
Master Thesis
Computing Science

Radboud University

Using graph-based anomaly detection to
uncover scientific fraud

Author:
ing. Wibren Wiersma
s1047784

First supervisor/assessor:
dr. ir. Hugo Jonker

Second assessor:
dr. ir. Erik Poll

September 9, 2022

https://www.ru.nl
mailto:wibrenwiersma@hotmail.com
mailto:hugo.jonker@ou.nl
mailtor:erik.poll@ru.nl

Summary

The body of scientific research is growing exponentially. To keep up, detection of scientific fraud
must scale up as well. While manual human investigation and evaluation is crucial to determine
whether specific cases constitute fraud, automation can help to uncover suspect cases. Tools
to detect fraud are often targeted on detecting fraud in publications. But those responsible for
the fraudulent publications are the authors. Like them, other actors in the publication process,
such as reviewers, editors, and venues, are only occasionally the subject of fraud investigation.
The goal of our proposed method is to reduce the workload of scientific fraud investigators by
providing software-delivered indicators of suspicious behavior of actors in the publication process.

Our approach is based on the assumption that severe cases of scientific fraud will result in
outliers compared to their non-fraudulent peers. We devise a method that searches for outlying
actors within scientific biographic information. To enable this, we constructed a graph repre-
sentation of scientific biographic information, including data of DBLP, OpenCitations, scraped
editors from ACM journals, and scraped PC members of front matters of Springer LNCS con-
ferences. In comparison with earlier similar efforts, we significantly improved the integration
between these data sources.

Our idea is to find outlying actors by detecting outlying numbers of cycles in our graph. This
idea is based on the assumption that when an actor commits fraud, it will eventually benefit the
actor itself, so there must exist a cycle from and to the fraudulent actor. Westerbaan [Wes22]
noticed that several methods of scientific fraud can be described as cycles in a graph. With the
cycle detection, we had to face performance issues, since we used a large graph of around 15
million vertices and nearly 45 million edges. We faced this by proposing a more efficient method
of cycle detection that fits the purpose of this thesis.

We detected cycles for more than 3 million persons with 6 or fewer edges. These cycles
have been grouped by their type. Cycle types describe the pattern of a cycle they contain the
node types and edge types included in it, for example, the self-citation cycle type is: Person
author of−−−−−−→Article

cites−−−→Article
author of←−−−−−−Person. Several known methods of scientific fraud can

be encoded as cycle types. But, decoding cycle types to find unknown methods of scientific
fraud is harder, because domain knowledge of the context is required. But the most important
indicator of scientific fraud are not the cycle types, but outlying numbers of cycles of actors.

We propose a statistical method for determining outlier thresholds for these number of cycles,
to eliminate the need for domain expertise and the need to ask potential fraudsters for their own
thresholds. We validated our method by replicating the PC member demands citations results
of Westerbaan. We then applied this method to detect outlying persons with a high percentage
of self-citations.We manually checked the top 10 of scientists with the highest self-citation score.

Our proposed method allows us to quickly investigate other cycle types, as long as the question
“what is abnormal behavior in which context?” can be answered for the investigated cycle type.
Therefore, our method is more flexible than Westerbaan’s attack-detection based method, which
required each time a new method of detection and querying of data.

With this thesis, we contribute by providing a scientific biographic information graph, a
more efficient method for detecting cycles in this graph, and a statistical method of determining
outliers.

The improvements in this thesis also opens the possibility to test machine learning or other
statistical methods to find scientific fraud within the constructed graph. It is also possible
to expand the graph, by integrating more data sets, as well as adding new types of nodes and
relationships. Even with our improvements, scientific bibliographic data integration is a challenge
(also for our data sources) and can be improved further to enhance the quality of our results.

1

Contents

1 Introduction 4

2 Background 8
2.1 Incentives for scientific misconduct . 8
2.2 Academic publication process . 9
2.3 Cyclic expressible scientific fraud . 10

2.3.1 Demanding citations or co-authorship . 10
2.3.2 Self-citation . 11
2.3.3 Reviewing own work . 11
2.3.4 Venue self-citation and citation stacking 12

2.4 Weighted exponential regression . 13

3 Related work 15
3.1 The importance of scientific fraud detection . 15
3.2 Detection of scientific fraud . 15
3.3 Data sources of academic publications . 16
3.4 Knowledge graph . 17
3.5 Graph-based anomaly detection . 17

4 Methodology 18
4.1 RQ1 . 18

4.1.1 Data model . 18
4.1.2 People and name ambiguity . 19
4.1.3 Graph database software . 19

4.2 RQ2 . 20
4.2.1 Directed vs undirected . 20

4.3 RQ3 . 21
4.3.1 Outlier detection . 21

5 Data acquisition and refinement 22
5.1 Data quality and integration problems . 23
5.2 DBLP and DOI . 24
5.3 POC front matter parser . 25
5.4 ACM editorial boards . 26
5.5 ACM issue pages and editors . 28

2

6 Graph construction 32
6.1 DBLP . 32
6.2 OpenCitations . 34
6.3 Springer LNCS PC members . 34
6.4 ACM editors . 35

7 Efficiently detecting cycles 37
7.1 Cycle terminology . 37
7.2 Methods . 38
7.3 Detecting the cycles . 40

7.3.1 Extracting the subgraph . 40
7.3.2 Cycle detection algoritms . 41
7.3.3 Recursive paths . 41
7.3.4 Recursive cycles . 42

7.4 Grouping cycles and removing duplicates . 43

8 Cycles types 44
8.1 Invalid cycles types . 44
8.2 Known suspicious cycles types . 45
8.3 Gray-zone cycle types . 46

9 Outlier identification 48
9.1 PC member demanding citations . 49

9.1.1 Spire conference to compare with Westerbaan 51
9.1.2 Across all conferences . 52

9.2 Self-citations . 52

10 Conclusions 56
10.1 Discussion . 56
10.2 Future work . 57

10.2.1 Improving data acquisition and refinement 57
10.2.2 Advanced methodology . 57

10.3 Conclusion . 58

A Additional tables 64
A.1 ACM journals . 64
A.2 Node and relationship types abbreviations . 67
A.3 Person cycles per type . 68

3

Chapter 1

Introduction

Recently, the correctness of several highly-cited foundational publications of Alzheimer research
were called into question [Pil22]. These publications are suspected of containing manipulated and
reused images. Many studies and methods were developed on the results of these publications.
If the results of these studies were indeed faked, millions of dollars on Alzheimer research in the
last 16 years were spent on conclusions drawn from faked data.

This example illustrates that scientific fraud can be undetected for a long time, because de-
tection mechanisms are often lacking. According to one of the interviewed scientific experts:
“They [the journals and granting institutions] are not subjecting images to sophisticated analy-
sis, even though those tools are very widely available”[Pil22]. For example, only in March 2021
the editors of Molecular Therapy journal started their exploration whether image manipulation
detection software could be used for their journal [FH21] and in July 2022 they reported that
now all articles will be scanned for image manipulations [FH22]. Besides the fact that scientific
fraud detection tools are often not used, there are also forms of scientific fraud that still lack
decent detection tools. Examples are the detection of peer reviewing own work, or demanding
citations as an editor by a journal.

These kinds of fraud are occasionally still being detected, but are currently mainly reported
by human investigators or whistleblowers. Meanwhile, the body of scientific research is grow-
ing exponentially, it doubles in size every 10 to 15 years [JCG22; BM15].1 Given this growth
rate, and the lack of detection, there should be lots of scientific fraud waiting to be revealed.
For example, Van Noorden [Van21] expects that there are hundreds of generated papers still
undetected.

Note that the papers themselves do not commit fraud. Only the authors that write them do.
So, we want to shift focus to identifying potentially misconducting actors, like authors. When an
actor’s behavior is suspect, fraud investigators should focus on this actor, and their related papers.
This approach looks for abnormal behavior, so it is possible that the actor did not commit any
form of scientific fraud, since the definition of normal, and thus also abnormal behavior, is context
dependent. There could be suitable, non-fraudulent explanations why someone is behaving in
a particular way. See, for example, the blog post2 where Mark Griffiths answers questions of a
journalist on the suspicion3 raised by him publishing one article in two days on average.

1DBLP shows a graph with publications per year on their website https://dblp.org/statistics/

publicationsperyear.html
2See https://drmarkgriffiths.wordpress.com/2020/10/22/gambling-with-somebodys-reputation-part-

4-the-story-behind-the-story/
3See https://deevybee.blogspot.com/2020/07/percent-by-most-prolific-author-score.html

4

https://dblp.org/statistics/publicationsperyear.html
https://dblp.org/statistics/publicationsperyear.html
https://drmarkgriffiths.wordpress.com/2020/10/22/gambling-with-somebodys-reputation-part-4-the-story-behind-the-story/
https://drmarkgriffiths.wordpress.com/2020/10/22/gambling-with-somebodys-reputation-part-4-the-story-behind-the-story/
https://deevybee.blogspot.com/2020/07/percent-by-most-prolific-author-score.html

Figure 1.1: Simplified model of academic journal publishing adapted4 from [SO18]

The number of actors is far less than the number of papers, but is still large. So we propose a
method that can be automated and thereby reduce the amount of work for a fraud investigator
significantly. Such software tool can help to let humans focus on interesting investigation pointers
from the tool and types of fraud detection that are currently not automated.

Our tool searches for abnormal behavior that could be indicative of scientific fraud. With
this, we are unlikely to find actors that misconducted once or twice, since they will not differ that
much from normal behavior. Instead, we focus on actors that benefit much from their abnormal
behavior.

Scientific misconduct is a broad and diverse concept. As fraud can be committed at each
step of the scientific publishing process. For illustration purposes, Figure 1.1 shows a simplified
model of the scientific publishing process in a journal, including some actors. During the process,
many actors are involved, including authors, reviewers, editors, program committee members,
publishers, and automated data integration systems. The latter refers to services like Google
Scholar or DBLP that automatically parse publications to fill their data repositories and calculate
publication metrics. Each actor can influence one, or sometimes several, steps of the scientific
publishing process. Below, we give a few examples of known fraudulent or dishonest methods,
grouped by some steps of the scientific publishing process.

1. Writing The authors can commit fraud by adjusting the publication itself, for example by,
plagiarism, citing of own papers, fabrication of data, manipulation of data, manipulating
or reusing images, fabricating bogus papers with SCIgen5[Van21], buying already manually
fabricated bogus papers by so-called “paper mill” companies [EV21], and buying co-author
places in articles [Cha22].

2. Reviewing An author can, for instance, peer-review their own papers (e.g. Moon [Ora12]),
skip reviews by publishing in a predatory journal [BL20]6, or setup fake peer-review rings
[BL20]. Also, a journal can “help line up friendly peer reviews for an extra fee” [BL20].

3. Publishing An editor or PC member can require co-authorship or citations of their papers
before publishing an article in their journal or conference [WF12; Wes22].

4Modifications: removed title, moved legend to center, and added metrics step. Image is licensed under CC
BY 4.0.

5https://github.com/strib/scigen
6See also https://beallslist.net/ for a list of potential predatory journals and publishers.

5

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/strib/scigen
https://beallslist.net/

4. Automated data integration An author can willingly mislead automated data integra-
tion, for example by putting self-citations in white text on a white background, or as text
behind an image [Ant20]. Such texts are machine-readable, but not human-readable.

This last type of fraud is unlikely to be detected by human investigators. But when fraud is
being investigated by software tools that use data sources of machine reading, like we do, the
hidden text is automatically included in the anomaly finding. This can complicate human fraud
investigation of the reports of the tool since they are not in accordance with human observation.
We remark that there are two decisions to be made: should machines not read text that is
not human-readable? and should misleading automated data integration be considered scientific
fraud? These questions are to be discussed by publishers and the scientific community. In this
thesis, we use the output of automated data integration providers, so if they are misled, so will
we.

For the writing phase some automated tools are already known, for example plagiarism scan-
ners7, SCIgen detection scanners8, paper mill scanners9, and image manipulation detectors.10

But, currently, we are not aware of tools that are in use for detecting scientific fraud that does not
falsify the research itself, like boosting citations. To improve the situation, Tielenburg [Tie17]
tried to identify scientific outliers and then comparing them with peers, but encountered prob-
lems with the latter. Westerbaan [Wes22] swapped this order, by first creating peer groups and
then identifying outliers. With this approach, he was able to identify several persons of interest.
Both based their detection on known fraud techniques, which requires revealed fraud techniques
from manual investigation or whistleblowers.

Westerbaan [Wes22] observed that some of his investigated fraud techniques could be de-
scribed as cycles in an academic publication graph. So it could be that by detecting cycles in an
academic publication graph, scientific fraud could be revealed, also for currently unknown fraud
techniques. This is based on the assumption that when an actor commits fraud, it will even-
tually benefit that same actor. This benefit should be measurable because the aim of scientific
fraud is often to boost an actor’s academic metrics. So in a graph from the academic world, we
should be able to find cycles starting and ending by the actor that committed fraud. The pattern
of the cycle will describe the kind of fraud. Note that a cycle in itself is not a proof for fraud,
since even legal actions, like publishing a paper, will benefit the person publishing it and will
lead to a cycle back to that person. Only abnormal amounts (the outliers) can be an indicator
for fraud.

Therefore, the main research question of this thesis: When is the number of cycles of
an actor abnormal within an academic publication graph? As we discussed above, this
abnormal number of cycles of an actor can be indicative of scientific fraud. Note that we do not
want to assume this approach must work, so never is also a valid answer.

To answer the main research question, the following sub questions need to be answered:
RQ1 How to integrate publicly available data into an academic publication graph?

While there are various sources of academic publication data, relations between elements in
the source are not always explicit. For example, in DBLP, the author field of a publication
is a text entry, not a link to an author. Moreover, different sources may use different
representations of data. E.g., “Wibren Wiersma”, “W. Wiersma”, “Wiersma, Wibren”,
and “W.J. Wiersma” all refer to the same author. Integrating data from multiple sources
thus compounds the problem. (Chapter 5 and Chapter 6)

7There are many plagiarism scanners, for example Copyleaks.
8For example SciDetect and the method by Labbé and Labbé [LL13].
9According to Else and Van Noorden [EV21] the paper mill scanners are still have scaling issues.

10For example Droplets [Wes22].

6

https://copyleaks.com/education/plagiarism-software-for-universities
https://www.springer.com/gp/about-springer/media/press-releases/corporate/scidetect/54166
https://ori.hhs.gov/droplets

RQ2 How to efficiently detect undirected cycles in a directed academic publication
graph?
The graph resulting from the first research question is directed (e.g., direction of citations).
However, fraud does not always adhere to directions. For example, self-citation can be ex-
pressed as an author wrote an article that cites an article written by the same author, in
other words: WROTE, CITING,WRITTEN BY, or: author→article→article←author.
The second challenge is efficiency. Straightforward cycle detection is too slow for a realistic
setting with millions of authors. (Chapter 7)

RQ3 How to identify outliers given cycles in an academic publication graph?
Cycles themselves do not constitute indicators of scientific fraud, as we will discuss in
Chapter 8. Our assumption is that an abnormal number of cycles does indicate fraud.
This raises the question: when is the number of cycles abnormal? We address this in
Chapter 9.

This study contributes to fraud detection in academic publishing with the following:
• An academic publication graph.11 This includes the data acquisition, parsing, and inte-
gration that is required therefore. These contain improvements for the data acquisition,
parsing, and integration method of Westerbaan, which are used for constructing the graph.

• An efficient method for detection of undirected cycles in a directed academic publication
graph. We discuss performance differences between cycle detection methods and propose
a more efficient one.

• An improved method to determine thresholds for outliers by using a statistical approach.

This thesis is structured in the following way. We first provide some background information
in Chapter 2. After that, other related work is discussed in Chapter 3. We then describe our
methodology in Chapter 4. In Chapter 5, the additional data acquisition and refinement will be
discussed. In Chapter 6, we describe how the data sources are integrated into one graph. Then
we describe how we efficiently detected cycles in Chapter 7. We discuss the found cycle types in
Chapter 8. Then we describe the method and results of detecting outliers for two cycle types in
Chapter 9. And finally, we list our discussion, future work, and our conclusions in Chapter 10.
In the conclusions, we will directly answer all the research questions of our thesis.

11The dump of the Neo4j graph can be requested here https://doi.org/10.17026/dans-x4m-eda2

7

https://doi.org/10.17026/dans-x4m-eda2

Chapter 2

Background

This chapter contains background information to understand the thesis more in depth. In the
first section, Section 2.1, we discuss the incentives for scientific misconduct, which are often
directly associated with scientific metrics, but the situation is more complex. In Section 2.2 we
provide a small introduction to understand the process of academic publishing, with is relevant
for possible methods of scientific fraud. Known methods of scientific fraud that can be expressed
as cycles in a graph are discussed in Section 2.3. In Section 2.4, we show how to perform weighted
exponential regression, which is used for determining outliers in Chapter 9.

2.1 Incentives for scientific misconduct

It is often suggested that scientific metrics (like h-index, citation counts) allure scientist to
misconduct. This suggestion is based on Goodhart’s Law: “When a measure becomes a target,
it ceases to be a good measure” [Str97]. This claim is applicable because the scientific metrics
were invented to measure scientific performance, and since it now becomes the goal, scientists
will optimize their way of working to effectively increase these metrics to their full potential. In
this way, a scientist could feel the “pressure to publish” to uphold the metrics, which could cause
that older measures like quality of work become more disregarded, or even that the scientist will
be tempted to commit fraud [Gri20].

There is evidence that scientific metrics have an effect on scientist behavior, for example
the number of self-citations increased after scientists are promoted based on their number of
citations [See+19]. However, there is no evidence that this change led to more scientific fraud
[Lin20; Fan20]. Instead, scientific misconduct could be caused by scientific funding differences
between countries, as concluded by Fanelli [Fan20]. Therefore, Fanelli suggests that not “pressure
to publish” is a motivator for fraud, but corruption or greed of individual scientists [Fan20]. He
suggests that “pressure to publish” led to an increasing number of co-authors within publications,
because in the calculation of the metrics the number of co-authors is not included. Authors that
are doing a small amount of work in many articles and with many others, have the simplest
non-fraudulent way to increase the metrics.

Even the gender of scientist, research funding by industry showed no correlations with risk
of scientific misconduct [Fan+22]. Only more productive, more frequently cited, earlier-career
researchers working in lower-ranking institutions in countries where high-impact publications are
rewarded with cash are more likely to misconduct than their peers in other countries [Fan+22].

Concluding, scientific metrics are no incentives to misconduct, as long as they are not used
directly to reward a scientist in cash. Although the metrics are effecting the behavior of scientists

8

even towards gray zones like self-citations. The method we propose in this thesis will besides
pointers of misconduct more likely find the effects of behavior, most likely in the gray zones.
This underlines the argument that a human investigator is required to determine if someone is
exploiting the gray zones in a way that it can be considered fraud.

This conclusion holds only for scientific metrics that target researchers performance. For
example, the Journal Impact Factor (JIF) can influence the popularity of a journal. But the
journal itself cannot influence its JIF, because the JIF is based on the amount of citations that
articles receive in a journal. For a journal it is often hard to guess whether an article will gain a
certain number of citations. Journals are therefore tempted to increase their article citations by
other means. To improve this situation, a group of scientist, editors, publishers, and scientific
funders joined the San Francisco Declaration on Research Assessment (DORA) [12; Van14]. In
this declaration, they share their concerns and recommend to not evaluate scientific performance
with the JIF.

2.2 Academic publication process

Westerbaan [Wes22] already discussed the academic publication process in full detail in Section
2.1 and 2.2 of his study. Björk and Hedlund [BH04] formulated a formalized model of the scientific
publication process. So, for a more detailed description look there, but for the background of this
thesis, we keep it simplified. The simplified publication process within a journal is previously
shown in Figure 1.1 (repeated in Figure 2.1).

Figure 2.1: Simplified model of academic journal publishing adapted1 from [SO18]

The process First, the author or authors write an article, then they submit it to a journal. The
journal editor or editors do a quick preselect whether the article is of decent quality and should be
submitted to peer review. Then someone, with knowledge of the field that the article targets, is
asked to peer review the article. Sometimes the authors are asked to suggest a peer reviewer that
is able to review their work. The peer reviewer comes with some suggestions for improvement.
The authors then have the possibility to improve their work, based on the suggestions of the peer
reviewer. Depending on the journal, this process of reviewing and improving can be repeated a

1Modifications: removed title, moved legend to centre, and added metrics step. Image is licensed under CC
BY 4.0.

9

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

number of times. The editors then decide based on the peer review report and the improvements
of the authors whether the article should be published or not. After the article is published,
crawler bots like those of Google Scholar, the Web of Science and Scopus are reading the published
article and processing its metadata like citations, authors and date.

Differences between journals and conferences For the purpose of this paper, the editor
can also be replaced by a program committee (PC) member of a conference instead of a journal.
Between the publication process of journals and conferences there are differences, for example
the editors of a journal are often longer times involved, while program committees may differ
per conference. Conferences typically have a deadline for paper submission and the final version,
because their occurrence date is fixed. Conferences also have limited space. Journals will often
publish the article they approved in the next available issue.

NISP experiment The NISP experiment2 showed that whether a paper gets approved de-
pends heavily on the composition of the responsible committee. Therefore, subtle differences in
opinions of PC members or editors will influence which papers will be published or not. This
suggests that the publication process is susceptible to fraud.

2.3 Cyclic expressible scientific fraud

In this section, we discuss several examples of scientific fraud that can be described by cycles
in an academic publishing graph. Westerbaan [Wes22] already discovered that some methods of
scientific fraud can be expressed as cycles in a graph, these are also included here. Note that
in order to see the cycles, we must omit directions, and view the graphs as undirected, this will
be explained in more detail in Section 4.2.1. These can be encoded with labels, so they can be
detected in our graph, these labels are presented in Section 8.2.

2.3.1 Demanding citations or co-authorship

As mentioned by Westerbaan, editors have power to accept or reject a paper, and the NIPS
experiments showed that this process is not deterministic. An editor or PC member can exploit
this power by demanding citations (blue) or co-authorship (red) before accepting.

Both methods of fraud can be presented in a graph, as shown in Figure 2.2. Therefore, this
kind of fraud is detectable with cycles in a graph. However, not each detected cycle of these types
is an indicator for fraud. For example, an editor is often asked because of his/her experience
in the field of the venue. Since the publication at that venue possibly covers his/her field of
expertise, it is not strange that an author cites the editor’s publication by own will. Another
example is that the editor is publishing at the venue by him/herself, and therefore the committee
decides to avoid conflicts of interest by removing that person from the decision-making of that
publication. Personally, we still should be suspicious about the latter, because it is hard to see for
an outsider if these conflict of interest provisions were regarded or not. Despite these cautions,
it is a valuable pointer for fraud investigation when someone has a lot of cycles in one of the two
described cycle types.

In Section 9.1 we replicate a finding of Westerbaan [Wes22] by using the PC member requires
citation cycle.

2http://blog.mrtz.org/2014/12/15/the-nips-experiment.html

10

http://blog.mrtz.org/2014/12/15/the-nips-experiment.html

Person 1 Venue 1

Article 1 Article 2

editor by
pc member by

contains

cites

containsauthor of

Figure 2.2: Graph representation of require citations or co-authorship, adapted from [Wes22]

2.3.2 Self-citation

The study of Seeber et al. [See+19] showed that self-citations increased after citation numbers
became important for promotion. Self-citation is by definition not a fraudulent method, but
it depends on the context. It can be an indicator of scientific fraud when self-citation is very
frequently used or when citing, own, out of context papers. Westerbaan [Wes22] already showed
that this method can be expressed in a graph, like we do in Figure 2.3. In Section 9.2 we discuss
our findings of this cycle type and detect persons who abnormally frequently cite themselves.

Person 1

Article 1

Article 2

auth
or o

f

author of

cites

Figure 2.3: Graph representation of self-citation, adapted from [Wes22]

2.3.3 Reviewing own work

Moon submitted bogus e-mail addresses (sometimes related to real people) that belonged to
him (red) or to an associative (blue) as potential reviewers for his own work [Ora12]. He also
suggested friends and colleagues to review his work (blue). He was detected because of the short
time between submission and accordance.

As shown in Figure 2.4 it is possible to view this fraud method in a graph. Although, there
is one problem here: the reviewer-of relationship is disguised. Partly because bogus identities
were used, therefore having a bogus Person 1 node, but peer reviews are also often performed
double blinded. Therefore, an outsider must deduct a link between reviewer and article from
the link between a reviewer and journal issue. This example highlights one of the challenges of
our approach in this thesis, sometimes a relationship has been hidden and must be deducted by
other methods.

Westerbaan proposed to uncover this method of misconduct by looking at the publication
lag (the time between the submission and the acceptation of a paper) [Wes22]. Transforming
his method to a cycle detection method in a graph is hard, since the cycle detection must also

11

consider calculations in time based on properties, nodes, or relationships (depending on the
chosen data model). We have chosen to not include this attack in our thesis. If publishers,
journals, and conferences shared this relationship, we could have detected this fraud method
also. With clever thinking and modelling, this challenge can probably be overcome in a future
work.

Person 1 Article 1

Person 2

author of

reviewer of

fri
en
d
of

co
lle
ag
ue

of

reviewer of

Figure 2.4: Graph representation of reviewing own papers

2.3.4 Venue self-citation and citation stacking

Citations of publications in journals determine the journal’s impact factor (JIF, see also Sec-
tion 2.1). Scientist are rewarded (in fame, also sometimes in cash) when publishing in high
impact journals. Some journals were caught to artificially boost the journal impact factor by
demanding or inserting citations within publications before publishing it [Van14; WF12]. Other
journals were caught to have agreements to extensively citing each other publications, also called
’citation stacking’ [Van14].

As shown in Figure 2.5 for self-citation, and Figure 2.6 for citation stacking, both methods of
fraud are describable by graph and are cyclic. These cycles are also not direct indicators for fraud.
Neophytou [Neo15] noted two possible reasons why journal self-citation is sometimes explainable:
firstly, when the journal covers a niche or contains archived publications, and secondly, when
other journals in the same discipline are not included in the data sources, thereby missing many
citations from those journals to this one, having that a large portion of references to the journal
will be from the journal itself.

On citation stacking, Neophytou [Neo15] mentions four reasons to be cautious. Firstly, the
journals cover a niche and authors will therefore cite only a few other journals in that niche.
Secondly, she has seen that authors that commit extensive self-citation could cause suspicion on
venue citation stacking. Thirdly, authors can form citation cartels. And, lastly, small journals
can have highly fluctuating metrics, one or two articles could already influence a high percentage
of it.

When one of these cycles extensively appear with particular venues, this should lure the
attention of a fraud investigator. The fraud investigator should investigate whether these are
false positives by the cases mentioned by Neophytou.

These cycles were not investigated in our study because some exceed the length constraint
on our paths (see Chapter 7), the reason for this is shown in Section 8.2.

12

Venue 1

Article 1 Article 2

co
nt
ai
ns

contains

cites

Figure 2.5: Graph representation of venue self-citation, adapted from [Wes22]

Venue 1 Venue 2

Article 1 Article 2

Article 3 Article 4

contains con
tain

s

containscon
tain

s

cites

cites

Figure 2.6: Graph representation of venue citation stacking

2.4 Weighted exponential regression

The statistical approach for detecting outliers that we chose is called weighted exponential re-
gression. This is almost the same as exponential regression, but the weight biases the regression
to the points with more weight. In our case, we want to apply weighted exponential regression
on data where the y-axis describes how often the value on the x-axis occurs in our data, see for
example Figure 2.7. We want to prevent a bias to outlying points, by providing a weight with
the number of occurrences of each value we have. Normal values occur more often, therefore the
exponential regression has to weight these more.

Figure 2.7: Example of exponential distributed data; taken from Figure 9.1a

13

Weighted exponential regression has been performed on our data in the following steps:
1. We want the result of the exponential regression to be the following formula: y = a ∗ bx.
2. We first transform our values of the y-axis to linear by applying the natural logarithm

y′ = ln(y) (= loge(y)).
3. If the data was exponential distributed, it is now linear. Therefore, we can now apply

weighted linear regression. Linear regression results in y′ = m ∗ x+ c.
4. We ask NumPy in Python to do this for us with: (m, c) = numpy.polyfit(x, numpy.log(y),

1, w=y). The weight parameter (w) are the values of the y-axis, which are the number of
occurrences of x. We provide y′ by taking the log of y as explained in step 2.

5. To transform the result of the linear regression to the exponential regression, we have to
undo the ln by raising it to the exponential of e. So a = ec and b = em.

14

Chapter 3

Related work

In this chapter, we discuss related work of others and the connections with our study. First,
we discuss some related work on the importance of detecting scientific fraud in Section 3.1. In
Section 3.2 several works on scientific fraud detection are discussed. We list some academic
publication data sources in Section 3.3, with studies explaining their problems and decisions
made on data acquisition and integration. The graph we constructed can be called a knowledge
graph, since it describes knowledge of the real world. We address this in Section 3.4. Lastly, we
mention some studies on graph based anomaly detection in Section 3.5.

3.1 The importance of scientific fraud detection

This study of Wilhite and Fong [WF12] highlights the importance of the detection of scientific
fraud and shows the current scale of misconduct. They analyzed survey responses of 6672 scien-
tists on coercive citations. In these responses, 175 journals were reported of requesting citations,
the worst journal was named 49 times. One in 5 responders said to have been asked to include
citations. More than half (57%) of the responders told that they would add the required cita-
tions if they were asked, while 93% of the responders believed that others would agree to add
citations. Wilhite and Fong mention that authors, besides victims, could also be co-conspirators.
After their article has been published in such a journal, they also benefit by receiving coercive
citations.

According to Biagioli and Lippman [BL20], post-production fraud is targeted at institutional
valuation, so the fraud methods change when metrics techniques and markets are changing. Since
they are currently changing, it is naive to build a checklist with known fraud methods. They note
that there is currently no concept that captures all the various manifestations of post-production
misconduct. With our method, we allow switching between different types of scientific fraud if
they can be encoded as cycles.

3.2 Detection of scientific fraud

There are several studies that investigate scientific fraud, wherefrom their method or model could
be used. In this section, we first discuss the chain of research where this thesis is based on. Then
mention our connections with other studies.

Jonker and Mauw [JM17] constructed a basic academic publication model to research the
impact of decisions in the research process on scientific metrics. Their publication model is

15

shown in Figure 3.1. Tielenburg [Tie17] used this model for finding outlier with manually crafted
heuristics, and then validate them by comparing them with peers, but had no success in the latter.
According to Westerbaan [Wes22], Tielenburg was not successful because several scientific fraud
forms include editors and reviewers. To include editors and reviewers, Westerbaan expanded
the model. The additions of Westerbaan are presented in blue in Figure 3.1. This model is
a simplified version of the graph we constructed, not surprisingly because we search for the
same kind of fraud. Westerbaan also swapped the order, by first creating peer groups and then
detecting outliers. He succeeded in finding interesting outliers.

V

P

A

Venue

Publication

Author

E

R

Editors
PC Members

Reviewers

at

authored

cites

edits

reviews

Figure 3.1: Publication view, adapted from [JM17], and in blue from [Wes22]

Kojaku, Livan, and Masuda [KLM21] proposed an algorithm, named CIDRE, to find citations
networks of different kinds. They showed various examples of known citation networks and
detected new ones. But their algorithm follows an attack-detection based approach like in the
study of Westerbaan, their method cannot be converted into cycle based approach.

Frandsen [Fra22] researched authors publishing in predatory journals. The majority, 55%,
only published once in a predatory journal, but some are published more often. In these journals,
anyone can publish work without a proper peer-review or critical selection procedure. So, it is
suspicious if a researcher wants to evade peer-review or other critic. In our study, we wanted
to focus on finding outliers in normal journals, since questions can already be raised if someone
published in a predatory journal. However, as future work, it is possible to add these predatory
journals and encode their detections as cycle types.

Björk and Hedlund [BH04] constructed a formalized model of scientific research. This work
does not investigate scientific fraud, but by providing a model, identify points where scientific
fraud can be influenced.

3.3 Data sources of academic publications

There are also some studies describing the problems and models of different data sources:
• DBLP [Ley09] describes their imperfections, like problems with name matching and the
modelling problems, and whether an article or paper can be considered an inproceeding

or incollection. On the latter, see also Section 6.1 and Section 8.1.
• Aminer [Tan+08] provided an improved method for name to person matching.
• OpenCitations [HPS19] introduced the COCI (Crossref OpenCitation Index) dataset, con-
taining DOI-to-DOI citations. They also retrieve their data from closed sources.

Several issues regarding data sources are discussed in Chapter 5, there we refer also to DBLP
and Aminer. We used DBLP and OpenCitations as data sources for our graph.

16

Van Noorden [Van14] discussed some findings by Clarivate (formerly Thomas Reuters), the
company behind the Web of Science. It is possible to download their reports or build queries
for the Web of Science to extract the results. However, the Web of Science cannot be integrated
with other data sources because access through their API is limited.

3.4 Knowledge graph

The graph constructed in this thesis is a knowledge graph. Hogan et al. [Hog+21] define a
knowledge graph as: “a graph of data intended to accumulate and convey knowledge of the real
world, whose nodes represent entities of interest and whose edges represent potentially different
relations between these entities.” This definition fits very well the graph we constructed for this
thesis, since our graph describes the relations between articles, persons, and venues which are real
world entities. The graph of our study is a directed edge labelled, property graph. Their study
helped us to compare different forms of knowledge graphs. Choosing between these forms had
little influence on the research, but can be influential on the usefulness of the graph in practice.

3.5 Graph-based anomaly detection

In this section, we discuss several studies on graph based anomaly detection related with fraud
investigation. Our thesis briefly touches this topic. But a future work on our study could go
more into the direction of anomaly detection, machine learning, and statistics.

Pourhabibi et al. published “a systematic literature review of graph-based anomaly detection
approaches” for fraud detection [Pou+20]. Some approaches mentioned contain self constructed
algorithms that were context dependent (like for insurance, banking, trading, and social net-
works), unfortunately there are no academic context studies included. Besides the context, we
were not able to find a referenced study that did something similar as that we wanted to: de-
tecting anomalies in an academic publication graph.

But, we found one included study that is slightly related: the study of Carvalho et al. [Car+17].
They decided to detect anomalies in health care, by first giving anomaly scores to consumers
(the clients) and then deducting anomaly scores of producers (the hospitals). They used manual
investigation afterwards to validate their results, and suspicion of fraud. In our study, we decided
not to use anomaly scores, because summing citations was sufficient. We also emphasize the need
for manual investigation to validate the results of our method, before raising the suspicion of
fraud. We also chose to validate our results manually in Section 9.2.

Another interesting study it that of Li, Xiong, and Liu [LXL12] where they describe an
algorithm to find black holes: groups of nodes with more inward edges than outwards. It could
be suspicious when certain persons in our graph receive many citations without citing others
outside their group frequently, and thereby forming a “citation black hole”. Such investigation
is a different method than we investigated in our thesis, and requires a fully directed graph, but
could be interesting to investigate in a future work.

Schulz et al. created a new metric for scientific performance, for substantiation, they inves-
tigated citations in respect to author distances: the amount of co-authors in the graph between
two authors [Sch+18]. They found that authors closer to others in the graph are more likely to
being cited than those further away. This study can therefore easily be transformed to anomaly
detection study: which authors were cited that were not likely to be cited? And this idea of
author distance can also be used to construct a k-Nearest Neighbor for comparing authors with
each other. For cycle types we did not investigate, these analyses might be useful to construct
peer groups.

17

Chapter 4

Methodology

As also written in Chapter 1, the research question is When is the number of cycles of an
actor abnormal within an academic publication graph?. In other words, we want to find
outlying actors by looking for an outlying number of cycles. In this chapter, we address the
methods used to answer this question, by addressing them for each sub question separately.

4.1 RQ1

How to integrate publicly available data into an academic publication graph?
The goal of this question is to define a data model that can be transformed to a graph. This
will be discussed in Section 4.1.1. To do that, we had to integrate several data sources, the
main challenge for integrating the data sources is people and name ambiguity, as discussed in
Section 4.1.2. And, we had to select a graph database software, because this dictates to some
extent how we must design our data model. This is discussed in Section 4.1.3.

4.1.1 Data model

For the construction of the academic publication graph, we needed a data model. Wester-
baan [Wes22] noted that there is currently not one dataset that allows us to detect all the fraud
techniques mentioned in Section 2.3. Microsoft Academic Graph had a lot of this information,
but is no longer accessible since December 31, 2021.1 Therefore, Westerbaan constructed new
datasets by combining and integrating existing ones. Besides this reason, we also wanted to
compare our PC member demands citation outliers with Westerbaan’s to validate our method.
Therefore, we are obliged to use the same data sources, because others could potentially lead to
different results. Westerbaan constructed a new data model for each fraud technique, instead, we
first constructed one graph to find and investigate fraud techniques. We have chosen to integrate
DBLP, OpenCitations, scraped editors from ACM editorial boards and scraped PC members
from Springer LNCS journals. All these sources were also used by Westerbaan. We did not use
Aminer since the extraction of data from Aminer is harder than DBLP. DBLP provides one XML
file for download that contains almost all of their data.

Westerbaan already encountered data integration and processing problems. He mitigated
these by choosing his queries carefully and checking his results. We cannot do that because we
want to construct one graph and perform cycle detection in it. Therefore, wrong relationships

1https://www.microsoft.com/en-us/research/project/academic/articles/microsoft-academic-to-

expand-horizons-with-community-driven-approach/

18

https://www.microsoft.com/en-us/research/project/academic/articles/microsoft-academic-to-expand-horizons-with-community-driven-approach/
https://www.microsoft.com/en-us/research/project/academic/articles/microsoft-academic-to-expand-horizons-with-community-driven-approach/

cannot be ignored by not querying it, since the cycle detection will use them anyway. Therefore,
the wrong relationship will show up in many cycles. No relationship is better than a wrong
relationship. Therefore, to improve the quality of our detected cycles, we had to improve the
data quality and integration. These improvements are listed in Chapter 5. The integration of the
data sources to our graph is described in Chapter 6. One of the main challenges in integrating
the data sources is people and name ambiguity, which we discuss in the next section.

4.1.2 People and name ambiguity

Authors of papers are always mentioned by their names. However, it could happen that multiple
persons share the same name, or name abbreviation [Wes22; Ley09]. This hardens matching the
correct persons with the correct article (QJ3). This problem is not only damaging the validity of
academic biographic data sources, but could also be frustrating for scientists if their publications
are incorrectly matched with another person.

Therefore, academic data sets, like DBLP and Aminer, also had to deal with this problem:
DBLP decided to still store person information by name, but to separate persons with the same
name they place a postfix at the person name with an incrementing number for person names
that already exists in their dataset. For a more detailed description on the way DBLP handles
name ambiguity, see [Ley09]. Aminer developed probabilistic models with machine learning to
solve this issue [Tan+08].

ORCID To provide a permanent solution to this problem, the ORCID was introduced, to
give each researcher a unique ID. As noted by Westerbaan [Wes22] there are persons that have
multiple ORCIDs in the DBLP data set. This could be due to data integrity issues of DBLP,
but more likely people actually have multiple ORCIDs. On the website of ORCID it is explained
that when someone registers a new ORCID other possible matching records are shown to prevent
creating multiple ORCIDs for the same persons.2 This indicates that the organization behind
ORCID is aware of this issue and tries to prevent it. Although singularity is not preserved,
uniqueness is. We did not find shared ORCIDs between persons in DBLP. ORCIDs are not used
very much, but first and foremost for authors of publications. So, unfortunately, matching PC
members or editors still has to be based on person names.

Method We used naive name matching with DBLP. Therefore, when there are multiple persons
with the same name, we match only with the first. It goes beyond the thesis to develop or train
a model for matching the correct person, like in [Tan+08]. Therefore, the fraud investigator has
to check afterwards if name matching may invalidate the results of our method. This is one of
the limitations of our study that we highly recommend improving in future work.

4.1.3 Graph database software

The graph database software that we used is Neo4j, because of the recommendation in a graph
databases comparison study by Fernandes and Bernardino [FB18]. Neo4j fully supports the
graph query language Cypher, and also supports GraphQL. Therefore, according to Hogan et
al. [Hog+21] Neo4j can handle the most used queries types for graphs: graph patterns, complex
graph patterns, and navigational graph patterns.

2https://info.orcid.org/researchers/

19

https://info.orcid.org/researchers/

4.2 RQ2

How to efficiently detect undirected cycles in a directed academic publication graph?
Because the graph constructed in RQ1 contains 5 million vertices and 44 million edges, detecting
cycles can take a long time when not focussing on efficiency. In Chapter 7 we discuss and propose
an efficient way of detecting cycles.

In Section 2.3 we already noticed that for detecting cycles we must omit directions, we explain
this in more detail in Section 4.2.1.

4.2.1 Directed vs undirected

Although the graph constructed for RQ1 is a directed graph, for cycle detection it is better to
interpret it as an undirected graph. To explain this, see Figure 4.1a. When we want to detect
cycles starting by the person, we will never reach the person again, since all paths end in the
Issue node. Still, we as human know that all relations in the graph are reversible: editor of -
has editor, author of - has author, and belongs to - contains. For each relation expressed
by an edge in the graph in Chapter 6, there exists an inverse relation. Therefore, to detect cycles,
we omit directions on the edges, interpreting the graph as undirected.

At first sight, another solution would be to just add the reverse relations to the graph, but
when doing that it becomes hard to prevent that a path does not contain the same relation more
than once if the relationship is technically separated in two different edges. For example, we

have to prevent false cycle paths like: Person
author of−−−−−−→Article

authored by−−−−−−−→Person. We found it
more feasible to interpret the graph as undirected, as to filter or prevent these false cycle paths.
Because first detecting and then filtering is not efficient.

Note that although we interpreted the graph as undirected, in the cycles we still need the
directions of the relationship. Because the direction of the cites relationship matters. For
example, if a person cites an editor’s article, means something different from if an editor cites a
person’s article.

Person Issue

Article

author
of be

lo
ng
s
to

editor of

(a) Directed

Person Issue

Article

author
of

authored
by

be
lo
ng
s
to

co
nt
ai
ne
d
in

editor of

editted by

(b) Undirected

Figure 4.1: Graph example

20

4.3 RQ3

How to identify outliers given cycles in an academic publication graph?
After detecting cycles and group them by types, we can find outliers within a cycle type. The
cycle types we found and the possibility of them to described methods of scientific fraud are
discussed in Chapter 8. We have chosen two cycle types for outlier detection: the PC member
demands citations, and the self-citations cycle type. We chose the first to validate our method by
showing we can find the same outliers as Westerbaan [Wes22]. With the second, we illustrated
that we can easily switch to other methods of scientific fraud that can be encoded as cycles. We
listed the results and discussed our proposed method in Chapter 9.

But first, we explain in Section 4.3.1 other methods of outlier detection and why we propose
our method.

4.3.1 Outlier detection

As already discussed in Chapter 3 there are several methods to detect outliers in academic
publishing.

1. Manual

(a) Using heuristics, first selecting possible outliers, secondly perform peer comparison to
verify these outliers [Tie17]. This was not a success.

(b) Using groups, to find and verify outliers in identity groups: program committee
members, journal editors, authors based on publication lag. Attack detection based
[Wes22].

2. Automatic, using machine learning. See for examples the study of Pourhabibi et al. [Pou+20].

(a) Supervised,
(b) Semi-supervised
(c) Unsupervised

We have chosen for Westerbaan approach, since he proved that his method worked by finding
suspicious outliers. Besides, an automated approach requires an integrated, high-quality data
model and an automated method for outlier detection, which were both improved in this thesis,
but these were not when we started our research.

Instead of the data acquisition and integration process for each attack, we now already have
the data available from our cycle detection. Therefore, only gathering extra information is needed
to provide context. But this can be done by writing a query for our graph. This approach will
be discussed in Chapter 9. There, we also propose a statistical approach for determining when
someone is an outlier, this is a small step in the direction of method 2.

21

Chapter 5

Data acquisition and refinement

In this thesis, the data acquisition is similar to Westerbaan’s thesis [Wes22]. However, most
of Westerbaan’s data has not been reused to include more, recent and refined data. Instead,
Westerbaan’s data acquisition and parsing tools are reused, but also improved to provide a
higher quantity and quality of data. We also developed some new gathering and parsing tools
for the same reason.

In Section 5.1 we will discuss why improving the data quality is important before integrating
the different sources in one graph. Westerbaan also notices the importance of data quality before
integrating, therefore he reserved large parts of his conclusions and future work for discussing
data quality issues he encountered. We were able to improve on many of these, as discussed
below.

Westerbaan’s conclusions and future work about data quality
In his conclusion, Westerbaan listed several problems with datasets and integration in general
[Wes22]:
P1 “Source independent key attributes like (DOI and ORCID) are needed to link data across

datasets more correctly. However, in practice datasets lack these kinds of keys, or develop
their own (like DBLP).”
In this thesis, we improved the extraction of DOI’s in DBLP by using a regex (Section 5.2).

P2 “Because of the lack of ORCIDs in the datasets, people have to be matched by other
methods. The easy solution, matching by name, is not sufficient.” Because there are
several people in the body of research that have the same names, most likely Chinese
persons, according to [Ley09]. But better methods are too complex for the purpose of our
research (see for example [Tan+08]).
In this thesis, we improved the extraction of person names in the PDF data extractor for
Springer LNCS front matters (Section 5.3). But still this problem stands, and is discussed
in more detail in Section 4.1.2

P3 “Enriching datasets is hard, because the data is diffused and unstructured. Most of the
additional data can be found, mostly on the website of the publisher, but is presented in an
unstructured form. Which requires custom-made software for each publisher website and
form of data presentation.” This is most frustrating with (front matter) PDF’s, because
the way of presenting information changes throughout the years. PDFs are less likely to
be updated to recent forms of data presentation, in comparison to webpages.
We improved the parsing of Springer LNCS front matters with 11.30% (Section 5.3). But
also rencountered this problem when trying to parse ACM issue front matters (Section 5.5).

22

Westerbaan also listed some future work on data acquisition in his thesis [Wes22]:
F1 The editorial boards used by Westerbaan were limited to a number of journals to ACM,

also only the active board was required, thereby missing past editorial boards on old pub-
lications.
We now believe to have included all ACM journals (Section 5.4). We also succeeded in
downloading issue front matter’s that contain editorial boards and reviewers for each issue.
But had some troubles with parsing this data with the front matter parser (Section 5.5)

5.1 Data quality and integration problems

As shown above, most of Westerbaan’s problems, conclusions, and recommendations were about
the improvement of data quality and integration. Westerbaan did not succeed with integrating
the data sources. For our approach, we had to solve or at least improve some of these issues,
because we need a graph that consists of integrated data sources. Below, we listed general
reasons for the hardness of data integration in our thesis, and refer to specific problems in the
other sections to explain the general problem behind the issues in the data sources of this thesis.

The data quality issues in the data sources can be summarized as follows:
Q1 Completeness The data sources are incomplete, they do and will not include all scientific

biographic information that could be included. There are three reasons why they are
incomplete:

Q1.1 Time They are time limited: the data is downloaded or scraped at a certain point
in time, therefore they do not contain data after that time. We tried to use recent
sources, but even the data providers of the data sources need some time to discover
and process new data to integrate it into their data set. The data is therefore always
behind reality. Some data sources have a history boundary, for example when old
publications are not digitalized and therefore not included into the data set.

Q1.2 Cover As already mentioned, they do not cover the whole body of scientific biographic
information. For example, DBLP, ACM, and LNCS only include computing science
biographs. But they even do not cover the whole area of computing science biographic
information. This partly caused by the fact that none of the data sources fully manage
all data, but draw also from other incomplete data sources. For example, DBLP
includes data from ACM and LNCS.

Q1.3 Unknown vs not exists Even if potential data is within the cover of the data set, it
may happen that the data source does not know everything. For example, DBLP may
know a person’s name, but not its ORCID. It can be that the person does not have an
ORCID, or that DBLP does not know the ORCID of the person. In the first case the
data is complete, in the second it is not. In practice, it is often harder to prove that
data does not exist than to assume that it is unknown. In the example, DBLP can
ask the person if it has an ORCID to know for sure if it does not exist or is unknown,
but by asking the person will probably also tell his ORCID if it exists. So unknowing
is the problem that it is hard to ask, for example because DBLP has to ask 1,000,000
persons or have to ask dead persons. In addition, proving that something does not
exist is even harder because time comes into play, for example a living person may
decide to get an ORCID assigned in the future, or an archive investigation may reveal
a dead person’s ORCID, thereby rendering the earlier data-does-not-exist conclusion
invalid. Therefore, when data is not included in the dataset, the assumption that it
is not known is better than proving it does not exist, although with this assumption
we cannot know whether we have completeness.

23

Q2 Integrity The data in the data sources do not always represent the actual facts. Problems
include incorrect matching or classifying data in the data source. For example, DBLP may
link articles to the wrong person that has the same name.

Q3 Processing errors The parser or data extractor will not correctly extract all data, so
parts will be lost and others will be classified wrongly. For example, when the front matter
parser did not find PC members in a PDF, it could still be that the PDF does contain PC
members. Another example is that the front matter parser classifies the authors of papers
as PC members, or the other way around.

II

E

Figure 5.1: Data integration issues illustration

When we integrate data sources with quality issues, the quality problems expand in the
integrated data set. To explain this better, look at Figure 5.1, the red and blue circles are two
data sets that will be joined. When joining data sets the same quality issues will come back in
different forms:
QJ1 Completeness Data that is not present in one of the two data sources cannot be linked,

therefore the joined data (the purple area in the image) is always smaller than the data
sources.

QJ2 Integrity Since both data sources have impurities, it may happen that correct data from
one set is joined with incorrect data from the other set (I in the image), rendering the join
incorrect. In other words, the impurities of one dataset can infect correct parts of the other
when joined together.

QJ3 Processing errors Another problem, is that the joining method may join two correct
data parts that should not have been joined, therefore rendering their join incorrect (E in
the image). For example, when joining data of persons by person name, it may match with
another person that has the same name, but is not the same person.

Because of the expansion of the data quality problems, it is important to cleanse the data from
the data sources and processing software before integrating these into one graph.

5.2 DBLP and DOI

Like persons can be uniquely identified by ORCIDs, articles can be uniquely identified by DOIs.
In the DBLP data set, an article can have multiple DOIs and other identifiers, these are included
as EE elements in the DBLP XML. These DOIs do not all conform to the official format proceeding
with http://doi.org/, but instead, proceed with, for example the IEEE DOI URL http:

//doi.ieeecomputersociety.org/. To correctly parse all DOIs from those EEs, we used the
regex proposed by Gilmartin [Gil15] that caught 74.4M of the 74.9M DOIs of CrossRef and
follows the modern DOI standard. This regex delivered some clean DOIs to match with the

24

http://doi.org/
http://doi.ieeecomputersociety.org/
http://doi.ieeecomputersociety.org/

OpenCitations dataset (Section 6.2).
By using this regex, we found that some articles contain the same DOI multiple times. We

removed these DOI duplications within articles. Besides, across the whole dataset 8,441 DOI
duplications were found. We found that a large amount was caused by Gilmartin forgetting to
include the % char in the regex, though it is officially allowed as an escape character (Q3).1 We
updated the regex to contain the % char as listed in Listing 5.1. After addressing this, 6,216
genuine duplications of 1,072 DOIs were left. A quick investigation showed that some of these
duplications were caused because the regex stopped matching when a ’<’ or ’>’ was encountered.
We choose not to include these in the regex, because in a URLs the ’<’ and ’>’ chars need to
be officially escaped (as %3C and %3E) (Q2). We chose to remove these duplications from the
dataset to prevent incorrect matching (QJ2). The whole validation tree of the parsing of the
DOIs using this regex is shown in Figure 5.2.

With this contribution, we improved the DOI based integration between datasets by parsing
also non http://doi.org/ DOIs (QJ1) and removing duplications of DOIs (QJ2). Many DBLP
articles lack DOIs: 1,059,750 of 5,839,456 (18%) (Q1). Concluding, we improved the possibility
of correct DOI matching, but the lack of DOIs on articles due to missing or non-existing data is
great.

/ (10 .\d{4 ,9}\/[− . ; () / : %A−Z0−9]+)/ i

Listing 5.1: DOI Regex

EEs
6,798,531

Passed DOI regex
5,295,995

Unique DOIs in articles
4,817,945

Single DOIs in data set
4,810,752

1,072 unique DOIs in dataset were
7,193 times duplicated

Repeated DOIs in article
478,050

Not a DOI or not passing DOI regex
1,502,536

Figure 5.2: DOI Parsing validation tree

5.3 POC front matter parser

Westerbaan downloaded LNCS front matter pages to acquire PC members. To extract the PC
members from the front matter pages, he built a proof of concept (POC) front matter parser.
He was able to process most of the front matters, but 25.61% of the files could not be processed
since there was no organization header found [Wes22]. We were able to reduce this to 10.71% by
applying the following changes:

• In addition to search for an organization header, we also search for an organisation

header, since both are valid spelled (Q3).2

1https://www.doi.org/doi_handbook/2_Numbering.html#2.2
2https://writingexplained.org/organisation-vs-organization-difference

25

http://doi.org/
https://www.doi.org/doi_handbook/2_Numbering.html#2.2
https://writingexplained.org/organisation-vs-organization-difference

• When no organization header is found, we search for headers containing: chair, committee
or reviewer. Because this may indicate that the covering/parent section is an organization
section in disguise. We test this by checking whether the parent section contains two or
more subsections containing chair, committee or reviewer in their headers. By doing
so, we now cover front matters that have the title of the conference functioning as the
organization header, and old front matters that named things differently before the com-
monly used organization section became standard (Q3).

While improving, we noticed that the POC front matter parser was vulnerable to SQL in-
jections, which caused queries to crash when the data contained a ’ char. We fixed this by
using parameterized SQL statements, besides the improvement of the code security this mainly
allowed us to store data in the database that caused it to crash before. With this improvement,
we reduced the unknown errors from 113 to 41 (Q3).

Besides, we fixed some parsing issues with spaces in words for big fonts in PDFLayoutTextStripperFontSize
which now constructs sentences and words based on the current font space size instead of a hard-
coded value. This removed spaces in words and double or triple spaces in sentences of large font
sizes (like headers). This enabled better detection of section titles (for example when searching
for the organization section) and member names (Q3).

We also focussed on improving the quality of parsed member names:
• When parentheses are detected at the end of the name, this most frequently indicates
an affiliation, for example: Wibren Wiersma (Radboud University, Nijmegen, NL). In
such case, the affiliation is stripped from the name and stored as the member’s affiliation.
Note that parentheses in the middle of names often indicate Western names of Chinese
members.

• If the name contains a comma, we assume it is presented as Wiersma, Wibren. If it
contains more commas we assume that it is represented as Wiersma, Wibren, Radboud

University, Nijmegen, NL, whereby after the second comma it is all affiliation informa-
tion, which is stripped from the name and stored as the member’s affiliation. When we
encountered a lastname, firstname format, we transformed it to a firstname lastname

format to conform with DBLP.
Since affiliation information is now in more cases stripped from the name and lastname,

firstname is transformed into firstname lastname we improved the linking with DBLP names
(Q3, QJ1).

All these improvements resulted in a members count increase from 539,176 to 640,583. But
note that we cannot give numbers nor differences whether members are actually members or
parsed content that is falsely classified as members. In Figure 5.3 an update of the parser
validation tree of Westerbaan [Wes22] is shown. The red path is the path that indicates successful
parsing, the differences are the differences with the study of Westerbaan [Wes22].

Besides these improvements, which are targeted on the parsing of Springer LNCS front mat-
ters, we also tried to use the POC front matter for ACM issue front matter. But failed due to
problems which are described in detail in Section 5.5.

5.4 ACM editorial boards

Westerbaan [Wes22] tried to scrape 39 ACM journal editorial boards, wherefrom 25 successful.
The 14 that were not successful were generally ’not followed redirects’ or incorrect URLs provided
to the scraper. We were able to resolve 11 of them to correct URLs, leading to a set of 36 valid
ACM journal URLs.

We also noticed that on https://dl.acm.org/journals(16-06-2022) there are 66 journals

26

https://dl.acm.org/journals

Total files
4,372

Incorrect processed
513

Internal Error
4

Unknown
41

No organisation
header found

468

Correct processed
3,859

No sections of
interest

files: 1,106

Sections of interest
files: 2,754

sections: 3,641

Contains no validated
sections
files: 204

Contains validated
sections

files: 2,550
sections: 3,320

11.73%

0.09% 0.94% 10.70%

88.27% (+16.58%)

25.30% 62.99% (+12.12%)

4.67% 58.33% (+11.30%)

Figure 5.3: Improvement tree of LNCS front matter parsing

listed. After merging the 66 with the 36 of Westerbaan, a set of 67 journals has been constructed.
By reusing the scraper and parser of [Wes22] with more correct URLs, more editor boards were
scraped. The scraping of 4 journals failed because their websites did not have editorial board
pages. Section A.1 contains an overview of all ACM journals used in these study, those used by
Westerbaan, and whether scraping was successful or not for each journal.

Parsing of the ACM journals overview page
The journals overview page on https://dl.acm.org/journals contains JavaScript to lazy load
the journals while scrolling down. Therefore, the page has been downloaded manually after
manually scrolling down in a browser until no new journals appeared. From the downloaded page,
a parser extracted all journal codes, titles, and URLs (blue parts in Listing 5.2). As shown, we
were able to scrape the journal’s abbreviations. Since the abbreviations always corresponded with
the journals URLs, we extracted the abbreviations from the URLs for the remaining journals.
Because the journal abbreviations could be scraped, we did not need an external source to link
the journal titles to an abbreviation, unlike Westerbaan [Wes22].

< l i tabindex=”0”
class=” c l e a r f i x s ea r ch i t em search i t em−browse search i t em−j ou rna l tweb
fadeInUp”>

. . .
<div class=”browse−item−body”>

. . .
<h4 class=” search i t em−t i t l e ”>

27

https://dl.acm.org/journals

 tweb

 ACM Transactions on the Web

</h4>
. . .

</div>
</ l i>

Listing 5.2: TWEB Journal item example

(For simplicity, some irrelevant parts in the HTML are replaced with ...)

5.5 ACM issue pages and editors

In the section above, we described how we scraped the editorial boards from ACM. One inconve-
nience is that we do not know how long these people have been editors of their journals. In other
words, in what timeline they had power in the journal. Some ACM journals have past editorial
board pages, which could help, but years are not included.

Westerbaan [Wes22] medicated this problem to only investigate the year 2020 and assume
that all editorial boards were correct for that year. However, in our method, it is computational
performance waste to remove detected cycles that are outside the allowed time bounds after first
computing all cycles. To solve this, we propose issue page scraping.

Issue page scraping
We noticed that in some issues, the chief editors are listed as authors in the issue metadata.
Therefore, we scraped these to link at least the chief editor’s influences to issues. Some issues
even have a front matter, containing more metadata information, like the editors and reviewers
of that issue (similar to the front matters of conferences in Spring LNCS), others have listed an
“Editorial” “article/opinion” in their journals containing more information.

To scrape the issues we started with the most recent issues, since they all have a static URL,
following the pattern: https://dl.acm.org/toc/{journal-code}/current. From this most
recent issue page, we scrape the link to the previous issue. When scraping this previous issue,
we search for the link to the preceding issue, repeating this, until there is no previous issue.

Scraping results
From each issue page we tried to scrape the following information:

• Issue metadata

– Journal name and code
– Volume and issue number
– Publication date
– Currently in progress (yes / no)
– Publisher (if provided: publisher state and country)
– Chief editors (if provided)

∗ Name
∗ Institute (if provided)
∗ Profile page (if provided)

– DOI (if provided)
• Link to previous issue

28

• Front matter download URL (if provided)
• Editorials

– Title and download URL (if provided)
– Authors of the editorial inproceeding (which are the chief editors)

∗ Name
∗ Institute (if provided)
∗ Profile page (if provided)

Table 5.1 contains the results of our scraping. We scraped a total of 4,744 issue pages from 61
journals at March 5, 2022. The most success for acquiring editors is to download front matters,
which are present on 57% of the issue pages.

What Acquired Potential Rate

Journals 61 66 92%
Contains front matter 2,686 4,744 57%
Contains editorial 863 4,744 18%
Contains editors 1,667 4,744 35%

Table 5.1: Scraping results

We were able to download 2,654 front matters. The next step is to feed these front matters
to the POC front matter parser. This sounds easy, but here we encountered some problems. To
give an illustration of the ACM front matter, Figure 5.4 shows a modern example. Note that,
just like the LNCS front matters, the format differs through the time.

Figure 5.4: Clipped illustration of area of interest of front matter of ACM Computing Surveys,
Volume 54, Issue 7

POC Front matter parser requirements
The POC front matter parser needs a few instructions in order to work. First it must find its
area of interest. Which for ACM front matters always seems to be page 3 of the PDF. If it
contains a lot of content, the page size is enlarged or the font size is reduced by ACM, but the
content always seems to stay on page 3.

Secondly, the POC front matter parser needs the roles. These are, like in the LNCS front
matters, clearly identifiable as headers. And can be recognized by containing words like: editor
or reviewer.

29

Problems
The challenge of the parsing lays within the fact that the page is split in two columns, containing
each two columns (one with name and one with area of expertise or institution). The POC front
matter parser of Westerbaan was not build to understand this page splitting, resulting in three
main problems/challenges.

One challenge is that the second page column continues on the end of the first, which is clear
to the human eye, but not for a machine. The POC front matter parser was build in the way
that, for example, the Editor-in-Chief role is applied to anyone found below this role title,
until a new role title (for example Associate Editors) is found. Note the below, so this also
includes the second page column in the ACM case as well. To fix this, the POC front matter
parser has to first parse the first page column and the second one afterwards, for example by
transforming the page such that the second column is placed under the first one.

But the second challenge is that the POC front matter parser first converts the PDF to
a text file, trying to fit the text in an ASCII art like raster. Because of the conversion to
plain text, the boldness and font sizes of the text is lost. In order to save this information,
Westerbaan [Wes22] stored this metadata for each text line. This information is then used to
identify headers titles, like the person roles, since they are often of different font sizes and bold.
Since the ACM front matters contain two columns, and this information is stored per line, the
information in the second column gains the same font size and boldness as the left, for example,
the Editor-in-Chief font size and boldness is also applied to Mark Liao. Resulting in the
misinterpretation that the second column also contains a role title (Mark Liao).

Lastly, because of the conversion to the grid raster, and the small font size, the text that
needs to be written to the raster is larger than it, causing it to overflow out its position. This
is especially problematic, if the overflow overlaps with text at another position, like the second
page column, or exceeds the raster length. See also Listing 5.3.

ACM
ACM 1601 Broadway , 10 th Floor

New York , NY 10019−7434
Computing Surveys Tel . : 212−869−7440

Fax : 212−869−0481
http ://www. acm . org

Home Page : http :// csur . acm . org

Editor−in−Chief Mark Liao Multimedia Informat ion Proces s ing and Computer
Albert Zomaya Unive r s i ty o f Sydney , Aus t ra l i a Rainer Lienhhart Multimedia Computing

Assoc ia te Edi tors Pasquale Malacaria Programming Languages and Semantics
Miroslaw Malek Archi tecture , Dependabi l i ty and SecurityH

Human−Swarm Teaming . Nouredine Melab Un ive r s i t e de L i l l e , France
Aj i th Abraham Machine I n t e l l i g e n c e , Big Data Analyt ics , Pattern Recognit ion MichelaMilano A r t i f c i a l I n t e l l i g e n c e an
S r i n i va s Aluru B io in fo rmat i c s and Computational Biology , P a r a l l e l Ales sandroMosch i t t i Natural Language Pro fe s s ing ,

Algorithms and App l i ca t i ons Mining
Ahmed Mostefaoui Wire l e s s Ad−Hoc and Sensor Networks , Mu

Listing 5.3: Contains Figure 5.4 converted to plaintext with the POC front matter parser

Proposal
In order to solve these issues, we must choose a different approach by not first converting the
PDF to a text file. Instead, we propose to identify text boxes in the PDF and detecting columns
based on the starting positions and sizes of the text boxes in the PDF, see also Figure 5.5. This
different approach requires a new POC front matter parser, which is unable to reuse a lot of code
from the parser of Westerbaan. Because of our limited time, and expecting the development of
the new POC front matter parsers will take some time, we suggest this as future work.

Conclusion
Concluding, we did not manage to include issue editors in our graph. But when the POC front
matter parser can be improved in future work to also process ACM front matters, we are basically
there. Also, we did scrape the issue dates, therefore we were able to link the editorial boards to
recent issues only based on their dates, as will be discussed in Section 6.4.

30

Figure 5.5: Contains Figure 5.4 with text boxes in red

31

Chapter 6

Graph construction

From different data sources, including the data acquired as described in Chapter 5, a graph has
been constructed. The graph was needed to enable the detection of cycles as described in Chap-
ter 7. As already explained in Chapter 4, we have chosen the following data sources: DBLP,
OpenCitations, Springer LNCS front matters, and ACM editorial boards and issue pages. We
have chosen this data sources to enable comparison with Westerbaan’s thesis, by choosing the
data sources that Westerbaan had also chosen in his thesis, but improved these as mentioned in
Chapter 5.

The integration of all these data sources delivered the graph model in Figure 6.1. The col-
ors in the figure represent the different data sources: black is DBLP, blue is OpenCitations,
violet is ACM editorial boards and issue pages, and teal is Springer LNCS front matters.

DOIs and ORCIDs should typically be modelled as properties of nodes. An article can con-
tain multiple DOIs and a person multiple ORCIDs, therefore an array property is required, but
Neo4j does not allow indexes on array properties. To allow indexes on these properties to speed
up searching performance, these IDs had to be modelled as separate nodes. They are therefore
marked in gray in Figure 6.1.

In this chapter, we discuss the different data sources in each section separately (Section 6.1-
6.3). Each section also contains a paragraph regarding the accuracy of the data in the data
source and possible problems with the integration with other data sources, referring to the data
quality and integration issues listed in Section 5.1.

6.1 DBLP

DBLP is a computing science bibliography which provides an XML file that contains all its data
for download.1 Westerbaan used this source and parsed the XML file to a Postgres database. We
downloaded a more recent version of the XML file and we modified the interpreter of Westerbaan
to export the data into CSV files instead of the Postgres database, to allow the data to be
imported into Neo4j.

Westerbaan chose to import the whole DBLP XML file as general as possible. But we process
and parse the data so it fits into a graph model, so we could and will not include everything.
The DBLP XML contains the following elements: article (article in journal), inproceeding

1https://dblp.org/xml/release/

32

https://dblp.org/xml/release/

Person
3,019,026

Orcid
653,791

Article
5,839,456

DOI
4,810,752

Proceeding
50,616

Conference
5,529

Issue
162,463

Volume
472,284

Journal
1,927

author of
18,678,711

be
lo
ng
s
to

3,
01
6,
15
0

of
50,616

pc member of
339,199

(DBLP: 120,505
LNCS: 222,868)

of
472,283

of
162,288

belongs to
848,462

belongs
to

1,973,807

orcid of
653,791

doi of
4,810,752

cites
13,843,920

editor of
15,658

Figure 6.1: Graph model with counts

(article in conference proceeding), incollection (article in a collection or book), proceeding
(proceeding of a conference), book (a book written by authors or a collection of book chapters
each written by different authors), phdthesis, mastersthesis, and www (webpage, frequently
used to link persons to webpages) [Ley09]. We only processed article, inproceeding, and
proceeding XML elements, since these can be expected to be properly peer reviewed and cover
the methods of fraud described in Section 2.3. Besides, we expect that the inclusion of phdthesis
and mastersthesis does not influence someone’s metrics that much, since persons typically don’t
write multiple of these in their career.

For simplicity, articles: articles in journals and inproceedings: articles in conference
proceedings, are both called articles from now on.

Besides the XML elements, there is information that can be deducted from the XML at-
tributes, or included as XML elements. From these elements and attributes, we extracted extra
nodes and relationships, like persons (that can be authors or editors), conferences, issues, vol-
umes, and journals. We learned due to overlap between the LNCS PC members and the editors
of DBLP that the editors of proceedings in DBLP are PC members.

After processing the XML file and writing the results to CSV files, the CSV files have been
imported to Neo4j.

Accuracy
DBLP has some challenges with person names, as described in Section 4.1.2 and DOIs, as de-
scribed in Section 5.2. All the other accuracies we encountered are listed under the accuracy of
integrated data sources, which are all the other data sources.

After our first cycle occurrence analyzation, we noticed some invalid cycles, described in
Section 8.1. To correct these, we removed 94 double author of relationships (Q2). We also rein-
terpreted all 120504 editor of relationships between Person and Proceeding as pc member of

relationships (Q3, QJ3). And we disallowed double belongs to relationships of Article to

33

both Proceeding and Issue (375 times) or Volume (2114 times), in which case we hold the
relationship to Proceeding and removed the others (Q3).

6.2 OpenCitations

Like Westerbaan, we used the OpenCitations data source to add cite relationships to the graph.
Figure 6.2a contains the graph presentation of the OpenCitations data. This dataset has been
merged with that of DBLP (Section 6.1) by using the doi of relation leading to the sub graph
in Figure 6.2b. The data provided by OpenCitations is already provided as CSV2 therefore it
has been imported directly into Neo4j.

DOI

cites

(a) OpenCitations graph

DOI Article
doi of

cites

(b) Merged OpenCitations graph with
DBLP

Figure 6.2: OpenCitation graphs

Accuracy
Reasons for incorrect data in the join with DBLP:

• The OpenCitations dataset contains a larger set of articles that are out of scope for DBLP
(like non ICT articles) (QJ1).

• The article in DBLP did not have a DOI (QJ1, Q3) (see also Section 5.2).
• The article in DBLP did have a different DOI than the DOI used by OpenCitations (QJ1).
• The DOI in the DBLP or OpenCitations dataset is not correct (Q2, QJ2).

6.3 Springer LNCS PC members

We used the LNCS front matters scraped by Westerbaan [Wes22]. We reparsed these front
matters after the improvements we made to the POC front matter parser discussed in Section 5.3.
The results were written to a SQL database, like in the study of Westerbaan [Wes22].

To acquire the LNCS PC members, we selected all members the role matching the SQL
search ’%Program%’. The roles with the corresponding member counts are listed in Table 6.1.
We assume all members in these roles are program committee members (PC members) of their
conferences. The graph representation of this relation is shown in Figure 6.3. We saved the
results of the SQL query as CSV to import it into Neo4j. From the 294,307 members we were
able to link 224,750 (76%) to persons in the DBLP dataset, by naive linking to the DBLP name
(for a detailed discussion on persons name matching see also Section 4.1.2).

2https://opencitations.net/download

34

https://opencitations.net/download

Role Member count

Program Committee 131,488
Technical Program Committee 112,416
Program Committee Members 8,687
Programme Committee 3,729
Program Committee and Reviewers 3,602
Senior Program Committee 2,270
Program Chairs 2,238
Programme Committee and Reviewers 2,180

Other matched roles are below 2,000 members

Total 294,307

Table 6.1: PC Member roles with member counts above 2,0003

Person Proceeding
pc member of

Figure 6.3: LCNS PC members graph

Accuracy
Reasons for invalid data in the join with DBLP:

• The proceeding or the person name or abbreviation is not found in the DBLP dataset.
83,254 of 294,307 person-proceeding combinations (28.29%) (QJ1)

• There may exist multiple persons with the same name in the DBLP dataset, it may happen
we made the wrong person PC member. This could be the case for 2,645 of the 53,722 PC
Members (4.92%) (QJ3) (see also Section 4.1.2).

• The PC member name is an abbreviation and matched to another person in the DBLP
dataset (QJ3) (see also Section 4.1.2).

• The person in the dataset is incorrectly classified as a PC member. As can be seen in the
full table of Table 6.1, it is not likely that all roles are PC members. But these numbers
are very low (Q2, QJ2).

6.4 ACM editors

Like Westerbaan, we also scraped the ACM editorial boards pages to acquire the editors of
journals. In Section 5.4 we discussed our improvements on this. We also discussed in Section 5.5
our idea to scrape ACM issue pages and download front matter pages, to acquire historical
editorial boards and thereby directly linking editors and reviewers to issue level instead of journal
level. But due to limitations of the POC front matter parser and time constraints to build a
new POC front matter parser, we did not succeed in this. However, the issue pages that were
scraped contained their publication dates. These publication dates can be used to link editorial
boards to recent issues pages instead of the journal. This limits the editorial power only to recent
issues, instead of the whole journal always. Westerbaan [Wes22] investigated the year 2020 in

3Full table is published on https://github.com/XibrenX/MasterThesis/blob/main/data/program_search.csv

35

https://github.com/XibrenX/MasterThesis/blob/main/data/program_search.csv

his study. So we decided to starting linking issues after January 1, 2020 to also cover the range
of Westerbaan.

Figure 6.4 shows the graph after merging, the scraped ACM editorial boards, with the scraped
issue pages and DBLP. The gray, dashed relationship shows the graph model when not limiting
on issue dates. Not all journals have issues, some only have volumes, in that case we link to
volumes instead. Unfortunately, none of these journals matched all merging steps (must have
editorial boards, volume pages, and exists in DBLP), so this relationship is not shown in our
final graph model.

Person Issue Volume Journal
editor of

editor of

editor of

of of

Figure 6.4: ACM editors graph

Accuracy
Reasons for incorrect or missing data:

• Did not have issue page or editorial board page: 10 of 67 journals (QJ1). For more detail,
see Section A.1.

– Did not have an editorial board page: 5 of 67 journals (Q1).
– Did not have issue page: 6 of 67 journals (Q1). Missed therefore 198 editors.

• Journal abbreviation not found in DBLP: 8 of the 57 journals with issue pages and editorial
boards (QJ1).

• ACM journal abbreviations does not match with DBLP journal abbreviations, a quick scan
revealed that this is not very likely, but should be regarded in future work (QJ3).

• Issue or volume not found in DBLP because DBLP did not (yet) include it: 102 of 508
volumes and issues (20%) (Q1.1, Q1, QJ1).

• The person name or abbreviation is not found in the DBLP dataset: 7,038 of 30,179 (23%)
(QJ1).

• There may exist multiple persons with the same name in the DBLP dataset, it may happen
we made the wrong person editor. This could be the case for 236 of the 2361 editors (10%)
(QJ3) (see also Section 4.1.2).

• The editor name is an abbreviation and matched to another person in the DBLP dataset
(QJ3) (see also Section 4.1.2).

• The ACM editorial board webpage is not displaying the current editorial board (Q1.1, Q2,
QJ2).

• Recent changes in the editorial board are enlarged by us over a time period of 3 years, which
may wrongly enlarged the power of new editors, and neglected that of recently resigned
ones (Q1.1, Q2, QJ2).

• The editor is linked to an issue where he/she was not editor, because he/she joined the
editorial board recently (Q2)

Note that we are paying a high price to link editorial boards to recent issues, but we have to do
it to prevent that editors were linked to the whole journal. Meaning, they are linked to all issues
and volumes, even very old ones. A better solution would be to redesign the POC front matter
parser to also parse ACM front matters, and thereby acquiring more accurate data for old issues
(see also Section 5.5).

36

Chapter 7

Efficiently detecting cycles

The idea behind cycles is that when someone or some group commits fraud, they do so to benefit
from it. Therefore, the fraudulent action will, in the chain of events, eventually end up with
the person or group that committed the fraud. So when correctly modelled, methods of fraud
should be detectable by cycles in a graph is our assumption. For trying this idea, cycle detection
was needed. We start in Section 7.1 with discussing the terminology used in this chapter. In
Section 7.2 we discuss several approaches of retrieving or detecting cycles, and chose the one
that performed the best. The next step after detecting the cycles is to group them by their type,
this is harder than it seems and will be discussed in Section 7.4. After grouping the cycles, we
discuss the found cycle types in Chapter 8. Two detected cycle types were taken for detecting
outliers in Chapter 9.

Regarding performance, we limited the number of edges in a cycle to 6. More than 6 rela-
tions/edges resulted in too long runtimes. Most of the fraud methods mentioned in Section 2.3
could be expressed with less than 6 edges, see also Section 8.2 for the encoding of these fraud
methods as cycle types.

7.1 Cycle terminology

In this thesis, we use the following definition of a cycle.

Definition 7.1.1 (Cycle). A cycle is a path in a graph that starts and ends with the same node,
not containing an edge or node multiple times in between.

Start node (S) As start/end node we choose the person or group (conference, journal, in-
stitute) we want to investigate. From this node, we try to return to this node by following a
path.

Path In a graph, a path can be formed as a set of edges with their nodes. A path is not allowed
to contain an edge or node multiple times.

Path length The length of a path is described in the number of edges it contains. When the
path is a cycle, the path length is also the cycle length. In our graph, we don’t have edges
from and to the same node, so the cycle length is always larger than 1.

37

Type Cycles can be grouped by their type or pattern. This type is derived from the node
types, relationship types and relationship directions in the path. For example, there are many
cycles in our graph containing different nodes, like different articles and persons, that all have

the self-citation cycle type: Person
author of−−−−−−→Article

cites−−−→Article
author of←−−−−−−Person

Label The label of a cycle is an abbreviation of its type. Each node in the path is labelled by a
capital letter, the first letter of its node type. For example, Article becomes A. One exception:
Proceeding becomes R since the P has already been given to Person. Each relationship is
labelled by a lower letter, the first letter of the relationship type. For example: editor of

becomes e. Here also one exception: of becomes f since o has already been given to orcid of.
Relationship directions can be derived from the neighbour node labels, because most relationship
types are always between different node types. The exception is the cites(c) relationship, since
is goes from Article(A) to Article(A). For the cites(c) relationship type, an arrow is needed

to indicate the direction: ⃗c c⃗. For example, a cycle with type: Person
author of−−−−−−→Article

cites−−−→
Article

belongs to−−−−−−→Proceeding
pc member of←−−−−−−−−Person has label PaAc⃗AbRpP. The full list of node and

relationship abbreviations can be found in Section A.2.

Mirror Each cycle path always has a mirrored path that describes the same cycle in the
opposite direction, because it is possible to walk a cycle clockwise or anti-clockwise. For example,
the following path labels describe the same cycle but in opposite direction:

• PaAc⃗AbRpP

• PpRbA ⃗cAaP
This is even the case with palindrome cycle labels like PaAaPaAaP (co-author cycle type), but the
mirror is not visible from its label but on its node level. Since the same edge is not allowed to
be visited twice, we know that both nodes with label A should be different, so its mirror has the
same label, but swapped both A labelled nodes and their connected relationships. For example,
the mirror of P1a2A3a4P5a6A7a8P1 is P1a8A7a6P5a4A3a2P1 .

7.2 Methods

There are two main ways to retrieve or detect cycles with Neo4j.
1. Using Neo4j to construct and return the cycles.
2. Retrieving a subgraph with relevant nodes/paths from Neo4j and detect the cycles by

ourself.
For the first way, we investigated the following approaches:
1a. Using the help library apoc for Neo4j apoc.nodes.cycles.

Cypher: MATCH (s) WITH collect(s) as n CALL apoc.nodes.cycles(n, maxDepth: 6)

YIELD path RETURN path

Unfortunately, this method contained no option to ignore directions in our graph.
1b. Using (s)-[*]-(s) a Cypher language query that describes cycles.

Cypher: MATCH p=(s)-[*2..6]-(s) RETURN p

For the second way, we investigated the following approaches to retrieve a sub graph to detect
the cycles in. Note that to construct cycles up to 6 edges, we only have to retrieve a subgraph
with max depth 3 from the start node, since to reach a leaf node is 3 steps, and back is also 3,
summing up to 6. (see for example Figure 7.1).
2a. Retrieving all paths.

Cypher: MATCH p=(s)-[*0..3]-() RETURN p

38

2b. Retrieving the end of all paths, Neo4j returns the paths in order of increasing length.
Cypher: MATCH (s)-[*0..2]-()-[r]-(n) RETURN r,n

2c. Using apoc.path.subgraphAll.
Cypher: MATCH (s) WITH s CALL apoc.path.subgraphAll(s, {maxLevel:3}) YIELD nodes,

relationships RETURN nodes, relationships

2d. Using the Neo4j library Graph Data Science Library with BFS algorithm. This requires
creating an in memory Graph Data Science project with nodes and relationships we want
to include in our investigation. We created a project with all nodes and relationships except
the property nodes with relationships: DOI and Orcid since they are not bound to multiple
nodes and therefore will not be part of cycles. In this project, we had to explicitly list all
relationships to be interpreted as undirected.
Cypher: MATCH (s) WITH s CALL gds.bfs.stream(’project’, {sourceNode:ID(s), maxDepth:3})
YIELD nodeIds MATCH (n) WHERE ID(n) in nodeIds WITH collect(n) AS n, nodeIds

MATCH (n1)-[r]->(n2) WHERE ID(n1) in nodeIds AND ID(n2) in nodeIds RETURN n,

collect(r) AS r

The performance and cycle count per method is listed in Table 7.1. To compare performance, we
detected cycles for person X. Person X was encountered during our analysis and had many cycles,
we choose person X since more cycles means more computing time, therefore the time differences
between the methods are less influenced by other running computer processes. We ran the
queries 10 times to compensate for Neo4j query cash.1 The calculation times are hard to compare,
approximately 90% of the calculation time is the parsing of the query data stream to programming
language objects, and filtering and storing these objects. Besides, the calculation times we
experienced were only a few seconds, while the retrieval time often exceeds the calculation time.
The calculation time for method 2 is the time it cost to run the method described in Section 7.3.

Method Retrieval time Calculation time Cycle count

1b 2:55:23.504 approx 1 sec 31,020,124
(including mirrors and duplications)

2a 11.281 approx 3 sec 2,208,358
(78,321 recursive)

2b 2.650 approx 3 sec 2,208,358
(78,321 recursive)

2c 12:58.443 approx 3 sec 2,208,358
(78,321 recursive)

2d 11.037 approx 3 sec 2,208,358
(78,321 recursive)

Table 7.1: Performance of queries per method for person X

From the results in Table 7.1 we have drawn our conclusions. Approach 1b works, but has
very long runtimes in comparison to all others, also some post-processing is needed to filter out
cycle mirrors and other increasing cycle number factors. Surprisingly, we conclude that detecting
cycles by ourselves is performing far better than letting Neo4j do it, partly because we can do
some optimizations in the method itself, limiting the amount of wasted cycle detections. Method

1https://stackoverflow.com/questions/31579763/how-to-compare-performance-on-neo4j-queries-

without-cache

39

https://stackoverflow.com/questions/31579763/how-to-compare-performance-on-neo4j-queries-without-cache
https://stackoverflow.com/questions/31579763/how-to-compare-performance-on-neo4j-queries-without-cache

2b performed the best, so we chose for 2b.
During the performance analyses, we observed that Neo4j was using one core at 100%. When

looking at the table and this observation, we think that the most performance issues come from
streaming the data from the database to the query requestor, since method 2a and 2b should
not differ too much in calculation but do differ in keeping track of walked paths and amount of
streamed data.

7.3 Detecting the cycles

We chose for detecting the cycles by ourselves. This approach is further explained in the following
sections, each describing a step.
Section 7.3.1 The cycles must be detected in a graph, therefore first a subgraph must be

constructed.
Section 7.3.2 Next, we must choose a cycle detection algorithm.
Section 7.3.3 For efficiency reasons, we introduce recursive paths to group equally labelled

paths from and to the same nodes.
Section 7.3.4 This recursive paths allow simple construction of recursive cycles, from this re-

cursive cycles normal cycles can be reconstructed if needed, in practice we do not need this,
because of the grouping of cycles explained in Section 7.4.

7.3.1 Extracting the subgraph

Method 2b provides us with the paths and nodes from the start node nicely in layers. So first
all paths with length 1, then 2, then 3. In order to construct the graph, we add the retrieved
edges and nodes, layer by layer to construct a subgraph. See also Figure 7.1.

S

1.1 1.2 1.3

2.1 2.2 2.3 2.4 2.5

3.1 3.2 3.3

0

1

2

3

Figure 7.1: Subgraph layer example

Remove leaf nodes The next step is to remove leaf nodes with only one relation. These leaf
nodes will never be present in a cycle since they only have one relationship. For example, node
3.1 in the subgraph of Figure 7.1. This operation is recursive, since 2.1 becomes a leaf node after
node 3.1 has been deleted, so node 2.1 has to be checked again. We do this by iterating over the
nodes, checking if it is a leaf node, and when it is deleting it. When deleting a node, we also
check (sometimes again) the node on the other end of the deleted relation.

40

7.3.2 Cycle detection algoritms

For the cycle detection, we tried two algorithms: Depth First Search (DFS) and Breath First
Search (BFS).

DFS First we tried Depth First Search (DFS). We started in the start node, and when we
found a path to the start node again, we have a cycle, when we find a path to an already visited
node we have found an inner cycle. For example, in Figure 7.1, S-1.2-2.3-2.4-1.2 contains the
inner cycle 1.2-2.3-2.4. This algorithm was dismissed for the reason that we did not have a way
to constrain path length. For example, in the subgraph a cycle S-1.1-2.2-3.2-2.4-1.2-2.3-3.3-2.5-
1.3-S is possible, which is way too long and complicated for our analysis, and in large subgraphs
this kind of paths result in stack overflow exceptions. We could decide to stop searcher after for
example length 5, but this raised the problem that we visited 1.2 and stopped there while not
fully exploring its edges. This leaves some nodes visited but not fully explored. This breaks the
algorithm.

BFS Second thought is a layered approach where only depth labelled: 0-1-0, 0-1-1-0, 0-1-2-1-0,
0-1-2-2-1-0, 0-1-2-3-2-1-0, or 0-1-2-3-3-2-1-0 cycles are allowed. For this, the Breath First Search
(BFS) algorithm fits the best since it uses a layered way of exploring. We already knew the layers
from our subgraph construction, so we do not need the queue of the algorithm, instead we order
all nodes by layer in one queue. When visiting a node, we explore all paths to lower layered nodes
and store the shortest paths to the start node. A node can have multiple shortest paths, for
example, in Figure 7.1, node 2.3 has 2.3-1.1-S and 2.3-1.2-S. When a node has multiple shortest
paths, it is part of a cycle. When combining all possible shortest path in a node we construct
the cycles for example 2.3-1.1-S and 2.3-1.2-S become S-1.1-2.3-1.2-S. After exploring all paths
to lower layered nodes, we look for paths to same level nodes which have already been visited
(when they have not been visited no shortest paths are known, but they will look at this node
when they are visited), if such node exists we combine the shortest paths of two nodes to get
new cycles. For example, we already knew that node 2.3 has paths 2.3-1.1-S and 2.3-1.2-S, node
2.4 has the shortest path 2.4-1.1-S. So combining the paths gives the cycles S-1.1-2.3-2.4-1.1-S
and S-1.2-2.3-2.4-1.1-S. In this way, we find all cycles with max depth 3 and max length 6 in our
subgraph.

7.3.3 Recursive paths

The shortest paths in the BFS algorithm can often be simplified. For example, node with type
C in Figure 7.2 contains 3 shortest paths to S: Sa

1
A

1
c

1
C, Sa

2
A

2
c

2
C, and Sb

1
Bc

3
C. So despite the

fact that there are two different nodes, their paths have the same labels: SaAcC. To combine
paths in a recursive path, there are two rules:

1. The paths must be of the same type.
2. The end node (E) of the paths must be the same (C in the example)

After applying, we can say that C has two shortest recursive paths to S: Sa{1,2}A{1,2}c{1,2}C and
Sb

1
Bc

3
C.

Definition 7.3.1 (Recursive path). A recursive path (R) is a set of recursive path segments
where ∀x, y ∈ R[type(x) = type(y) ∧ xE = yE].

Definition 7.3.2 (Recursive path segment). A recursive path segment (T) is defined as the
triple: T = ⟨r, E,R∨S⟩ where r is the relation between the end node E with the recursive path
of the previous node R or the start node S.

41

S

A1

A2

B

C

a1

a2

b

c1

c2

c3

d

Figure 7.2: Example graph to illustrate recursive paths

This solution simplifies less relevant parts of cycles. A great example are the co-author paths
(P1aAaP2), since the definition of a co-author is that a person writes articles with another person
(the co-author), however a frequent publisher can write many articles with the same co-author.
The fact that someone is a co-author can be considered more important than all separate article
paths between the two persons, sometimes the number of articles are important, but not each
single article. Using this solution, all paths to the co-author can be simplified as one recursive
path and enables analysis as the total number of articles between co-authors ({{P1aA}aP2}).

Counting sub paths To retrieve the sub path count of a recursive path, all sub paths have
to be counted. We use a recursive algorithm to sum up all paths from the start node to the end
of the recursive path.

count(S) = 1

count(R) =
∑
t∈R

count(tR∨S)

7.3.4 Recursive cycles

Recursive paths can form recursive cycles. This can happen in 3 ways, described as 3 kinds of
recursive cycles.

1. A recursive path can itself be a recursive cycle. This is the case when a recursive path con-
tains 2 or more segments. For example, the SaAcC recursive path in Figure 7.2 a cycle exists
from and to S: Sa

1
A

1
c

1
Cc

2
A

2
a

2
S. This recursive cycle kind has always a palindrome label,

since the label of the recursive path (SaAcC) is attached in mirrored order (SaAcCcAaS).
2. Secondly, if there are 2 or more recursive paths to a node, all these recursive paths can be

combined to form cycles. For example, the SaAcC and PbBcC in Figure 7.2 can be combined
as SaAcCcBbS. Containing 2 cycles: Sa1A1c1Cc3BbS and Sa2A2c2Cc3BbS.

3. Thirdly, if there exists a relation between two nodes of the same depth, for example d in
Figure 7.2. All recursive paths of both nodes can be combined to form recursive cycles. In
the example Sa

1
A

1
and Sa

2
A

2
will be combined using d as Sa

1
A

1
dA

2
a

2
S.

The number of normal cycles in a recursive cycle depends on its type:
1. Number of cycles in recursive cycle kind 1 R:

index(x,X) is the position of x in set X.∑
x,y∈R

index(x,R) < index(y,R) ∧ xr ̸= yr → count(x) ∗ count(y)

42

2. Number of cycles in recursive cycle kind 2 ⟨R1, R2⟩:∑
x∈R1

∑
y∈R2

xr ̸= yr → count(x) ∗ count(y)

3. Number of cycles in recursive cycle kind 3 ⟨R1, r, R2⟩:∑
x∈R1

∑
y∈R2

count(x) ∗ count(y)

The xr ̸= yr part is needed to prevent that the same path is used multiple times in one circle,
this could happen when two recursive paths that have different labels but with the same edge
(r) are tried to combine. For example, SaAbBcC may try to combine with SAAeBcC, this is denied
for cycles that use the same c relationship.

7.4 Grouping cycles and removing duplicates

As mentioned in Section 7.1 each cycle can be described by two possible paths, clockwise or its
mirror, anti-clockwise. So to eliminate possible cycle duplicates in a set, we must check if one of
these two possible paths is already present in the set. This problem becomes even harder when
grouping cycles by label, since the grouping should group based on both possible path labels.
For example, when grouping self-citation cycles, the grouping algorithm needs to check for two
labels PaAc⃗AaP and its mirror PaA ⃗cAaP.

Instead of checking for both directions of the path, we propose to prefer one of the two
possible paths and transform the other always to the preferred one. Like, clockwise is preferred
for clocks to “increase performance” and avoid confusion when reading time. We propose the
following preference for cycles in our graph:

For non palindrome labelled cycles We prefer the direction with the earliest alphabetic
letter on the left. For example, we prefer PaAbRpP over PpRbAaP since the letter “a” occurs earlier
in the alphabet than “p”. For palindrome labelled cycles, this does not work, since its mirror
has the same label.

Palindrome labelled cycles that contain c as explained in Section 7.1 the cites relation-
ship needs its direction to distinguish between two different cycle types. So when we have a
palindrome labelled cycle with a c, we prefer left-to-right over right-to-left relationships. For
example, PaA ⃗cAaP is preferred over PaAc⃗AaP. There are palindrome labelled cycles that contain c

which cannot be ordered in this way, like PaAc⃗A ⃗cAaP, they are also allowed in the method below.

Palindrome labelled cycles The cycles that are labelled in this way cannot be preferred by
one of their two possible path labels since their mirrors have exactly the same labels. This is
because they are duplicates by themselves. For example, take the cycle P

1
a

2
A

3
a

4
P

5
a

6
A

7
a

8
P

1
and

its mirror P
1
a

8
A

7
a

6
P

5
a

4
A

3
a

2
P

1
are both cyclic representations of the path P

1
{a

2
A

3
a

4
, a

8
A

7
a

6
}P

5
.

Note that this is actually a recursive path, as discussed in Section 7.3.3, and a recursive cycle
of kind 1 in Section 7.3.4. So when grouping these cycle types, we double fold them as in the
recursive path. By doing so, the ordering becomes clear: the start node is preferred left, and
inside the recursive path cycles can be reconstructed by combining each half on the condition
that they have the same start and end nodes. We can remove duplicates since each half is only
allowed to occur once.

43

Chapter 8

Cycles types

By using the method described in Chapter 7 to detect cycles, we let our cycle detection algorithm
detect all cycles starting from all 3,019,026 Person nodes in our graph, with max 6 edges. It
took us around 4 days, with an average detection time of 10 persons each second, on a large
desktop computer.

We ran this analysis two times. The first time we encountered some invalid cycles, due to
problems in our graph, data quality, and integration. These are described in Section 8.1. After
resolving these problems, we ran the analysis again, reducing the amount of found cycle types
from 366 to 233.

The results of the second run can be found in Section A.3, the table there contains cycle
types and the number of occurrences. When looking at the cycle types, we tried to classify those
types as indicative for scientific fraud. Some scientific fraud can be described in a graph, see also
Section 2.3, and can be translated to cycle types in our graph, which can also be found in our
results. These cycle types are listed in Section 8.2. However, transforming cycle types back to
possible methods of scientific fraud is hard and requires domain knowledge, which is explained
in Section 8.3.

8.1 Invalid cycles types

In this section, we describe the invalid cycles we encountered the first time, and how we prevented
them from occurring in the next run.

• One of those is the Person
author of−−−−−−→Article

author of←−−−−−−Person cycle. In other words, a per-
son that is a co-author of his/her own paper. A quick investigation showed us that this
happened most often with Chinese named persons, probably because one person wrote a
paper with another person with the same name and DBLP linked it wrongly two times to
the same person (Q2).

• Another example is that a person can have multiple roles in the same proceeding, providing

the cycle Person
pc member of−−−−−−−−→Proceeding

pc member of←−−−−−−−−Person. For example, Antonio Cerone
has the roles “InSuEdu 2012 Program Co-chairs”, “MoKMaSD 2012 Program Committee”,
“MoKMaSD 2012 Program Co-chairs”, and “InSuEdu 2012 Program Committee” in the
“sefm-2012s” conference code, leading to 4 pc member of relations to the same proceeding.

• The same cycle also occurred when a PC member was registered both in DBLP and LNCS.
This is also the case in the example with ’Antionio Cerone’, resulting in a total of 5
pc member of relations to the same proceeding.

44

• We detected parts in cycles that contained Proceeding
belongs to←−−−−−−Article belongs to−−−−−−→{Issue,Volume}.

In other words, an article that is both a journal article and a conference article. In the study
regarding DBLP [Ley09] they notice this because Springer LNCS articles are published in
a proceeding, but are also part of a journal, where the journal represents the conference.
The proceedings themselves are also published as volumes in the Springer LNCS journal.

This examples results in cycle types that should actually not exist and increases the numbers
of other cycles types that should have been lower. We solved this by removing duplicated
author of relationships, and merging multiple pc member of relationship to one, while collecting
the roles in an array property of the relationship.

Since DBLP names the relationship between Person→Proceeding an editor, we first added it
as an editor relationship in our graph. This resulted in complex cases since the editor relationship
could not be merged with the pc member of relations, leading to many forms of the same cycle
type (PeRpP = PpReP = PpRpP). Therefore, we decided to rename editor of when pointing to a
Proceeding to pc member of to enable merging with LNCS pc member of relations. Now, only
the cycle type PpRpP should occur.

To prevent the Springer LNCS journal-proceeding cycles, and to avoid confusion of articles
belonging to both a Proceeding and Issue or Volume we have chosen to ignore relations to
Issue or Volume when there is a reference to a Proceeding in DBLP. We already ignored the
volume references of Proceedings.

8.2 Known suspicious cycles types

From literature and our academic experience, some methods to fraud technics are already known
and can be expressed by cycles in a graph, as explained in Section 2.3. These fraud methods can
be detected as cycles in our graph since they can be translated to cycle types, as we show below.
Some of these cycle types exceed the max length of 6 edges, therefore they cannot be found in
our list of found cycle types (in Section A.3).

Demanding citations as editor or PC member: (Section 2.3.1)

Person
editor of−−−−−−→Issue

belongs to←−−−−−−Article
x

cites−−−→Article
author of←−−−−−−Person (PeIbA

x
c⃗AaP)

where not Article
x

author of←−−−−−−Person (A
x
aP)

Person
pc member of−−−−−−−−→Proceeding

belongs to←−−−−−−Article cites−−−→Article
author of←−−−−−−Person (PpRbAx c⃗AaP)

where not Article
x

author of←−−−−−−Person (A
x
aP)

Demanding co-authorship as editor or PC member: (Section 2.3.1)

Person
editor of−−−−−−→Issue

belongs to←−−−−−−Article author of←−−−−−−Person (PeIbAaP)

Person
pc member of−−−−−−−−→Proceeding

belongs to←−−−−−−Article author of←−−−−−−Person (PpRbAaP)

Self-citation as author: (Section 2.3.2)

Person
author of−−−−−−→Article

cites−−−→Article
author of←−−−−−−Person (PaAc⃗AaP)

Citation stacking as author:

Person
author of−−−−−−→Article

cites−−−→Articlex

cites−−−→Article
author of←−−−−−−Person (PaAc⃗Ax c⃗AaP)

where not Article
x

author of←−−−−−−Person (A
x
aP)

Person
1

author of−−−−−−→Article
1

cites−−−→Article
2

author of←−−−−−−Person
2

author of−−−−−−→Article
3

cites−−−→Article
4

author of←−−−−−−

45

Person1 (P1aA1 c⃗A2aP2aA3 c⃗A4aP1)

where not Article{1,4}
author of←−−−−−−Person

2
(A{1,4}aP2

) and not Article{2,3}
author of←−−−−−−Person

1

(A{2,3}aP1
)

Venue self-citation as journal or conference: (Section 2.3.4)

Journal
of←−Volume of←−Issue belongs to←−−−−−−Article cites−−−→Article

belongs to−−−−−−→Issue
of−→Volume

of−→Journal

(JfVfIbAc⃗AbIfVfJ) (length is 7, so exceeds max length of 6)

Conference
of←−Proceeding belongs to←−−−−−−Article cites−−−→Article

belongs to−−−−−−→Proceeding
of−→Conference

(CfPbAc⃗AbPfC)

Or sub cycles like:

Volume
of←−Issue belongs to←−−−−−−Article cites−−−→Article

belongs to−−−−−−→Issue
of−→Volume (VfIbAc⃗AbIfV)

Issue
belongs to←−−−−−−Article cites−−−→Article

belongs to−−−−−−→Issue (IbAc⃗AbI)

Proceeding
belongs to←−−−−−−Article cites−−−→Article

belongs to−−−−−−→Proceeding (RbAc⃗AbR)

Venue citation stacking as journal or conference: (Section 2.3.4)

Journal
of←−Volume of←−Issue belongs to−−−−−−→Article

cites−−−→Article
belongs to−−−−−−→Issue

of−→Volume
of−→Journal

of←−Volume of←−Issue belongs to←−−−−−−Article cites−−−→Article
belongs to−−−−−−→Issue

of−→Volume
of−→Journal (JfVfIbAc⃗AbIfVfJfVfIbAc⃗AbIfVfJ)

(length is 14, so exceeds max length of 6)

Conference
of←−Proceeding belongs to−−−−−−→Article

cites−−−→Article
belongs to−−−−−−→Proceeding

of−→Conference
of←−Proceeding belongs to←−−−−−−Article cites−−−→Article

belongs to−−−−−−→Proceeding
of−→Conference (CfPbAc⃗AbPfCfPbAc⃗AbPfC)

(length is 10, so exceeds max length of 6)

Or sub cycles like:

Journal
of←−Volume of←−Issue belongs to−−−−−−→Article

cites−−−→Article
belongs to−−−−−−→Issue

of−→Volume
x

of←−Issue
belongs to←−−−−−−Article cites−−−→Article

belongs to−−−−−−→Issue
of−→Volume

of−→Journal (JfVfIbAc⃗AbIfV
x
fIbAc⃗AbIfVfJ)

where not Volume
x

of−→Journal (V
x
fJ) (length is 12, so exceeds max length of 6)

Journal
of←−Volume of←−Issue belongs to−−−−−−→Article

cites−−−→Article
belongs to−−−−−−→Issuex

belongs to←−−−−−−Article cites−−−→
Article

belongs to−−−−−−→Issue
of−→Volume

of−→Journal (JfVfIbAc⃗AbIbAc⃗AbIfVfJ)

where not Issue
x

of−→Volume
of−→Journal (I

x
fVfJ) (length is 10, so exceeds max length of 6)

Conference
of←−Proceeding belongs to−−−−−−→Article

cites−−−→Article
belongs to−−−−−−→Proceeding

belongs to←−−−−−−Article
cites−−−→Article

belongs to−−−−−−→Proceeding
of−→Conference (CfPbAc⃗AbPfCfPbAc⃗AbPfC)

where not Proceedingx

of−→Conference (PxfC) (length is 8, so exceeds max length of 6)

8.3 Gray-zone cycle types

A cycle type describes a behavior of a person, which, depending on the context and on the
occurrence amount within the context, can be indicators for scientific fraud. This requires to
determine the context and to define normal behavior for each cycle type differently, which we
will demonstrate in Chapter 9.

But, some cycles are more likely an indicator of scientific fraud than others, regardless of the

number of occurrences. Take, for example, Person
author of−−−−−−→Article

author of←−−−−−−Person pc member of−−−−−−−−→
Proceeding

belongs to←−−−−−−Article author of←−−−−−−Person (PaAaPpRbAaP), the person published an article
in a proceeding where a coauthor is a PC member. This cycle type may imply conflicts of

46

interest. But, maybe this conference has very good rules about such cases, and the PC member
is excluded from the publication decision of this article. Also, this cycle type is not very strange,
since the PC member and the person will probably work in the same field, and since they were
coauthors, the conference will probably cover this field.

Other cycles, like the coauthor cycle, (Person
author of−−−−−−→Article

author of←−−−−−−Person author of−−−−−−→Article
author of←−−−−−−Person, PaAaPaAaP) are not likely indicators of scientific fraud. Although, very fre-
quently writing with the same coauthor may be suspicious. Also, the coauthors-are-also-coauthors
cycle, (Person→Article←Person→Article←Person→Article←Person, PaAaPaAaPaAaP) is
even lesser an indicator of scientific fraud, only in very extreme cases it may be.

Therefore, reasoning about the cycle types requires domain expertise and may involve ethical
discussion of what is normal and abnormal. Domain expertise is also required to translate the
cycles back to possible methods of scientific fraud. This should be done with caution, since legal
and fraud actions may result in the same cycle type.

These examples also show that flagging behavior as suspicious depends on the context, which
is one of the foundations of Westerbaan’s thesis [Wes22]. This has to be considered before
deducting a fraud method from a cycle type.

47

Chapter 9

Outlier identification

In the last chapter (Chapter 8) we discussed the cycle types we detected. In this chapter, we take
two cycle types for the detection of outliers. We start with the PC member requires citations in
Section 9.1, to show we can replicate the findings of Westerbaan. After that, we also search for
outliers in the self-citations cycle type in Section 9.2 with the same method. We improved the
outlier identification of Westerbaan by choosing for a statistical approach, while still showing
similar results. This statistical approach removes the limitations of determining thresholds per
peer group or context.

Before investigating a fraud method or cycle type, two question needs to be answered: “Where
to can an actor be compared, or who are similar actors?” (context), and “When is someone an
outlier in its context?” (outlier). We first discuss both questions in general.

Context
Tielenburg [Tie17] tried to first identify outliers and then compare them with peer groups, he did
not succeed in the latter, Westerbaan [Wes22] turned this order around and succeeded. Therefore,
before detecting outliers, we must first select actors that are similar to the investigated actor.
An easy solution are so-called peer-groups: groups of actors that can be considered similar. It
is also possible to select peers dynamically (like persons that to some degrees write the same
amount of articles and publish in the same journals) or with algorithms like K-nearest neighbor.
This will to some extent determine the “normal” in the outlier detection, so we must be careful
to not compare fraudsters with other fraudsters and thereby deciding that they are not, although
their behavior is probably similar.

Choosing a good peer group also improves post investigation by fraud investigators, since if
the peer group is correctly chosen, it may also represent a culture group in the real world. For
example: “In this journal, we do it always in this way, so this behavior is not strange”. This
is especially the case for niche area’s in science. We know for example about the e-voting. In
this niche, about four professors and some of their co-authors are publishing frequently, and
sometimes outsiders also write several articles. It may be possible that citation stacking between
these four professors is relatively high, but once it is clear that the peer group is considered:
e-voting a fraud investigator may quickly decide that the report is a false positive. It will be
harder to decide when these peer groups are dynamic or determined by algorithms.

Outlier
The definition of a (statistical) outlier is according to NIST: “An outlier is an observation that
lies an abnormal distance from other values in a random sample from a population.” [NIS] So to

48

find outliers we need methods that measure distance from normal observation/behavior, when
this distance becomes abnormal, one can be considered an outlier. Therefore, to detect outliers
in a dataset, we have to answer two questions:

1. What is normal?
2. What is an abnormal distance from the normal?

Some outlier methods may classify normal incorrectly when used in a wrong dataset. For exam-
ple: a very naive way is to just take the 0.01% values that distance the most from the median
and classify those as an outlier. In that case, we consider the median as normal, but if all values
just perfectly fit a parabolic curve, should not the curve itself be the normal? And secondly, are
these values, when the dataset just contains three numbers repeated many times, at an abnor-
mal distance? We do not want a method that assumes that there must be outliers, because is
sometimes there are none.

From this example, note that outlier classification depends on the data distribution classifica-
tion, which may differ per cycle type. When investigating outliers in cycles, we have to manually
select an outlier classification method per cycle type.

9.1 PC member demanding citations

In this section, we investigate the PC member requires citation cycle type. This fraud method
was introduced in Section 2.3.1. The cycle type:

Person
pc member of−−−−−−−−→Proceeding

belongs to←−−−−−−Article cites−−−→Article
author of←−−−−−−Person (PpRbAc⃗AaP)

The goal of this investigation is to replicate the finding of Westerbaan [Wes22]. He found an
interesting outlier in the Spire conference. Therefore, we follow his approach.

We did not use the results of our cycle detection, but the Cypher query listed in Listing 9.1.
Because, we had to exclude article citations that were made by the PC members themselves.
Of course, a PC member will not require himself to include reference to his own work, this is
called self-citation and not included in this investigation. We also included the conference of the
proceeding for the context.

MATCH (c : Conference)<−[: o f]−(r : Proceeding)<−[: pc member of]−(p : Person)
OPTIONAL MATCH P=(p) − [: au tho r o f]−>()<−[: c i t e s]−(a) − [: b e l ong s t o]−>(r)
WHERE NOT e x i s t s ((p) − [: au tho r o f]−>(a))
RETURN c . Code , r . dblpKey , p . dblpName , count (P)

Listing 9.1: Cypher query for PC member requires citation

Context Westerbaan compared PC-members within conferences. Table 9.1 shows that com-
paring cycles across conferences is hard, since each conference has another PC member citation
distribution. For example, Crypto differs much from Aweb, in the maximum number of citations
and the number of 0 citations. Asia crypt also differs from Crypto, but there are more like each
other, suggesting that in the same area of expertise conferences could be more comparable to
each other. Spire is also shown to enable comparison with Westerbaan’s study.

Normal Because of the inability to compare cycles across conferences, we have to find a way
to spot outliers for each conference. Westerbaan proposed to ask each conference what a good
threshold value should be [Wes22]. But since we have 228 conferences with PC members in our
dataset, it would be a pain to ask each of them for a threshold value, so we propose a more
statistical approach for outlier detection. Which will be explained below.

49

Citations Crypto Asiacrypt Apweb Spire

0 39 20 458 110
1 22 21 64 23
2 13 8 26 15
3 12 10 12 10
4 15 9 7 7
5 7 11 5 7
6-9 37 30 6 16
10-19 41 34 0 24
20-34 33 17 1 3
35-49 9 6 4
50-74 9 6 2
74-124 6 0
124-199 5 0
≥200 1

Total PC Members 249 204 581 223
Total Years 16 18 14 16

Table 9.1: Number of PC member with citations per range of citations in four conferences

Selection of a statistical outlier classification method
First, we tried to use Tukey’s fences (also known as outliers in box plots) to find outliers. This
failed since the data is not a normal distributed, but exponential, see Figure 9.1. Because most
PC members do not have any citations, very often the 75 percentile was 0. So when using Tukey’s
fences, all non-zero citations were classified as outliers. But a few PC member citations do not
have to be strange, since they are hopefully experts in the field of the conference. And as can be
seen in Table 9.1, this is especially common in the Crypto conference.

So strait forward outlier detection with box plots did not work. But we did not find a suitable
outlier detection method for this dataset type in the literature. The reasons for this are:

• Our dataset is grouped at integers therefore we have many 0’s and some 1’s, instead of
exponential decrease of data points between 0 and 1. Mathematically speaking, we need a
method for N not R.

• Our dataset is 1D, not 2D, so the data itself is not exponential (samples), only the occur-
rence or distribution is exponential. In Figure 9.1 the occurrence is the vertical-axis, but in
fact it describes the amount of points on the horizontal-axis. Mathematically speaking, we
need a method for exponential distribution, not exponential samples. The key difference
between these two methods, is that we need the amount of points to be included, since
they give weight to the method. Not each point in Figure 9.1 has the same weight, the
amount of occurrence is its weight. This weight has to be included in the calculation to
prevent a bias to high values, which are actually the outliers we want to detect.

• We want to exclude naive approaches like the 0.01% most citations are outliers, as explained
in the beginning of this chapter.

One method that comes close is that of Raybon [Ray19], when applying his method we
calculate the probability of having 0, 1, 2, ... citations. However, we still have to decide from
where on we respect the probability as too low, and consider it an outlier. He defines the
threshold on 1%. So, this method did not fulfill requirement 3.

50

(a) Normal (b) Ln

Figure 9.1: Citations of PC members are distributed exponentially (from 0 up to 15)

Our proposal: weighted exponential regression
But Raybon’s approach inspired us to propose the use of weighted exponential regression to
draw a trend line. As seen from Figure 9.1 the citation data is an exponential distribution,
therefore we are able to apply exponential regression to find the trend in decline. When a PC
member exceeds the expected trend, these PC members get an outlier flag. We can sum up
the outlier flags, and the PC members with the most flags should be high on the list for fraud
investigation. There is still one problem: normal exponential regression treats all points as equal
in searching a fitting formula: leading to a bias to the less occurred citation numbers in our data,
we correct this by providing a weight: the number of occurrences, since the 0 citations occurs far
more often than the 12 citations and should therefore not be treated equally, but in proportion
to its number occurrences. For a mathematical and technological implementation of weighted
exponential regression, see Section 2.4.

Outlier in conference
The flagging of an outlier is based on the difference of the outlier with the trend. This difference
(d) can be measured by the distance between the bar of a PC member and the trend line. We
have to come up with a threshold value, after what distance one becomes an outlier. Note that
while this still requires a threshold value, it is now a threshold value for all conferences. And by
using the trend line, conferences that perfectly fit the trend line will not have outliers, regardless
of the threshold value. The threshold value should be within 1 (above 1 only marks outliers
that by accident had more times the same amount of citations, which is too easy to escapes as
fraudster) and 0 (when the trend line is below 1, all is considered an outlier). In this study we
use 0.5 but the value can be tweaked to get more or lesser outliers. This tweaking includes or
excludes an amount of small outliers, big outliers (with d ≥ 0.8) will only begin to be excluded
by high threshold values.

Usually, the value of d will be between 0 and, 1. But, d could become bigger than 1 if a PC
member has for multiple proceedings the same number of received citations. For example, a PC
member could have been cited 33 times in the year 2001 and 33 times in the year 2020. If the
trend line is 0.2 on 33 then the d in this case is 1.8.

9.1.1 Spire conference to compare with Westerbaan

To illustrate the method we give an example with the Spire conference, the same as Westerbaan
used for his example to validate our method. In Figure 9.2 the blue bars are the number of

51

citations, and the orange line is the trend line from the weighted exponential regression. As seen
in Figure 9.2 the trend line fits very well, but we can see that after 11 citations of a PC member
some citations numbers are not in the trend. Table 9.2 contains the outliers found in Spire using
this method, the names of the PC members are anonymized. Person F is an outlier of all the
other outliers in this conference, this Person F is the same person that Westerbaan considered
an outlier in his study.

Figure 9.2: Citations of PC members in Spire

9.1.2 Across all conferences

We applied our method of detecting outliers on all conferences. We then summed the amount
of outlying citations per PC member across all conferences. The top 10 of PC members with
the highest sum of outlying citations is listed in Table 9.3. Person F from Spire holds position
6 in this list. The additional outlying citations this person received are coming from the Cpm
conference.

9.2 Self-citations

In this section, we detect outliers in the self-citation cycle type. This fraud method was intro-
duced in Section 2.3.2. We used the results of the cycle detection to investigate outliers in this
cycle type. The cycle type:

PaAc⃗AaP: Person
author of−−−−−−→Article

cites−−−→Article
author of←−−−−−−Article.

Context For the context, we chose to use the amount of self-citation cycles as a percentage
of the total number of citations. To acquire the total number of citations per person, we used
the Cypher query listed in Listing 9.2. To eliminate persons that did only write a few papers,
and are therefore less interesting for investigating large scale scientific fraud, we chose to only

52

PC Member Citations Distance d

A 14 0.66301
B 15 0.78493
C 16 0.86274
D 16 0.86274
E 28 0.99937

F 14 0.66301
F 19 0.96432
F 20 0.97722
F 25 1.99758
F 33 0.99993
F 37 1.99999

Total F 148

Table 9.2: Outliers in Spire

Top Sum of outlying citations

1 423
2 307
3 293
4 276
5 246

6/F 225
7 224
8 210
9 202
10 201

Table 9.3: Top 10 of PC members with the highest sum of outlying citations across all conferences

include persons that received 50 or more citations. When self-citations are used to improve a
person’s h-index, we start detecting around h-index 7 (7 articles with each at least 7 citations
results in at least 49 citations). There are 156,552 persons of a total of 3,019,026 that received
50 or more citations. The distribution of the self-citation occurrences before this limitation is
shown in Figure 9.3a.

MATCH P=(p : Person) − [: au tho r o f]−>(: A r t i c l e)<−[: c i t e s] −(: A r t i c l e)
RETURN p . dblpName , count (P) AS c i t a t i o n s

Listing 9.2: Cypher query for acquiring total number of citations per person

Normal A scientist with more than 50 citations should not have a high percentage of self-
citations. But, what is high? The self-citations percentages (p) are skewed distributed, see
Figure 9.3b. But this skewed distribution is very close to an exponential distribution, so we
can also apply weighted exponential regression here. After performing weighted exponential
regression, we noticed that d ≥ 0.5 for p ≥ 81%, so self-citation percentages equal or above 81%
are classified as outliers by our method.

53

(a) Log (ln) of the occurrence count of self-
citation amounts from 0 to 500

(b) Occurrences of self-citations percentages for
scientists with more than 50 citations

Figure 9.3: Self-citation distributions

Results There are 64 scientists that have a self-citation percentage above 81%. The top 10
of scientists with the highest self-citation percentages is displayed in Table 9.4. We manually
validated the top 10. Some of the scientists are coauthors from each other, these are the groups
in the table.

Top Coauthor group Self-citations Total citations Percentage

1 A 70 70 100%
2 A 70 71 99%
3 66 67 99%
4 B 58 59 98%
5 B 55 56 98%
6 148 152 97%
7 C 148 154 97%
8 C 148 152 97%
9 C 148 155 95%
10 188 197 95%

Table 9.4: Top 10 of scientists with the highest self-citation percentages

Validation For each scientist or coauthor group, we investigated the number of coauthors for
the self-cited articles, the number of self-cited articles, and the publication year range of these
articles. We also validated for a random sample of 2 articles whether the same citations are also
displayed by the publisher to ensure our data is valid. And we tried to find Google Scholar or
other scientific profiles to check if the number of citations we found match with the total number
of citations in these other online profiles.

• Group A has 15 self-citing articles, and worked also with 8 more coauthors who only
contributed once or a few times with them. The articles are written in across multiple
years from 2013 to 2018 and published in multiple conferences and journals. Their citations
seem not to come from invalid data, since most references are also shown on the cite of

54

the publisher. On their online profiles they much more publications outside the area of
computing science, although the also work togheter in these areas.

• Person 3 has 18 self-citing articles with 5 coauthors working on multiple of these. The
article data from the years 1984 to 1989. The citations across them are few, some citation
also loop back. Regarding the publications years, this could be caused by invalid data.
The online profile of this person shows simular data.

• Group B are the only coauthors of 13 articles, published in the last 4 years, all citing
past articles. The citions match with the cite of the publisher. According to their Aminer
profiles, they have written more articles and received more citations outside the scope of
our graph.

• Person 6 has 30 articles with 34 coauthors that contributed only once or twice. Most
articles cite others in this collection of articles. They are all published in the last 4 years.
According to the website of the publisher, the citation seem not come from invalid data.
On the online profile of this person, much more articles and citations are listed, this person
also publishes outside computing science.

• Group C are coauthors from each other and with another holding place 32. All their self-
citations flow from 17 articles that cite each other. All these artciles are published in 2008
in the same issue. The citations seem not to come from invalid data, since most references
are also shown on the cite of the publisher. Their profile pages seem to match our data,
except person 9. Some of them also wrote a few more articles together in 2010 and 2013.
Person 9 has written more articles, very old ones in 1985 until 2013.

• Person 10 has 51 articles with self-citations, mostly written alone, but several with 19
coauthors each contributed only once, only two coauthors contributed to three articles.
The article’s dates are in long range: from 1986 until 2018. According to the website of the
publisher, the citation seem not come from invalid data. According to this person online
profile the person published much more articles and even collected many more citations,
because this person is publishes outside computing science.

Conclusion Person 3 could be caused by invalid data (Q2). We missed data from outside
computing science to classify group A, and B; and person 6, and 10 (Q1). Group C should be
further investigated by a fraud investigator.

55

Chapter 10

Conclusions

In this chapter we list our discussion (Section 10.1), future work (Section 10.2), and conclusions
(Section 10.3). In the conclusions, we will answer the research questions mentioned in Chapter 1.

10.1 Discussion

In this thesis, we described a method to search some forms of scientific fraud. Our method
does not cover all forms of scientific fraud, for example it does not find plagiarism or image
manipulation, other tools are a better fit for these forms. Scientific fraud is like an arms race,
people will find new ways to commit fraud, and the fraud investigators will have to find new
ways to detect these. Our method is just a proof of concept ready to expanded and improved,
but has already some interesting results. Our method is limited by methods of fraud that can
be encoded as cycle types.

There are some cycle types and form of scientific fraud, that can be described as cycles
in a graph and can be detected in that way, but representing them as cycles is not the best
way. For example, the co-author cycle: Person

1
→Article←Person

2
→Article←Person

1
, for

every person that wrote at least two different articles with the same person. In analyzing these
cycles types, it is better to analyze it as a path: Person

1
→Article←Person

2
. This eliminates

the exponential amount of cycles (c) with the amount (a) of articles written with the coauthor:
c = 1+2+3+...+a−1. To avoid this unnecessary amount of cycles, we have introduced recursive
paths and cycles (Section 7.3.3-7.3.4). Firstly, it reduced the amount of paths to the amount of
articles, so the exponential factor is lost, and it allows more easily to analyze its context which
is key for outlier detection Chapter 9. Note that when viewing the normal amount of cycles, this
exponential factor is present and results in a biased amount of cycles. So for analyzing these
types of cycles, transforming back to paths or using the recursive cycles is highly recommended.

Ethics
In our study, we place high importance on the work of the human fraud investigator. The
methods proposed in our study are not fit to flag behavior as fraud, only to highlight some
suspicious behavior for further investigation by human fraud investigators. Reasons like false
data or context based explanations of the anomaly should be regarded, which cannot be included
in full proportion into our method. The Committee on Publication Ethics (COPE) publishes
guides on what to do when scientific fraud is suspected. We highly recommend being cautious
when accusing persons or venues of scientific fraud.

56

https://publicationethics.org

10.2 Future work

The most future work we see is in the area of data sciences and machine learning, we therefore
recommend that persons performing future work are capable in at least one of these areas.

10.2.1 Improving data acquisition and refinement

In this study, a beginning was made with constructing a scientific biographic information graph.
This graph is still far from complete and contains invalid information. Efforts to enlarge the
graph and improve the quality of it, will enable the development of a more wholistic fraud
investigation system, that can hint fraud investigators where to look first.

Person and name matching One of the biggest data integration issue is that of matching
persons based on name. This issue is discussed in more detail in Section 4.1.2, and byWesterbaan;
Ley; Tang et al. [Wes22; Ley09; Tan+08].

POC front matter parser In Section 5.5 we explained our struggle with parsing ACM issue
front matters, this failed because the original front matter parser did not work well with font
sizes and multiple page columns. We suggest building a new POC front matter parser, not based
on a text based grid, but on positions of text boxes. But there could be also other solutions,
for example https://spacy.io looks also useful. This will enable the inclusion of ACM editors
and reviewers from the front matters in the data model.

Fresh data Besides these improvements, it is also possible to host the data set or Neo4j server
publicly. This allows to frequently re-scraping and updating the graph data sources, so it always
contains the most recent data, this also limits the time part of the data completeness issue (Q1.1
in Section 5.1).

Altmetrics It is also possible to integrate data from outside the academic world to improve
outlier detection. This includes so called “altmetrics”, for example, comments on a website
or social media about publications or authors. Lin describes the problems and solutions this
addition offers [Lin20].

10.2.2 Advanced methodology

Besides future work on data integration and refinement, we also have some suggestions for the
methodology.

Anomaly detection - machine learning The data has been integrated and parsed in a
graph. This method can still be improved as noted above. But this new way of data representa-
tion opens the possibility for anomaly detection in combination with machine learning. This also
requires a statistical method of outlier detection, which we suggested in Chapter 9. The study
of Pourhabibi et al. list’s many methods for graph based anomaly detection, some of these can
be used as inspiration for a future study [Pou+20].

For example, in the study of Carvalho et al. [Car+17], they transmuted the anomaly scores
from an easy identifiable group to a difficult one. We can do something similar by transmuting
the anomaly scores of PC members in Section 9.1 to their conferences.

57

https://spacy.io

Ideas from related work Also some ideas of related work could be integrated in this study.
One is the detection of black holes in a graph [LXL12], this could detect certain communities,
of persons, articles or venues that for example receive many citations, without citing very much
outside their community. We do not know if this could lead to interesting cases but probably
highly cited scientist should be found with this method, and maybe this will give new insights
for finding outliers.

Differences in time Yet another possible method is to bring the time dimension to the table.
Sometimes, a person may start to commit fraud at a certain point in time, which can be seen
by a sudden increase for example in publications or citations, when such events occur it is useful
to inform a fraud investigator about this, so he/she can monitor the person and investigate the
cause of the increase.

Calculating the influence on metrics A additional step could be to calculate the influence
that outliers have on their own metrics. Since we have the data available to calculate scientist’s h-
index, we could also calculate the influence on the h-index when removing the anomaly citations
of PC members. This is especially interesting when scientist commit targeted fraud to improve
their metrics.

10.3 Conclusion

Our main research question is When is the number of cycles of an actor abnormal within
an academic publication graph? To answer this question, we first answer our sub research
questions.

RQ1 How to integrate publicly available data into an academic publication graph?
As also noted by Westerbaan [Wes22] data availability, quality, and integration is a problem.
Therefore, we underline the recommendations of Westerbaan for better data quality provided by
publishers. But in this thesis, we also improved the integration and quality at certain points.
For example, by acquiring additional data with higher quality by scraping and parsing data from
the ACM website. We now have a full list of all ACM journals, and the scraped issue pages
allowed us to more link the editorial boards to specific issues instead of the journal in general.
We also improved Westerbaan’s proof-of-concept LNCS front matter parser, leading to more
and better results. We improved the extraction of article DOIs in DBLP to improve the linking
with OpenCitations. We also improved the name detection in the POC front matter parser to
increase the likeliness of finding persons in DBLP. We succeeded in combining the data of DBLP,
OpenCitations, ACM website and Springer LNCS front matters in one academic publication
graph, with room for expansion.

RQ2 How to efficiently detect undirected cycles in a directed academic publication
graph?
We tackled the challenge of detecting undirected cycles in a directed graph to chose for an
undirected cycle detection algorithm that nevertheless still report the directions of the edges in
the cycles. We did this by proposing our own cycle detection method, based on BFS (Breadth
first search) algorithm, that has better performance in comparison to straightforward solutions
of Neo4j. This performance increase was needed to allow cycle detection of cycles not larger than
6 edges in a graph containing out of 15 million vertices, and 44 million edges. Still, detection of
all cycles for all 3 million persons ran for 4 days.

58

RQ3 How to identify outliers given cycles in an academic publication graph?
The results showed that we also detected cycle types that are related to known methods of fraud.
Also, some unknown methods of fraud can be detected when cycle types can be decoded with
domain knowledge and in the right context. But more rewarding is it to investigate outliers
within cycles types.

With our method, we can find outlying actors by encoding methods of scientific fraud as
cycle types and detecting outlying numbers of cycles. We showed we can reproduce Westerbaan’s
evaluation of the SPIRE conference.

Furthermore, we improved detection of outliers within attacks by providing a statistical
method to determine thresholds. Thus, the threshold no longer has to be based on domain
knowledge, thereby eliminating the risk of basing thresholds on suggestions of fraudsters.

We reapplied the method to detect persons with high self-citation numbers in comparison to
their overall citations. With this, we demonstrated that we can easily apply our method to other
cycle types that indicate scientific fraud.

The main research question
To answer the main research question: it depends on the context and peers of an outlying person.
With our statistical method proposed in Chapter 9, we can calculate when the number of cycles
of an actor becomes outlying. We did these on cycle types that are indicative for scientific fraud.
With our method, we can also investigate other methods of scientific fraud if they can be encoded
as cycle types in our academic publication graph.

59

Bibliography

[12] San Francisco Declaration on Research Assessment. 2012. url: https://sfdora.
org/read/ (visited on 08/29/2022).

[Ant20] Ike Antkare. “Ike Antkare, His Publications, and Those of His Disciples”. In: Gaming
the Metrics : Misconduct and Manipulation in Academic Research. Ed. by Mario Bia-
gioli and Alexandra Lippman. Infrastructures. Cambridge, Massachusetts: The MIT
Press, 2020. Chap. 14, pp. 177–200. isbn: 978-0-262-53793-3. (Visited on 03/03/2022).

[BH04] Bo-Christer Björk and Turid Hedlund. “A Formalised Model of the Scientific Publi-
cation Process”. In: Online Information Review 28.1 (Jan. 1, 2004), pp. 8–21. issn:
1468-4527. doi: 10.1108/14684520410522411.

[BL20] Mario Biagioli and Alexandra Lippman. Gaming the Metrics : Misconduct and Ma-
nipulation in Academic Research. Infrastructures. Cambridge, Massachusetts: The
MIT Press, 2020. isbn: 978-0-262-53793-3.

[BM15] Lutz Bornmann and Rüdiger Mutz. “Growth Rates of Modern Science: A Bibliomet-
ric Analysis Based on the Number of Publications and Cited References”. In: Journal
of the Association for Information Science and Technology 66.11 (2015), pp. 2215–
2222. issn: 2330-1643. doi: 10.1002/asi.23329.

[Car+17] Luiz F. M. Carvalho, Carlos H. C. Teixeira, Wagner Meira, Martin Ester, Osvaldo
Carvalho, and Maria Helena Brandao. “Provider-Consumer Anomaly Detection for
Healthcare Systems”. In: 2017 IEEE International Conference on Healthcare In-
formatics (ICHI). 2017 IEEE International Conference on Healthcare Informatics
(ICHI). Aug. 2017, pp. 229–238. doi: 10.1109/ICHI.2017.75.

[Cha22] Dalmeet Singh Chawla. How a Site Peddles Author Slots in Reputable Publishers’
Journals. 6590. Apr. 6, 2022. doi: 10.1126/science.abq4276.

[EV21] Holly Else and Richard Van Noorden. “The Fight against Fake-Paper Factories That
Churn out Sham Science”. In: Nature 591.7851 (7851 Mar. 23, 2021), pp. 516–519.
doi: 10.1038/d41586-021-00733-5.

[Fan+22] Daniele Fanelli, Matteo Schleicher, Ferric C. Fang, Arturo Casadevall, and Elisabeth
M. Bik. “Do Individual and Institutional Predictors of Misconduct Vary by Country?
Results of a Matched-Control Analysis of Problematic Image Duplications”. In: PLOS
ONE 17.3 (Mar. 2, 2022), e0255334. issn: 1932-6203. doi: 10.1371/journal.pone.
0255334.

[Fan20] Daniele Fanelli. “Pressures to Publish: What Effects Do We See?” In: Gaming the
Metrics. Ed. by Mario Biagioli and Alexandra Lippman. Cambridge, Massachusetts:
The MIT Press, 2020. Chap. 8, pp. 111–122. isbn: 978-0-262-53793-3.

60

https://sfdora.org/read/
https://sfdora.org/read/
https://doi.org/10.1108/14684520410522411
https://doi.org/10.1002/asi.23329
https://doi.org/10.1109/ICHI.2017.75
https://doi.org/10.1126/science.abq4276
https://doi.org/10.1038/d41586-021-00733-5
https://doi.org/10.1371/journal.pone.0255334
https://doi.org/10.1371/journal.pone.0255334

[FB18] Diogo Fernandes and Jorge Bernardino. “Graph Databases Comparison: Allegro-
Graph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB:” in: Proceedings of the 7th
International Conference on Data Science, Technology and Applications. 7th Inter-
national Conference on Data Science, Technology and Applications. Porto, Portugal:
SCITEPRESS - Science and Technology Publications, 2018, pp. 373–380. isbn: 978-
989-758-318-6. doi: 10.5220/0006910203730380.

[FH21] Robert M. Frederickson and Roland W. Herzog. “Keeping Them Honest: Fighting
Fraud in Academic Publishing”. In: Molecular Therapy 29.3 (Mar. 3, 2021), pp. 889–
890. issn: 1525-0016. doi: 10.1016/j.ymthe.2021.02.011.

[FH22] Robert M. Frederickson and Roland W. Herzog. “Addressing the Big Business of
Fake Science”. In: Molecular Therapy 30.7 (July 6, 2022), p. 2390. issn: 1525-0016.
doi: 10.1016/j.ymthe.2022.06.001.

[Fra22] Tove Faber Frandsen. “Authors Publishing Repeatedly in Predatory Journals: An
Analysis of Scopus Articles”. In: Learned Publishing (Aug. 4, 2022). issn: 0953-1513,
1741-4857. doi: 10.1002/leap.1489.

[Gil15] Adrew Gilmartin. DOIs and Matching Regular Expressions. Crossref. Aug. 11, 2015.
url: https://www.crossref.org/blog/dois-and-matching-regular-expressions/
(visited on 04/06/2022).

[Gri20] James Griesemer. “Taking Goodhart’s Law Meta”. In: Gaming the Metrics : Miscon-
duct and Manipulation in Academic Research. Ed. by Mario Biagioli and Alexandra
Lippman. Cambridge, Massachusetts: The MIT Press, 2020. Chap. 5, pp. 77–87. isbn:
978-0-262-53793-3.

[Hog+21] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebas-
tian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa
Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, and Antoine Zimmermann.
“Knowledge Graphs”. In: Synthesis Lectures on Data, Semantics, and Knowledge 12.2
(Nov. 8, 2021), pp. 1–257. issn: 2691-2023. doi: 10.2200/S01125ED1V01Y202109DSK022.

[HPS19] Ivan Heibi, Silvio Peroni, and David Shotton. “Software Review: COCI, the OpenCi-
tations Index of Crossref Open DOI-to-DOI Citations”. In: Scientometrics 121.2
(Nov. 2019), pp. 1213–1228. issn: 0138-9130, 1588-2861. doi: 10.1007/s11192-019-
03217-6.

[JCG22] Tiago S. Jesus, Greta Castellini, and Silvia Gianola. “Global Health Workforce Re-
search: Comparative Analyses of the Scientific Publication Trends in PubMed”.
In: The International Journal of Health Planning and Management 37.3 (2022),
pp. 1351–1365. issn: 1099-1751. doi: 10.1002/hpm.3401.

[JM17] Hugo Jonker and Sjouke Mauw. “A Security Perspective on Publication Metrics”.
In: Security Protocols XXV. Ed. by Frank Stajano, Jonathan Anderson, Bruce Chris-
tianson, and Vashek Matyáš. Vol. 10476. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2017, pp. 186–200. isbn: 978-3-319-71075-4. doi:
10.1007/978-3-319-71075-4_21.

[KLM21] Sadamori Kojaku, Giacomo Livan, and Naoki Masuda. “Detecting Anomalous Ci-
tation Groups in Journal Networks”. In: Scientific Reports 11.1 (1 July 15, 2021),
pp. 1–11. issn: 2045-2322. doi: 10.1038/s41598-021-93572-3.

61

https://doi.org/10.5220/0006910203730380
https://doi.org/10.1016/j.ymthe.2021.02.011
https://doi.org/10.1016/j.ymthe.2022.06.001
https://doi.org/10.1002/leap.1489
https://www.crossref.org/blog/dois-and-matching-regular-expressions/
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.1007/s11192-019-03217-6
https://doi.org/10.1007/s11192-019-03217-6
https://doi.org/10.1002/hpm.3401
https://doi.org/10.1007/978-3-319-71075-4_21
https://doi.org/10.1038/s41598-021-93572-3

[Ley09] Michael Ley. “DBLP: Some Lessons Learned”. In: Proceedings of the VLDB Endow-
ment 2.2 (Aug. 1, 2009), pp. 1493–1500. issn: 2150-8097. doi: 10.14778/1687553.
1687577.

[Lin20] Jennifer Lin. “Altmetrics Gaming: Beast Within or Without?” In: Gaming the Met-
rics : Misconduct and Manipulation in Academic Research. Ed. by Mario Biagioli and
Alexandra Lippman. Cambridge, Massachusetts: The MIT Press, 2020. Chap. 16,
pp. 213–227. isbn: 978-0-262-53793-3.

[LL13] Cyril Labbé and Dominique Labbé. “Duplicate and Fake Publications in the Scientific
Literature: How Many SCIgen Papers in Computer Science?” In: Scientometrics 94.1
(Jan. 2013), pp. 379–396. issn: 0138-9130, 1588-2861. doi: 10.1007/s11192-012-
0781-y.

[LXL12] Zhongmou Li, Hui Xiong, and Yanchi Liu. “Mining Blackhole and Volcano Patterns
in Directed Graphs: A General Approach”. In: Data Mining and Knowledge Discovery
25.3 (Nov. 1, 2012), pp. 577–602. issn: 1573-756X. doi: 10.1007/s10618-012-0255-
0.

[Neo15] Jenny Neophytou. Anomalous Citation Patterns in the World of Citation Metrics.
Willy. Sept. 9, 2015. url: https://www.wiley.com/network/archive/anomalous-
citation-patterns-in-the-world-of-citation-metrics (visited on 07/11/2022).

[NIS] NIST/SEMATECH. “7.1.6. What Are Outliers in the Data?” In: E-Handbook of
Statistical Methods. url: https://www.itl.nist.gov/div898/handbook/prc/
section1/prc16.htm (visited on 06/07/2022).

[Ora12] Ivan Oransky. South Korean Plant Compound Researcher Faked Email Addresses so
He Could Review His Own Studies. Retraction Watch. Aug. 24, 2012. url: https:
//retractionwatch.com/2012/08/24/korean-plant-compound-researcher-

faked-email-addresses-so-he-could-review-his-own-studies/ (visited on
07/19/2022).

[Pil22] Charles Piller. “Blots on a Field?” In: Science 377.6604 (July 22, 2022), pp. 358–363.
issn: 0036-8075. doi: 10.1126/science.add9993.

[Pou+20] Tahereh Pourhabibi, Kok-Leong Ong, Booi H. Kam, and Yee Ling Boo. “Fraud De-
tection: A Systematic Literature Review of Graph-Based Anomaly Detection Ap-
proaches”. In: Decision Support Systems 133 (June 1, 2020), p. 113303. issn: 0167-
9236. doi: 10.1016/j.dss.2020.113303.

[Ray19] Steven Raybon. Real-Time Anomaly Detection with Exponentially-Distrubted Data.
Towards Data Science. July 23, 2019. url: https://towardsdatascience.com/
real-time-anomaly-detection-with-exponentially-distrubted-data-205e0df32096

(visited on 06/08/2022).

[Sch+18] Christian Schulz, Brian Uzzi, Dirk Helbing, and Olivia Woolley-Meza. “A Network-
Based Citation Indicator of Scientific Performance”. July 12, 2018. arXiv: 1807.
04712 [physics]. url: http://arxiv.org/abs/1807.04712 (visited on 03/15/2022).

[See+19] Marco Seeber, Mattia Cattaneo, Michele Meoli, and Paolo Malighetti. “Self-Citations
as Strategic Response to the Use of Metrics for Career Decisions”. In: Research Policy.
Academic Misconduct, Misrepresentation, and Gaming 48.2 (Mar. 1, 2019), pp. 478–
491. issn: 0048-7333. doi: 10.1016/j.respol.2017.12.004.

[SO18] Bodo M. Stern and Erin K. O’Shea. Scientific Publishing in the Digital Age. ASAPbio.
Jan. 26, 2018. url: https://asapbio.org/digital-age (visited on 07/15/2022).

62

https://doi.org/10.14778/1687553.1687577
https://doi.org/10.14778/1687553.1687577
https://doi.org/10.1007/s11192-012-0781-y
https://doi.org/10.1007/s11192-012-0781-y
https://doi.org/10.1007/s10618-012-0255-0
https://doi.org/10.1007/s10618-012-0255-0
https://www.wiley.com/network/archive/anomalous-citation-patterns-in-the-world-of-citation-metrics
https://www.wiley.com/network/archive/anomalous-citation-patterns-in-the-world-of-citation-metrics
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://retractionwatch.com/2012/08/24/korean-plant-compound-researcher-faked-email-addresses-so-he-could-review-his-own-studies/
https://retractionwatch.com/2012/08/24/korean-plant-compound-researcher-faked-email-addresses-so-he-could-review-his-own-studies/
https://retractionwatch.com/2012/08/24/korean-plant-compound-researcher-faked-email-addresses-so-he-could-review-his-own-studies/
https://doi.org/10.1126/science.add9993
https://doi.org/10.1016/j.dss.2020.113303
https://towardsdatascience.com/real-time-anomaly-detection-with-exponentially-distrubted-data-205e0df32096
https://towardsdatascience.com/real-time-anomaly-detection-with-exponentially-distrubted-data-205e0df32096
https://arxiv.org/abs/1807.04712
https://arxiv.org/abs/1807.04712
http://arxiv.org/abs/1807.04712
https://doi.org/10.1016/j.respol.2017.12.004
https://asapbio.org/digital-age

[Str97] Marilyn Strathern. “‘Improving Ratings’: Audit in the British University System”.
In: European Review 5.3 (July 1997), pp. 305–321. issn: 1474-0575, 1062-7987. doi:
10.1002/(SICI)1234-981X(199707)5:3<305::AID-EURO184>3.0.CO;2-4.

[Tan+08] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. “ArnetMiner:
Extraction and Mining of Academic Social Networks”. In: Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’08. New York, NY, USA: Association for Computing Machinery, Aug. 24,
2008, pp. 990–998. isbn: 978-1-60558-193-4. doi: 10.1145/1401890.1402008.

[Tie17] Niels Tielenburg. “Automating Outlier Detection in Academic Publishing”. MA the-
sis. Open University of the Netherlands, June 21, 2017. 62 pp. url: https://www.
open.ou.nl/hjo/supervision/2017-niels.tielenburg/2017-n.tielenburg-

msc-thesis.pdf (visited on 03/07/2022).

[Van14] Richard Van Noorden. “Transparency Promised for Vilified Impact Factor”. In: Na-
ture (July 29, 2014). issn: 1476-4687. doi: 10.1038/nature.2014.15642.

[Van21] Richard Van Noorden. “Hundreds of Gibberish Papers Still Lurk in the Scientific
Literature”. In: Nature 594.7862 (7862 May 27, 2021), pp. 160–161. doi: 10.1038/
d41586-021-01436-7.

[Wes22] Ewoud Westerbaan. “Acquisition and Integration of Public Data to Improve Detec-
tion of Scientific Fraud”. MA thesis. Open University of the Netherlands, Apr. 1,
2022. url: https://www.open.ou.nl/hjo/supervision/2022-e.westerbaan-
msc-thesis.pdf.

[WF12] Allen W. Wilhite and Eric A. Fong. “Coercive Citation in Academic Publishing”. In:
Science 335.6068 (Feb. 3, 2012), pp. 542–543. doi: 10.1126/science.1212540.

63

https://doi.org/10.1002/(SICI)1234-981X(199707)5:3<305::AID-EURO184>3.0.CO;2-4
https://doi.org/10.1145/1401890.1402008
https://www.open.ou.nl/hjo/supervision/2017-niels.tielenburg/2017-n.tielenburg-msc-thesis.pdf
https://www.open.ou.nl/hjo/supervision/2017-niels.tielenburg/2017-n.tielenburg-msc-thesis.pdf
https://www.open.ou.nl/hjo/supervision/2017-niels.tielenburg/2017-n.tielenburg-msc-thesis.pdf
https://doi.org/10.1038/nature.2014.15642
https://doi.org/10.1038/d41586-021-01436-7
https://doi.org/10.1038/d41586-021-01436-7
https://www.open.ou.nl/hjo/supervision/2022-e.westerbaan-msc-thesis.pdf
https://www.open.ou.nl/hjo/supervision/2022-e.westerbaan-msc-thesis.pdf
https://doi.org/10.1126/science.1212540

Appendix A

Additional tables

This appendix contains several tables that provide additional information, like an overview of
the ACM journals scraped (Section A.1), the abbreviations used for nodes and relationship types
in path labels (Section A.2), and the list of all found person cycles (Section A.3).

A.1 ACM journals

Table A.1 contains a comparison between the ACM journals that Westerbaan [Wes22] scraped
and the ones we scraped. For the ones we scraped, we tried scraping the editorial boards (ED)
and issue pages (IP). Y means scraped; N means tried, but failed; empty means not tried. All
the failed editorial boards scraped journals had no editorial board page. All the failed issue page
scraped journals had no issue pages on their website.

Westerbaan also tried to scrape the following three URLs, in which he did not succeed because
they are not typically ACM journals URLs. We ignored them.

• http://www.is.umbc.edu/taccess/index.h

• https://ubiquity.acm.org/meet_the_editors

• https://campus.acm.org/public/genpubqj/genpubqj_control.cfm?promo=QJPUB&product=

11240&form_type=PUB

During our study, the journals listed on the ACM journals page (https://dl.acm.org/
journals) changed, finally stabilizing on 66 of 67 journals listed in the table, only tslp is
currently not listed on the ACM journals page. This journal page was not available at the time
of Westerbaan’s study.

Code Title [Wes22] ED IP

cola Collective Intelligence Y N

csur ACM Computing Surveys N Y Y

dgov Digital Government: Research and Practice Y Y

dlt Distributed Ledger Technologies: Research and Practice Y N

dtrap Digital Threats: Research and Practice Y Y

fac Formal Aspects of Computing Y Y

games ACM Games: Research and Practice Y N

Table continues on next page

64

http://www.is.umbc.edu/taccess/index.h
https://ubiquity.acm.org/meet_the_editors
https://campus.acm.org/public/genpubqj/genpubqj_control.cfm?promo=QJPUB&product=11240&form_type=PUB
https://campus.acm.org/public/genpubqj/genpubqj_control.cfm?promo=QJPUB&product=11240&form_type=PUB
https://dl.acm.org/journals
https://dl.acm.org/journals
https://dl.acm.org/journal/cola
https://dl.acm.org/journal/csur
https://dl.acm.org/journal/dgov
https://dl.acm.org/journal/dlt
https://dl.acm.org/journal/dtrap
https://dl.acm.org/journal/FAC
https://dl.acm.org/journal/games

Code Title [Wes22] ED IP

health ACM Transactions on Computing for Healthcare Y Y

imwut Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies

Y Y

jacm Journal of the ACM Y Y Y

jats ACM Journal on Autonomous Transportation Systems Y N

jdiq Journal of Data and Information Quality Y Y Y

jea ACM Journal of Experimental Algorithmics N Y Y

jetc ACM Journal on Emerging Technologies in Computing Sys-
tems

N Y Y

jocch Journal on Computing and Cultural Heritage Y Y Y

jrc ACM Journal on Responsible Computing N N

pacmcgit Proceedings of the ACM on Computer Graphics and Inter-
active Techniques

Y Y

pacmhci Proceedings of the ACM on Human-Computer Interaction Y Y

pacmpl Proceedings of the ACM on Programming Languages Y Y

pomacs Proceedings of the ACM on Measurement and Analysis of
Computing Systems

Y Y

taas ACM Transactions on Autonomous and Adaptive Systems Y Y Y

taccess ACM Transactions on Accessible Computing Y Y

taco ACM Transactions on Architecture and Code Optimization Y Y Y

talg ACM Transactions on Algorithms Y Y Y

tallip ACM Transactions on Asian and Low-Resource Language
Information Processing

N Y Y

tap ACM Transactions on Applied Perception Y Y Y

taslp IEEE/ACM Transactions on Audio, Speech and Language
Processing

N Y

tcbb IEEE/ACM Transactions on Computational Biology and
Bioinformatics

N N Y

tcps ACM Transactions on Cyber-Physical Systems Y Y

tds ACM/IMS Transactions on Data Science Y Y

teac ACM Transactions on Economics and Computation Y Y

tecs ACM Transactions on Embedded Computing Systems N Y Y

telo ACM Transactions on Evolutionary Learning and Optimiza-
tion

Y Y

thri ACM Transactions on Human-Robot Interaction Y Y

tiis ACM Transactions on Interactive Intelligent Systems Y Y

tiot ACM Transactions on Internet of Things Y Y

Table continues on next page

65

https://dl.acm.org/journal/health
https://dl.acm.org/journal/imwut
https://dl.acm.org/journal/imwut
https://dl.acm.org/journal/jacm
https://dl.acm.org/journal/jats
https://dl.acm.org/journal/jdiq
https://dl.acm.org/journal/jea
https://dl.acm.org/journal/jetc
https://dl.acm.org/journal/jetc
https://dl.acm.org/journal/jocch
https://dl.acm.org/journal/jrc
https://dl.acm.org/journal/pacmcgit
https://dl.acm.org/journal/pacmcgit
https://dl.acm.org/journal/pacmhci
https://dl.acm.org/journal/pacmpl
https://dl.acm.org/journal/pomacs
https://dl.acm.org/journal/pomacs
https://dl.acm.org/journal/taas
https://dl.acm.org/journal/taccess
https://dl.acm.org/journal/taco
https://dl.acm.org/journal/talg
https://dl.acm.org/journal/tallip
https://dl.acm.org/journal/tallip
https://dl.acm.org/journal/tap
https://dl.acm.org/journal/taslp
https://dl.acm.org/journal/taslp
https://dl.acm.org/journal/tcbb
https://dl.acm.org/journal/tcbb
https://dl.acm.org/journal/tcps
https://dl.acm.org/journal/tds
https://dl.acm.org/journal/teac
https://dl.acm.org/journal/tecs
https://dl.acm.org/journal/telo
https://dl.acm.org/journal/telo
https://dl.acm.org/journal/thri
https://dl.acm.org/journal/tiis
https://dl.acm.org/journal/tiot

Code Title [Wes22] ED IP

tist ACM Transactions on Intelligent Systems and Technology Y Y

tkdd ACM Transactions on Knowledge Discovery from Data N Y Y

tmis ACM Transactions on Management Information Systems Y Y

toce ACM Transactions on Computing Education Y Y Y

tochi ACM Transactions on Computer-Human Interaction Y Y Y

tocl ACM Transactions on Computational Logic Y Y Y

tocs ACM Transactions on Computer Systems Y Y Y

toct ACM Transactions on Computation Theory Y Y Y

todaes ACM Transactions on Design Automation of Electronic Sys-
tems

Y Y Y

tods ACM Transactions on Database Systems Y Y Y

tog ACM Transactions on Graphics Y Y Y

tois ACM Transactions on Information Systems Y Y Y

toit ACM Transactions on Internet Technology Y Y Y

tomacs ACM Transactions on Modeling and Computer Simulation Y Y Y

tomm ACM Transactions on Multimedia Computing, Communica-
tions, and Applications

Y Y Y

tompecs ACM Transactions on Modeling and Performance Evalua-
tion of Computing Systems

Y Y

toms ACM Transactions on Mathematical Software Y Y Y

ton IEEE/ACM Transactions on Networking N N Y

topc ACM Transactions on Parallel Computing Y Y

toplas ACMTransactions on Programming Languages and Systems Y Y Y

tops ACM Transactions on Privacy and Security N Y Y

tors ACM Transactions on Recommender Systems Y N

tos ACM Transactions on Storage Y Y Y

tosem ACM Transactions on Software Engineering and Methodol-
ogy

Y Y Y

tosn ACM Transactions on Sensor Networks Y Y Y

tqc ACM Transactions on Quantum Computing Y Y

trets ACM Transactions on Reconfigurable Technology and Sys-
tems

N Y Y

tsas ACM Transactions on Spatial Algorithms and Systems Y Y

tsc ACM Transactions on Social Computing Y Y

tweb ACM Transactions on the Web Y Y Y

tslp ACM Transactions on Speech and Language Processing N N Y

Table A.1: ACM Journals data sources

66

https://dl.acm.org/journal/tist
https://dl.acm.org/journal/tkdd
https://dl.acm.org/journal/tmis
https://dl.acm.org/journal/toce
https://dl.acm.org/journal/tochi
https://dl.acm.org/journal/tocl
https://dl.acm.org/journal/tocs
https://dl.acm.org/journal/toct
https://dl.acm.org/journal/todaes
https://dl.acm.org/journal/todaes
https://dl.acm.org/journal/tods
https://dl.acm.org/journal/tog
https://dl.acm.org/journal/tois
https://dl.acm.org/journal/toit
https://dl.acm.org/journal/tomacs
https://dl.acm.org/journal/tomm
https://dl.acm.org/journal/tomm
https://dl.acm.org/journal/tompecs
https://dl.acm.org/journal/tompecs
https://dl.acm.org/journal/toms
https://dl.acm.org/journal/ton
https://dl.acm.org/journal/topc
https://dl.acm.org/journal/toplas
https://dl.acm.org/journal/tops
https://dl.acm.org/journal/tors
https://dl.acm.org/journal/tos
https://dl.acm.org/journal/tosem
https://dl.acm.org/journal/tosem
https://dl.acm.org/journal/tosn
https://dl.acm.org/journal/tqc
https://dl.acm.org/journal/trets
https://dl.acm.org/journal/trets
https://dl.acm.org/journal/tsas
https://dl.acm.org/journal/tsc
https://dl.acm.org/journal/tweb
https://dl.acm.org/journal/tslp

A.2 Node and relationship types abbreviations

Table A.2 and Table A.3 contain the full list of label abbreviations of nodes and relationships.
Where the abbreviation does not follow the first letter of the type rule, the abbreviation is written
in italics.

Node type Abbreviation

Article A

Conference C

DOI D

Issue I

Journal J

Orcid O

Person P

Proceeding R

Volume V

Table A.2: Node label abbriviations

Relationship type Abbreviation

author of a

belongs to b

cites c

doi of d

editor of e

of f

orcid of o

pc member of p

Table A.3: Relationship label abbriviations

67

A.3 Person cycles per type

In Table A.4 all cycles starting from all 3,019,026 persons with max 6 edges are listed. We mention
the label, by how many persons this cycle type occurrence, the total amount of recursive cycles,
the median (50th percentile), the 75th percentile (p75), and the largest amount of a person (max
or 100th percentile). Most of the cycle types will probably have an exponential distribution, so
the 50th (median), 75th, and 100th (max) percentile are shown to give a first sight indication of
the distribution.

Recursive cycles Cycles

Cycle type label Persons Total Median P75 Max Total

PaAaPaAaP 1,312,006 10,490,094 4 8 1,030 343,337,520

PaAaPaAaPaAaP 1,237,134 107,131,832 24 75 44,500 12,081,321,020

PaA ⃗cAc⃗A ⃗cAc⃗AaP 868,531 456,984,876 88 386 84,364 8,597,894,806

PaAaPaAbRbAaP 834,650 26,613,452 4 14 25,416 294,051,200

PaA ⃗cAc⃗Ac⃗AaP 769,845 19,182,625 7 20 5,932 134,269,713

PaA ⃗cA ⃗cAc⃗Ac⃗AaP 726,988 29,812,211 11 36 7,013 438,404,844

PaA ⃗cAc⃗AaPaAaP 712,850 32,507,817 8 26 24,661 652,871,850

PaA ⃗cAc⃗Ac⃗Ac⃗AaP 707,054 33,432,919 11 37 12,049 282,526,178

PaAc⃗A ⃗cA ⃗cAc⃗AaP 663,634 59,106,868 16 61 28,324 651,534,629

PaA ⃗cAaPaAc⃗AaP 656,855 10,093,436 5 14 1,891 142,692,006

PaAc⃗A ⃗cAc⃗AaP 634,588 21,066,702 6 21 11,356 186,224,711

PaAc⃗A ⃗cAc⃗A ⃗cAaP 611,921 53,621,360 16 60 27,311 1,624,682,094

PaA ⃗cAaPaAaP 595,025 5,060,641 3 8 1,322 64,140,125

PaAc⃗A ⃗cAc⃗Ac⃗AaP 565,378 20,627,009 7 25 9,767 219,629,230

PaAc⃗AaPaAaP 519,240 5,096,820 3 8 1,844 67,135,002

PaAc⃗Ac⃗A ⃗cAaP 512,925 17,465,000 5 19 16,047 82,658,708

PaAc⃗Ac⃗A ⃗cAc⃗AaP 505,417 43,797,072 10 44 29,291 423,451,399

PaAc⃗A ⃗cAaPaAaP 501,339 10,490,559 5 14 5,396 173,889,535

PaAbRfCfRbAaP 494,611 1,129,650 1 2 127 31,510,876

PaAc⃗AaPaA ⃗cAaP 494,102 13,792,665 6 19 13,140 179,279,214

PaA ⃗cAc⃗AaP 431,647 4,712,151 4 10 1,119 29,094,420

PaA ⃗cA ⃗cAaPaAaP 428,644 5,266,214 4 10 2,150 65,825,761

PaAc⃗AaP 419,836 2,102,583 2 4 661 3,283,060

PaAc⃗Ac⃗A ⃗cA ⃗cAaP 412,942 27,611,610 8 35 26,773 295,264,382

PaA ⃗cAc⃗AbIbAaP 390,334 6,552,177 4 11 4,468 20,149,885

PaAc⃗Ac⃗Ac⃗A ⃗cAaP 372,161 14,386,600 6 21 13,525 95,174,377

PaAc⃗AaPaAc⃗AaP 365,800 4,383,853 3 9 2,053 39,221,232

Table continues on next page

68

Recursive cycles Cycles

Cycle type label Persons Total Median P75 Max Total

PaA ⃗cAc⃗AbRbAaP 351,761 13,186,715 6 20 8,533 60,528,191

PaAbRbAaP 339,423 968,316 1 3 181 4,215,448

PaAbIbAaPaAaP 335,052 2,906,327 2 5 7,075 20,739,569

PaAc⃗Ac⃗AaPaAaP 326,169 5,088,825 3 10 4,600 61,715,996

PaAbVfJfVbAaP 293,459 390,966 1 1 30 31,704,486

PaAc⃗A ⃗cAbIbAaP 285,932 3,086,269 3 8 2,018 8,517,169

PaA ⃗cAbIbAc⃗AaP 277,395 902,635 1 3 444 7,878,658

PaAc⃗A ⃗cAaP 271,346 3,295,770 3 8 3,243 13,723,948

PaAaPpRpPaAaP 265,889 4,965,157 5 30 720 1,184,794,304

PaA ⃗cAc⃗AbVbAaP 225,069 4,045,737 4 13 3,660 11,781,184

PaAbRpPpRbAaP 224,618 4,376,853 3 7 3,847 35,999,484

PaAc⃗A ⃗cAbRbAaP 215,665 4,998,204 4 12 6,309 18,262,545

PaAaPaAbVbAaP 213,080 8,049,874 4 17 10,880 59,074,182

PaA ⃗cAbRbAc⃗AaP 207,961 1,014,401 2 4 379 12,367,332

PaA ⃗cAaPpRbAaP 189,686 1,243,456 2 6 605 5,854,239

PaAc⃗AbIbA ⃗cAaP 183,420 1,055,082 2 4 1,413 9,575,086

PaAaPpRbAaP 177,083 663,272 1 3 354 7,298,425

PaAc⃗AbRbA ⃗cAaP 152,605 1,153,270 2 5 1,414 16,946,364

PaAbIfVfIbAaP 146,315 310,406 1 2 157 1,397,222

PaAc⃗Ac⃗AaP 142,254 723,798 2 4 962 1,824,508

PaAc⃗AaPpRbAaP 134,316 933,354 2 5 1,897 4,553,713

PaAc⃗A ⃗cAbVbAaP 128,660 912,866 2 6 1,025 1,900,446

PaAc⃗AbRpPaAaP 119,810 632,036 2 4 480 15,907,203

PaAc⃗AbIbAaP 117,988 377,967 1 2 629 772,119

PaA ⃗cAbRpPaAaP 117,691 465,642 2 4 137 8,852,541

PaAc⃗AbVbA ⃗cAaP 112,064 492,732 1 3 1,146 5,723,572

PaAc⃗Ac⃗Ac⃗AaP 98,509 1,159,394 3 8 2,402 5,041,511

PaA ⃗cAbRbAaP 96,699 490,652 2 4 651 1,241,550

PaA ⃗cAbVbAc⃗AaP 95,927 219,299 1 2 290 1,396,394

PaAbIbAaP 93,211 162,340 1 2 170 474,136

PaAc⃗AbRbAaP 92,624 537,095 2 4 763 1,454,735

PaAc⃗Ac⃗AbIbAaP 86,992 870,842 2 6 1,853 2,014,918

PaA ⃗cAbIbAaP 85,127 258,780 1 3 484 591,737

PaA ⃗cA ⃗cAbIbAaP 81,933 587,567 2 5 900 1,328,107

Table continues on next page

69

Recursive cycles Cycles

Cycle type label Persons Total Median P75 Max Total

PaA ⃗cA ⃗cAbRbAaP 80,335 1,105,559 3 9 1,904 2,879,118

PaAc⃗AbIbAc⃗AaP 77,063 295,387 2 4 381 1,394,601

PaAc⃗Ac⃗Ac⃗Ac⃗AaP 76,672 1,029,957 3 10 1,866 4,496,523

PaAc⃗Ac⃗AbRbAaP 74,040 1,467,322 3 10 2,973 4,202,284

PaAbVbAaP 57,718 90,775 1 2 53 508,438

PpRbAaPaAbRpP 57,032 6,119,678 25 89 7,486 45,267,970

PaAc⃗AbRbAc⃗AaP 54,873 266,551 2 5 195 2,071,448

PaAc⃗AbVbAaP 54,698 141,166 1 2 456 301,678

PaAc⃗Ac⃗AbVbAaP 52,228 387,778 2 5 1,815 802,772

PpRbAaPpRpP 51,898 6,113,222 13 63 4,254 159,721,715

PaAbRbAaPpRpP 50,701 20,123,471 35 173 27,842 748,934,174

PaAaPaAaPpRpP 49,136 18,853,380 70 264 59,756 1,381,319,803

PpRpPpRfCfRpP 48,439 1,832,932 18 50 975 36,753,584,791

PpRpPaAaPpRpP 47,830 127,232,103 259 1,321 84,119 229,059,092,932

PaA ⃗cAc⃗AaPpRpP 46,998 27,866,583 73 450 40,438 891,818,818

PpRbA ⃗cAc⃗AbRpP 45,008 10,978,841 40 164 6,985 609,027,768

PaAaPaAbRpP 43,734 883,830 6 18 1,773 5,891,245

PpRpPpRpPpRpP 42,955 8,205,259 98 290 3,541 18,483,115,279,482

PpRbA ⃗cAaPpRpP 42,072 12,292,291 45 204 9,073 821,906,725

PaAaPpRpPpRpP 41,125 2,175,175 22 71 1,176 27,945,993,665

PaAc⃗A ⃗cAaPpRpP 40,997 4,666,334 22 94 5,926 69,055,851

PpRbAc⃗A ⃗cAbRpP 40,804 11,638,984 12 68 11,585 75,601,342

PaAaPpRpP 40,290 223,310 3 6 265 6,144,750

PaA ⃗cAaPaAbRpP 40,071 873,919 7 23 1,115 4,379,418

PpRbAc⃗AaPpRpP 40,063 10,023,768 22 117 9,061 432,232,351

PaAc⃗AbVbAc⃗AaP 39,963 125,945 1 3 432 535,840

PaAaPpRfCfRpP 39,797 681,620 7 21 436 85,653,311

PaAbRpPaAbRpP 39,455 695,900 5 14 724 2,300,508

PaAc⃗AaPaAbRpP 38,796 1,136,292 8 27 2,191 5,480,420

PaA ⃗cAc⃗Ac⃗AbRpP 38,658 6,354,001 35 140 5,780 48,488,538

PaA ⃗cA ⃗cAc⃗AbRpP 38,527 2,689,671 20 68 2,929 21,819,731

PaAbRfCfRpP 37,789 157,355 2 5 88 1,031,700

PaAc⃗A ⃗cAc⃗AbRpP 37,766 3,879,772 26 91 4,351 41,436,717

PaA ⃗cAc⃗A ⃗cAbRpP 37,509 9,626,130 24 123 14,267 59,362,167

Table continues on next page

70

Recursive cycles Cycles

Cycle type label Persons Total Median P75 Max Total

PaA ⃗cA ⃗cAaPpRpP 36,575 2,171,032 14 55 3,056 30,746,499

PaA ⃗cAaPpRpP 35,536 797,378 7 22 1,114 8,361,823

PaAbRpPpRpP 35,502 1,457,763 6 25 1,372 29,750,726

PaAaPaAc⃗AbRpP 35,092 1,449,219 11 37 1,987 13,300,323

PaA ⃗cAc⃗AbRpP 35,078 2,437,394 13 48 2,820 8,607,166

PaA ⃗cAbVbAaP 34,729 77,863 1 2 180 166,852

PaAc⃗Ac⃗AaPpRpP 34,146 2,724,440 13 57 6,061 31,310,409

PaAc⃗AaPpRpP 33,961 885,945 7 22 1,679 8,485,080

PaA ⃗cA ⃗cAbVbAaP 33,904 139,304 2 4 381 253,512

PaAbIbAaPpRpP 33,364 805,989 6 19 3,544 10,924,549

PaAaPaA ⃗cAbRpP 30,665 1,157,972 7 26 3,474 8,287,109

PpRfCfRpP 30,547 45,717 1 2 24 4,593,786

PaAc⃗AbRpPpRpP 30,081 526,904 5 17 568 153,390,939

PpRpPpRpP 29,893 10,788,540 49 265 5,069 5,988,883,392

PaAbRbAc⃗AbRpP 29,691 1,227,065 11 36 4,242 2,801,026

PpRbAc⃗AbRpP 28,380 2,726,079 8 42 3,600 4,982,053

PaA ⃗cAbRpPpRpP 28,325 326,870 5 13 283 239,915,885

PaAbRpP 27,936 67,156 1 3 87 101,098

PaAc⃗Ac⃗A ⃗cAbRpP 26,565 2,095,227 9 42 7,411 8,036,581

PaAc⃗AbRfCfRpP 26,221 222,424 4 9 312 2,051,334

PaA ⃗cAbRfCfRpP 25,308 196,914 4 9 145 2,429,915

PaAc⃗A ⃗cA ⃗cAbRpP 24,033 1,114,425 7 30 2,767 4,642,093

PaAc⃗A ⃗cAbRpP 23,215 698,514 6 20 2,484 1,781,902

PpRbAc⃗Ac⃗AbRpP 22,957 1,362,965 7 25 2,839 5,318,193

PaAbRbA ⃗cAbRpP 22,738 853,168 7 26 3,691 1,831,412

PaAbVbAaPpRpP 20,595 4,429,186 8 52 8,988 166,071,666

PaAc⃗AbIePaAaP 19,362 47,913 1 3 68 752,092

PpRpPeIePpRpP 19,313 748,000 29 54 237 1,817,295,782

PaAc⃗Ac⃗AbRpP 19,009 372,079 5 15 1,662 813,171

PaAc⃗Ac⃗Ac⃗AbRpP 18,900 551,064 6 21 2,612 1,970,884

PaAaPeIePaAaP 18,566 262,689 10 18 137 23,425,922

PaAc⃗AbRpP 17,929 128,604 3 7 377 177,595

PaAbIbAc⃗AbRpP 14,544 85,040 2 5 410 152,165

PaA ⃗cA ⃗cAbRpP 12,449 146,620 3 10 533 311,798

Table continues on next page

71

Recursive cycles Cycles

Cycle type label Persons Total Median P75 Max Total

PaA ⃗cAbRpP 12,398 63,326 2 5 206 88,580

PaA ⃗cA ⃗cA ⃗cAbRpP 12,376 195,573 4 13 849 583,145

PaAbIbA ⃗cAbRpP 12,032 86,893 3 7 334 149,271

PaAaPeIePpRpP 9,945 212,219 14 27 197 26,286,992

PaA ⃗cAaPeIbAaP 9,619 52,120 3 6 99 232,060

PaAc⃗AbIePpRpP 9,341 27,451 2 4 63 1,005,184

PaAbIePpRbAaP 6,241 24,227 2 5 77 56,211

PaAc⃗AaPeIbAaP 5,695 25,599 2 5 130 121,573

PaAbVbAc⃗AbRpP 5,584 18,473 2 3 77 26,573

PaAbIePaAaP 4,349 9,119 1 2 38 68,269

PaAbVbA ⃗cAbRpP 4,259 19,145 2 4 239 28,953

PaA ⃗cAbIePaAaP 2,945 3,905 1 1 6 35,240

PaAbIePaAbRpP 2,011 7,373 2 4 85 19,074

PaAbIePeIbAaP 1,865 80,303 25 37 402 408,668

PaAbIePpRpP 1,617 7,197 2 5 54 61,468

PaA ⃗cAbIePpRpP 1,545 2,033 1 1 6 66,570

PaA ⃗cAbVfIbAaP 1,443 1,794 1 1 6 4,781

PeIePeIeP 1,443 92,340 40 107 289 12,010,524

PeIfVfIeP 1,443 3,543 2 3 9 56,386

PeIePaAaPeIeP 1,441 544,149 181 511 2,061 172,362,924

PeIbA ⃗cAaPeIeP 1,425 285,626 78 252 1,517 5,279,814

PeIbA ⃗cAc⃗AbIeP 1,425 545,987 120 445 2,595 4,697,076

PeIbAaPaAbIeP 1,423 90,589 30 79 480 473,408

PeIbAaPeIeP 1,415 34,570 12 31 144 394,042

PeIfVfJfVfIeP 1,411 1,531 1 1 4 109,386

PeIePpRpPeIeP 1,376 109,849 42 104 402 188,559,138

PaAbRbAaPeIeP 1,338 342,132 119 342 2,346 6,420,541

PaA ⃗cAc⃗AaPeIeP 1,331 476,561 195 491 2,448 18,365,592

PaAaPaAaPeIeP 1,325 320,770 133 322 3,279 21,447,282

PaAc⃗AbVfIbAaP 1,321 1,720 1 1 9 5,783

PaA ⃗cAc⃗Ac⃗AbIeP 1,304 412,332 138 437 3,543 2,205,277

PeIbAc⃗AbIeP 1,291 41,172 9 26 383 56,299

PaAaPaAc⃗AbIeP 1,282 86,107 32 85 842 534,105

PaA ⃗cA ⃗cAc⃗AbIeP 1,278 147,363 51 146 1,586 673,152

Table continues on next page

72

Recursive cycles Cycles

Cycle type label Persons Total Median P75 Max Total

PaAc⃗A ⃗cAc⃗AbIeP 1,268 303,855 98 308 2,427 1,908,570

PaAaPpRpPeIeP 1,260 64,856 33 67 487 18,835,433

PaAc⃗A ⃗cAaPeIeP 1,236 215,585 68 184 1,918 6,726,872

PaA ⃗cA ⃗cAaPeIeP 1,223 89,480 29 82 715 2,111,940

PaA ⃗cAc⃗AbIeP 1,220 62,432 24 63 746 208,091

PaAc⃗AaPaAbIeP 1,177 44,658 17 45 505 208,837

PaA ⃗cAaPaAbIeP 1,172 25,091 12 26 337 120,432

PeIbAc⃗AaPeIeP 1,172 18,896 6 26 103 287,995

PaAbIbAaPeIeP 1,164 24,521 10 25 189 320,759

PaAc⃗Ac⃗AaPeIeP 1,149 103,667 31 93 1,426 2,202,105

PaA ⃗cAaPeIeP 1,139 25,301 10 26 358 524,337

PaAbRbAc⃗AbIeP 1,131 123,546 29 112 1,054 275,918

PaA ⃗cAc⃗A ⃗cAbIeP 1,130 40,644 11 43 710 148,092

PeIbAc⃗A ⃗cAbIeP 1,108 31,153 5 64 152 131,696

PaAc⃗Ac⃗Ac⃗AbIeP 1,098 83,451 21 80 1,609 316,754

PaAbRpPaAbIeP 1,080 7,373 4 9 91 19,074

PaAbRpPeIeP 1,076 9,616 5 12 77 171,780

PaAaPaAbIeP 1,072 11,166 5 12 141 60,172

PaA ⃗cAbRpPeIeP 1,070 11,242 7 15 58 452,934

PaAc⃗AaPeIeP 1,067 27,479 11 30 414 538,946

PaAc⃗AbRpPeIeP 1,059 17,919 11 23 174 842,472

PaAc⃗Ac⃗AbIeP 1,008 29,845 9 28 613 69,736

PeIePaAaPpRpP 969 378,520 122 510 4,847 28,384,600

PeIePeIePeIeP 957 30,851 35 38 106 28,811,492

PeIbA ⃗cAaPpRpP 945 111,139 34 117 1,581 1,093,438

PeIbAaPaAbRpP 942 24,227 12 30 318 56,211

PaAaPeIeP 930 3,248 3 4 26 176,008

PaAc⃗Ac⃗A ⃗cAbIeP 917 16,151 6 22 175 49,040

PeIbA ⃗cAc⃗AbRpP 905 127,915 52 150 1,487 628,594

PaAbIbAc⃗AbIeP 901 25,977 5 13 1,130 93,252

PeIePpRpPpRpP 899 95,128 57 151 717 431,244,178

PeIePpRfCfRpP 863 16,833 11 28 190 2,196,395

PeIePaAc⃗AbRpP 859 78,666 36 108 1,216 1,384,720

PeIePaAbRpP 855 18,876 10 25 222 206,027

Table continues on next page

73

Recursive cycles Cycles

Cycle type label Persons Total Median P75 Max Total

PeIePaA ⃗cAbRpP 829 59,329 22 80 945 837,942

PaAaPaA ⃗cAbIeP 827 5,532 3 8 142 27,509

PeIbAc⃗Ac⃗AbIeP 767 5,410 2 14 28 8,429

PeIbA ⃗cA ⃗cAbRpP 766 36,974 14 51 730 77,751

PaAc⃗AbIeP 765 4,380 3 6 77 6,373

PaAaPeIePeIeP 738 15,458 17 28 69 2,999,906

PeIbAaPpRpP 727 10,164 5 15 182 67,862

PaAbIfVbAaP 697 818 1 1 5 1,112

PeIePpRpP 674 4,442 3 9 54 181,524

PaAc⃗AbIePeIeP 663 2,392 2 5 25 91,315

PaAc⃗A ⃗cAbIeP 629 4,795 3 7 95 8,609

PaAbVbAaPeIeP 618 21,382 6 35 456 622,783

PeIbAc⃗AaPpRpP 599 7,563 3 12 152 56,594

PeIbA ⃗cAbRpP 592 8,359 5 14 183 10,289

PeIePeIePpRpP 563 17,331 22 46 96 7,549,910

PaAbRbA ⃗cAbIeP 548 6,188 5 16 81 12,535

PeIbAc⃗A ⃗cAbRpP 521 5,311 3 10 111 9,864

PaAc⃗A ⃗cA ⃗cAbIeP 404 1,143 2 3 29 1,980

PaAbIeP 333 534 1 2 10 598

PaAbVbAc⃗AbIeP 304 1,230 2 4 52 1,487

PaAc⃗AbIfVbAaP 264 339 1 1 7 483

PaAbIbA ⃗cAbIeP 204 759 2 4 64 1,044

PaAbIePaAbIeP 168 496 2 3 16 834

PaAbIePeIeP 168 478 2 4 9 6,685

PaA ⃗cAbIfVbAaP 157 181 1 1 5 277

PaA ⃗cAbIeP 149 284 1 2 18 314

PaAbVbA ⃗cAbIeP 127 556 2 4 69 738

PaA ⃗cAbIePeIeP 120 156 1 2 3 4,538

PeIbAc⃗AbRpP 101 461 3 5 39 503

PaA ⃗cA ⃗cAbIeP 72 144 1 2 14 175

PaAc⃗AbIfVfIeP 70 73 1 1 2 518

PeIbAc⃗Ac⃗AbRpP 44 101 1 3 12 155

PaAbIfVfIeP 29 29 1 1 1 116

PaA ⃗cA ⃗cA ⃗cAbIeP 21 30 1 1 3 36

Table continues on next page

74

Recursive cycles Cycles

Cycle type label Persons Total Median P75 Max Total

PaA ⃗cAbIfVfIeP 10 10 1 1 1 53

PaAbVfJfVfIeP 2 2 1 1 1 16

Table A.4: Cycle occurrences

75

	Introduction
	Background
	Incentives for scientific misconduct
	Academic publication process
	Cyclic expressible scientific fraud
	Demanding citations or co-authorship
	Self-citation
	Reviewing own work
	Venue self-citation and citation stacking

	Weighted exponential regression

	Related work
	The importance of scientific fraud detection
	Detection of scientific fraud
	Data sources of academic publications
	Knowledge graph
	Graph-based anomaly detection

	Methodology
	RQ1
	Data model
	People and name ambiguity
	Graph database software

	RQ2
	Directed vs undirected

	RQ3
	Outlier detection

	Data acquisition and refinement
	Data quality and integration problems
	DBLP and DOI
	POC front matter parser
	ACM editorial boards
	ACM issue pages and editors

	Graph construction
	DBLP
	OpenCitations
	Springer LNCS PC members
	ACM editors

	Efficiently detecting cycles
	Cycle terminology
	Methods
	Detecting the cycles
	Extracting the subgraph
	Cycle detection algoritms
	Recursive paths
	Recursive cycles

	Grouping cycles and removing duplicates

	Cycles types
	Invalid cycles types
	Known suspicious cycles types
	Gray-zone cycle types

	Outlier identification
	PC member demanding citations
	Spire conference to compare with Westerbaan
	Across all conferences

	Self-citations

	Conclusions
	Discussion
	Future work
	Improving data acquisition and refinement
	Advanced methodology

	Conclusion

	Additional tables
	ACM journals
	Node and relationship types abbreviations
	Person cycles per type

