Knowledge-based analysis of the Firing Rebels problem

Krisztina Fruzsa

TU Wien

joint work with Roman Kuznets and Ulrich Schmid

Der Wissenschaftsfonds.

Open Universiteit, Heerlen November 2, 2021

- Firing Rebels with Relay:
	- simplified version of the consistent broadcast primitive [Srikanth and Toueg, JACM87]
	- essentially a non-synchronous version of the Byzantine Firing Squad Problem [Burns and Lynch, 1987]
- Tight connection between knowledge and action in distributed systems:
	- Knowledge of Preconditions Principle [Moses, TARK15]
- Goal: necessary and sufficient knowledge for agents to act

Our choice:

byzantine fault-tolerant asynchronous distributed systems

Our choice:

byzantine fault-tolerant **asynchronous** distributed systems

Finite set of agents (processing units) $A = \{1, \ldots, n\}$

• asynchronous

Our choice:

byzantine fault-tolerant **asynchronous** distributed systems

Finite set of agents (processing units) $A = \{1, \ldots, n\}$

- **•** asynchronous
- **•** perfect recall

Our choice:

byzantine fault-tolerant **asynchronous** distributed systems

Finite set of agents (processing units) $A = \{1, \ldots, n\}$

• asynchronous

- **•** perfect recall
- they may be **byzantine** faulty
	- they may deviate from their protocols
	- they may collude to fool other agents
	- false memory

Our choice:

byzantine fault-tolerant **asynchronous** distributed systems

Finite set of agents (processing units) $A = \{1, \ldots, n\}$

• asynchronous

- **•** perfect recall
- they may be **byzantine** faulty
	- they may deviate from their protocols
	- they may collude to fool other agents
	- false memory

Message-passing communication network

Our choice:

byzantine fault-tolerant **asynchronous** distributed systems

Finite set of agents (processing units) $A = \{1, \ldots, n\}$

• asynchronous

- **•** perfect recall
- they may be **byzantine** faulty
	- they may deviate from their protocols
	- they may collude to fool other agents
	- false memory

Message-passing communication network

• asynchronous (messages can be arbitrarily delayed, i.e., there is no upper bound on message-delivery time)

 $f =$ maximum number of agents that can turn byzantine in a run

 $f =$ maximum number of agents that can turn byzantine in a run

A system is consistent with *Firing Rebels* (FR) for $f > 0$ when all runs satisfy:

- (C) Correctness: If at least $2f + 1$ agents learn that START occurred at a correct agent, all correct agents perform FIRE eventually.
- (U) Unforgeability: If a correct agent performs FIRE, then START occurred at a correct agent.

 $f =$ maximum number of agents that can turn byzantine in a run

A system is consistent with *Firing Rebels* (FR) for $f > 0$ when all runs satisfy:

- (C) Correctness: If at least $2f + 1$ agents learn that START occurred at a correct agent, all correct agents perform FIRE eventually.
- (U) Unforgeability: If a correct agent performs FIRE, then START occurred at a correct agent.

Moreover, the system is consistent with Firing Rebels with Relay (FRR) if every run also satisfies:

 (R) Relay: If a correct agent performs FIRE, all correct agents perform FIRE eventually.

 $f =$ maximum number of agents that can turn byzantine in a run

A system is consistent with *Firing Rebels* (FR) for $f > 0$ when all runs satisfy:

- (C) Correctness: If at least $2f + 1$ agents learn that START occurred at a correct agent, all correct agents perform FIRE eventually.
- (U) Unforgeability: If a correct agent performs FIRE, then START occurred at a correct agent.

Moreover, the system is consistent with Firing Rebels with Relay (FRR) if every run also satisfies:

 (R) Relay: If a correct agent performs FIRE, all correct agents perform FIRE eventually.

Our choice:

byzantine fault-tolerant asynchronous distributed systems

Consequences of the Brain-in-a-Vat Lemma [Kuznets et al., FroCoS2019]

If at least one agent can become byzantine in a system:

- No agent can ever know that an action or event happened correctly.
- No agent can ever know that it is correct.
- No agent can ever know that another agent is byzantine.

If more than one agent can become byzantine in a system:

No agent can ever know another agent is correct.

Consequences of the Brain-in-a-Vat Lemma [Kuznets et al., FroCoS2019]

If at least one agent can become byzantine in a system:

- No agent can ever know that an action or event happened correctly.
- No agent can ever know that it is correct.
- No agent can ever know that another agent is byzantine.

If more than one agent can become byzantine in a system:

No agent can ever know another agent is correct.

Nevertheless, agents can believe.

Runs-and-systems framework

system = set R of runs

Runs-and-systems framework

system = set $\mathcal R$ of runs

 $r(t)$ global state at time t in run r $r_i(t)$ local state of agent *i* at time *t* in run *r* A point (r, t) refers to time t in run r. It represents the global state $r(t)$.

A point (r, t) refers to time t in run r. It represents the global state $r(t)$.

We want to reason about agents' states of knowledge at various times during a run.

A point (r, t) refers to time t in run r. It represents the global state $r(t)$.

We want to reason about agents' states of knowledge at various times during a run.

Therefore:

A point (r, t) is considered a possible world.

```
A point (r, t) refers to time t in run r.
It represents the global state r(t).
```
We want to reason about agents' states of knowledge at various times during a run.

Therefore:

A point (r, t) is considered a possible world.

Two points (r, t) and (r', t') are considered indistinguishable for an agent $i \in \mathcal{A}$ iff $r_i(t) = r'_i(t').$

Towards a Kripke model

e.g.
$$
r_b^{\dagger}(3) = r_b^*(3)
$$

Syntax

Our language is generated by the following BNF:

$$
\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_i \varphi \mid \Diamond \varphi \mid Y \varphi,
$$

where $p \in Prop$ and $i \in \mathcal{A}$.

For example: $\mathit{correct}_i, \mathit{occurred}_i(\mathit{START}) \in \mathit{Prop}$

Syntax

Our language is generated by the following BNF:

$$
\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_i \varphi \mid \Diamond \varphi \mid Y \varphi,
$$

where $p \in Prop$ and $i \in \mathcal{A}$.

For example: $\mathit{correct}_i, \mathit{occurred}_i(\mathit{START}) \in \mathit{Prop}$

$$
\overline{start}_i := \overline{Y} \overline{occurred}_i(\overline{START}) \wedge \overline{correct}_i
$$
\n
$$
\overline{start} := \bigvee_{j \in \mathcal{A}} \overline{start}_j
$$
\n
$$
\overline{fire}_i := \overline{occurred}_i(\overline{FIRE}) \wedge \overline{correct}_i
$$
\n
$$
\overline{fire} := \bigvee_{j \in \mathcal{A}} \overline{fire}_j
$$

Additional operators we use:

- Belief $B_i\varphi := K_i(\text{correct}_i \to \varphi)$ [Moses and Shoham, 1993]
- Hope $H_i\varphi := correct_i \rightarrow B_i\varphi$ [F., ESSLLI2019]

• Eventually mutual hope
$$
E^{\diamond H}\varphi := \bigwedge_{j\in A} \diamondsuit H_j\varphi
$$

Eventual common hope $C^{\Diamond H}\varphi$ defined as the greatest fixpoint of the equation $\chi \leftrightarrow \overline{E^{\Diamond H}(\varphi \land \chi)}$

Interpreted system $I = (\mathcal{R}, \pi)$.

Interpreted system $I = (\mathcal{R}, \pi)$.

Semantics \bullet $(I, r, t) \models p$ iff $(r, t) \in \pi(p)$ $(I, r, t) \models K_i \varphi$ iff $(I, r', t') \models \varphi$ whenever $r'_i(t') = r_i(t)$ $(1, r, t) \models \Diamond \varphi$ iff $(1, r, t') \models \varphi$ for some $t' \geq t$ \bullet $(I, r, t) \models Y \varphi$ iff $t > 0$ and $(I, r, t - 1) \models \varphi$

Interpreted system $I = (\mathcal{R}, \pi)$.

Semantics \bullet $(I, r, t) \models p$ iff $(r, t) \in \pi(p)$ $(I, r, t) \models K_i \varphi$ iff $(I, r', t') \models \varphi$ whenever $r'_i(t') = r_i(t)$ $(1, r, t) \models \Diamond \varphi$ iff $(1, r, t') \models \varphi$ for some $t' \geq t$ \bullet $(I, r, t) \models Y \varphi$ iff $t > 0$ and $(I, r, t - 1) \models \varphi$

A formula φ is valid in *I*, written $I \models \varphi$, iff $(I, r, t) \models \varphi$ for all $r \in \mathcal{R}$ and $t \in \mathbb{T}$.

An interpreted system *I* is consistent with FR for $f \ge 0$ if the following holds:

(C)
$$
I \models \bigvee_{\substack{G \subseteq \mathcal{A} \\ |G| = 2f+1}} \bigwedge_{j \in G} B_j \overline{start} \rightarrow \bigwedge_{i \in \mathcal{A}} \Diamond (correct_i \rightarrow \overline{fire}_i)
$$

$$
(U) I \models \overline{\textit{fire}} \rightarrow \overline{\textit{start}}
$$

Moreover, I is consistent with FRR if the following holds as well:

$$
(R) I \models \overline{fire} \rightarrow \bigwedge_{i \in \mathcal{A}} \Diamond (correct_i \rightarrow \overline{fire}_i)
$$

We wish to know:

• What kind of an epistemic state is necessary for a correct agent to be in when firing (for any protocol that meets the requirements of the $FR(R)$ problem specification)?

Firing Rebels without Relay

For any interpreted system I consistent with FR and for any agent $i \in \mathcal{A}$:

$$
I \models \overline{fire}_i \rightarrow B_i \overline{start}.
$$

Firing Rebels without Relay

For any interpreted system I consistent with FR and for any agent $i \in \mathcal{A}$:

$$
I \models \overline{fire}_i \rightarrow B_i \overline{start}.
$$

Firing Rebels with Relay

For any interpreted system *I* consistent with FRR and for any agent $i \in \mathcal{A}$:

$$
I \models \overline{fire_i} \rightarrow B_i(\overline{start} \wedge C^{\lozenge H} \overline{start}).
$$

Let *I* be an interpreted system and let $n \geq 3f + 1$. If I is consistent with FRR, then

$$
I \quad \models \quad E^{\Diamond H} \overline{\mathsf{start}} \to C^{\Diamond H} \overline{\mathsf{start}}.
$$

We wish to know:

What kind of conditions on the interpreted system would be sufficient so that the requirements of the $FR(R)$ problem specification are satisfied (i.e., so that the corresponding protocol does meet those requirements)?

For any interpreted system I:

(U) is fulfilled if

$$
I \quad \models \quad \bigwedge_{i \in \mathcal{A}} (\neg B_i \overline{start} \rightarrow \neg \overline{fire}_i).
$$

Both (U) and (R) are fulfilled if

$$
I \models \bigwedge_{i \in \mathcal{A}} \Big(\big(\neg B_i(\overline{\mathsf{start}} \land C^{\Diamond H} \overline{\mathsf{start}}) \rightarrow \neg \overline{\mathsf{fire}}_i \big) \land
$$

$$
(B_i(\overline{\mathsf{start}} \land C^{\lozenge H} \overline{\mathsf{start}}) \to \lozenge(\mathsf{correct}_i \to \overline{\mathsf{fire}}_i))\Big).
$$

- Necessary and sufficient communication structures involved in protocols for FR(R)
- Axiomatization of (eventual) common hope
- Necessary and sufficient communication structures involved in protocols for FR(R)
- Axiomatization of (eventual) common hope

Thank you!