

Measuring Voter-controlled Privacy

Hugo Jonker

in collaboration with Sjouke Mauw and Jun Pang

hugo.jonker@uni.lu

SaToSS group, University of Luxembourg

Luxembourgian elections

Luxembourgian ballot:

1.	ADR		• • •	7.	KPL	
1-1.	J. Henckes			7-1.	P. Back	
	:		• • •		:	
1-21.	F. Zeutzius			7-21.	M. Tani	

Luxembourgian elections

Luxembourgian ballot:

1.	ADR		•••	7.	KPL	
1-1.	J. Henckes			7-1.	P. Back	
	i.				:	
1-21.	F. Zeutzius			7-21.	M. Tani	

Luxembourgian elections

Luxembourgian ballot:

1.	ADR		• • •	7.	KPL	
1-1.	J. Henckes			7-1.	P. Back	
	i.		•		:	
1-21.	F. Zeutzius			7-21.	M. Tani	

Ways to complete this ballot:

$$\binom{292}{19} = 314,269,098,408,967,151,724,980,483,800$$

lesson

Introduction

Privacy = tricky

-Lux elections

-helpful voters

Understanding privacy

Formalizing

Measuring privacy

- Privacy is more than "for whom you voted".
- Privacy depends on all knowledge you have.

helpful voters

lesson

Introduction

Privacy = tricky

-Lux elections

-helpful voters

Understanding privacy

Formalizing

Measuring privacy

- Privacy is more than "for whom you voted".
- Privacy depends on all knowledge you have.
- Subjects may seek to reduce/renounce privacy.

approach

Introduction

Privacy = tricky

Understanding privacy

-approach

- -quantifying privacy
- -conspiring voters
- -private from intruder

Formalizing

Measuring privacy

- Quantify privacy.
- Taking conspiring voters into account.
- Based on the intruder's knowledge.

quantifying privacy

Introduction

Privacy = tricky

Understanding privacy

-approach

-quantifying privacy

- -conspiring voters
- -private from intruder

Formalizing

Measuring privacy

Wrapping up

choice group cg_v :

contains all candidates, that a voter \boldsymbol{v} might have chosen.

quantifying privacy

Introduction

Privacy = tricky

Understanding privacy

-approach

-quantifying privacy

- -conspiring voters
- -private from intruder

Formalizing

Measuring privacy

Wrapping up

choice group cg_v :

contains all candidates, that a voter \boldsymbol{v} might have chosen.

Example:

$$C = \{ Vike - Freiberga, Balkenende, Juncker \}.$$

■ results: Balkenende 0 votes

$$\implies \forall v \in \mathcal{V} : Balkenende \notin cg_v(\mathcal{VS}).$$

■ v voted for a man

$$\implies cg_v(\mathcal{VS}) \subseteq \{Balkenende, Juncker\}.$$

conspiring voters

Introduction

Privacy = tricky

Understanding privacy

- -approach
- -quantifying privacy

-conspiring voters

-private from intruder

Formalizing

Measuring privacy

- Extra info: what the intruder doesn't know.
- The intruder sees communications.
- So: initial/final knowledge, untappable channels.

private from intruder

Introduction

Privacy = tricky

Understanding privacy

- -approach
- -quantifying privacy
- -conspiring voters

-private from intruder

Formalizing

Measuring privacy

Wrapping up

Indistinguishability:

a list of events t is indistinguishable from a list t' if "the intruder cannot distinguish them".

in a nutshell

Introduction

Privacy = tricky

Understanding privacy

Formalizing

-in a nutshell

- -syntax
- -modelling privacy
- -reinterpretation
- -events privacy
- -choice privacy

Measuring privacy

- voters, authorities ⇒ communicating processes
- processes communicate terms
- communication events ⇒ trace
- trace $\xrightarrow{intruder}$ privacy

syntax

Introduction

Privacy = tricky

Understanding privacy

Formalizing

-in a nutshell

-syntax

- -modelling privacy
- -reinterpretation
- -events privacy
- -choice privacy

Measuring privacy

Wrapping up

- \blacksquare voters \mathcal{V} , candidates \mathcal{C}
- choice function $\gamma \colon \mathcal{V} \to \mathcal{C}$

Terms:

$$\varphi ::= \operatorname{var} \in \operatorname{Vars} \mid c \in \mathcal{C} \mid n \in \operatorname{Nonces} \mid k \mid (\varphi_1, \varphi_2) \mid \{\varphi\}_k.$$

modelling privacy

Introduction

Privacy = tricky

Understanding privacy

Formalizing

- -in a nutshell
- -syntax

-modelling privacy

- -reinterpretation
- -events privacy
- -choice privacy

Measuring privacy

Wrapping up

When can the intruder distinguish $Tr(\mathcal{VS}^{\gamma_1})$ from $Tr(\mathcal{VS}^{\gamma_2})$?

When he cannot **reinterpret** t as t'.

reinterpretation

Introduction

Privacy = tricky

Understanding privacy

Formalizing

- -in a nutshell
- -syntax
- -modelling privacy

-reinterpretation

- -events privacy
- -choice privacy

Measuring privacy

Wrapping up

Definition 1 (reinterpretation (adapted from GHPR05))

Let ρ be a permutation on the set of terms Terms and let K_I be a knowledge set. The map ρ is a <u>semi-reinterpretation under K_I </u> if it satisfies the following.

$$\rho(p) = p, \text{ for } p \in \mathcal{C} \cup Keys$$

$$\rho((\varphi_1, \varphi_2)) = (\rho(\varphi_1), \rho(\varphi_2))$$

$$\rho(\{\varphi\}_k) = \{\rho(\varphi)\}_k, \text{ if } K_I \vdash \varphi, k \lor K_I \vdash \{\varphi\}_k, k^{-1}$$

Map ρ is a <u>reinterpretation under K_I </u> iff it is a semi-reinterpretation and its inverse ρ^{-1} is a semi-reinterpretation under $\rho(K_I)$.

events privacy

Introduction

Privacy = tricky

Understanding privacy

Formalizing

- -in a nutshell
- -syntax
- -modelling privacy
- -reinterpretation

-events privacy

-choice privacy

Measuring privacy

Wrapping up

Traces t,t' are indistinguishable for the intruder, notation $t\sim t'$ iff there exists a reinterpretation ρ such that

$$obstr(t') = \rho(obstr(t)) \wedge \overline{K_I^t} = \rho(\overline{K_I^{t'}}).$$

choice privacy

Introduction

Privacy = tricky

Understanding privacy

Formalizing

- -in a nutshell
- -syntax
- modelling privacy
- -reinterpretation
- -events privacy

-choice privacy

Measuring privacy

Wrapping up

Given voting system VS, choice functions γ_1, γ_2 are indistinguishable to the intruder, notation $\gamma_1 \simeq_{VS} \gamma_2$ iff

$$\forall t \in Tr(\mathcal{VS}^{\gamma_1}) \colon \exists t' \in Tr(\mathcal{VS}^{\gamma_2}) \colon t \sim t' \quad \land$$

$$\forall t \in Tr(\mathcal{VS}^{\gamma_2}) \colon \exists t' \in Tr(\mathcal{VS}^{\gamma_1}) \colon t \sim t'$$

choice group

Introduction

Privacy = tricky

Understanding privacy

Formalizing

Measuring privacy

-choice group

-goals

-conspiracy-resistance

Wrapping up

Possible choices for VS, γ :

$$cg(\mathcal{VS}, \gamma) = \{ \gamma' \mid \gamma \simeq_{\mathcal{VS}} \gamma' \}.$$

Possible choices for v then:

$$cg_v(\mathcal{VS}, \gamma) = \{ \gamma'(v) \mid \gamma' \in cg(\mathcal{VS}, \gamma) \}.$$

goals

Introduction

Privacy = tricky

Understanding privacy

Formalizing

Measuring privacy

-choice group

-goals

-conspiracy-resistance

- √ privacy > "for whom you voted"
- √ depends on knowledge
- ? conspiring voter

goals

Introduction

Privacy = tricky

Understanding privacy

Formalizing

Measuring privacy

-choice group

-goals

-conspiracy-resistance

- √ privacy > "for whom you voted"
- √ depends on knowledge
- ? conspiring voter

conspiracy-resistance

Introduction

Privacy = tricky

Understanding privacy

Formalizing

Measuring privacy

-choice group

-goals

-conspiracy-resistance

Wrapping up

classical notion:

$$\forall v, \gamma \colon \left| cg_v^1(\mathcal{VS}, \gamma) \right| > 1.$$

New: conspiracy-dependent notion:

 \mathcal{VS} is <u>conspiracy-resistant</u> for conspiring behaviour $i \in \{1, 2, a, b, c\}$ iff

$$\forall v \in \mathcal{V}, \gamma \in \mathcal{V} \to \mathcal{C} \colon cg_v^i(\mathcal{VS}, \gamma) = cg_v(\mathcal{VS}, \gamma).$$

concluding

Introduction

Privacy = tricky

Understanding privacy

Formalizing

Measuring privacy

Wrapping up -concluding

we can quantify privacy in voting

- possibility to detect new attacks
- choice group aids reasoning about privacy

Future work:

- conspiring authorities
- defense strategies
- automated verification
- extend with probabilism (election result)

final slide

Introduction

Privacy = tricky

Understanding privacy

Formalizing

Measuring privacy

Wrapping up

-concluding

Thank you for your attention.

Questions?