
Preparing Passports for the
Post Quantum Era

Securing Travel Documents with Post Quantum Cryptography

Master thesis

by

Siebren Lepstra

Student number: 852064786
Course code: IM9906
Thesis committee: dr. Greg Alpár, Radboud University, Open University

dr. ir. Hugo Jonker, Open University

CONTENTS

1 Introduction . 6

2 Related work . 9

3 Post-quantum threats to the eMRTD security mechanisms 13

3.1 Basic Access Control (BAC) . 13

3.2 Password Authenticated Connection Establishment (PACE) 15

3.3 Passive Authentication (PA) . 19

3.4 Active Authentication (AA) . 21

3.5 Chip Authentication (CA) . 23

3.6 Terminal Authentication (TA). 25

4 Research . 28

4.1 NIST standardization candidates . 29

4.2 Stateful hash-based signature schemes 31

4.3 Scope . 32

5 Best suited algorithm for passive authentication 34

5.1 Benchmarking within the Java JVM 35

5.2 Algorithm benchmark results . 37

6 post-quantum PKI for passive authentication 40

6.1 Passive authentication X.509 certificate requirements 40

6.2 Benchmarking certificate properties 41

6.3 Algorithm selection . 42

7 post-quantum chip signing and verification 45

8 Discussion . 49

8.1 Limitations . 50

9 Conclusion . 52

9.1 Future work . 52

A Bouncy Castle algorithm OID overview . 55

B Best suited algorithm extended results . 57

C X.509 PQC benchmark results . 59

1

D Related software . 61

References . 62

2

ACRONYMS

AA Active Authentication. 7, 21

APDU Application Protocol Data Unit. 45

BAC Basic Access Control. 7

BSI Bundesamt für Sicherheit in der Informationstechnik. 24

CA Chip Authentication. 7, 16

CAN Card Access Number. 16

CMS Cryptographic Message Syntax. 45

CSCA Country Signing Certificate Authority. 7, 19

CVC Card Verifiable Certificates. 25

CVCA Country Verifying Certificate Authority. 25

DH Diffie-Hellman. 15, 16

DS Document Signer. 7, 19

DVCA Document Verifying Certificate Authority. 25

EAC Extended Access Control. 7, 25, 52

ECDH Elliptic Curve Diffie-Hellman. 15, 16

EEPROM Electrically Erasable Programmable Read-only Memory. 11

EF.SOD Document Security Object. 19, 45

eMRTD Electronic Machine Readable Travel Document. 6, 8, 10, 11, 19

ENISA European Union Agency for Cybersecurity. 11, 32

ICAO International Civil Aviation Organisation. 6

IS Inspection System. 25

JMH Java Microbenchmarking Harness. 36

3

KEM Key Encapsulation. 53

KEX Key Exchange. 53

LDS Logical Data Structure. 6, 19, 45

MRZ Machine Readable Zone. 13, 16

NIST National Institute of Standards and Technology. 9

NPKD National Public Key Directory. 19

OTS One-Time Signature Scheme. 9, 31

PA Passive Authentication. 7, 9, 22

PACE Password Authenticated Connection Establishment. 7

PKI Public Key Infrastructure. 7, 19, 25

SSC Send Sequence Counter. 13

TA Terminal Authentication. 7, 25

4

ABSTRACT

Quantum computers pose a significant threat to electronic machine readable travel
documents, such as passports, which are used for long periods, from 10 to 15 years.
This long lifespan of these documents makes the potential impact of quantum
computers even more critical, as the current security protocols rely on classical
asymmetric cryptography which will be vulnerable in a post-quantum era. In par-
ticular, passive authentication, the protocol responsible for safeguarding the in-
tegrity of the travel document, is at risk. This research evaluates and benchmarks
three quantum-resistant signature algorithms currently being standardized by NIST:
Dilithium, Falcon, and SPHINCS+. The findings indicate that Dilithium and Fal-
con are well-suited to replace the Public Key Infrastructure (PKI) used in passive
authentication due to their small digital footprint. SPHINCS+ is, by contrast, less
suitable for this application due to its large signature size. Consequently, this study
establishes a new quantum-resistant PKI and eMRTD, marking a significant step
forward in securing travel documents against future quantum threats.

5

1. INTRODUCTION

Quantum computing promises to make traditional approaches to cryptography ob-
solete. Asymmetric cryptography is based on mathematical problems that are hard
to solve for traditional computers. Not for quantum computers: by running Shor’s
algorithm [Sho97], they can efficiently break these problems. This has led to a signifi-
cant research effort into so-called post-quantum cryptography, that is, cryptographic
building blocks that are resistant to quantum computing. Designing post-quantum
cryptography is only the first step though. Cryptography is widely deployed and in
every-day use, both in software (e.g., browsers, messaging apps, and video calling
apps) and in hardware (e.g., access tokens such as access cards, passports, and pub-
lic transport cards). While changing the cryptographic primitives of software is rel-
atively straightforward (i.e., update the software), this is not true for hardware. For
example, it is not clear whether the hardware design of the tokens or of their readers
needs to be updated to accommodate post-quantum cryptography. Answering such
questions naturally depends on which post-quantum algorithms are to be used. This
research proposal aims to investigate these questions for passports, that is, this pro-
posal aims to find out how to make passports post-quantum proof.

Passports are not exclusive to the modern era, the first known written permission to
travel was discovered in the Hebrew Bible (Nehemiah 2:7–9, around 450 BC) [DD92].
In medieval times, safe conducts were provided by monarchs to provide safe passage
through the kingdom [McH21]. Although the safe-conducts have similarities with
modern passports, it did not define an individual’s citizenship at the time [McH21].
The modern variant of the passport began taking its shape starting in 1968 where the
International Civil Aviation Organisation (ICAO) started work on Electronic Machine
Readable Travel Document (eMRTD)s and the first edition of the ICAO Doc. 9303
was released in 1980 [ICA21a]. The ICAO 9303 is the standardization document for
electronic travel documents. In the late eighties, discussion began about integrating
a chip in the passport to improve the level of security of travel documents [DD92].
The standardization of the chip structure (LDS) and the required infrastructure for
electronic travel documents was introduced into the sixth edition of the ICAO 9303
in 2006 [ICA21a]. Also today, passports are an important part of securing the national
borders.

Passports are secured physically and, if they contain a chip, also digitally. When the
passport is equipped with a chip, it is called an Electronic Machine Readable Travel
Document (eMRTD). The International Civil Aviation Organisation (ICAO) has stan-
dardized [ICA21b, ICA21c, ICA21d] the protocols, mechanisms and infrastructures
which are required in order to establish secure access to the chip, achieve data in-
tegrity and authenticity and to prevent unauthorized access to privacy-sensitive ele-
ments of the passport. The data of a passport is secured on the chip in such a way,

6

that physical access is required to read the chip data of a travel document. In order
to read a travel document, Basic Access Control (BAC) or Password Authenticated
Connection Establishment (PACE) must be performed. Since 2018, PACE-only ac-
cess has become mandatory for documents issued [ICA21c]. After performing BAC or
PACE, electronic access is granted to the (electronic counterparts of the) less privacy-
sensitive visible parts of the eMRTD, which corresponds with the visible data on the
holder page of the travel document. Optionally, privacy-sensitive information such
as fingerprints and other biometric features may be stored in the chip [ICA21c]. For
documents in the EU, this is a mandatory requirement for fingerprints. The privacy-
sensitive parts of the document, can only be accessed by performing Extended Access
Control (EAC). EAC performs Chip Authentication (CA) and Terminal Authentication
(TA) consecutively. CA establishes a secure channel between the chip and the reader
using a Diffie-Hellman key agreement and TA determines if the terminal reading the
document is genuine and allowed to read the contents of the privacy-sensitive data
on the chip [RS14]. The chip is also secured against unauthorized modifications by
Passive Authentication (PA) [ICA21c]. Examples of modifications are altering per-
sonal details of the passport holder to avoid detection or changing security informa-
tion such as the public key stored in data groups 14 and 15 used for AA and CA. PA is
the verification process of verifying the signed data of the passport by using a Public
Key Infrastructure (PKI) and its chain of trust in order to determine if a document
is genuine. When a passport is produced, the hashes of the data on the passport is
signed by a Document Signer (DS) and the signature and the document signer are
stored on the chip. When performing a check at the border, the document signer is
checked to verify that it is signed by a trusted Country Signing Certificate Authority
(CSCA). Subsequently, the signature of the data groups is checked in order to verify
if the passport is not modified. This is the most important process of document ver-
ification, because this process distinguishes forgeries from genuine passports. An-
other security measure is Active Authentication (AA) to counter cloning of the chip
[ICA21c]. This process performs a challenge-response protocol based on the private
key located in a secure location of the chip. This secure location can only be accessed
by the chip itself, so when a cloned chip performs AA, the process will fail because
the cloned chip does not have the original key of the cloned passport. When using a
wrong private key during active authentication, the only conclusion for the reader is
that the passport has been cloned.

Each mentioned protocol and implementation uses symmetric and asymmetric cryp-
tosystems [ICA21c]. The imminent arrival of quantum computing is a threat for these
cryptosystems. The used asymmetric cryptosystems are vulnerable due to Shor’s
quantum algorithms for computing prime factorisation and discrete logarithms [Sho97];
symmetric cryptosystems are vulnerable due to Grover’s algorithm, which speeds up
key recovery attacks [Gro96]. The key strength in bits of symmetric algorithms are cut

7

in half in a post-quantum era [RMYK17]. This would mean for example that the key
strength of AES256 is reduced to 128 bits. Another cryptographic method that is used
alongside the eMRTD protocols is hashing [ICA21c]. Similar to the symmetric cryp-
tosystems, hashing algorithms are vulnerable to Grover’s algorithm combined with
the birthday paradox for collision attacks [MVZJ18, BHT98]. However, such attacks
are expensive to perform on a quantum computer and the most efficient quantum
algorithm for finding collisions reduces the search domain of n-bit hash algorithms
to 2n/2 [Ber09]. SHA-2 and SHA-3 implementations are still considered safe in a post-
quantum era [MVZJ18].

The NIST suggests that engineers expect to have a well functioning quantum com-
puter within the next two decades [MCJ+16]. As a general rule of thumb predicting
the urgency of the quantum threat, we use the formula x+y > z from [Mos18], where
x is the required lifetime of protecting security information and y the time required
to implement quantum safe protocols. The last parameter z in the formula is the
time left for a capable quantum computer to arrive. The article predicts that there is
a 1/2 chance to break RSA-2048 in 2031 [Mos18]. In the case of travel documents, x
is the lifetime of the keys of a passport, which is 13–15 years. The measurement of y
is not even required to see that 13(+y) > 8 at this point. This means that the integrity
of currently issued travel documents is seriously at risk.

Our contributions:

• Benchmark of the NIST standardization candidates (signature algorithms) on
Java level using the Bouncy Castle library in Java.

• Benchmark of the NIST standardization candidates used in X.509 certificates
using the Bouncy Castle library in Java.

• A ICAO 9303 compliant PKI (excluding cryptography requirements) using post-
quantum algorithms.

• A proof of concept quantum resistant eMRTD implementation of passive au-
thentication.

8

2. RELATED WORK

Research of post-quantum cryptography is active and ongoing. The National In-
stitute of Standards and Technology (NIST) is currently reviewing potential post-
quantum algorithms to be standardized [AASA+19, AASA+20, AAC+22]. Also research
has been done on the possibilities of potentially implementing these candidates in
travel documents for specifically PA [PM20]. The focus of this research is to review
the processes impacted by the quantum computer and to provide a proof of con-
cept of the processes involved securing the eMRTD that will be impacted. The NIST
started the process of investigating potential post-quantum resistant cryptographic
algorithms in 2017, which has led to a total of 69 admitted algorithms to be reviewed
for standardization [AASA+19]. At the end of the second round, 15 of investigated al-
gorithms remain as standardization candidates including 7 finalists [AASA+20]. After
the third round, there are four algorithms that will be standardized and another four
algorithms will be evaluated further in the fourth round [AAC+22]. The candidates
that will be standardized are CRYSTALS-KYBER, CRYSTALS-Dilithium, FALCON and
SPHINCS+ [AAC+22]. BIKE, Classic McEliece, HQC and SIKE are the other four al-
gorithms that will be evaluated and reviewed further in the fourth round [AAC+22].
Candidates that are no longer considered after the third round are FrodoKEM, NTRU,
NTRU Prime, Saber, GeMSS, Picnic and Rainbow [AAC+22]. The proposed post-quantum
cryptographic algorithms are based on different principles in comparison with clas-
sical cryptosystems, and these algorithms include lattice-based, code-based, mul-
tivariate and hash-based cryptosystems [AAC+22]. Current developments indicate
that the algorithms SIKE and Rainbow suffer from successful key recovery attacks,
which reduces the cryptographic strength of these algorithms significantly [Beu22,
CD22]. These attacks caused Rainbow to be dropped from further analysis by the
NIST in the fourth round entirely [AAC+22]. During the research of potential safe al-
gorithms for eMRTDs, it is important to keep track of similar developments on other
proposed algorithms in order to establish a secure post-quantum solution.

There are also other signature schemes, such as XMSS [BDH11] and LMS [LM95].
These schemes are not being considered in the NIST PQC standardization program
because these schemes are stateful and thus require careful implementation which
make them impractical for general use [CAD+20]. Stateful hash-based algorithms
make use of One-Time Signature Scheme (OTS) keys and an OTS may never be used
to sign more than one message, which means that the used keys have to be mon-
itored carefully [CAD+20]. If a key is reused accidentally, an attacker may use the
two signatures to create a forgery [CAD+20]. This requires that the signing procedure
should take place in a controlled secure environment to prevent OTS private keys be-
ing used more than once and this is generally considered a significant disadvantage
over stateless cryptosystems [CAD+20]. Because the performance of XMSS is com-

9

parable to RSA [BDH11], it makes XMSS suitable to be used in resource constrained
environments. This is shown for example in a study where the chain of trust uses a
mix of CRYSTALS-Dilithium and XMSS in the chain of trust of a TLS X.509 PKI [MS22].

It is still hard to estimate the exact amount of qubits needed for performing a in-
teger factorization or the measurement of a discrete logarithm using Shor’s algo-
rithm. A recent study that focused on improving existing techniques in order to
factorize integers and computing discrete logarithms over finite fields roughly esti-
mates the amount of (noisy) qubits required in order to break RSA-2048 in 8 hours
is around 20 million [GE21]. The estimation is far from certain, but this estimation
is already significantly lower than the 1 billion qubits estimated in earlier research
[FMMC12]. A large proportion of the qubits are overhead which are needed to sup-
press the noise by performing error correction during calculations due to the fact that
a quantum computer is very susceptible to noise compared to its classical counter-
part [GE21, BKM+14]. So the power of a quantum computer does not merely depend
on the amount of qubits available, it also depends on the ability to correct errors
caused by noise and also the fact that quantum algorithms must be tailored in such
a way that it makes more efficient use of the limited amount of qubits available. At
the time of writing, IBM for example claims to have a quantum computer with a total
of 433 qubits [CN22]. This is fortunately still far from the millions of qubits required
in order to break modern cryptosystems. The quantum computer is not the ultimate
solution for every mathematical problem available, but for particular problems such
as integer factorization and discrete logarithms in finite fields however, it is a threat
for the cryptosystems we use today.

Quantum computers have not gone unnoticed for passive authentication in travel
documents. Recent research, based on the 7 NIST candidates for standardization,
shows that X.509 certificates equipped with post-quantum algorithms can be used
for passive authentication [PM20]. The CRYSTALS-Dilithium algorithm performed
best in comparison with the other post-quantum algorithm for the purpose of pas-
sive authentication as long as the ICAO updates their minimum requirements for the
chip of the eMRTD and the allowed algorithms to be used for passive authentica-
tion [PM20]. There have been some indirect developments by the progression of the
NIST standardization process, as a result of which qTESLA and MQDSS have been
dropped from the process after the second round [AASA+20] and the same occurred
to Picnic and Rainbow in the third round [AAC+22]. Pradel and Mitchell [PM20] men-
tion that their proof of concept was created by using an custom tailored OpenSSL PKI
implementation for the CSCA and Document Signer certificates, and suggest to use
Bouncy Castle1 and JMRTD2 instead for more compatibility with eMRTDs. Bouncy

1https://www.bouncycastle.org/
2https://jmrtd.org/

10

https://www.bouncycastle.org/
https://jmrtd.org/

Castle is a free open source and light-weight cryptography API for Java and C#. At this
date, Bouncy Castle has added all third round NIST PQC standardization candidates
algorithms (see Table 10) to their low level API3.

The eMRTD itself is also evolving over the years, adding more possibilities for bor-
der control. The second version of LDS (LDS2) adds new functionality such as digi-
tal Travel Records, Visa Records and Additional Biometrics applications and is back-
wards compatible with LDS 1.7 [ICA21c]. If used, these extra components also con-
sume additional storage space on the chip. At the time of writing, there are chips
available for eMRTDs containing up to 456 KB of EEPROM 4. Due to the higher sizes
of the keys and signatures in post-quantum algorithms [TLF+22, MK19], more ca-
pacity may be required for future chips in travel documents. Implementing post-
quantum cryptography on devices with resource constraints poses a challenge and is
an active topic of research. Small devices such as RFID-chips and embedded systems
usually have low computing capacity, low memory and limited storage capacity. In
a ubiquitously connected world, having devices using secure communication is im-
portant and these small devices also need to be secured against an upcoming quan-
tum computer. Malina et al. provide an overview of the feasibility of post-quantum
cryptography on small devices and conclude that lattice-based schemes such as New
Hope and NTRU are promising for these small devices [MPD+18]. Another study per-
formed by Marzougui and Krämer focused on Post-Quantum signature algorithms
shows that qTESLA and XMSS perform well in constrained environments due to the
small key and signature sizes and the fast validation speed [MK19]. More recently,
a study shows that the lattice-based crypto scheme Dilithium is performing well in
resource constrained environments based on energy consumption unlike SPHINCS+
[TDF+23].

A related protocol which involves digital certificates and is vulnerable for quantum
computers is TLS, particularly in constrained environments. Tasopoulos et al. out-
line the changes required in the architecture of TLS 1.3 in order to integrate the NIST
4th round post-quantum cryptosystems on constrained embedded devices [TLF+22].
Similarly, Gonzales and Wiggers compare KEMTLS, an alternative TLS handshake
protocol, with TLS 1.3 and conclude that KEMTLS uses less memory than the TLS
1.3 implementation [GW22]. In the field there are more examples of integration of
PQ crypto primitives into TLS with the focus on constrained environments, such as
[BSKNS20].

A recent study of European Union Agency for Cybersecurity (ENISA) shows an overview

3See Bouncy Castle release notes for version 2.4.3 (https://www.bouncycastle.org/releasenotes.html)
4In this case programmable Java Cards which can also be used for simulating eMRTD chip be-

haviour: https://www.infineon.com/cms/en/product/security-smart-card-solutions/secora-
security-solutions/secora-id-security-solutions/

11

of the various post-quantum cryptosystems with their advantages and disadvantages
[BHL22]. Their study shows that hash based signatures have small public keys and
larger signatures whereas multivariate-based cryptosystems have large public keys
and small signatures [BHL22]. The size of the public keys and signatures of lattice-
based cryptosystems are inbetween the multivariate-based and hash-based cryp-
tosystems according to this study [BHL22].

12

3. POST-QUANTUM THREATS TO THE EMRTD SECURITY MECH-
ANISMS

Quantum computing is a risk for the processes involved in security an eMRTD. In
order to pinpoint the vulnerabilities of these protocols, it is important to analyse the
different security protocols of the eMRTD individually. In order to perform such anal-
ysis, we focus on the breakability of the cryptosystems by quantum computers used
within the different protocols, the result gained by such a breach and the scope of the
result gained by the breach. This will give a direction to the intended research on re-
ducing the threat of quantum computers on the security of the eMRTD. In the follow-
ing sections we will explain the protocol as defined in ICAO 9303 (part 11) [ICA21c]
and we will outline the risks for the discussed protocol.

3.1. BASIC ACCESS CONTROL (BAC)

BAC uses the two key variant of Triple DES (3DES) as block cipher with its keys de-
rived from the Machine Readable Zone (MRZ) in order to access the less sensitive
data groups of the eMRTD and to start secure messaging between the reader and the
chip [ICA21c]. BAC is initiated by the reader (IFD) and requests a challenge (nonce)
from the chip (IC) as shown in Figure 1 [ICA21c]. After receiving the RND.IC (nonce)
from the chip, the terminal also generates 2 random values, an 8 bytes RND.IFD and
a 16 bytes K.IFD and concatenates this with the nonce received from the chip into S
[ICA21c]. This value will be encrypted with 3DES by using KEnc and results in E I F D . A
MAC will be created in a similar manner, but in this case with KM AC and yields MI F D .
The KEnc and KM AC are derived from the MRZ [ICA21c], as shown in Figure 2. The
figure shows Ka and Kb , because BAC uses a two key 3DES [ICA21c]. The E I F D and
MI F D are sent to the chip by issuing a External Authentication command [ICA21c].
The chip then checks the received checksum and generates K.IC when all required
checks are performed successfully [ICA21c]. The chip will concatenate the received
nonces (RND.IC and RND.IFD) and the K.IC into R [ICA21c]. The result of this pro-
cess is encrypted with KEnc into E IC and accompanied with a MAC MIC enciphered
with KM AC [ICA21c]. The values E IC and MIC are sent back to the reader which ver-
ifies the received data accordingly [ICA21c]. Both sides can now derive the session
keys K SEnc and K SM AC and the Send Sequence Counter (SSC) [ICA21c]. The SSC
for BAC is based on concatenation of the 4 least significant bytes of the RND.IC and
RND.IFD [ICA21c].

The use of 3DES (or officially TDEA) has been discouraged by the NIST since 2017
[oST17] and 3DES will become deprecated after 2023 [BR19], even though 3DES has
not been officially broken yet. Aside from the 3DES deprecation, BAC also suffers
from a low cryptographic strength due to its limited randomness in the generated

13

Figure 1: Steps for performing BAC to access the data groups and to establish secure messaging. De-
rived from the steps required in ICAO 9303 part 11 [ICA21c].

keys. A new protocol called PACE was designed to overcome this limitation [ICA21c].
The usage of BAC has been suspended by the ICAO for new passports since 2018, but
the terminals should still support BAC when the document has no PACE implemen-
tation available [ICA21c]. It is still possible to encounter documents supporting only
BAC, because the PACE-only requirement has been issued since 2018 and eMRTDs
can have a validity period of ten to fifteen years [ICA21c]. During the key derivation
process, as shown in Figure 2, BAC makes use of the SHA-1 hashing algorithm, which
is already deprecated to be used by the NIST back in 2011 [BR19]. Due to the fact that
BAC is being phased out for eMRTDs and the fact that 3DES could only be affected
by the square root speed up achieved by Grover’s algorithm [Gro96], the risk to the
security of the eMRTD is low.

14

Figure 2: The key derivation process within BAC as defined in ICAO 9303 part 11 [ICA21c].

3.2. PASSWORD AUTHENTICATED CONNECTION ESTABLISHMENT (PACE)

PACE is a key agreement protocol using Diffie-Hellman (DH) or Elliptic Curve Diffie-
Hellman (ECDH) that enables password authentication and establishes secure com-
munication messaging between the chip and the reader based on weak passwords
[ICA21c]. It is more secure than BAC, because the created session keys are indepen-
dent of the entropy of the password strength [ICA21c].

15

PACE starts by accessing the EF.Cardaccess on the chip, if this elementary file does
not exist, PACE cannot start, because this file describes which algorithm and for-
mat is used for establishing secure messaging [ICA21c]. After reading the security
parameters, the reader issues a ’Set Authentication Template’ command which in-
structs the chip to start the PACE protocol [ICA21c]. The chip acknowledges this in-
struction by sending a reply to the reader, and after this step the reader starts send-
ing several ’General Authenticate’ commands to follow the required steps of PACE
as shown in Figure 3 [ICA21c]. In the first step the reader requests a nonce from
the chip, which is encrypted with the key derivation function K DFπ by using the
shared password π, which is the MRZ (required) or CAN (optional) [ICA21c]. The
key derivation function derives keys for PACE by using π which results in the key Kπ

[ICA21c]. The reader decrypts z containing the nonce by using the shared passwordπ
(Kπ = K DFπ(π)) [ICA21c]. Depending on the used mapping of the nonce, the reader
and the chip exchange additional data (displayed as conditional steps in Figure 3)
[ICA21c]. Mapping is a cryptographic mechanism to map a nonce to a pseudo ran-
dom number generator to be used in the asymmetric cryptosystems [ICA21c]. These
mappings are Generic Mapping (based on a DH-key agreement), Integrated Mapping
(direct mapping of field element to the cryptographic group) and Chip Authentica-
tion Mapping (used for Chip Authentication) [ICA21c]. Subsequently, the reader and
the chip compute the ephemeral domain parameters [ICA21c]. After computing the
domain parameters, the reader and the chip perform a Diffie-Hellman key exchange
using the domain parameters D to generate the shared key K as shown in Figure 3
[ICA21c]. After generating the shared key K , the chip and the reader derive the ses-
sion keys K SM AC and K SEnc by using the corresponding key derivation functions
(KDF) [ICA21c]. This process is similar to the key derivation process during BAC. As
a final step, the reader and the chip exchange and verify the authentication token,
which is to verify that both sides use the proper Kπ [ICA21c]. If the chip supports
Chip Authentication then there will be an extra step, which will be discussed in more
detail in the CA section of this chapter. From this point, access has been granted to
the data groups and secure messaging has been established.

Similar to BAC, PACE provides security by restricting access to the less privacy-sensitive
data groups and prevents eavesdropping on the communication between the chip
and the reader. As mentioned earlier, there are three mappings for establishing a
shared key for secure communication between the reader and the chip. A limited
set of ciphers and configurations are allowed depending on the chosen mapping for
PACE. The possible configurations for each mapping using DH are shown in Table 1.
As mentioned earlier, PACE also supports the use of ECDH and has a similar prede-
fined set of ciphers and configurations which are allowed to be used. The allowed
configurations for ECDH can be seen in Table 2, along with the ciphers and the key
length. These ciphers share commonalities with those of the PACE-DH. For chips

16

Figure 3: Process flow of the PACE protocol (summarized) derived from [ICA21c]

supporting CA, the allowed ciphers and configurations are limited to ECDH using
AES of at least 128 bits [ICA21c]. Important to notice in both tables is that in a post-
quantum era, the shown key strengths would be halved.

According to both sets of specifications, PACE makes use of 3DES and AES ciphers
which are symmetrical encryption algorithms and could be affected by Grover’s al-
gorithm in a post-quantum era. However, AES256 is still considered secure in a post-
quantum era [RMYK17], because the root speed up achieved by Grover’s algorithm
[Gro96] would drop the strength of AES256 to just 128 bits, which is still considered
strong. AES is not the only cipher allowed for PACE, the latest specifications of the
ICAO also imply that 3DES is also still allowed in some circumstances [ICA21c]. As

17

OID Sym. Cipher Key length

id-PACE-DH-GM-3DES-CBC-CBC 3DES 112
id-PACE-DH-GM-AES-CBC-CMAC-128 AES 128
id-PACE-DH-GM-AES-CBC-CMAC-192 AES 192
id-PACE-DH-GM-AES-CBC-CMAC-256 AES 256
id-PACE-DH-IM-3DES-CBC-CBC 3DES 112
id-PACE-DH-IM-AES-CBC-CMAC-128 AES 128
id-PACE-DH-IM-AES-CBC-CMAC-192 AES 192
id-PACE-DH-IM-AES-CBC-CMAC-256 AES 256

Table 1: Algorithms and formats allowed for PACE-DH (simplified) [ICA21c]

OID Sym. Cipher Key length

id-PACE-ECDH-GM-3DES-CBC-CBC 3DES 112
id-PACE-ECDH-GM-AES-CBC-CMAC-128 AES 128
id-PACE-ECDH-GM-AES-CBC-CMAC-192 AES 192
id-PACE-ECDH-GM-AES-CBC-CMAC-256 AES 256
id-PACE-ECDH-IM-3DES-CBC-CBC 3DES 112
id-PACE-ECDH-IM-AES-CBC-CMAC-128 AES 128
id-PACE-ECDH-IM-AES-CBC-CMAC-192 AES 192
id-PACE-ECDH-IM-AES-CBC-CMAC-256 AES 256
id-PACE-ECDH-CAM-AES-CBC-CMAC-128 AES 128
id-PACE-ECDH-CAM-AES-CBC-CMAC-192 AES 192
id-PACE-ECDH-CAM-AES-CBC-CMAC-256 AES 256

Table 2: Algorithms and formats allowed for PACE-ECDH (simplified) [ICA21c]

mentioned earlier, the NIST has decided to deprecate the 3DES algorithm back in
2017 [oST17], so the use of 3DES is discouraged. Even though 3DES is being depre-
cated, there are no signs yet that 3DES will be broken in the near future using quan-
tum computers. In an overview of quantum threats on modern cryptography, the
threat on symmetrical cryptosystems is even considered as minor [MVZJ18].

The agreement of a shared key however is more interesting, because DH and ECDH
are based on asymmetric cryptography. PACE uses DH and ECDH for establishing
secure session keys between the reader and the chip [ICA21c]. These algorithms are
vulnerable to Shor’s algorithm [Sho97] due to the solvability of the discrete logarithm
problem where DH depends on. In a post-quantum era it could be possible to derive
the session keys by simply observing the communication and obtaining the public
elements of the DH key exchange. In the context of the eMRTD this risk decreases
because the key exchange and the session keys are no longer valid after the passport

18

holder details have been read by the reader. Also the passport holder details can be
read by anyone in possession of the physical travel document, so the effort required
to electronically access the document would be significantly higher than the effort
to just stealing the physical travel document instead. Due to the fact that the estab-
lished keys are used for one session only and that the overall gains are only related to
potential privacy issues, the impact on the eMRTD security of PACE being broken by
a quantum computer is low.

3.3. PASSIVE AUTHENTICATION (PA)

As mentioned earlier, passive authentication is the core of a travel document as its
structure is designed to prevent unauthorized changes of the data within the chip.
During the production of the chip, the data on the holder’s page, such as personal
information, is placed in the data groups of the Logical Data Structure (LDS) within
the eMRTD. The LDS acts as a structured storage and can be compared to a file sys-
tem with a different protocol describing how to read and write to this file system. The
structure of the data groups within the LDS is displayed in Figure 4.

In order to protect the data within the data groups, the hashes of these data groups
are calculated and electronically signed by a Document Signer (DS) as a part of the
Public Key Infrastructure (PKI) for passive authentication [ICA21d]. The hashes and
the signature of the hashes are placed in the Document Security Object (EF.SOD)
of the LDS [ICA21b]. The document signer has been issued by the certificate au-
thority called the Country Signing Certificate Authority (CSCA) and is the root of the
PKI structure for passive authentication [ICA21d]. These are X.509 certificates with a
strict set of mandatory properties in order to be used for passive authentication and
are defined in ICAO 9303 part 12 [ICA21d]. During verification of a travel document,
the signatures of the data group hashes will be validated using the public key of the
document signer [ICA21d]. If any unauthorized change has been made in any of the
data groups, the involved hashes will be different and the signature of these hashes
will not match. This process is visualized in Figure 5.

Every country has exactly one CSCA [ICA21d]. In order to establish a chain of trust
between the CSCA and the Document Signer (DS) during a border inspection, each
CSCA certificate that is trusted in a country needs to be distributed towards the read-
ers at the border. Trusted CSCA certificates are located in a nation’s National Public
Key Directory (NPKD) and is used in the infrastructure to distribute the CSCA cer-
tificates towards the terminals at the country’s borders [ICA21d]. For the CSCA, each
country may decide to use RSA, DSA or ECDSA as algorithm for the CSCA and sign-
ing certificate keys as specified by the eighth version of the ICAO 9303 [ICA21d]. The
validity of a CSCA differs per country, but the public key of the CSCA must be valid
for at least 13–15 years and the usage of the CSCA private key is limited to 3-5 years

19

Figure 4: Structure of LDS within the eMRTD derived from [ICA21b]

[ICA21d]. RSA, DSA and ECDSA are asymmetric algorithms and are vulnerable to
Shor’s algorithm using quantum computers [Sho97]. RSA, DSA and ECDSA also make
use of hashing algorithms. As discussed earlier, they are vulnerable to a collision
search speedup [MVZJ18]. The allowed hash algorithms for passive authentication
(CSCA and DS certificates) are SHA-224, SHA-256, SHA-384 and SHA-512 [ICA21d].
These hash algorithms are still considered safe in a quantum era [MVZJ18].

The CSCA is responsible for signing document signers in order to guarantee the in-
tegrity of a travel document. If a quantum computer would be established in the next
decade with enough computational power to dissolve the mathematical problems
that RSA, DSA and ECDSA depend on, then the security of the travel document could
be at risk, because it is possible to obtain the private key of a CSCA or DS. This would
allow governments with malicious intent or criminal organizations to enroll fraud-
ulent travel documents which would be validated as genuine at an automated bor-
der inspection. Due to the widespread consequences of a potential breach of these
asymmetric algorithms, the impact on the security of the eMRTD is considered high.

20

Figure 5: Passive authentication to prevent unauthorized changes within the passport chip.

3.4. ACTIVE AUTHENTICATION (AA)

Active Authentication (AA) is an optional protocol that authenticates the eMRTD chip
by using a challenge-response mechanism in order to prevent document cloning
[ICA21c]. Cloning is a full copy of the contents of the chip to another chip to be used
in a counterfeit document for example. The only thing that cannot be copied is the
private key located in the secure memory of the chip, which can only be accessed in-
ternally by the chip itself [ICA21c]. The public key corresponding with the private key
is is stored in data group 15 in order to perform AA [ICA21c]. Data group 15 contains
a SubjectPublicKeyInfo object, as defined in RFC-5280 [BSP+08], and describes the
public key alongside the details of the algorithms used. During AA, the reader sends
a nonce to the chip which is signed by the private key of the chip [ICA21c]. This

21

signed nonce is sent back and the reader verifies the signature by using the public
key present in data group 15 [ICA21c]. Depending of the algorithm used, the process
flow of active authentication is described in Figure 6. The communication flow is the
same for RSA and ECDSA, but when using RSA, a few additional steps are required for
active authentication, such as adding a trailer depending on the hashing algorithm
used and an additional nonce generated by the chip [ICA21c].

There are some privacy concerns for using AA however, because AA may allow track-
ing of the passport due to the challenge-response nature of the protocol especially
when there is no BAC security on a passport [BSI15]. Instead of using AA, it is also
possible to use CA, because CA also proves ownership of the original private key of
the chip. RSA and ECDSA are the only two algorithms allowed to compose the key
pairs for active authentication in travel documents [ICA21c]. These algorithms are
allowed to be used in combination with the hash functions as indicated by ICAO 9303
specifications shown in table 3. An important note is that SHA-1 is only allowed to be
used in combination with RSA [ICA21c].

Similar to PA, AA makes also use of asymmetric cryptography algorithms such as RSA
and ECDSA which are vulnerable to Shor’s algorithm in a post-quantum era [Sho97].
Hash algorithms are also a component of active authentication and only SHA-15,
SHA-224, SHA-256, SHA-384 and SHA-512 are allowed to be used as hash algorithm
for active authentication [ICA21c]. Aside from SHA-1, since this algorithm is already
considered insecure, the other mentioned hash algorithms are still considered safe
in a post-quantum era [MVZJ18].

If the private key stored in the secure memory can be derived using quantum com-
puters, and the key can be additionally copied to the cloned document. Since the
cloned document now has the access to the private key, it is now able to perform ac-
tive authentication without triggering alarms to the reader. Cloning however has lim-
itations, because the data itself has not been altered due to the protection of passive
authentication. This means that the holder data has been unchanged, such as the
passport photo and the age of the passport bearer. The cloned passport is then only
useful for persons who visually match the cloned passport. Also, the use of active au-
thentication in an eMRTD is optional [ICA21c]. If quantum computers are powerful
enough to break RSA and ECDSA it would have an impact on active authentication.
However the impact on the security of the eMRTD is limited, because the data itself
cannot be altered and AA is an optional security feature. Therefore the impact on the
overall eMRTD security will be low.

5Only to be used with RSA for interoperability reasons, since it is already considered insecure [ICA21c].

22

Figure 6: Active Authentication process in an eMRTD by using RSA or ECDSA, derived from [ICA21c].

3.5. CHIP AUTHENTICATION (CA)

The main purpose of chip authentication is to prove that the chip is not cloned and
establishes strong session keys for the communication between the terminal and the
chip [ICA21c]. In contrast to AA, CA performs a DH or ECDH key exchange instead
of a challenge-response based mechanism to prove that the chip is not cloned and at

23

Algorithm Supported hash functions

RSA SHA-1, SHA-224, SHA-256, SHA-384, SHA-512
ECDSA SHA-224, SHA-256, SHA-384, SHA-512

Table 3: Supported hash functions for RSA and ECDSA [ICA21c]

the same time establishes stronger keys for the communication between the reader
and the chip [ICA21c]. The protocol dictates that the inspection system reads the
public key of the chip located in data group 14 and the terminal generates a public
and private key pair [ICA21c]. The public key generated by the inspection system is
sent to the chip and the terminal and chip derive a shared key by performing a Diffie
Hellman key agreement [ICA21c]. The difference with a regular DH key exchange is
that the private and the public keys of the chip are static and the private key is located
in the secure memory of the chip [ICA21c]. Figure 7 provides a general overview of
the chip authentication protocol. The chip authentication protocol does not have
the privacy issue present in AA according to the German Bundesamt für Sicherheit
in der Informationstechnik (BSI), because the private key of the chip is not signing
arbitrary data from the terminal [BSI15]. An important note for CA is that passive
authentication must be performed in order to verify that the public key present in
data group 14 has not been altered in any way [ICA21c]. Chip authentication is now
mandatory for European documents supporting EAC [ICA21c].

CA involves asymmetric cryptography for establishing a shared key and symmetrical
cryptography for the secure channel according to Table 4 and Table 5 derived from
the ICAO 9303 specifications. In the previous sections, we have seen that symmetri-
cal ciphers such as 3DES and AES, which are also used in CA, are only vulnerable to
Grover’s square root speedup in a post-quantum era [Gro96]. The asymmetric parts
of the protocol, such as the key exchange, are vulnerable for Shor’s algorithm [Sho97].
But also for chip authentication, the ephemeral keys used during the session are not
used anymore after the session has been closed. Additionally, CA is only an obliga-
tion for European documents. Taking these factors into account, the security impact
on the eMRTD as a whole is low.

OID Cipher Key Length Secure Messaging

id-CA-DH-3DES-CBC-CBC 3DES 112 CBC / CBC
id-CA-DH-AES-CBC-CMAC-128 AES 128 CBC / CMAC
id-CA-DH-AES-CBC-CMAC-192 AES 192 CBC / CMAC
id-CA-DH-AES-CBC-CMAC-256 AES 256 CBC / CMAC

Table 4: Supported algorithms and key lengths for CA with DH [ICA21c]

24

Figure 7: The Chip Authentication process within the eMRTD for establishing stronger keys by using
a DH key agreement (shortened as KA in the overview) using predetermined domain parameters (D).
Process flow and protocol information derived from [ICA21c].

OID Cipher Key Length Secure Messaging

id-CA-ECDH-3DES-CBC-CBC 3DES 112 CBC / CBC
id-CA-ECDH-AES-CBC-CMAC-128 AES 128 CBC / CMAC
id-CA-ECDH-AES-CBC-CMAC-192 AES 192 CBC / CMAC
id-CA-ECDH-AES-CBC-CMAC-256 AES 256 CBC / CMAC

Table 5: Supported algorithms and key lengths for CA with ECDH [ICA21c]

3.6. TERMINAL AUTHENTICATION (TA)

If the chip supports Extended Access Control (EAC), which is mandatory for all EU
passports, then Terminal Authentication (TA) has to be executed after performing
PACE with CA mapping [ICA21c]. In TA, the chip verifies if the reader is allowed to
access the privacy-sensitive data groups [ICA21c]. A separate PKI based on Card Ver-
ifiable Certificates (CVC) needs to be established for TA in order to perform this au-
thentication process [ICA21c]. This PKI consists of a Country Verifying Certificate
Authority (CVCA), Document Verifying Certificate Authority (DVCA) and Inspection
System (IS) certificate chain and the CVCA certificate is stored in the chip during pro-
duction [ICA21c]. When performing TA at a border inspection, the reader sends its
inspection system certificate with corresponding access permissions and the rest of
the CV certificate chain above to the chip [ICA21c]. The chip uses the certificate chain

25

to verify if all of the provided certificates are correct and if the terminal possesses the
correct access permissions [ICA21c]. To ensure that the terminal is authentic, the
chip also sends a challenge to the reader which needs to be signed by the private key
of the terminal [ICA21c]. The chip itself validates challenge by using the public key
of the inspection system, and upon success, the chip provides access to the privacy-
sensitive parts of the eMRTD [ICA21c]. This process is shown visually in Figure 8.

Figure 8: Terminal authentication (simplified) with the protocol specifications derived from [ICA21c].

Similar to the other eMRTD protocols, there are a limited set of ciphers and config-
urations which are allowed to be used. For TA, the allowed ciphers are either RSA
or ECDSA in predefined configurations as shown in Table 6 and Table 7. As seen
earlier, RSA and ECDSA are asymmetric ciphers which are vulnerable to Shor’s algo-
rithm [Sho97]. When a quantum computer with enough computation power is avail-
able, it would be possible to issue terminal certificates with the access permissions
to data group 3 and 4. This would compromise the privacy-sensitive data if present
in the corresponding data groups. RSA and ECDSA also use hash algorithms in their
implementations. SHA-224, SHA-256, SHA-384 and SHA-512 are allowed hash algo-
rithms for TA [ICA21c]. As mentioned earlier, these algorithms are considered safe in
a post-quantum era [MVZJ18]. Additionally, TA is not a mandatory requirement out-
side the European Union, so countries may decide individually to use TA for securing
the privacy-sensitive data [ICA21c]. Also even if access is obtained to the data groups,
the risk is limited to a privacy issue for the holder of the travel document. In order

26

to fully forge a passport including forged fingerprints, obtaining full control of PA is
required. From a worldwide point of view, the risk is low due to the fact that TA is
optional. From a European point of view, the risk is medium because TA is obligatory
in the EU and it implies a potential privacy issue for EU passports.

Reference (OID) Signature algorithm Digest algorithm

id-TA-RSA-PSS-SHA-256 RSASSA-PSS SHA-256
id-TA-RSA-PSS-SHA-512 RSASSA-PSS SHA-512

Table 6: Terminal authentication with RSA specifications [ICA21c].

Reference (OID) Signature algorithm Digest algorithm

id-TA-ECDSA-SHA-224 ECDSA SHA-224
id-TA-ECDSA-SHA-256 ECDSA SHA-256
id-TA-ECDSA-SHA-384 ECDSA SHA-384
id-TA-ECDSA-SHA-512 ECDSA SHA-512

Table 7: Terminal authentication with ECDSA specifications [ICA21c].

27

4. RESEARCH

The previous section elaborated on the security protocols and all risks involved in
regard to quantum computing. The results of this analysis have been summarized in
Table 8 and in Table 9 a more detailed overview is given of the involved cryptosys-
tems for each security mechanism. In Table 8 we see that passive authentication has
a high impact on security and the scope is worldwide and in Table 9 we see the algo-
rithms used within passive authentication, which are all classical algorithms which
are vulnerable for quantum attacks in the future. It is clear that passive authentica-
tion is the most vulnerable protocol within the eMRTD in regard to the post-quantum
threats, for Europe this extends to EAC. PA is not only the most vulnerable protocol,
it is also the most important protocol for the security of travel documents. Due to
the passiveness of the protocol, it is possible to create offline attacks to obtain the
private keys of the CSCA or the corresponding document signer. Until today it is
still uncertain when a quantum computer will arrive exactly with enough compu-
tational power to perform successful attacks on asymmetric cryptosystems. Experts
estimate that a capable quantum computer will become available within the next two
decades [MCJ+16, Mos18]. One could say that there is still enough time to propose
a post-quantum solution for electronic travel documents. However, solely propos-
ing a solution is not sufficient, because such a solution also needs to be standardized
and adopted throughout the world. With the validity of travel documents exceeding
a decade, it is possible to have an overlapping era where passports using a classical
implementation of passive authentication can be broken.

Protocol Vulnerable ciphers Impact eMRTD Security Scope

BAC 3DES Low Worldwide
PACE 3DES Low Worldwide
PA RSA, DSA, ECDSA High Worldwide
AA RSA, ECDSA Low European Union
CA DH, ECDH Low European Union
TA RSA, ECDSA Medium European Union

Table 8: Preliminary impact assessment eMRTD security

In this research, our goal is to establish a proof of concept for quantum resistant pas-
sive authentication. In order to do so, we first require to set the scope of our research,
which will be discussed later on in this section. Since post-quantum algorithms dif-
fer in performance we need to cherry pick the algorithm or algorithms that best suit
our use case. This means we need to evaluate the algorithms being considered within
this research and argue which of these algorithms would fit the best in our research.
When we have selected a suitable algorithm, we need to create a public key infras-

28

tructure for passive authentication using the post-quantum algorithms. This will be
done by investigating the open source crypto-library Bouncy Castle and setup a PKI
using the Bouncy Castle post-quantum algorithm implementations. The last step is
creating an eMRTD which resembles the ones currently in the field. As final step to
validate if our implementation is able to function in the field, we use the existing JM-
RTD framework. By the end of this research we have covered all parts of the life cycle
of the eMRTD in order to make the eMRTD quantum resistant.

Protocol Purpose Cryptosystems Quantum threats

BAC Authentication 3DES —
PACE Authentication & secure com-

munication
3DES, AES, DH, ECDH DH, ECDH

PA Document integrity RSA, DSA, ECDSA RSA, DSA, ECDSA
AA Clone prevention RSA, ECDSA RSA, ECDSA
CA Clone prevention & secure

communication
3DES, AES, DH, ECDH DH, ECDH

TA Access control RSA, ECDSA RSA, ECDSA

Table 9: Overall overview of the eMRTD security protocols including the cryptosystems and quantum
computing threats to those cryptosystems.

Table 10 shows the quantum algorithms that are being investigated by the NIST. These
algorithms have been thoroughly reviewed and have advanced to the fourth round
or have already been selected for standardization. In order to establish a quantum
proof solution for passive authentication, one or more algorithms process must be
compatible with the PKI used in passive authentication. For passive authentication,
digital signature algorithms are the basis of establishing a PKI. Table 10 shows ex-
actly three signature algorithms fit for that purpose: CRYSTALS-Dilithium, FALCON
and SPHINCS+. We picked the NIST signature algorithms that are being standard-
ized, because they have survived four rounds of attacks and evaluation. In earlier
rounds of the NIST standardization process, there were more potential standardiza-
tion candidates, but they have been dropped in favor of these digital signature algo-
rithms [AAC+22]. To widen the diversity of digital signature algorithms, as the two of
the thee signature algorithms are lattice based, the NIST has opened another call for
proposals in 2022 [CML22].

4.1. NIST STANDARDIZATION CANDIDATES

There are three cryptosystems that are being standardized by the NIST as a result
of the third round post-quantum cryptosystem evaluation [AAC+22]. Since they are
being standardized by the NIST, they are suitable candidates for this research. We will

29

Name Type Purpose Status

CRYSTALS-Kyber LWE-based Public-Key Encryption/KEMs To be standardized
BIKE QC-MDPC Public-Key Encryption/KEMs Advanced to fourth round
Classic McEliece Code-based Public-Key Encryption/KEMs Advanced to fourth round
HQC QC-MDPC Public-Key Encryption/KEMs Advanced to fourth round
SIKE SIDH Public-Key Encryption/KEMs Advanced to fourth round
CRYSTALS-Dilithium Lattice-based Digital Signatures To be standardized
FALCON Lattice-based Digital Signatures To be standardized
SPHINCS+ Hash-based Digital Signatures To be standardized

Table 10: NIST fourth round standardization candidates for post-quantum cryptography [AAC+22].

provide a short overview what the properties of these cryptosystems are and why they
are considered for this research. For the mathematical background and the detailed
technical implementation we refer to the corresponding papers and RFCs.

CRYSTALS-Dilithium is a lattice-based digital signature scheme built upon the hard-
ness of finding short vectors in lattices [BDK+21]. According to the benchmark statis-
tics in [BDK+21], the signature size of the configuration for NIST level 5 is 4595 bytes
and the public key size is 2595 bytes. The study of ENISA considers the keys and
signatures to be medium-sized [BHL22].

FALCON is a lattice-based digital signature algorithm and is an acronym which stands
for "Fast Fourier lattice-based compact signatures over NTRU" [FHK+20]. Falcon
comes in two flavors, Falcon-512 and Falcon-1024, where Falcon-512 has a security
level of 1 and Falcon-1024 has a security level of 5. Falcon1024 also has a medium-
sized public key and signature according to ENISA [BHL22]. The performance char-
acteristics show this in [FHK+20] for Falcon-1024, where the public key size is 1793
bytes and the signature size is 1280 bytes in the test results.

SPHINCS+ is a stateless hash-based signature framework [BHK+19] and continues
on the ideas of SPHINCS [BHH+15]. The hardness of SPHINCS+ depends on the
security properties of hash functions [BHK+19]. The hash functions currently sup-
ported for this scheme are SHAKE-256, SHA-256 and HARAKA [ABB+22]. SPHINCS+
is one of the hash-based signature schemes that is stateless, which means that there
is no state of the private key to maintain to prevent jeopardizing the security of the
scheme. One of the properties of SPHINCS+ is that the size of the private and public
key pairs are small; the SPHINCS+ configuration SPHINCS+-256f for example has a
public key of 64 bytes and a private key of 128 bytes [BHK+19]. However the signature
size in this case almost reaches 50 KB [BHK+19].

30

4.2. STATEFUL HASH-BASED SIGNATURE SCHEMES

In addition to the NIST standardization candidates, there are also two stateful cryp-
tosystems that are interesting in the scope of this research. This section will provide a
global overview of the two stateful hash-based signature schemes LMS and XMSS and
the possibilities for the context of this research. XMSS and LMS are similar schemes
both consisting of two components, an One-Time Signature Scheme (OTS) scheme
and a method to create a public key which has a long lifetime [CAD+20]. XMSS
[BDH11] and LMS [LM95, MCF19] use their own adaption of the Winternitz signature
scheme as OTS [CAD+20] and use single and multilevel Merkle trees [Mer79, Mer90]
as method to construct these large keys. Stateful hash-based signature schemes are
not considered for general use according to the NIST since they require careful state
management of the private keys [CAD+20]. Any accidental reuse of an OTS private
key leads to a security collapse of the scheme [CAD+20]. The NIST mentions three
requirements for practical use of hash-based signature schemes [CAD+20]:

1. The application requires a secure digital signature scheme in the near future.

2. The implementation has a long lifetime.

3. The signature scheme will not change once it has been implemented in the
application.

Although these requirements are relevant for passive authentication, there are some
important challenges to include XMSS and LMS in our research. The problem regard-
ing the scope of this research is that XMSS and LMS have a wide range of parameters
in their implementations [HBG+18, MCF19] and each parameter considers a trade-
off between security and performance [KF17]. If XMSS and LMS would be consid-
ered in this research, this would require a thorough research to determine the best
set of parameters to obtain a high level of security and keys that would fit on a chip
for specifically passive authentication. This would increase the time required to per-
form the entire research considerably. Also a study has to be performed to determine
the proper and safe implementation of XMSS and LMS to be able to used in practice.
Therefore, the study on stateful hash-based signature schemes will be considered out
of scope for this research but remains interesting for future research.

As a brief overview, stateful hash-based signature schemes have the following char-
acteristics:

• The key size of stateful hash-based signature schemes is considered small and
signatures can be generated fast. However, this depends on the chosen param-
eters of the security schemes.

31

• The size of the signatures is large and the key generation times is considered
slow for stateful hash-based signature schemes.

• Difficult for engineering implementations, because an environment is required
where the state of the private key is managed in such a way that a single key can
never be used more than once.

ENISA mentions that the performance of XMSS and LMS, especially the signature
size, is similar to lattice based signature schemes [BHL22]. This however depends
on the configuration used for the stateful hash-based signature algorithm, but when
compared to stateless hash-based signature algorithms such as SPHINCS+, the state-
less algorithms have a larger signature than the stateful algorithms [KF17].

4.3. SCOPE

There are several post-quantum algorithms that could be used during this research.
The scope is limited to the algorithms that are being considered for standardization
by the NIST and have been admitted to the fourth standardization round. Also, for
passive authentication only algorithms designed for digital signatures will be consid-
ered. The signing algorithms being investigated are CRYSTALS-Dilithium (shortened
as Dilithium), FALCON and SPHINCS+ as mentioned in Table 10. These algorithms
are free to use without any patent restrictions or usage fees.

Since this research involves algorithms which are still being tested, attacked and eval-
uated, it is important to keep track of any research involving one of the considered
post-quantum algorithms. If one of the candidates considered would be rendered
insecure due to ongoing research, the next algorithm listed in the comparison will be
chosen as candidate instead. If this happens in the course of the next research ques-
tions, it is key to compose a PKI structure that allows interchanging the underlying
crypto primitives in a modular way.

Since this is an engineering research, the post-quantum algorithms themselves will
not be mathematically validated within this paper, as such process is beyond the
scope for this research. The algorithms will be considered building blocks in order
to be able to propose a quantum proof implementation of eMRTDs. The scope of
this research is to evaluate and use the implementation of these algorithms by using
the Bouncy Castle library in order to construct a quantum proof PKI specifically to be
used for eMRTDs.

The organizational and political concerns are also not considered in the scope of this
paper, because the implementation of passive authentication is different for each
country worldwide. This would require another research approach to determine
the organizational challenges to standardize the embedding of post-quantum algo-

32

rithms within the scope of passive authentication.

In the preliminary research it is clearly visible that passive authentication for elec-
tronic travel documents is at risk caused by the increasing threat of quantum com-
puting. Even though a fully operational and capable quantum computer is still as-
sumed decades away, it is still feasible to propose an initial solution to keep our bor-
ders safe in the future. Therefore, this research focuses on the question how to create
a quantum-proof implementation of passive authentication for electronic machine
readable travel documents. The goal is to provide a proof of concept implementation
for passive authentication using PQC algorithms.

33

5. BEST SUITED ALGORITHM FOR PASSIVE AUTHENTICATION

Before a proof of concept can be established, a benchmark, comparing execution ef-
ficiency and storage space, is required in order to determine the algorithm best suited
for passive authentication for eMRTDs. This is performed using the Bouncy Castle li-
brary, since Bouncy Castle version 1.76 supports the considered algorithms. Each
post-quantum algorithm has several implementations and configurations which are
considered during this research. Before continuing on the benchmarking, some elab-
oration is required on the configurations which are being considered during this re-
search.

For the lattice-based signature algorithms such as Dilithium and Falcon, the configu-
rations as shown in Table 21 of the Appendix are being considered. This includes the
round 2 introduced variants of Dilithium in which SHAKE is replaced by AES for effi-
ciency purposes for specifically the expansion of the matrix [BDK+21]. For the lattice
based signature algorithms, there are a total of 8 configurations considered. Note that
the OIDs mentioned are the OIDs which are referred to in the Bouncy Castle library
and may be subject to change in future versions.

SPHINCS+ on the other hand has a large number of configurations available. An
exhaustive list of each configuration for SPHINCS+ is shown in Table 22 of the Ap-
pendix. There are a total of 36 unique instantiations of the SPHINCS+ algorithm
which can be identified by three characteristics. The first one is the type of hash al-
gorithm used within the configuration, there are three hash algorithms which can be
used within the configuration: SHA2, SHAKE or HARAKA. The next characteristic is
the difference between the simple and the robust variant. Since round 2, SPHINCS+
has introduced the tweakable hash functions and SPHINCS+ has made the separa-
tion between the already established instantations (robust) and the new implemen-
tations (simple) which are faster but omit a security argument [ABB+22]. The third
characteristic is the f- and s-variant for each instantiation, where the f-variant is
speed-optimized and the s-variant is size-optimized [ABB+22]. It would make sense
to include only the s-variants for the research, but for completeness, all variants of
SPHINCS+ are included. Table 22 also mentions the NIST security level which is used
to measure the cryptographic strength of the post-quantum algorithms with the cur-
rent NIST standards in symmetrical cryptography. In total, there are five levels which
the NIST used during the evaluation of the PQC standardization candidates which
are based on criteria as shown in Table 11. In the result overviews, the configurations
are grouped by their security level. This will yield a better overview for considering
the best suited algorithm for passive authentication purposes. In total we evaluate 44
configurations within our research.

In order to select the best suited algorithm for passive authentication, it is necessary
to select unique properties of the listed post-quantum signing algorithms. We con-

34

Level Security description

I Algorithm is at least as hard to break as AES128 (exhaustive key search)
II Algorithm is at least as hard to break as SHA256 (collision search)
III Algorithm is at least as hard to break as AES192 (exhaustive key search)
IV Algorithm is at least as hard to break as SHA384 (collision search)
V Algorithm is at least as hard to break as AES256 (exhaustive key search)

Table 11: NIST security levels used for determining the cryptographic strength of a post-quantum
algorithm [Moo18].

sider six properties for this research and these properties are listed in Table 12. These
properties can be divided into two categories. The first category is performance-
related, such as the signature validation time, signature generation time and the time
needed to generate a key pair. The other category is storage-related, which include
the size of the public key, the size of the private key and the size of the generated sig-
nature by the algorithm. In Table 12, the variables which are important for passive
authentication, are listed in bold.

Variable Category

Private key size Storage
Public key size Storage
Signature size Storage
Key Generation time Performance
Signature generation time Performance
Signature validation time Performance

Table 12: Properties investigated during this research to determine the best suited PQC SA for Passive
Authentication.

For practical implementation, the properties signature size, public key size and sig-
nature validation time are the most important for passive authentication, since the
public key and signature are stored on the chip. The signature validation time is of
importance at the border to determine the authenticity of a travel document. The
other properties are important during the production of the travel documents and
are considered less important in regard to passive authentication in this research.

5.1. BENCHMARKING WITHIN THE JAVA JVM

The PQC crypto systems are all benchmarked using low level programming languages
such as C [FHK+20, BDK+21, BHH+15]. Since the implementation of the PQC PKI
will be done in Java, a language on a higher abstraction level, it is necessary to eval-

35

uate the impact of the Java Virtual Machine on the performance of the considered
algorithms. However benchmarking on a higher abstraction level is more compli-
cated due to the fact that the compiled code is not being run directly at the hardware
level. This means that benchmarking performance in Java is not straightforward. An
approach similar to the C benchmarks is not feasible here, because the JVM (Java
Virtual Machine) and JIT (Just In Time compiling) are using optimization techniques
to speed up execution times [CBL+21]. Examples of these optimizations are dead
code elimination, loop optimization and constant folding [CBL+21]. To counter and
suppress these side effects of the JVM, this research includes the use of the OpenJDK
Java Microbenchmarking Harness (JMH) framework [Shi13]. This framework allows
us to create micro-benchmarks which are needed to determine the best candidate
for the passive authentication proof of concept. Even though the JMH Framework is
a useful tool for creating micro-benchmarks, it still remains easy to make mistakes or
to establish bad practices when benchmarking in Java as shown in a recent study in
regard to JMH [CBL+21]. It is necessary to carefully consider the risks present in the
JMH framework and to verify that there are no fundamental mistakes in the bench-
marking. To validate the benchmarks on any of these mistakes, the Spotbugs plugin
as described in [CBL+21] will be used.

For the purpose of determining the best suited signature algorithm for passive au-
thentication, we have composed six benchmarks within Java and are divided into
two projects 6. One project is responsible for measuring the storage-related prop-
erties and the other project uses JMH for measuring the performance-related prop-
erties. Since JMH has a delicate and elaborate framework, the benchmarks for the
storage-related properties are separated into another Java project to prevent unin-
tended interference of or onto the JMH framework. These projects are the basis for
benchmarking the PQC signature algorithms in Java. All benchmarks are performed
on a freshly installed Ubuntu 22.04.3 (LTS, physical desktop) system with an Intel
Core i5-7500T @ 2,75 GHz with 4 GB of RAM. Specifically for the used setup, processor
performance optimization techniques, such as Intel’s Turbo Boost, Intel Speedstep
and C-states are disabled to prevent potential interference and inconsistent results
during the benchmarking process.

Measuring performance: The benchmarking of the performance-related properties
is fairly straightforward. Each benchmark within this project is divided into a prepa-
ration or setup phase and an execution phase. This also applies to the implementa-
tion using JMH and the underlying JMH framework ensures that the proper steps are
taken based on the supplied configuration. The benchmark results in JMH are mea-
sured in microseconds (µs) and in each benchmark the average time of execution of

6The two used project created specifically for this research are listed in the Appendix in Table 27 under
PQC-BC-Benchmark and PQC-BC-Benchmark-Keysizes.

36

the measured cryptographic function is measured. The steps executed in the setup
phase are not part of the benchmark result. JMH executes the method as many times
as possible within 20 seconds and measures the average time it took to execute the
body of the benchmark function. For this research, a JMH benchmark configuration
with 100 iterations and 2 warm-ups is used for all considered algorithms. Afterwards
we extract the results stored in the JMH output files using a Python script.

Measuring storage cost: Measuring the storage-related properties cannot be mea-
sured using JMH, and in order to keep the benchmarks separated, we have created
another Java project and a simple framework to measure the storage-related proper-
ties of the different PQC algorithms using the Bouncy Castle library. Each benchmark
measuring the storage-related properties will be executed 100 times and the results
are stored in CSV format on disk and will be extracted by using a Python script. Since
the storage values are expected to be static, the framework is simple and straightfor-
ward. In order to measure the signature size, a fixed size has been set for the input of
the signature generation function. As input value to generate the signature, a 32 bytes
initialized array with random values is used which is hashed and signed by the spec-
ified PQC algorithm. To establish a bridge between the algorithm benchmarks and
a practical implementation, this randomized array of 32 bytes is used to benchmark
the signature generation time, validation time and the size of the signature itself. 32
bytes (256 bits) is exactly the size of the hashing algorithm with the largest fixed-
length in our PQC algorithm list and is representative of determining the best suited
post-quantum algorithm to be used for passive authentication. In Bouncy Castle, the
private keys are stored in PKCS#8 format. This leads to larger files when compared
to the algorithm’s documentation due to the encoding standards. This also applies
for the public key size, because these are stored in X.509 format. Since this research
is focused on the practical applications of the algorithms, these deviations are not
considered harmful.

5.2. ALGORITHM BENCHMARK RESULTS

The benchmarks of the storage-related properties (Table 13) and the performance-
related properties (Table 14) are briefly summarized. For the sake of brevity, the ex-
tended results for all algorithms and variants are shown in the Appendix in Tables 23
and 24 respectively. For SPHINCS+ we have selected the SHA2-variant to be shown
in the abbreviated table, as this performs better overall compared to the SHAKE and
HARAKA variants.

The first observation is that the SPHINCS+ signature size is large for all considered
variants compared to the lattice-based variants. It is even the case that the 192f and
256s/f variants are too large to be used in the CSCA to sign a Document Signer, be-
cause the signature in the document signer will exceed the 32k limit on chip of the

37

passport. Another observation is that the private key of the SPHINCS+ algorithms is
small compared to Dilithium and Falcon. This also applies for the public key, how-
ever the effect of this benefit is cancelled out when combined with the size of the
signature, which will both be stored in a certificate.

Algorithm Private Key Public Key Signature Sec. Level

Falcon-512 2223 915 * 655
ISPHINCS+ (128f) 101 58 17088

SPHINCS+ (128s) 101 58 7856

Dilithium2 3902 1336 2420 II

Dilithium3 6014 1976 3293
IIISPHINCS+ (192f) 134 74 35664

SPHINCS+ (192s) 134 74 16224

Dilithium5 7518 2616 4595

V
Falcon-1024 4143 1811 * 1271
SPHINCS+ (256f) 168 90 49856
SPHINCS+ (256s) 168 90 29792

Table 13: Storage-related benchmark results of PQC algorithms grouped per security level. Results
of the measurements are in bytes. (*) Falcon has a varying signature length. The listed result is the
average size over 100 iterations. Elaborated results of all algorithms individually can be found in the
Appendix (Table 23).

Further on, lattice based algorithms Dilithium and Falcon are performing well in
terms of signature generation compared to SPHINCS+. The speed differs when using
different implementations of SPHINCS+. The SPHINCS+ 256s variants range from
227 milliseconds up to 10 seconds to generate a signature on a 256 bit message cor-
responding to a message digest, this is slower when compared to Falcon-1024 and
Dilithium5 in the same security level group. For passive authentication on the border
this does not matter, since the signature for the Document Signer is only generated
during the production of the passport. However for the passport production industry,
this could slow down the production process. In contrast to the signature generation
time, the time required to validate the signature using any of the benchmarked algo-
rithms is low for all PQC candidates, the SPHINCS+ algorithms are generally slower
compared to Dilithium and Falcon. However, the slowest time measured (HARAKA-
256f-robust) is 26ms, which is still quite fast for validation and will not cause any
problems for the validation part of the passive authentication process. Interesting to
mention is that the expectation was that the signature size would be consistent and
static for all considered configurations, however for one algorithm this is not the case:
Falcon. During the benchmark, the results showed that the signature size of Falcon is
different per signature using the same input. Normally, signature algorithms have a
fixed signature length for the same input, but as described in the specifications, this

38

does not apply for Falcon (see 3.11.6 in the Falcon paper) [FHK+20].

Algorithm Key generation Sign. generation Sign. validation Sec. Level

Falcon-512 15396 1323 74
ISPHINCS+ SHA2-128f-robust 5815 140844 8545

SPHINCS+ SHA2-128s-robust 373859 3150242 2911
SPHINCS+ SHA2-128f-simple 2789 67842 3900
SPHINCS+ SHA2-128s-simple 174893 1525860 1357

Dilithium2 158 563 170
II

Dilithium2 (AES) 290 737 279

Dilithium3 277 1011 264

III
Dilithium3 (AES) 529 1278 538
SPHINCS+ SHA2-192f-robust 8442 225112 12277
SPHINCS+ SHA2-192s-robust 548427 5406656 4372
SPHINCS+ SHA2-192f-simple 4016 108477 5653
SPHINCS+ SHA2-192s-simple 260883 2706109 2023

Dilithium5 428 1196 436

V
Dilithium5 (AES) 859 1693 862
Falcon-1024 42182 2745 148
SPHINCS+ SHA2-256f-robust 29642 605148 16539
SPHINCS+ SHA2-256s-robust 479833 5885411 8296
SPHINCS+ SHA2-256f-simple 10605 227719 5796
SPHINCS+ SHA2-256s-simple 173780 2357170 2997

Table 14: Performance-related benchmark results of PQC algorithms using the JMH framework in Java
and are grouped per security level. Results are the average time needed to execute the corresponding
Bouncy Castle function (in µs). Elaborated results of all algorithms individually can be found in the
Appendix (Table 24).

To summarize, concerning the properties which are important for passive authen-
tication, only the size of the signature poses difficulties to passive authentication.
Specifically the SPHINCS+ 192f and 256s/f variants are not suitable for passive au-
thentication due to their large signature size. Comparing the storage size to Dilithium
and Falcon, SPHINCS+ is simply outmatched for the task. Even though the public key
size is the smallest for SPHINCS+ compared to Dilithium and Falcon, the sum of the
two will simply cancel out the benefits of the small public key size. So Dilithium and
Falcon are the preferred candidates for passive authentication, where Falcon scores
the best for having the smallest signature size and the fastest validation time.

39

6. POST-QUANTUM PKI FOR PASSIVE AUTHENTICATION

In the previous section, the results showed that the lattice based signature algorithms
Dilithium and Falcon are performing well. The next step is to extend these results into
the world of passive authentication. In order to do so, the benchmarks in the previous
section are extended by introducing the X.509 aspects which passive authentication
relies on. The following properties will be evaluated in the second benchmark as
shown in Table 15. The properties that matter the most for passive authentication in
practice are the size of the certificate, which is being stored on the chip, and the time
required to validate the chain of trust.

Variable Category

Certificate size Storage
DS CSR generation time Performance
Certificate signing time Performance
Certificate validation time Performance

Table 15: Properties of the X.509 certificates which will be evaluated in this research for passive au-
thentication.

6.1. PASSIVE AUTHENTICATION X.509 CERTIFICATE REQUIREMENTS

Before being able to benchmark the algorithms in practice, it is required to investi-
gate the current standards regarding the PKI for passive authentication and integrate
them within the benchmarks. ICAO 9303 (part 12) defines the Public Key Infrastruc-
ture for eMRTDs and lists all required and optional properties of the X.509 certificates
used within passive authentication [ICA21d]. These specifications differ for each of
the components within PKI structure of passive authentication. In this investigation
the scope is limited to the CSCA and the Document Signer components only, since
the other components are also listed within the standardisation documentation. In
the current situation where ICAO 9303 (version 8) applies, only RSA, DSA and ECDSA
are the only allowed signature algorithms for passive authentication. For the hash
algorithms, only the algorithms SHA-224, SHA-256, SHA-384 and SHA-512 are per-
mitted to be used. These cryptosystem requirements are ignored for the implemen-
tation of the post-quantum algorithms which are being used within the CSCA and the
Document Signer certificates during this research, because otherwise it is impossible
to meet these requirements when the cryptosystems are replaced by a post-quantum
algorithm in this research. In this research, a CSCA and Document Signer have been
constructed using the investigated post-quantum algorithms in combination with all
required components and extensions alongside their corresponding criticality using
the Bouncy Castle library in Java. The ICAO 9303 (part 12) [ICA21d] is used as a ref-

40

erence document for this project. For all detailed requirements we refer to this doc-
ument, since it is an extensive list of required certificate components and extensions
which are too exhaustive to mention within this paper.

6.2. BENCHMARKING CERTIFICATE PROPERTIES

The benchmarks on the properties for specifically the certificates are performed us-
ing the same methodology as for the benchmarks earlier in this paper. The previous
setup is reused and new benchmarks are added which focus on the application of
the algorithms within X.509 certificates. The results of the benchmark for specifically
the certificate size (storage) are shown in Table 16. The results of the performance-
based properties such as the time required to generate a CSR, a self-signed (CSCA)
certificate and to validate the certificate chain are shown in Table 26.

Algorithm Certificate Size Security Level

Falcon-512 2182
ISPHINCS+ (128f) 17768

SPHINCS+ (128s) 8536

Dilithium2 4380 II

Dilithium3 5893
IIISPHINCS+ (192f) 36360

SPHINCS+ (192s) 16920

Dilithium5 7835

V
Falcon-1024 3694
SPHINCS+ (256f) 50568
SPHINCS+ (256s) 30504

Table 16: Results of the benchmark on the storage properties of the X.509 certificates using the Bouncy
Castle library (in bytes). The extended version can be found in the appendix for all individual variants
in Table 25.

In Table 16 it is clearly visible that the variants of the SPHINCS+ using the 192f, 256f
and 256s configuration are impossible to be used as a CSCA for the document signer.
The signature of these signature algorithms will cause the Document Signer certifi-
cate to be too large to be practically be stored on the chip. The difference between the
hash-based signature algorithms and the lattice-based signature algorithms is also
very clear in terms of certificate size within this table. Falcon-1024 yields a certificate
with a size of 4kB, whereas the SPHINCS+ 256f variant is exceeding 50kB. Dilithium5
on this configuration reaches 8kB in size, but this is still significantly smaller than the
hash-based variants on the same security level.

There are also differences in the performance of the algorithms when used in a prac-

41

tical context. For the sake of clarity, the results for the benchmarks regarding the
performance properties can be seen in the Appendix in Table 26. The validation of
the full certificate chain is not very interesting to analyse further, since the slowest
validation of the certificate chain took 26ms, which is still fast in practice. Where it
gets more interesting is the performance difference between the SPHINCS+ config-
urations. In Table 17 we have extracted the security level 5 results and it is clearly
visible that the lattice-based signature algorithms are outperforming the hash-based
variants. The f-variant (fast) is notably faster than its s-variant (size), but the size of
the certificate generated by this variant would be over 50kB. If the s-variant is picked
however, it would take almost 6 seconds to generate and sign a certificate using the
robust variant and over 2 seconds using the simple variant. Which is quite long for
generating a certificate compared to the other algorithms. Objectively observing the
results overall, SPHINCS+ is not a feasible candidate for passive authentication. Fal-
con scores very well for generating very small signatures and is followed by Dilithium.
Dilithium performs the best results when considering the performance-related prop-
erties.

Algorithm Generate CSR Create CSCA Validation

Dilithium5 1145 1291 466
Dilithium5 (AES) 1659 1712 897
Falcon-1024 2773 2764 184
SPHINCS+ SHA2-256f-robust 628469 618112 16944
SPHINCS+ SHA2-256s-robust 5917595 5903589 8445
SPHINCS+ SHA2-256f-simple 236426 235911 6044
SPHINCS+ SHA2-256s-simple 2351470 2358679 3027

Table 17: Parts of the results of the benchmark for the performance properties of the X.509 certificates
using the Bouncy Castle library (in µs). Full overview of the results can be seen in the Appendix in
Table 26).

6.3. ALGORITHM SELECTION

In the previous results it is clear that Falcon and Dilithium are the preferred candi-
dates for passive authentication. However, there are different security levels available
for these algorithms. It is important to carefully pick an algorithm variant and argu-
ment why this variant is future proof. The CSCA is the root of the PKI for passive
authentication and needs to be secure for at least ten years. The easy solution is to
pick the highest level algorithm variant available, but the question is if this is abso-
lutely necessary. In order to view the current landscape, we have investigated three
Masterlists publicly available in the world. A Masterlist is a way of exchanging CSCA
certificates easily and securely between countries. In these Masterlists, it is possi-
ble to investigate which algorithms are used and what the cryptographic strength is

42

for the used algorithms. The overview of the results are listed in Table 18 and in this
overview it is clearly visible more than 60 percent of the CSCAs uses RSA-4096.

PQC algorithm Dutch German ICAO

ECC-256 28 28 24
ECC-384 39 39 34
ECC-512 6 6 6
ECC-521 4 5 5
RSA-2048 1 1 5
RSA-3072 35 37 26
RSA-4096 218 220 178
RSA-6144 5 5 7

Table 18: Masterlist analysis to view the CSCA algorithm usage throughout the world.
Dutch, Nov. 2023: https://www.npkd.nl/masterlist.html,
German, Feb. 2024: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/ElekAusweise/
CSCA/GermanMasterList.html,
ICAO, Dec. 2023: https://www.icao.int/Security/FAL/PKD/Pages/ICAO-Master-List.aspx
See Table 27 - Masterlist Tool repository for the actual used Masterlist files.

In order to compare the classical and the post-quantum algorithms in terms of se-
curity strength, it is necessary to have an overview which describes all different algo-
rithms and cryptographic strength in ascending order. This is done by investigating
the security strength of the post-quantum algorithms, which can be seen in Table
11 mentioned earlier, and by investigating the cryptographic strength of classical al-
gorithms in the NIST documentation related to key management in general [Bar20].
The post-quantum algorithms also have a classical security analysis, as they still need
to be secure in the classical non-quantum world. As a result, this yields the following
overview as mentioned in Table 19.

RSA-4096 is currently widely used within CSCA-certificates, however it is not listed
explicitly in the advisory as mentioned in Table 19. It is reasonable to assume through
simple interpolation that RSA-4096 is positioned in the category 128-192 bits secu-
rity. It is clear to see that the level 3 post-quantum algorithms are of a higher level of
security. The key of the CSCA is valid for 10 to 15 years, so also in a post-quantum
era a high level signature algorithm is required. This would mean that for the CSCA
certificate, a post-quantum algorithm of level 3 or higher is needed. A conservative
approach will be used for our use case, which means that the lattice based algorithms
from the 5th category (Dilithium5 and Falcon-1024) will be used in the proof of con-
cept for the CSCA. For the Document Signer, there is no publicly available informa-
tion available. The Dutch document signers use RSA-2048 and according to Table 19
this yields 112 bits of classical security. In a PQC era this would mean that the docu-
ment signer must use a level 1 or 2 PQC algorithm. So specifically for this use case,
Falcon-512 and Dilithium2 will be used for the document signer. This base line is not

43

https://www.npkd.nl/masterlist.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/ElekAusweise/CSCA/GermanMasterList.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/ElekAusweise/CSCA/GermanMasterList.html
https://www.icao.int/Security/FAL/PKD/Pages/ICAO-Master-List.aspx

PQC Level Algorithm Configuration Classical bits

— RSA 1024 < 80
— DSA 1024 < 80
— ECDSA 160-223 < 80
— RSA 2048 112
— DSA 2048 112
— ECDSA 224-255 112
— RSA 3072 128
— DSA 3072 128
— ECDSA 256-383 128
I Falcon 512 128
I SPHINCS+ 128 (all) 128
II Dilithium 2 128-192
— RSA 7680 192
— DSA 7680 192
— ECDSA 384-511 192
III Dilithium 3 192
III SPHINCS+ 192 (all) 192
— RSA 15360 256
— DSA 15360 256
— ECDSA 512+ 256
V Dilithium 5 256
V Falcon 1024 256
V SPHINCS+ 256 (all) 256

Table 19: Overview of classical and post-quantum algorithms, ordered by security level in order to
determine a suitable candidate for the document signer and the CSCA.

set in stone, so the proof of concept will be created in such a way that it allows to
easily change the used algorithms for passive authentication.

44

7. POST-QUANTUM CHIP SIGNING AND VERIFICATION

In the previous section, we have created a PQC PKI structure for passive authenti-
cation. This PKI will be used to construct the chip and sign the corresponding data
groups with the selected post-quantum algorithms. We have created a Java appli-
cation which is responsible for the creation process of the eMRTD. This application
creates, signs and writes the data to the chip which is used in this research. Dilithium
and Falcon will be used to create a proof of concept quantum resistant eMRTD for
passive authentication, since these are well suited for the process as investigated ear-
lier.

As mentioned in the introduction, the LDS of the eMRTD is defined according to the
ICAO 9303 (part 10) [ICA21b]. The goal of the research is to create a practical proof
of concept which resembles a real eMRTD. In order to not deviate from the scope of
this research, only the required components of the eMRTD will be considered in the
proof of concept. The proof of concept consists of data group 1 (MRZ) and 2 (Photo),
the EF.SOD and the EF.COM. Since EAC is not in the scope of this research and adds
more complexity to the proof of concept, these elements are out of scope. Figure
9 shows the elements which are being included and will elements will be omitted
in this proof of concept. Even though BAC is deprecated, implementing PACE on
the smartcard used in practice required a significant amount of work and does not
contribute to the research objectives. Therefore, the proof of concept currently only
supports BAC.

The Document Security Object (EF.SOD) is the most important component for pas-
sive authentication, because the hashes of the data groups, the signature over these
hashes and the document signer are stored here. In short, the EF.SOD is a custom
ICAO object (LDSSecurityObject) and is signed by using Cryptographic Message Syn-
tax (CMS) as specified in RFC 3369 [Hou02]. CMS is a protocol to digest, sign, authen-
ticate or to encrypt any type of data [Hou02]. CMS is structured in such a way that it
does not matter which digest algorithm or signature algorithm is used. This means
that only the algorithms and their corresponding cryptographic functions need to
be defined in the software. The CMS functionality is present in Bouncy Castle and
can be used to construct the quantum resistant signature provided by the Document
Signer for passive authentication. From a bird’s eye view, the structure of the EF.SOD
is shown in Figure 10. We use the EF.SOD V1 implementation for our proof of con-
cept as defined in the ICAO 9303 (part 10), as the V0 variant is considered legacy and
is deprecated [ICA21b].

Our implementation uses the JCOP J3E082-EXS card with the eMRTD application
embedded in the card. Communication with the chip is performed by using Appli-
cation Protocol Data Unit (APDU) commands according to the standards of the ISO
7816-4 [ISO20]. The widely used GlobalPlatform specifications are used for the man-

45

Figure 9: Structure of the LDS considered within the proof of concept for PA.

agement of the applets on the eMRTD chip [Glo18], and particularly for the chip writ-
ing implementation in Java, we use the open source project GlobalPlatformPro7 as
supporting library. In addition to GlobalPlatformPro, we use the open source JMRTD
project for composing the data structures for the eMRTD, such as the MRZ (DG1), the
encoding rules of the photo (DG2) and the other components as shown in Figure 9.
For the personalization of the card, we use the fictional identity of ’Vestram Identi-
tatem’ (Your Identity) including a vector generated image for this identity. The main
reason for this is to prevent using personal data of copyrighted material in this re-
search. For the EF.SOD implementation it was necessary to work around the JMRTD
library for establishing the CMS signature, because JMRTD hard coded the necessary
components for creating and signing the EF.SOD, such as the digest algorithms used
in the post-quantum signature algorithms. We did not adapt the JMRTD library, as
this research focuses on the Bouncy Castle library in particular. Bouncy Castle con-
tains the necessary components in order to construct and sign the EF.SOD and we

7https://github.com/martinpaljak/GlobalPlatformPro

46

Figure 10: Structure of the CMS SignedData component for the EF.SOD [ICA21b].

have adapted and included this process into our proof of concept.

In order to validate the data written to the chip, we have created a simple reader
implementation also using the JMRTD library for processing the data to read the eM-
RTD. This application establishes secure communication between the reader and the
chip and validates the content of the chip and prints the results into the console as
output. As the first step, is crucial to validate the chain of trust, calculate and compare
the hashes of the data groups and validate if the signature is issued by the given Doc-
ument Signer. Both applications and their structure are referred to in the Appendix
in Table 27 (EMRTD-Writer and EMRTD-Reader) and define our proof of concept for
quantum resistant passive authentication process within the eMRTD.

We have created the eMRTD using our EMRTD-Writer application. For this eMRTD,
we have used the combinations for the CSCA and Document Signer as shown in Table
20. This table also shows the size of the EF.SOD, which is measured in the Reader and
the Writer applications. When the EF.SOD is signed using Falcon, the total size of the
EF.SOD only takes up 4kB, whereas the Dilithium combination takes up two times
more space on the eMRTD. We also included a SPHINCS+ combination to reflect on
the findings in the previous sections. The result is that we were unable to measure the
size of the EF.SOD on the chip for SPHINCS+ in the Reader application. In the Writer
application we can see that the EF.SOD size is more than 47kB which is too large to

47

be stored on the chip. These observations show that the lattice based candidates are
most suitable to be used for passive authentication.

CSCA Document Signer EF.SOD size

Dilithium5 (V) Dilithium2 (II) 9659 bytes
Falcon1024 (V) Falcon512 (I) 4124 bytes

SPHINCS+ SHAKE-256s-simple (V) SPHINCS+ SHAKE-192s-simple (III) 47384 bytes *

Table 20: Algorithms to be used for passive authentication for the eMRTD proof of concept. The
SPHINCS+ entry is listed merely for comparison. Value of SPHINCS+ determined in our EMRTD-
Writer application, as it could not be read on the chip.

48

8. DISCUSSION

In our research we have investigated and benchmarked the three NIST standardiza-
tion candidates, Dilithium, Falcon and SPHINCS+. A first observation is that the pub-
lic and private key size of the lattice-based algorithms Dilithium and Falcon are larger
than those of SPHINCS+. On the other hand however, we found that the signature
size of the lattice-based signature algorithms Dilithium and Falcon are small when
compared to the signature size of the SPHINCS+ variants. Another observation is that
the key generation and signature generation process for SPHINCS+ is significantly
longer than for Falcon and Dilithium. We find similar results for the benchmarks of
the algorithms when used in X.509 certificates. These findings have been applied
to our proof of concept and shows that an EF.SOD signed using a Falcon algorithm
provides the smallest EF.SOD to be stored on the eMRTD, whereas the SPHINCS+
counterpart cannot be used in practice for passive authentication on a chip in the
field.

Our research continues on the research of Pradel et al. in which they have used
OpenSSL to generate and benchmark the PKI part for passive authentication [PM20].
Our research uses Bouncy Castle and JMRTD in order to generate the PKI for passive
authentication and we have used the Java benchmarking framework JMH to bench-
mark the considered algorithms standalone and when used in certificates. In addi-
tion, we have established a post-quantum PKI structure for passive authentication
which we have used in order to create and sign an eMRTD in practice. To validate
if the eMRTD was written correctly, we have used JMRTD to create a simple reader
application to validate the eMRTD and its contents by performing all required ver-
ification steps for passive authentication. Establishing the first quantum resistant
eMRTD is a big next step in making travel documents future proof.

The research team is part of the Judicial Information Service, part of the Ministry of
Justice and Security within the Kingdom of the Netherlands. This department is the
expertise centre of chip technology and PKI for the Netherlands. Aside from being
responsible for the CVCA and the authorisation of border terminals to privacy sen-
sitive material on identity documents, the most important responsibility related to
this research is the policy advisory role with regard to the CSCA of the Netherlands.
We are additionally responsible for the NPKD functionality at the border in order to
be able to perform passive authentication in practice. We also collaborate on Euro-
pean level and thus we are also represented in the Article 6 technical subgroup in the
European Union in order to discuss and establish solutions for border related ques-
tions. On international level we are also represented in the ICAO PKD of the United
Nations where we can collaborate on a worldwide level. We will share our findings
on European level and on international level.

The quantum threat for passive authentication has a worldwide impact and estab-

49

lishing a baseline for passive authentication is a first required step in order to keep
the borders safe in the future. This research contributes to this first step and opens
new roads in order to start adopting and standardizing post-quantum algorithms for
eMRTDs in the near future.

8.1. LIMITATIONS

In this research we have used JMH for benchmarking the algorithms within Java.
Even though this framework is quite elaborate, it is still not a very known and thor-
oughly researched framework. In general it is quite difficult to cover all of the com-
plexities of benchmarking in higher level programming languages. JMH does a good
job in benchmarking the post-quantum algorithms as implemented by Bouncy Cas-
tle and gives a clear overview on the capabilities of the post-quantum algorithms
in a practical situation. Still, more research on the functionality and reliability has
to be performed on the JMH library. This is also important as there are not many
other benchmarking frameworks for Java in the field and applications could bene-
fit of benchmarking within Java in order to pinpoint problems or bottlenecks within
higher level programming languages.

Our research is limited to the NIST standardization candidates, this narrows the choice
of suitable cryptosystems for passive authentication. Currently we are waiting for the
results of the call of proposals issued in 2022 by the NIST, this will take some time but
can give useful insights on additional quantum resistant signature algorithms. The
fact that only the lattice-based candidates are suitable for passive authentication is
concerning, but could be overcome by another suitable candidate which makes use
of other mathematical foundation. For SPHINCS+ we see differences in the simple
and the robust implementations which show that the researchers are improving the
algorithm to be more efficient. If the optimizations make it possible to reduce the
size of the signature significantly, then SPHINCS+ could be considered again as can-
didate for passive authentication.

In this research we have used smartcards as they would be used in the field. We have
taken into account that these smartcards are not publicly available on the web. Even
though there are many security elements in place for the eMRTD, it would still make
the eMRTD more accessible for passport forgers. This is also the reason why the proof
of concept is specifically created for our research goals in order to keep a balance
between making the research accessible to the community and keeping the passport
forgers at bay. The security mechanisms themselves are described in this research,
as they are meant to be publicly available in order to prevent security by obscurity.
It could be possible to implement an eMRTD application from scratch, but this extra
amount of work is far beyond the scope of this research.

50

The proof of concept for passive authentication favours the lattice-based signature
algorithms Dilithium and Falcon. This is a risk to our results and the next steps for
establishing a quantum resistant passive authentication protocol. The main risk here
that there is always a possibility that a vulnerability or weakness is found in lattice-
based signature algorithms which would make Dilithium and Falcon unusable. For
passive authentication this would leave us empty handed and could jeopardize the
safety of travel documents in the near future. As mentioned earlier, the call for pro-
posals by the NIST could offer new algorithms. Our software has been taken into
account during the implementation phase of this research. The proof of concept is
publicly available and the software is designed in such a way to make the algorithms
easily replaceable, as long as Bouncy Castle provides the implementation of the new
algorithms. This makes it possible to continue our quest of providing a solution for
passive authentication in a post-quantum era.

51

9. CONCLUSION

The evolving threat considering the upcoming of the quantum computer is not to
be underestimated as it will impact IT infrastructures worldwide. Also for automatic
border control, the quantum computer is a serious threat to be considered. Passive
authentication is vulnerable for quantum attacks and the fact that passive authen-
tication safeguards the integrity of travel documents, it is at risk in the near future.
This research contributes to the rocky steep road for establishing a eMRTD which is
resistant to quantum attacks using post-quantum algorithms. post-quantum signa-
ture algorithms however behave quite differently in contrast to the classical signature
algorithms because they use different underlying mathematics. In our research we
have evaluated and benchmarked the algorithms with in Java in order to determine
which of these algorithms could be used in for passive authentication in the future.

Our benchmarks, considering the NIST standardization candidates within Java and
the Bouncy Castle library, indicate that SPHINCS+ is not suitable to be used as re-
placement algorithm for passive authentication. The main reason is the large signa-
ture for the SPHINCS+ 256f/s and 192f variants of the algorithm. The eMRTD chip
has limited storage capacity and these variants exceed or approach this limit leav-
ing no space on the chip for other data. The lattice-based variants are more suitable
when compared to SPHINCS+. The benchmark results show that the footprint of Fal-
con signatures is small and is followed closely by Dilithium. Also the key generation,
signature generation and the signature validation processes of the lattice-based algo-
rithms are executed very quickly when compared to the stateless hash based variants.
Additionally, we have benchmarked the post-quantum algorithms when used during
the creation and verification of X.509 certificates. The results of these benchmarks
are consistent with those which only consider the algorithms themselves.

After benchmarking the post-quantum signature algorithms, we have established
software for creating the post-quantum PKI for passive authentication and software
for using this PKI in order to create a functional eMRTD. In order to validate the data,
we have established additional software to validate the contents of the eMRTD by
fully performing passive authentication. All software combined form our proof of
concept and contribute to the developments of creating quantum resistant travel
documents. We will share our findings with the European Article 6 Technical sub-
group and the ICAO in order to keep our borders safe for now and the near future.

9.1. FUTURE WORK

Passive authentication is not the only protocol which is at risk due to the upcoming
threat of quantum computer. Extended Access Control (EAC), important for Euro-
pean passports, is vulnerable as well for the imminent quantum threat, since it also

52

uses asymmetric cryptography. It is also mentioned in [PM20], but a practical imple-
mentation of EAC for a post-quantum era still has not been realised yet. It is inter-
esting to elaborate further on this topic because EAC protects the privacy-sensitive
data of the eMRTD from unauthorized reading [RS14], which is relevant for the pass-
ports issued within the European Union. In future research it is possible to explore
the impact of quantum computing on EAC and how to mitigate its risks in order to
protect the privacy-sensitive data on the passports. In addition to passive authenti-
cation and EAC, the remaining communication protocols such as PACE, AA and CA
are vulnerable for quantum computers in the near future. In our research these pro-
tocols are considered a low risk when compared to passive authentication. Although
it still remains a risk due to the presence of Key Encapsulation (KEM) and Key Ex-
change (KEX) mechanisms within these protocols, because these mechanisms are
based on asymmetric cryptography. Future research could focus on improving the
security of the communication protocols on chip environments and how to improve
secure communication in a post-quantum era.

The public key validity period of a 10-year valid passport is 13 to 15 years [ICA21d]. In
case of an overlap with the post-quantum era, this would mean that passports have to
be retracted from citizens due to the usage of classical and non post-quantum resis-
tant cryptography, which could be a costly operation. The transition process towards
a post-quantum implementation of passive authentication is beyond the scope of
this paper. Related research on hybrid certificates are interesting for this migration
path, because these certificates act like ordinary X.509 certificates, but have an ex-
tension containing post-quantum algorithm related values [KPDG18]. Further in-
vestigation is required in order to determine if a migration path would benefit from
using hybrid X.509 certificates in the migration to a quantum proof implementation
of passive authentication. In addition to the technical challenges, there are also or-
ganizational challenges to overcome. Challenges such as standardizing the solution
on a worldwide level in such a way that it aligns with the infrastructure and budget
capabilities of the ICAO members. This requires a research on an organizational level
to propose a solution that would be accepted and adopted by every member state of
the ICAO.

In order to migrate to post-quantum cryptography, it is essential to have a clear overview
of which algorithms are currently used in the field. For passive authentication for
travel documents, it is currently unclear which classical algorithms are being used
for the Document Signer certificates. A survey, in collaboration with governments or
the ICAO could give more insights on which algorithms are currently used in the field
and which certificates are already at risk without even considering the post-quantum
threat. Including this research paper, it could be a good starting point of the discus-
sion on how to migrate to post-quantum algorithms for travel documents and how
to standardize these new algorithms.

53

The LDS for eMRTDs is also undergoing developments. LDS2 supports new appli-
cations such as digital Travel Records, Visa Records and Additional Biometrics appli-
cations [ICA21b]. These components also require separate PKI structures in order to
guarantee the authenticity and integrity of the data stored in the new applications
[ICA21c]. Our research only considers passive authentication for LDS1, however it is
also interesting to expand the scope for LDS2 applications.

Finally, expanding the scope for the benchmarked algorithms is certainly worth in-
vestigating. It is very interesting to research stateful signature schemes such as XMSS
and LMS as possible alternatives for passive authentication. The additional challenge
here is to design such an infrastructure which is capable of handling stateful signa-
ture algorithms. It is interesting to research the best trade-off between the different
parameter sets within XMSS and LMS using security and performance as distinctive
variables. Using these algorithms for the PKI for passive authentication could provide
useful new insights.

54

A. BOUNCY CASTLE ALGORITHM OID OVERVIEW

Algorithm Configuration OID (BC) Security Level

FALCON Falcon-512 1.3.9999.3.1 I

Dilithium Dilithium2 1.3.6.1.4.1.2.267.7.4.4
II

Dilithium Dilithium2 (AES) 1.3.6.1.4.1.2.267.11.4.4

Dilithium Dilithium3 1.3.6.1.4.1.2.267.7.6.5
III

Dilithium Dilithium3 (AES) 1.3.6.1.4.1.2.267.11.6.5

Dilithium Dilithium5 1.3.6.1.4.1.2.267.7.8.7
VDilithium Dilithium5 (AES) 1.3.6.1.4.1.2.267.11.8.7

FALCON Falcon-1024 1.3.9999.3.4

Table 21: Lattice based signature algorithms considered for benchmarking.

55

Algorithm Configuration OID (BC) Security Level

SPHINCS+ SHA2-128s-robust 1.3.6.1.4.1.22554.2.5.1

I

SPHINCS+ SHA2-128f-robust 1.3.6.1.4.1.22554.2.5.2
SPHINCS+ SHAKE-128s-robust 1.3.6.1.4.1.22554.2.5.3
SPHINCS+ SHAKE-128f-robust 1.3.6.1.4.1.22554.2.5.4
SPHINCS+ HARAKA-128s-robust 1.3.6.1.4.1.22554.2.5.5
SPHINCS+ HARAKA-128f-robust 1.3.6.1.4.1.22554.2.5.6
SPHINCS+ SHA2-128s-simple 1.3.6.1.4.1.22554.2.5.19
SPHINCS+ SHA2-128f-simple 1.3.6.1.4.1.22554.2.5.20
SPHINCS+ SHAKE-128s-simple 1.3.6.1.4.1.22554.2.5.21
SPHINCS+ SHAKE-128f-simple 1.3.6.1.4.1.22554.2.5.22
SPHINCS+ HARAKA-128s-simple 1.3.6.1.4.1.22554.2.5.23
SPHINCS+ HARAKA-128f-simple 1.3.6.1.4.1.22554.2.5.24

SPHINCS+ SHA2-192s-robust 1.3.6.1.4.1.22554.2.5.7

III

SPHINCS+ SHA2-192f-robust 1.3.6.1.4.1.22554.2.5.8
SPHINCS+ SHAKE-192s-robust 1.3.6.1.4.1.22554.2.5.9
SPHINCS+ SHAKE-192f-robust 1.3.6.1.4.1.22554.2.5.10
SPHINCS+ HARAKA-192s-robust 1.3.6.1.4.1.22554.2.5.11
SPHINCS+ HARAKA-192f-robust 1.3.6.1.4.1.22554.2.5.12
SPHINCS+ SHA2-192s-simple 1.3.6.1.4.1.22554.2.5.25
SPHINCS+ SHA2-192f-simple 1.3.6.1.4.1.22554.2.5.26
SPHINCS+ SHAKE-192s-simple 1.3.6.1.4.1.22554.2.5.27
SPHINCS+ SHAKE-192f-simple 1.3.6.1.4.1.22554.2.5.28
SPHINCS+ HARAKA-192s-simple 1.3.6.1.4.1.22554.2.5.29
SPHINCS+ HARAKA-192f-simple 1.3.6.1.4.1.22554.2.5.30

SPHINCS+ SHA2-256s-robust 1.3.6.1.4.1.22554.2.5.13

V

SPHINCS+ SHA2-256f-robust 1.3.6.1.4.1.22554.2.5.14
SPHINCS+ SHAKE-256s-robust 1.3.6.1.4.1.22554.2.5.15
SPHINCS+ SHAKE-256f-robust 1.3.6.1.4.1.22554.2.5.16
SPHINCS+ HARAKA-256s-robust 1.3.6.1.4.1.22554.2.5.17
SPHINCS+ HARAKA-256f-robust 1.3.6.1.4.1.22554.2.5.18
SPHINCS+ SHA2-256s-simple 1.3.6.1.4.1.22554.2.5.31
SPHINCS+ SHA2-256f-simple 1.3.6.1.4.1.22554.2.5.32
SPHINCS+ SHAKE-256s-simple 1.3.6.1.4.1.22554.2.5.33
SPHINCS+ SHAKE-256f-simple 1.3.6.1.4.1.22554.2.5.34
SPHINCS+ HARAKA-256s-simple 1.3.6.1.4.1.22554.2.5.35
SPHINCS+ HARAKA-256f-simple 1.3.6.1.4.1.22554.2.5.36

Table 22: SPHINCS+ configurations considered for benchmarking. There are 36 different configura-
tions due to the characteristics of SPHINCS+.

56

B. BEST SUITED ALGORITHM EXTENDED RESULTS

Algorithm Private Key Public Key Signature Sec. Level

Falcon-512 2223 915 * 655

I

SPHINCS+ HARAKA-128f-robust 101 58 17088
SPHINCS+ HARAKA-128s-robust 101 58 7856
SPHINCS+ HARAKA-128f-simple 101 58 17088
SPHINCS+ HARAKA-128s-simple 101 58 7856
SPHINCS+ SHA2-128f-robust 101 58 17088
SPHINCS+ SHA2-128s-robust 101 58 7856
SPHINCS+ SHA2-128f-simple 101 58 17088
SPHINCS+ SHA2-128s-simple 101 58 7856
SPHINCS+ SHAKE-128f-robust 101 58 17088
SPHINCS+ SHAKE-128s-robust 101 58 7856
SPHINCS+ SHAKE-128f-simple 101 58 17088
SPHINCS+ SHAKE-128s-simple 101 58 7856

Dilithium2 3902 1336 2420
II

Dilithium2 (AES) 3902 1336 2420

Dilithium3 6014 1976 3293

III

Dilithium3 (AES) 6014 1976 3293
SPHINCS+ HARAKA-192f-robust 134 74 35664
SPHINCS+ HARAKA-192s-robust 134 74 16224
SPHINCS+ HARAKA-192f-simple 134 74 35664
SPHINCS+ HARAKA-192s-simple 134 74 16224
SPHINCS+ SHA2-192f-robust 134 74 35664
SPHINCS+ SHA2-192s-robust 134 74 16224
SPHINCS+ SHA2-192f-simple 134 74 35664
SPHINCS+ SHA2-192s-simple 134 74 16224
SPHINCS+ SHAKE-192f-robust 134 74 35664
SPHINCS+ SHAKE-192s-robust 134 74 16224
SPHINCS+ SHAKE-192f-simple 134 74 35664
SPHINCS+ SHAKE-192s-simple 134 74 16224

Dilithium5 7518 2616 4595

V

Dilithium5 (AES) 7518 2616 4595
Falcon-1024 4143 1811 * 1271
SPHINCS+ HARAKA-256f-robust 168 90 49856
SPHINCS+ HARAKA-256s-robust 168 90 29792
SPHINCS+ HARAKA-256f-simple 168 90 49856
SPHINCS+ HARAKA-256s-simple 168 90 29792
SPHINCS+ SHA2-256f-robust 168 90 49856
SPHINCS+ SHA2-256s-robust 168 90 29792
SPHINCS+ SHA2-256f-simple 168 90 49856
SPHINCS+ SHA2-256s-simple 168 90 29792
SPHINCS+ SHAKE-256f-robust 168 90 49856
SPHINCS+ SHAKE-256s-robust 168 90 29792
SPHINCS+ SHAKE-256f-simple 168 90 49856
SPHINCS+ SHAKE-256s-simple 168 90 29792

Table 23: Storage-based properties of PQC algorithms grouped per security level. Results of the mea-
surements are in bytes. (*) Falcon has a varying signature length. The listed result is the average size
over 100 iterations.

57

Algorithm Key generation Sign. generation Sign. validation Sec. Level

Falcon-512 15396 1323 74

I

SPHINCS+ HARAKA-128f-robust 10289 256425 16302
SPHINCS+ HARAKA-128s-robust 657620 5849434 6215
SPHINCS+ HARAKA-128f-simple 6258 156738 9675
SPHINCS+ HARAKA-128s-simple 399980 3590335 3701
SPHINCS+ SHA2-128f-robust 5815 140844 8545
SPHINCS+ SHA2-128s-robust 373859 3150242 2911
SPHINCS+ SHA2-128f-simple 2789 67842 3900
SPHINCS+ SHA2-128s-simple 174893 1525860 1357
SPHINCS+ SHAKE-128f-robust 7350 177297 10506
SPHINCS+ SHAKE-128s-robust 465832 3987983 3570
SPHINCS+ SHAKE-128f-simple 3822 93563 5297
SPHINCS+ SHAKE-128s-simple 243217 2063663 1803

Dilithium2 158 563 170
II

Dilithium2 (AES) 290 737 279

Dilithium3 277 1011 264

III

Dilithium3 (AES) 529 1278 538
SPHINCS+ HARAKA-192f-robust 15223 451000 24583
SPHINCS+ HARAKA-192s-robust 972938 11086931 9513
SPHINCS+ HARAKA-192f-simple 595284 6627328 5357
SPHINCS+ HARAKA-192s-simple 595284 6627328 5357
SPHINCS+ SHA2-192f-robust 8442 225112 12277
SPHINCS+ SHA2-192s-robust 548427 5406656 4372
SPHINCS+ SHA2-192f-simple 4016 108477 5653
SPHINCS+ SHA2-192s-simple 260883 2706109 2023
SPHINCS+ SHAKE-192f-robust 10894 284485 15482
SPHINCS+ SHAKE-192s-robust 684438 6730109 5345
SPHINCS+ SHAKE-192f-simple 5586 148839 7747
SPHINCS+ SHAKE-192s-simple 357170 3568502 2613

Dilithium5 428 1196 436

V

Dilithium5 (AES) 859 1693 862
Falcon-1024 42182 2745 148
SPHINCS+ HARAKA-256f-robust 40785 968036 26352
SPHINCS+ HARAKA-256s-robust 646524 10647582 14274
SPHINCS+ HARAKA-256f-simple 24649 585561 15241
SPHINCS+ HARAKA-256s-simple 390676 6442313 8249
SPHINCS+ SHA2-256f-robust 29642 605148 16539
SPHINCS+ SHA2-256s-robust 479833 5885411 8296
SPHINCS+ SHA2-256f-simple 10605 227719 5796
SPHINCS+ SHA2-256s-simple 173780 2357170 2997
SPHINCS+ SHAKE-256f-robust 28749 589743 15820
SPHINCS+ SHAKE-256s-robust 457504 5657210 7815
SPHINCS+ SHAKE-256f-simple 14692 314625 7877
SPHINCS+ SHAKE-256s-simple 238113 3055240 3877

Table 24: Performance-based properties of PQC algorithms using the JMH framework in Java and are
grouped per security level. Results are the average time needed to execute the corresponding Bouncy
Castle function (in µs).

58

C. X.509 PQC BENCHMARK RESULTS

Algorithm Certificate Size Security Level

Falcon-512 2182

I

HARAKA-128f-robust 17768
HARAKA-128s-robust 8536
HARAKA-128f-simple 17768
HARAKA-128s-simple 8536
SHA2-128f-robust 17768
SHA2-128s-robust 8536
SHA2-128f-simple 17768
SHA2-128s-simple 8536
SHAKE-128f-robust 17768
SHAKE-128s-robust 8536
SHAKE-128f-simple 17768
SHAKE-128s-simple 8536

Dilithium2 4380
II

Dilithium2 (AES) 4380

Dilithium3 5893

III

Dilithium3 (AES) 5893
HARAKA-192f-robust 36360
HARAKA-192s-robust 16920
HARAKA-192f-simple 36360
HARAKA-192s-simple 16920
SHA2-192f-robust 36360
SHA2-192s-robust 16920
SHA2-192f-simple 36360
SHA2-192s-simple 16920
SHAKE-192f-robust 36360
SHAKE-192s-robust 16920
SHAKE-192f-simple 36360
SHAKE-192s-simple 16920

Dilithium5 7835

V

Dilithium5 (AES) 7835
Falcon-1024 3694
HARAKA-256f-robust 50568
HARAKA-256s-robust 30504
HARAKA-256f-simple 50568
HARAKA-256s-simple 30504
SHA2-256f-robust 50568
SHA2-256s-robust 30504
SHA2-256f-simple 50568
SHA2-256s-simple 30504
SHAKE-256f-robust 50568
SHAKE-256s-robust 30504
SHAKE-256f-simple 50568
SHAKE-256s-simple 30504

Table 25: Results of the benchmark on the storage properties of the X.509 certificates using the Bouncy
Castle library (in bytes).

59

Algorithm Generate CSR Create CSCA Validation Sec. Level

Falcon-512 1353 1341 102

I

HARAKA-128f-robust 256644 257675 16359
HARAKA-128s-robust 5845423 5853879 6262
HARAKA-128f-simple 158303 157936 9707
HARAKA-128s-simple 3589672 3575960 3734
SHA2-128f-robust 140132 140696 8511
SHA2-128s-robust 3149854 3155434 2923
SHA2-128f-simple 68028 67796 3932
SHA2-128s-simple 1531751 1523185 1381
SHAKE-128f-robust 176194 175848 10520
SHAKE-128s-robust 4004197 4000166 3600
SHAKE-128f-simple 92770 92481 5278
SHAKE-128s-simple 2087836 2097904 1817

Dilithium2 657 631 187
II

Dilithium2 (AES) 817 729 303

Dilithium3 1048 1024 291

III

Dilithium3 (AES) 1324 1342 508
HARAKA-192f-robust 450579 449633 24592
HARAKA-192s-robust 11035614 11122161 9479
HARAKA-192f-simple 268422 268640 14386
HARAKA-192s-simple 6667497 6633352 5450
SHA2-192f-robust 232570 232376 12762
SHA2-192s-robust 5557838 5569566 4519
SHA2-192f-simple 109114 108183 5836
SHA2-192s-simple 2706095 2691460 2055
SHAKE-192f-robust 282593 283175 15465
SHAKE-192s-robust 6739412 6732299 5348
SHAKE-192f-simple 149992 148925 7702
SHAKE-192s-simple 3579142 3584922 2663

Dilithium5 1145 1291 466

V

Dilithium5 (AES) 1659 1712 897
Falcon-1024 2773 2764 184
HARAKA-256f-robust 965837 961192 26308
HARAKA-256s-robust 10588482 10596983 14301
HARAKA-256f-simple 587901 589847 15442
HARAKA-256s-simple 6480646 6493376 8345
SHA2-256f-robust 628469 618112 16944
SHA2-256s-robust 5917595 5903589 8445
SHA2-256f-simple 236426 235911 6044
SHA2-256s-simple 2351470 2358679 3027
SHAKE-256f-robust 590905 592943 15736
SHAKE-256s-robust 5701171 5705696 7813
SHAKE-256f-simple 315383 315454 7990
SHAKE-256s-simple 3060669 3090921 3934

Table 26: Results of the benchmark for the performance properties of the X.509 certificates using the
Bouncy Castle library (in µs).

60

D. RELATED SOFTWARE

Project Description URL

PQC-BC-
Benchmark

JMH Benchmark application
which can be used to bench-
mark the time related proper-
ties of the considered PQC al-
gorithms.

https://gitlab.com/pqc-research/pqc-
bc-benchmark

PQC-BC-
Benchmark-
Keysizes

Application which is used to
benchmark the storage related
properties of the considered
PQC algorithms.

https://gitlab.com/pqc-research/pqc-
bc-keysizes

PQC-BC-
Wrapper

Dependency of PQC-BC-
Benchmark (both applica-
tions). Wrapper library which
makes it easier to instantiate
the PQC algorithms in Bouncy
Castle.

https://gitlab.com/pqc-research/pqc-
bc-lib

Masterlist Tool Simple command line tool to
analyse the algorithms used
for the CSCA in three different
masterlists

https://gitlab.com/pqc-research/
masterlist-tool

EMRTD-Writer Application which is responsi-
ble for creating the PQ PKI and
uses this PKI to create an quan-
tum resistant eMRTD.

https://gitlab.com/pqc-research/emrtd-
writer

EMRTD-Reader Application using the JMRTD
library (as much as possible) to
verify if the contents which are
stored on the chip are valid.

https://gitlab.com/pqc-research/emrtd-
reader

APDU-LIB Dependency of the EMRTD-
Reader and EMRTD-writer for
shared functionality.

https://gitlab.com/pqc-research/apdu-
lib

Table 27: The source code of the software which has been established and used during this research.
All software was compiled using Adoptium JDK 17 and Maven. IDE used was IntelliJ IDEA.

61

https://gitlab.com/pqc-research/pqc-bc-benchmark
https://gitlab.com/pqc-research/pqc-bc-benchmark
https://gitlab.com/pqc-research/pqc-bc-keysizes
https://gitlab.com/pqc-research/pqc-bc-keysizes
https://gitlab.com/pqc-research/pqc-bc-lib
https://gitlab.com/pqc-research/pqc-bc-lib
https://gitlab.com/pqc-research/masterlist-tool
https://gitlab.com/pqc-research/masterlist-tool
https://gitlab.com/pqc-research/emrtd-writer
https://gitlab.com/pqc-research/emrtd-writer
https://gitlab.com/pqc-research/emrtd-reader
https://gitlab.com/pqc-research/emrtd-reader
https://gitlab.com/pqc-research/apdu-lib
https://gitlab.com/pqc-research/apdu-lib

REFERENCES

[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang,
John Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta,
et al. Status report on the third round of the NIST post-quantum cryp-
tography standardization process. US Department of Commerce, NIST,
2022. 9, 10, 29, 30

[AASA+19] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al. Status
report on the first round of the NIST post-quantum cryptography stan-
dardization process. US Department of Commerce, NIST, 2019. 9

[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
et al. Status report on the second round of the NIST post-quantum cryp-
tography standardization process. US Department of Commerce, NIST,
2020. 9, 10

[ABB+22] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph
Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, An-
dreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger,
Joost Rijneveld, Peter Schwabe, and Bas Westerbaan. Sphincs+. Submis-
sion to the NIST post-quantum project, v.3.1, Jun 2022. 30, 34

[Bar20] Elaine Barker. Recommendation for: Key management part 1 - general.
Technical Report SP 800-57, U.S. Department of Commerce, Washington,
D.C., May 2020. 43

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - a
practical forward secure signature scheme based on minimal security
assumptions. In Post-Quantum Cryptography, volume 2011, pages 117–
129, Nov 2011. 9, 10, 31

[BDK+21] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium
algorithm specifications and supporting documentation (version 3.1).
Submission to the NIST’s post-quantum cryptography standardization
process, Feb 2021. 30, 34, 35

[Ber09] Daniel Bernstein. Cost analysis of hash collisions: Will quantum comput-
ers make SHARCS obsolete. In SHARCS’09 Workshop Record (Proceedings

62

4th Workshop on Special-purpose Hardware for Attacking Cryptograhic
Systems, Lausanne, Switserland, September 9-10, 2009), pages 105–116,
Jan 2009. 8

[Beu22] Ward Beullens. Breaking Rainbow takes a weekend on a laptop. Cryptol-
ogy ePrint Archive, Paper 2022/214, 2022. https://eprint.iacr.org/
2022/214. 9

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Pe-
ter Schwabe, and Zooko Wilcox-O’Hearn. SPHINCS: practical stateless
hash-based signatures. In Advances in Cryptology–EUROCRYPT 2015:
34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part I 34, pages 368–397. Springer, 2015. 30, 35

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The SPHINCS+ signature frame-
work. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’19, page 2129–2146, New York, NY,
USA, 2019. Association for Computing Machinery. 30

[BHL22] Daniel J. Bernstein, Andreas Hülsing, and Tanja Lange. Post-quantum
cryptography - integration study, Oct 2022. 12, 30, 32

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of
hash and claw-free functions. In LATIN'98: Theoretical Informatics, pages
163–169. Springer Berlin Heidelberg, 1998. 8

[BKM+14] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C.
White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner,
A. N. Korotkov, A. N. Cleland, and John M. Martinis. Superconducting
quantum circuits at the surface code threshold for fault tolerance. Na-
ture, 508(7497):500–503, Apr 2014. 10

[BR19] Elaine Barker and Allen Roginsky. Transitioning the use of cryptographic
algorithms and key lengths. Technical Report 800-131A Rev. 2, National
Institute of Standards and Technology, Washington, D.C., Mar 2019. 13,
14

[BSI15] BSI. Advanced security mechanisms for machine readable travel docu-
ments and eIDAS token - Part 1 – eMRTDs with BAC/PACEv2 and EACv1.

63

https://eprint.iacr.org/2022/214
https://eprint.iacr.org/2022/214

Technical Guideline TR-03110-1, Bundesamt für Sicherheit in der Infor-
mationstechnik (BSI), Postfach 20 03 63 53133 Bonn, 2015. 22, 24

[BSKNS20] Kevin Bürstinghaus-Steinbach, Christoph Krauß, Ruben Niederhagen,
and Michael Schneider. Post-quantum TLS on embedded systems. Cryp-
tology ePrint Archive, Paper 2020/308, 2020. https://eprint.iacr.org/
2020/308. 11

[BSP+08] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen Far-
rell, and David Cooper. Internet X.509 Public Key Infrastructure Certifi-
cate and Certificate Revocation List (CRL) Profile. RFC 5280, May 2008.
21

[CAD+20] David A. Cooper, Daniel C. Apon, Quynh H. Dang, Michael S. Davidson,
Morris J. Dworkin, and Carl A. Miller. Recommendation for stateful hash-
based signature schemes. Technical Report SP 800-208, U.S. Department
of Commerce, Washington, D.C., Oct 2020. 9, 31

[CBL+21] Diego Costa, Cor-Paul Bezemer, Philipp Leitner, Artur Andrzejak, IT-
fakulteten, Göteborgs universitet, Gothenburg University, IT Faculty,
and Software Engineering (GU) Institutionen för data-och information-
steknik. What’s wrong with my benchmark results? Studying bad prac-
tices in JMH benchmarks. IEEE transactions on software engineering,
47(7):1452–1467, 2021. 36

[CD22] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH (preliminary version). Cryptology ePrint Archive, Paper 2022/975,
2022. https://eprint.iacr.org/2022/975. 9

[CML22] Lily Chen, Dustin Moody, and Yi-Kai Liu. Call for proposals - post-
quantum cryptography: Digital signature schemes: CSRC, Aug 2022.
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/
call-for-proposals, Accessed on 2023-02-19. 29

[CN22] Hugh Collins and Chris Nay. IBM unveils 400 qubit-plus quantum
processor and next-generation IBM quantum system two, Nov 2022.
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-
Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-
System-Two, Accessed on 2023-02-19. 10

[DD92] George I. Davida and Yvo G. Desmedt. Passports and visas versus IDs.
Computers & Security, 11(3):253–258, 1992. 6

64

https://eprint.iacr.org/2020/308
https://eprint.iacr.org/2020/308
https://eprint.iacr.org/2022/975
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

[FHK+20] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-based
compact signatures over NTRU. Submission to the NIST’s post-quantum
cryptography standardization process, oct 2020. 30, 35, 39

[FMMC12] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N.
Cleland. Surface codes: Towards practical large-scale quantum compu-
tation. Physical Review A, 86(3), Sep 2012. 10

[GE21] Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. Quantum, 5:433, Apr 2021. 10

[Glo18] GlobalPlatform. Card specification version 2.3.1, March 2018. Avail-
able: https://globalplatform.org/wp-content/uploads/2018/05/
GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf. 46

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, STOC ’96, page 212–219, New York, NY, USA, 1996. Associ-
ation for Computing Machinery. 7, 14, 17, 24

[GW22] Ruben Gonzalez and Thom Wiggers. KEMTLS vs. post-quantum TLS:
Performance on embedded systems. In Lejla Batina, Stjepan Picek, and
Mainack Mondal, editors, Security, Privacy, and Applied Cryptography
Engineering, pages 99–117, Cham, 2022. Springer Nature Switzerland. 11

[HBG+18] Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld,
and Aziz Mohaisen. XMSS: eXtended Merkle Signature Scheme. RFC
8391, May 2018. 31

[Hou02] Russ Housley. Cryptographic Message Syntax (CMS). RFC 3369, Sep 2002.
45

[ICA21a] ICAO. Doc 9303: Machine Readable Travel Documents - Part 1: Introduc-
tion. Technical report 8th Edition, International Civil Aviation Organisa-
tion (ICAO), 999 Robert-Bourassa Boulevard, Montréal, Quebec, Canada
H3C 5H7, Nov 2021. 6

[ICA21b] ICAO. Doc 9303: Machine Readable Travel Documents - Part 10: Logi-
cal Data Structure (LDS) for Storage of Biometrics and Other Data in the
Contactless Integrated Circuit (IC). Technical report 8th Edition, Inter-
national Civil Aviation Organisation (ICAO), 999 Robert-Bourassa Boule-
vard, Montréal, Quebec, Canada H3C 5H7, 2021. 6, 19, 20, 45, 47, 54

65

https://globalplatform.org/wp-content/uploads/2018/05/GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf
https://globalplatform.org/wp-content/uploads/2018/05/GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf

[ICA21c] ICAO. Doc 9303: Machine Readable Travel Documents - Part 11: Security
Mechanisms for MRTDs. Technical report 8th Edition, International Civil
Aviation Organisation (ICAO), 999 Robert-Bourassa Boulevard, Montréal,
Quebec, Canada H3C 5H7, 2021. 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 21, 22,
23, 24, 25, 26, 27, 54

[ICA21d] ICAO. Doc 9303: Machine Readable Travel Documents - Part 12: Pub-
lic Key Infrastructure for MRTDs. Technical report 8th Edition, Inter-
national Civil Aviation Organisation (ICAO), 999 Robert-Bourassa Boule-
vard, Montréal, Quebec, Canada H3C 5H7, 2021. 6, 19, 20, 40, 53

[ISO20] ISO. Identification cards — integrated circuit cards — part 4: Organiza-
tion, security and commands for interchange. Standard, International
Organization for Standardization, Geneva, Switzerland, May 2020. 45

[KF17] Panos Kampanakis and Scott Fluhrer. Lms vs xmss: Comparion of two
hash-based signature standards. Cryptology ePrint Archive, 2017. 31, 32

[KPDG18] Panos Kampanakis, Peter Panburana, Ellie Daw, and Daniel Van Geest.
The viability of post-quantum X.509 certificates. Cryptology ePrint
Archive, Paper 2018/063, 2018. https://eprint.iacr.org/2018/063.
53

[LM95] Frank T Leighton and Silvio Micali. Large provably fast and secure digital
signature schemes based on secure hash functions, Jul 1995. US Patent
5,432,852. 9, 31

[MCF19] David McGrew, Michael Curcio, and Scott Fluhrer. Leighton-Micali Hash-
Based Signatures. RFC 8554, Apr 2019. 31

[McH21] Jenny M McHugh. The passport’s medieval forebear: Grants of safe-
conduct in medieval Britain, Nov 2021. Accessed on 2023-02-12.
Available: https://www.epoch-magazine.com/post/the-passport-
s-medieval-forebear-grants-of-safe-conduct-in-medieval-
britain. 6

[MCJ+16] Dustin Moody, Lily Chen, Stephen Jordan, Yi-Kai Liu, Daniel Smith, Ray
Perlner, and René Peralta. NIST report on post-quantum cryptography.
Technical report, U.S. Department of Commerce, Apr 2016. 8, 28

[Mer79] Ralph Charles Merkle. Secrecy, authentication, and public key systems.
PhD thesis, Stanford University, Stanford, CA, USA, 1979. AAI8001972. 31

66

https://eprint.iacr.org/2018/063
https://www.epoch-magazine.com/post/the-passport-s-medieval-forebear-grants-of-safe-conduct-in-medieval-britain
https://www.epoch-magazine.com/post/the-passport-s-medieval-forebear-grants-of-safe-conduct-in-medieval-britain
https://www.epoch-magazine.com/post/the-passport-s-medieval-forebear-grants-of-safe-conduct-in-medieval-britain

[Mer90] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor,
Advances in Cryptology — CRYPTO’ 89 Proceedings, pages 218–238, New
York, NY, 1990. Springer New York. 31

[MK19] Soundes Marzougui and Juliane Krämer. Post-quantum cryptography in
embedded systems. In Proceedings of the 14th International Conference
on Availability, Reliability and Security, ARES ’19, New York, NY, USA,
2019. Association for Computing Machinery. 11

[Moo18] Dustin Moody. Let’s get ready to rumble. the NIST PQC “competition”. In
Proc. of First PQC Standardization Conference, pages 11–13, 2018. 35

[Mos18] M. Mosca. Cybersecurity in an era with quantum computers: Will we be
ready? IEEE Security & Privacy, 16(05):38–41, Sep 2018. 8, 28

[MPD+18] Lukas Malina, Lucie Popelova, Petr Dzurenda, Jan Hajny, and Zdenek
Martinasek. On feasibility of post-quantum cryptography on small de-
vices. IFAC-PapersOnLine, 51(6):462–467, 2018. 15th IFAC Conference on
Programmable Devices and Embedded Systems PDeS 2018. 11

[MS22] Soundes Marzougui and Jean-Pierre Seifert. XMSS-based chain of trust.
In Ulrich Kühne and Fan Zhang, editors, Proceedings of 10th Interna-
tional Workshop on Security Proofs for Embedded Systems, volume 87 of
EPiC Series in Computing, pages 66–82. EasyChair, 2022. 10

[MVZJ18] Vasileios Mavroeidis, Kamer Vishi, Mateusz D. Zych, and Audun Jøsang.
The impact of quantum computing on present cryptography. CoRR,
abs/1804.00200, 2018. 8, 18, 20, 22, 26

[oST17] National Institute of Standards and Technology. Recommendation for the
triple data encryption algorithm (TDEA) block cipher. Technical Report
SP 800-67 Rev. 2, U.S. Department of Commerce, Washington, D.C., 2017.
13, 18

[PM20] Gaëtan Pradel and Chris J. Mitchell. Post-quantum Certificates for Elec-
tronic Travel Documents, pages 56–73. Computer Security. Springer In-
ternational Publishing, Cham, 2020. 9, 10, 49, 53

[RMYK17] Sandeep Rao, Dindayal Mahto, DILIP YADAV, and Danish Khan. The AES-
256 cryptosystem resists quantum attacks. International Journal of Ad-
vanced Research in Computer Science, 8:404–408, Apr 2017. 8, 17

67

[RS14] Antonia Rana and Luigi Sportiello. Implementation of security and pri-
vacy in ePassports and the extended access control infrastructure. Inter-
national Journal of Critical Infrastructure Protection, 7(4):233–243, 2014.
7, 53

[Shi13] Aleksey Shipilev. The art of javabenchmarking. Aleksey Shipilëv: one-stop
page, 2013. 36

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Comput-
ing, 26(5):1484–1509, Oct 1997. 6, 7, 18, 20, 22, 24, 26

[TDF+23] George Tasopoulos, Charis Dimopoulos, Apostolos P. Fournaris, Ray-
mond K. Zhao, Amin Sakzad, and Ron Steinfeld. Energy consumption
evaluation of post-quantum tls 1.3 for resource-constrained embedded
devices. Cryptology ePrint Archive, Paper 2023/506, 2023. https://
eprint.iacr.org/2023/506. 11

[TLF+22] George Tasopoulos, Jinhui Li, Apostolos P. Fournaris, Raymond K. Zhao,
Amin Sakzad, and Ron Steinfeld. Performance Evaluation of Post-
Quantum TLS 1.3 on Resource-Constrained Embedded Systems, pages
432–451. Information Security Practice and Experience. Springer Inter-
national Publishing, Cham, 2022. 11

68

https://eprint.iacr.org/2023/506
https://eprint.iacr.org/2023/506

	Introduction
	Related work
	Post-quantum threats to the eMRTD security mechanisms
	Basic Access Control (BAC)
	Password Authenticated Connection Establishment (PACE)
	Passive Authentication (PA)
	Active Authentication (AA)
	Chip Authentication (CA)
	Terminal Authentication (TA)

	Research
	NIST standardization candidates
	Stateful hash-based signature schemes
	Scope

	Best suited algorithm for passive authentication
	Benchmarking within the Java JVM
	Algorithm benchmark results

	post-quantum PKI for passive authentication
	Passive authentication X.509 certificate requirements
	Benchmarking certificate properties
	Algorithm selection

	post-quantum chip signing and verification
	Discussion
	Limitations

	Conclusion
	Future work

	Bouncy Castle algorithm OID overview
	Best suited algorithm extended results
	X.509 PQC benchmark results
	Related software
	References

