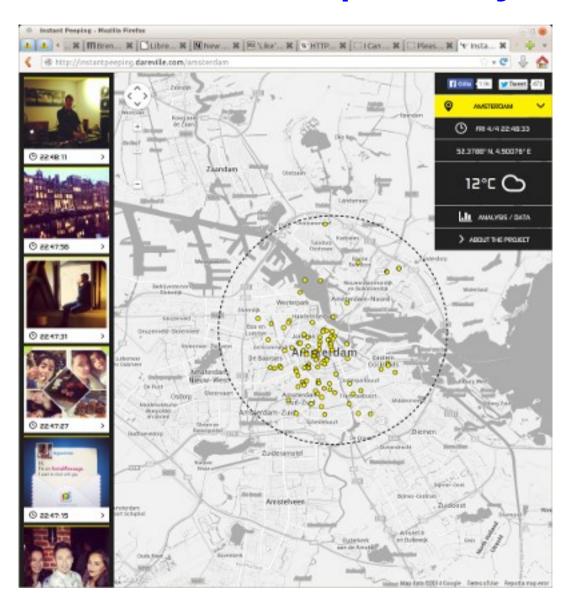
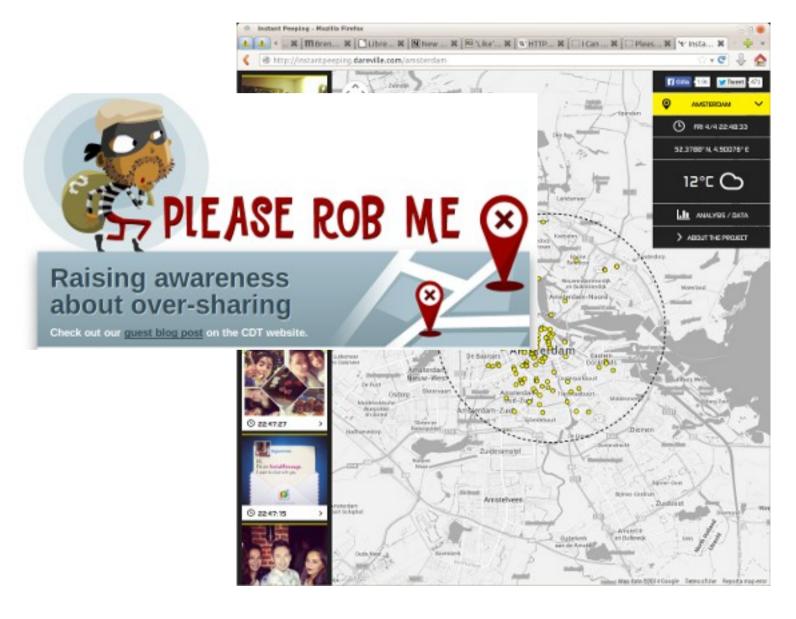

Preserving Privacy in a Connected World

Hugo Jonker University of Luxembourg


Background

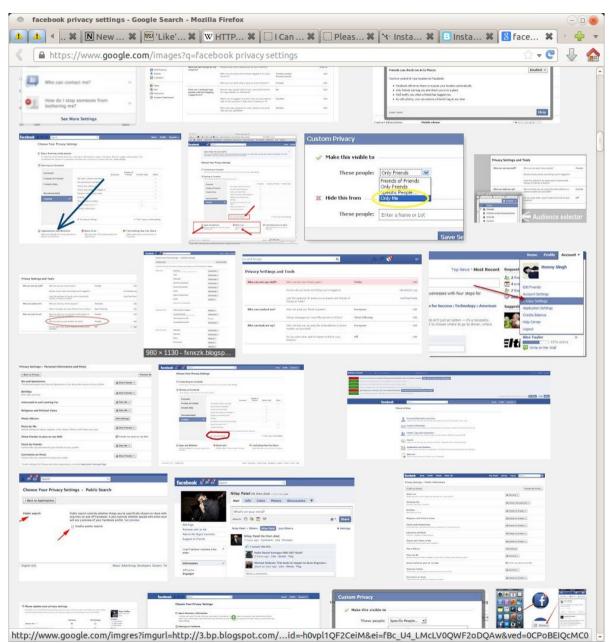

- Former IPA student (TU/e)
- PhD thesis on Fair Sharing and Vote Privacy
- Interests:
 - vote privacy
 - healthcare privacy, e-health
 - auction verifiability & privacy
 - privacy
 - ...
 - practical security


Background

Me Me Me Me

- Former IPA student (TU/e)
- PhD thesis on Fair Sharing and Vote Privacy
- Interests:
 - vote privacy
 - healthcare privacy, e-health
 - auction verifiability & privacy
 - privacy
 - ...
 - practical security

We really suck at privacy

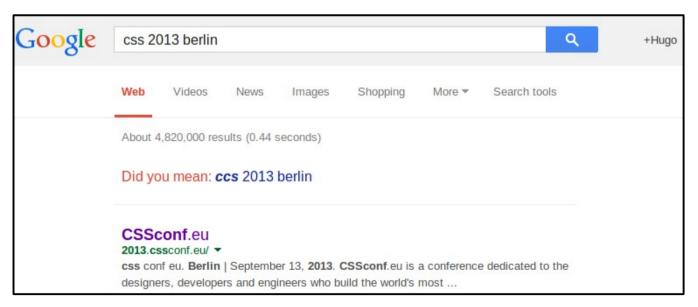

We really suck at privacy

Note: account number can suffice for withdrawal

Privacy is hard

Privacy is hard

Privacy is really hard


"Another thing which is just an observation, when I was working on the **blocking of the social plugins**, I always used the "I website to test my implementation. Today **Facebook suggested** me on my phone the **group of** "I"."

an anonymous UL Bachelor student

Privacy is really really hard

How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did

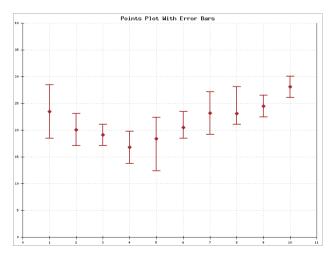
2/16/2012 @ 11:02AM | 2,398,698 views

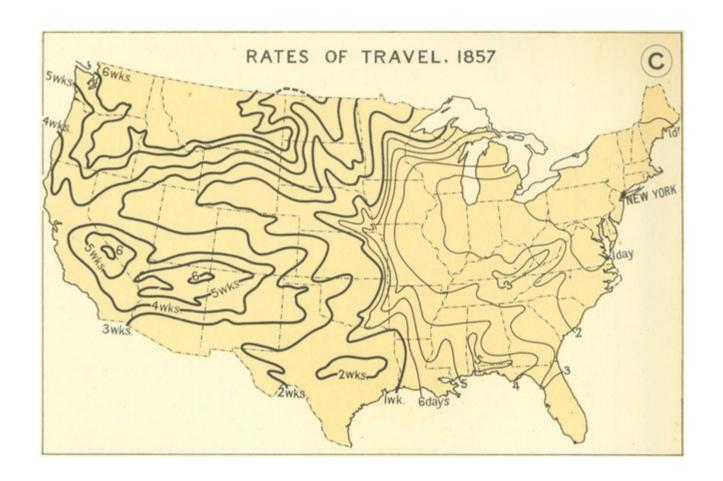
Good question!

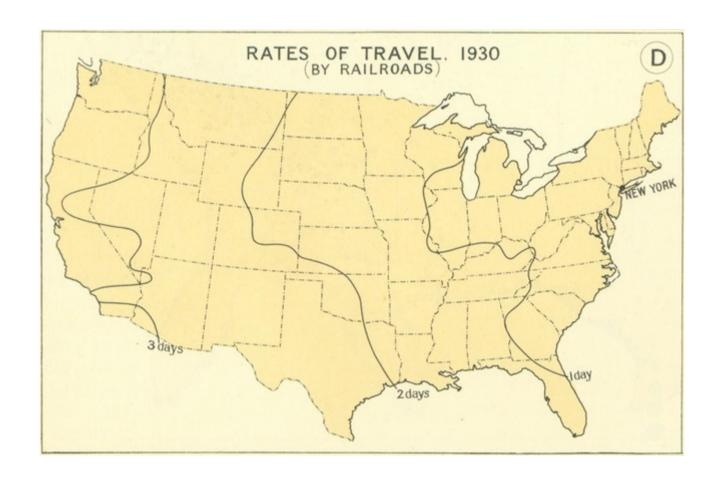
Good question!

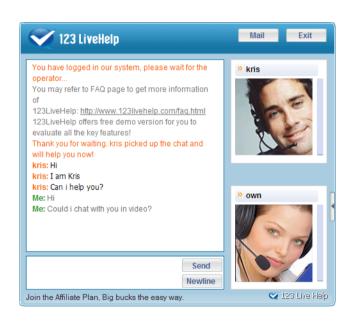
Privacy is wrt. someone

Good question!


- Privacy is wrt. someone
- Two sides:
 - (in)distinguishability


Good question!


- Privacy is wrt. someone
- Two sides:
 - (in)distinguishability
 - (un)certainty





Online privacy challenges

1. How to share with limits,

2. How to limit web tracking.

Sharing with limits a case study of SnapChat

SnapChat

9 April '14 riago Jonker, Oniversity of Eazembourg 29/42

Failures of SnapChat (in 2012)

 Photos renamed, not fully removed a version still accessible via USB

Photos not encrypted
 i.e. always accessible via USB

•

Obvious fixes:

Obvious fixes:

really delete photos; encrypt photos

Obvious fixes:

really delete photos; encrypt photos

Example applications:

Obvious fixes:

really delete photos; encrypt photos

Example applications:

selfies

Obvious fixes:

really delete photos; encrypt photos

Example applications:

- selfies
- office white board photos

Beyond SnapChat

Obvious fixes:

really delete photos; encrypt photos

Example applications:

- selfies
- office white board photos

How to control access?

Beyond SnapChat

Obvious fixes:

really delete photos; encrypt photos

Example applications:

- selfies
- office white board photos

How to control access?

context → privacy

Context implies privacy?

"In the office"

- Office wifi / AP
- Augmented location
 - Cell phone network
 - GPS

"work context"

- Shared: not accessible outside office
- Pic-taking device: only after passwd/unlock

Limit web tracking

Outline

- How the web works
- Tracking/fingerprinting outline
- Related work
- Thwarting ubiquitous tracking

How the web works (abstractly)

Client-server communication:
 Server needs to know client address

- Layered structure
 - TCP/IP stack (OSI 1-6)
 - HTTP (OSI 7)
 - Browser + plugins: HTML + CSS / Java / Flash / ...
 - JavaScript

HTTP

```
$ telnet facebook.com 80
HEAD /unsupportedbrowser HTTP/1.1
Host: www.facebook.com
HTTP/1.1 301 Moved Permanently
Cache-Control: private, no-cache, no-store, must-revalidate
Content-Type: text/html; charset=utf-8
Date: Fri, 04 Apr 2014 22:37:48 GMT
Expires: Sat, 01 Jan 2000 00:00:00 GMT
Location: https://www.facebook.com/unsupportedbrowser
P3P: CP="Facebook does not have a P3P policy. Learn why here: http://fb.me/p3p"
Pragma: no-cache
Set-Cookie: datr=PDQ_UxyV3GBjiWmyk27HthOf; expires=Sun, 03-Apr-2016 22:37:48 GMT; path=/; domain=.facebook.com; httponly
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 0
X-FB-Debug: bJwsyEWZ2vw1AOhRFNOe9jSRe8+DrsC8ZMXbC6jwmpc=
Connection: keep-alive
Content-Length: 0
```

HTTP headers

Server

- Set-cookie
- E-tag

Client

Cookie

- If-non-match
- Referer
- User-agent
- Accept, Accept-*
- DNT
- •

Cookies

- Hack to add state
- Last received cookie sent back to server

- validity:
 - Time: set by server (session, 1 yr, ...)
 - Paths: set by server (path=/, path=/~user/, ...)
- can be "secure" and/or "httponly"

Why tracking?

- Find site errors / problems
- Count visitors, not pageviews
- Detect suspicious logins
- Targeted advertising

Goal: track a user

How to track

- Client-side
 - Cookies
 - Evercookies/zombiecookies/...
 - History exploit
 - Active fingerprinting
- Server-side only
 - Passive fingerprinting
 - Web bugs

Zombiecookies

- Standard HTTP cookies
- Storing cookies in and reading out web history
- Storing cookies in HTTP ETags
- Internet Explorer (<9) userData storage
- HTML5 Session Storage
- HTML5 Local Storage
- HTML5 Global Storage
- HTML5 Database Storage via SQLite
- Storing cookies in RGB values of auto-generated, force-cached PNGs using HTML5 Canvas tag to read pixels (cookies) back out
- Local Shared Objects (Flash cookies)
- Silverlight Isolated Storage
- Cookie syncing scripts that function as a cache cookie and respawn the MUID cookie
- Caching in HTTP authentication
- ...

9 April '14

Why fingerprinting?

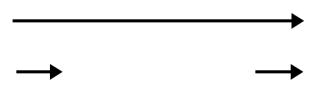
- Cookies/zombiecookies/...: client-side storage.
- Fingerprinting:
 - Passive: infer info from server side.
 - Active: gather info from client side on-the-fly.

- Actually in use?
 - [S&P13, CCS13]: some, but not much... yet.

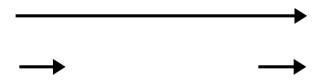
Related work

Privacy plugins

Buttons everywhere


- Buttons everywhere
- JS code loaded from social network
 - Request will send cookie
 - Response can set / update cookie

- Buttons everywhere
- JS code loaded from social network
 - Request will send cookie
 - Response can set / update cookie


Facebook can track people not on FB

- Buttons everywhere
- JS code loaded from social network
 - Request will send cookie
 - Response can set / update cookie

- Facebook can track people not on FB
- Google is worse (AdSense, Analytics)

Effectiveness of fingerprinting

- Effectiveness of fingerprinting
- Results:
 - 90% of desktop browsers unique
 - No JS better results
 - Mobile less plugins better results

- Effectiveness of fingerprinting
- Results:
 - 90% of desktop browsers unique
 - No JS better results
 - Mobile less plugins better results
- Fingerprints change...

- Effectiveness of fingerprinting
- Results:
 - 90% of desktop browsers unique
 - No JS better results
 - Mobile less plugins better results
- Fingerprints change...
- ...predecessor found in 65% (99.1% correct)

- Effectiveness of fingerprinting
- Results:
 - 90% of desktop browsers unique
 - No JS better results
 - Mobile less plugins better results
- Fingerprints change...
- ...predecessor found in 65% (99.1% correct)
- Revealing: order of fonts, order of plugins

- Effectiveness of fingerprinting
- Results:
 - 90% of desktop browsers unique
 - No JS → better results
 - Mobile → less plugins → better results
- Fingerprints change...
- ...predecessor found in 65% (99.1% correct)
- Revealing: order of fonts, order of plugins
- Defensive paradox

Panopticlick (2)

Test	Entropy (bits)
user-agent header	10.00
plugins	15.40
fontlist	13.90
screen resolution	4.83
supercookie test	2.12
http accept headers	6.09
timezone	3.04
cookies enabled?	0.35

Panopticlick (2)

Test	Entropy (bits)	
user-agent header	10.00	←
plugins	15.40	←
fontlist	13.90	—
screen resolution	4.83	
supercookie test	2.12	
http accept headers	6.09	
timezone	3.04	
cookies enabled?	0.35	

Panopticlick (2)

Test	Entropy (bits)	
user-agent header	10.00	
plugins	15.40	←
fontlist	13.90	←
screen resolution	4.83	
supercookie test	2.12	
http accept headers	6.09	
timezone	3.04	
cookies enabled?	0.35	

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)

[W2SP11] – fingerprinting JavaScript implementations Hooray for the speedwars!

[W2SP11] – fingerprinting JavaScript implementations Hooray for the speedwars!

[W2SP12] – fingerprinting HTML5 font rendering All Arials are equal... except most aren't.

[W2SP11] – fingerprinting JavaScript implementations Hooray for the speedwars!

[W2SP12] – fingerprinting HTML5 font rendering All Arials are equal... except most aren't.

[W2SP13] – fingerprinting JS engine errors. "Foutje, bedankt."

[W2SP11] – fingerprinting JavaScript implementations Hooray for the speedwars!

[W2SP12] – fingerprinting HTML5 font rendering All Arials are equal... except most aren't.

[W2SP13] – fingerprinting JS engine errors. "Foutje, bedankt."

Clock skew can be passively detected, proxies don't help.

Fighting fingerprinting

DNT header?
 Ignored or used to improve tracking.

- DNT header?
 Ignored or used to improve tracking.
- FireGloves:
 - Randomise typical fingerprint attributes
 - Thwart font detection.

- DNT header?
 Ignored or used to improve tracking.
- FireGloves:
 - Randomise typical fingerprint attributes
 - Thwart font detection.
 - [CCS13]: there are more ways to skin a font.

- DNT header?
 Ignored or used to improve tracking.
- FireGloves:
 - Randomise typical fingerprint attributes
 - Thwart font detection.
 - [CCS13]: there are more ways to skin a font.
- Tor Browser?
 - Our best bet so far...
 - ... but not perfect (eg. [CCS13])

- DNT header?
 Ignored or used to improve tracking.
- FireGloves:
 - Randomise typical fingerprint attributes
 - Thwart font detection.
 - [CCS13]: there are more ways to skin a font.
- Tor Browser?
 - Our best bet so far...
 - ... but not perfect (eg. [CCS13])
- Again: defensive paradox.

- Change user-agent!
 - ... consistent with plugins?

- Change user-agent!
 - ... consistent with plugins?
- Use NoScript!
 - ... check popular websites' JS

- Change user-agent!
 - ... consistent with plugins?
- Use NoScript!
 - ... check popular websites' JS

The defense can be detected ... which makes you more unique.

Tracking goal: linking two usersessions

- Tracking goal: linking two usersessions
- Tracker operates on OSI layer 7 (or above)

- Tracking goal: linking two usersessions
- Tracker operates on OSI layer 7 (or above)
- User interacts with layer 7 (or above)

- Tracking goal: linking two usersessions
- Tracker operates on OSI layer 7 (or above)
- User interacts with layer 7 (or above)
- Info from lower layers is passed upwards

- Tracking goal: linking two usersessions
- Tracker operates on OSI layer 7 (or above)
- User interacts with layer 7 (or above)
- Info from lower layers is passed upwards

```
i_u = (OSI_1, OSI_2, ..., OSI_7, Java, flash, JS,...)
```

Decomposition functions

cookie(i_u) = get-cookie(i_u.OSI₇)

• username(
$$i_u$$
) =
$$\begin{cases} user(session(i_u)) & if is_logged_in(i_u) \\ empty & otherwise \end{cases}$$

ipaddr(i_u) = get-remote-addr(i_u.OSI7)

• etc.

Consider interactions i_{u1} , i_{u2}

Consider interactions i_{u1}, i_{u2}

• Same for FaceBook iff $i_{u1} \approx_{fb} i_{u2}$

Consider interactions i_{u1}, i_{u2}

- Same for FaceBook iff $i_{u1} \approx_{fb} i_{u2}$
- Same for Google iff $i_{u1} \approx_{goog} i_{u2}$

Consider interactions i_{u1}, i_{u2}

- Same for FaceBook iff $i_{u1} \approx_{fb} i_{u2}$
- Same for Google iff $i_{u1} \approx_{goog} i_{u2}$
- How is \approx_x defined, for any x?

Consider interactions i_{u1}, i_{u2}

- Same for FaceBook iff i_{u1} ≈_{fb} i_{u2}
- Same for Google iff i_{u1} ≈_{goog} i_{u2}
- How is \approx_x defined, for any x?
- How can we ensure ≠_x ?

$$i_{u1} \approx i_{u2}$$
 ?

- username_x(i_{u1}) = username_x(i_{u2}) V
- $cookie_x(i_{u1}) = cookie_x(i_{u2})$ v
- ...
- fingerprint(i_{u1}) = fingerprint(i_{u2})
- match(fingerprint(i_{u1}), fingerprint(i_{u2})) > 85%
- $i_{u1} \in clickhistory(i_{u2})$ (e.g., logging in)

- username_x(i_{u1}) \neq username_x(i_{u2}), \wedge
- cookie_x(i_{u1}) ≠ cookie_x(i_{u2})
- ...

• match(fingerprint(i_{u1}), fingerprint(i_{u2})) < 12%

- username_x(i_{u1}) ≠ username_x(i_{u2}),
- cookie_x(i_{u1}) ≠ cookie_x(i_{u2})
- ...

• match(fingerprint(i_{u1}), fingerprint(i_{u2})) < 12%

Preventing matching ≠ ensuring non-matching!

Cannot prevent linking when logged in

- Cannot prevent linking when logged in
- IP address revealed → strong link proxies don't help...

- Cannot prevent linking when logged in
- IP address revealed → strong link proxies don't help...

Concept:

- Cannot prevent linking when logged in
- IP address revealed → strong link proxies don't help...

Concept:

Each website gets unique interaction

- Cannot prevent linking when logged in
- IP address revealed → strong link proxies don't help...

Concept:

- Each website gets unique interaction
- Thwart identification for 3rd party sites

Online privacy is hard...

- Online privacy is hard...
- …and therefore an interesting research area

- Online privacy is hard...
- …and therefore an interesting research area

- Online privacy is hard...
- …and therefore an interesting research area

- IPA-days can be more than fun [FSEN07,FI08]
- Good targets for your security papers:
 CCS, CSF, S&P, NDSS, ESORICS, Usenix Security.
- Security papers need a security analysis.

Thank you for your attention!

References (1)

[PETS10]	P. Eckersley. How unique is your web browser? In <i>Proc.</i> 10^{Th} <i>Privacy Enhancing Technologies Symposium (PETS'10)</i> , LNCS 6205, pp. 1-18. Springer, 2010.
[CCS13]	G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, B. Preneel. FPDetective: dusting the web for fingerprinters . In <i>Proc.</i> 20^{Th} <i>Conference on Computer & Communications Security (CCS'13)</i> , pp. 1129-1140. ACM.
[W2SP11]	K. Mowery, D. Bogenreif, S. Yilek, H. Shacham. Fingerprinting information in JavaScript implementations . In <i>Proc. 2nd Web 2.0 Security and Privacy (W2SP'11)</i> .
[W2SP12]	K. Mowery, H. Shacham. Pixel Perfect: Fingerprinting Canvas in HTML5 . In <i>Proc. 3rd Web 2.0 Security and Privacy (W2SP'12)</i> .
[W2SP13]	M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser, E. Weippl. Fast and reliable browser identification with Javascript engine fingerprinting . In <i>Proc. 3rd Web 2.0 Security and Privacy (W2SP'13)</i> .

References (2)

[FSEN07]	M. Torabi Dashti, S. Krishnan Nair, H.L. Jonker. Nuovo DRM Paradiso: Towards a Verified Fair DRM Scheme. In <i>Proc.</i> 1 st <i>International Symposium on Fundamentals of Software Engineering (FSEN'07)</i> , Springer-Verlag, LNCS 4767, pp. 33-48, 2007.
[FI08]	M. Torabi Dashti, S. Krishnan Nair, H. Jonker. Nuovo DRM Paradiso: Designing a Secure, Verified, Fair Exchange DRM Scheme. <i>Fundamenta Informaticae</i> , 89(4):393–417, 2008.
[Roos11]	A. Roosendaal. Facebook Tracks and Traces Everyone: Like This!. Tilburg Law School Research Paper No. 03/2011.
[S&P13]	N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, G. Vigna. Cookieless monster: Exploring the ecosystem of web-based device fingerprinting. In <i>Proc. 34th Symposium on Security and Privacy (SP'13)</i> , pp. 541-555. IEEE, 2013.