
BROWSER-BASED PORT SCANNING

by

ing. Bas van de Louw

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, Faculty of Science
Master Software Engineering

to be defended publicly on Monday December 11, 2023 at 14:00 PM.

Student number: 852361065
Course code: IM9906
Thesis committee: dr. ir. Hugo Jonker (chairman), Open University

dr. Stefano Shivo (supervisor), Open University
Benjamin Krumnow, MSc (external reviewer) TH Köln

ABSTRACT

This paper presents a study on browser-based port scanning, a technique that allows for the
detection of open ports on a target system through the use of a web browser. The research
investigates the optimal strategy for browser-based port scanning, the feasibility of using
port scanning to identify specific programs running on a user’s system, and the uniqueness
of browser-based port scanning fingerprints. The study demonstrates that browser-based
port scanning can serve as an effective alternative to traditional port scanning techniques.
The results suggest that browser-based port scanning can accurately identify specific pro-
grams running on a user’s system. This has concerning implications because browser-
based port scanning is a client-side, local operation on the user’s system, unlike regular
port scanning, which might be leveraged to bypass intrusion detection systems, such as a
firewall. Furthermore, the study estimates the uniqueness of browser-based port scanning
fingerprints, which has significant implications for user privacy and internet anonymity.
The study reveals that browser-based port scanning fingerprints are distinct enough to be
employed as a means of tracking users across various websites, highlighting the need for
enhanced privacy measures by modern web browsers.

1

CONTENTS

1 Introduction 1

2 Research Questions 4

3 Background 7
3.1 Port scanning. 7

3.2 Browser-based vs. Regular Port scanning . 8

3.3 Ethics and Legality . 9

4 Related Work 10
4.1 Browser Fingerprinting. 10

4.2 Fingerprinting the local network . 10

4.3 Identifying web automation bots . 11

4.4 Port scanning via the browser . 12

5 Estimating the optimal port scanning technique 13
5.1 Definitions . 13

5.2 Background. 14

5.2.1 Scanning techniques overview . 14

5.3 Experiment Setup . 15

5.3.1 Application design . 16

5.3.2 Docker Containerization . 17

5.4 Experiment 1: Estimating the optimal socket timeout setting. 19

5.4.1 Motivation . 19

5.4.2 Experiment Target . 20

5.4.3 Experiment Results . 20

5.4.4 Analysis . 22

5.5 Experiment 2: Estimating the most effective scanning technique 22

5.5.1 Motivation . 22

5.5.2 Experiment Target . 22

5.5.3 Experiment Results . 23

5.5.4 Analysis . 24

5.6 Experiment 3: Estimating the most efficient scanning technique 25

5.6.1 Motivation . 25

5.6.2 Experiment Target . 25

5.6.3 Experiment Results . 25

5.6.4 Analysis . 26

5.7 Experiments Conclusions . 27

2

6 Fingerprinting Applications 28
6.1 Fingerprinting the underlying operating system. 28

6.1.1 Motivation . 28
6.1.2 Experiment Target . 29
6.1.3 Experiment Setup . 29
6.1.4 Experiment Results . 30
6.1.5 Analysis . 31
6.1.6 Conclusion . 31

6.2 Identifying running programs. 32
6.2.1 Motivation . 32
6.2.2 Experiment Target . 32
6.2.3 Experiment Setup . 33
6.2.4 Experiment Results . 33
6.2.5 Analysis . 35
6.2.6 Conclusion . 35

6.3 Identifying specific program states. 36

7 Estimating the Entropy of Browser-Based Port Scanning 38
7.1 Background. 39
7.2 Selection of Probability Distributions . 40
7.3 Experiment Setup . 41
7.4 Results . 42

7.4.1 Geometric Distribution . 42
7.4.2 Zipf Distribution . 43
7.4.3 Uniform Distribution. 43

7.5 Analysis . 43
7.6 Conclusion . 44

8 Conclusions and Discussion 46
8.1 Future work. 49

Scientific References 50

Artifacts 53

Articles 54

Regulatory and Legal Documents 55

Technical Reports 56

A Appendix A: Scanning techniques comparison i
A.1 Experiment Parameters . i
A.2 Socket timeout comparison . ii
A.3 Scanning technique efficacy comparison . iii
A.4 Post-scan analysis efficacy comparison . iv
A.5 Scanning techniques efficiency comparison . vii

3

1
INTRODUCTION

As the world becomes more digitized, online privacy and user tracking have become ma-
jor concerns. Websites are collecting vast amounts of data about their visitors, including
sensitive information about their devices and browsing behavior. Websites often collect
user data, such as search queries, IP addresses, and click behavior, through tracking tech-
nologies like cookies and web beacons. The collection of this data can be used for various
purposes, such as targeted advertising, personalization, and user profiling.

Several studies have explored the implications of user tracking and privacy. Acar et
al. [AEE+14] found that a significant number of websites are capable of tracking users across
multiple visits, posing a potential threat to user privacy. In a similar vein, Mayer and
Mitchell [MM12] have examined the privacy implications of third-party tracking on the
web and have proposed measures for policymakers and developers to address these con-
cerns. Furthermore, the privacy risks associated with personalized advertising have been
analyzed by Komanduri et al. [KSNU11], who argue that the collection of user data for this
purpose can result in significant privacy risks, since users are often unaware of what data
is being collected and how it is being used. Similarly, McDonald et al. [MRKC09] have in-
vestigated the effectiveness of privacy notices and have found that users frequently do not
comprehend the information presented in these notices or the implications of data col-
lection and sharing. These studies and others highlight the importance of protecting user
privacy in the context of user tracking and data collection on the web.

Seemingly harmless information, such as browsing habits or search queries, can reveal
personal details like interests, location, and even sensitive information like health condi-
tions or financial status. This data is often used for targeted advertising, personalized con-
tent, and profiling individuals. However, uncontrolled data collection raises ethical con-
cerns, such as lack of transparency and user control over personal information. Moreover,
some tracking techniques may be unlawful in certain countries, violating data protection
and privacy laws that impose legal obligations on organizations. Dismissing privacy con-
cerns with the argument ‘it does not matter’ is flawed, as it ignores the potential risks and
consequences associated with unregulated data collection and use by online entities. Pri-
oritizing user privacy, promoting transparency, and complying with applicable laws are im-
perative in safeguarding individuals’ privacy on the web.

1

One popular technique used for user tracking and profiling is browser fingerprinting.
It involves collecting various pieces of information from a user’s browser, such as the user
agent string, screen resolution, installed fonts, plugins, etc. This information can be used
to create a unique identifier or fingerprint of the user’s browser, which can then be used to
track the user across different websites and browsing sessions. Cookies, along with browser
fingerprinting, are commonly utilized for tracking purposes and are a widely used method
for monitoring user activities. They are explicitly referenced in the General Data Protection
Regulation (GDPR), which is Europe’s largest privacy law [Eur16].

A browser tracking technique that has not been extensively researched is port scanning.
Port scanning is commonly used as a network security technique that involves scanning a
network for open ports to identify potential vulnerabilities. While not commonly used for
user tracking, port scanning can potentially reveal information about a user’s device, op-
erating system, and running programs. An important distinction to make with cookies, is
that port scanning does not require user consent and is therefore a less transparent tracking
technique. In a high-profile case in 2020 [Win20, Ble20], popular ecommerce website eBay
used port scanning as a security measure to identify remote access tools on users’ systems.
Many users were infected with malware at the time, and attackers were using compromised
computers to make purchases on the website. eBay used port scanning to detect these re-
mote access tools and prevent malicious users from making purchases. However, security
and privacy experts were critical of this security implementation, as scanning the local net-
work has implications for both security and privacy.

The focus of this research will be on port scanning via the browser. There are 65,536
ports provided by the TCP/IP protocol for an IP address in the computer. Among them, the
range of well known ports is from 0 to 1023, the range of registered ports is from 1024 to
49,151, and the range of dynamic ports is from 49,152 to 65,535 [YDYM20]. This wide range
of ports makes it an interesting topic for research, as each port can reveal sensitive infor-
mation about a system. Browser-based port scanning has the potential to enhance existing
browser fingerprinting methods. It is important to differentiate between port scanning in
general and port scanning through a browser. Scanning ports through a browser is less in-
trusive and more difficult to detect by intrusion detection systems. This is because port
scanning through a browser involves making regular network requests, rather than directly
sending probes at the protocol level. Furthermore, a website can passively perform port
scanning without requiring user privileges to do so. Many port scanners have been devel-
oped, such as Advanced Port Scanner [END11], SATAN [Arc08], Angry IP Scanner [END11],
and the most popular open source solution, Nmap [OP11]. However, all of these port scan-
ners focus on port scanning at the protocol level, and they are not limited by abstraction
layers that exist in a browser environment. JavaScript APIs do not have access to TCP sock-
ets directly, unlike scanning tools such as Nmap. This severely limits the techniques that
can be used to detect open ports. Consequently, the methods used for local port scanning
from a browser environment are significantly different from those used by regular scanning
tools.

Despite the clear distinction between browser-based port scanning and regular scan-
ning tools, there is limited research on the former. The difference is not just technical,
but also relates to the target audience for the scans. Regular scanning tools like Nmap are
proactive, whereas websites could use port scanning to passively target their visitors. For
instance, a website targeting specific users could scan for particular ports that might reveal

2

sensitive information about this type of user. Port scanning from the browser can have both
positive and negative purposes. It can be used as a security measure to identify remote ac-
cess tools, or used with malicious intent to gather information about users. However, due
to its potential impact on online privacy and security, it remains an essential area for re-
search, especially because these port scans can be done without the consent of the users.
The field of browser-based port scanning has received limited attention in the literature,
leaving many intriguing questions regarding its potential impact on privacy. This research
focuses on the unexplored use of browser-based port scanning as a browser tracking tech-
nique and evaluating its potential implications for user privacy.

The research has three major contributions:
• Estimating the most effective and efficient scanning technique: Before we can as-

sess the privacy risks of browser-based port scanning, it is important to find the most
effective scanning technique, efficiency is also a crucial consideration, as port scan-
ning is a time-intensive process. Finding the optimal balance between efficiency and
efficacy is critical.

• What information browser-based port scanning can reveal about a user: Here we dive
into the potential privacy risks of browser-based port scanning, and investigate what
information can be revealed through browser-based port scanning.

• Estimating the uniqueness of browser-based port scanning fingerprints: Lastly, we
estimate the entropy of browser-based port scanning. This contributes to existing
browser fingerprinting research by estimating the risk to user anonymity on the in-
ternet.

THESIS OVERVIEW

This paper is structured as follows. Firstly, the research questions are discussed, with the
primary research question being: What information can websites extract from clients via
browser-based port scanning?

Following that, the background chapter explains the basics of port scanning and its
ethical and legal implications. Chapter 4 describes related work and provides an overview
of existing literature on browser fingerprinting techniques, as well as related port scanning
research. Subsequently, the study investigates the optimal strategy for browser-based port
scanning in Chapter 5, considering efficacy and efficiency. Furthermore, Chapter 6 focuses
on the feasibility of using port scanning to identify specific programs running on a user’s
system, analyzing the privacy implications of this approach, and assessing its effectiveness
as a means of tracking users. Chapter 7 estimates the uniqueness of browser-based port
scanning fingerprints. Lastly, Chapter 8 concludes the research based on the answers to
the research questions, as well as discussing future work.

3

2
RESEARCH QUESTIONS

While there has been extensive research on browser fingerprinting, research on browser-
based port scanning is lagging behind. Scanning for open ports may take user-tracking to a
new level, as individual applications can be detected by a website, leading to specific user
profiles and thereby several privacy implications. Therefore, this paper aims to explore the
subject of browser-based port scanning as a user-tracking technique, with the following
main research question:

What information can websites extract from clients via browser-based port
scanning?

To answer the main research question, the following sub-questions have been formu-
lated:
RQ1. How to choose the optimal port-scanning technique for a specific victim client in

combination with a specific attack goal?
The aim of this research question is to compare the efficacy and efficiency of differ-
ent browser-based port scanning techniques, such as the JavaScript Fetch API, Web-
Socket API, and XHR API, across multiple browsers and operating systems.
Different JavaScript APIs may have access to distinct error messages or network re-
sponses that could be useful during port scanning. Additionally, the WebRTC API
may have access to UDP ports, while the WebSocket API does not. Moreover, cer-
tain browsers may block specific port scanning types, while others may have varying
levels of security or functionality that could impact the scan’s success.
Furthermore, different scanning techniques may be more useful depending on the
attack goal, such as scanning for specific ports, versus enumerating the entire port
range. A port scanner application should adapt to the victim’s client by detecting the
OS and browser, and applying the most effective scanning technique.
Therefore, these techniques will be tested on different browsers and operating sys-
tems to identify the most effective methods for browser-based port scanning. This
research question will provide a significant scientific contribution, since browser-
based port scanning techniques have not been explored in-depth before. There is
little research available on scanning techniques, and it is therefore unknown what the
limitations and potential of browser-based port scanning is. Furthermore, the scans

4

must be efficient to be a realistic attack vector in practice, and finding the balance be-
tween efficiency and effectiveness is a crucial aspect to consider. The outcome of this
study will serve as a starting point for future research and will also lay the groundwork
for RQ2 and RQ3.

RQ2. What information can browser-based port scanning reveal about the underlying
operating system? The objective of this research question is to investigate what
information can be obtained about the underlying operating system (OS) through
browser-based port scanning. The results of a port scan can reveal which ports are
open or closed, and this information can be used to infer certain details about the
system. For instance, the open ports may correspond to specific services running on
the system, and this information can be used to determine the OS or potentially even
specific versions of software that is being used.
Additionally, the responses to specific port scans may reveal clues about the configu-
ration of the system, such as the firewall rules or security settings that are in place. By
analyzing the results of the port scan, this research will identify what type of informa-
tion can be learned about the underlying operating system through browser-based
port scanning. This research question will add to the existing research on browser
fingerprinting techniques.

RQ3. What information can browser-based port scanning reveal about specific programs
running locally on a user’s system? The purpose of this research question is to col-
lect data using the most effective techniques identified from RQ1 to identify applica-
tions running locally on a user’s system. Certain applications might listen on specific
ports, and by scanning for those ports, a website might be able to identify which ap-
plications are running on the user’s system.
By collecting this data, the research will be able to identify which applications can
be detected using browser-based port scanning. Additionally, different application
states will be tested to see if port scanning can be used to detect specific applica-
tion states. For example, a video chat application will open a port to chat with other
participants, and this might be detectable through port scanning. The scientific con-
tribution of this research is to explore a more comprehensive user-tracking technique
that has the potential to take user-tracking to a new level by identifying running ap-
plications and even specific application states.

RQ4. How unique are browser-based port scanning fingerprints? While previous research
has extensively examined the uniqueness of browser fingerprints, the specific context
of browser-based port scanning has not been considered within these analyses. This
research question seeks to expand upon the existing body of literature by evaluating
the uniqueness of browser-based port scanning fingerprints.
Fingerprints, in the context of web browsing, possess the potential to be highly unique,
posing a direct threat to user anonymity and privacy on the internet. Consequently,
it is crucial to estimate the true level of distinctiveness that browser fingerprints can
exhibit, which we argue has not been fully researched to this day, as the inclusion of
browser-based port scanning fingerprints has never been included within these as-
sessments, even though there are 65,536 ports on an IP address that can be either
open or closed.

In summary, this research seeks to evaluate the potential threat to user privacy, particu-
larly in terms of anonymity, posed by browser-based port scanning. As online interactions

5

involve progressively more personal and sensitive information, it is imperative to compre-
hend how a fingerprinting technique, which has not undergone extensive investigation,
might compromise user privacy.

6

3
BACKGROUND

3.1. PORT SCANNING

Among the various techniques used for port scanning, the most common one is scanning
for open TCP ports. TCP (Transmission Control Protocol) is a connection-oriented proto-
col utilized for reliable data transmission between two devices, requiring two sockets rep-
resenting the endpoints of the connection. During the establishment of a TCP connection,
a three-way handshake is performed, in which SYN (synchronize) and ACK (acknowledge)
packets are exchanged between the two devices to establish the connection [dVCIdV99].
Port scanners take advantage of the three-way handshake to identify open ports on a target
system. The scanner sends a SYN packet to the target system and waits for a response. If
the port is open, the target system responds with a SYN-ACK (synchronize-acknowledge)
packet. The scanner then responds with an ACK packet to establish the connection. If the
port is closed, the target system responds with a RST (reset) packet. This process is depicted
in Figure 3.1 by Elejla et al. [EJA13].

Figure 3.1: Open vs. closed port TCP connection

Although other TCP header flags, such as FIN (finish), URG (urgent), and PSH (push),
can also be utilized by port scanners to identify open ports, SYN scan is the most com-
monly used technique. This is because it is faster and less likely to be detected by intrusion
detection systems (IDS) than other methods.

7

3.2. BROWSER-BASED VS. REGULAR PORT SCANNING
As this paper is focused on browser-based port scanning, it is important to explain why
we make the distinction between regular port scanning and browser-based port scanning.
There are two major differences, being the type of port scan attacks that we can do, as well
as the difference in attack methodology that we employ. Regular port scanning is a lot more
common, and there are many different types of attacks. The main distinction is that regular
port scanning can perform protocol level scans. These type of scans can be very powerful,
as small implementation differences at the OS level can be enough to establish a unique
fingerprint of a system.

In contrast, the scope of browser-based port scanning is defined by the functional-
ity accessible through the abstraction layers of the JavaScript APIs, imposing limitations
on its capabilities. For instance, client-side JavaScript code using the WebSocket proto-
col cannot create UDP connections, and plain TCP connections cannot be opened either.
In order to perform browser-based port scanning, we have to use the abstraction layers
that are built on top of the TCP protocol, and leverage JavaScript APIs to send network re-
quests. Figure 3.2 by Zlatkov [Zla18] illustrates this, with the top (blue) layer representing
the JavaScript APIs.

Figure 3.2: JavaScript network layer

This is the main technical difference between regular port scanning and browser-based
port scanning, browser-based port scanning operates at layer 7 in the OSI model [KDD14],
while regular port scanning can also operate at lower levels in the OSI model, such as layer
4. This makes regular port scanning much more powerful. Additionally, the browser sand-
box has several security measures that will make port scans less successful, most impor-
tantly, the Same-Origin policy [W3C10, Moz23b] restricts how a script can interact with a
resource from another origin. Cross-Origin Resource Sharing (CORS) [Moz23a, WHA23] is
a mechanism that relaxes the Same-Origin Policy selectively to allow controlled access to
resources from different origins.

Aside from the technical scanning capabilities, the attack methodology is different, and
this is what makes browser-based port scanning an interesting topic for research. Un-
like regular port scanning, which embodies an active stance, browser-based port scanning
adopts a passive stance. A website can discretely target its visitors without actively probing

8

IPs or initiating network requests. The onus of initiating the attack rests on the user’s act
of visiting the website. While a website could initiate a regular port scan to the user’s IP
address, this type of attack would be much more intrusive and likely blocked by a firewall
or router. The crucial difference between browser-based port scanning and regular port
scanning is that a browser-based port scan is executed locally on the user’s machine, as
opposed to originating from a server. This makes the attack a lot less intrusive, and not
as easily detectable by intrusion detection systems. Not only is the attack not as easily de-
tected, more importantly, the attack is not as easily prevented. As the JavaScript is running
locally on the user’s system, there is likely nothing preventing the JavaScript from accessing
the local network, besides the browser’s sandbox environment.

The main area of research for browser-based port scanning is the fingerprinting capa-
bilities. Browser-based port scanning is limited compared to regular port scanning, and
security vulnerabilities are therefore unlikely, as it necessitates a breach of the browser’s
sandbox environment. For this reason, this paper focuses on privacy vulnerabilities, as
ports can reveal a lot of information about the underlying system, and therefore enhance
the capabilities of establishing a unique fingerprint.

3.3. ETHICS AND LEGALITY
Port scanning is a technique that has raised ethical and legal concerns in the past [Jam01].
While some consider it a malicious activity, professionals often use it to identify network
problems and detect vulnerabilities in their own network. In the majority of cases, port
scanning does not harm the target system, and courts have typically ruled in favor of
it [Lyo09]. Recently, the Brandenburg Commissioner for Data Protection (DPA) examined
the legality of port scans under GDPR regulations [Eur16]. In this particular case, port scans
were used as a safeguarding mechanism to detect remote access tools such as AnyDesk, Re-
mote Desktop Protocol, and TeamViewer. The DPA ruled in favor of port scanning, deeming
it reasonable and understandable with no data protection concerns. This ruling establishes
a precedent suggesting that port scanning is permissible under certain circumstances, even
though enumerating the entire port range may not be lawful under GDPR [Eur20].

While cookie consent is commonplace due to GDPR regulations, consenting to a lo-
cal network search is not. Privacy experts criticized eBay when it was discovered that they
had used port scans on the local network of their website visitors. This raises concerns
about the lack of consent and transparency surrounding the use of port scanning in such
circumstances [Ble20, Win20]. Overall, while port scanning remains a controversial issue,
the ruling by the Brandenburg DPA suggests that it can be lawful under certain circum-
stances. However, it is essential to ensure that individuals are aware of and understand the
implications of such scans, particularly when performed without their consent.

9

4
RELATED WORK

4.1. BROWSER FINGERPRINTING
Browser fingerprinting is a well-known technique that has garnered significant attention,
thanks to Eckersley’s pioneering work in bringing the issue to the forefront [Eck10]. Ecker-
sley developed an algorithm capable of identifying a browser fingerprint with an accuracy
of 83.6%, and it could also detect changes in the fingerprint with 99.1% accuracy. Sub-
sequent studies have focused on exploring various properties that can be utilized for re-
identification, including IP address and user-agent [YXY+12], fingerprinting the HTML5
canvas [MS12], detection of installed fonts, time zone, and screen resolution [BFGI12], as
well as measuring the timing of the JavaScript engine execution [MBYS11, RML21], among
others. Nikiforakis et al. [NKJ+13], Laperdrix et al. [LRB16] and Gomez et al. [GBLB18] have
further investigated the practical usage of these techniques, showcasing that this is a real
threat to user privacy on the internet. Building upon this research, our paper aims to in-
troduce a fingerprinting technique through browser-based port scanning, focusing on an
area with limited existing literature.

4.2. FINGERPRINTING THE LOCAL NETWORK
Aforementioned browser fingerprinting techniques are lacking research when it comes to
fingerprinting the local network. Scanning for open ports on the local network can yield
promising results, such as revealing running applications on a system. Port scanning in
general is a well-known technique that is widely used due to its utility for network adminis-
trators and its potential use by attackers. Several tools have been developed to scan ports.
Nmap [OP11] is the most popular tool, and the most relevant for this study, because it can
fingerprint systems based on port scanning.

Nmap is a network scanning tool commonly used by network administrators and both
ethical and malicious hackers. It comes preinstalled on Kali Linux, a specialized operat-
ing system designed for penetration testing. The tool is able to generate a fingerprint of a
target system by sending probes to several ports. Nmap uses TCP, UDP and ICMP probes
to directly scan for open ports at the protocol level. Various ambiguities in the standard
protocol RFC can then be exploited due to small implementation differences. Nmap uti-
lizes an extensive fingerprint database to compare the resulting fingerprint with reference
fingerprints. An example reference fingerprint by Lyon [Lyo09] is depicted in Figure 4.1.

10

Fingerprint Apple Mac OS X Server 10.2.8 (Jaguar) (Darwin 6.8, PowerPC)
Class Apple | Mac OS X | 10.2.X | general purpose
CPE cpe:/o:apple:mac_os_x:10.2.8
SEQ(SP=FB-111%GCD=1-6%ISR=104-10E%TI=I%II=I%SS=S%TS=1)
OPS(O1=M5B4NW0NNT11%O2=M5B4NW0NNT11%O3=
M5B4NW0NNT11%O4=M5B4NW0NNT11%O5=M5B4NW0NNT11%O6=M5B4NNT11)
WIN(W1=8218%W2=8220%W3=8204%W4=80E8%W5=80F4%W6=807A)
ECN(R=Y%DF=Y%T=3B-45%TG=40%W=832C%O=M5B4NW0%CC=N%Q=)
T1(R=Y%DF=Y%T=3B-45%TG=40%S=O%A=S+%F=AS%RD=0%Q=)
T2(R=N)
T3(R=Y%DF=Y%T=3B-45%TG=40%W=807A%S=O%A=S+%F=AS%O=M5B4NW0NNT11%RD=0%Q=)
T4(R=Y%DF=Y%T=3B-45%TG=40%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)
T5(R=Y%DF=N%T=3B-45%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)
T6(R=Y%DF=Y%T=3B-45%TG=40%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)
T7(R=Y%DF=N%T=3B-45%TG=40%W=0%S=Z%A=S%F=AR%O=%RD=0%Q=)
U1(DF=N%T=3B-45%TG=40%IPL=38%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=0%RUD=G)
IE(DFI=S%T=3B-45%TG=40%CD=S)

Figure 4.1: Typical Nmap reference fingerprint

The example reference fingerprint provides information about an Apple Mac OS X Server
10.2.8 (Jaguar) operating system running on a PowerPC architecture. It includes details
about the OS version (10.2.8), the Darwin version (6.8), and the CPE (Common Platform
Enumeration) identifier. It also provides information about various scan results, such as
open ports (OPS), window size (WIN), ECN (Explicit Congestion Notification) status, and
TCP flags (T1-T7). Additionally, it includes details about the IP ID generation (U1) and
ICMP error generation (IE) behavior of the system. This technique enables Nmap to de-
tect specific operating systems and versions, including those for embedded systems such
as printers running on custom operating systems.

4.3. IDENTIFYING WEB AUTOMATION BOTS

As we aim to detect running programs and services on the local network, it is essential to
look at existing research on fingerprinting running services. Web automation bots such as
Selenium [Sel23] are frequently used for large-scale data collection. These bots are suscep-
tible to being detected via fingerprinting techniques, and can be shown different results
compared to the original web page. Detecting these bots is a common research topic in
browser fingerprinting techniques. Bot detection often involves multiple browser finger-
printing techniques, making it an interesting area of research. Jonker et al. [JKV19] reverse
engineered a commercial bot detector and discovered several techniques employed in de-
tecting these bots.

• Behavior-based web automation bot detection: Multiple event handlers were added
to JavaScript events, such as clicks, mouse movements, a device’s orientation, mo-
tion, keyboard and touch events.

• Code injection routines: Frequent communication with the first party server was

11

found. Within this traffic, fingerprinting information was found. This would allow
the server to carry out additional server-side bot detection. After identification, bot-
specific code can be injected.

• DOM properties: Multiple built-in objects and functions were accessed via JavaScript.
Additionally, code was found to scan for bot-only properties, such as the
document.$cdc_asdjflasutopfhvcZLmcfl_ property — a property specific to the
ChromeDriver. This is known by the Chromium team, but currently marked as a
won’t fix issue, stating that if a website owner wants to block automation tools, they
respect their decision [Chr19]. Vlot [Vlo18] has done extensive research on this, find-
ing several bot-related properties in obfuscated JavaScript files.

Building on top of this research, Krumnow et al. [KJK22] zoomed in on a specific web
automation framework, OpenWPM. OpenWPM is a web privacy measurement framework
which makes it easy to collect data for privacy studies on a scale of thousands to millions of
websites [Ope23]. The research found that OpenWPM was easily detectable and even found
OpenWPM detectors in practice. The results indicate that bot detectors are becoming more
prevalent, and data obtained through automation frameworks may not be reliable.

4.4. PORT SCANNING VIA THE BROWSER
Literature on port scanning via the browser is limited. Kuchal and Li [KL21] researched how
often websites communicate over the local network. They investigated 100k top domains
and 145k malware, phishing and abuse websites. The research discovered that hundreds
of websites generate requests to the internal network, including websites in the top 10k
domains. While not widespread, it is also not trivial. The study found extensive use of
WebSockets, in order to bypass the Same-Origin [W3C10] policy.

The study identified four primary reasons for local port scanning: fraud detection, bot
detection, native application communication, and developer errors. These causes provide
insight into the potential of browser-based port scanning and why it is a crucial research
topic. Port scanning may be utilized for various purposes, such as fingerprinting for bot and
OS detection, preventing remote access tools for fraud detection, and identifying particular
application states for native application communication. Native application communica-
tion and detecting remote access tools sets browser-based port scanning apart from other
fingerprinting methods, because detecting running programs and potentially even specific
application states is not possible with regular fingerprinting techniques. Browser-based
port scanning may therefore have the ability to take user-tracking to a new level, by profil-
ing users’ running programs on their systems.

12

5
ESTIMATING THE OPTIMAL PORT SCANNING

TECHNIQUE

In this chapter, we present the results of three experiments that were conducted to estimate
the most effective browser-based port scanning strategy for several combinations of oper-
ating system and browser. The first experiment focuses on estimating the optimal socket
timeout setting, this experiment focuses on finding a balance between efficacy and effi-
ciency. The second experiment focuses on estimating the most effective scanning tech-
nique, this experiment focuses on the capability of JavaScript APIs to detect open ports.
The third experiment focuses on estimating the most efficient scanning technique, this ex-
periment focuses on parallel connections.

5.1. DEFINITIONS
In order to address RQ1 effectively, it is crucial to establish clear definitions for attack goals,
efficiency, and efficacy.

ATTACK GOALS

Attack goals refer to the specific objectives that an attacker aims to achieve by scanning
ports. Generally, there are two common attack goals:

a. Enumerating the entire port range: This goal involves scanning all available ports
on a target system to gather comprehensive information about its open and closed
ports. It allows the attacker to obtain a broad understanding of the target’s network
services and potential vulnerabilities.

b. Scanning for a specific number of ports: In this case, the attacker focuses on scan-
ning a limited number of ports that are of particular interest. This targeted approach
enables them to gather specific information related to those ports or services. It rep-
resents a trade-off between scanning for precise information and maximizing the
amount of information gathered.

It is worth noting that certain scanning techniques may be required to detect specific
ports effectively, depending on the attack goals.

EFFICACY

Efficacy is closely tied to the attack goal. It signifies the degree to which a scan successfully
accomplishes its intended objective. The efficacy of a scan depends on whether the desired

13

information can be obtained from one or more targeted ports. For instance, if the attacker
is scanning for a specific port, they may employ techniques tailored to detecting that port
accurately. If the desired information can be retrieved from the scanned port(s), the scan is
considered efficacious.

EFFICIENCY

Efficiency is determined by various factors that impact the time and resources required to
complete a scan. These factors include:

a. Number of parallel sockets: The number of parallel sockets running simultaneously
during the scan affects how many ports can be scanned concurrently. Increasing the
number of parallel sockets generally improves scan speed.

b. Socket timeouts: Socket timeouts determine the duration for which the scanning tool
waits for a response from each port. Optimal timeout settings balance the time re-
quired for accurate detection against minimizing delays.

c. Number of scans to be executed: The number of scans an attacker intends to per-
form can impact efficiency. Performing multiple scans may be necessary to gather
comprehensive information or increase the chances of successfully detecting spe-
cific ports.

d. Additional overhead: Various factors such as browser, operating system, and hard-
ware configurations can introduce overhead during the scanning process. These
should be taken into account when evaluating efficiency.

Efficiency is commonly assessed based on the time required to complete a scan. The
faster a scan can be accomplished without compromising the desired efficacy, the more
efficient it is considered.

5.2. BACKGROUND
This section provides an overview of potential scanning techniques that were considered
for the experiment. Due to the constraints imposed by the abstraction layers provided by
JavaScript APIs, the options are limited, every available JavaScript API capable of perform-
ing network requests was considered.

5.2.1. SCANNING TECHNIQUES OVERVIEW

FETCH API
The Fetch API is a modern JavaScript API that provides an interface for making asynchronous
HTTP requests. It allows us to send HTTP(S) requests to a specified URL and handle the re-
sponses. The Fetch API offers a more powerful and flexible alternative to the traditional
XMLHttpRequest (XHR) approach.

XMLHTTPREQUEST (XHR)
XMLHttpRequest is a JavaScript API that has been widely used for making asynchronous
HTTP requests. It provides a way to send HTTP(S) requests to a server and receive re-
sponses. Although Fetch API is gaining popularity, XHR is still supported in most browsers
and can be used for network requests.

WEBSOCKET

WebSocket is a communication protocol that provides full-duplex communication chan-
nels over a single TCP connection. It enables real-time, bidirectional communication be-

14

tween a client and a server. WebSocket API in JavaScript allows establishing WebSocket
connections and exchanging data between the client and the server.

WEBRTC
WebRTC (Web Real-Time Communication) is a collection of communication protocols and
APIs that enables peer-to-peer audio, video, and data sharing between browsers. It al-
lows direct communication between browsers without the need for intermediate servers.
WebRTC API provides methods to establish connections, exchange data, and control me-
dia streams. WebRTC used to be a viable port scanning technique in the past, due to
the RTCPeerConnection.onicecandidateerror event handler emitting useful error in-
formation about the status of the connection. However, after being exploited by Baines [Bai19]
in 2019, this functionality has been removed for local connections [Goo20], and therefore
scanning the local network via WebRTC is not possible anymore.

BEACON API
The Beacon API is a lightweight and efficient API for sending small amounts of data to a
server asynchronously. It is designed for sending analytics data or other non-critical in-
formation without delaying or blocking the loading of the next page. The Beacon API is
designed so that it can only send data to a server, but not retrieve any. Therefore, we cannot
use this API to determine the status of a port.

SERVER-SENT EVENTS

Server-Sent Events (SSE) is a server push technology that enables continuous updates from
the server to the client over a single HTTP(S) connection. However, SSE cannot be used for
port scanning purposes due to its inherent design limitations. SSE operates on an event-
driven model, where the server sends events to the client asynchronously. As SSE only
allows data to flow from the server to the client and does not support client-initiated re-
quests, it lacks the necessary functionality for conducting port scanning.

SCANNING TECHNIQUES COMPARISON

The aforementioned JavaScript APIs leaves us with three possible APIs to perform browser-
based port scanning: Fetch, XHR and WebSockets. As all three APIs are built on top of
the TCP protocol, this limits the potential results that may be achieved, as the status of
UDP ports will remain undetectable. While Fetch and XHR are similar in functionality,
WebSockets are not built on top of the HTTP protocol, and could therefore achieve dif-
ferent results. WebSocket and HTTP are separate protocols that operate at layer 7 in the
OSI model [KDD14] and rely on TCP at layer 4. However, despite their differences, RFC
6455 [FM11] specifies that WebSocket ‘is intended to be compatible with HTTP-based server-
side software and intermediaries’. This compatibility is achieved through the WebSocket
handshake, which utilizes the HTTP Upgrade header to transition from the HTTP protocol
to the WebSocket protocol.

5.3. EXPERIMENT SETUP
Having established the availability of three scanning techniques via the XHR, Fetch, and
WebSocket APIs, we created an experiment to compare these techniques based on several
metrics.

15

5.3.1. APPLICATION DESIGN
A client-side TypeScript web application was developed to facilitate a comparative analy-
sis of these three JavaScript APIs. The application’s design was guided by specific consid-
erations outlined below, aimed at optimizing its functionality and applicability for forth-
coming chapters. Central to the application’s design is the incorporation of configurability
features. These features encompass essential parameters such as socket timeout, paral-
lel socket connections, and the scanning technique. The rationale behind this emphasis
on configurability lies in the necessity to ensure uniformity and consistency across various
scans during the experiment. By maintaining consistent settings, the application enables
accurate and meaningful comparisons between different scanning approaches. These set-
tings can be passed to the application using query parameters, as depicted in Figure 5.1.

Figure 5.1: User initiating port scan

Upon requesting the webpage, a JavaScript file will be returned which initiates a scan on
the localhost IP address. The available query parameters are listed in Table 5.1. This solu-
tion was chosen to make the scans scriptable and therefore easily useable with automation
frameworks such as Selenium.

Parameter Description

beginPort The starting port for the scanning range.
endPort The final port for the scanning range. Scanning will be performed

within the range from beginPort to endPort.
nScans The number of scan iterations for each individual port. For example,

if nScans=10, each port within the specified range will be scanned 10
times.

nSockets The maximum number of sockets used for concurrent parallel scan-
ning.

socketTimeout The time limit for a single scan attempt on a port. If the scan does
not complete within this timeframe, the scanner aborts the scan and
moves to the next port.

scanningTechnique The selected method for performing scans, such as fetch, xhr, or web-
sockets.

Table 5.1: Port scanner application available query parameters

Existing client-side port scanning applications often share a common limitation known
as batch-job scanning. In this approach, a predefined range of ports, such as ports 1-50, is
scanned concurrently based on a configured parallel sockets count (referred to as nSockets
in Table 5.1). All ports within this designated range are scanned simultaneously within a
batch. After completing the entire batch, the scanning process proceeds to the subsequent
batch. However, this method suffers from inefficiencies due to variations in the time it takes
to scan different ports. Consequently, there is a reduced number of parallel sockets, typi-
cally less than 50, actively operating at any given time. This limitation hampers the overall
efficiency of the scanning process. To overcome this limitation, we have created a queuing

16

mechanism designed to eliminate this limitation and ensure optimal utilization of parallel
sockets throughout the scanning process. This queuing system operates on the principle
of promptly dequeuing a scanning job once the scan of a port is completed. By adopting
this approach, our application guarantees a consistent and maximum utilization of parallel
sockets throughout the entire scanning operation. This queuing mechanism optimally dis-
tributes scanning tasks, minimizing idle periods, and thereby significantly enhancing the
efficiency of the scanning process.

This improvement is illustrated by comparing the two techniques in Figures 5.2 and 5.3.
The comparison visually demonstrates port scans on six ports, with three scans concur-
rently executed in parallel. In this hypothetical scenario, a reduction of 100ms in scanning
time is simulated. While this incremental gain might seem minor when scanning a lim-
ited number of ports, say 1000, its impact becomes notably significant when extending the
scope of the scan to encompass the entire port range, spanning from 0 to 65536.

Figure 5.2: Batch-job scanning

Figure 5.3: Queueing jobs concurrently

By adopting the queuing mechanism, our approach mitigates the inefficiencies inher-
ent in batch-job scanning, leading to a substantial improvement in the efficiency and speed
of port scanning, particularly when dealing with a larger range of ports. When all ports have
finished scanning, the results of the scan are posted back to the server for post-scan analy-
sis. The implementation of the full application can be found on GitHub [vdL23a]

5.3.2. DOCKER CONTAINERIZATION
In order to conduct our experiments systematically and ensure reproducibility, we em-
ployed a fully automated approach utilizing Docker containers. This approach encapsu-
lated the entire experiment, maintaining consistency and facilitating the ability to repli-
cate the experiments precisely. The setup was designed to be repeatable by others. We
employed Docker containers to establish a self-contained and isolated environment for
conducting our experiments. This approach effectively eliminated potential issues that
could arise from variations in the underlying host systems. The use of Docker contain-
ers provided us with the capability to define and manage various experiment parameters,
including operating systems, web browsers, socket settings, and scanning techniques, all

17

through Dockerfiles. This ensured that the experiment environment remained consistent
and reproducible across multiple runs.

Within these Docker containers, we included servers that served as potential attack tar-
gets. Among them, there is a server that hosts an implementation of the browser-based
port scanning application, simulating a website running browser-based port scanning at-
tacks. Furthermore, our Docker containers also contain a client-side Selenium application
responsible for initiating and interacting with the browser-based port scanning application
during the experiments, utilizing headless browsers.

AUTOMATED SCRIPTING

We developed automated scripts to orchestrate and execute the experiments within the
Docker containers. These scripts facilitated the setup and execution of the scans, with
precise control over the scanning parameters. The automation enabled us to easily run
multiple experiments in a scripted manner, ensuring accurate and reproducible results.

DATA COLLECTION METRICS

Throughout the experiments, we systematically gathered data with a focus on two key met-
rics: efficacy and efficiency.

• Efficacy was defined by the count of accurately identified open ports.
• Efficiency was evaluated by analyzing the speed of the scanning process while ensur-

ing that the efficacy of port detection remained uncompromised.
• For each scan, we collected the following metrics:

– A timestamp indicating when the scan started and ended.
– The port number and its status (open/closed/timeout).
– Start and end times of each individual port scanned.

• Additionally, post-scan analysis was employed to determine port status via timing
measurements.

EXPERIMENT REPRODUCIBILITY

• To ensure the reproducibility of the experiments, we shared Docker images and scripts
used for the experiments, allowing other researchers to replicate our setup easily.

• The encapsulation and isolation provided by Docker containers guaranteed a consis-
tent experiment environment, irrespective of the host system’s variations.

The utilization of Docker containers for our experiments effectively addressed the chal-
lenges related to reproducibility in scientific research. The experimental setup is visually
represented in Figure 5.4.

18

Figure 5.4: Experiment setup

5.4. EXPERIMENT 1: ESTIMATING THE OPTIMAL SOCKET TIME-
OUT SETTING

In the context of browser-based port scanning, there are two key motivations for consider-
ing the adjustment of the socket timeout setting:

5.4.1. MOTIVATION

ENHANCING SCAN EFFICIENCY

One primary motivation for altering the socket timeout setting is to improve the efficiency
of the port scanning process. This involves two key aspects:

• Faster Scanning: By lowering the socket timeout, the scanner spends less time wait-
ing for responses from each port. Consequently, this leads to quicker scans, as the
scanner can move on to the next port faster.

• Efficiency Gains: Ultimately, the objective is to achieve higher overall efficiency, en-
abling the scanning of more ports within a shorter time frame. This is particularly
important when conducting large-scale or time-sensitive scans.

19

BALANCING EFFICACY AND SPEED

While efficiency gains are desirable, there is an inherent trade-off between scan speed and
efficacy when adjusting the socket timeout setting:

• Efficacy Concerns: Setting the socket timeout too low might result in inaccurate scan
results. In such cases, the scanner may not wait long enough to receive a response
from the target port, potentially leading to false negatives.

• Finding the Optimal Balance: Therefore, it becomes crucial to strike a balance be-
tween efficacy and efficiency. The challenge lies in identifying the lowest socket time-
out value that maintains efficacy without sacrificing scan efficiency.

5.4.2. EXPERIMENT TARGET
In order to address the motivations outlined above, the experiment targets the following
objectives:

DETERMINING THE OPTIMAL SOCKET TIMEOUT

• Objective: The primary objective of the experiment is to identify the socket timeout
value that strikes the ideal balance between scan speed and efficacy.

• Analysis of Results: Data collected during the experiment is analyzed comprehen-
sively to determine which socket timeout setting achieves this balance most effec-
tively.

• Validation: The identified optimal socket timeout value is further validated by con-
ducting additional scans on different target systems. This validation step ensures
that the selected setting is applicable and reliable across various scanning scenarios,
providing a robust solution for future port scanning endeavors.

SOCKET TIMEOUT ADJUSTMENT

• Socket Timeout Setting: The primary variable under investigation in this experiment
is the socket timeout setting.

• Range of Values: The experiment involves testing a range of socket timeout values,
spanning from very low settings to moderate values.

• Measurement of Efficiency: Efficiency in this context is quantified by measuring the
time taken to complete the port scan for each tested socket timeout value.

• Measurement of Efficacy: To assess efficacy, the scan results are compared against a
reference set of known open and closed ports.

The parameters for the experiments can be found in Appendix A.1. We chose not to
include MacOS in the list of operating systems because of compatibility issues with Docker.

5.4.3. EXPERIMENT RESULTS
In this experiment, we investigated the impact of varying socket timeout settings on the ef-
ficacy and efficiency of port scanning using different web browsers and operating systems.
The key findings are summarized below:

20

SOCKET TIMEOUT SETTINGS AND EFFICACY

We observed that the choice of socket timeout setting significantly affected the efficacy of
port scanning, particularly for the Chrome and Firefox browsers. Specifically:

• Chrome Browser:
– Using a socket timeout of 100 milliseconds resulted in reduced efficacy, with 76

ports being detected rather than the configured 100 open ports.
– The efficacy reached 100% when a socket timeout setting of 150ms was used.

• Firefox Browser:
– Similar outcomes were measured for Firefox, with a timeout of 100 milliseconds

resulting in only 21 detected ports.
– The efficacy reached 100% when a socket timeout setting of 150ms was used.

The raw results can be found in Appendix A, Table A.1.

REAL-WORLD VALIDATION

To ensure the reliability of our findings, we conducted real-world validation of the results
obtained within our virtualized environment. The validation process revealed interesting
insights:

• Chrome’s Consistency: After validating the results in a real-world scenario, Chrome’s
efficacy remained consistent at 100% with a 150ms timeout, reinforcing the reliability
of this setting.

• Firefox’s Variable Performance: In contrast, Firefox’s results were inconsistent until
a timeout of 400ms was used in a real-world context. This variability highlights the
importance of considering real-world scenarios in setting optimal socket timeouts.

SOCKET TIMEOUT BEHAVIOR IN DIFFERENT OPERATING SYSTEMS

In our experiments, we observed a notable difference in how socket timeout settings are
handled by different operating systems.

• Windows Operating System:
– Windows respects the configured socket timeout setting as defined in the scan-

ning parameters.
– The efficacy and timing of port responses closely align with the specified time-

out, making the socket timeout setting a critical factor in scan efficacy and effi-
ciency on Windows.

• Ubuntu Operating System:
– In contrast, Ubuntu exhibits a distinct behavior. The operating system ignores

the configured timeout and automatically times out the request when possible.
– Ports generally respond within a range of 5–75 milliseconds on Ubuntu, irre-

spective of the configured socket timeout setting.
– This behavior makes socket timeout settings less critical on Ubuntu, as the au-

tomatic request timeout mechanism often results in responses occurring well
within the specified timeout.

21

5.4.4. ANALYSIS
The socket timeout settings play a pivotal role in determining the efficacy and efficiency of
browser-based port scanning.

1. Chrome Browser: A socket timeout setting of 150ms consistently achieves 100% ef-
ficacy in both virtualized and real-world environments. It strikes an optimal balance
between efficacy and speed for Chrome.

2. Firefox Browser: A longer timeout of 400ms is advised for Firefox, as we measured
that the optimal socket timeout of 150ms during our testing was not accurate dur-
ing real-world validation. This difference can be attributed to the headless Firefox
browser used in our experiments, which is considerably more efficient than the reg-
ular browser used in real-world scanning scenarios.

3. Ubuntu Operating System: Ubuntu’s automatic request timeout mechanism min-
imizes the influence of socket timeout settings. Responses generally occur within
5-75ms, making precise tuning of the socket timeout setting less critical.

4. Windows Operating System: On Windows, socket timeout settings have a more pro-
nounced impact. The operating system respects the configured socket timeout set-
ting, leading to a loss of efficacy in the scan results when the socket timeout is too
low.

CONCLUSION

In the context of browser-based port scanning, adjusting the socket timeout setting serves
two key purposes:

1. Efficiency Improvement: Lowering the socket timeout accelerates scanning, enhanc-
ing efficiency for large-scale or time-sensitive scans.

2. Balance between Efficacy and Efficiency: Striking the right balance between efficacy
and efficiency is crucial. An overly low timeout compromises efficacy, while a very
high timeout compromises efficiency.

Our experiments recommend a socket timeout of 150ms for Chrome and 400ms for
Firefox. These settings ensure efficient scans on both Windows and Ubuntu while main-
taining a 100% detection rate of open ports. It is worth noting that Ubuntu’s automatic
request timeout mechanism minimizes the influence of socket timeout settings, making
precise tuning less critical on this operating system.

5.5. EXPERIMENT 2: ESTIMATING THE MOST EFFECTIVE SCAN-
NING TECHNIQUE

5.5.1. MOTIVATION
• Efficacy: The motivation behind this experiment is to identify the most effective

scanning technique for browser-based port scanning.
• Comparing scanning techniques: The goal is to determine which of the three scan-

ning technique – Fetch, XHR (XMLHttpRequest), and WebSocket APIs – offers the
highest efficacy in detecting open ports.

5.5.2. EXPERIMENT TARGET
The experiment is designed to investigate and compare the efficacy of different scanning
techniques, namely the Fetch, XHR and WebSocket APIs.

22

The experiment targets the following specific objectives:
• Evaluate the efficacy of each scanning technique in detecting open ports using the

intended functionality of the APIs.
• Evaluate the efficacy of each scanning technique in detecting open ports using a tim-

ing attack method.

5.5.3. EXPERIMENT RESULTS
In this experiment, we evaluated the efficacy of three scanning techniques — the Fetch,
XHR, and WebSocket APIs — with the optimal socket timeout setting determined in the
previous experiment. The raw results can be found in Tables A.2 and A.3.

FETCH API OUTPERFORMS

• The Fetch API demonstrated superior performance, achieving a 100% open port de-
tection rate.

• This success can be attributed to its unique ability to operate in the no-cors mode
within JavaScript, allowing cross-domain requests, including requests to localhost,
without CORS restrictions.

XHR AND WEBSOCKET WITH POST-SCAN ANALYSIS

• Initially, both the XHR and the WebSocket APIs struggled to detect open ports and
exhibited a 0% detection rate using the intended functionality of the respective APIs.

• However, post-scan analysis revealed their potential by comparing response times
between closed and open ports. Ports responding within less time than the config-
ured socket timeout were consistently found to be open on the Windows operating
system.

• The timing attack method was not applicable on the Ubuntu operating system due
to response times being similar between open and closed ports.

Particularly on the Windows operating system, the XHR and WebSocket detection capa-
bilities were significantly enhanced when utilizing this timing attack method, enabling the
XHR API to achieve a 100% open port detection rate. This is depicted in Figures 5.5 and 5.6.

Figure 5.5: Windows/Chrome XHR API scan du-
ration open vs closed ports

Figure 5.6: Windows/Firefox XHR API scan dura-
tion open vs closed ports

The combination of WebSocket/Firefox also had an increased detection rate of 100%,
but WebSocket/Chrome remained unable to detect any of the open ports, this is depicted
in Figures 5.7 and 5.8. Further comparisons can be found in Appendix A, Section A.4

23

Figure 5.7: Windows/Firefox WebSocket API scan
duration open vs closed ports

Figure 5.8: Windows/Chrome WebSocket API
scan duration open vs closed ports

5.5.4. ANALYSIS

FETCH API ADVANTAGE

• The Fetch API’s success lies in its no-cors mode, allowing it to bypass CORS restric-
tions and reliably detect open ports.

• Despite limitations in this mode, such as restricted headers and inability to access
response details, the Fetch API is able to reliably determine open HTTP ports using
this method.

XHR AND WEBSOCKET POTENTIAL

• While XHR and WebSocket APIs initially struggled to detect any open ports using their
native API functionality, however, post-scan analysis utilizing response time mea-
surements unveiled their potential.

• The timing attack method significantly enhanced their performance on Windows
systems, achieving a 100% open port detection rate.

• However, the absence of a clear response time distinction between open and closed
ports on Ubuntu limits the applicability of this method.

CONSIDERATION OF UNSAFE PORTS

The presence of unsafe ports [Moz07][Goo12], which cannot be reliably classified as open
or closed, introduces complexity to port scanning. Unsafe or restricted ports refer to a
range of TCP/UDP ports that are reserved for system or administrative use and are not
meant for normal application traffic. Browsers do not reveal information about these ports,
so we cannot determine whether these ports are open or not. Unsafe ports were excluded
from the results to prevent data pollution.

CONCLUSION

The motivation behind this experiment was to identify the most effective scanning tech-
nique for browser-based port scanning. We aimed to determine which of the three scan-
ning techniques – Fetch API, XHR, and WebSocket API – offers the highest efficacy in de-
tecting open ports. Based on our analysis, it is evident that the Fetch API excels across all
platforms (OS/Browser combinations) and stands as the superior choice for browser-based
port scanning. This API enables us to scan for open ports and directly determine their sta-
tus, eliminating the need for post-scan analysis or the use of timing attacks when scanning
for ports running HTTP.

24

5.6. EXPERIMENT 3: ESTIMATING THE MOST EFFICIENT SCAN-
NING TECHNIQUE

5.6.1. MOTIVATION

• Efficiency: This experiment focuses on optimizing the efficiency of port scanning.
The primary aim is to explore how varying the number of parallel connections im-
pacts scanning efficiency when scanning the entire port range (0-65536).

• Identifying the potential of a real world attack: Without measuring efficiency, it is
unclear how realistic a real world attack is, and how many ports can be scanned in
practice.

5.6.2. EXPERIMENT TARGET

This experiment targets specific objectives related to efficiency and parallel connections:

• Evaluate Scanning Technique Efficiency: Assess the efficiency of different scanning
techniques when scanning the entire port range (0-65536).

• Study the Impact of Parallel Connections: Investigate how the number of parallel
connections affects the scanning process.

• Find Optimal Parallel Connections: Identify the optimal number of parallel connec-
tions that maximizes scanning efficiency.

5.6.3. EXPERIMENT RESULTS

• Ubuntu vs. Windows: Notable distinctions were observed between Ubuntu and Win-
dows in terms of scanning efficiency using Fetch and XHR APIs. Ubuntu exhibited su-
perior performance compared to Windows, which was partly attributed to Ubuntu’s
disregard for the configured socket timeout.

• Parallel Connections on Ubuntu: Increasing the number of parallel connections
on Ubuntu did not provide significant performance benefits. Efficiency gains were
marginal, and performance even slightly decreased with a larger number of connec-
tions. A configuration of around 10 parallel connections demonstrated the highest
efficiency.

• The most effective scanning techniques: The three APIs exhibited similar behavior
on Windows. On Ubuntu, the XHR and Fetch APIs significantly outperformed the
WebSocket API.
Ubuntu’s behavior aligned with that of Windows when WebSockets were used. Fetch
and XHR connections completed significantly faster on Ubuntu compared to Web-
Sockets.

• Scanning Time: Ubuntu completed scanning the entire port range within 25 sec-
onds, while Windows took 50 seconds even with the highest number of parallel con-
nections (250).

These findings, illustrated in Figures 5.9 and 5.10, provide insights into the optimal
scanning techniques for different operating systems and the impact of parallel connections
on scanning efficiency. Further comparisons can be found in Appendix A, Section A.5

25

Figure 5.9: Windows/Chrome Parallel sockets ef-
ficiency comparison

Figure 5.10: Ubuntu/Chrome Parallel sockets ef-
ficiency comparison

5.6.4. ANALYSIS
• Optimal number of parallel connections: We estimate the optimal number of par-

allel connections to be roughly 10 on Ubuntu, and as high as possible on Windows
(250 during our testing). This distinction stems from the fact that Ubuntu does not
respect the configured socket timeout, as described in Section 5.4.3. Windows does
respect this timeout setting, and is therefore more efficient the more connections it
can use. However, when increasing the number of parallel connections on Ubuntu,
the socket timeout slowly increases, making the usage of more concurrent connec-
tions less efficient. For that reason, it is vital to strike a balance on Ubuntu, which we
found to be roughly 10 concurrent connections.

• Practical Considerations: Using an excessively high number of parallel connections
may seem beneficial in theory (i.e. 200+ parallel connections on Windows) but in-
troduces severe delays and renders the webpage unusable for the user. This practical
consideration underscores the irrelevance of establishing a theoretical limit for par-
allel connections in real-world scenarios.

CONCLUSION

The motivation behind this experiment was twofold. Firstly, we aimed to optimize the effi-
ciency of port scanning, focusing on the impact of varying the number of parallel connec-
tions when scanning the entire port range (0-65536). Secondly, we sought to identify the
potential of a real-world attack by measuring scanning efficiency, providing insights into
the feasibility of such attacks.

The experiments have yielded the following findings:
• Ubuntu vs. Windows Efficiency: Notable distinctions were observed between Ubuntu

and Windows in terms of scanning efficiency. Ubuntu efficiently scanned the entire
port range within 25 seconds, whereas Windows took 50 seconds, even with the high-
est number of parallel connections (250).

• Balancing Parallel Connections and Timeouts: Achieving optimal efficiency in port
scanning involves striking a balance between the number of parallel connections
and socket timeouts. Ubuntu’s expedited socket timeouts were closely related to the

26

number of parallel connections, with the most efficient setting observed at approxi-
mately 10 parallel connections.

• Practicality in Real-World Attacks: Although using a high number of parallel con-
nections may seem theoretically advantageous, it introduces significant delays and
renders webpages unusable for users. Therefore, establishing a theoretical limit for
parallel connections, such as increasing the count to 256 instead of 250, was deemed
irrelevant. In practice, both amounts are impractical for real-world port scan attacks
on Windows.

In conclusion, this experiment has provided valuable insights into optimizing the effi-
ciency of port scanning techniques. It has demonstrated that the efficiency of port scan-
ning varies significantly between Ubuntu and Windows, with Ubuntu showcasing faster
scan times due to its disregard for socket timeouts. The findings emphasize the impor-
tance of balancing parallel connections and timeouts to achieve optimal scanning effi-
ciency. Moreover, it highlights the practicality of using browser-based port scanning in
practice.

5.7. EXPERIMENTS CONCLUSIONS
The experiments have resulted in the identification of optimal socket configuration set-
tings for browser-based port scanning. Specifically, it is recommended to utilize a socket
timeout of 150ms for Chrome and 400ms for Firefox. For Ubuntu, the most effective num-
ber of parallel connections is approximately 10, while on Windows, an increased number
of parallel connections, up to 250, is advised. However, due to the associated operational
impact on webpage usability, a more practical range of 100-150 parallel connections is rec-
ommended for real-world attack scenarios, contingent upon the specific webpage charac-
teristics. Among the scanning techniques evaluated, the Fetch API emerges as the optimal
choice for browser-based port scanning across both Ubuntu and Windows environments,
as well as in browsers such as Chrome and Firefox. The Fetch API exhibits comparable per-
formance to XHR and notably surpasses WebSockets in efficiency. A distinct advantage of
the Fetch API lies in its capacity to detect the openness of TCP ports running HTTP services
directly, eliminating the necessity for post-scan analysis. This capability is attributed to the
utilization of the no-cors mode.

When using the optimized scanning configuration, notable speed gains are attainable.
For instance, the scanning of 1,000 ports can be achieved within one second using Chrome
and within three seconds using Firefox. In broader scans, the entire port range (0 - 65,536)
necessitates around 70 seconds for completion on Windows and approximately 25 seconds
on Ubuntu. This performance differential stems from Ubuntu’s expedited socket timeouts,
which diverge from the specified timeout value of 150ms. In practical applications, port
scan attacks typically focus on identifying specific, well-known ports, rather than exhaus-
tively scanning the entire port range. In light of this, browser-based port scanning presents
a viable attack vector, capable of scanning more than 1,000 ports per second, thus substan-
tiating its practicality for a real-world attack.

27

6
FINGERPRINTING APPLICATIONS

In this chapter, we focus on the capabilities of browser-based port scanning for identifying
programs running locally on a user’s system.

6.1. FINGERPRINTING THE UNDERLYING OPERATING SYSTEM
In this section, we explore the potential of fingerprinting the underlying operating system
through browser-based port scanning. As mentioned previously, numerous ports utilized
by the operating system fall under the category of unsafe or restricted ports. Consequently,
these particular ports remain undetectable through browser-based port scanning. Never-
theless, certain ports employed by the OS do not carry the restricted classification, allow-
ing us the opportunity to fingerprint and distinguish different OS configurations from each
other.

6.1.1. MOTIVATION
The motivation for fingerprinting the underlying operating system serves a dual purpose,
encompassing both privacy and security concerns, each of which carries its own set of im-
plications.

PRIVACY CONCERNS

Detecting running services on the operating system allows us to distinguish users from
each other and potentially track their online activities across multiple browsing sessions.
This capability raises significant concerns about user anonymity and invasive tracking prac-
tices. Understanding the extent of OS identification and associated privacy risks is crucial
to safeguarding user data and online privacy.

SECURITY CONCERNS

Secondly, the ability to detect open ports can have profound security implications. Open
ports may represent services or applications running on the system, potentially revealing
valuable information to malicious actors. Specifically:

1. Scanning for known exploits: Identifying open ports allows for a preliminary assess-
ment of the security posture of an operating system. Some open ports may indicate
the presence of services or software that could be vulnerable to known exploits.

28

2. Attack surface analysis: Exposed open ports serve as entry points into the operating
system, which malicious actors can exploit for various purposes, including unautho-
rized access and reconnaissance.

6.1.2. EXPERIMENT TARGET
The experiment primarily focuses on identifying running services on both Windows 11 and
Ubuntu 22.04 operating systems, using browser-based port scanning. The main objectives
are:

1. Port Scanning:
• To scan the entire port range on default installations of Windows and Ubuntu.
• To identify if there are any open ports that are detectable through browser-based

port scanning.
2. Service Activation:

• To activate various network-related services within the operating systems.
• To monitor and record any new ports that become open as a result of these ser-

vice activations.
• To assess the potential for browser-based port scanning to detect these services

6.1.3. EXPERIMENT SETUP
The experiment was based on default installations of Windows 11 and Ubuntu 22.0.4, with
no existing services activated. It involved the following steps:

PORT SCANNING

The browser-based port scanner application as discussed in Section 5.3.1 was used to scan
the entire port range (0-65536) for both default installations of Windows and Ubuntu.

SERVICE ACTIVATION AND PORT MONITORING

To systematically activate network-related services within the operating systems, we fol-
lowed a manual approach:

• On Windows, we methodically enabled every available Windows feature and enabled
settings that may require network connectivity, such as Bluetooth, Devices, Phone
Link, VPN and Remote Desktop Protocol. After each change, we monitored the status
of the ports using the netstat command and other command line directives.

• On Ubuntu, we adopted a similar process, systematically enabling network-related
services and settings, and monitoring if any new ports were opened.

VERIFICATION OF PORT OPENINGS

Once a port was identified as open after service activation, we conducted two verification
steps:

• First, we attempted to detect the open port using the port scanner application.
• Second, if the port scanner application did not detect the open port, we verified that

the port was not detectable via timing-based attacks.

29

6.1.4. EXPERIMENT RESULTS

FINGERPRINTING WINDOWS 11
In our experiment, we conducted a thorough scan across the entire port range on a default
Windows 11 installation. Initially, no open ports (beyond the restricted range) were de-
tected. However, after making adjustments to the OS configuration, we successfully iden-
tified several open ports. These results are summarized in Table 6.1.

Windows Feature Open
Port

Associated
Process

Description

Hyper-V 2869,
5357

svchost.exe,
ntoskrnl.exe,
vmms.exe

Enabling the Hyper-V Windows feature, which provides
a native hypervisor, led to the opening of ports 2869 and
5357. These ports were associated with processes such
as svchost.exe, ntoskrnl.exe, and vmms.exe. Hyper-V is
commonly used for running virtual machines and con-
tainers, making these ports relevant for detection.

Internet Information Ser-
vices (IIS)

80 InetMgr.exe,
ntoskrnl.exe

Enabling Internet Information Services (IIS) resulted in
port 80 becoming open, as it hosts a default website.
The process responsible for this port was ntoskrnl.exe,
which is integral to the Windows operating system.

Microsoft Message Queue
(MSMQ) Server

50921 mqsvc.exe While enabling MSMQ temporarily opened port 50921,
it falls within the dynamic port range and is not suitable
for reliable fingerprinting.

Table 6.1: Windows Features and their associated open ports

Additionally, Windows contains a default mapping of well-known ports in the
%WINDIR%\System32\drivers\etc\services file, including approximately 100–135

ports outside the restricted range, which can serve as a foundation for targeted scans. Aside
from Windows features, there are standard settings that may be enabled or disabled on
Windows. We tested for open ports (outside the restricted range) on settings that require
network connectivity, such as Bluetooth, Devices, Phone Link, VPN and Remote Desktop
Protocol.

Among these, VPN and Remote Desktop Protocol (RDP) exhibited noteworthy findings.
While a VPN connection might not be detectable by itself, our tests involving ExpressVPN
revealed an interesting aspect. The ExpressVPN application seemed to open port 2020,
which we could consistently detect while the VPN was active. This implies that although
the Windows OS does not inherently trigger the opening of a specific port upon VPN con-
figuration, the VPN application itself does so. Regarding RDP, establishing a connection to a
remote machine does not appear to expose any open ports on the host machine. However,
on the machine to which the connection is made, we were able to identify the presence
of an active RDP connection. While the Fetch API does not directly identify that the RDP
port (3389) is open, we managed to determine that the port was open via a timing attack.
This approach enables us to detect the open port consistently. This finding suggests that
browser-based port scanning remains a viable method for detecting remote access tools,
similar to the technique employed by eBay in 2020 [Ble20].

FINGERPRINTING UBUNTU 22.04
In our examination of a default installation of Ubuntu 22.04, we consistently found port 631
to be open. This port corresponds to the Common Unix Printing System (CUPS), a printer

30

software driver. Besides CUPS, we did not find other services that were detectable through
browser-based port scanning after enabling several network-related services, similarly to
Windows. However, like Windows, Ubuntu maintains a /etc/services file, mapping 326
well-known ports to services. While most of these ports fall within the restricted range,
approximately 150–180 ports are outside it, providing a basis for fingerprinting different
Ubuntu OS configurations.

6.1.5. ANALYSIS
For Windows 11, specific Windows features and network-related settings result in detectable
open ports. Enabling features like Hyper-V and Internet Information Services (IIS) resulted
in identifiable open ports, making them valuable indicators for distinguishing different
Windows configurations. In the case of Ubuntu 22.04, the consistent presence of port 631
associated with CUPS simplifies the identification of default Ubuntu installations. Simply
scanning port 631 will be enough to detect a default Ubuntu installation. While it may not
guarantee a 100% accuracy of the OS fingerprint, another service could be running on port
631, or CUPS could be running on a different OS, its integration with existing techniques
improves the reliability of the OS fingerprint. The /etc/services file found on both Win-
dows and Ubuntu can be used for a targeted scan on a system, after detecting which OS is
making the request. All ports within the /etc/services file can be scanned in one second,
making it a realistic enhancement to existing fingerprinting techniques.

6.1.6. CONCLUSION
The experiment demonstrated that specific configurations and features in both Windows
11 and Ubuntu 22.04 can lead to identifiable ports on the system. On Ubuntu, the con-
sistent presence of port 631 associated with CUPS simplifies the identification of default
Ubuntu installations, and may strengthen existing fingerprinting techniques related to OS
detection. The experiment also underscored the relevance of timing attacks and browser-
based port scanning techniques for detecting open ports, particularly in scenarios such as
identifying active RDP connections.

In conclusion, the experiment indicates that by incorporating browser-based port scans
into existing fingerprinting techniques, we can significantly enhance their effectiveness.
This enhancement not only increases the uniqueness of the fingerprint, but also enables
more sophisticated user tracking across browser sessions, which has implications for user
privacy. Furthermore, browser-based port scanning has the capability to identify certain
running operating system services. This aspect may be of particular interest to malicious
actors seeking to exploit known services operating on specific ports. Additionally, browser-
based port scanning can serve as a defensive measure. It can be employed to block users
who are being controlled through remote access tools, a technique previously used by
eBay [Ble20].

31

6.2. IDENTIFYING RUNNING PROGRAMS
To establish the potential for fingerprinting applications via browser-based port scanning,
we selected a limited number of applications from various categories and performed browser-
based port scanning to confirm their detectability. The categories target different type of
applications to establish the potential of user-profiling.

6.2.1. MOTIVATION
The motivation behind identifying running programs bears a resemblance to the process
of fingerprinting the underlying operating system. This similarity extends to encompass
concerns related to privacy and security.

PRIVACY CONCERNS

Detecting running programs gives websites the potential to learn about personal informa-
tion of users. This can be achieved by mapping common programs to their default ports,
and scanning for these ports using browser-based port scanning. Consequently, this ca-
pability can be used to identify the individual preferences of users, such as their preferred
software applications. This data can be used for various purposes, including crafting per-
sonalized advertisements, as well as potentially more nefarious applications like phishing.
Moreover, akin to the practice of OS fingerprinting, the identification of open ports can
be utilized to generate a unique fingerprint, enabling the tracking of users across multiple
browsing sessions. This persistent tracking can lead to a loss of anonymity and privacy, as
users’ online behaviors become more traceable.

SECURITY CONCERNS

Secondly, the capacity to detect open ports holds security implications. Much like OS fin-
gerprinting, the identification of running programs may be exploited to target known vul-
nerabilities within those programs.

6.2.2. EXPERIMENT TARGET
The experiment focuses on identifying running programs in order to assess the feasibility
of browser-based port scanning. We have chosen a select few categories to concentrate
on, with the aim of targeting various types of programs and users. These categories can
be broadly categorized into three main groups: user privacy, user preferences, and finger-
printing. Within these main categories, we have chosen a limited number of subcategories
to specifically target different types of programs.

32

1. User privacy:
• Video / Chat
• VPN

2. User preferences:
• Entertainment
• Gaming
• Programming

3. Fingerprinting:
• Operating System
• Web Browser
• Peripherals
• Automation framework

6.2.3. EXPERIMENT SETUP
The setup for the experiment is similar to fingerprinting the underlying OS.

1. Launching the Programs: For each target program, a repeatable verification process
was carried out. This process involved launching the application and using Power-
Shell directives, namely Get-NetUDPEndpoint and Get-NetTCPConnection, to de-
termine if the application had opened any local ports.

2. Verifying Detectable Ports: The browser-based port scanner application as discussed
in Section 5.3.1 was used to verify if any of the newly opened ports were detectable.
Additionally, response times were measured for post-scan analysis.

3. Verifying Detectability Through Timing Attacks: Response times were compared to
closed ports, in order to verify whether ports were detectable through timing mea-
surements.

The experiment was conducted on a testing machine using Windows 11 and Chrome
114.

6.2.4. EXPERIMENT RESULTS
The results of the scanned applications are presented in Table 6.2.

33

Category Application opened ports detected ports Resp.
Time

Notes

TCP UDP TCP UDP in ms

Video / Chat Discord 6463 – 6463 – 105,3 Port 6463 is running HTTP.
Video / Chat MS Teams 62391

62390
62389
62388
62368

50811 – – >200 No TCP ports in a listening state.

Entertainment Spotify 57621
60933
60937–
60954

– 57621
60933

– 66.69
39.59

Many ports in 609xx range with
established TCP connections, but
only ports 56721 and 60933 in a
Listening state.

Operating
System

Windows
Store

63503
63504
63506
63507

– – – >200 No TCP ports in a listening state.

Programming Visual Studio
Code

51736–
51763

– – – >200 No TCP ports in a listening state.

Gaming Steam 53245
53237
53236
27060
27036

– 27060 – 120.19 Many ports in Established state.
Only port 27060 in a Listening
state.

VPN ExpressVPN 54719
2020

– 2020 – 56.79 Ports 2020, 54719 in a listening
state.

Automation
framework

Selenium 59542.
59536
59536
30454

– 30454 – 72.39

Web Browser Edge 61773–
61849

– – – >200 No TCP ports in a listening state.

Peripherals Logitech G
HUB

9010
9080
9100
45654

– 9010
9080
9100
45654

– 68
31.1
60.6
62.9

All ports running HTTP.

Table 6.2: Identified open ports on a testing machine using Windows 11 and Chrome 114

34

6.2.5. ANALYSIS

We drew several conclusions from these results. In general, TCP ports running HTTP were
reliably detectable, as HTTP servers will return an HTTP response code regardless of whether
the request succeeded or not. We see many examples of this in the results, such as the Dis-
cord, Selenium, and Logitech G HUB applications. Furthermore, scanning for open HTTP
ports can be done quickly, because HTTP servers respond quickly, making this fingerprint-
ing technique a realistic attack vector. Additionally, since HTTP ports can be detected by
examining the error code in the response, there is no need to measure response times.

Detecting TCP ports that do not run HTTP is more challenging, because they do not re-
spond with HTTP status codes, making them less easily detectable. However, we found that
some open TCP ports not running HTTP, such as Spotify and ExpressVPN, have response
times that differ significantly from the configured socket timeout of 200ms. In contrast,
closed ports typically time out between 200-215ms. Therefore, when TCP ports respond
within less than 200ms, they can usually be considered open ports. This suggests that mea-
suring response times of TCP ports could be a reliable fingerprinting technique, but it has
some limitations.

Response times depend on several factors, such as the operating system, browser, un-
derlying hardware, and network configuration. Moreover, as previously mentioned, unsafe
ports will respond quickly, but that does not mean that they are open ports. Additionally, as
found in Section 5.4, this method of using timing attacks will not work on Ubuntu, because
the socket timeout of 200ms is not respected like it is on Windows. For this reason, we
conclude that applications that open a TCP port outside the restricted/unsafe range run-
ning HTTP(S) are reliably detectable using the Fetch API. TCP ports not running HTTP can
sometimes be detected using timing attacks, depending on the platform. We saw similar
behavior in Section 6.1.4, where an RDP connection was not directly detected by the Fetch
API, but was still detectable via a timing attack.

MAPPING APPLICATIONS TO OPEN PORTS

Having successfully demonstrated the feasibility of reliably fingerprinting certain appli-
cations through browser-based port scanning, the next logical step would involve estab-
lishing a correlation between applications and the associated open ports. This correla-
tion would significantly enhance our fingerprinting capabilities. However, this task leans
more towards an engineering problem rather than a research problem. As a result, we did
not emphasize the development of this mapping in our current work. Nonetheless, it is
worth noting that there are existing mappings available that can serve as a solid founda-
tion for fingerprinting purposes, even if they are not exhaustive. Among these mappings,
the one hosted by the Internet Assigned Numbers Authority stands out as the most ex-
tensive dataset currently available [ian23]. This dataset maps over 10,000 ports to known
applications and services.

6.2.6. CONCLUSION

The detection of open ports using browser-based port scanning, particularly those run-
ning HTTP services, proves to be a feasible and reliable, showcasing the potential for this
approach as a fingerprinting technique. Motivated by privacy and security concerns, the
ability to identify running programs has important implications. Privacy concerns arise
from the potential for websites to collect information about users’ running programs, po-

35

tentially leading to personalized targeting and tracking across browsing sessions. On the
security front, the identification of open ports can serve as an entry point for malicious
attackers to gather information and target vulnerabilities within these programs.

6.3. IDENTIFYING SPECIFIC PROGRAM STATES
Beyond determining the mere existence of open ports, the next step involves detecting spe-
cific application states. We investigated scenarios where an application’s behavior might
change its network requirements, leading to the opening of new ports. For instance, when
initiating a video call within an application, does it dynamically open new ports to facilitate
the communication, and more importantly, can we detect this change through browser-
based port scanning?

MOTIVATION

If it becomes possible to detect specific application states, this would elevate user tracking
to an advanced level. Websites would gain the capability to determine a user’s ongoing ac-
tivities on their computer, and subsequently, use that information to determine what con-
tent to display. This could involve showing different advertisements, presenting webpages
tailored to the user’s preferences, or, in more concerning scenarios, even creating custom
phishing websites based on the user’s recent actions.

EXPERIMENT TARGET

To investigate this, we selected a limited number of privacy-sensitive applications, and de-
termined if we could detect specific application states, such as being able to detect a voice
call on Microsoft Teams, or sending/retrieving a text message on WhatsApp.

Applications:
• Microsoft Teams
• Discord
• WhatsApp
• Telegram
• Chrome
• Firefox
The experiment setup was the same as in Section 6.2.3. After every action, such as ini-

tiating a voice call on Microsoft Teams, it was assessed whether a port had opened, and
whether this port was detectable through browser-based port scanning or timing attacks.

EXPERIMENT RESULT

Across the investigated applications, the same behavior was consistently measured regard-
ing port activity and detectability:

Ephemeral Ports: Applications consistently used ephemeral ports from the dynamic
port range (49152-65535) for various activities, such as sending chat messages, initiating
video calls, sharing files, collaborating on a document, and initiating file downloads. These
ports were short-lived and changed with each instance, making it impossible to establish a
direct connection between open ports and specific application states.

Port Detectability: Despite the consistent use of ephemeral ports, these ports were un-
detectable through browser-based port scanning techniques. This lack of detectability is
primarily due to the ports being in an established connection state, which means they were

36

not actively listening for new connections. Consequently, attempts to identify these ports
through browser-based port scanning proved ineffective.

IDENTIFYING MOBILE APPS

While our research is not primarily focused on mobile applications, we conducted prelimi-
nary research to assess the viability of using browser-based port scanning to detect mobile
applications. In an experiment, we evaluated 70 mobile apps on an Android 11 device, but
we were unable to detect a single application through browser-based port scanning. It is
important to note that we do not consider our research to be definitive in concluding that
browser-based port scanning is not a threat on mobile devices, as our study was not as
comprehensive as it was for desktop applications. We do not see a reason why browser-
based port scanning should not be possible on mobile. However, it is worth noting that
we did not encounter the same challenges when detecting the first application on desktop
devices, as it required considerably less time to detect the first application on a desktop
device.

37

7
ESTIMATING THE ENTROPY OF

BROWSER-BASED PORT SCANNING

The primary objective of this chapter is to analyze and compare the entropy of synthetic
fingerprint datasets under various scenarios. The focus is on understanding how changes
in the distribution of open ports and other attributes influence the uniqueness and com-
plexity of fingerprints.

MOTIVATION

The core motivation driving this research is user privacy, particularly user anonymity. As
digital fingerprinting techniques continue to advance, the granular details of a user’s de-
vice, such as the number and identity of open ports, can be key factors in influencing finger-
print complexity. The loss of anonymity, resulting from increased entropy and uniqueness,
has potential consequences ranging from unwarranted user profiling to intrusive tracking.

Existing research [GBLB18, LRB16, Eck10] has already contributed to determining the
entropy of various browser attributes that can be used for fingerprinting. Our objective
is to assess the entropy associated with browser-based port scanning, as we believe that
browser-based port scanning might be an exceptionally distinctive and often overlooked
attribute that can be extracted from a web browser, adding valuable insights to this ongoing
research. Highly unique fingerprints are a threat to user privacy, with the biggest threat
being user anonymity. When fingerprints are so distinct that they can be directly linked
to specific individuals on a one-to-one basis, the very notion of maintaining anonymity
becomes impossible.

Anonymity is important because it provides individuals with a safe way to act, trans-
act, and participate without fear of accountability or reprisal. It encourages freedom of ex-
pression, enables people to seek help for stigmatized issues, protects children from online
threats, and supports valuable institutions like peer review and whistle-blowing. The value
of anonymity lies in the ability to remain unreachable, preventing others from demanding
explanations or punishments. While in the past, anonymity was often achieved through
namelessness, it is the concept of unreachability that is at the heart of its significance, as it
safeguards individuals from unwanted consequences and ensures the protection of certain
forms of expression and transactions [Nis99].

38

7.1. BACKGROUND

THEORETICAL LIMITATION

In theory, the number of possible open port combinations is constrained by the total num-
ber of ports available on a system. This results in 265535 different combinations. This num-
ber arises from the fact that there are 65,536 ports available on a system, and each of these
ports can either be open (1) or closed (0), resulting in a binary representation of open and
closed ports for each combination. Theoretically, this allows for an immense number of
unique port combinations, and thereby a very high entropy.

However, not all ports are detectable by a browser, restricted ports [Moz07][Goo12] are
not detectable, which is not a significant amount of ports, but still noteworthy. Additionally,
achieving this theoretical limit is neither feasible nor realistic in practice, primarily due to
common software usage patterns, limited concurrent applications, and the time it takes
to scan the entire port range. Moreover, while theoretically, browser-based port scanning
could extend to multiple IP addresses, the reality is that fully scanning even a single IP
address is already a time-consuming process. Consequently, we do not consider it realistic
to scan multiple IP addresses in a real-world attack.

REALISTIC EXPECTATIONS

In practice, achieving the full spectrum of possible port combinations is neither practical
nor realistic. Several factors contribute to this:

• One of the primary limitations of browser-based port scanning is the time required
for scanning. As previously determined, conducting a scan across the entire port
range is a time-consuming process. For instance, on the Chrome browser, it was
found that approximately 1,000 ports can be scanned within one second (on Win-
dows). This observation underscores the need for practicality in our approach.

• To address this limitation, we focus our calculation on a limited number of ports,
rather than attempting to scan the entire range of 65,536 ports, we aim to target a
limit set of ports, ranging from 1,000 to 10,000 ports, that are associated with the
most popular applications and services. However, it is essential to recognize that not
all combinations of open ports will occur with the same likelihood.

• To account for variations in the likelihood of specific port combinations, we em-
ploy probability distribution formulas. These formulas will allow us to assign real-
istic probabilities to each combination of open ports, compared to assigning com-
pletely random probabilities. By doing so, we can generate a dataset that somewhat
reflects realistic usage patterns, with some applications being more popular than oth-
ers, while still capturing the diversity of open port combinations. Real-world data
would be a better dataset, but this is currently not available.

PROBABILITY DISTRIBUTIONS

As we do not have a representative dataset which is large enough to estimate the entropy of
browser-based port scanning, we have chosen several probability distributions that seem
to align with our limited testing data (n=9) and domain knowledge. To investigate the re-
lationship between data distribution and fingerprint uniqueness, we have selected three
probability distributions to generate synthetic fingerprint datasets: Geometric, Zipf, and
Uniform distributions. Each distribution represents different scenarios in terms of port
popularity.

39

ENTROPY CALCULATION

In order to assess the uniqueness of the different probability distributions, we calculate the
entropy of the datasets using Shannon’s entropy formula [Vaj14]. This formula quantifies
the uncertainty or randomness in the dataset and is given by:

H(X) =−
n∑

i=1
p(xi) · log2(p(xi))

Where:
• H(X) represents the entropy of the random variable X .
• n is the total number of possible outcomes in the random variable X .
• p(xi) is the probability of the i -th outcome xi .

7.2. SELECTION OF PROBABILITY DISTRIBUTIONS
To investigate the relationship between data distribution and fingerprint uniqueness, we
have selected three probability distributions to generate synthetic fingerprint datasets: Ge-
ometric, Zipf, and Uniform distributions. Each distribution represents different scenarios
in terms of port popularity.

GEOMETRIC DISTRIBUTION

The Geometric distribution is chosen to model the likelihood of ports being open based on
a decreasing geometric progression. This distribution reflects a scenario where some ports
are more popular than others, and are therefore more frequently open. The Geometric
distribution as depicted in Figures 7.1 and 7.2, allows us to simulate a situation where a few
ports dominate in terms of usage.

Figure 7.1: Geometric Distribution 1,000 ports Figure 7.2: Geometric Distribution 10,000 ports

ZIPF DISTRIBUTION

The Zipf distribution is another candidate to represent the distribution of open ports. This
distribution is known for modeling scenarios where a small number of items (in our case,
ports) are highly popular, while the rest have diminishing popularity. This distribution is

40

useful for simulating scenarios where a small set of ports are commonly open, possibly
mirroring common applications and services. This is similar to the geometric distribution,
but the distribution is slightly different, which can be seen in the corresponding Figures 7.3
and 7.4.

This distribution aligns the most with our limit dataset. We believe that a distribution
resembling the Zipf or Geometric distribution is more plausible in a real-world scenario.
This is because certain software applications are more prevalent than others and tend to
dominate in terms of usage. Additionally, the fact that many applications cannot be de-
tected through browser-based port scanning further increases the likelihood of these pop-
ular applications being even more prevalent.

Figure 7.3: Zipf Distribution 1,000 ports Figure 7.4: Zipf Distribution 10,000 ports

UNIFORM DISTRIBUTION

In contrast to the previous two distributions, we include the Uniform distribution to serve
as a baseline comparison. In this scenario, all ports are equally likely to be open, which is
an unlikely real-world situation but provides insight into what happens to entropy when all
ports have equal popularity.

7.3. EXPERIMENT SETUP
We use a systematic approach to investigate the relationship between data distribution and
fingerprint uniqueness.

• Port Range: For our experiments, we consider a range of 1,000 and 10,000 ports, rep-
resenting a subset of the total 65,536 ports available. This choice is based on practical
considerations, as scanning all 65,536 ports is time-consuming and not realistic for
browser-based port scanning.

• Probability Distribution: For each of the three selected probability distributions
(Geometric, Zipf, Uniform), we calculate the probabilities of individual ports being
open based on the chosen distribution.

41

GENERATION OF SYNTHETIC FINGERPRINT DATASETS

In order to properly use Shannon’s entropy formula, we have to consider all possible out-
comes. Calculating all possible outcomes with such a large dataset, i.e. 21000 ≈ 1.07×10301

takes too much time, and therefore we have two possible solutions to calculate entropy:
• Sampling from the dataset, i.e. Monte Carlo simulations.
• Calculating entropy based on the probability distribution
We chose option 2, because sampling from such a large dataset is statistically insignif-

icant, and we can estimate a good average entropy based on the probability distributions.
We use the python NumPy library to calculate the probabilities.

INVESTIGATION OF SCENARIO VARIATIONS

We proceed to investigate how different scenarios, represented by variations in the syn-
thetic data, impact the levels of entropy. By introducing changes in the data distribution,
we aim to understand how the uniqueness of fingerprints is influenced under various con-
ditions.

ANALYSIS AND INTERPRETATION OF RESULTS

Finally, we analyze and interpret the results obtained from the entropy calculations. Through
this analysis, we draw conclusions regarding the relationship between data distribution
patterns and the uniqueness of fingerprints.

7.4. RESULTS
In this section, we present the results of our experiments, where we investigated the en-
tropy of synthetic fingerprint datasets generated under different probability distributions:
Geometric, Zipf, and Uniform. We varied parameters such as the number of open ports,
dataset size, and the range of ports to understand their impact on fingerprint uniqueness.

7.4.1. GEOMETRIC DISTRIBUTION
Under the Geometric distribution, we explored two scenarios:

SCENARIO 1: 1,000 PORTS

• Number of Ports Scanned (N): 1,000.
• Average Number of Open Ports (k): 5.
• Probability of Success (p): Calculated as the average number of open ports divided

by the total number of ports (p = k
N).

SCENARIO 2: 10,000 PORTS

• Number of Ports Scanned (N): 10,000.
• Average Number of Open Ports (k): 10.
• Probability of Success (p): Calculated as the average number of open ports divided

by the total number of ports (p = k
N).

With these parameters, the calculated entropy was approximately 9.02 for 1,000 port
scans, and 11.41 for 10,000 port scans.

42

7.4.2. ZIPF DISTRIBUTION
Under the Zipf distribution, we also explored two scenarios:

SCENARIO 1: 1,000 PORTS

• Number of Ports Scanned (N): 1,000.
• Average Number of Open Ports (k): 5.
• Exponent Parameter (s): Governs the distribution’s skewness. Calculated as s ≈ 1

ln(N
k)

to achieve a similar level of port popularity as in the Geometric Distribution.

SCENARIO 2: 10,000 PORTS

• Number of Ports Scanned (N): 10,000.
• Average Number of Open Ports (k): 10.
• Exponent Parameter (s): Governs the distribution’s skewness. Calculated as s ≈ 1

ln(N
k)

to achieve a similar level of port popularity as in the Geometric Distribution.
With these parameters, the calculated entropy was approximately 9.93 for 1,000 port

scans, and 13.27 for 10,000 port scans.

7.4.3. UNIFORM DISTRIBUTION
Under the Uniform distribution, we considered two scenarios:

SCENARIO 1: 1,000 PORTS

• Number of Ports Scanned (N): 1,000.

SCENARIO 2: 10,000 PORTS

• Number of Ports Scanned (N): 10,000.
With these parameters, the calculated entropy was approximately 9.96 for 1,000 ports,

and 13.29 for 10,000 ports.

7.5. ANALYSIS
In this section, we analyze the results obtained from the experiment. We compare the dif-
ferences in entropy when we increase the number of ports scanned (from 1,000 to 10,000)
while also taking into account the variations in entropy resulting from different probability
distributions.

COMPARISON BETWEEN GEOMETRIC AND ZIPF DISTRIBUTIONS

One of the central aspects of the experiment is comparing the Geometric and Zipf distribu-
tions in terms of their impact on fingerprint uniqueness. Our findings reveal the following
insights: When comparing the Geometric and Zipf distributions, we observe notable dif-
ferences in the resulting entropy values. Under similar scenarios, the Zipf distribution con-
sistently yields higher entropy compared to the Geometric distribution. This demonstrates
the impact of distribution skewness on fingerprint complexity.

As logically follows, due to the Zipf distribution being more uniform than the Geomet-
ric distribution, the uniqueness of the Zipf distribution is higher. This means that if the
popularity of certain applications is not as prevalent as we think it is, the entropy will be
even more unique. Nevertheless, the Geometric distribution already gives 9 bits of entropy
within 1 second of port scanning (1,000 ports).

43

IMPACT OF INCREASED SEARCH SPACE

Another aspect we explored is the influence of expanding the search space by increasing
the number of ports scanned. For the Geometric distribution, transitioning from scanning
1,000 ports with 5 average open ports (Scenario 1) to scanning 10,000 ports with 10 average
open ports (Scenario 2) resulted in a relatively modest increase in entropy, approximately
2.39 bits. This suggests that, for the Geometric distribution, the search space expansion
had a more incremental effect on fingerprint uniqueness. In contrast, the Zipf distribution
exhibited a more substantial impact when transitioning between scenarios. The entropy
increased by approximately 3.34 bits, emphasizing that the Zipf distribution’s effectiveness
in generating unique fingerprints becomes more pronounced with a larger search space.

On certain webpages where a user is expected to stay for a longer time, the search space
can be expanded to a higher number. When 1,000 ports are mapped to the most popular
applications currently opening a port, browser-based port scanning becomes a realistic
and powerful fingerprinting technique. Especially when ports outside the dynamic port
range are scanned, browser-based port scanning can be utilized for user-tracking, as most
ports will not be ephemeral.

It is important to emphasize that while a user is navigating a website, browser-based
port scanning can continue without interruption. A sophisticated scanning mechanism
can efficiently scan, and at the same time, relay the scan results back to a server. This
extends the scanning duration throughout the user’s entire session on the website, which
typically lasts much longer than one second. As a result, the search space can easily be
expanded to accommodate up to 10,000 ports or higher, depending on the website. The
larger the search space, the higher the entropy will be.

UNIFORM DISTRIBUTION COMPARISON

We also compared the Uniform distribution with both distributions. Notably, the Uniform
distribution exhibited similar entropy values to the Zipf distribution under similar scenar-
ios, despite the difference in the probability of detecting open ports.

REAL WORLD VALIDATION

We have integrated browser-based port scanning [vdL23b] within the popular FingerprintJS
library [Fin23], and we assessed that 1,000 ports can easily be scanned on any webpage, to-
gether with existing fingerprinting techniques, without noticeable impact on the end user.

7.6. CONCLUSION
In conclusion, our experiments show that browser-based port scanning is a realistic threat
to user anonymity on the internet, based on our assumptions. We have examined the im-
pact of different probability distributions (Geometric, Zipf, and Uniform) and the expan-
sion of search space on the entropy of fingerprints generated through port scanning. One
of the most important findings of this experiment is that regardless of the distribution used,
we consistently observed high levels of entropy, indicating the potential for creating highly
unique fingerprints through browser-based port scanning, within a short period of scan-
ning time (< 1 second).

This finding suggests that a fingerprint with an entropy of at least 9 can be generated
within roughly one second of scanning. When combined with existing fingerprinting tech-
niques, such as time zone, plugins, ad blocker, user-agent, fonts, screen resolution, etc., this

44

results in a cumulative entropy that exceeds 29 bits of entropy [GBLB18]. Narayanan [Nar12]
argues that an entropy of 33 bits is sufficient to uniquely identify users (233 = 8,59 billion),
an entropy that is realistic if the search space is large enough, emphasizing the threat that
browser-based port scanning poses to user anonymity on the internet.

In light of these findings, it is evident that browser-based port scanning can be a tool for
user profiling and tracking, especially when combined with existing fingerprinting tech-
niques. As such, it is imperative for users, and more importantly browser developers, to
be aware of these threats and take proactive measures to prevent unauthorized local port
scanning.

45

8
CONCLUSIONS AND DISCUSSION

In this document, we researched browser-based port scanning and drew the following con-
clusions based on our findings:

RQ1: How to choose the optimal port-scanning technique for a specific victim client
in combination with a specific attack goal?

We measured significant variations between different operating systems and scanning
techniques. The Fetch API emerged as the most effective JavaScript API for conducting
browser-based port scanning, and it proved to be highly efficient across various configura-
tions. This can primarily be attributed to the no-cors mode, a setting unique to the Fetch
API. A notable contrast was observed between Ubuntu and Windows. Ubuntu tended to
time out network requests whenever possible, whereas Windows adhered to the configured
socket timeout settings. This characteristic made browser-based port scanning consider-
ably more efficient on Ubuntu.

We estimate that on Windows/Chrome, which is the most popular combination of OS-
/Browser, it is possible to scan 1,000 ports within one second (2,500+ on Ubuntu). This
makes browser-based port scanning a practical real-world attack on virtually any web page.
This is especially concerning because the scanning process can continue throughout a
user’s entire session on the website, which usually lasts much longer than just one sec-
ond.

RQ2: What information can browser-based port scanning reveal about the underly-
ing operating system?

We found that operating systems by default do not expose ports that can be revealed
through a browser, with the exception of CUPS on Ubuntu. Most OS ports fall under the
restricted port range and cannot be detected through browser-based port scanning. How-
ever, when activating certain services on the OS, some of these services are detectable, such
as Hyper-V on Windows. Furthermore, both Windows and Ubuntu host a /etc/services
file which contains a mapping between ports and OS services. This mapping can be used
as a foundation for a targeted scan to fingerprint the underlying OS.

46

RQ3: What information can browser-based port scanning reveal about specific pro-
grams running locally on a user’s system?

Fingerprinting specific programs is more effective than fingerprinting the OS. We found
many programs from different categories that open a distinct port on the local system,
which can be revealed through browser-based port scanning. We argue that browser-based
port scanning can be used to track users by identifying open ports corresponding to spe-
cific applications, and is thereby a direct threat to user privacy/anonymity on the internet,
especially when combined with known fingerprinting techniques.

When we can successfully identify open ports and the associated programs, it provides
a detailed user profile that can be used for a multitude of purposes. These can include
personalized web pages or more nefarious use cases such as phishing attempts. Addition-
ally, this information could be exploited to scan for known exploits of specific programs. In
essence, the knowledge gained from these open ports not only undermines user privacy,
but also establishes a foundation for a range of potentially malicious activities.

RQ4: How unique are browser-based port scanning fingerprints?
We estimate that browser-based port scanning results in highly unique fingerprints,

even with a very limited scanning time of only one second. We emphasize that if a map-
ping between the top 1,000 most popular applications and their corresponding identifiable
ports is established, then scanning these 1,000 ports is sufficient to create highly unique
fingerprints. These fingerprints would possess an entropy exceeding 29 bits. This degree of
uniqueness is nearly enough to uniquely identify any user.

It is essential to note that these results are based on our estimates, and a large-scale real-
world study would be necessary to validate these claims in a real-world setting. Nonethe-
less, we believe that our estimates are not implausible, thousands of ports being either open
or closed is a significant characteristic that has been omitted from all existing browser fin-
gerprinting studies, and would greatly enhance these fingerprints.

BROWSER-BASED PORT SCANNING IS A THREAT TO USER PRIVACY AND SECURITY

The practice of browser-based port scanning poses a significant threat to user privacy. We
argue that browser-based port scanning should be banned by web browsers, or at the very
least, users should have to explicitly grant permissions for a website to access their local
network. We contend that any potential benefits, such as the detection of remote access
tools for comprised devices as a security measure, are outweighed by the risks to user pri-
vacy and security. Additionally, we think that using browser-based port scanning as a secu-
rity measure is inherently insufficient, and there are better — less intrusive — established
alternatives such as multi-factor authentication, which can prevent hijacked devices from
making unauthorized requests.

While the potential defensive mechanism of browser-based port scanning is insuffi-
cient, the threats are real. We established the following threats to privacy in this paper:

• Identification of specific open ports: Browser-based port scanning can be used to
scan specific ports on a system, corresponding to an application natively opening
that specific port. This knowledge can be leveraged to target users who are utilizing a
particular type of application or service.

• Highly unique fingerprints: Browser-based port scanning, combined with existing
fingerprinting techniques, can create highly unique fingerprints, effectively eliminat-
ing user anonymity on the internet.

47

While not a focus of this paper, the threats to security are also a significant considera-
tion:

• Drive-By Pharming [SRJ07]: Drive-by Pharming was an attack in which a malicious
web page, when visited, attempted to change a victim’s router DNS settings to gain
control over their internet traffic and potentially compromise their credentials.

• SOHO Pharming [Cym13]: SOHO Pharming was an attack that compromised over
300,000 consumer-grade SOHO routers, primarily in Europe and Asia since Decem-
ber 2013. Attackers manipulated DNS configurations, redirected DNS requests, and
performed Man-in-the-Middle attacks. The attack targeted various router models,
exploited vulnerabilities such as authentication bypass and CSRF techniques, and
took advantage of consumer unfamiliarity with router configurations and insecure
default settings.

OPT-IN SOLUTION FOR ENHANCED PRIVACY AND SECURITY

The only real benefit to accessing the local network would be a website integrating with its
native desktop application. Granting explicit permission for this access aligns with estab-
lished practices for various resources accessed by browsers, such as microphones and cam-
eras. The Brave browser has already implemented this functionality on both their desktop
and mobile browser [Bra23]. We argue that more mainstream browsers such as Chrome,
Firefox, Safari and Edge should adopt this change and give users more control over their
privacy.

West and Rigoudy [WR23] have worked on a draft specification to prevent unauthorized
private network access from the public internet. While this specification is still in draft
and not on track to be a W3C standard, we think it should be. The principle of least priv-
ilege is becoming more popular in modern software architecture. Software developed (i.e.
browsers) for end users should embrace this principle. By adopting the principle of least
privilege, software can ensure that users are protected by default, rather than exposed to
external threats by default, making it clear that the opt-in approach should be the standard
for safeguarding user security and privacy.

In the current landscape, users have several options available to protect themselves
against browser-based port scanning. One approach involves choosing browsers priori-
tizing user consent, like the Brave browser. However, transitioning to a new browser might
pose usability challenges despite its emphasis on privacy. Another strategy revolves around
disabling JavaScript, a step effective in enhancing privacy, but detrimental to modern web-
page functionality. A more realistic alternative is a browser extension, such as the open
source LAN Port Scan Forbidder [Wil23]. This extension prevents unauthorized access to
local networks. Nevertheless, relying on these measures highlights the conflict between
privacy and usability and underscores the need for default user privacy in online environ-
ments. Advocating for a shift where user privacy and security are default settings in modern
web browsers remains crucial. This approach would alleviate the need for users to resort
to these measures and promote a more user-centric approach to online privacy.

48

8.1. FUTURE WORK
REAL-WORLD VALIDATION

As we have demonstrated that browser-based port scanning can be used to enhance exist-
ing fingerprinting methods and create unique fingerprints, a logical follow-up would be to
assess its potential for user-tracking in a real world setting. The ability to identify and track
individuals across various online services and platforms has far-reaching consequences,
affecting not only personal privacy but also the potential for data abuse and exploitation.

Existing fingerprinting techniques can already identify users up to a certain point. How-
ever, as demonstrated in previous chapters, browser-based port scanning can enhance the
uniqueness of existing fingerprinting techniques, and can thereby increase the capabilities
of user-tracking. To evaluate the potential of browser-based port scanning in this regard,
conducting a large-scale user study becomes necessary. Such a study would gauge the ef-
fectiveness of user-tracking capabilities in a real world setting, when browser-based port
scanning is incorporated with existing fingerprinting techniques.

SCANNING PRIVATE NETWORKS

In our research, we primarily concentrated on using browser-based port scanning to scan
the localhost IP address. This focus was chosen because browser-based port scanning is a
time-intensive process, and the localhost IP address will generally be the most interesting
IP address to scan. However, it is important to note that browser-based port scanning can
be extended to scan other private IP addresses, which may reveal sensitive information.

BROWSER-BASED PORT SCANNING ON MOBILE

Preliminary research was conducted on using browser-based port scanning to scan mo-
bile devices. The initial findings did not yield any significant discoveries, but there exists
potential for further exploration in this area, as the preliminary research was surface-level
and did not dive deep into the network layer. Mobile devices have become a primary means
of accessing online services and platforms for a significant portion of the population. Un-
derstanding how browser-based port scanning behaves on mobile platforms is important,
as it may have unique implications and challenges compared to desktop environments.

UNSAFE PORTS

As mentioned in our research, unsafe or restricted ports refer to a range of ports that are
blocked by the browser. No information can be obtained from these ports, and this is a
big limitation of browser-based port scanning. Critical ports hosting OS services such as
FTP, SSH, and SMTP are protected by this rule, and we cannot obtain information about
them. However, as described in the documentation by Mozilla [Moz07], there are protocol
specific exceptions that are able to access these ports, such as the FTP, POP3 and IMAP
protocols. Leveraging these protocols or finding a different way to bypass the restriction of
unsafe ports is a topic for further exploration.

49

SCIENTIFIC REFERENCES

[AEE+14] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 674–689, 2014.

[Arc08] Iván Arce. Vulnerability management at the crossroads. Network Security,
2008:11–13, 2008.

[BFGI12] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre. User
tracking on the web via cross-browser fingerprinting. In Information Secu-
rity Technology for Applications: 16th Nordic Conference on Secure IT Systems,
pages 31–46. Springer, 2012.

[dVCIdV99] Marco de Vivo, Eddy Carrasco, Germinal Isern, and Gabriela O de Vivo. A re-
view of port scanning techniques. ACM SIGCOMM Computer Communication
Review, 29(2):41–48, 1999.

[Eck10] Peter Eckersley. How unique is your web browser? In Privacy Enhancing Tech-
nologies: 10th International Symposium, pages 1–18. Springer, 2010.

[EJA13] Omar Elejla, Aman Jantan, and Abdulghani Ahmed. Three layers approach for
network scanning detection. Journal of Theoretical and Applied Information
Technology, 2013.

[END11] Nazar El-Nazeer and Kevin Daimi. Evaluation of network port scanning tools.
In Proceedings of the International Conference on Security and Management
(SAM), page 1. The Steering Committee of The World Congress in Computer
Science, 2011.

[GBLB18] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. Hiding in the
crowd: an analysis of the effectiveness of browser fingerprinting at large scale.
In Proceedings of the 2018 world wide web conference, pages 309–318, 2018.

[Jam01] Shaun Jamieson. The ethics and legality of port scanning. SANS Institute,
2001.

[JKV19] Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. Fingerprint surface-based
detection of web bot detectors. In Proc. 24th European Symposium on Research
in Computer Security Part II (ESORICS’19), volume 11736 of LNCS, pages 586–
605. Springer, 2019.

[KDD14] Sumit Kumar, Sumit Dalal, and Vivek Dixit. The osi model: Overview on the
seven layers of computer networks. International Journal of Computer Science
and Information Technology Research, 2(3):461–466, 2014.

50

[KJK22] Benjamin Krumnow, Hugo Jonker, and Stefan Karsch. How gullible are web
measurement tools? a case study analysing and strengthening openwpm’s re-
liability. In Proc. 18th International Conference on emerging Networking EX-
periments and Technologies (CoNEXT’22), pages 171–186. ACM, 2022.

[KL21] Dhruv Kuchhal and Frank Li. Knock and talk: investigating local network com-
munications on websites. In Proceedings of the 21st ACM Internet Measure-
ment Conference, pages 550–568, 2021.

[KSNU11] Saranga Komanduri, Richard Shay, Greg Norcie, and Blase Ur. Adchoices-
compliance with online behavioral advertising notice and choice require-
ments. ISJLP, page 603, 2011.

[LRB16] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and the
beast: Diverting modern web browsers to build unique browser fingerprints.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 878–894. IEEE,
2016.

[Lyo09] Gordon Fyodor Lyon. Nmap Network Scanning: The Official Nmap Project
Guide to Network Discovery and Security Scanning. Insecure, Sunnyvale, CA,
USA, 2009.

[MBYS11] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. Finger-
printing information in javascript implementations. Proceedings of W2SP,
2(11), 2011.

[MM12] Jonathan R. Mayer and John C. Mitchell. Third-party web tracking: Policy and
technology. In 2012 IEEE Symposium on Security and Privacy, pages 413–427,
2012.

[MRKC09] Aleecia M McDonald, Robert W Reeder, Patrick Gage Kelley, and Lorrie Faith
Cranor. A comparative study of online privacy policies and formats. In Privacy
Enhancing Technologies: 9th International Symposium, PETS 2009, pages 37–
55. Springer, 2009.

[MS12] Keaton Mowery and Hovav Shacham. Pixel perfect: Fingerprinting canvas in
html5. Proceedings of W2SP, 2012, 2012.

[Nar12] Arvind Narayanan. 33 bits of entropy: Myths and fallacies of “personally iden-
tifiable information”. Tiny Trans. Comput. Sci., 1, 2012.

[Nis99] Helen Nissenbaum. The meaning of anonymity in an information age. The
Information Society, 15(2):141–144, 1999.

[NKJ+13] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In 2013 IEEE Symposium on
Security and Privacy, pages 541–555. IEEE, 2013.

[OP11] Angela Orebaugh and Becky Pinkard. Nmap in the enterprise: your guide to
network scanning. Elsevier, 2011.

51

[RML21] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. Sok: In search of
lost time: A review of javascript timers in browsers. In 2021 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 472–486. IEEE, 2021.

[SRJ07] Sid Stamm, Zulfikar Ramzan, and Markus Jakobsson. Drive-by pharming.
In Information and Communications Security: 9th International Conference,
pages 495–506. Springer, 2007.

[Vaj14] Sriram Vajapeyam. Understanding shannon’s entropy metric for information.
arXiv preprint arXiv:1405.2061, 2014.

[Vlo18] Gabry Vlot. Automated data extraction; what you see might not be what you
get. Master’s thesis, Open University, 2018.

[YDYM20] Chao Yuan, Jinze Du, Min Yue, and Tao Ma. The design of large scale ip address
and port scanning tool. Sensors, 20(16):4423, 2020.

[YXY+12] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin Abadi. Host
fingerprinting and tracking on the web: Privacy and security implications. In
NDSS, volume 62, page 66, 2012.

52

ARTIFACTS

[Fin23] Fingerprint.js. Fingerprint.js GitHub Repository. https://github.com/finge
rprintjs/fingerprintjs, 2023. Accessed: November 19, 2023.

[Goo12] Google. Chrome restricted ports. https://chromium.googlesource.com/ch
romium/src.git/+/refs/heads/master/net/base/port_util.cc, 2012.
Accessed: November 19, 2023.

[Goo20] Google. WebRTC disallow pairing ICE-TCP with a local ip address. https://we
brtc.googlesource.com/src.git/+/712ebbb5b73baf30f11711efdceb6f08
248fac38%5E%21/#F0, February 2020. Accessed: November 19, 2023.

[Ope23] OpenWPM. OpenWPM GitHub Repository. https://github.com/openwpm/O
penWPM, January 31 2023. Accessed: April 29, 2023.

[vdL23a] Bas van de Louw. Port scanner application. https://github.com/Basvdlouw
/port-scanner, December 2023. Accessed: December 5, 2023.

[vdL23b] Bas van de Louw. Port scanning implementation integrated within FingerprintJS
library. https://github.com/fingerprintjs/fingerprintjs/pull/949/fi
les, September 2023. Accessed: December 5, 2023.

[Wil23] Gary Will. LAN Port scan forbidder GitHub Repository. https://github.com/g
arywill/LAN-port-scan-forbidder, 2023. Accessed: December 1, 2023.

53

https://github.com/fingerprintjs/fingerprintjs
https://github.com/fingerprintjs/fingerprintjs
https://chromium.googlesource.com/chromium/src.git/+/refs/heads/master/net/base/port_util.cc
https://chromium.googlesource.com/chromium/src.git/+/refs/heads/master/net/base/port_util.cc
https://webrtc.googlesource.com/src.git/+/712ebbb5b73baf30f11711efdceb6f08248fac38%5E%21/#F0
https://webrtc.googlesource.com/src.git/+/712ebbb5b73baf30f11711efdceb6f08248fac38%5E%21/#F0
https://webrtc.googlesource.com/src.git/+/712ebbb5b73baf30f11711efdceb6f08248fac38%5E%21/#F0
https://github.com/openwpm/OpenWPM
https://github.com/openwpm/OpenWPM
https://github.com/Basvdlouw/port-scanner
https://github.com/Basvdlouw/port-scanner
https://github.com/fingerprintjs/fingerprintjs/pull/949/files
https://github.com/fingerprintjs/fingerprintjs/pull/949/files
https://github.com/garywill/LAN-port-scan-forbidder
https://github.com/garywill/LAN-port-scan-forbidder

ARTICLES

[Bai19] Jacob Baines. Using WebRTC ICE Servers for Port Scanning in Chrome. https:
//medium.com/tenable-techblog/using-webrtc-ice-servers-for-por
t-scanning-in-chrome-ce17b19dd474, December 20 2019. Accessed: May 27,
2023.

[Ble20] Bleeping Computer. eBay port scans visitors’ computers for remote access pro-
grams. https://www.bleepingcomputer.com/news/security/ebay-port-s
cans-visitors-computers-for-remote-access-programs/, May 25 2020.
Accessed: April 29, 2023.

[Bra23] Brave. Brave Localhost Resource Permission. https://brave.com/privacy-upd
ates/27-localhost-permission/, June 2023. Accessed: November 19, 2023.

[Chr19] Chromium. ChromeDriver Bug Tracker: Issue 3220. https://bugs.chromium.
org/p/chromedriver/issues/detail?id=3220, November 10 2019. Accessed:
April 29, 2023.

[Sel23] Selenium. Selenium: An open source automation testing framework. https://ww
w.selenium.dev/, April 24 2023. Accessed: April 29, 2023.

[Win20] Davey Winder. Did You Know eBay Is Probing Your Computer? Here’s How to Stop
It. https://www.forbes.com/sites/daveywinder/2020/05/25/did-you-k
now-ebay-is-probing-your-computer-heres-how-to-stop-it-windows
-privacy-chrome-firefox-web-browser/?sh=24852bec3a92, May 25 2020.
Accessed: April 29, 2023.

[Zla18] Alexander Zlatkov. How JavaScript Works Inside the Networking Layer: How to
Optimize Its Performance and Security. https://medium.com/sessionstack-b
log/how-javascript-works-inside-the-networking-layer-how-to-optim
ize-its-performance-and-security-f71b7414d34c, April 12 2018. Accessed:
April 29, 2023.

54

https://medium.com/tenable-techblog/using-webrtc-ice-servers-for-port-scanning-in-chrome-ce17b19dd474
https://medium.com/tenable-techblog/using-webrtc-ice-servers-for-port-scanning-in-chrome-ce17b19dd474
https://medium.com/tenable-techblog/using-webrtc-ice-servers-for-port-scanning-in-chrome-ce17b19dd474
https://www.bleepingcomputer.com/news/security/ebay-port-scans-visitors-computers-for-remote-access-programs/
https://www.bleepingcomputer.com/news/security/ebay-port-scans-visitors-computers-for-remote-access-programs/
https://brave.com/privacy-updates/27-localhost-permission/
https://brave.com/privacy-updates/27-localhost-permission/
https://bugs.chromium.org/p/chromedriver/issues/detail?id=3220
https://bugs.chromium.org/p/chromedriver/issues/detail?id=3220
https://www.selenium.dev/
https://www.selenium.dev/
https://www.forbes.com/sites/daveywinder/2020/05/25/did-you-know-ebay-is-probing-your-computer-heres-how-to-stop-it-windows-privacy-chrome-firefox-web-browser/?sh=24852bec3a92
https://www.forbes.com/sites/daveywinder/2020/05/25/did-you-know-ebay-is-probing-your-computer-heres-how-to-stop-it-windows-privacy-chrome-firefox-web-browser/?sh=24852bec3a92
https://www.forbes.com/sites/daveywinder/2020/05/25/did-you-know-ebay-is-probing-your-computer-heres-how-to-stop-it-windows-privacy-chrome-firefox-web-browser/?sh=24852bec3a92
https://medium.com/sessionstack-blog/how-javascript-works-inside-the-networking-layer-how-to-optimize-its-performance-and-security-f71b7414d34c
https://medium.com/sessionstack-blog/how-javascript-works-inside-the-networking-layer-how-to-optimize-its-performance-and-security-f71b7414d34c
https://medium.com/sessionstack-blog/how-javascript-works-inside-the-networking-layer-how-to-optimize-its-performance-and-security-f71b7414d34c

REGULATORY AND LEGAL DOCUMENTS

[Eur16] European Commission. Regulation (EU) 2016/679 of the European Parliament and
of the Council on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation) (Text with EEA relevance), 2016.

[Eur20] European Data Protection Board. EDPB Decision: Lawfulness of Port Scanning.
https://edpb.europa.eu/sites/default/files/article-60-final-decis
ions/debb_2020-10_lawfulness_of_the_processing_decisionpublic_re
dacted.pdf, October 13 2020.

55

https://edpb.europa.eu/sites/default/files/article-60-final-decisions/debb_2020-10_lawfulness_of_the_processing_decisionpublic_redacted.pdf
https://edpb.europa.eu/sites/default/files/article-60-final-decisions/debb_2020-10_lawfulness_of_the_processing_decisionpublic_redacted.pdf
https://edpb.europa.eu/sites/default/files/article-60-final-decisions/debb_2020-10_lawfulness_of_the_processing_decisionpublic_redacted.pdf

TECHNICAL REPORTS

[Cym13] Team Cymru. Soho pharming. https://331.cybersec.fun/TeamCymruSOHO
Pharming.pdf, 2013.

[FM11] Ian Fette and Alexey Melnikov. Rfc 6455: The websocket protocol, 2011.

[ian23] Service Name and Transport Protocol Port Number Registry. https://www.ia
na.org/assignments/service-names-port-numbers/service-names-por
t-numbers.txt, November 2023.

[Moz07] Mozilla. Firefox restricted ports. https://www-archive.mozilla.org/proje
cts/netlib/portbanning, Aug 2007.

[Moz23a] Mozilla. Cross-Origin Network Access. https://developer.mozilla.org/en
-US/docs/Web/Security/Same-origin_policy#cross-origin_network_
access, October 2023.

[Moz23b] Mozilla. Mozilla Same-Origin Policy. https://developer.mozilla.org/en-U
S/docs/Web/Security/Same-origin_policy, October 2023.

[W3C10] W3C. W3C Same Origin Policy. https://www.w3.org/Security/wiki/Same_
Origin_Policy, January 6 2010.

[WHA23] WHATWG. CORS Protocol. https://fetch.spec.whatwg.org/#http-cors-p
rotocol, 2023.

[WR23] Mike West and Titouan Rigoudy. Private network access. https://wicg.githu
b.io/private-network-access/, July 25 2023.

56

https://331.cybersec.fun/TeamCymruSOHOPharming.pdf
https://331.cybersec.fun/TeamCymruSOHOPharming.pdf
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www-archive.mozilla.org/projects/netlib/portbanning
https://www-archive.mozilla.org/projects/netlib/portbanning
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_network_access
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_network_access
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_network_access
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cors-protocol
https://wicg.github.io/private-network-access/
https://wicg.github.io/private-network-access/

A
APPENDIX A: SCANNING TECHNIQUES

COMPARISON

A.1. EXPERIMENT PARAMETERS
• Operating system:

– Windows 10.0.19042.1889
– Ubuntu 22.04 (LTS)

• Browser:
– Chrome 114.0.5735.91
– FireFox 115.0.2

• Scanning technique:
– Fetch
– XHR
– WebSocket

• Socket settings:
– Parallel sockets: 1, 5, 10, 20, 30, 40, 50, 60, 70, 100, 150, 200, 250
– Socket timeout settings: 100ms, 150ms, 200ms, 250ms, 300ms, 400ms

• Artificially opened ports:
– N HTTP servers: 10, 33, 50, 100

i

A.2. SOCKET TIMEOUT COMPARISON

Base Image Browser Socket timeout (ms) Scanning
Technique

Detected
ports

mcr.microsoft.com/windows:20H2-amd64 Chrome 100 Fetch 76
mcr.microsoft.com/windows:20H2-amd64 Chrome 150, 200, 250, 300,

350, 400
Fetch 100

mcr.microsoft.com/windows:20H2-amd64 Chrome 100, 150, 200, 250,
300, 350, 400, 1000

WebSocket,
XHR

0

mcr.microsoft.com/windows:20H2-amd64 Firefox 100 Fetch 21
mcr.microsoft.com/windows:20H2-amd64 Firefox 150, 200, 250, 300,

350, 400
Fetch 100

mcr.microsoft.com/windows:20H2-amd64 Firefox 100, 150, 200, 250,
300, 350, 400, 1000

WebSocket,
XHR

0

library/ubuntu:22.04 Chrome 100, 150, 200, 250,
300, 350, 400

Fetch 100

library/ubuntu:22.04 Chrome 100, 150, 200, 250,
300, 350, 400

WebSocket,
XHR

0

library/ubuntu:22.04 Firefox 100, 150, 200, 250,
300, 350, 400

Fetch 100

library/ubuntu:22.04 Firefox 100, 150, 200, 250,
300, 350, 400

WebSocket,
XHR

0

Table A.1: Number of ports detected based on socket timeout setting (100 open ports), scans were rerun 5
times to verify the accuracy of the results.

ii

A.3. SCANNING TECHNIQUE EFFICACY COMPARISON

Base Image Scanning
Tech-
nique

Open Ports Ports De-
tected

Scan Duration
(ms)

mcr.microsoft.com/windows:20H2-amd64 Fetch 10 10 1282.6
mcr.microsoft.com/windows:20H2-amd64 Fetch 33 33 1313.5
mcr.microsoft.com/windows:20H2-amd64 Fetch 50 50 13153.8
mcr.microsoft.com/windows:20H2-amd64 Fetch 100 100 1177.4

mcr.microsoft.com/windows:20H2-amd64 WebSocket 10 0 1463.5
mcr.microsoft.com/windows:20H2-amd64 WebSocket 33 0 1454.0
mcr.microsoft.com/windows:20H2-amd64 WebSocket 50 0 1464.3
mcr.microsoft.com/windows:20H2-amd64 WebSocket 100 0 1457.1

mcr.microsoft.com/windows:20H2-amd64 XHR 10 0 1277.4
mcr.microsoft.com/windows:20H2-amd64 XHR 33 0 1303.3
mcr.microsoft.com/windows:20H2-amd64 XHR 50 0 1313.5
mcr.microsoft.com/windows:20H2-amd64 XHR 100 0 1097.2

library/ubuntu:22.04 Fetch 10 10 104.5
library/ubuntu:22.04 Fetch 33 33 133.4
library/ubuntu:22.04 Fetch 50 50 160.9
library/ubuntu:22.04 Fetch 100 100 209.4

library/ubuntu:22.04 WebSocket 10 0 1217.6
library/ubuntu:22.04 WebSocket 33 0 1216.5
library/ubuntu:22.04 WebSocket 50 0 1260.0
library/ubuntu:22.04 WebSocket 100 0 1216.6

library/ubuntu:22.04 XHR 10 0 98.3
library/ubuntu:22.04 XHR 33 0 135.3
library/ubuntu:22.04 XHR 50 0 154.2
library/ubuntu:22.04 XHR 100 0 231.9

Table A.2: Scanning techniques comparison on Chrome detecting HTTP ports. 50 parallel connections,
200ms socket timeout, 300 ports scanned.

iii

Base Image Scanning
Tech-
nique

Open Ports Ports De-
tected

Scan Duration
(ms)

mcr.microsoft.com/windows:20H2-amd64 Fetch 10 10 2553
mcr.microsoft.com/windows:20H2-amd64 Fetch 33 33 2561
mcr.microsoft.com/windows:20H2-amd64 Fetch 50 50 2552
mcr.microsoft.com/windows:20H2-amd64 Fetch 100 100 2386

mcr.microsoft.com/windows:20H2-amd64 WebSocket 10 0 2627
mcr.microsoft.com/windows:20H2-amd64 WebSocket 33 0 2629
mcr.microsoft.com/windows:20H2-amd64 WebSocket 50 0 2511
mcr.microsoft.com/windows:20H2-amd64 WebSocket 100 0 2284

mcr.microsoft.com/windows:20H2-amd64 XHR 10 0 2536
mcr.microsoft.com/windows:20H2-amd64 XHR 33 0 2569
mcr.microsoft.com/windows:20H2-amd64 XHR 50 0 2592
mcr.microsoft.com/windows:20H2-amd64 XHR 100 0 2308

library/ubuntu:22.04 Fetch 10 10 286
library/ubuntu:22.04 Fetch 33 33 307
library/ubuntu:22.04 Fetch 50 50 282
library/ubuntu:22.04 Fetch 100 100 299

library/ubuntu:22.04 WebSocket 10 0 268
library/ubuntu:22.04 WebSocket 33 0 276
library/ubuntu:22.04 WebSocket 50 0 290
library/ubuntu:22.04 WebSocket 100 0 270

library/ubuntu:22.04 XHR 10 0 254
library/ubuntu:22.04 XHR 33 0 297
library/ubuntu:22.04 XHR 50 0 287
library/ubuntu:22.04 XHR 100 0 307

Table A.3: Scanning techniques comparison on Firefox detecting HTTP ports. 50 parallel connections, 400ms
timeout, 300 ports scanned.

Note that the results in Tables A.2 and A.3 do not mark ports as detected if they can be
detected through post-scan analysis. The next section showcases the ability to detect open
ports through post-scan analysis.

A.4. POST-SCAN ANALYSIS EFFICACY COMPARISON
Scanning technique comparison through post-scan analysis. Comparing response times
between open and closed ports.

iv

Figure A.1: Windows/Chrome Fetch API scan du-
ration open vs closed ports

Figure A.2: Windows/Chrome XHR API scan du-
ration open vs closed ports

Figure A.3: Windows/Chrome WebSocket API
scan duration open vs closed ports

Figure A.4: Ubuntu/Chrome Fetch API scan du-
ration open vs closed ports

Figure A.5: Ubuntu/Chrome XHR API scan dura-
tion open vs closed ports

Figure A.6: Ubuntu/Chrome WebSocket API scan
duration open vs closed ports

Figure A.7: Windows/Firefox Fetch API scan du-
ration open vs closed ports

Figure A.8: Windows/Firefox XHR API scan dura-
tion open vs closed ports

v

Figure A.9: Windows/Firefox WebSocket API scan
duration open vs closed ports

Figure A.10: Ubuntu/Firefox Fetch API scan du-
ration open vs closed ports

Figure A.11: Ubuntu/Firefox XHR API scan dura-
tion open vs closed ports

Figure A.12: Ubuntu/Firefox WebSocket API scan
duration open vs closed ports

vi

A.5. SCANNING TECHNIQUES EFFICIENCY COMPARISON

Figure A.13: Windows/Chrome Parallel sockets
efficiency comparison

Figure A.14: Ubuntu/Chrome Parallel sockets ef-
ficiency comparison

Figure A.15: Ubuntu/Firefox Parallel sockets effi-
ciency comparison

Figure A.16: Windows/Firefox Parallel sockets ef-
ficiency comparison

vii

	Introduction
	Research Questions
	Background
	Port scanning
	Browser-based vs. Regular Port scanning
	Ethics and Legality

	Related Work
	Browser Fingerprinting
	Fingerprinting the local network
	Identifying web automation bots
	Port scanning via the browser

	Estimating the optimal port scanning technique
	Definitions
	Background
	Scanning techniques overview

	Experiment Setup
	Application design
	Docker Containerization

	Experiment 1: Estimating the optimal socket timeout setting
	Motivation
	Experiment Target
	Experiment Results
	Analysis

	Experiment 2: Estimating the most effective scanning technique
	Motivation
	Experiment Target
	Experiment Results
	Analysis

	Experiment 3: Estimating the most efficient scanning technique
	Motivation
	Experiment Target
	Experiment Results
	Analysis

	Experiments Conclusions

	Fingerprinting Applications
	Fingerprinting the underlying operating system
	Motivation
	Experiment Target
	Experiment Setup
	Experiment Results
	Analysis
	Conclusion

	Identifying running programs
	Motivation
	Experiment Target
	Experiment Setup
	Experiment Results
	Analysis
	Conclusion

	Identifying specific program states

	Estimating the Entropy of Browser-Based Port Scanning
	Background
	Selection of Probability Distributions
	Experiment Setup
	Results
	Geometric Distribution
	Zipf Distribution
	Uniform Distribution

	Analysis
	Conclusion

	Conclusions and Discussion
	Future work

	Scientific References
	Artifacts
	Articles
	Regulatory and Legal Documents
	Technical Reports
	Appendix A: Scanning techniques comparison
	Experiment Parameters
	Socket timeout comparison
	Scanning technique efficacy comparison
	Post-scan analysis efficacy comparison
	Scanning techniques efficiency comparison

