“12345”, wherefore art thou accepted?

Measuring the current state of password requirements
on websites

CS Graduation Assignment
by

Coen van Driel

Student number: 851698192

Course code: IM990C
Thesis committee: dr. ir. Hugo Jonker (chairman & examiner), Open University
dr. Fabian van den Broek (examiner), Open University

Open Universiteit 8
www.oa.nl

Summary

Websites using a username-password authentication mechanism are vulnerable to
password related vulnerabilities (e.g. by brute force attacks or password guessing
attempts). To counter some of these vulnerabilities, websites can implement pass-
word input policies to enforce strong password creation by users. In some cases,
websites are required to implement password policies (e.g. in regulated industries
or by Europe’s GDPR), In many other cases however, websites are not required to
do so, shifting the responsibility of secure password creation to the visitor. Website
designers can consult password policy standards and recommendations such as those
from the NIST, OWASP, BIO and BSI for guidance.

We investigate to what extent websites adhere to these standards in order to
protect their visitors. As website visitors are generally in control of the password
they create, we focus specifically on websites that handle password related input.
This consists of composition requirements and other input related requirements such
as whether password-pasting is allowed, a common practice when using a password
manager. We investigate both public websites aimed at the general public and
private websites for internal use within organisations. Existing research in regards
to analysing public websites is often performed with manual website analysis, a time
consuming activity. Recent research is automating this type of analysis, but at the
cost of automatically creating a large number of accounts on websites. We consider
this an undesirable practice from an ethical perspective.

We therefore present a low-intrusive, client-side analysis based approach that
locates registration pages, extracts client-side indicators (HTML attributes, textual
instructions, and JavaScript code), and map these to standardized password rules.
By way of a proof-of-concept we have demonstrated the feasibility of this approach
at scale. We inferred password requirements without creating accounts on 8,254
websites, enabling large-scale and repeatable assessments.

We found that our approach provides the most value when measuring some indi-
vidual requirements (e.g. min. and max. length) versus against complete standards
that also include difficult to infer requirements. As a key finding, we found that 52%
of websites that allowed for minimum length inference adhere to the NIST minimum
length requirement, versus 48% non-compliant.

Aside from public websites, we also investigated private-organisational websites
by way of two case studies. When comparing our findings to the current standards,
we found that 100% of municipalities we surveyed and 85% of (applied sc.) uni-
versities are not compliant with the NIST standard, but are compliant to the local
Dutch BIO 1.0 standard.

Contents

1 Introduction 5
2 Background 8
2.0.1 Current password standards and guidelines 9

2.1 Password requirements implementation techniques 12
2.1.1 Key distinguishments 12

2.1.2 Client-side password requirement indicators 13

3 Related work 16
I Websites targeting the general public 18
4 Methodology 19
5 Determining password indicator usage on websites 22
5.1 Approach to website analysis. 22
5.2 Results 24
5.2.1 Estimating incidence of client-side elements 24

5.2.2 DISCusSSIOn 24

6 Automatically determining password client-side indicators 26
6.1 Locating the registration page 27
6.2 Verifying the registration page 27
6.3 Identifying relevant client-side source code 28
6.3.1 Identifying text strings 29

6.3.2 Identifying HTML attributes 30

6.3.3 Identifying JavaScript L. 30

6.4 Building indicator repositories 30

7 Automatically inferring password requirements from client-side in-

dicators 32
7.1 Interpretation techniques 34
7.1.1 Direct result from value 34
7.1.2 RegEx interpretation 34
7.1.3 HTML attribute interpretation techniques 35
7.1.4 Text interpretation techniques 36
7.1.5 JavaScript interpretation techniques. 38
7.2 Mapping rules for password requirements 41

3

7.3 Handling conflicting parsing results 42
7.4 Validation 45
7.5 Limitations 46

8 Proof-of-concept: Measuring password requirements through client-

side indicators 48
8.1 Overview e 48
8.2 Configuration 49
83 Results. 49
84 Analysis 52
II Private websites internal to an organisation 53
9 Methodology 54
10 Case study: publicly available password requirements of private-
organisational websites 56
10.1 Case study designo 26
10.2 Results o7
10.3 Analysis 59
11 Survey: information security professionals on password policies and
processes 60
11.1 Survey design 60
11.1.1 Implementation and survey composition 60
11.1.2 Privacy considerations 61
11.2 Results 61
11.3 Analysis 64
12 Conclusions 66
12.1 Reflection 67
12.2 Future work 68
References 69
A Ethics review for automated website analysis 71

B Complete manual website analysis results for discovering client-side

password requirement indicators 76
C Proof of concept configuration 81
D Complete list of used text patterns 82
E Distribution of length requirements across websites 85
F Case study: university password requirements complete results 87
G Survey: Password policies in organisations: Password requirements

and password management 89

Chapter 1

Introduction

With currently more than 5 billion internet users,! the need for safe and secure
interaction with websites and web-based applications (e.g. mobile apps) is more rel-
evant than ever. An important part of many websites is the separation between
authorized versus unauthorized data and functionality. This creates the need for
user-authentication mechanisms. There are various different authentication mech-
anisms a website can offer its visitors. The username- password mechanism for
authentication is a commonly used solution, that based on a 2024 report,? is the
de-facto standard.

The username-password mechanism has its share of vulnerabilities. Its primary
vulnerability is ‘weak’ password usage.®> Weak passwords are easy to guess by attack-
ers, leaving users at risk. Websites and password-using applications can counter this
vulnerability by implementing password input requirements to avoid weak password
creation. Password input requirements largely consist of composition requirements
such as minimum length. Allowing a visitor to paste a password from, for example,
a password manager can also be considered an input requirement. Potential addi-
tions to the username-password mechanism such as 2-factor authentication are still
lacking as a 2024 report demonstrates.* Successors to passwords such as passkeys®
are increasing in popularity, but are still far from being universally adopted with
only 12% of the top 250 websites supporting passkeys. ¢

This demonstrates the continued relevance of judiciously implemented password
requirements for password security.

Password restrictions depend on targeted user

In this study, we investigate password input requirements on websites. As web-
sites can target different audiences, they therefore may also differ in their password
requirements depending on the targeted user. Websites used in an organisational
context may have more stringent password requirements as a breach impacts the

https://www.statista.com/statistics/617136/digital-population-worldwide/
’https://fidoalliance.org/wp-content/uploads/2024/10/Barometer-Report-2024-0ct-29.
pdf
3https://www.forbes.com/advisor/business/software/american-password-habits
‘https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2024/
cyber-security-breaches—-survey-2024
Shttps://blog.google/technology/safety-security/one-step-closer-to-a-passwordless-future/
Chttps://fidoalliance.org/wp-content /uploads /2024 /05 /World-Password-Day-2024-Report-
FIDO-Alliance.pdf

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://fidoalliance.org/wp-content/uploads/2024/10/Barometer-Report-2024-Oct-29.pdf
https://fidoalliance.org/wp-content/uploads/2024/10/Barometer-Report-2024-Oct-29.pdf
https://www.forbes.com/advisor/business/software/american-password-habits
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2024/cyber-security-breaches-survey-2024
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2024/cyber-security-breaches-survey-2024
https://blog.google/technology/safety-security/one-step-closer-to-a-passwordless-future/
https://fidoalliance.org/wp-content/uploads/2024/05/World-Password-Day-2024-Report-FIDO-Alliance.pdf
https://fidoalliance.org/wp-content/uploads/2024/05/World-Password-Day-2024-Report-FIDO-Alliance.pdf

whole organisation. This as opposed to a website targeting individuals, where a
breach may only impact a single user account.

We distinguish between public websites (generally, business-to-consumer sites)
such as webshops, news websites, e-magazines, and social media and private-
organisational websites: generally, B2B SaaS sites and employee-only sites such
as intranets. As passwords are used broadly across either setting, we investigate
tendencies in password input requirements in both settings. We study password
restrictions in public websites by automated analysis, and in private-organisational
sites via two case studies: sites by higher education institutes (regular universities
and universities of applied science) by desk research, and sites by municipalities
by surveying professionals. To determine what password requirements are of rele-
vance to websites, we investigate the password requirement guidelines by multiple
standardization bodies such as the NIST.”

Studying password restrictions imposed on public websites. For measuring
password requirements on public websites, we aim to design a method for automat-
tcally inferring the password input requirements of a given website. Other studies
attempting to automate this type of website analysis such as that by Alroomi and
Li [AL23] has resulted in successful analysis at a larger scale, but at the ‘cost’ of cre-
ating many accounts on websites to simulate user sign-ups (i.e. an ‘account creation
approach’). We object to this approach as filling in registration forms automatically
is not only error-prone, it can also inflict undue burden on the receiving website.
We therefore aim to devise a more ethical analysis method, one that avoids undue
burdens for the analysed websites.

Investigating private-organisational websites. Aside from public websites,
password (input) policies are also relevant in a non-public context. Websites in a
private-organisational context are different from public websites as their account
creation process is generally shielded from public access. This results in limitations
for discovering their password requirements and thus requires a different approach
than automated scanning.

To the best of our knowledge, the research domain of password policies within
a private, organisational, context has only been given scant attention. This despite
these policies being of great importance to an organisation’s risk profile as most
organisational data breaches are password vulnerability related.®-*

We use two approaches, first, we analyse publicly available security policy doc-
uments in the Dutch educational sector. Second, we survey civil servants at Dutch
municipalities responsible for their organisation’s password policies. We provide ad-
ditional context (e.g. the basis for these policies) and map the results to current
password standards.

"https://www.nist.gov/

8https://www.verizon.com/business/en-gb/resources/2022-data-breach-investigations-report-
dbir.pdf

Yhttps://inquest.net /wp-content /uploads/2023-data-breach-investigations-report-dbir.pdf

6

https://www.nist.gov/
https://www.verizon.com/business/en-gb/resources/2022-data-breach-investigations-report-dbir.pdf
https://www.verizon.com/business/en-gb/resources/2022-data-breach-investigations-report-dbir.pdf
https://inquest.net/wp-content/uploads/2023-data-breach-investigations-report-dbir.pdf

Research questions. The above leads us to the following main research question:

To what extent are password input requirements
of websites compliant with password standards?

For public websites we aim at analysis at scale. This necessitates the automation
of password requirement inference. Unlike public websites, insights into private-
organisational websites’ policies may be less accessible. We therefore investigate
public and private-organisational websites separately.

Due to this, we divide the main question into the following sub-questions:

RQ 1. How to automatically infer password input requirements from public web-
sites, at scale, in an ethical manner?

RQ 2. To what extent are public websites compliant to the password input require-
ments of password standards?

RQ 3. To what extent are private-organisational websites compliant to the pass-
word input requirements of password standards?

Contributions. This study contributes to the cybersecurity domain by presenting
a new method for inferring password requirements from public websites. Addition-
ally this study presents new insights into password requirement compliance of both
public websites and password requirement compliance in a private, organisational
context. This study contributes the following:

1. We present an automated, low-intrusive, method for inferring password re-
quirements from public websites solely based on client-side source code. This
works by capturing relevant client-side password requirement indicators, using
an indicator mapping and interpretation rules to infer password requirements
from the captured indicators.

2. We create a proof-of-concept implementation of our method and use this to
scan 8,254 websites. We relate these findings to the following password require-
ment standards: BIO, BSI, NIST and OWASP. When looking at individual
password requirements, the minimum length requirement is most adhered to
by 52% of websites when compared to the NIST standard.

3. In addition, we investigate password policies used on internal systems. We do
so by performing desk research and surveying security professionals responsible
for managing these policies in the education sector and Dutch municipalities.
We find that 100% of municipalities and 85% of (applied sc.) universities
are not compliant with the NIST standard, but are with the local BIO 1.0
standard.

Collectively, these contributions provide a new, more ethical, approach to website
analysis at scale and insights into password composition requirement compliance of
websites in both a public and private context.

Chapter 2

Background

Password input requirements are a series of criteria that a password has to meet in
order to be accepted by the website. Website developers and designers are free to use
the requirements as they see fit. This ranges from composition requirements such as
minimum length, to extended validation requirements such as blocking specific key-
words in passwords. An example of a website demonstrating password requirements
is LastPass, as shown in Figure 2.1.

Create an account orlogn

Email

Master Password

Strength

Qur minimum requirements:
At least 12 characters long
At least 1 number
At least 1 lowercase letter
At least 1 uppercase letter

Not your email

Figure 2.1: LastPass password requirements

LastPass in the example above is using both composition (length and charac-
ter type requirement; a number, upper and lowercase letter) and a context-based
requirement (the password must not match the user’s email address). These require-
ments are intended to force website visitors to avoid common mistakes when creating
passwords that can lead to weak passwords, and therefore become a vulnerability
to the user’s account.’

The strength of a password is a measure of how difficult a password is to ‘guess’
or ‘crack’ by attackers.? This ‘guessing’ can take the form of literal guessing by a
person (e.g. trial and error, social engineering), or a more systematic approach (e.g.
brute force password hacking using automated tooling).

'https://cwe.mitre.org/data/definitions/521.html
’https://www.sciencedirect.com/topics/computer-science/password-strength

8

https://cwe.mitre.org/data/definitions/521.html
https://www.sciencedirect.com/topics/computer-science/password-strength

Websites that have password requirements judiciously implemented, are at lower
risk of a data breach due to weak passwords. Overcomplicating password require-
ments to minimize cybersecurity risk however is not the solution. Both ends of the
spectrum (from no requirements to very complex requirements) are proven prob-
lematic.> The NIST* standard mentions overly complexity requirements as coun-
terproductive for security as it can steer people into trying to circumvent these re-
quirements and thus use less safe passwords [KSK*11]. The key to secure password
requirements is therefore to balance complexity and usability.

2.0.1 Current password standards and guidelines

Website designers can look at leading institutions and authorities in the field of
cybersecurity to determine which password requirements are effective (i.e. recom-
mended). We consider an institution or authority in this field leading when it pro-
vides guidelines or rules for password requirements that are broadly recommended
and adopted.

In this study we focus on the following institutions and authorities that provide
password requirement standards or guidelines:

e NIST, National Institute of Standards and Technology;

e OWASP, Open Worldwide Application Security Project, in this study specif-
ically the OWASP Application Security Verification Standard;

e BIO, ‘Baseline Informatiebeveiliging Overheid’, Dutch Government informa-
tion security baseline;

e BSI, ‘Bundesamt fiir Sicherheit in der Informationstechnik’, German Federal
Office for Information Security.

These standards were selected because they each represent authoritative and
widely adopted standards or guidelines in different international and local contexts,
both for public websites and organisations.

The input requirements of the NIST?, OWASPS, BIO” and BSI®, are categorized
and displayed in Table 2.1 starting with the most recent. We have listed the latest
versions of each standard.

Shttps://www.doioig.gov/sites/default/files/2021-migration/Final%20Inspectiony
20Report_DOI%20Password_Public.pdf

‘https://pages.nist.gov/800-63-3/sp800-63b.html

Shttps://pages.nist.gov/800-63-3/sp800-63b.html

Shttps://github.com/0OWASP/ASVS/blob/master/4.0/en/0x11-V2-Authentication.md#
v21-password-security-requirements

Thttps://cip-overheid.nl/media/uvplkjfz/20231106-bio-thema-uitwerking-toegangsbeveiliging-
v2-3-def.pdf

8https://www.skadden.com/-/media/files/publications/2024/04/
data-protection-rulings/the-german-federal-office-for-information-security.pdf

https://www.doioig.gov/sites/default/files/2021-migration/Final%20Inspection%20Report_DOI%20Password_Public.pdf
https://www.doioig.gov/sites/default/files/2021-migration/Final%20Inspection%20Report_DOI%20Password_Public.pdf
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://github.com/OWASP/ASVS/blob/master/4.0/en/0x11-V2-Authentication.md#v21-password-security-requirements
https://github.com/OWASP/ASVS/blob/master/4.0/en/0x11-V2-Authentication.md#v21-password-security-requirements
https://cip-overheid.nl/media/uvplkjfz/20231106-bio-thema-uitwerking-toegangsbeveiliging-v2-3-def.pdf
https://cip-overheid.nl/media/uvplkjfz/20231106-bio-thema-uitwerking-toegangsbeveiliging-v2-3-def.pdf
https://www.skadden.com/-/media/files/publications/2024/04/data-protection-rulings/the-german-federal-office-for-information-security.pdf
https://www.skadden.com/-/media/files/publications/2024/04/data-protection-rulings/the-german-federal-office-for-information-security.pdf

Requirement BIO 1.0 BSI NIST ~ OWASP
(NL,2023) (DE,2022) (US,2020) (US,2019)

Composition

Minimum length 8
Maximum length -
Require character-types Y
Allow spaces -
Reject sequential characters o

070]
AV
< <220

8
> 64
N
Y
o)

o <K K |

Miscellaneous
Allow password pasting — Y

Y
Reject known bad passwords - Y Y

il

Y: required; N: forbidden; o: optional; — not specified
Table 2.1: Password input requirements in various standards

The password requirements in Table 2.1 have been categorized in composition
and miscellaneous. In the composition category, require character-types refers to a
password complexity requirement, where some or all, character-types such as low-
ercase letters, uppercase letters, numbers and special characters are required. This
requirement is aimed at enforcing password complezity (i.e. rejecting simple dictio-
nary words). The requirement reject sequential characters, refers to the blocking of
characters that logically follow up after each other (e.g. 12345, abede, qwerty).

A note on BIO’s and BSI’s minimum length requirement: a distinction is made
between regular user accounts and privileged accounts. Where as for regular ac-
counts the minimum length is 8, for privileged accounts it is increased to 12. In this
study we do not specifically investigate high risk environments such as admin panels
for which privileged accounts are needed, but more employer to employee-websites
as a whole. Therefore we include the minium length of 8. On a similar note, BIO
also allows the complexity (i.e. character-types) requirement to be ignored when
minimum length is configured to at least 20 characters).

In regards to the miscellaneous requirements in Table 2.1:

o Allow password pasting, referring to the use of pasting copied passwords, for
example when using password managers.

e Reject known bad passwords, referring to the blocking of words commonly used
(e.g. dictionary words), passwords to are known to be common (e.g. pass-
word123, mypassword) and passwords that have been uncovered from success-
ful hacks.

More stringent password requirements are in the works. The most recent
password standard in Table 2.1 is from 2023. Newer versions of these standards and
guidelines are in the works as version 2.0% of the BIO is expected to be published
in late 2025. In the BIO 2.0 version the minimum length increases to 15, and the
password complexity requirement is dropped. For NIST a similar update is expected

https://bio-overheid.nl/bio-wijzigingen

10

https://bio-overheid.nl/bio-wijzigingen

as a 2025 blogpost!® from NIST recommends a minimum length of 15 characters.
In this study we only use the current, officially published versions of the standards
and guidelines.

Non-input requirements. As mentioned, websites are free to create their own
password requirements. These ‘custom’ requirements may be based on previous
breaches or specific threats to their case, or in fact, just because the website designers
think it’s a good requirement. An example of this can be found on the University
of Ljubljana’s website as shown in Figure 2.2. This example prohibits the use of
the keywords “script, select, insert, update, delete, drop, —, °, /*, */”, referring to
commands used when exploiting SQL injection vulnerabilities.

New password

Your password protects your digital identity. Please select a strong password that you will be able to
remember. Avoid passwords that are easy to guess such as your first name, your last name, the name of
vour partner, vour date of birth, etc. Your password needs to be at least 10 characters long and it must
not include your first or last name and has to fulfill at least 3 of the given criteria:

» uppercase letters of the English alphabet,
» lowercase letters of the English alphabet,
» numbers,

= symbols: -_.+&

Your password must also not contain the following character combinations: script, select, insert, update,

delete, drop, --, ', /%, */.
Please enter the password twice in order to avoid typos.
New password (required)

New password confirmation (required)

Figure 2.2: University of Ljubljana password requirements, as discovered by Hugo Jonker

Ohttps://www.nist.gov/cybersecurity/how-do-i-create-good-password

11

https://www.nist.gov/cybersecurity/how-do-i-create-good-password

2.1 Password requirements implementation tech-
niques

When automating the determination of password requirements of websites, a techni-
cal understanding of the implementation of password requirements is foundational.
When looking at the password mechanisms for websites, we can distinguish two
separate layers within the structure of a website; client-side code and server-
side code. Both layers are suited for the implementation of password policies, even
though client-side scripts have grown in popularity due to its improved usability due
to immediate feedback capabilities to website visitors.

These layers can, independently or combined, provide password requirement en-
forcement (i.e validation) logic, but also assist visitors with instructions and visual
cues in regards to the policies in place (e.g. display a list of requirements).

2.1.1 Key distinguishments

Prior to further elaborating on password requirement implementation techniques,
it is important to distinguish and define several components that are relevant. In
this study we solely focus on the client-side layer of a website, as opposed to the
server-side. We define these terms as follows:

Client-side and server-side

Client-side. Also known as front-end, refers to code that is running in the web-
site’s visitors web-browser, this code (or script) can execute actions without per-
forming network requests to the website’s server. This code is generally downloaded
to a website’s visitor’s web-browser when opening the website or is downloaded on
certain user actions. The primary and effectively only client-side programming lan-
guage is JavaScript. However, newer versions of HTML and CSS also support some
basic logical operations (e.g. conditional CSS, HTML RegEx validation). Besides
JavaScript there are some new client-side programming language initiatives such as
WebAssemly,'t but adoption is slow.!?

Server-side. Also referred to as back-end, is code that executes as a response to a
network request to the website’s server. The actual code that is executed is hidden
from the website’s visitor and the web-browser itself, only the finalized response
after the server-side code is executed is returned to the web-browser. Examples of
server-side programming languages are PHP, .NET and C+4. A common practice
is to combine server-side with client-side validations, as website visitors can bypass
solely client-side validations. When combining both server-side and client-side val-
idations, discrepancies can occur. These possibly discrepancies are something to
further analyse when validating our analysis method.

Uhttps://developer.mozilla.org/en-US/docs/WebAssembly
2https://thenewstack.io/webassembly-adoption-is-slow-and-steady-winning-the-race/

12

https://developer.mozilla.org/en-US/docs/WebAssembly
https://thenewstack.io/webassembly-adoption-is-slow-and-steady-winning-the-race/

Instructed and enforced password requirements

A second key distinguishment is the difference between enforced versus instructed
password requirements.

Instructed password requirements. Instructed password requirements are of-
ten visually displayed to the user during the account /password creation phase. These
instructions aim to provide the user with visual hints or instructions to what passes
as an accepted password. The actual enforcement may differ from these instructions
due to design/programming discrepancies.

Enforced password requirements. FEnforced password requirements are exe-
cuted as a separate validation that validates the user input before it passes further
into the system. This validation can be aimed at ensuring user input adheres to
functional requirements such as as password policy, but also to protect the under-
lying system (e.g. the website’s user database) for malformed input and prevent
errors.

Enforced password requirements are more valuable than instructed password
requirements when determining requirements, as these are what actually is accepted
by the website.

2.1.2 Client-side password requirement indicators

As we focus on client-side solely in this study, we are interested in website elements
that can exhibit information regarding both instructed or enforced password require-
ments. For this context, we refer to all client-side elements that contain information
regarding password policy requirements as ‘password requirement indicators’.

13

We distinguish the following password requirement indicators:

e HTML attributes: minlength,'® maxlength,'* pattern,'® and passwordrules.!®
The latter is in the proposal phase, the others are accepted standards indicat-
ing minimum length, maximum length, and a regular expression to which the
input must conform, respectively.

e Textual password instructions
Interpreting textual instructions may also provide information regarding a
websites server-side validations. The drawback of textual messages is that
there is no certainty that the client or server-side validation is aligned with
these messages.

e Client-side dynamic feedback
Password requirements can be hinted at or enforced by client-side scripts.
Examples include showing a password strength meter, or showing requirements
that are not yet fulfilled in red, and the satisfied ones in green. For our
purpose, extracting the underlying logic from client-side dynamic feedback
would require not only parsing the script, but also extrapolating the intentions
that it encodes. We distinguish two types of scripting, RegEx validation (e.g.
input is checked against a RegEx-pattern), and algorithm based scripting (e.g.
a JavaScript method that checks the length of a password).

In order to automatically determine a website’s password requirements, all three
password requirement indicators can be analysed individually or in combination. An
analysis of all three indicators will yield the most complete result as not all websites
by definition will have implemented all, or any of these client-side elements.

Conflicting indicators. A website can use multiple password requirement mech-
anisms, e.g. textual instructions and HTML attributes. In some cases, these mech-
anisms may conflict with each other. For example, a textual instruction for a min-
imum length of 12 conflicts with HTML attribute minlength=‘8’. An example of
such a possible conflict is shown in Figure 2.3, in this case a validation is conflicting
with the password instructions. For automatic inference of password requirements,
such conflicts must be automatically (1) detected, and (2) resolved. These conflicts
can be resolved in various ways. For example, an enforced indicator (e.g. sourced
from JavaScript) can take precedent over an instructed indicator (e.g. sourced from
textual instructions). A ‘rulebook’ to automatically determine in what way conflicts
are resolved is needed.

3https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/minlength
“https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/maxlength
5https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/pattern
6https://github.com/whatwg/html/issues/3518

14

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/minlength
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/maxlength
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/pattern
https://github.com/whatwg/html/issues/3518

Je nieuwe wachtwoord

$7DWdoP=p"%G/j@28$Z0@ugE56B8g7| R

Het wachtwoord moet minimaal 8 tekens lang zijn met 1 hoofdletter, 1 kleine letter, 1 cijfer en 1 symbool.

Dit wachtwoord is: goed

= S o & S
Tips voor een sterk wachtwoord:

Minimaal 8 tekens
Minimaal 1 kleine letter
Minimaal 1 grote letter

Cijfers

L T T Y

symbolen (|@#S...)

Figure 2.3: Red textbox indicates bad password, while all requirements are met (seen on
odido.nl, 2023-10-25)

15

Chapter 3

Related work

When we specifically look at determining password requirements of websites and
password related vulnerabilities through website analysis, a number of studies have
been performed.

Manual analysis studies. The most recent and most notable study in terms of
manual analyses was performed by Lee et al. [LSN22] Lee et al. have completed this
analysis by manually analyzing 120 of the most popular websites and comparing
the password requirements against the password composition best practices, in this
case the NIST standard. Lee et al. found that all 120 analysed websites performed
poorly. Lee et al. found that more than half of the websites studied do not have strict
password policies and allow commonly breached and commonly used passwords (e.g.,
‘12345678’, ‘rockyou’).

This study has analysed 120 websites, in a manual, labour intensive way of
analysing, which is a significant drawback. Lee et al. indicated that this manual re-
search method was the only method to ensure high accuracy of their findings as they
found no uniform indication in which websites declare their password requirements.

Other studies [MKV17, SHPS17, WW15] came to similar findings by way of
manual analysis, but these are more dated and may not represent the current state
of password requirements anymore. Alroomi and Li [AL23] investigated more studies
in this domain and found that no study, including studies stemming from 2007 and
newer, exceeded the analysis of more than 150 websites.

Automated analysis studies. As established prior, research in this specific do-
main is not new, but has always been limited due to automation difficulties. Even
the recent study by Lee et al. [LSN22] attempted automation, but experienced many
difficulties and proceeded with manual website analysis instead. Studies that did fo-
cus on large-scale automated website analysis did so by mostly focusing on scanning
for vulnerabilities of the login-page.

For example, Van Acker et al. [VHS17] performed a large-scale study on the
Alexa top 100,000 websites. Van Acker et al. scanned for login-page vulnerabilities
such as un-encrypted login-form submitting. A key element of this study is the
methodology for finding the login-page, which is of relevance to our efforts in this
study.

Jonker et al., [JKKS20] with the introduction of the Shepherd framework, suc-
cessfully demonstrated a methodology for automated website analysis in order to

16

scan a larger set of websites. Similar to Van Acker et al., the Shepherd project
demonstrated ways to find login forms to then analyse its security properties.

Calzavara et al. [CJKR21] further built upon the Shepherd framework to anal-
yse session management vulnerabilities of websites as part of the login, logout and
authentication cookie handling process. These studies focused on designing method-
ologies for discovering vulnerabilities in login pages.

Other studies specifically focusing on the automation of the website registration
process are limited. Alroomi and Li [AL23| was, to the best of our knowledge,
the first study to successfully apply browser automation at scale for this specific
type of analysis. This study’s methodology is in essence a literal automation of
the prior studies that were performed manually. This approach to automation (i.e.
simulating a website user’s behaviour through automation) provides benefits such
as high accuracy, but also drawbacks such as the ‘cost’ of account creating at scale.

Studies in the organisational context. Ina German study by Gerlitz et al. [GHS21]
password policies in organisations were analysed and found that a number of organ-
isations still enforce harmful policies such as password expiration, which newer stan-
dards such as the NIST 2020, standard and commercial baselines such as Microsoft’s
baseline! are moving away from. This is partly due to a German information secu-
rity standard (BSI?) that contains this recommendation while other standards have
dismissed this recommendation.

Organisations can benefit from standardizing password policies as demonstrated
by Mikko et al.[YT04]. Technologies such as Microsoft’s Active Directory and newer
cloud based identity-services can create a single source of identity- and password-
management to use as Single Sign-On which increases control over passwords and
their required strength (e.g. single source of password requirements for all applica-
tions, single reset point, single policy point). For other websites and applications
where Single Sign-On is not available, unique strong passwords and the use of pass-
word managers is the recommended solution, similar to that of public websites that
do not offer (Social) Single Sign-On.

https://learn.microsoft.com/en-us/archive/blogs/secguide/
security-baseline-final-for-windows-10-v1903-and-windows-server-v1903
’https://www.bsi.bund.de/EN/Home/home_node.html

17

https://learn.microsoft.com/en-us/archive/blogs/secguide/security-baseline-final-for-windows-10-v1903-and-windows-server-v1903
https://learn.microsoft.com/en-us/archive/blogs/secguide/security-baseline-final-for-windows-10-v1903-and-windows-server-v1903
https://www.bsi.bund.de/EN/Home/home_node.html

Part 1

Websites targeting the general
public

18

Chapter 4

Methodology

In order to answer the main research question and its sub-questions, a research
strategy must be devised. For ease of readability we refer back to the research
questions as introduced in Chapter 1.

Main research question

To what extent are password input requirements
of websites compliant with password standards?

In this part of this study, we investigate public websites aimed at the general public.
This requires analysis at scale and therefore a technical approach. In this part we
investigate sub-questions RQ 1 and RQ 2 from the sub-questions below:

RQ 1. How to automatically infer password input requirements from public web-
sites, at scale, in an ethical manner?

RQ 2. To what extent are public websites compliant to the password input require-
ments of password standards?

RQ 3. To what extent are private-organisational websites compliant to the pass-
word input requirements of password standards?

Ethical considerations. We are interested in analysing websites in an ethical
manner and avoiding ethical ‘gray areas’ (e.g. using data from illegal sources). In
related studies, whether though manual [LSN22] or automated analysis [AL23], ac-
counts can be created on websites to determine password acceptance bounds and
thus password requirements. ‘Account creation’-studies may provide highly accu-
rate results as it simulates user behaviour, but at the cost of creating, a possible
high number of, unused accounts.

The created accounts can be used by websites to gage growth and the need for
additional resources (e.g. compute and storage). For example, a website offering
storage services maybe reserve a base storage capacity for each created user. ‘Ac-
count creation’-studies therefore may unjustly impact resource reservation-planning,
resulting in waste and cost. This method of analysis tends to also violates a website’s
Terms of Service — it is even considered a misuse vector by the OWASP Automated
Threat Handbook (Account Creation:OAT-019).*

To this end, our selection of methodology must be aligned with a more ethical
method of website analysis.

'https://owasp.org/www-project-automated-threats-to-web-applications/

19

https://owasp.org/www-project-automated-threats-to-web-applications/

Selection of methodology and alternatives. To infer the password require-
ments of public websites, multiple strategies are available. The strategies we con-
sidered and selected are listed below:

e Analysing passwords from password sharing websites
Resources like BugMeNot? publicly list usernames and passwords of websites
for account sharing purposes. These publicly available accounts can be anal-
ysed for password structures and be used for reverse engineering password
requirements from known accepted passwords.
Resources such as BugMeNot however, have limitations as websites can opt-
out, and account sharing is often not allowed by websites, placing the use of
this type of resource in a legal gray area. Perhaps more importantly, these ‘ac-
cepted’ passwords may actually be invalid or no longer meeting newer password
requirements. This invalidity was demonstrated by Calzavara et al. [CJKR21].
Their analysis showed that 66% of the passwords from BugMeNot were no
longer accepted during login-attempts. We therefore consider this approach
not suitable.

e Analysing existing password from hacked password lists
Similar to the previous BugMeNot approach, password lists that have been
publicized after hacks can also be used to reverse engineer password require-
ments. This approach however has two drawbacks. First, password lists are
generally based on specific websites. In our study we are interested in a broad
approach to inferring password requirements. Hence we are are only interested
in an approach that is based on many different websites, as opposed to a small
number of sites that has their passwords exposed. In general we consider using
password lists resulting from (illegal) hacks an unethical practice as this also
moves into the illegal territory. Using data from hacks indirectly legitimatizes
the original hack or breach and contributes to the idea that all data is ‘free to
use’ regardless of its origin. We therefore consider this approach not suitable.

e Making use of the analysis of website components
Tooling exists that analyses websites and determines its technical components,
such as ‘BuildWith Technology Lookup’? Based on these found components,
we can aim to infer the default password requirements a component uses (e.g.
a specific JavaScript framework).
A closely related alternative method is to analyse commonly used frameworks
such as CMS (Content Management Systems, e.g. WordPress) or even spe-
cific open source libraries (e.g. strength-meter libraries) and analyse its usage
numbers(for example, how many websites on the internet use Wordpress?).
Website data collected from this approach can then be matched with the cur-
rent password standards to answer RQ 2. Both these approaches benefit from
existing data, but focuses on high level website components. This assumes that
the default password requirements are what is actually implemented. This may
lead to inaccuracy and questions the validity of the results.

e Designing a novel, more ethical, approach for inferring password
requirements
In this study we aim to automate password requirement using a more ethical

’https://bugmenot.com
3https://builtwith.com

20

https://bugmenot.com
https://builtwith.com

method (i.e. website analysis while avoiding account creation). To the best of
our knowledge this has not been performed yet.

We aim to design a method that identifies and interprets password input re-
quirement indicators using only a website’s client-side source code. Client-
side password requirement indicators are code or text elements in HTML or
JavaScript that contain information regarding password requirements. The
downside is that a client-side-only approach increases the risk that our analy-
sis is incomplete or even faulty. We can address this by first manually analysing
websites to establish a ground-truth.

By way of proof-of-concept we can validate our approach and collect pass-
word input requirements from a large number of public websites across the
web. With these findings we can measure compliance to the current password
standards to answer RQ 2. This approach is aligned with our ethical consid-
erations and research questions, we therefore consider this approach suitable
and choose this approach moving forward.

Our selected, client-side based analysis approach, creates significantly less bur-
den on websites than the ‘account creation’ approach. Some burden however is
unavoidable, such as using website bandwidth from opening and downloading re-
sources. We consider this acceptable in relation to the value this study offers. Our
approach is also significantly less susceptible to malicious use by bad actors as it
does not automate credential handling (i.e. cannot be used for brute force attacks)
and does not create accounts (i.e. cannot be used for resource exhaustion attacks).

Additionally, during the planning phase of this study, we requested the Open
Universities board of ethics (ERBI) for feedback (found in Appendix A). In our
review request, where we considered both an ‘account creation’ and ‘non-account
creation’ (i.e. client-side based) approach, we used the Menlo Report* as a framework
for determining ethical aspects.

For our client-side based approach, we consider there to be no significant ethical
objections to present our approach and its proof-of-concept publicly.

“https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_
1.pdf

21

https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf

Chapter 5

Determining password indicator
usage on websites

Determining what indicators are used on websites and how frequent can be consid-
ered our ‘ground truth’ and help shape the design of our methodology. In order to
determine which password indicators are used, we perform manual website analysis.

5.1 Approach to website analysis

In Section 2.1.2 we listed three client-side password indicators websites can use
(HTML-attributes, textual instructions and hints, client-side scripts for dynamic feed-
back). In our website analysis we set out to discover which of these client-side pass-
word indicators are used. We aim to discover usage patterns (i.e. the frequency of
specific indicator usage), in order to provide guidance for designing the methodology
(e.g. which indicator will yield the most results).

Website selection & exclusion. To gather the required information, we analyse
a number of popular websites and search their client-side source code for password
requirement indicators.

Because this method is performed manually, and limited by time of the study,
the execution is limited to a 100 websites. These 100 popular websites (that offer
free account registration) include a wide range of different website types. Web-
sites included in the top 100 for example are social media (e.g. Google.com and
Facebook.com) websites, as well as news outlets and entertainment websites (e.g.
Dailymail.co.uk) and business to business or commercial services websites(e.g. Hub-
spot.com). Our top 100 website list is based on the most popular websites of the
Tranco-List.! Alternatives for the Tranco-list exist, such as the OpenRank-list.?
The Tranco-list however is the current standard for research use as this list is hard-
ened against manipulation. Because this research is performed by the research team
themselves only English and Dutch websites are analysed. For a website from the
Tranco-list to be eligible for analysis, it must meet the following criteria:

e The website is considered safe, that is:
— The site is not a known spreader of malware or phishing,

'https://tranco-list.eu/
2https://www.domcop. com/openpagerank/what-is-openpagerank

22

https://tranco-list.eu/
https://www.domcop.com/openpagerank/what-is-openpagerank

— The site is not an adult-entertainment site.
see below for details.
Language of the website is English.
The website has a publicly accessible account registration option.
Registration only requires an email address and data that can be mocked /un-
verified (e.g. data of birth).
Registration is free or trial (i.e. requires no direct payment).

Browser safety configuration & website safety filtering. To ensure that the
website analysis does not harm the computers of the research team the analysis is
performed on AVG secure browser®, a safety-enhanced version of Chrome, is used
with Web Shield enabled to visit the selected websites.

AVG secure browser is almost identical to Google Chrome but with more security
enhancements. Both browsers are based on the same Chromium?* foundation.

Additionally, for a website to be eligible for analysis all sources below must
provide a ‘Safe’-rating and not be categorized as Adult-websites as these are high
risk websites from both a malware perspective as a legal perspective.

e https://www.virustotal.com/gui/home/url
e https://sitecheck.sucuri.net
e https://global.sitesafety.trendmicro.com

Performing the website analysis. Website analysis is performed by applying
the following steps:

1. Locate account registration page
The initial step on the selected website is to locate the registration page. In
general, we seek an option to create an account by registering using an email
address (as opposed to Single Sign On methods).

2. Using Browser DevTools to analyse HTML
The HTML source code is the first client-side source code to analyse, and we start
by locating the password-field element. We can easily locate the password-field
element using DevTools by selecting the password-field in the user interface
and inspecting it through DevTools. We check the HTML element for HTML-
attributes such as minlength and maxlength and search for other attributes
that may indicate password requirements. We then search the HTML source
code using the DevTools text-search feature and searching for password related
keywords (e.g. 'password’; ’characters’, 'length’, ’'symbols’). This tactic can
point us into the direction where password related HTML elements are located
(e.g. password instructions). By taking an exploratory approach, we also aim
to discover how we can programmatically identify these elements, with the
automation phase of our study in mind.

3. Using Browser DevTools to analyse JavaScript
Additionally to analysing HTML client-side source code, we also manually anal-
yse any existing JavaScript client-side code. JavaScript on a website can be
within the same HTML page as in-page, or in-line JavaScript and is analysed

3https://www.avg.com/en-us/secure-browser
‘https://www.chromium.org/chromium-projects/

23

https://www.avg.com/en-us/secure-browser
https://www.chromium.org/chromium-projects/

similarly as HTML. JavaScript can also be attached as separate files, which can
also be accessed through DevTools. Within these files we search for password
related keywords, similar to our HTML text-search approach. Here we also
take an exploratory approach to determine both indicator usage, as well the
discovery of patterns for identifying indicator-elements.

Our aim is to limit website interaction as this might influence client-side in-
dicators. Our analysis does not include the creation of accounts on the websites
under test. We have noticed however that websites sometimes do not load password
requirement indicators into the client-side source code until the password field is
focused on (e.g. clicked on). Therefore, during our client-side analysis, we place
browser focus on the password field to optimize our collection of available client-side
indicators. As no accounts are created during our analysis, we consider our analysis
acceptable from an ethical perspective.

5.2 Results

5.2.1 Estimating incidence of client-side elements

We performed our manual website analysis and tracked our results when we found
password requirement indicators. The complete results of our analysis of 100 web-
sites can be found in Appendix B; in Table 5.1 we summarise the results. Websites
can exhibit multiple indicators, hence overlap between indicators is possible. For
textual password instructions we distinguish between text found within HTML tags
versus text found within JavaScript tags, a single website may contain both.

Found indicator #
Textual password instructions 63
— within HTML elements 44
— within JavaScript tags 21
HTML attribute maxlength 26

HTML attribute minlength

HTML attribute pattern

HTML attribute passwordrules
Dynamic feedback logic

— JavaScript validation algorithm
— JavaScript validation RegkEx

N W= W W

Table 5.1: Number of client-side indicators found on a set of 100 websites

5.2.2 Discussion

Noticeable is the high number of websites displaying textual password instructions
versus other indicators. What is also noticeable is that the other types of password
requirement indicators were not found with any significant consistency.

24

HTML maxlength being the most frequently found requirement indicator next
to textual instructions, is surprising from a password requirement perspective. In
terms of password strength, having a sufficient minlength requirement adds more
strength than maximum length requirement.

The number of websites that have textual password instructions in either HTML or
JavaScript, is sufficiently high in order to proceed with our methodology of inferring
password requirements. These results can be used to build indicator repositories
which then be can mapped to password requirement specific mapping rules in order
to infer a website’s password requirements.

Our results are limited by several aspects however. We noticed that websites
using Single Page Application-frameworks such as React or Angular were difficult to
manually ‘read” in order to find requirement indicators. Additionally, websites using
external JavaScript libraries, especially in the form of many modular components on
Content Delivery Networks, were also more difficult to determine its relevance and
process flow. These difficulties may have resulted in not discovering all client-side
password requirement indicators.

25

Chapter 6

Automatically determining
password client-side indicators

In this chapter we present the first step towards automation. We present the first
step of our automated password requirement inferring-approach; namely an auto-
mated approach for determining which indicators are used on a website.

This step allows us to automatically build client-side password indicator reposito-
ries (i.e. a data store for indicators), from which we can infer password requirements
in the next step. The approach presented in this chapter only refers to automati-
cally finding indicators on websites. The inferring of password requirements will be
presented in Chapter 7.

In Figure 6.1, we present an overview of our approach to determine the usage of
password client-side indicators.

Locating the registration page

!

Locating the primary password field

|
' . |

Identifying relevant Identifying relevant Identifying relevant
text strings by: HTML attributes by: JavaScript by:

o Proximity to pass- . o Inline event han-

- word field minlength o dlers

Containing pass- o Reference of pass-
word keywords Ll " word field 1D

—> pattern

- passwordrules

* onpaste

Figure 6.1: Automatically determining client-side password indicator usage

26

6.1 Locating the registration page

In this study we are solely interested in the registration page of a given website.
To locate and navigate to this page, we perform a search process similar to that of
Jonker et al. [JKKS20] and Alroomi and Li. [AL23]. This search process is performed
by way of the following steps listed below. A subsequent step is only performed when
the previous step is not successful in locating the registration page.

1. URLs with registration keywords
We try to find and open registration pages based on common URL patterns
such as {base-url}/register and {base-url} /sign-up.

2. Landing page search
On the landing page we search for keywords and accompanying hyperlinks
related to registration (e.g. ‘register’, ‘sign up’, ‘create’).

3. Google Search
We use Google Search using webbrowser automation and search for the website
base-URL in combination with keywords related to registration (e.g. ‘register’,
‘sign up’, ‘create’).

When a possible registration page is detected, we automatically navigate to this
page for verification. We automatically verify this page to be a registration page by
determining the existence of a (primary) password field as described in Section 6.2.

To improve our registration page detection and verification process throughout
our analysis process, we keep track of our success rates. Additionally, we perform
manual reviews to find possible missing elements in our verification process to im-
prove accuracy.

6.2 Verifying the registration page

Our approach for determining a page to be a registration page is to look for a
password (input) field located in the HTML source code. HTML password fields are
recognized by its input-type for which the HTML standard provides a specific HTML
element! as demonstrated below.

<input type="password" />

Additionally to the page containing a password field, we check and determine
the following:

1. The password field is not located in the header of the website, as this might
be a sign-in form.

2. In case of multiple password fields, we determine the first detected to be the
primary field, as elaborated on below.

Detecting the primary password field. There are scenarios where an HTML
page will have more than one password field. A common scenario is a registration
page where a user is asked to enter a password twice, generally for confirmation
purposes. An example is shown in Figure 6.2 below from Wiley.com? including its

'https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/password
’https://onlinelibrary.wiley.com/action/registration

27

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/password
https://onlinelibrary.wiley.com/action/registration

accompanying HTML in Figure 6.3. In this scenario we consider the first password
field (based on the order of the HTML elements) the primary password field.

Login information

Email* Password™

ex. user@institution.edu ‘ Type your password ‘
Retype email* Confirm password®

ex. user@institution.edu ‘ Re-type your password ‘

Figure 6.2: User interface of a registration page with two password fields

¥ <div class="col-md-&">

P ¢giv class="label "> </divy

<input id="1login.password” class="pass-hint" aria-labelledby="login.password.label passwordHint™ type="password” name="login.password"
ete="off" placeholder="Type your password” reguired="true">

"password-eye-icon l1con-eye hidden"»
iv class="password-strength-indicator” data-min="18" data-max="32" data-strength="4"> </div>

2" aria-labelledby="login.password2.label"” type="password” name="login.password2"” value autocomplete="off"

"Re-type your password"

s="password-eye-1con 1Con-eye

</div
P <p id="passwordHint" class="note"> =< p>
</div>

Figure 6.3: Accompanying HTML of the registration page with two password fields

Alternatively websites may have a sign-in password input element in the header
of the website. We therefore exclude any password fields that are located in the
header-element?® of a website. Websites may not directly expose their password field
on the registration page. In some scenarios a website may first ask for a user email
address, and only after submitting the (to be registered) email address or username,
the website will ask the user to enter a password. In this initial study, our approach
requires a directly reachable password field. Websites with other scenarios can be
supported in future research, after establishing the initial validity of our approach.

6.3 Identifying relevant client-side source code

The registration page generally consists of many text strings, HTML elements and
JavaScript code lines/blocks. Only a number of these elements are possibly rele-
vant to the password field, and thus the password requirements. In this section we
present our approach to identifying each type of element, and how we identify the el-
ements that are worth collecting for the possible inferring of password requirements.
The following methods for identification are based on client-side development best
practices as well as findings from our exploratory research as performed in Chapter
D.

3https://developer.mozilla.org/en-US/docs/Web/HTML/Element/header

28

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/header

Our approach has extensibility and flexibility built-in to allow for future work. To
enable extensibility, any used “list” such as password keywords-lists are generically
formatted in JSON-format. With this approach, additional keywords can be added
or removed, and mapping rules can be customized.

6.3.1 Identifying text strings

Text strings are lines of text that are present throughout the client-side source code.
These lines of text may include password requirement hints or instructions, so it
is key to identify which lines are relevant. We present two approaches to identify
relevant text strings. Both approach are performed regardless if the first approach
succeeds or not to identify all relevant text strings.

Based on proximity to the primary password field. Our primary method
for identifying password related text strings is by its proximity to the password field.
Textual strings located near the password field or within the password field element
as generic HTML attributes (e.g. placeholder attribute) are likely to contain relevant
text. We collect text strings;

e inside the password field element (child elements)

e text strings at the password field level (as part of the input element)

e outward from the password, until we reach a parent-level that contains another
input field.

An example of this is displayed in Figure 6.4 from Fastly* where one level up from
the password field, but before reaching other input field, text is found containing
the password requirements.

1 _1j2kesB4g _86277si" id="Password" name="Password" placeholder="Enter your password” reguired type="password" value>

TMYZOzeT Lype= DULLON > </DULTON> | T

¥ <divx
¥<¢p aria-live="polite" :]ass="xip3:&8" id="password-validation">

—
I“Passwurd must satisfy the following rules: Is at least 6 characters long, Contains an uppercase letter, Contains a lowercase letter, Contains a number, Contazins a symbol, Is no

<P
b cul aria-hidden="true” class="nhyzoz@"> i
</divy

</ div>

Figure 6.4: Password requirements near the password field, at equal depth from parent level

Based on password keywords. Textual strings may often be located at other
places within the source code than near the password field. A common occurrence
is that textual strings are centralized at the top or bottom of the HTML page or
JavaScript block. We filter these text strings by checking if the text contains the
word "password’.

‘https://www.fastly.com/signup/

29

https://www.fastly.com/signup/

6.3.2 Identifying HTML attributes

The identification of relevant HTML attributes is a straight forward process by collect-
ing all HTML attributes at the level of the password input field. Any HTML attribute
such as minlength that is used for validating password requirements is located at
the level of the (password) input field. As per example below®, the password field of
the registration page of Intuit.com® contains the HTML attribute maxlength with
value 50.

<input

type="password" maxlength="50"

aria-label="Password" aria-required="true"

data-testid="SignUpPasswordInput"

data-bbeid="SignUpPasswordInput"

autocomplete="new-password" name="Password"

id="iux-sign-up-password-input"

value="">

6.3.3 Identifying JavaScript

Identifying JavaScript lines and blocks that are relevant to the password field can be
performed in two different ways, through inline event handlers, and external event
handlers.

Based on inline event handlers. Inline event handlers are located at the same
level of the password input field, and therefore can easily be recognized, as the
example below demonstrates.

<input type="password" onchange="ValidatePassword()">

Based on reference of the password field. Alternatively, the password field
identifier (id, class, name etc.) can be used to bind a JavaScript function to a field.
This method both applies to direct JavaScript function binding (e.g. onchange) as
displayed below. Any JavaScript referencing the password field is considered relevant
scripting.
const input = document.getElementById("passwordFieldId");
input.addEventListener ("change", ValidatePassword);

6.4 Building indicator repositories

Based on the above described method for identifying relevant client-side source code,
we can collect and group client-side elements. Per type of client-side element we
build a “repository” of collected elements. These repositories can be used to query
and subsequently map client-side elements to password requirements. We compose
the following three repositories:

5This example has been refactored for improved readability by re-ordering attributes and re-
moving unneeded attributes.
Shttps://accounts.intuit.com/signup.html

30

https://accounts.intuit.com/signup.html

e Text repository
In the text repository we store all relevant text elements that are identified in
the client-side source code. In this repository text is stored per line of text as
a string value to retain its intended textual scope.

e HTML attribute repository
In the HTML attribute repository we store all relevant HTML attributes elements
that are used within the HTML password field element. These HTML attributes
are stored in a Key-Value <string, string> configuration, for example:
[Key: minlength] [Value:8]

e JavaScript repository
In the JavaScript repository we store the type of JavaScript found (inline or
reference) including its function in textual representation. This allows for
function parsing and interpretation the following steps. The depth level of
which we collect the JavaScript code (i.e. depth of the function tree or call
stack) is adjustable and may be set differently based on experience during the
collection phase. JavaScript is stored as string value.

Having collected and built the indicator repositories, we can introduce part two of
our novel methodology; inferring password requirements from client-side indicators.

31

Chapter 7

Automatically inferring password
requirements from client-side
indicators

Our approach to inferring password requirements from client-side indicators revolves
around requirement-to-indicator mapping rules. Each of these mapping rules has an
accompanying interpretation technique.

Interpretation techniques are techniques designed specifically for interpreting
the data derived from an indicator into the desired information regarding a specific
password requirement. In Section 7.1 we further elaborate on the interpretation
techniques composed in this study.

Our approach to inferring password requirements is based on three elements;

e A given password requirement.
e A client-side indicator that is suitable (i.e. it may hold relevant information).
e An interpretation technique, for a specific requirement /indicator combination.

These three elements combined, result in a password requirement mapping rule.

Different password requirements can vary in terms of data. For example, mini-
mum length (a numerical value) is vastly different in terms of data-type than required
character-types (a group of strings).

The same holds for different client-side requirement indicators. For example
text based indicators require a different method of analysis (i.e. ‘interpretation tech-
nique’) than analysing JavaScript functions. This level of specificity results in that
specific requirement-indicator-interpretation technique combinations are required in
order to successfully infer password requirements.

Lastly, in some cases, different indicators may give contradictory results for the
same password requirement. For example, the minlength HTML element specifies a
minimum length of 6 characters, while a hint text requires at least 8 characters. In
such cases, a priority ranking is required to determine which results takes precedent
(Section 7.3).

Determining mapping rules. Our approach for determining (new) mapping
rules for a password requirement starts with establishing which indicators can con-
tain the information needed (i.e. suitability). For example, the minlength HTML
attribute cannot hold information regarding allowed character type groups.

32

Determining this suitability can be done through manual analysis of websites
that use this indicator (e.g. analysing textual strings on websites to determine which
information it can hold). Alternatively, when an indicator is based on a standard
or publisher that provides technical documentation (e.g. HTML elements), that in-
formation will generally provide the information scope of the given indicator.

When determined which indicators are suitable for inferring the given password
requirement, each indicator must be interpreted by a indicator-specific interpre-
tation technique. Ideally, interpretation techniques are reused. Should such an
interpretation technique not yet exist, it must be designed and developed.

A bidirectional approach. In this study we reason from a password-requirement
perspective, as this is our specific focus in this study. In reality, it may also occur
that within the existing set of password requirements, a new client-side indicator
has become suitable. Our process is bidirectional, with interpretation techniques as
the essential ‘middle part’ allowing client-side indicators to be added in the similar
fashion as new password requirements are added. By determining suitability and
then composing the required interpretation technique.

Conflicting results. As there are possibly multiple suitable indicators for a spe-
cific password requirement, conflicting results may occur. In the case conflicts oc-
cur, a priority ranking is required to determine which results take precedent. In
Section 7.3 we further elaborate on handling conflicting results.

Overview. Having established both mapping rules and conflict handling rules,
our approach can be applied to websites and indicator repositories. In Figure 7.1
we present a high level overview of all these steps applied to the client-side indicator
repositories as presented in Chapter 6.

33

Client-side indicator mapping
Client-side indicator repositories™ and resuli-conflict rules
|)| _ per indicatorfrepository combination)

v

For each included password requirement:
Apply indicator mapping rules

v

”hre results alig ned“

“~_ for all repositories? _—
For each conflicting result:
Yes Apply conflict-handling rules

v

Password requirement determined

* as presented in Chapter 6

Figure 7.1: Automatically inferring password requirements

7.1 Interpretation techniques

Prior to presenting our mapping rules, we first present the interpretation techniques
included in this study. To infer the password requirement value (e.g. minimum
length of value ‘8’), from a password requirement indicator, we present interpretation
techniques. These interpretation techniques are specific to a requirement /indicator-
combination.

7.1.1 Direct result from value

The most straightforward interpretation technique is when an indicator maps di-
rectly to a password requirement. An example of this is the HTML attribute minlength
of which its value directly represents the minimum length password requirement.
This requires no further interpretation.

7.1.2 RegEx interpretation

RegEx interpretation is notoriously difficult as RegEx expressions are highly cus-
tomizable. In our approach we have selected a number of RegEx patterns that are,
based on developer guides such as Mozilla’s developer guide !, considered standard
or rudimentary.

"https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_
expressions

34

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions

For this study we interpret the following RegEx notations:

a-z for password requires lowercase.

A-7Z for password requires uppercase.

0-9 for password requires digits.

\w as a shorthand for [a-zA-Z0-9]. i.e. password requires all three classes
(lowercase, uppercase and digits).

{_@./\#\&+-1} any listed symbol for special characters i.e. password requires
special characters.

As RegEx is highly customizable, inferring length requirements is difficult. This
is because RegEx’s length notation can also refer to a specific part of the string (e.g.
minimally 1 uppercase symbol), and not necessarily apply to the whole string. We
therefore only interpret RegEx’s length notation when it occurs only a single time
and as the last element in the regex pattern as per examples below:

e [a-zA-Z1{8,16}$ for length range from 3 to 16.
e [a-zA-7]1{8,}$ for minimum length of 8.
o [a-zA-Z1{,16}$ for maximum length of 16.

7.1.3 HTML attribute interpretation techniques

Below we present our interpretation technique for parsing the passwordrules at-
tribute and the onpaste attribute. It is to be noted that the minlength and the
maxlength attributes are resolved via direct result inference as described in Sec-
tion 7.1.1.

Parsing the passwordrules attribute. The passwordrules attribute is a com-
plete password requirement attribute. This means that most password requirements
can be inferred from this attribute. Unfortunately this attribute is still in the HTML
proposal phase, and in our manual website analysis from Chapter 5, we only found
this attribute once.

Regardless, for parsing this HTML attribute, we can use its easy to understand
structure to infer password requirements. This attribute is limited to only length
and composition password requirements however. An example of the (string) value
of this attribute is:

"password-rules": "minlength: 6; required: lower, upper, digit;"

We can directly map the following password requirements to the following values:

e {minlength}:{direct value for minimum length requirement}.
e {maxlength}:{direct value for maximum length requirement}.
e {required}:{value requires further parsing}.

— {upper}:{direct value for required character-type classes-requirement}.
— {lower }:{direct value for required character-type classes-requirement}.
— {digit}:{direct value for required character-type classes-requirement}.

e {max-consecutive}:{direct value for ‘reject sequential characters’-requirement}.

Using the parsing rules above, we can establish the password requirements based
on the value of the passwordrules attribute.

35

Parsing the onpaste attribute. The onpaste attribute is the direct event han-
dling attribute when a user pastes a value into an input field. In the context of a
password field however, this used to be used for blocking password pasting. This
is now considered a bad practice as the NIST explicitly recommends the allowance
of pasting passwords (e.g. from password managers). In terms of parsing a value
from this attribute, the attribute’s value contains a JavaScript function and must be
interpreted. There are two scenario’s in which we conclude that pasting is blocked.

e Inline JavaScript:
when containing a direct return command, e.g.:

onpaste="return false;"

or when containing the preventDefault function call, e.g.:

onpaste="{preventDefaultl}"

e Referenced JavaScript:
when containing the PreventDefault function call, e.g.:

myInput.onpaste = e => {e.preventDefault ()};

or using an EventListener and containing the PreventDefault, e.g.:

addEventListener ("paste", {e.preventDefault()});

In the two scenarios listed above, we consider password pasting to be forbidden.
In any other scenario, we consider password pasting to be allowed.

7.1.4 Text interpretation techniques

Our interpretation technique for textual password instructions is based on text pat-
tern matching. For each to be inferred password requirement we have composed
pattern matching rules that are based on our exploratory findings during our man-
ual website analysis in Chapter 5. This interpretation technique is only applicable
to length indicators and character type-class indicators as listed in Table 7.2.

These pattern matching rules are based on common text patterns (i.e. common
password instructions). This results in a limitation for our approach as we will only
match text patterns that we have explicitly added to our rules. Our mapping rules
are extensible, so it is possible to add new patterns or add additional languages
besides English based text patterns.

In Table 7.1 we present a high level overview of our text pattern rules per pass-
word requirement. Within a text pattern, we detect specific characters such as {
d+} for digits or fixed words such as {/upper/} for a string containing the word
‘upper’. By using the smallest variant of a keyword (‘upper’ versus ‘uppercase’) we
broaden our matching ability. We use RegEx notation for matching these specific
patterns, which are case insensitive.

36

Password requirement Pattern

Length

— Minimum minimum {d+}
at least {d+}

— Maximum maximum {d+}
no more than {d+}

— Range {d+} and {d+}

Required character type-classes

— alphabetic {/lower/}
{/letter/}
{/alphabetic/}

— capitalized {/upper/}
{/capital/}

— special {/special/}
{/symbol/}

— numbers {/digit/}
{/number/}

Table 7.1: Shortlist of mapping rules for Text pattern matching

Our textual password instruction-repository as presented in Chapter 6.4 pro-
vides text strings per line of instruction. Hence, we consider each line a separate
instruction and pattern match each line according to Table 7.1. The complete list
of text matching patterns can be found in Appendix D.

37

7.1.5 JavaScript interpretation techniques

JavaScript interpretation is a difficult endeavour as JavaScript allows developers to
create scripts with much variety and relatively little constraints. Similar to RegkEx
interpretation, we therefore focus on a small number of key interpretations in this
study. In this part of our approach we have already extracted the relevant password
validation functions into our JavaScript-repository as described in Section 6.4.

Analyse conditional checks. One of the key methods for JavaScript interpreta-
tion is analysing conditional checks. Websites can use JavaScript to enforce password
policies by implementing conditional statements that validate user inputs. A (func-
tion with a) conditional statement or check, validates specific user input against a
condition and results in a true or false. Alternative a function may also, instead
of returning true or false, simply proceed to the next function or abort (e.g. throw
an error?).

For determining password requirements by analysing conditional checks, we focus
on two determination paths. There are more methods for interpretation JavaScript,
but in our study we focus on two rudimental approaches for simplicity and high
accuracy. At the end of this section we elaborate more on the limitation of this
approach. In order to analyse JavaScript, we first parse the JavaScript function into
an Abstract Syntax Tree (AST). This allows us to target conditional statements (i.e.
if-statements). An example of AST-parsing can be found on astexplorer.net>. AST
parsers such as Esprima® or Acorn® are available from the open source community.

In this study we include the following two JavaScript password determination
methods:

1. Using JavaScript’s length-property
Specifically for the password min. and max. length requirement, we know that
the length® property of a JavaScript variable must be used. We can search
the AST for this property in combination with a conditional statement. By
retrieving the operator (e.g. '<’, ’>", '==") value of the conditional statement
we can determine the min. or max. length of the condition. An example of a
conditional statement is shown below.

if (password.length < 8) {
alert ("Password must be at least 8 characters long.");

3

2. Using JavaScript’s test-property
In the example below we search for the test” property to infer a RegEx value,
that we can parse using our RegEx interpretation technique. This technique
can be used for min. and max. length, as well as required character type

’https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/
throwh

3https://astexplorer.net/#/gist/e2b13cfd7074c4e5fc2afed54cdbbe3a/
6e8dab825553c0e738013826£03129e4a416cf76

‘https://esprima.org/

Shttps://github.com/acornjs/acorn

Shttps://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global _
Objects/String/length

"https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global _
Objects/String/length

38

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/throwh
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/throwh
https://astexplorer.net/#/gist/e2b13cfd7074c4e5fc2afed54cdb6e3a/6e8dab825553c0e738013826f03129e4a416cf76
https://astexplorer.net/#/gist/e2b13cfd7074c4e5fc2afed54cdb6e3a/6e8dab825553c0e738013826f03129e4a416cf76
https://esprima.org/
https://github.com/acornjs/acorn
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length

classes. Similar to the length property, we can use the AST to search for this
property and retrieve a possible RegEx value for further interpretation.
if ('/[A-Z]/.test(password)) {

alert ("Password must include at least one uppercase
letter.");

Check for haveibeenpwned.com. The website (and API) haveibeenpwned. com
provides a method of comparing a user provided password against a list of breached
passwords. By rejection user passwords that have been exposed in a prior breach,
the chance of a new (in particular, brute force) breach is lowered. For determining
a website’s usage of the haveibeenpwned.com API we scan for the presence of the
haveibeenpwned.com endpoint (‘api.haveibeenpwned.com’) in the JavaScript code.

haveibeenpwned.com is not the only provider of this type of service, but is
widely regarded as the largest and most authoritative public breach notification and
password exposure service available, especially when compared to alternatives such
as Breach Detective® and Dehashed. ?

Other providers can be implemented in a similar fashion to haveibeenpwned. com.
This integration techniques only applies to the password requirement ‘Reject known
bad passwords/Commonality’.

Check for (pass)word-lists. Similar to the haveibeenpwned.com-technique, we
also check for the presence of password-lists in the JavaScript code. If a website uses
a hard coded “bad password” list, it likely contains commonly known bad passwords.
We therefore don’t seek to match an entire list of bad passwords, but only check if
one (or more) of the bad passwords in our own list occurs in the JavaScript code.
For our own bad password-list we use the top 100 most common passwords.'® With
more time and resources this list can be extended to the top 1000, top 10.000 etc.

This integration techniques only applies to the password requirement “Reject
known bad passwords/Commonality”.

A remark on the extraction and running of scripts locally. Fundamentally,
all client-side source code can be extracted from the website’s sources and be acti-
vated to run in a testing environment. In this testing environment we can extract
the validation function that is responsible for password validation, and ezecute this
function locally by passing different passwords to determine its acceptance bound-
aries. By passing passwords of different lengths, characters etc. it is possible to
determine (i.e. reverse engineer) the password requirements that are validated.

In the existing research ([ABG12, ACF*12]) of Alkhalaf et al., this technique
was investigated and Alkhalaf et al. achieved some initial success. Their extract-
and-run-technique however is very complex in terms of parsing rules, and rigid in
terms of applicability to inferring password requirements. During our manual web-
site analysis in Section 5.2.1 we only found 2 websites using JavaScript validation

8https://breachdetective.com
“https://dehashed.com
Ohttps://github.com/danielmiessler/SecLists/blob/master/Passwords/
Common-Credentials/10-million-password-list-top-100.txt

39

https://breachdetective.com
https://dehashed.com
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-password-list-top-100.txt
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-password-list-top-100.txt

function that was manually discoverable. Therefore, from a limited time and re-
source perspective, we chose not to include this extract-and-run-technique in this
study. We consider this an acceptable limitation to our approach considering the low

number of websites found with JavaScript validation logic in our manual analysis
(Sec. 5.2.1).

40

7.2 Mapping rules for password requirements

Mapping rules are the combination of a specific password requirement, a specific
client-side indicator, and a specific interpretation technique. However, not all indi-
cators are applicable to all password requirements. Therefore our mapping overview
in Table 7.2 is grouped by password requirement, which then only lists the applicable
indicators per requirement.

For each password requirement, we present mapping rules to its applicable in-
dicators. Next, we present our mapping rules for the password requirements and
indicators that we have included in this study.

41

a. Length requirement (min. maxj

Client-side indicators Interpretation techniques
e HTML attributes
—minlength, maxlength 7.1.1 Direct result from attribute value
— pattern 7.1.2 RegEx parsing
— passwordrules 7.1.3 passwordrules attribute parsing
o Text

— Password instructions & hints 7.1.4 Text pattern matching
e JavaScript
— Functions containing RegEx 7.1.2 RegEx parsing
— Function code 7.1.5 Analyse conditional checks
7.1.5 Extract and run test cases

b. Character type-class requirement

Client-side indicators Interpretation techniques
e HTML attributes
— pattern 7.1.2 RegEx parsing
— passwordrules 7.1.3 passwordrules attribute parsing
o Text

— Password instructions & hints 7.1.4 Text pattern matching
e JavaScript

— Function code 7.1.5 Extract and run test cases
7.1.5 Analyse conditional checks
— Functions containing RegEx 7.1.2 RegEx parsing

c. Forbidden password commonality requirement

Client-side indicators Interpretation techniques

e JavaScript
— Function code 7.1.5 Check for haveibeenpwned.com
7.1.5 Check for (pass)word-lists

d. Allowance of password pasting requirement

Client-side indicators Interpretation techniques
e HTML attributes
— onpaste 7.1.3 onpaste attribute parsing

Table 7.2: Overview the mapping rules in this study (the password requirement/indica-
tor/interpretation technique combination).

7.3 Handling conflicting parsing results

In Table 7.2 we presented several password requirements and their mapping rules.
For example, the length requirement (min., maz.) has mappings to the following

42

password indicators and interpretation techniques:

Length requirement (min., max.)

Client-side indicators Interpretation techniques
e HTML attributes
— minlength, maxlength 7.1.1 Direct result from attribute value
— pattern 7.1.2 RegEx parsing
— passwordrules 7.1.3 passwordrules attribute parsing
o Text

— Password instructions & hints 7.1.4 Text pattern matching
e JavaScript

— Function code 7.1.5 Extract and run test cases
7.1.5 Analyse conditional checks
— Functions containing RegEx 7.1.2 RegEx parsing

Table 7.3: Multiple suitable client-side indicators for a single password requirement.

The Length password requirement, similar to other requirements, are mapped
to multiple client-side indicators. This multiplicity results in a higher likelihood the
password requirement can be inferred, as there are multiple interpretation techniques
that can be applied. The applicability of multiple interpretation techniques can
strengthen our accuracy, when the results are aligned, when they are not, we must
resolve this conflict.

Our approach to handling multiple conflicting password requirement results is by
ranking, and prioritizing, the client-side indicators by their estimated level of web-
site enforcement. When we have low trust in that a client-side indicator is actually
enforced during the account creation process, it becomes less relevant when deter-
mining the password requirements of a website. We specifically approach conflict
handling using estimations of enforcement, because through custom programming
or scripting, many of the client-side indicators, such as HTML attributes, can be
bypassed or simply implemented incorrectly, resulting in improper enforcement.

Prioritizing client-side indicator repositories. Our initial prioritization is
based on the source of the client-side indicator, i.e. the type of indicator reposi-
tory. We have devised the following estimated enforcement ranking for indicator
repository.

e HTML attributes: High likelihood to be enforced.
e JavaScript: High likelihood to be enforced.
e Text: Not enforced. Further elaborated on in Section 7.5.

Both HTML attributes and JavaScript provides enforcement in the client-side,
either through default web browser behaviour (HTML attributes) or through mea-
surable custom JavaScript validation functions. They thus both take precedent of
any conflicting textual indicators.

HTML attributes and JavaScript-indicators require a second level of prioritizing
as they both have a high likelihood of being valid client-side indicators. HTML

43

attributes within HTML forms are ‘first to be validated’ compared to JavaScript
code due to default browser behaviour. This means that HTML attributes essentially
block further JavaScript validation execution, unless the HTML attributes are more
lenient than the JavaScript validation (e.g. HTML attribute allows a value to be
submitted, but it is then blocked by a more stringent JavaScript validation). Hence,
JavaScript only takes precedent over HTML attributes if the resulting requirement
is more stringent in JavaScript. Otherwise HTML attributes take precedent.

Prioritizing client-side indicators within single repository. As demonstrated
in Table 7.4, within both the HTML attributes and the JavaScript client-side indicator-
type, multiple indicators are mapped. In the previous paragraph we presented our
priorities among client-side indicator-types (i.e. the different indicator repositories),
below we present our prioritization within a specific indicator-type. We have in-
tentionally ordered the client-side indicators in order of priority, where the lowest
number (e.g. 1) indicates the highest priority that takes precedent in a conflict over
a lower priority (e.g. 2).

Client-side indicators Interpretation techniques Priority

e From HTML attributes repository

—minlength, maxlength 7.1.1 Direct result from attribute value 1
— pattern 7.1.2 RegEx parsing 2
— passwordrules 7.1.3 passwordrules attribute parsing 3

e From JavaScript repository
— Function code 7.1.5 Extract and run test cases 1
7.1.5 Analyse conditional checks 2
— Functions containing RegEx 7.1.2 RegEx parsing 3

Table 7.4: Multiple suitable client-side indicators for a single password requirement.

The process for determining priority is two fold. We first determine the level
of default enforcement. For example, HTML attributes such as minlength and
maxlength are enforced when used correctly by the browser. The passwordrules
attribute however is still in the proposal-state, meaning its intended behaviour is not
supported by most browsers yet, and thus may be ignored on submitting a HTML
form.

When conflicts occur in the first determination approach, we look at the com-
pleteness of the interpretation technique related to this indicator. For example,
RegEx parsing is difficult and in this study we have a limited RegEx parsing scope
for determining only the most common patterns. This means that this interpretation
technique is limited in practice, and thus takes lower priority than a interpretation
techniques that is of a more ‘closed’ interpretation technique such as the extract and
run testcases-technique (Sec. 7.1.5).

There is an exception for some specific password requirements that have multiple
interpretation techniques, such as the Forbidden password commonality requirement
as listed in Table 7.2. This password requirement resolves into a simple yes or no
result. The two interpretation techniques are considered an ‘OR’ equation, where

44

only one interpretation technique has to result in a yes regardless of the second
interpretation technique’s result.

7.4 Validation

Our approach to inferring password requirements, as well as our approach to auto-
matically determine client-side indicators in Chapter 6 are novel approaches. Be-
cause of this, our approach requires validation to ensure its real world feasibility.
For validation, we perform proof-of-concept in Chapter 8. In this proof-of-concept
we apply our approach to a number of websites in order to infer their password
requirements.

Additionally to the proof-of-concept, we are also interested in validating the
validity of specifically textual password instructions of websites. Textual password
instructions play a large role in this study as it is the most found client-side indicator
during our manual website analysis in Chapter 5.1. For HTML and JavaScript client-
side indicator, there is (in most cases) browser enforced validation. For textual
password instructions there is no default enforcement, hence we do not know to
what extend these textual password instructions are actually enforced.

Experiment. To determine the validity of textual password instructions (i.e. is
this indicator trustworthy?), we perform a small experiment. In this experiment we
re-investigate the websites (as listed in Chapter 5) and tested the validity of their
textual password instructions.

We perform the following steps per website under test:

1. Trigger the showing of textual password indicators.
The majority of websites displayed their instructions when clicking on the
password field as established in Chapter 5.1. When no instructions are shown,
we perform a form submit that is most likely to fail its validation, in order to
avoid the creation of an account. We do this by completing the registration
form, but for a password using a ‘x’ value, which in all cases was rejected
by server-side validation. This did in all cases trigger the displaying of the
website’s password requirements or instructions.

2. Test the rejection bounds of the instructions.
For each individual password requirement in the instructions, we test the lower
and upper bound. For example, if minimum length is instructed ’8° we test,
by attempting to submit the form, by using a password with length 7. We
perform a similar action for other displayed password requirements.

3. Test a single valid password.
We finally attempt to submit a single successful form in order. We do this by
entering a valid password (based on the instructions), on the lower bound. For
example, when a website instructs the user for a password with minimal length
of 8 and to use a symbol, we enter a password of length 8 with a single symbol.
From a password strength perspective the lower bound is most important (as
opposed to maximum length for instance), hence we focus on the lower bound
accepted password. This approach limits the number of fake accounts created
to a single account while still, in combination with the previous step, delivering
sufficient value for analysis.

45

Findings. We performed this experiment on the 100 websites from Chapter 5 and
found no discrepancies between the server-side validation and the textual password
instructions displayed client-side.

We did find a nuance in textual password instructions on websites that requires
more elaboration. Out of the 100 websites analysed we found 9 websites that pro-
vided textual password instructions, that were actually hints for creating a strong
password, and not a requirements. For example, on Google.com’s registration page,
we found the following textual instructions. Each line represents a separate instruc-
tion that was found.

Create a strong password with a mix of letters, numbers and symbols.
Use 8 characters or more for your password.

Please choose a stronger password. Try a mix of letters, numbers, and
symbols.

These textual instructions actually are a mix of a minimum length requirement
and tips to help create strong passwords, validated by a strength meter. We have
tested this by successfully entering a password only consisting of numbers (e.g.
‘123456789123456789’) that lacks the mix of letters, numbers, and symbols as hinted
at, but long enough to pass the strength meter validation. This indicates that pass-
word ‘strength’ is the actual requirement measured as long as minimum length is §,
and the other requirements are just hints. The only concrete password requirement
inferrable from this specific case is thus a minimum length of 8. We therefore have
to take into account that when supposed requirements are presented, without a con-
crete ‘count’ (e.g. ‘at least one special character’), the requirement may be a tip or
hint and not an actual password requirement. In such cases, to retain accuracy, we
do not infer password requirements from such textual hints.

Creation of accounts. For this experiment we did create an account on the
websites under test. Our aim for, and during this study is to minimize our digital
footprint on websites and limiting the creation of accounts. We therefore limited the
creation of an account only for this particular experiment and only a single successful
attempt to validate a successful password submit. Because of this minimization, we
consider the negative impact on websites minimal and acceptable from an ethical
perspective.

Demonstrated validity. This experiment demonstrates the validity of using pass-
word instructions on websites as a client-side indicator to infer password require-
ments.

7.5 Limitations

Our novel approach has a clear main limitation. Because our analysis is based
on client-side indicators, we do not measure server-side enforced password require-
ments. The final step in account creation occurs server-side and thus may include
more stringent or different validations due to programming misconfigurations (e.g.

46

HTML attributes are bypassed using JavaScript) or discrepancies (e.g. textual pass-
word instructions are not aligned with possible server-side validations). These dis-
crepancies do impact the accuracy of our approach.

In particular text-based client-side password indicators (i.e. password instruc-
tions) are simply ‘to be trusted’, in particular when there are no other supported
client-side indicators such as HTML attributes. However, our experiment in Sec-
tion 7.4 demonstrates the validity of these password instructions, and its suitability
for our novel approach.

Additionally, the approach presented in this study, has a limited number of
mapping rules and interpretation techniques. There likely are websites that do
have client-side indicators but are not measurable using our initial set of mapping
rules and interpretation techniques. This is in particularly relevant for Regkx and
JavaScript interpretation techniques. The accuracy of our approach will improve
when interpretation techniques and mapping rules are extended based on a larger
number of websites.

47

Chapter 8

Proof-of-concept: Measuring
password requirements through
client-side indicators

Our methodology for determining password requirements based on client-side indi-
cators has been theoretical so far. We validate its real-world applicability by way of
a proof-of-concept and test its performance in an open-world experiment.

8.1 Overview

We divide the actions performed by our tool into two conceptual steps as follows:
‘step 1: finding the registration page, and ‘step 2: inferring password requirements’.

Step 1: finding the registration page. This step is based on existing research
[JKKS20, AL23]. For this proof-of-concept, we only include websites where the
password-field is detected directly on the first found registration page. Websites
that require an email address, personal information, or send a verification code or
CAPTCHA before displaying the password field, are thus excluded. Our tool also
requires websites to be in English.

While this approach suffices to show the viability of our concept, it has many
false negatives in regards to found registration pages.

Step 2: inferring password requirements. For our proof-of-concept we focus
on the most occurring client-side indicators as determined in Chapter 5.2.1. Our
approach to inferring password requirements supports JavaScript parsing, but for
this proof-of-concept we focus on the most frequently occurring client-side indicators
and therefore exclude JavaScript validation logic interpretation.

Step 2 of our tool performs the following actions:

1. Retrieve the website URL from the selection of websites suited for analysis.

2. Complete client-side source code download into memory (HTML and both in-
ternal as externally hosted JavaScript sources).

3. Build client-side indicator repositories based on source code.

Determine password requirements based on repositories and mapping rules.

5. Store resulting findings in datastore for tracking purposes.

i

48

8.2 Configuration

We execute our password requirement inferring tool onto the Tranco-list of most
popular websites. We consider this list suited for this type of analysis as we also
used the Tranco-list for our manual research in this study. As our tool downloads
website contents from a website’s server, we are very dependent on the speed of the
website’s server.

We manually monitor progress made during the execution to refine and improve
our tool as it runs. Interruption may occur when the machine requires a reboot, or
the process gets stuck. To counter this interruption risk, we build-in a timeout of
100 seconds, after which our tool will move on to the next website. We keep track
of every website our tool visits. This tracking allows us to restart the process where
it left off in case of an interruption that requires manual intervention (e.g. a bugfix
is required).

In our proof-of-concept we use a Windows 10 Pro workstation with an Intel
Core 19-10900K @ 3.70GHz processor and 64GB of memory. This setup allows the
parallel analysis of 810 websites. Our tool is written in C# .NET,! and uses Chrome
based Selenium for webbrowser automation. More details regarding the Selenium
configuration can be found in Appendix C. We use a Microsoft SQL database for
storing the results of the analysis and for keeping track of website visits.

8.3 Results

We divide the results of our tool into two conceptual parts, namely the ‘finding the
registration page’-step, and the ‘inferring password requirements’-step. These are
two distinct phases in our website analysis, of which our proof-of-concept focusses
on the “nferring password requirements’-step as this is a new contribution to the
research domain.

Results for step 1: finding the registration page. We analysed a total of
43,848 websites with the aim to locate a registration page. This initial analysis
includes scanning URLs that linked to websites that were not in English, did not
have registration options, or were not available or did not have a password field on
the registration page.

Our tool detected that 8,254 (18.8%) of websites did meet our criteria. These
8,254 websites are considered suitable for the inferring of password requirements in
step 2. For the remainder of the websites our tool did not detect a registration page
that met the criteria, or detected no registration page at all.

Results for step 2: Inferring password requirements. The focus of our
proof-of-concept is on this step, the inferring of password requirements. Our tool
uses the pre-composed and filtered list of 8,254 websites from step 1 to attempt
password inference. Out of these 8,254 websites, our tool detected one or more
password requirement indicators on 3,065 (37.1%) websites.

In Table 8.1 we have listed each password requirement and the percentage of
websites, without data filtering, where the tool inferred the specific requirement.

'https://dotnet.microsoft.com/en-us/languages/csharp

49

https://dotnet.microsoft.com/en-us/languages/csharp

Password requirement # of websites w/ inference

Composition

— Minimum length 1,521 of 8,254 (18.4%)
— Maximum length 1,604 of 8,254 (19.4%)
— Require character-types 284 of 8,254 (3.4%)
Miscellaneous

— Reject known bad passwords 708 of 8,254 (8.6%)
— Forbid pasting 1of 8254 (0.1%)

Table 8.1: The number of websites on which a specific password requirement was inferred

In Table 8.4 we show the percentage of requirements our tool was able to infer
in relation to the total number (4,118) of inferred requirements (i.e. which require-
ments were inferred the most). Figure E.1 and Figure E.2 in Appendix E show the
distribution of the min. and max. length requirements found.

Password requirement # of inferences

Maximum length 1,604 of 4,118 (38.9%)
Minimum length 1,521 of 4,118 (36.9%)
Reject known bad passwords 708 of 4,118 (17.2%)
Require character-types 284 of 4,118 (6.9%)
Forbid pasting 1of4,118 (0.1%)

Table 8.2: Inference count per requirement in relation tot he total of 4,118 inferred re-
quirements

Filtering out outliers likely to be false positives. During manual validation
of the results, we found outliers that were unjustly marked as a specific requirement.
For instance, a minimum length requirement of 4 was detected while in reality it
was a PIN-code and not a password. Incidently we also detected invalid values
such as a minimum length of zero. To determine compliance and non-compliance
levels accurately, we create a data filter for both the minimum and maximum length
requirement. These filters are based on manual validation of the data. This issue is
less prevalent for the other requirements.

e For minimum length: we require detected length > 4 AND detected length <
32 to be considered valid.
e For maximum length: we require detected length > 14 to be considered valid.

Explicit versus implicit (non-)compliance. We use the term explicit to indi-
cate that we have inferred a certain requirement and thus can conclude with high
accuracy whether the inferred requirement is compliant or non-compliant. Implicit

50

compliance is used when no requirement is found, but this is inline with a password
standard. For example when the NIST standard requires no character-types must
be enforced, a website not exhibiting character-types in their indicators is compli-
ant. Implicit compliance has significantly less accuracy as this might also be a false
negative (i.e. our tool did simply not detect it).

Compliance to individual requirements. Analysing some individual require-
ments allows explicit compliance, which refers to the scenario where we are able
to infer a password requirement that is compliant with a standard. For example,
for minimum length, after data filtering, we were able to infer this requirement on
1,143 websites. of which 52.0% of these inferred requirements is determined to be
compliant with the BIO/BSI/NIST standard. Thus for the remainder, 48.0%, we
can determine explicit non-compliance to the BIO/BSI/NIST standard. We list the
results in Table 8.3.

Password requirement # of req. inferred BIO BSI NIST OWASP
Composition compliance

— Minimum length 1,143 52.0% 52.0% 52.0% 7.6%
— Maximum length 1,432 X X 68.4% 68.40%
— Require character-types 284 100.0% 100.0% - -
Miscellaneous compliance

— Reject known bad passwords 708 x 100.0% 100.0% 100.0%
— Forbid pasting 1 X — - -

x: password requirement not included in standard or guideline
— : unable to establish explicit compliance

Table 8.3: Percentage of explicitly compliant requirements per password standard

Determining the complete compliance of websites to a password standard com-
bines explicit compliance for length requirements, and implicit compliance for re-
quired character-types.

Standard # of compliant websites

NIST 490 of 8,254 (5.9%)
BIO/BSI 104 of 8,254 (1.3%)
OWASP 61 of 8,254 (0.7%)

Table 8.4: Complete compliance per password standard for composition requirements

o1

8.4 Analysis

When analysing the results of the found password requirements, the strong presence
of the minimum length requirement as opposed to other requirements across websites
stands out. Detecting the blocking of password pasting stands out as it has the
lowest detection frequency. This is inline with the current standards and websites
not adopting the password-paste-blocking practice is considered a safe and modern
practise.

The results of the proof-of-concept demonstrate that inferring password require-
ments based on client-side indicators is technically feasible, but not without limi-
tations. While common requirements such as minimum length and character types
were often correctly inferred, more complex (e.g. JavaScript-based validation) or
less explicitly stated (e.g. rejecting sequential characters) requirements proved more
difficult to detect. We expect that with further improvement of both the approach
(e.g. more and improved mapping rules) as well as the technical implementation,
the accuracy and number of websites suited for this approach will increase.

Discussion. We were able to determine explicit compliance and non-compliance
of some individual requirements, in particular minimum and maximum length. This
is were our approach seems to shine more than when determining complete website
compliance which includes requirements that work by omission (e.g. not requiring
character-types). When not finding specific requirements, it is difficult to establish
whether this is a case of non-compliance versus just not inferrable from the client-
side.

In regards to the results, we did expect to see more indicators that demonstrate
the blocking of password pasting, but as this is not compliant with NIST we are
pleased with this, from a security perspective. We also did expect more presence
of the ‘required character-types’-indicator. But similar to the allowance of pasting,
this may be a requirement that is being deprecated as more modern, up-to-date,
password standards are implemented across websites.

We compare our results to that of Alroomi and Li [AL23|, who performed end-
to-end testing including server-side analysis using a ‘account creation’-approach. We
see a similar pattern in compliance levels for the require character-types-requirements,
but for minimum length Alroomi and Li detected noticeable lower levels of compli-
ance (25% versus 52% for NIST in our study). Alroomi and Li did analyse 2.3 times
more websites than in our analysis (20K versus 8.5K in our study). We also detected
significantly less password-pasting-blocking practices.

Overall we do think more websites need to be analysed, but due to time con-
straints we were limited the the current results. In particular finding suitable regis-
tration pages took more time than we initially expected. The password requirement
inferring-process itself was not a performance bottleneck.

52

Part 11

Private websites internal to an
organisation

23

Chapter 9

Methodology

In order to answer the main research question and its sub-questions, a research strat-
egy must be devised. This part focusses on websites in the private-organisational
context and requires a different approach than public websites which we investigated
in Part I. We therefore focus on organisational and business research strategies (e.g.
surveys and case studies) as described by Saunders [Saul2] in Research methods for
business students.

For ease of readability we refer back to the research questions as introduced in
Chapter 1.

Main research question

To what extent are password input requirements
of websites compliant with password standards?

In this part of this study, we investigate private-organisational websites, of which the
registration page is generally shielded from the public. We investigate sub-question
RQ 3 from the sub-questions below:

RQ 1. How to automatically infer password input requirements from public web-
sites, at scale, in an ethical manner?

RQ 2. To what extent are public websites compliant to the password input require-
ments of password standards?

RQ 3. To what extent are private-organisational websites compliant to the pass-
word input requirements of password standards?

Selection of methodology and alternatives. To determine password require-
ment compliance of private-organisational websites, multiple strategies are available.
The strategies we considered and selected are listed below:

e Interviews
In this study, we emphasize research at scale, meaning a large number of
interviews must be performed in order to collect sufficient data points. There-
fore we consider interviews not a suitable strategy for this study due to time
constraints.

e Desk research
Existing research into organisational security is a large field of study. However,
research into website password policies within organisations specifically is a

54

niche field that to our knowledge does not have a large literature base yet.
As existing research and publicly available information is limited, performing
desk research in the broad sense will aid in acquiring additional context, but
is less suited for actual data collection.
e Case study
A case study into a specific type or organisation requires publicly available
information. A quick search-engine search for publicly available password
policies has led us to educational institutions. These organisations appear
to frequently publicize their internal password policies. This makes this spe-
cific sector suited for a case study as this sector is also considered at risk for
cyber attacks.! Therefore, we can delve further into the publicly available
policies of educational institutions, in order to collect password policy data.
We consider this a limited, but suited, approach for determining compliance
across private-organisational websites.
e Survey

A survey allows us to request internal information from organisations, while
being efficient with our limited time. Surveys allow for a larger scale than
interviews, which makes it suitable for this study. As opposed to the before
mentioned case study, we can use surveys for a sector that has little to no
public information in regard to their policies. A survey can partially overlap
the case study, as both aim to discover password policies. Surveys however
can add additional context by adding sector specific questions, or questions
that provide broader insights into the matter that public documents might not
disclose. When looking at which sector to survey, we found several sectors that
are considered at high risk.? From an initial outreach to gauge survey willing-
ness, we found that municipalities in particular are open to share information
regarding their policies. We therefore consider surveying municipalities, part
of, a suitable approach for determining organisational compliance to passwords
standards.

In order to determine to what extent private-organisational websites adhere to
password standards we (1) analyse both publicly available organisational policies
via a case study on the educational sector, and (2) analyse private policies of mu-
nicipalities by requesting information through an organisational survey.

1https ://www.criticalstart.com/cybercriminals-attack-vectors-within-the-education-sector
’https://www.cisecurity.org/about-us/media/press-release/
new-report-highlights-critical-infrastructure-threats-and-the-role-of-state-and-local-government-c

25

https://www.criticalstart.com/cybercriminals-attack-vectors-within-the-education-sector
https://www.cisecurity.org/about-us/media/press-release/new-report-highlights-critical-infrastructure-threats-and-the-role-of-state-and-local-government-organisations-in-national-security
https://www.cisecurity.org/about-us/media/press-release/new-report-highlights-critical-infrastructure-threats-and-the-role-of-state-and-local-government-organisations-in-national-security

Chapter 10

Case study: publicly available
password requirements of
private-organisational websites

In this case study we investigate educational institutions and publicly available
polices regarding passwords.

10.1 Case study design

Selection of organisations. We have searched online for password policies that
are publicly available in different sectors such as banking, healthcare and the edu-
cation sector. We found that that the education sector, in particular universities,
publish their password policies publicly available for review. Based on this public
availability we have selected universities for our case study. For this case study we
have limited the scope to only Dutch, applied and academic, universities as both
researchers are Dutch.

Universities and availability of password policies. We have composed a list
of universities in the Netherlands for this case study. The Netherlands has a total
of 14 universities' of which 9 have public password policies.

We have listed all 14 universities and indicated whether their password policy is
public, private or derivable. Derivable means that we found information on the or-
ganisation’s website that is not directly a password policy, but of this information we
can derive (parts of) the organisation’s password policy. An example of a derivable
password policy is Tilburg University’s webpage ‘Tips for creating a strong pass-
word’.2 This webpage mentions requirements such as the University’s requirement
to create a new password every year (i.e. the password expiration requirement).

Despite the Open Universiteit not having their policies publicly available, we
are able to determine its password requirements as this study is part of the Open
Universiteit’s curriculum and we have access to its internal (student) environment.
We also include universities of applied sciences, for which we refer to Appendix F.

"https://nl.wikipedia.org/wiki/Universiteiten_van_Nederland
’https://www.tilburguniversity.edu/nl/over/gedrag-integriteit/
privacy-en-security/informatiebeveiligingsbeleid/wachtwoord

56

https://nl.wikipedia.org/wiki/Universiteiten_van_Nederland
https://www.tilburguniversity.edu/nl/over/gedrag-integriteit/privacy-en-security/informatiebeveiligingsbeleid/wachtwoord
https://www.tilburguniversity.edu/nl/over/gedrag-integriteit/privacy-en-security/informatiebeveiligingsbeleid/wachtwoord

Academic University #students Public?

Universiteit van Amsterdam 41,143 /
Universiteit Utrecht 40,000 +/
Erasmus Universiteit Rotterdam 37,051 X
Rijksuniversiteit Groningen 34,401 /
Universiteit Leiden 34,000 +/
Technische Universiteit Delft 27,080 x
Radboud Universiteit Nijmegen 24,633 /
Vrije Universiteit Amsterdam 24517 X
Universiteit Maastricht 22,383 /
Universiteit van Tilburg 19,497 partial
Open Universiteit 16,940 x
Wageningen Universiteit 13,275/
Universiteit Twente 12,038 /
Technische Universiteit Eindhoven 11,985 x

Table 10.1: Public availability of password policies of academic universities.

10.2 Results

The findings of each university’s password policy is presented in Table 10.2. In
this table we present the password length requirement, the character classes and
how many of these classes are required (indicated as ‘Req.’), allowance of spaces
(indicated as ’ ') and whether ‘bad’ passwords are blocked. Bad passwords are
passwords using the email address as a password, or using a commonly breached
passwords.

57

University Length Character classes Req. ° disallowed
Academic

UvA 12+ [a-z], [A-Z], [0-9], [sym] 4of4 - Y
Utrecht 10 -32 [a-z], [A-Z], [0-9], [sym] 3of4 - Y
Groningen 14+ [a-z], [A-Z], [0-9] 3of3 - Y
Leiden 12 -50 [a-z], [A-Z], [0-9] 3of3 - Y
Nijmegen 10 -40 [a-z], [A-Z], [0-9], [sym] 4of4 - Y
Maastricht 15+ [a-z], [A-Z], [0-9], [sym] 3of4 Y Y
Tilburg 8+ - - - -
Open Universiteit — 84 [a-z], [A-Z], [0-9], [sym] 4of4 N Y
Wageningen 8+ la-z], [A-Z], [0-9], [sym] 3of4 N Y
Twente 14 60 [a-z], [A-Z], [0-9] 3of3 N -
Applied Sciences

Amsterdam 12+ [a-z], [A-Z], [0-9], [sym] 4 of 4 Y
Fontys 8+ [a-z], [A-Z], [0-9], [sym] 3 of3 Y
Rotterdam 8+ [a-z], [A-Z], [0-9], [sym] 4 of 4 -
Utrecht 10+ [a-z], [A-Z], [0-9], [sym] 3of4 - -
Avans 8+ [A-Z], [0-9], [sym]* 3of3 - Y
Groningen 16+ [a-z], [A-Z], [0-9], [sym] 3of4 - Y
Windesheim 16+ - - - Y
ArtEZ 12+ a-z), [A-Z], [0-9], [sym] 4of4 - Y
De Kempel 16+ - - - =
Codarts 8 -16 [A-Z], [0-9], [sym] 3of3 - Y

General: Y: explicit yes, N: explicit no, — not specified

Table 10.2: Password policies of universities

58

10.3 Analysis

As some found policies do not specifyall password requirements from Table 10.2,
we only deem a university non-compliant if it’s policy explicitly deviates from the
password standard we compare it to. For example, if the space-character is required
by NIST, and there is no mention of allowing spaces in a universities policy, we do
not consider the policy in-compliant. This only applies to the ‘minor’ requirements
allow spaces and reject bad passwords. In case more requirements are missing we
exclude this university as a whole from our evaluation.

To this end, we analysed 20 publicly available password policies of Dutch (applied
sc.) universities and found that 17 out of 20 (85%) universities are compliant with
the Dutch BIO 1.0 and German BSI standard. For NIST we found that only 3 out
of 20 (15%) are compliant, and for OWASP only 2 out of 20 (10%) are compliant.
This non-compliance to NIST and OWASP is primarily from universities requiring
character-types, which deviates from the NIST and OWASP standard.

Overall we found that the majority of universities in this analysis have a com-
monly shared view on password policies with minor differences among each other.
For example 14 out of 20 analysed policies explicitly mention having validation
against bad passwords (e.g. not including email-addresses, names, or previously
used passwords).

Limitations. Our analysis of universities has several limitations. As we only
analysed the publicly available password policies of universities, we cannot rule out
the existence of secondary password policies for specific applications (e.g. different
policies for students versus staff). In our analysis we did not verify the level of
enforcement of these password policies, thus the actual policy enforcement may
differ from the publicised policy. Despite not having tested enforcement levels,
we do consider the publicly available password policies a strong indicator of the
organisation’s view on password security.

29

Chapter 11

Survey: information security
professionals on password policies
and processes

In this case study we investigate municipalities and their approach to password
policies for their private-organisational websites.

11.1 Survey design

We survey civil servants at Dutch municipalities responsible for their organisation’s
password policies. We also survey them about additional password related infor-
mation (e.g. the basis for these policies) and map the results to current password
standards. We use LinkedIn for both searching the right civil servants based on
job title (e.g. CISO, security officer) and for initiating contact through LinkedIn
messaging.

11.1.1 Implementation and survey composition

Our survey is created and distributed using LimeSurvey!, a popular GDPR com-
pliant surveying tool promoted by the Open Universiteit as the default surveying
solution. Our survey consists of the following parts:

e Part 1: About your organisation.
Questions in regards to the organisational composition, such as its staff size
and cybersecurity team composition. These questions provide additional con-
text which allow us to possibly detect patterns between password policy-types
and organisational characteristics.

e Part 2: Your organisation’s password policy.
This survey section contains questions specifically regarding the password re-
quirements. For example; What is the password composition policy of the
organisation?

e Part 3: The reasoning behind your organisation’s password policy.
This survey section contains questions about why an organisation’s policy is
the way it is. For example how often the policy is re-evaluated.

'https://www.limesurvey.org/

60

https://www.limesurvey.org/

The aim of this section is to gauge whether the organisation has a complete
password policy based on up-to-date standards or insights and a structure
including re-evaluation. Not having a re-evaluation structure may leave or-
ganisations at risk. For example due to an outdated password policy.

Our survey mostly consists of open ended questions and open answers, allowing
respondents to provide more context to their answers. With 12 questions our survey
is relatively short, aimed at achieving high a number of respondents. The survey
can be found in Appendix G.

11.1.2 Privacy considerations

Despite that we consider the information we are interested in not highly confiden-
tial, organisations may be unwilling to share internal policies. For this reason we
anonymize the results of our survey and also emphasize this during our outreach in
order to increase the number of respondents. Based on the results and analysis of
this study, no organisation can be identified or linked to specific answers.

11.2 Results

Background of respondents & general statistics

A total of 33 respondents have participated in this survey. Some participants com-
municated that they left certain specific questions blank, to avoid, to what they
considered, high risk organisational details regarding password policies. Therefore
not all questions may amount to the total number of respondents that participated.

Role # of respondents %
CISO 28 85%
(Information) Security officer 2 6%
Compliance/privacy /risk officer 2 6%
Information advisor 1 3%
Table 11.1: Roles of the respondents
organisation size (staff count) # of organisations %
1-500 19 58%
501-1000 7 21%
1001-1500 5 15%
1501-2000 1 3%
2000+ 1 3%

Table 11.2: Size of the organisation in terms of headcount

61

Team size # of organisations with team size %

1-5 27 82%
6-10 3 9%
11-15 0 0%
16-20 2 6%
21-25 0 0%
26-30 1 3%

Table 11.3: Size of the organisational security team (headcount)

Answers to password policy questions

100% of respondents answered that their organisations allows users to create their
own passwords. This is inline with the specific standard (BIO, section 9.4.3) this
group of organisations is required to adhere to.

The most occurring minimum length requirement was 12 characters. The
complete distribution is presented in Figure 11.1

22 out of 33 (66%) answered that their policy requires specific character types
such as alphabetic, capitalized, numbers or symbols.

1 respondent (3%) added that their required character-type requirement is
omitted when a password has a length of 20 characters or more, inline with
BIO’s recommendation.

8 out of 33 (25%) explicitly allow spaces.

9 out of 33 (28%) reject sequential character patterns (e.g. 123, aaa).

9 out of 33 (28%) reject known bad passwords.

1 respondent (3%) allows non-ASCII characters.

2 out of 33 respondent (7%) explicitly state that previously used passwords
(up to 5 historic passwords) are not allowed to be re-used.

All respondents stated that these policies are enforced through their Single
Sign-on solution. One respondent also stated that these password requirements
are also included the the procurement process for new software vendors.

62

50

40
“
=

5 30
=
L}
o
o

5 20
=

10

0

8 10 12 14

Minimum length requirement
Figure 11.1: Distribution of minimum length requirement across respondents

Additional security layers All respondents stated that ‘MFA is always re-
quired’, one respondent added that in some cases legacy systems do not support
MFA and is therefore not enabled.

Resetting a user password is in 44% of cases possible via a self-service portal or
using the help-desk’s assistance. In 27% of cases resetting a password can only be
done by contacting the help desk.

A single respondent stated that resetting a password requires an in-person meet-
ing for ID verification.

Password expires # of respondents %
Never 3 14%
After 40 days 1 5%
After 90 days 5 23%
After 180 days 10 45%
After 365 days 1 5%
After unspecified # of days 2 9%

Table 11.4: Password expiration policies

63

Context of password policies

Password standard # of respondents %

Local gov. guidelines (BIO, NIS2) 18 82,0%

NIST 1 4,5%

Microsoft 1 4,5%

Combination (NIST/NCSC/Microsoft) 1 4,5%

Combination (not specified) 1 4,5%

Table 11.5: Basis on which the password policy is based

Policy re-evaluation # of respondents %
Yearly 18 82%
Every 2 to 3 years 2 9%
No scheduled evaluation (e.g. when staff decides themselves) 2 9%

Table 11.6: Password policy re-evaluation cycle

Comparing against password standards All municipalities are compliant with
the min. and. max. length of the BIO, BSI, NIST and OWASP standard. 22 out
of 33 (66%) are not compliant with NIST and OWASP as the respondents’ policies
explicitly require specific character-types. Oppositely, these same municipalities are
compliant with the BIO and BSI standard as a whole.

As some respondents (33%) left the question ‘which character type classes are
required’ blank, we cannot draw a conclusion for these municipalities. This lack of
response may mean ‘no character type classes required’ versus simply not answered.
We therefore do not conclude non-compliance for these municipalities.

11.3 Analysis

The results demonstrate a consistent compliance level to local standards (BIO and
BSI) over international standards (NIST and OWASP). This is inline with expecta-
tions as local standards take precedent over international standards. The discrep-
ancy between the BIO/BSI and NIST/OWASP is understandable, as an organisa-
tion cannot be compliant with both standards simultaneously due to its conflicting
required character types-requirement.

Many respondents rely on supplier defaults or compliance obligations rather than
internal evaluation, which may result in outdated policies. Noticeable is that there
is no consistency in how and when municipalities review their policies. This may be
due to an over-reliance on the BIO standard.

64

Discussion. We expect the discrepancy between BIO/BSI and NIST/OWASP to
decrease as the expected 2025 updates for these standards are more aligned with
each other. Some civil servants indicated that they would rather approach password
policies more actively (for example by following the NIST updates), than to simply
adhere to an outdated, as they considered it, BIO standard.

We did encounter difficulty to get a high number of respondents. Some civil ser-
vants we reached out to declined to cooperate due to security and privacy concerns.
A small number of civil services required a phone and/or video call to verify the
researcher’s intentions, after which the survey was completed. This demonstrates
the perceived risk of sharing this type of internal policy. Overall we do consider the
number of respondents sufficient to establish a baseline for this study, as it includes
different municipality sizes and civil servants job roles.

65

Chapter 12

Conclusions

In this study we investigated password input compliance to the password standards
at scale, both on public and private-organisational websites. This allows us to
formulate an answer to the research question ‘To what extent are password input
requirements of websites compliant with password standards?’, both at an overall
level and in more detail, by answering the sub-questions.

Our main conclusion is that overall, both public websites and private organ-
isational websites exhibit significant non-compliance with respect to inter-
national password standards. Public websites generally have to adhere only to
self-imposed password regulations, leading to no password policy consistency. In
contrast, we found that private-organisational websites do aim to adhere to
password standards. However, we also found they are slow to incorporate updates
to standards, leading to outdated policy implementations.

Answers to the sub-questions provide more detail:

1. RQ 1: How to automatically infer password requirements from pub-
lic websites, at scale, in an ethical manner?

We argued that creating accounts may impose an undue burden on website
owners. Thus, to minimize impact to site owners, analysis ought to be confined
to the client-side. This raised the questions whether such a client-side-only
analysis can suffice to automatically infer passwords, and whether this analysis
can be done at scale.

We showed client-side-only analysis suffices by designing a password require-
ment inference method that relies only on client-side analysis. Our approach
locates registration pages, extracts client-side indicators (HTML attributes, tex-
tual instructions, and JavaScript code), and maps these indicators to stan-
dardized password rules.

We implemented this design in a proof-of-concept analysis tool and tested
this tool on 8,254 sites, which demonstrates the feasibility of applying this
approach at scale.

2. RQ 2: To what extent do public websites adhere to password require-
ment compliance standards? Applying our client-side analysis approach
by way of proof-of-concept to Tranco-list, we analysed over 8,254 websites for
password input requirements and compared these findings to several password
guidelines. We found that 52% of websites that allowed for minimum length
inference adhere to the NIST minimum length requirement, versus 48% were

66

non-compliant.

3. RQ 3: To what extent do organisations adhere to password require-
ment standards in private systems? Based on the performed case study
and survey in two different organisational sectors, we found that most organi-
sations do implement one or more password standards or guidelines, but these
are often outdated and no longer aligned with the current (e.g. NIST) stan-
dard(s). When comparing our findings to the current standards, we found that
100% of municipalities and 85% of (applied) universities are compliant with
the BIO 1.0 standard.

12.1 Reflection

In this study we set out to determine the password requirements and adherence to
compliance of websites, and organisations, using an approach that had yet to prove
its feasibility. Our research is motivated by the desire to improve the security of
websites and organisations, by first collecting data and insights in how these subjects
fare compared to the current standards.

The design of our approach presented in this study was driven by the requirement
to be low-intrusive to websites. We successfully designed an approach and proof-of-
concept that has proven the feasibility of the low-intrusiveness philosophy that we
started with. We did however encounter lower applicability of our approach in terms
of the number of websites that are suited for our approach, than traditional methods
using account creation. In particular, an in-depth approach for JavaScript analysis
lacks in this study due to the dynamic nature of the language, making JavaScript
interpretation difficult. We did establish in our manual website discovery analysis
that the number of websites using JavaScript libraries for password validation was
relatively low. Thus we consider the impact on missing JavaScript analysis limited.
It remains difficult to truly determine a website’s password requirements when not
being to analyse its server-side validations (i.e. performing an end-to-end analysis).
But, when performed at scale, we do consider to have demonstrated the value of a
low-intrusive approach, by collecting password compliance data across a landscape
of different websites.

Ethical aspects of this study. The ethical aspects of the approach presented
in this study were key to our research direction. The key ethical-driven aspect is
that we avoided the creation of accounts on websites in an automated manner at
scale. We managed to do this successfully. During our study however, we did create
accounts on websites in a manually performed manner, for discovery and validation
purposes. This demonstrates that a strict no-account creation study in all aspects is
likely unfeasible, especially in initial studies where validation and a proof-of-concept
is of high importance. In the context this study as a whole, the number of accounts
created manually for these purposes were minimal, and we do not consider this a
weakening of our core philosophy of low intrusiveness.

67

12.2 Future work

In general, extending the dataset used in this study, will contribute to a broader
insight into the use of password composition policies. This can be done by for exam-
ple analysing more websites, organisations in different sectors and including more
password standards. Capturing more meta-data from websites and organisations
for a more detailed classification (e.g. country, type of website, frameworks used,
commercial /non-commercial), may also provide more context to the resulting find-
ings. We list several research directions that may provide additional contributions;

1. Specific improvements to our technical approach. Our study’s approach
for JavaScript analysis is technically limited and future research regarding a
more in-depth approach to JavaScript analysis may contribute to this research
domain. Additionally, the broadening of the number of client-side indicators
that our study supports, as well as more languages in order to analyse more
websites, may be of value. This study’s approach to text analysis for password
instructions/hints was based on fixed-string interpretation, extending this ap-
proach or redesigning this with for example Al-based interpretation, can likely
increase the number of websites suited for analysis and its accuracy.

2. Different approaches to determining password policies. In this study
we investigated websites though source code analysis, and organisations via
surveys and desk research. Other approaches to determine the password poli-
cies of websites and organisations are conceivable and may yield valuable in-
sights. Other approaches for example are analysing source code open-source
CMS frameworks (e.g. WordPress) and analysing password validation libraries
on for example GitLab. These frameworks likely have default implementations
of password policies which can be compared to the current standards. In a
broader sense, as our study did not include server-side analysis, it may be
valuable to investigate open source projects in general and specifically their
password code, both client- and server-side.

3. Password policies in different domains. This study is limited to pub-
lic websites and organisations. Investigating password policy compliance may
be interesting in different (technical) domains such as IoT-devices, hardware
devices such as (consumer) routers from ISP’s that come with standard pass-
words, and other devices with significant risk for password based attacks.

4. A less intrusive approach to (website) analysis for other purposes.
The philosophy of valuing a low intrusive approach to analysis is what sets this
study apart from existing, related research. This approach of low intrusiveness
can be applied to other types of analyses-based research, where traditionally
automated approach with user simulation are the de-facto standard. For ex-
ample, research into different types of website authentication handling where
registering accounts is not truly required and data can be collected in a differ-
ent manner.

68

References

[ABG12]

[ACF+12]

[AL23]

[CJKR21]

[GHS21]

[TKKS20]

[KSK*11]

[LSN22]

IMKV17]

[Saul2]

Muath Alkhalaf, Tevfik Bultan, and Jose L. Gallegos. Verifying client-
side input validation functions using string analysis. In ICSE, pages
947-957. IEEE Computer Society, 2012.

Muath Alkhalaf, Shauvik Roy Choudhary, Mattia Fazzini, Tevfik Bul-
tan, Alessandro Orso, and Christopher Kruegel. Viewpoints: differential
string analysis for discovering client- and server-side input validation in-
consistencies. In ISSTA, pages 56-66. ACM, 2012.

Suood Alroomi and Frank Li. Measuring website password creation poli-
cies at scale. In CCS, pages 3108-3122. ACM, 2023.

Stefano Calzavara, Hugo Jonker, Benjamin Krumnow, and Alvise Ra-
bitti. Measuring web session security at scale. Comput. Secur.,
111:102472, 2021.

Eva Gerlitz, Maximilian Haring, and Matthew Smith. Please do not use
I?7_ or your license plate number: Analyzing password policies in german
companies. In SOUPS @ USENIX Security Symposium, pages 17-36.
USENIX Association, 2021.

Hugo Jonker, Stefan Karsch, Benjamin Krumnow, and Marc Sleegers.
Shepherd: a generic approach to automating website login. 2020.

Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L.
Mazurek, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge
Egelman. Of passwords and people: measuring the effect of password-
composition policies. In CHI, pages 2595-2604. ACM, 2011.

Kevin Lee, Sjoberg Sten, and Arvind Narayanan. Password policies of
most top websites fail to follow best practices. In SOUPS @ USENIX
Security Symposium, pages 561-580. USENIX Association, 2022.

Peter Mayer, Jan Kirchner, and Melanie Volkamer. A second look at pass-
word composition policies in the wild: Comparing samples from 2010 and
2016. In Thirteenth Symposium on Usable Privacy and Security (SOUPS
2017), pages 13-28, Santa Clara, CA, July 2017. USENIX Association.

Mark Saunders. Research methods for business students / Mark Saunders,
Philip Lewis, Adrian Thornhill. Harlow, England New York : Pearson,
Harlow, England New York, 6th ed.. edition, 2012.

69

[SHPS17] Tobias Seitz, Manuel Hartmann, Jakob Pfab, and Samuel Souque. Do

[VHS17]

[(WW15]

[YT04]

differences in password policies prevent password reuse? CHI EA 17,
page 2056-2063, New York, NY, USA, 2017. Association for Computing
Machinery.

Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld. Measuring
login webpage security. In SAC, pages 1753-1760. ACM, 2017.

Ding Wang and Ping Wang. The emperor’s new password creation
policies. Cryptology ePrint Archive, Paper 2015/825, 2015. https:
//eprint.iacr.org/2015/825.

Mikko Ylén et al. Centralized password management in a global enter-
prise. TO FIND!, 2004.

70

https://eprint.iacr.org/2015/825
https://eprint.iacr.org/2015/825

Appendix A

Ethics review for automated
website analysis

71

B. APPENDIX: ETHICS REVIEW REQUEST

NOTE: This appendix contains the document that is sent to the Open University’s Ethical
Research Board for Informatics (ERBi) for research method review.

Subject: Requesting research method review

Dear members of the Research Ethics Committee,

In the context of composing a research proposal in the field of IT security and in partic-
ular website security, I am requesting an ethics review of a proposed research method.

Research context The number of cybersecurity incidents and data breaches is increas-
ing year over year. Therefor, I am researching a key aspect of internet security, which is
the strength of password authentication mechanisms on public websites. This strength de-
pends in part on the strength of the used password. To that end, many sites pose password
requirements. These password requirements can vary between websites and its enforced
can take many shapes.

Research method for review Part of our research aim is to measure the state of password
requirement enforcement. To this end, the various methods to discover the level of pass-
word requirement enforcement are of particular interest to us.

Password requirements can be enforced during construction of the password, typically
in the front-end of a website (e.g. using JavaScript or HTML-constraints clientside), and
after submission of the password, in the back-end of a website (e.g., PHP-code serverside).
We intend to measure how (and to what level) websites enforce password requirements by
submitting a variety of passwords to both front-end and back-end.

Measurement of front-end enforcement can be performed in isolation: front-code code
runs clientside and can be investigated or executed offline. However, the back-end code is
not available. Therefore, measuring how the back-end treats a password requires calling
the back-end (e.g. directly via HTTP POST requests). In our current methodology, multiple
such calls per back-end are typically required to determine password strength enforced
by the back-end. (The main exception: only one call is needed in case there is no back-
end enforcement.) This approach thus cannot avoid interaction with production systems,
hence this request for ethical advice.

The exact research method details of discovering back-end levels of password require-
ment enforcement are not yet concrete. We foresee that the final method may incorporate
the creation of multiple free-to-register accounts per back-end — while automated account
creation is not trivial, it is easier than automated account creation AND automated pass-
word updating of said newly-created accounts. The latter is not feasible within the confines
of this project. (It is not clear whether automated account creation will be feasible either,
but it is an option we are considering.)

In reference to the Menlo Report The Menlo Report’ provides guidance for evaluating
ethical dilemma’s in CS security research. Below, we apply the Menlo Report’s guidelines
concisely to our case:

1. Respect for Persons. No person or personal data is used in this research method.

“https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120
803_1.pdf

45

2. Beneficence. This research method might do harm:

¢ Overload server: there is a risk that calls to the back-end can overload the server.
This is mitigated by reducing the rate of calls.

» Spurious account creation: a possible part of the method is automated account
creation. This leads to spurious accounts, which imposes a burden on the web-
site’s resources. Even though account creation is open and gratis, that does not
imply there are zero associated costs for the website. Note that previous work
has used this exact method [DIP20]: this approach has been deemed acceptable
previously (though whether that was justified is unclear).

 Triggering errors: testing the limits of what the back-end accepts may trigger
errors in the back-end (see ‘Facebook case study’ below for a specific case). In
general, developers have intended the back-end API for the designated front-
end. They may not have accounted for outsiders just sending data to the back-
end outside the front-end — or their front-end might allow data that the back-
end cannot handle (e.g., the Facebook case).

3. Justice. This research method may expose the lack of security measures a popular
website has been implemented, this serves public interest by raising awareness on
the topic of password strength and its pitfalls.

4. Respect for Law and Public Interest. Most likely this research method will be in
conflict with most websites Terms of Service. Ignoring ToS seems fairly typical in
scraping-related research.

I would like to ask you for your insights on the ethical aspects of measuring back-end val-
idation of passwords as outlined, taking into account the initial ethical review using the
Menlo framework. I am happy to provide more information via the email address below,
should you have additional questions.

Yours sincerely,

Coen van Driel coenvand@gmail.com Student Computer Science MSc.

46

Facebook case study For our research proposal we have manually analysed the password
requirements of several SSO providers by creating dummy accounts and finding the limits
of allowable passwords.

On the Facebook password requirements. Facebook does not actively display password
requirements when entering a password. Only when a password fails its validation, the re-
quirements are hinted in the user interface. Facebook does not provide an concrete list
of password requirements, but only the instruction that the password needs to be 6 or
more characters and 'difficult to guess. Our tests show that the password 1234567 fails,
but 1234567! does pass the validation. Facebook also displays different password require-
ments on different sign-up pages. Depending on the type of sign-up page, Facebook can
also display the requirement 'at least 6 numbers, letters or symbols’. Remarkably, Facebook
does not set a limit on password length, long passwords of 100+ characters are successfully
submitted, up until the point that the length of the password creates an internal system
error and the webpage displays a generic error message.

47

C. APPENDIX: ETHICAL RESEARCH BOARD FOR INFORMATICS RE-

SPONSE

NOTE: This appendix contains the original (Dutch) response from the Ethical Research Board
for Informatics (ERBi) from the requested research method evaluation.

Beste Coen,

De ERBi heeft je verzoek met belangstelling gelezen en wenst je allereerst veel succes met
dit interessante onderzoek. Hieronder volgt de reactie van de ERBI.

Allereerst, de ERBi had graag een concretere methodologie gezien, maar begrijpt dat je
de adviesvraag nu net bewust instuurt op een moment waarop dat advies de methodologie
nog kan beinvloeden.

Daarnaast: je brief schetst als context voor je onderzoeksvraag vooral de beveiliging
van individuele users. Maar: je mag ervan uitgaan dat een user niet zomaar per ongeluk
de front-end omzeilt. Als je hun beveiliging centraal stelt, dan zou het meten van de front-
end afdoende moeten zijn. Waarschijnlijk wil je je onderzoeksvraag (en de motivatie in je
rapport) dus breder trekken dan alleen de security van individuele gebruikers.

Wat betreft het testen van back-ends, heeft de ERBi de volgende suggesties:

- Let op wat voor websites je bevraagt & in welk tempo. Zelfs in een lijst van topsites
komen al snel "kleine" websites voor - websites die niet door een professioneel team van
developers 24/7 in de lucht worden gehouden. Populaire self-hosted blogs bijvoorbeeld.
Onze suggestie is om uit te zoeken wat breed geaccepteerde rate limiting

waardes zijn en die te gebruiken (en ditin je rapport te documenteren). - Methodologie:
om servers niet te snel te overvragen, lijkt het verstandig om niet een "brute-force" aanval
te doen, maar gericht te zoeken op de grenzen. Dwz. bijvoorbeeld 1 backend-call met
een wachtwoord dat evident gereject zou moeten worden op basis van de front-end checks
(bijv: "a"); daarna wachtwoorden testen die net binnen/buiten de grenzen van de client-
side checks vallen. Dit in plaats van "a", "aa", "aaa", ... etc. te testen.

- Het probleem met resource-gebruik van aangemaakte accounts zou je, in theorie,
kunnen oplossen door de accounts na afloop weer te verwijderen. Waarschijnlijk voert
dit veel te ver; onze suggestie is om dit in de overwegingen op te nemen en te expliciteren
waarom dit geen redelijk alternatief was. - Bedenk van te voren over hoe je omgaat met
responsible disclosure (en, wederom, documenteer dit).

- Tot slot: sommige websites zullen bij account creation serverside een wachtwoord
genereren en dat mailen met de verplichting dat te wijzigen bij de 1e keer inloggen. Houdt
ook daar rekening mee - niet dat je dit alternatief per se goed af kan handelen, maar dat je
er in ieder geval een elegante foutprocedure voor hebt.

Met vriendelijke groet en namens de ERBi nogmaals veel succes met het onderzoek,

Hugo Jonker, Voorzitter ERBi.

48

Appendix B

Complete manual website analysis
results for discovering client-side
password requirement indicators

76

L.

HTML JavaScript
Website TrancolD | minlength | maxlength | pattern | passwordrules | text | text regex | char.list | algorithm
1. google.com 1 v
2. facebook.com 2 v
3. microsoft.com 6 4
4. twitter.com 7
5. cloudflare.com 8
6. netflix.com 10 v
7. instagram.com 11
8. apple.com 12 v
9. linkedin.com 13 v
10. wikipedia.org 17
11. amazon.com 19 v v
12. yahoo.com 25 v v
13. github.com 29 4
14. reddit.com 32 v
15. pinterest.com | 34
16. zoom.us 41 v v
17. fastly.net 43 v v
18. adobe.com 46 v
19. vimeo.com 47 v
20. openai.com 52
21. gandi.net 54
22. wordpress.com | 55
23. bit.ly 61 v
24. tiktok.com 65 4
25. intuit.com 67 v

v client-side password indicators found; empty: not found

Table B.1: Client-side password requirement indicators on websites

8L

HTML JavaScript
Website TrancolID | minlength | maxlength | pattern | passwordrules | text | text regex | char.list | algorithm
26. morzilla.org 70 v v
27. iairgroup.com 75 v v
28. spotify.com 82 v v
29. tumblr.com 84
30. fandom.com 98
31. nytimes.com 99 v v
32. ebay.com 100 v v
33. dropbox.com 101
34. speechmatics.com | 103 v v
35. imdb.com 104 v v
36. flickr.com 106 v v
37. ibm.com 116
38. gravatar.com 118
39. aliexpress.com 120
40. soundcloud.com 122 v v
41. cnn.com 125 v
42. webex.com 128 v
43. quora.com 139 v
44. stackoverflow.com | 141 v
45. indeed.com 144 v
46. theguardian.com | 147 v v
47. cisco.com 149 v
48. bbc.com 150 v
49. roblox.com 152 v
50. sciencedirect.com | 156 v

v client-side password indicators found; empty: not found

Table B.2: Client-side password requirement indicators on websites

6.

HTML JavaScript
Website TrancolID | minlength | maxlength | pattern | passwordrules | text | text regex | char.list | algorithm
51. etsy.com 159
52. amazon.co.uk 160 v v
53. twitch.tv 161
54. booking.com 168 v
55. sourceforge.net 170 v v
56. imgur.com 171 v
57. oracle.com 180 v
58. researchgate.net 181 v v
59. dell.com 183 v v
60. epicgames.com 187 v v
61. tradingview.com 189 v
62. issuu.com 194 v v
63. freepik.com 195 v v v
64. teamviewer.com 196
65. weebly.com 199
66. discord.com 204 v
67. hp.com 210 v v
68. pixiv.net 212
69. alibaba.com 217
70. washingtonpost.com | 222 v v
71. linktr.ee 223 v
72. reuters.com 227 v v
73. dailymail.co.uk 229 v
74. samsung.com 231 v v
75. wix.com 233

v client-side password indicators found; empty: not found

Table B.3: Client-side password requirement indicators on websites

08

HTML JavaScript
Website TrancolD | minlength | maxlength | pattern | passwordrules | text | text regex | char.list | algorithm
76. wiley.com 234 v
77. behance.net 238
78. atlassian.net 240
79. tinyurl.com 241 v
80. bloomberg.com 244 v v
81. wsj.com 247 v v
82. godaddy.com 258 4
83. ig.com 264 v v
84. stripe.com 267
85. ilovepdf.com 268
86. unsplash.com 277 v v
87. businessinsider.com | 279 v
88. hubspot.com 281 v
89. ring.com 282 v v
90. walmart.com 283 v
91. wp.com 288 v
92. cnbc.com 289
93. mediafire.com 291 v v
94. huawei.com 293
95. unity3d.com 294 v
96. slideshare.net 295 v
97. kaspersky.com 300 v
98. espn.com 307
99. digitalocean.com 308
100. hostgator.com 314 v

v client-side password indicators found; empty: not found

Table B.4: Client-side password requirement indicators on websites

Appendix C

Proof of concept configuration

Argument Reason

—incognito Avoid cross-website interference
—enable_do_not_track Avoid cross-website interference
—disable-extensions Provide a clean environment
—disable-plugins-discovery Provide a clean environment
—user-agent= Avoid bot detection

Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/104.0.0.0 Safari/537.36

Table C.1: Arguments for our Selenium webbrowser automation setup.

Keyword for registration page finding

register
registration
signup

sign-up
createaccount
account/signup
account/create
account /setup
account /sign-up
account /register
account /registration
users/signup
users/register
user/signup
user/register

Table C.2: “URLs with registration keywords” prefizes and suffizes

81

Appendix D

Complete list of used text patterns

Below we present the complete list of used text patterns for all password require-
ments..

must be (\d+|one|two|three|four|five|six|seven|eight|nine|ten|eleven|twelve|thirteen|fourteen|fifteen|
at least (\d+|one|two|three|four|five|six|seven|eight|nine|ten|eleven|tuelve) chars?

set a password longer than (\d+|one|two|three|four|five|six|seven|eight|nine)

a minimum of (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?
(\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars? (or more|min)

password must be at least (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?
use at least (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

needs to be (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

enter (\d+|one|two|three|four|five|six|seven|eight|nine|ten) or more chars?

length must be (‘\d+|one|two|three|four|five|six|seven|eight|nine|ten) or more

min length: (\d+|one|two|three|four|five|six|seven|eight|nine|ten)

password min length: (\d+|one|two|three|four|five|six|seven|eight|nine|ten)

password requires (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars? min
choose a password at least (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?
make it (\d+|one|two|three|four|five|six|seven|eight|[nine|ten) or more chars?

ensure (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars? min

password must include (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars? or more
min password length: (‘\d+|one|two|three|four|five|six|seven|eight|nine|ten)

password must contain (\d+|one|twa|three|four|five|six|seven|eight|nine|ten) chars? min
use a password (\d+|one|two|three|four|five|six|seven|eight|nine|ten) or more chars? long
must have (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars? min

set at least (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars? length
(“d+|one|two|three| four|five|six|seven|eight|nine|ten) chars? mandatory

at least (\d+|one|two|three|four|five|six|seven|eight|nine|ten) in length

password must be >(\d+|one|two|three|four|five|six|seven|eight|nine|ten)

minimum: (‘\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

Figure D.1: Minimum length patterns

82

must be (\d+|one|two|three|four|five|six|seven|eight|nine|ten|eleven|twelve|thirteen|fourteen|fifteen|sixteen|
must be no more than (\d+|one|two|three|four|five|six|seven|eight|nine|ten|eleven|twelve|thirteen|fourteen|fil
cannot exceed (\d+|one|two|three|four|five|six|seven|eight|nine|ten|eleven|twelve|thirteen|fourteen|fifteen|si
at most (\d+|one|two|three|four|five|six|seven|eight|nine|ten|eleven|twelve|thirtesn|fourteen|fifteen|sixteen|
password must be less than (\d+|one|two|three|four|five|six|seven|eight|nine|ten|eleven|twelve|thirteen|fourte
set a password shorter than (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

a maximum of (\d+|one|two|three|four|five|six|seven|eight|nine|ten|twenty|thirty) chars?

up to (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?
(\d+|one|two|three| four |five|six|seven|eight|nine|ten) chars? or fewer
(\d+|one|two|three| four |five|six|seven|eight|nine|ten) chars? max

password length must not exceed (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

password length: max (\d+|one|two|three|four|five|six|seven|eight|nine|ten)

max length: (\d+|one|two|three|four|five|six|seven|eight|nine|ten)

password must contain no more than (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

password should be less than or equal to (\d+|one|two|three|four|five|six|seven|eight|nine|ten)} chars?
maximum password length: (\d+|one|two|three|four|five|six|seven|eight|nine|ten)

ensure no more than (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

must not be longer than (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

password requires fewer than (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

cannot be over (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

make sure password is under (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

password must include up to (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

set at most (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

no more than (\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars? allowed
(\d+|one|two|three| four |five|six|seven|eight|nine|ten) chars? or less

password must be 3(\d+|one|two|three|four|five|six|seven|eight|nine|ten) chars?

Figure D.2: Maximum length patterns

at least one (uppercase|capital)

one or more (uppercase|capital)
requires (uppercase|capital)

use (uppercase|capital)

must include (uppercase|capital)

must have (uppercase|capital)

must contain (uppercase|capital)
needs (uppercase|capital)

password requires (uppercase|capital)
include (uppercase|capital)

Figure D.3: Uppercase patterns

at least one (lowercase|small)

one or more (lowercase|small)
requires {lowercase|small)

use (lowercase|small)

must include (lowercase|small)

must have (lowercase|small)

must contain (lowercase|small)
needs (lowercase|small)

password requires (lowercase|small)
include (lowercase|small)

Figure D.4: Lowercase patterns

83

at least one special

one or more special

requires special

use special

must include special

must have special

must contain special

needs special

password requires special
special characters? regquired
symbols? like [!@E#3%"&%]
non-alphanumeric characters reguired
must have a symbol

needs a symbol

Figure D.5: Symbol patterns

contain(?:s)? (\d+) of (?:the)?(\d+) character types?

require(?:s)? (\d#) out of (?:the })?({\d+) character types?

must include (“\d+)} of (?:the }?(\d+) categories?

at least (“d+) of (?:the)?(\d#) groups?

password must contain (\d+) of (?:the)?(\d+) different character types?
use at least (\d+) of (?:the }?(\d+) types?

Figure D.6: Number of required character types patterns

84

Appendix E

Distribution of length
requirements across websites

50
40
30

20

% of websites

10

] | B

5 B T 8 8 10 1 12 13 14 156+

Minimum length requirement

Figure E.1: Distribution of minimum length requirement across tested websites

85

40

30

20

% of webgtes

10

NI T B

A8 40 a5 Al D D g D AP ,ﬂ'ﬁ '19“ ,1_-::,‘3

Maximum length requirement

Figure E.2: Distribution of mazimum length requirement across tested websites

86

Appendix F

Case study: university password
requirements complete results

87

University of Applied Sciences #students Availability

Hogeschool van Amsterdam 44,600 +/
Fontys 44,486 +/
Hogeschool Rotterdam 39,000 partial
Hogeschool Utrecht 38,000 +/
HAN University of Applied Sciences 37,408 X
Avans Hogeschool 29,900 +/
Hanzehogeschool Groningen 20474 /
Saxion 28,793 X
Windesheim 27,000 +/
De Haagse Hogeschool 26,000 x
Hogeschool InHolland 25,000 partial
NHL Stenden Hogeschool 20,000 x
Hogeschool Leiden 14,000 x
Zuyd Hogeschool 13,551 x
Breda University of Applied Sciences 7,223 X
HZ University of Applied Sciences 4,500 x
Amsterdamse Hogeschool voor de kunsten 4,400 X
Hogeschool voor de Kunsten Utrecht 4,400 x
Van Hall Larenstein 4,293 X
Christelijke Hogeschool Ede 4,200 X
HAS green academy 3,400 x
ArtEZ University of the Arts 3,000 +/
Aeres Hogeschool 2,500 x
Hogeschool Viaa 2,113 X
EMarnix Academie 1,800 x
Hogeschool der Kunsten Den Haag 1,686 X
Driestar hogeschool 1,571 X
Hogeschool IPABO 1,212 x
Hogeschool KPZ 1,075 X
De Kempel 1,043/
Codarts Rotterdam 1,000 +/
Thomas More Hogeschool 1,000 x
Gerrit Rietveld Academie 850 X
Design Academy Eindhoven 700 X
Inselinge Hogeschool 400 X

Table F.1: Public availability of password policies of universties of applied sciences.

88

Appendix G

Survey: Password policies in
organisations: Password
requirements and password
management

89

713124, 12:13 PM LimeSurvey - Password policies in organisations

Password policies in organisations

Special Note: Despite this survey being presented in English, all answers may be
answered in English or Dutch.

Thank you for participating in this short survey on password policies in organisations!

This survey is aimed at professionals who are involved in the cybersecurity/information security
space within an organisation. If you are not involved in this space, please forward this survey to
a colleague that is.

This survey is grouped into 3 parts, the estimated time to complete this survey is 5-10 minutes.

About this survey
This survey is part of the Masters thesis Computer Science at the Open Universiteit by Coen
van Driel. This research is supervised by assistant professor Dr. Ir. Hugo Jonker.

How the data from this survey is used regarding your privacy

The results of this survey are anonymised. When asked for your organisation's name, this is
only for communication purposes in case we want to send participation reminders. This is not
used in our result analysis.

The results of all surveys are aggregated and analysed in our study.
We will not link or mention any particular organisation by identifiable properties such as
organisational name.

Contact
If you have any questions regarding this survey, please reach out via: coenvand@gmail.com

Academic institution details

Open University of the Netherlands (Open Universiteit)
Valkenburgerweg 177, 6419 AT Heerlen, Netherlands
https://www.ou.nl/

There are 12 questions in this survey.

Before we start

https://coenvandriel.limesurvey.net/admin/printablesurvey/sa/index/surveyid/227278

1/9

713124, 12:13 PM LimeSurvey - Password policies in organisations

1
Please enter the survey code you were provided.

This information is only used to keep track of which invitee has yet to
complete the survey.

Please write your answer here:

Part 1 of 3: About your organisation

In this section we ask about the size and cybersecurity team of your organisation to add
additional context to your answers.

2
What is your role within your organisation?

Select all that apply
Please choose all that apply:

[] 1T manager

[]ciso

[] (Information) Security officer
D Compliance/privacy/risk officer
[] 1T auditor

D Security architect

D Security engineer

[] Security analyst

DOther:

https://coenvandriel.limesurvey.net/admin/printablesurvey/sa/index/surveyid/227278

2/9

713124, 12:13 PM LimeSurvey - Password policies in organisations

3
What roughly is the size of your organisation?

This refers to the number of people of your entire organisation (including both
parttime and fulltime), not a single organisational unit or team.

Please write your answer here:

4
How many people roughly are involved in cybersecurity/information
security within your organisation?

Please elaborate on the organisational roles of those involved.
E.g. 1x CISO, 1x IT manager, 3x Security/compliance officer...

Please write your answer here:

Part 2 of 3: Your organisation's password policy

In this section we ask about the password policy of your organisation.

What is a password policy?

A password policy is a policy that sets specific rules for how to create and manage passwords.
This policy can be composed of both password composition rules (e.g. a minimum length for
passwords) as well as password management rules (e.qg. it is required to use a password
manager).

https://coenvandriel.limesurvey.net/admin/printablesurvey/sa/index/surveyid/227278 3/9

713124, 12:13 PM LimeSurvey - Password policies in organisations
An organisation may have a single policy, or multiple policies depending on the use case (e.g.
Single Sign-On password requirements may differ from Third Party Software password
requirements).

In this survey we are interested in the main or default password policy that is used for most
use cases within your organisation. This is often a Single Sign-On enforced policy.

5
For your organisation's primary software applications/systems, can
users create their own passwords?

E.g. Yes, when creating new accounts or when resetting passwords, users can
create their own password through the Single Sign-On provider...

E.g. No, users get auto-generated passwords via email with no option to
customize their own passwords...

Please write your answer here:

https://coenvandriel.limesurvey.net/admin/printablesurvey/sa/index/surveyid/227278 4/9

713124, 12:13 PM LimeSurvey - Password policies in organisations

6
If you have answered 'No' to the previous question, please skip this question.

Which of the following requirements are included in your
organisation's password composition policy for creating new
passwords?

Please check all requirements that apply and, when applicable, use
the textbox for the requirement value.

Use the 'Other'-field for additional requirements that are explicitly included or
excluded in your organisation's policy.

Comment only when you choose an answer.
Please choose all that apply and provide a comment:

DMinimum length (e.g. 15)

DMaximum length (e.g. 128)

DMust include specific charactertypes (e.g. alphabetic, capitalized, numbers, symbols)

DAIIow spaces

DReject sequential characters (e.g. 123)

DReject known bad/leaked passwords (e.g. HavelBeenPwned.com leaked password
database)

| |

DAIIow non-ASCII characters (non-latin symbols)

| |

Other:

https://coenvandriel.limesurvey.net/admin/printablesurvey/sa/index/surveyid/227278 5/9

713124, 12:13 PM LimeSurvey - Password policies in organisations

7
To what extent is this password composition policy enforced within
your organisation?

E.g. this policy is technically enforced on Single Sign-On passwords but not
on non-SSO software...

Please write your answer here:

8
Does your password policy include a password expiration policy?

E.g. passwords expire and must be re-created every 90 days...
E.g. passwords never expire...

Please write your answer here:

https://coenvandriel.limesurvey.net/admin/printablesurvey/sa/index/surveyid/227278 6/9

713124, 12:13 PM LimeSurvey - Password policies in organisations

9
In what way does your organisation require Multi-factor
authentication (MFA) for applications/systems?

E.g. only for internal systems MFA is required...
E.g. only for mission critical systems MFA is required...

Please write your answer here:

10
In what way does staff recover passwords when forgotten?

E.g. using a secret question and answer to verify identity...
E.g. a self service portal that sends a reset-link to their email...

Please write your answer here:

Part 3 of 3: The reasoning behind your organisation's password
policy

In this section we ask about the reasoning behind your organisation's password policy.

https://coenvandriel.limesurvey.net/admin/printablesurvey/sa/index/surveyid/227278 719

713124, 12:13 PM LimeSurvey - Password policies in organisations

11
What is the basis for your organisation's password management

policy?
Please elaborate.
E.g.

e Specified by cybersecurity standard (e.g. ISO27001, NEN7510)

e Researched by staff.

e Recommended by cybersecurity consultant.

e Based on the NIST Password Guidelines.

e Based on the Microsoft password guidelines.

o Default configuration by software (e.g. Office365 baseline).

e To align with password requirements by third party vendors/applications.

Or a combination of these examples.

Please write your answer here:

12
What is the policy for evaluating and/or updating the password
management policy?

E.g. the policy is evaluated and updated each year as part of an internal audit
cycle...

E.g. only when a staff member decides to do so...

Please write your answer here:

https://coenvandriel.limesurvey.net/admin/printablesurvey/sa/index/surveyid/227278 8/9

713124, 12:13 PM LimeSurvey - Password policies in organisations

You have completed the survey, thank you!

Submit your survey.
Thank you for completing this survey.

https://coenvandriel.limesurvey.net/admin/printablesurvey/sa/index/surveyid/227278 9/9

	Introduction
	Background
	Current password standards and guidelines
	Password requirements implementation techniques
	Key distinguishments
	Client-side password requirement indicators

	Related work
	I Websites targeting the general public
	Methodology
	Determining password indicator usage on websites
	Approach to website analysis
	Results
	Estimating incidence of client-side elements
	Discussion

	Automatically determining password client-side indicators
	Locating the registration page
	Verifying the registration page
	Identifying relevant client-side source code
	Identifying text strings
	Identifying HTML attributes
	Identifying JavaScript

	Building indicator repositories

	Automatically inferring password requirements from client-side indicators
	Interpretation techniques
	Direct result from value
	RegEx interpretation
	HTML attribute interpretation techniques
	Text interpretation techniques
	JavaScript interpretation techniques

	Mapping rules for password requirements
	Handling conflicting parsing results
	Validation
	Limitations

	Proof-of-concept: Measuring password requirements through client-side indicators
	Overview
	Configuration
	Results
	Analysis

	II Private websites internal to an organisation
	Methodology
	Case study: publicly available password requirements of private-organisational websites
	Case study design
	Results
	Analysis

	Survey: information security professionals on password policies and processes
	Survey design
	Implementation and survey composition
	Privacy considerations

	Results
	Analysis

	Conclusions
	Reflection
	Future work

	References
	Ethics review for automated website analysis
	Complete manual website analysis results for discovering client-side password requirement indicators
	Proof of concept configuration
	Complete list of used text patterns
	Distribution of length requirements across websites
	Case study: university password requirements complete results
	Survey: Password policies in organisations: Password requirements and password management

