver . manage (). getCookies ();
6 }
7

8 public void restoreCookieSnapshot ( WebDriver webDriver )
9 {

10 webDriver . manage (). deleteAllCookies ();
11 for ( Cookie cookie : cookies ) {
12 webDriver . manage (). addCookie ( cookie );
13 }
14 }

After restoring the cookies to their logged in state, TESTAR will try to navigate to the
stored URL. This stored URL is within a session that has been invalidated, so TESTAR should
not be able to redirect there. If TESTAR is indeed unable to, TESTAR has detected session
token invalidation. If TESTAR is able to navigate to the URL, this does not mean the session
token is not invalidated. In the case of distributed systems, where the backend is run on
multiple servers at the same time, it could take some time for the services to sync up. To
avoid false positives, TESTAR will wait a minute for the servers to spread the token invalida-
tion. After this minute, TESTAR will try to reload the page. If TESTAR is able to stay within
the portal, it is likely that the session token is not invalidated.
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Figure 5.1: An abstract representation of a token invalidation detection algorithm.
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6
DESIGN & DEVELOPMENT

In this chapter the implementation aspects of security analysis with TESTAR will be dis-
cussed.

6.1. FRAMEWORK

6.1.1. SECURITY ORACLES
To make the current security analysis possible and allow for future extensions, a framework
was created. This framework introduces security oracles, which are small self contained
units of code that allow for scanning for security vulnerabilities. These security oracles
come in two flavors: passive security oracles, and active security oracles.

Passive security oracles have the ability to add listeners to the WebDriver instance. And
to come to a verdict based on the information obtained. One of the implementations of the
passive oracle is the HTTP header analysis oracles. The oracle adds a listener to the network
traffic of the WebDriver and reads out all the headers. This process is a constant process
happening in the background and not interfering with any other part of the testing. When
it is time to come to a verdict, the HTTP headers are analysed and added to the existing
verdict. Because this process does not interfere with the rest of the system, multiple passive
oracles can run at the same time.

Active security oracles can do every thing passive oracles can. They are also able to
introduce their own actions, pre-select the actions and have the knowledge which action
is selected for execution. This enables the oracle to actively influence the testing process.
An example of such an oracle is the XSS analysis oracle. This oracle adds two types of ac-
tions: form field inputs and URL inputs. These actions are combined in the ’deriveActions’
method with the actions proposed by the protocol. The second interaction the oracle has
is in the pre-selection process. The XSS security oracle prefers form inputs over URL inputs,
so if both are present in at this stage, the oracle will remove the URL inputs. To avoid inter-
fering, only one active oracle can be used at a given time. To help with the visualization, a
simple UML diagram of the oracle structure as been added 6.1.

The security oracles are not limited to one inner loop, this makes it possible to answer
security questions that require a multi stage scenario. An example of such a question is
"Do session tokens get invalidated after logout?". Answering this question required the
oracles to log in, read cookies, log out again, set the cookies and redirect. This sequence of
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Figure 6.1: An abstract representation of the oracle structure.

event can all be programmed into the same oracle. By defining the action that needs to be
executed in each state and keeping count on what actions have been executed, the oracle is
able to make TESTAR run the required scenario’s. The oracle can store all the data and give
a verdict at the end of the sequence.

A key feature of the security oracles is the extensibility they offer. Because the security
oracles are self-contained, no knowledge of the inner workings of TESTAR is required. Even
the protocol or navigational algorithm used is irrelevant for the oracle. The oracle knows
as little as possible, and the surroundings know as little as possible about the oracle. This
results in simple oracles that can be written in as little as ten minutes, depending on the
complexity of the question.

In summary, the security oracles created for this research enable TESTAR to execute
and answer predefined security oracles. The passive security oracles can answer questions
without interacting with the SUT, that enables them to run during any GUI testing session.
Active security oracles can interact with the SUT, enabling them to answer more complex
security questions. Because of the decoupled and simple nature of the oracles, creating
new oracles requires limited time and complexity.

6.1.2. ORACLE ORCHESTRATOR

To connect the oracles to the protocol, the oracle orchestrator was introduced. The oracle
orchestrator acts as a broker between multiple oracles and the protocol. For every stage
of the TESTAR inner loop, the orchestrator is called. It is the job of the orchestrator to pass
these calls on to the oracles. The orchestrator is in charge of the creation of the oracles,
and the interaction of TESTAR with the oracles. A sequence diagram of this interaction is
included in Figure 6.2.

The decision to decouple the protocol and the oracles was made to weaken the cou-
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Figure 6.2: A sequence diagram of the interaction between the protocol and oracles.

pling between the exploration algorithm and the security oracles. This is not only desirable
for future flexibility, it was required for this research to. Because of the unnatural struc-
ture of the benchmark, TESTAR was extended with a separate algorithm for exploring the
it. This way the validation of the oracles could be separated from the validation of TESTAR’s
algorithms.

The implementation of the orchestrator can even be done at the ’WebDriverProtocol’
level, the base class all WebDriver protocols extend from. This enables any protocol to run
any oracle, just by adding them to the configuration file. This is especially useful for the
passive oracles, because it would be desirable to be able to use them during normal GUI
testing runs. The active oracles are less suitable for combining with normal GUI testing,
because of the interference in the action selection process.
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7
RESULTS

This chapter contains the results of the experiments proposed in the methodology chapter.
To give an overview of the experiments that have been executed, the experiments are listed
once again below in Table 7.1.

Nr experiment SUT

1 HTTP headers OWASP Benchmark
2 XSS OWASP Benchmark
3 SQL injection OWASP Benchmark
4 Code coverage Blogifier
5 Token invalidation Custom application
6 Setup time Blogifier

Table 7.1: Experiments

7.1. EXPERIMENT RESULTS

7.1.1. BENCHMARK RESULTS

Experiment test cases vulnerable test cases true positive false positive

TESTAR
Insecure Cookie 67 36 36 0
XSS 455 246 156 0
SQL injection 504 272 222 52

OWASP ZAP
Insecure Cookie 67 36 36 0
XSS 455 246 179 0
SQL injection 504 272 167 26

Table 7.2: Benchmark results absolute
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The first three experiments all use the OWASP benchmark to validate TESTAR’s ability to
find vulnerabilities. The first Table 7.2 contains the number of test cases and the number
of vulnerable test cases in the benchmark, as well as the performance of TESTAR in those
test cases. The second Table 7.3 contains the scores from all the tools tested against the
benchmark.

Category true positive false positive runtime (h:mm) Sequences

TESTAR
Insecure Cookie 100% 0% 0:15 1.000
XSS 63% 0% 4:12 15.000
SQL injection 82% 22% 3:03 10.000

OWASP ZAP
Insecure Cookie 100% 0% 0:01 N/A
XSS 73% 0% 0:28 N/A
SQL injection 61% 11% 0:01 N/A

Table 7.3: Benchmark results relative

7.1.2. CODE COVERAGE

The fourth experiment measures the code coverage of TESTAR and OWASP ZAP, the results
of this experiment are shown below in Table 7.4.

Tool section Classes Methods Branches Time (h:mm)
Sequences

TESTAR, webdriver_generic
1 (71 of 295) (217 of 780) (426 of 1.613) 0:02 100
2 (71 of 295) (217 of 780) (426 of 1.613) 0:03 100

3 (71 of 295) (217 of 780) (426 of 1.613) 0:05 200
4 (71 of 295) (217 of 780) (426 of 1.613) 0:05 200

TESTAR, webdriver_statemodel
1 (71 of 295) (217 of 780) (426 of 1.613) 0:08 100
2 (71 of 295) (217 of 780) (426 of 1.613) 0:07 100

3 (71 of 295) (217 of 780) (426 of 1.613) 0:16 200
4 (71 of 295) (217 of 780) (426 of 1.613) 0:15 200

OWASP ZAP
1 (84 of 295) (237 of 780) (465 of 1.613) 0:06 N/A
2 (84 of 295) (237 of 780) (465 of 1.613) 0:06 N/A

Table 7.4: Code coverage
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7.1.3. SETUP TIME

QUICK SETUP

For the first part of this experiment the quick setup of both TESTAR and OWASP ZAP is
measured in actions required. The steps required by both tools are listed below in Table 7.5.

Step TESTAR ZAP

1 Start TESTAR Start ZAP
2 Select ’security analysis’ Select ’Automated Scan’
3 Enter test URL Enter test URL

4 Click the ’Start generate’ Click ’Attack’

Table 7.5: Quick setup

LOGIN

For login scenarios, both tools required additional setup. This setup is described in Ap-
pendix 9.9.

7.1.4. TOKEN INVALIDATION
To validate the token invalidation detection abilities of TESTAR, three test cases were cre-
ated. These test cases were run three times on three different versions of the same applica-
tion. The results of this experiment are listed in Table 7.6.

Run successful tests

1 (3 of 3)
2 (3 of 3)
3 (3 of 3)

Table 7.6: Token invalidation results

7.2. ANALYSIS OF RESULTS

7.2.1. HTTP HEADERS
TESTAR was able to detect 100% of the Insecure Cookie flags correctly, with no false pos-
itives. Because TESTAR detects all HTTP header data the same way, this result should be
representative for the ability of TESTAR to detect and validate HTTP headers. The perfor-
mance difference between the detection of the SET-Cookie secure flag and any other HTTP
header should come down to the oracle used.

The algorithm TESTAR is using to detect HTTP headers is only listening and not interact-
ing with the system. Because of this, the header detection algorithm could be used during
regular GUI testing without influencing the results. Because of the high accuracy of the
algorithm, the interpretation of the results should not be labor intensive.

The performance of TESTAR is comparable to that of OWASP ZAP. Once the HTTP call
is made, it is very easy to validate the headers. The challenge is in the ability to navigate

42



the website completely, making sure the call is actually executed. Because of this, it is not
surprising that TESTAR performs good in this category.

What TESTAR does not do great in this category in comparison to OWASP ZAP is the
runtime. TESTAR takes a lot longer to run the HEADER analysis than OWASP ZAP does.
However, this is not a problem for TESTAR because it can analyse the HEADERS during nor-
mal GUI testing. This introduces no additional runtime in comparison to not analysing the
HTTP headers.

In conclusion, TESTAR is able to analyse HTTP headers as well as a dedicated security
analysis tool. With the added efficiency of combining this analysis with regular GUI testing,
making it take no additional time. Finally, because of the accuracy of the results, interpre-
tation should not require more resources than with dedicated tooling.

7.2.2. CROSS SITE SCRIPTING
TESTAR is able to find 63% of the XSS vulnerabilities in the OWASP benchmark without any
false positives. While this percentage is not impressive in itself, is does mean that TESTAR is
able to detect a large part of the easy to detect XSS. In comparison with the 73% detection
rate of a dedicated DAST tool, the 63% of TESTAR is very impressive.

There are a few known problems with the way TESTAR detects XSS, and some of these
problems can explain this difference. First, TESTAR does not use encoded XSS or filter eva-
sion. This means that if the application filters out the script tags from the input, TESTAR will
not be able to detect XSS vulnerabilities. This is something OWASP ZAP does a better job
at. TESTAR will however be able to overcome this obstacle in the future by extending the list
of possible injections.

The second problem is the difference in runtime. While OWASP ZAP took very long to
analyse XSS in comparison to the other vulnerabilities, TESTAR took almost ten times as
long. This is due to the fact that TESTAR interacts with an application in a way a GUI tester
does, making it hard to overcome this issue. One of the ways this could be mitigated in
the future is by running multiple TESTAR instances in parallel. This would enable TESTAR to
run one main instance for exploring the application, and background instances to execute
security oracles on the widgets found. While this could reduce TESTAR’s runtime by a lot, it
is unlikely that is will come close the that of OWASP ZAP.

The final problem with the current implementation in TESTAR is the fact that it only
tests for reflected XSS. This means that stored XSS vulnerabilities are not detected. To test
the stored XSS in a way it would be used by attackers using TESTAR is very hard because an
undefined sequence of actions needs to be executed to use it. It would however be possible
to inject data coming from the server with XSS injection, determining if the front end is
susceptible at all.

In conclusion, while TESTAR has the potential to replace dedicated tooling for detecting
XSS vulnerabilities in the future, it still has a long way to go. TESTAR should make use of
encrypted XSS and detect reflected XSS to improve the results. TESTAR should also be opti-
mized to reduce the runtime. However, the fact that TESTAR’s results are less complete than
the ones of OWASP ZAP, they are still beneficial to the security of the SUT.

7.2.3. SQL INJECTION
TESTAR was able to detect 82% of the SQL injection vulnerabilities correctly. That result is
very high. However TESTAR also has a false positive rate of 22%. In the benchmark, where
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the ratio between vulnerable and non vulnerable test cases is roughly 50/50, this means
TESTAR is mostly right. However, in a real world scenario, the amount of positive cases is
much lower in comparison. This would mean that the results will consist of mostly false
negatives.

In comparison to the 61% true positive and 11% false positive rates of the dedicated
DAST tool, TESTAR´s performance is not inferior to the dedicated DAST tool. While the true
positive rate of TESTAR is higher, this does not mean that TESTAR is performing better. The
false positive rate seems to be the problem while finding this vulnerability. With a better
implementation of the SQL injection oracle, TESTAR could be able to perform on the same
level as OWASP ZAP.

One of the problems that leads to a high false positive rating in TESTAR is the inability
to detect exactly where the SQL injection is coming form. This is a problem in the imple-
mentation and not a fundamental problem with TESTAR. If the implementation is altered
to make TESTAR aware where the SQL injection is coming from, it would be able to test the
same field with multiple values. Testing the same field with multiple value before deciding
a verdict would enable TESTAR to achieve a much lower false positive rate.

In summary, TESTAR is able to detect SQL injection, but not on a level that would pro-
duce easy to interpret results. TESTAR is able to express suspicions about SQL injection
vulnerabilities, but they will most likely be wrong a large portion of the time in a real world
scenario. However, TESTAR does have the potential to improve by a lot, but this would re-
quire a more refined implementation of the SQL injection oracle.

7.2.4. CODE COVERAGE

The code coverage experiment was added to measure how much of an application TESTAR

discovered in comparison to OWASP ZAP. It is important to note that, when analysing these
results, the absolute values are irrelevant. It is unknown what the theoretical maximum
values are that are discoverable, and how much of the code is relevant for finding security
vulnerabilities. What it does show however, is how much of the application TESTAR is able to
discover in comparison to OWASP ZAP. For this tests, TESTAR used the ’webdriver_generic’
and ’webdriver_statemodel’ protocols with a sequence limits of 100 and 200.

The first thing that stands out is the lack of deviation in TESTAR’s runs using different
configurations. This indicates that the sequence limit and protocol are not limiting TES-
TAR’s ability to discover the application in this experiment.

Secondly, TESTAR covers significantly less of the application than OWASP ZAP. This could
be due to the fact that OWASP ZAP does not use the GUI in the same way and could there-
fore touch parts of the system TESTAR could not. This also shows the fundamental limita-
tion of security analysis using a GUI testing tool. The attack service analysed will always
be limited to the GUI. Endpoints that still exist, but are not used in the GUI anymore, are
potential weaknesses TESTAR is unable to find.

Based on these results it can be argued that a security analysis using TESTAR touches a
large portion of the system that an analysis using a dedicated tool would. By combining this
information with the benchmark results, it is possible to draw a conclusion about TESTAR’s
abilities as a security analysis tool. It can be concluded that, while TESTAR is worse than
dedicated tools, it should be able to find a significant part of the vulnerabilities in a system.

However, the experiment itself does not tell the whole story. Stability issues while run-
ning with OpenCover limited the number of runs that was executed. On top of that there
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was an inability to find SUTS that were compatible with OpenCover and fit for this research.
Because of this, there was only one application used for this experiment. To get a really
good picture of TESTAR’s ability to explore the application, more SUTs need to be tested
and more runs need to be done. However this did not fit into the time limitations of this
thesis.

In conclusion, the results of the code coverage experiment show that TESTAR is able to
discover a large part of the application that OWASP ZAP did. The code coverage results in
combination with the benchmark results show that TESTAR is able to find a large portion of
the vulnerabilities a dedicated tool would find. However, the amount of runs and SUTs in
this experiment is low and more SUTs and runs would yield more meaningful results.

7.2.5. SETUP TIME
To show that it is easier to use TESTAR than to use a dedicated security analysis tool, we have
compared the setup actions required for both TESTAR and OWASP ZAP in this experiment.
The experiment measures the action required to setup the tools for a new SUT, this does
not include any part of the installation process. Both tools need 4 basic steps to run on a
new SUT. Both tools need very limited setup and are very similar in effort. A side note is
that the OWASP ZAP application requires the user to select the parts of the application to
analyse after crawling the application. This is not a SUT specific setup step, but should be
mentioned.

The second part of the experiment looked at the setup of automated login for a new
SUT. This is where the tools diverge in both approach and effort. TESTAR requires the user
to define a pre-specified action and place that action in the startup process of a protocol.
The user might need to alter the id of the field, depending if the SUT fields contain the user-
name and password. The user also needs to enter the name of the form and their username
and password. This means there are actually three steps: 1. inspect the application in the
browser, 2. find out how the username, password and form elements are called, 3. copy
and paste the code from Vos et al. [VAR+21] to the startup of the TESTAR’s protocol and 4.
add the element names and the username and password to the code.

OWASP ZAP requires 12 steps to define a login sequence as seen in Table 2. The advan-
tage of the setup with ZAP is that it does not require the user to touch any code, all the steps
can be achieved using the user interface. A second advantage is that OWASP ZAP does not
require the user to search for field names by inspecting the elements of the SUT.

In conclusion, setting up a new SUT is equally easy for both tools. There were big differ-
ences in setting up the login process. It required a little more skill and knowledge to setup
a login sequence in TESTAR. However, setting up the login process in OWASP ZAP required
a lot more effort.

7.2.6. TOKEN INVALIDATION
The token invalidation experiment shows whether TESTAR is able to detect whether a token
is invalidated on logout of not. In all three test cases in all three test runs TESTAR was able
to detect the token invalidation correctly.

The application that was used for this experiment was altered to create the three dif-
ferent test cases that perfectly fit TESTAR’s abilities. A benchmark or a series of real world
application would have given more meaningful results about TESTAR’s ability. A benchmark
that tested this ability could however not be found and creating one fell outside of the time
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constraints of this thesis. Manipulating the cookies in real world applications without per-
mission is an action that could have unforeseen consequences. That is why the decision
was made to create three test cases.

This means that this experiment does not show in what percentage of applications TES-
TAR would be able to detect session token invalidation. But it does show that TESTAR is able
to detect session token invalidation in some cases.

A limitation of the current implementation is that it will only work if the session token
is stored as a cookie. If local session storage is used, TESTAR is unable to do so. The sec-
ond limitation of this approach is that TESTAR needs to be pointed at the login and logout
buttons in the SUT. This means that analysing session token invalidation cannot be done
entirely automated yet.

None of the DAST tools researched for this research had the ability to validate session
token invalidation by default. This means TESTAR would be able to do something that the
most popular dedicated security analysis tools cannot. However, it is possible to add cus-
tom validation rules to existing tools, making it in theory possible to analyse session token
invalidation with those tools as well. This would be functionality that has to be imple-
mented by the user, so that TESTAR would be able to do this out of the box would be a first.

In conclusion, session token invalidation is possible using TESTAR. To know on what
percentage of websites this will work more research is required. A disadvantage of this
feature is that some setup is required. This experiment does however show that TESTAR is fit
for automated scenario testing, more scenario tests to be added in the future. But the most
meaningful result of this development is that if this ability makes it in a production version
of TESTAR, TESTAR would be the first tool that can validate session token invalidation out of
the box.
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8
CONCLUSION

This research aimed to demonstrate the potential role TESTAR could play in security anal-
ysis. Based on the security analysis executed with TESTAR and the comparison to existing
security analysis tools, it can be concluded that TESTAR can contribute to the field of se-
curity analysis. In particular that TESTAR is able to do security analysis and that security
analysis by TESTAR is beneficial to the security of web applications.

The reason security analysis with TESTAR, or GUI testing in general, is so appealing is
that there is already interaction with the system. Being able to use this existing interac-
tion to reduce the number of vulnerabilities in a web application, instead of relying on the
presence of dedicated security analysis, could have serious impact on the security of web
applications. In this research, TESTAR was extended to actively analyse SQL injection and
XSS vulnerabilities, as well as passive analysis of HTTP headers.

To enable TESTAR to find these security vulnerabilities, a framework was created. This
framework introduced security oracles into TESTAR. These self contained units of code en-
able TESTAR to answer specific security question and enable TESTAR to be extended to find
new vulnerabilities in the future. The security oracles come in two forms: passive oracles
and active oracles. The passive oracles run in the background, collecting data without influ-
encing the interaction with the system. The active oracles are able to influence the actions
TESTAR is executing. This enables the active oracles to do more complex forms of security
analysis, like finding injection vulnerabilities.

Exceeding or matching dedicated security analysis tools in performance was never the
objective. The aim was to reliably finding a large enough portion of security vulnerabilities
to give security analysis with TESTAR real world value. The OWASP benchmark was used to
validate TESTAR’s ability to find a vulnerability when encountered. This resulted in a 100%
score for header analysis, 63% score for XSS vulnerability detection and a 82% score for SQL
injection vulnerability detection. With 0% false positives for both header analysis and XSS
analysis, and a 22% false positive rate for SQL injection analysis. Where the dedicated secu-
rity analysis tools scored, on average, slightly higher. With the same 100% score for header
analysis, 73% of XSS vulnerabilities were found and 61% of SLQ injection vulnerabilities
with a false positive rate of only 11% for SQL injection.
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These results show that TESTAR is not only able to find SQL injection vulnerabilities, it
also has the potential to find even more vulnerabilities with fewer false positives. While the
ability of dedicated tools exceeds TESTAR’s abilities, the difference is smaller than expected
and there is more potential in TESTAR’s abilities. Further more, GUI testing is expected to
be an excellent way of detecting XSS vulnerabilities, because TESTAR has both access to
the GUI, its configurations and the network traffic. This gives TESTAR the potential to not
only test for XSS vulnerabilities, but be one of the best tools for detecting XSS vulnerabil-
ities. The current implementation however, is still lacking behind the implementation of
the dedicated security tool.

TESTAR has proven itself to be an excellent tool for passive security analysis. Because
it is able to listen to interaction that is already provided by TESTAR, it is able to passively
analyse certain vulnerabilities at negligible additional costs to the runtime. TESTAR’s algo-
rithm is specialized in exploring web application. This enables passive analysis to have the
potential to find a large part of the, from the GUI detectable, misconfigurations in an ap-
plication. In this research TESTAR is only able to analyse the headers, however there is a lot
more that can be analysed passively that would increase TESTAR’s impact on application
security.

The second validation for TESTAR’s added value to application security, is the code cov-
erage. This indicates how much of the application TESTAR is able to touch while testing. By
combining the code coverage of TESTAR with the results from the benchmark, it is possible
to say something about performance in the real world. For this research, the code coverage
of a C# application was measured using OpenCover for both TESTAR and dedicated security
analysis tools. This is where the real limitations of TESTAR were shown. TESTAR is funda-
mentally limited to the GUI. The security analysis tools were able to analyse wherever they
were pointed, TESTAR was limited by what it could interact with trough the GUI. This shows
that, while TESTAR is very useful for testing the security vulnerabilities in the GUI, it is less
useful for testing the security vulnerabilities in the entire system.

The third validation came in the form of the setup. For TESTAR to have added value for
the security of a web application, it is important that the use of TESTAR has benefits over the
use of a dedicated security analysis tool. This benefit came in the form of setup. While all
the security analysis tools were relatively easy to setup, they all needed additional configu-
ration to deliver the best results. This configuration takes both time and knowledge that is
not by definition available. Being able to run the security analysis with TESTAR during the
GUI testing process, takes these limitations away. These findings have shown that, while
security wise the results would be better using a dedicated security analysis tool, using TES-
TAR for security analysis can offer a solution better tooling or knowledge is not available.

The final validation was to validate TESTAR’s ability to find token invalidation vulner-
abilities. This does not only validate TESTAR’s ability to find these vulnerabilities, it also
shows the frameworks ability to answer more complex security questions. Because the ex-
periment existed of three generic test cases, it did not show the real world performance
of TESTAR’s token invalidation oracle. However, it did show that TESTAR is able to analyse
this vulnerability in a synthetic environment. None of the other tools used for this research
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were able to analyse this vulnerability out of the box. This means that TESTAR is able to do
security analysis that is not feasible with dedicated security tooling.

So using TESTAR for security analysis has a positive impact on the security of the systems
that are tested with TESTAR, especially if a dedicated security analysis tool is not used. This
paper shows that TESTAR can be great at certain parts of security analysis (like analysing
headers), and sufficient in others (like SQL injection). The comparison in configuration to
an existing security analysis tool shows that TESTAR has a role to play in this field. Because
of the middle ground TESTAR offers between no security analysis and security analysis with
a dedicated security analysis tool.
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9
FUTURE WORK

9.1. FINDING MORE VULNERABILITIES WITH TESTAR
One of the features considered in this research was the detection of exposed session iden-
tifiers in the URL. Because of the complexity of accurately identifying session identifiers,
this feature did not make it into this research. However, this would be a nice extension to
TESTAR, because it would be able to run passively during a normal GUI-testing session.

More vulnerabilities detection oracles were proposed but not implemented during this
research. The complete list is included in the table below 9.1.

Nr description

Actively analysable vulnerabilities
1 Missing access controls
2 View or edit someone else’s account
3 URL modification
4 Elevation of privilege
9 Enabled default accounts

13 Brute force protection
14 Automated attack protection
15 Weak password rules

Passively analysable vulnerabilities
10 Stack-trace reveals
16 Exposed session identifiers

Table 9.1: Vulnerabilities that could have been analysed

9.2. TAINT ANALYSIS
Taint analysis is a great way of detecting injection vulnerabilities. Aside from the com-
plexity, the need for an extra program to monitor runtime performance of the SUT is an
obstacle. A different, yet still complex approach, would be a way of doing taint analysis
using log files. The problem with the current injection detection of TESTAR is that it has a
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lot of false positives. Mainly because TESTAR is unable to determine whether there really is
a vulnerability or not. Using taint analysis in the right way would enable TESTAR to confirm
the existence of injection vulnerabilities with a very high level of precision. This would take
away the need to use a second tool to confirm the suspicions that TESTAR has.

9.3. GOING BEYOND WEBDRIVER

The abilities of TESTAR are limited by the functionalities that WebDriver exposes to the user.
One of the limitations of WebDriver we ran into during this research was that WebDriver
does not give detailed information about the encryption used. Because of this, TESTAR is
not able to assess the quality of the encryption used. Another limitation is the lack of abil-
ity to manipulate the network traffic. Being able to manipulate the network traffic would
enable TESTAR to test stored XSS in a more reliable way. Extending TESTAR with a proxy that
enables TESTAR to read and manipulate all aspects of the network traffic would be a step up
for TESTAR‘s security analysis abilities.

9.4. IMPROVING SQL INJECTION

TESTAR is able to detect SQL injection in a very rudimentary way. By triggering an injec-
tion, TESTAR is able to estimate the chance of an SQL injection vulnerability being present.
While this method shows that TESTAR is fundamentally able to detect SQL injection vul-
nerabilities at some level, it does not deliver the maximum potential of TESTAR testing for
SQL injections. TESTAR could be extended with more escape characters, like " and ‘. There
could also be more checks to deliver a lower false positive rate. For example by comparing
the results of different injection statements. This means that a potential avenue for future
research would be a deep dive into SQL injection methods with TESTAR.

9.5. SPLITTING EXPLORER AND ACTIVE ANALYSIS

In the current state, TESTAR will explore the GUI and during this exploration, it will try secu-
rity tests. This means that every check will be executed in series, slowing the testing process
with every oracle added. By splitting the scanning and pen-testing processes, this time
penalty could be mitigated, executing these tasks in parallel. When the TESTAR explorer
finds an opportunity for pen-testing, one or more new instances of TESTAR could be started
to pen-test the specific opportunity in the background. There could be a background pool
of TESTAR instances to pick up these tasks.

9.6. ATTACK SERVICE

While TESTAR is able to analyse security vulnerabilities and has the potential of analysing
security vulnerabilities a lot better than it can now, there will always remain a limitation.
Because TESTAR is a GUI testing tool, it makes sense to be limited to a single attack service,
the GUI. What is unknown however, is the impact vulnerabilities by attack service. Finding
out the impact of a vulnerability that is accessible through the GUI, compared to a vulnera-
bility that is not, would help understand the role that TESTAR can play in the overall security
of web applications.
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9.7. MITIGATION DETECTION
Because TESTAR is limited by the GUI for detecting security, it could be fooled by front-
end mitigation of vulnerabilities. For example, if a front-end sanitizes every request before
it is sent to the back-end, the detection of SQL injection through the front-end becomes
impossible. This however, would not mean that there is no vulnerability. The existence
of such a system could be detected by TESTAR, by analysing network traffic, TESTAR could
compare the network request to the back-end with the input. If the request to the back-end
lacks the special characters, this would indicate that SQL injection mitigation is handled in
the front-end, requiring additional attention from dedicated tooling to estimate the real
risk of SQL injection vulnerabilities.

9.8. MORE COMPLETE VALIDATION
The current research compares TESTAR with a single dedicated security analysis tool on a
single benchmark, and measures code coverage on a single application. The reason for
this were the time constraints for this project. However, to really test TESTAR’s abilities, a
broader comparison is necessary. Because of the stability issues experienced using Open-
Cover during this research, using JaCoCo in a new attempt is recommended.

For this research, the validation was split into a benchmark part and a code coverage
part. The combination of these results gave an estimation of how good TESTAR would be in
the real world. It would however be an interesting addition to validate TESTAR on real world
applications.

9.9. BROWSER EXTENSION FOR PASSIVE ANALYSIS
TESTAR shows in this research that it is possible to find certain security vulnerabilities from
the background during normal testing sequences. This means that these vulnerabilities
could be detected in the same way during normal usage of an application. A really cool next
step for this research would be an implementation as a browser extension, that validates
passive security aspect during normal browsing.

The extension could give each website a score based on how many of the vulnerabilities
were found, making the user aware of the security state of the website used. This extension
could also be used to gather statistics about vulnerable websites of notify the owners of a
website if vulnerabilities are found. A problem with this research is that processing this data
for analysis or notification would require processing part of the users web activity, which is
undesirable from a security and privacy perspective.
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LOGIN WITH TESTAR AND OWASP ZAP

LOGIN

For login scenarios, both tools required additional setup. The steps required for TESTARwere
derived from the TESTARpaper [VAR+21]. For TESTARto log in, a pre-specified action had to
be added to the startup sequence. A variant of the code snipped from [VAR+21] is shown
below.

1 CompoundAction . Builder builder = new CompoundAction . Builder ();
2 for ( Widget widget : state) {
3 if ( widget .get( WebTags .Id). contains (" username ")){
4 builder .add(new WdAttributeAction (" username ", "key", "

value"));
5 }
6 else if ( widget .get( WebTags .Id). contains (" password ")){
7 builder .add(new WdAttributeAction (" password ", "key", "

value"));
8 }
9 }

10 builder .add(new WdSubmitAction (" Form_Name ")).build ();

The steps required for OWASP ZAP are quoted directly from their website [owa21] and
are listed below in Table 2.
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Nr. step

1 "Explore your app while proxying through ZAP"
2 "Login using a valid username and password"
3 "Define a Context, e.g. by right clicking the top node of your app in the Sites tab and

selecting ’Include in Context’"
4 "Find the ‘Login request’ in the Sites or History tab"
5 "Right click it and select ’Flag as Context’ / ’Form-based Auth Login request’"
6 "Check that the Username and Password parameters are set correctly - they almost

certainly wont be!"
7 "Find a string in a response which can be used to determine if the user is logged in or not"
8 "Highlight this string, right click and select ’Flag as Context’ / ’Logged in/out Indicator’

as relevant - you only need to set one of these, not both"
9 "Double click on the relevant Context node and navigate to the “Users” page - check the

user details are correct, add any other users you want to use and enable them all"
10 "Navigate to the Context “Forced User” page and make sure the user you want to test is

selected"
11 "The ’Forced User Mode disabled - click to enable’ button should now be enabled"
12 "Pressing this button in will cause ZAP to resend the authentication request whenever it

detects that the user is no longer logged in, i.e. by using the ’logged in’ or ’logged out’
indicator."

Table 2: OWASP ZAP login setup (taken from [owa21])
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