Syntax and semantics 00000

Expressivity 00000000 Conclusion

Expressivity of Some Versions of APAL

Hans van Ditmarsch¹ **Mo Liu**¹ Louwe B. Kuijer² Igor Sedlar³

1 CNRS, LORIA, University of Lorraine

2 University of Liverpool

3 Institute of Computer Science, Czech Academy of Sciences

Some Versions of APAL	Syntax and semantics	Expressivity	Conclusion
0000			

2 Syntax and semantics

Some Versions of APAL	Syntax and semantics	Expressivity	Conclusion
0●00		00000000	000
DAL and ADAL			

- Public announcement logic (PAL): A dynamic operator represents the consequences of information change.
 - $[\psi] \varphi$: after truthful public announcement of ψ , φ is true.
 - PAL is as expressive as epistemic logic (EL).
- Arbitrary public announcement logic (APAL): A quantifier over PAL formulas.
 - $[!]\varphi$: after any truthful public announcement, φ is true.
 - APAL is more expressive than PAL.
 - APAL is undecidable and has an infinitary axiomatization.

Some Versions of APAL	Syntax and semantics	Expressivity	Conclusion
0000	00000	00000000	
SAPAL, FSAPAL, S	CAPAL		

- Subset version of APAL (SAPAL): quantify over public announcements only containing a subset of all atoms.
 ([Q]φ)
- *Finite* subset version of APAL (FSAPAL): quantify over public announcements only containing a **finite subset** of all atoms.
- Scope version of APAL (SCAPAL): quantify over announcements only containing atoms occurring in formulas within the scope of the quantifier. ([⊆]φ).

IPAL, QIPAL

- Imply version of APAL (IPAL):
 - quantify over announcements implying a given formula. ([ψ^{\downarrow}] φ)
 - quantify over announcements implied by a given formula. $([\psi^{\uparrow}]\varphi$)
- QIPAL: ψ may contain quantifier.
- IPAL: ψ is quantifier-free.

Some Versions of APAL	Syntax and semantics	Expressivity	Conclusion
	●0000		

2 Syntax and semantics

Some Versions of APAL	Syntax and semantics	Expressivity	Conclusion
	⊙●000	00000000	000
Language \mathcal{L}_{PAI} and	LADAI		

Given a countable set P of atoms and a finite set A of agents, $p \in \mathbf{P}$, $a \in \mathbf{A}$, and $Q \subseteq \mathbf{P}$

Definition (\mathcal{L}_{PAL})

$$\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_{a}\varphi \mid [\varphi]\varphi$$

Definition (\mathcal{L}_{APAL})

$$\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_{a}\varphi \mid [\varphi]\varphi \mid [!]\varphi$$

Syntax and semantics 00000

Expressivity 00000000 Conclusion 000

Language \mathcal{L}_{SAPAL} , \mathcal{L}_{FSAPAL} and \mathcal{L}_{SCAPAL}

Definition $(\mathcal{L}_{SAPAL}, \mathcal{L}_{FSAPAL})$

$$\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_{a}\varphi \mid [\varphi]\varphi \mid [Q]\varphi$$

If the Q in $[Q]\varphi$ is always finite, we get \mathcal{L}_{FSAPAL} .

Definition (\mathcal{L}_{SCAPAL})

$$\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_{a}\varphi \mid [\varphi]\varphi \mid [\subseteq]\varphi$$

Syntax and semantics

Expressivity 00000000 Conclusion

Language \mathcal{L}_{QIPAL} and \mathcal{L}_{IPAL}

Definition (\mathcal{L}_{QIPAL} and \mathcal{L}_{IPAL})

$$\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_{a}\varphi \mid [\varphi]\varphi \mid [\varphi^{\downarrow}]\varphi \mid [\varphi^{\uparrow}]\varphi$$

If the ψ in $[\psi^{\downarrow}]\varphi$ and $[\psi^{\downarrow}]$ is restricted to \mathcal{L}_{PAL} , we get \mathcal{L}_{IPAL} .

Some Versions of APAL	Syntax and semantics	Expressivity	Conclusion
0000	00000	00000000	000
· · ·			

Semantics

Definition (Semantics)

Given model $M = (S, \sim, V)$, $s \in S$, we indctively define $M, s \models \varphi$ as:

$$\begin{array}{ll} M,s \models [\psi]\varphi & \text{iff} \quad M,s \models \psi \text{ implies } M | \psi,s \models \varphi \\ M,s \models [!]\varphi & \text{iff} \quad \text{for any } \psi \in \mathcal{L}_{PAL} : M,s \models [\psi]\varphi \\ M,s \models [Q]\varphi & \text{iff} \quad \text{for any } \psi \in \mathcal{L}_{PAL} | Q : M,s \models [\psi]\varphi \\ M,s \models [\subseteq]\varphi & \text{iff} \quad \text{for any } \psi \in \mathcal{L}_{PAL} | P(\varphi) : M,s \models [\psi]\varphi \\ M,s \models [\chi^{\downarrow}]\varphi & \text{iff} \quad \text{for any } \psi \in \mathcal{L}_{PAL} \text{ implying } \chi : M,s \models [\psi]\varphi \\ M,s \models [\chi^{\uparrow}]\varphi & \text{iff} \quad \text{for any } \psi \in \mathcal{L}_{PAL} \text{ implied by } \chi : M,s \models [\psi]\varphi \end{array}$$

where $M|\varphi = (S', \sim', V')$ is such that $S' = \llbracket \varphi \rrbracket_M = \{s \in S \mid M, s \models \varphi\}, \ \sim'_a = \sim_a \cap (\llbracket \varphi \rrbracket_M \times \llbracket \varphi \rrbracket_M)$, and $V'(p) = V(p) \cap \llbracket \varphi \rrbracket_M$. ψ implies χ means $\models \psi \to \chi$, ψ is implied by χ means $\models \chi \to \psi$.

Some Versions of APAL	Syntax and semantics	Expressivity	Conclusion
		0000000	

2 Syntax and semantics

Some Versions of APAL	Syntax and semantics	Expressivity 0●000000	Conclusion 000
Expressivity			

For comparing expressivity between logic L and L', we introduce the following notations:

- $L \preceq L'$: L' is at least as expressive as L, iff for $\varphi \in \mathcal{L}_L$ there is a $\varphi' \in \mathcal{L}_{L'}$ such that φ is equivalent to φ' .
- $L \prec L'$: L is strictly less expressive than L' iff $L \preceq L'$ but $L' \not\preceq L$;
- L ≍ L': L and L' are incomparable in expressivity iff L ∠ L' and L' ∠ L.

Some Versions of APAL	Syntax and semantics	Expressivity 00●00000	Conclusion
Strategy			

Proof strategy for $L \not\leq L'$:

- φ is a *L*-formula, and therefore there are two classes of pointed-models such that φ is true on every model in one class, but is false on every model in the other class.
- Suppose there is a corresponding L'-formula ψ, and its modal depth is n, using finite atoms within Q. Show that there is a pair of models from each class such that these models are modal equivalent with respect to L'-formula up to modal depth n or restricted to the subset Q.
- As ψ cannot be true on one model and false on the other, there is a contradiction.

Syntax and semantics 00000

Expressivity 00000000 Conclusion

FSAPAL, SCAPAL vs. APAL

Proposition

APAL $\not\preceq$ FSAPAL (SCAPAL)

Proof.

$$\begin{array}{l} N, 10 \vDash \langle ! \rangle \left(K_a p \land \neg K_b K_a p \right) \\ M, 1 \nvDash \langle ! \rangle \left(K_a p \land \neg K_b K_a p \right) \\ M, 1 \vDash \psi \text{ iff } N, 10 \vDash \psi \text{ for } \psi \in \mathcal{L}_{FSAPAL} \text{ (Let } q \text{ not occur in } \psi) \end{array}$$

14 / 21

 $\begin{array}{l} \text{Syntax and semantics} \\ \text{00000} \end{array}$

Expressivity 00000000 Conclusion 000

15 / 21

FSAPAL, SCAPAL vs. APAL

Proposition

FSAPAL (SCAPAL) eq APAL

Proof.

$$\begin{split} &M_n, 0 \vDash \langle \{q\} \rangle \left(\neg q \land K_a p \land \neg K_b K_a p \right) \\ &N_n, 0 \nvDash \langle \{q\} \rangle \left(\neg q \land K_a p \land \neg K_b K_a p \right) \\ &M_n, 0 \vDash \psi \text{ iff } N_n, 0 \vDash \psi \text{ with } d(\psi) < n \text{ (}n \text{ is odd)} \end{split}$$

Some Versions of APAL	Syntax and semantics	Expressivity
		00000000

SCAPAL vs. FSAPAL

Proposition

 $SCAPAL \preceq FSAPAL$

Proof.

$$\vDash [\subseteq] \varphi \leftrightarrow [\{ var(\varphi) \}] \varphi.$$

Proposition

FSAPAL <u>⊀</u> SCAPAL

Proof.

Same strategy. Details omitted.

Syntax and semantics 00000

Expressivity 000000●0 Conclusion 000

IPAL vs. APAL, FSAPAL, SCAPAL

Proposition

 $\textit{APAL} \preceq \textit{IPAL}$

Proof.

$$\vDash [\top^{\downarrow}]\varphi \leftrightarrow [!]\varphi$$

Proposition

 $APAL \prec IPAL$

Proposition

 $IPAL \asymp FSAPAL$, $IPAL \asymp SCAPAL$

Some Versions of APAL	Syntax and semantics	Expressivity	Conclusion
	00000	0000000	000
Expressivity Hierarc	hy		

Expressivity hierarchy of logics presented in this work. An arrow means larger expressivity. Assume transitivity. Absence of an arrow means incomparability.

Some Versions of APAL	Syntax and semantics	Expressivity	Conclusion
			000

2 Syntax and semantics

Some Versions of APAL	Syntax and semantics	Expressivity 00000000	Conclusion ○●○
Conclusion			

- We investigated the expressivity of the FSAPAL, SCAPAL and IPAL.
- One of our motivations was to "tame" APAL. However, these versions of APAL also have undecidability of SAT problem and infinitary axiomatizaitons.
- As results of expressivity show, FSAPAL and SCAPAL are incomparable to APAL, and not "tameable" as we thought.

Some	Versions	of	APAL

Syntax and semantics

Expressivity 00000000 Conclusion

Thank you!

<ロト < 部 > < 言 > < 言 > 言 の < C 21/21