

Predicting choice from eye movements

A new Covid variant emerges Will you take a booster?

Risk of Long Covid after infection	1 in 20 rather than 1 in 10
Risk of hospitalization after infection	1 in 40000 rather than 1 in 5000
Risk of death after infection	1 in 2 million rather than 1 in 500k
Risk of mild side effects	1 in 10
Risk of serious side effects	1 in 1000000

A new Covid variant emerges Will you take a booster?

Risk of Long Covid	1 in 100 rather than
after infection	1 in 10
Risk of hospitalization	1 in 1 million rather
after infection	than 1 in 5000
Risk of death after	1 in 5 million rather
infection	than 1 in 500k
Risk of mild side effects	1 in 5
Risk of serious side effects	1 in 100000

Discrete choice experiments

- Used to study people's preference for interventions
- Common in the domain of health economics (how much are people willing to pay to obtain a health benefit?)
- Trade-off between aspects of intervention
- Makes use of "stated preferences" (assumes people will behave as indicated)

Risk of Long Covid after infection	1 in 20 rather than 1 in 10
Risk of hospitalization after infection	1 in 40000 rather than 1 in 5000
Risk of death after infection	1 in 2 million rather than 1 in 500k
Risk of mild side effects	1 in 10
Risk of serious side effects	1 in 1000000

Design of DCEs

• Typical DCE:

- 2 or 3 alternatives (with or without 'no change' option)
- 4-6 attributes (including cost)
- Large number of possible combinations
- Optimal design: Reduced to sets of around 8-18 choices

Attribute	Definition	Levels for screening programs	Levels for the opt-out program
BC mortality	Total number of BC deaths out of 1000 women followed until age 74 y	10, 15, 20, 25	30
False-positive	Number of women undergoing unnecessary investigations (e.g., biopsy) because of suspicious findings on the mammograms that do not result in BC diagnosis, out of 1000 women screened until age 74 y	50, 100, 150, 200	0
Overdiagnosis	Number of women undergoing unnecessary treatments (e.g., chemotherapy and radiotherapy) because of detection of a noninvasive cancer that would not have become life-threatening, out of 1000 women screened until age 74 y	10, 50, 100, 150	0
Type of screening referral	Invitation to perform a mammogram by 1) the local screening center [*] or 2) your doctor (GP or gynecologist)	1. "Letter" 2. "Doctor"	-
Travel time	Time spent traveling to the radiology center (min)	10, 30, 60, 90	0
No. of tests	Total number of screening tests until age 74 y	6, 12, 18, 24	0
Out-of-pocket cost	Cost of screening after reimbursement by the public health insurance	€0, €30, €60, €60 (refunded) [†]	0

BC, breast cancer; GP, general practitioner.

[∗] Standard procedure for inviting women aged 50–74 y eligible to the national BC screening program (organized screening). [†] The modality "€60 refunded" means that women had to advance fees, which would be reimbursed later.

Design of the choice scenarios

The 7 attributes and their levels would allow 8192 unique attribute combinations (alternatives) in a full factorial design. A main-effects D-efficient design was generated using the techniques developed by Street and Burgess [32] to reduce this design to a more pragmatic number of 16 choice scenarios, allowing

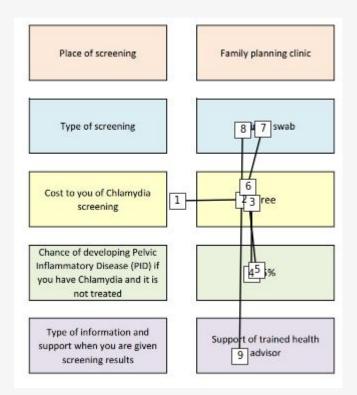
Traditional DCEs

- Large number of participants (> 200)
- Linear mixed effects or similar method to model effects attribute levels on choices
- Choice tasks in fixed order, attributes in fixed order (often pen and paper)

Ob an an and a star	(0/)
Characteristic	n (%)
Age (y)	
40-49	301 (37.1)
50-74	511 (63.9)
Socioprofessional category	
Farmer	7 (0.9)
Craftsman	42 (5.2)
Executive	84 (10.3)

Parameters	Moment	MLE	
Preferences			
ASC _{Screen}	Mean	9.430	
	SD	7.671	
ASC _{AltA}	Mean	0.274	
	SD	0.250	
BC mortality	Mean	-1.048	
False-positive mammography	Mean	-0.022	
Overdiagnosis	Mean	-0.075	
Type of screening referral	Mean	-0.159	
Travel time	Mean	-0.053	
No. of tests	Mean	-0.114 [†]	
OOP_€60 (refunded)	Mean	-0.226	
OOP_€30	Mean	-0.748	
OOP_€60	Mean	-0.974	
WTA			
Overdiagnosis	Mean	14.1	
False-positive mammography	Mean	47.8	

θ


Limitations

- Analysis restricted to across participant trends
- Process of decision making poorly understood
- Worries that order effects may occur

Risk of Long Covid after infection		1 in 20 rather than 1 in 10		
Risk of hospitalization after infection		1 in 40000 rather than 1 in 5000		
	Risk of death after		ather	
Risk of mild		of Long Covid er infection	1 in 1	LOO rather than 1 in 10
effects Risk of serio	Risk of hospitalization after infection		1 in 1 million rather than 1 in 5000	
effects		Risk of death after infection		5 million rather an 1 in 500k
	Risk of mild side effects Risk of serious side effects			1 in 5
			1	. in 100000

Limitations: ANA

- People may not pay attention to all attributes (Attribute Non-Attendance - ANA)
- Statistical models assume all attributes are weighted
- How to measure ANA:
 - Estimate from responses (inferred ANA)
 - Ask participants (stated ANA)
 - Measure attention (visual ANA)

Eye tracking DCEs

- Focus on measuring ANA
- Discussion on what eye movements tell
- Focus on DCEs with two choice alternatives

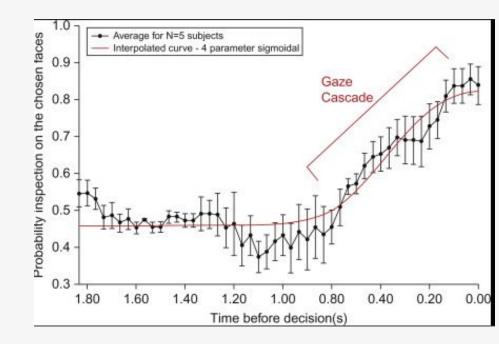
Using eye-tracking as an aid to design on-screen choice experiments

Emilia Cubero Dudinskaya ª 🖾, Simona Naspetti ^b 🖾, Raffaele Zanoli ª 🖄 🖾

Choice certainty in Discrete Choice Experiments: Will eye tracking provide useful measures?

Kennet Uggeldahl a 🖄 🖾, Catrine Jacobsen a, Thomas Hedemark Lundhede a, b, Søren Bøye Olsen a

Using eye-tracking to model attribute non-attendance in choice experiments


Daniel Chavez 🐱 💿, Marco Palma 💿 & Alba Collart Pages 1355-1359 | Published online: 25 Dec 2017

θ

Two-alternative DCEs

- Most DCEs involve choice between two or more alternatives
- Gaze cascade effect occurs
- Choice can often be predicted from gaze patterns

Medicine Features	Medicine A	Medicine B					
Pain while moving around one hour after taking the medicine	Ryne Lourne 100	Nore Edware 300					
Pain while sitting, lying down, or sleeping one hour after taking the medicine	* Now Edma 0 100	Nove Edware 300					
Stiffness one hour after taking the medicine	Non Edmon 0 100	None Determe					
Difficulty doing your daily activities one hour after taking the medicine	Rom Bomme 0 100	Nora Désire					
Chance of a <u>bleeding ulcer</u> requiring an operation within the next year because of the medicine	10 people out of 1,000 (1.0%)	50 people out of 1,000 (5.0%)					
Additional chance of a stroke within the next 5 years because of the medicine	30 additional people out of 1,000 (3.0%) will have a stroke	15 additional people out of 1,000 (1.5%) will have a stroke					
Which medicine would you	Which medicine would you Medicine A Medicine B						
choose if these were the only medicines available?	0	0					

Single alternative DCEs

- Decisions often involve one option and the choice to accept or reject
 - Screening: yes or no?
 - Vaccination: yes or no?
- RQ: What do eye movements tell about such decisions?

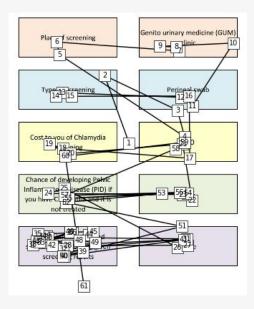
Risk of Long Covid after infection		1 in 20 rather than 1 in 10		
Risk of hospitalization after infection		1 in 40000 rather than 1 in 5000		
Risk of death	after	1 in 2 million ra	ather	
Risk of mild effects Risk of serio effects	afte Risk of	of Long Covid er infection hospitalization er infection	1 in :	1 in 10 1 million rather an 1 in 5000
		of death after nfection		5 million rather an 1 in 500k
	Risk of mild side effects			1 in 5
	Risk o	f serious side effects	1	. in 100000

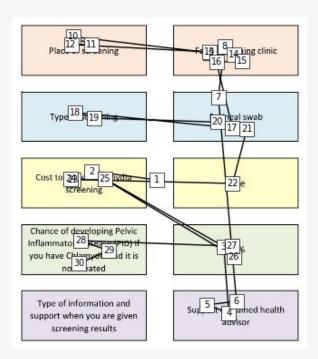
Our study

- Existing DCE on chlamydia screening
- 30 female participants, individually tested
- 5 attributes
- Eye tracking with Eyelink 1000 system

Place of screening	At GP clinic
Type of screening	Perineal swab
Cost to you of Chlamydia screening	Free
Chance of developing Pelvic Inflammatory Disease (PID) if you have Chlamydia and it is not treated	10%
Type of information and support when you are given screening results	Support of trained health advisor

Design


Scenario	Place	Туре	Cost	PID risk	Support
Practice 1	GUM clinic	Urine test	£5	10%	None
Practice 2	At home	Perineal swab	£1	25%	None
Practice 3	At GP clinic	Urine test	Free	15%	Health advisor
Main 1	Family planning clinic	Full pelvic	£5	10%	None
Main 2	Family planning clinic	Perineal swab	£10	1%	None
Main 3	GUM clinic	Urine test	£10	10%	Health advisor
Main 4	At home	Perineal swab	£5	5%	Health advisor
Main 5	At home	Urine test	Free	1%	None
Main 6	At GP clinic	Full pelvic	£20	1%	Health advisor
Main 7	Family planning clinic	Urine test	£20	5%	Health advisor
Main 8	GUM clinic	Urine test	£5	5%	Health advisor
Main 9	GUM clinic	Full pelvic	Free	5%	None
Main 10	At home	Urine test	£20	10%	None
Main 11	At GP clinic	Perineal swab	Free	10%	Health advisor
Main 12	Family planning clinic	Perineal swab	Free	25%	Health advisor
Main 13	GUM clinic	Perineal swab	£20	25%	None
Main 14	At home	Full pelvic	£10	25%	Health advisor
Main 15	At GP clinic	Perineal swab	Free	10%	Health advisor
Main 16	At GP clinic	Urine test	£5	25%	None
Catch 1	At home	Urine test	Free	50%	Health advisor
Catch 2	GUM clinic	Full pelvic	£40	1%	None


Place of screening At GP clinic Type of screening Perineal swab Cost to you of Chlamydia Free screening Chance of developing Pelvic Inflammatory Disease (PID) if 10% you have Chlamydia and it is not treated Type of information and Support of trained health support when you are given advisor screening results

Data pre-processing

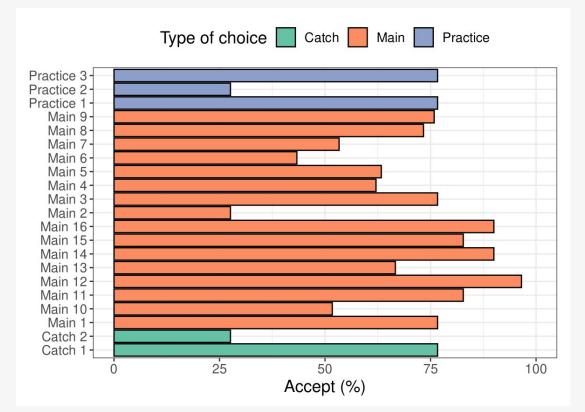
- Detection of fixations / saccades
- Assigning fixations to regions of interest (ROI)

Data

[1] "Total number of fixations: 19692"

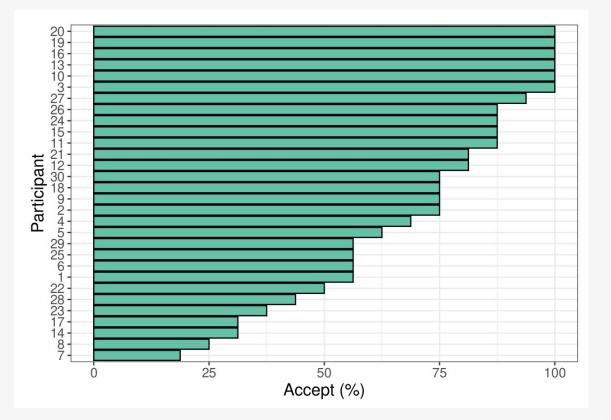
[1] "Total number of choices: 630"

[1] "Number of participants: 30"

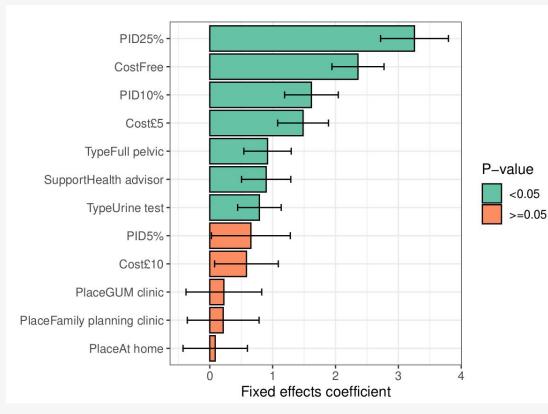

*	Participant 🌼	FixationDuration 🌼	XlocFix ‡	YlocFix 0	ROI ‡	TypeOfTrial	ChoiceNumber	Choice 🌐
1	1	254	632.4	493.7	Elsewhere	Practice	1	Accept
2	1	107	436.3	368.8	Type_Label	Practice	1	Accept
3	1	412	393.7	158.7	Place_Label	Practice	1	Accept
4	1	285	451.1	166.2	Place_Label	Practice	1	Accept
5	1	156	742.6	162.0	Place_Value	Practice	1	Accept
6	1	169	697.8	159.2	Place_Value	Practice	1	Accept
7	1	235	463.3	172.0	Place_Label	Practice	1	Accept
8	1	134	427.1	176.3	Place_Label	Practice	1	Accept
9	1	110	426.8	299.6	Type_Label	Practice	1	Accept
10	1	157	725.7	153.7	Place_Value	Practice	1	Accept
11	1	385	696.9	160.5	Place_Value	Practice	1	Accept
12	1	284	746.4	155.1	Place_Value	Practice	1	Accept
13	1	208	766.1	156.6	Place_Value	Practice	1	Accept
14	1	426	846.5	159.1	Place_Value	Practice	1	Accept
15	1	305	929.4	153.1	Place_Value	Practice	1	Accept
16	1	268	798.2	186.8	Place_Value	Practice	1	Accept
17	1	209	819.6	176.3	Place_Value	Practice	1	Accept
18	1	197	818.6	335.7	Type_Value	Practice	1	Accept

ng choice from eye movements 15

0

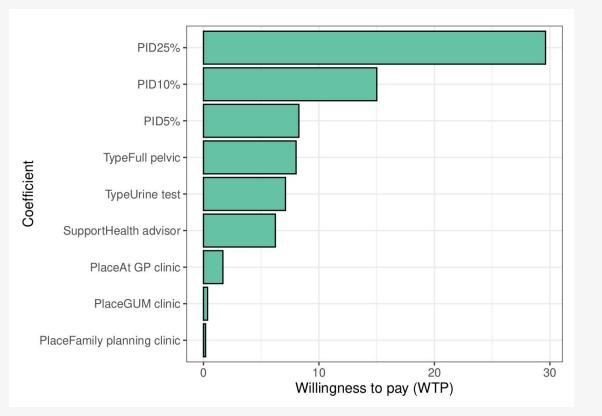

0

Data exploration: % accept

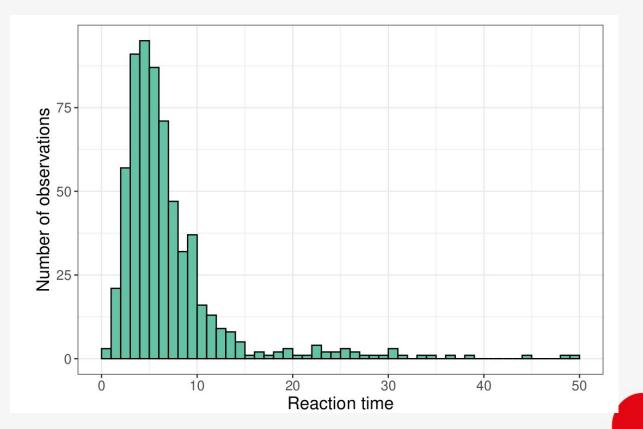


Data exploration: individual differences

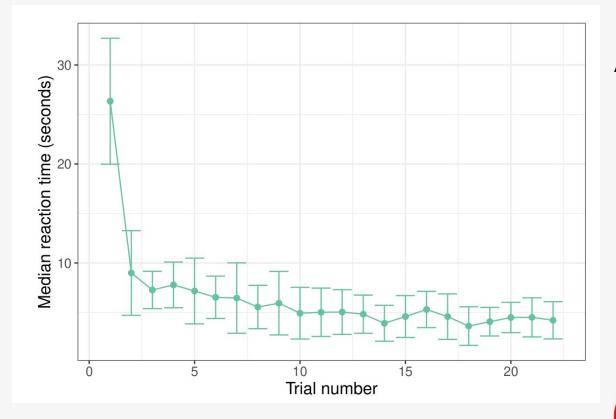
θ


Data exploration: traditional analysis

PID reference = 1% Cost reference = £20 Place reference = GP Clinic Type reference = swab

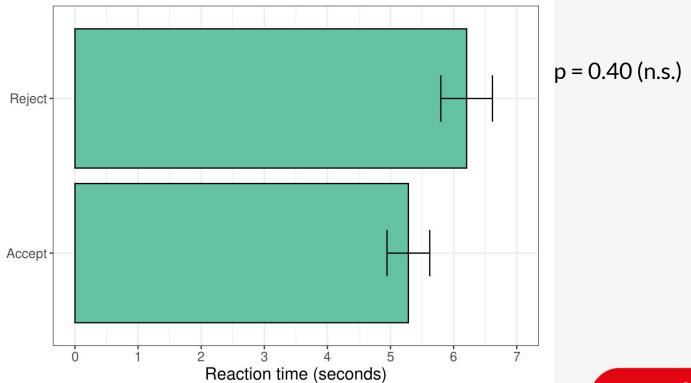

θ

Data exploration: willingness to pay



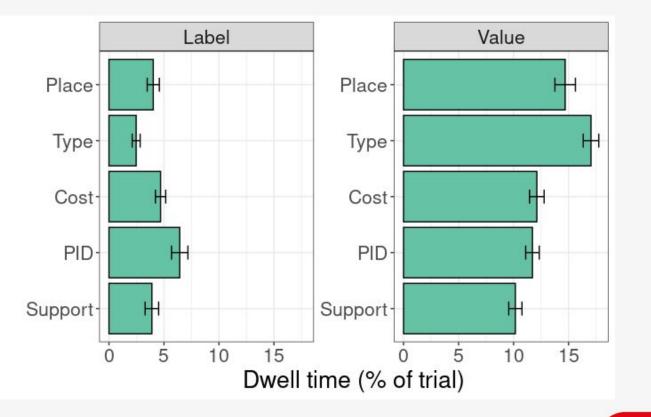
PID reference = 1% Place reference = GP Clinic Type reference = swab

Data exploration: decision times

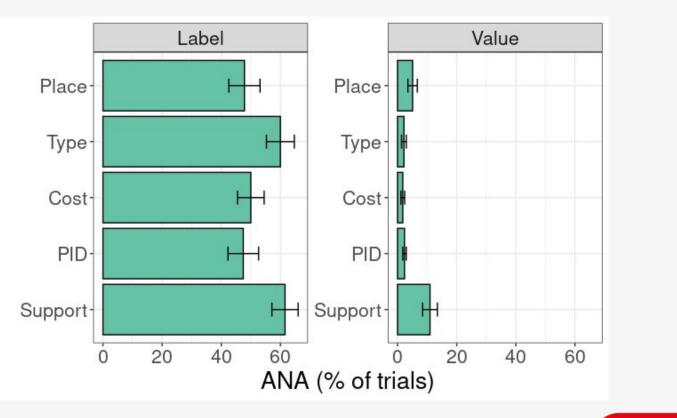

Data exploration: decision times

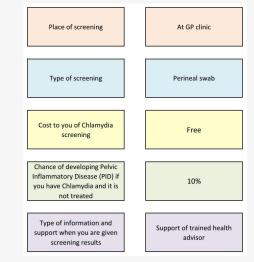
At least one 'warm-up' trial needed

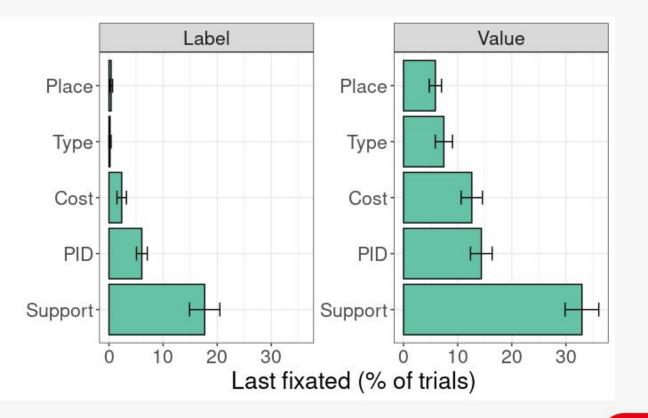
М

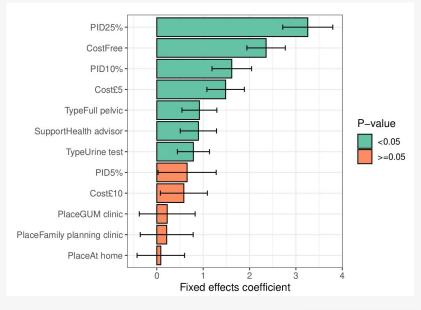

Data exploration: accept faster?

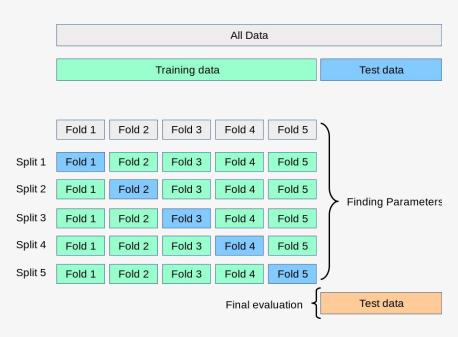
0


Where do people look?




What do people skip?


What do people look at last?


Predicting choice: Traditional approach

- Mixed effects models:
 - Takes into account differences between participants and trials
 - Linear model (weighted sum of dummy variables)
 - Relative importance factors
 - Difficult to assess predictive performance

Predicting choice: machine learning approach

- Treats trials from different participants the same as within participants
- Focuses on assessing predictive performance
- Large selection of classification models (not just linear)

Workflow: Create dummy variables

Place		ChoiceNumber	Participant
Familyplanningclinic		1	1
Familyplanningclinic		2	1
GUMclinic		3	1
Athome		4	1
Athome		5	1
	Familyplanningclinic Familyplanningclinic GUMclinic Athome	Familyplanningclinic Familyplanningclinic GUMclinic Athome	1Familyplanningclinic2Familyplanningclinic3GUMclinic4Athome

PID_1	PID_10	 Support_Healthadvisor	Support_None
0	1	 0	1
1	0	 0	1
0	1	 1	0
0	0	 1	0
1	0	 Θ	1

Workflow: Convert dependent variable

Workflow: Split into training and test

Training

	PID_1	PID_10		Support_Healthadvisor	Support_None
314	0	1		1	- 0
227	0	0		1	0
145	1	0		Θ	1
320	0	1		Θ	1
217	Θ	1	• • •	0	1
••				C+++)	•••
291	0	Θ		1	0
330	0	1		1	0
472	0	0		Θ	1
111	0	0		Θ	1
4	1	0	•••	0	1
[384	rows x	17 colu	mns]		

Test

	PID_1	PID_10		Support_Healthadvisor	Support_None
271	0	- 0		0	1 1
74	0	1		1	0
315	0	Θ		1	0
20	1	0		Θ	1
134	0	0		1	0
••	• • •				
289	1	Θ		Θ	1
139	0	Θ		1	0
332	0	0		Θ	1
454	0	0		1	0
347	0	0		1	G
[96	rows x	17 colum	ns]		

Workflow: Use cross-validation (CV) on training to find optimal parameters for classifier

Search space

```
param_grid = {
    'bootstrap': [True],
    'max_depth': [80, 90, 100, 110],
    'max_features': [2, 3],
    'min_samples_leaf': [3, 4, 5],
    'min_samples_split': [8, 10, 12],
    'n_estimators': [100, 200, 300, 1000]
}
```

Use CV to determine accuracy per combination

Best parameters

```
{'n_estimators': 200,
  'min_samples_split': 12,
  'min_samples_leaf': 3,
  'max_features': 3,
  'max_depth': 80,
  'bootstrap': True}
```

Н

Workflow: Predict

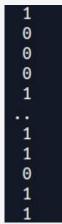
- Fit model with these parameters
- Compute class probabilities for each sample in test set

	PID_1	PID_10	Support_Healthadvisor	Support_None
271	0	0	0	- 1
74	0	1	1	0
315	0	0	1	Θ
20	1	Θ	 Θ	1
134	0	Θ	1	0
••				
289	1	Θ	Θ	1
139	0	0	1	0
332	0	0	 Θ	1
454	0	Θ	1	Θ
347	0	Θ	 1	0

[0.07653206,	0.92346794]
[0.2050691 ,	0.7949309]
[0.07720942,	0.92279058]
[0.27489649,	0.72510351]
[0.43464067,	0.56535933]
[0.1273329 ,	0.8726671]
[0.27563762,	0.72436238]
[0.27489649,	0.72510351]
[0.27107976,	0.72892024]
[0.77328743,	0.22671257]
[0.2050691 ,	0.7949309]
[0.21824037,	0.78175963]
[0.27563762,	0.72436238]

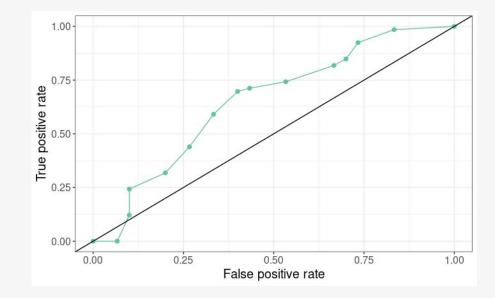
Predicted C category c

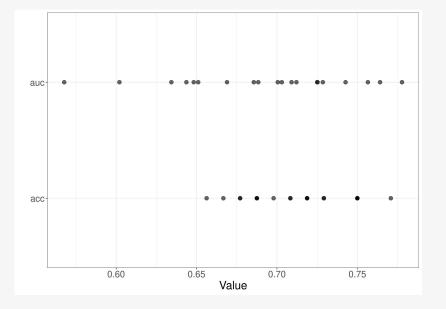
1

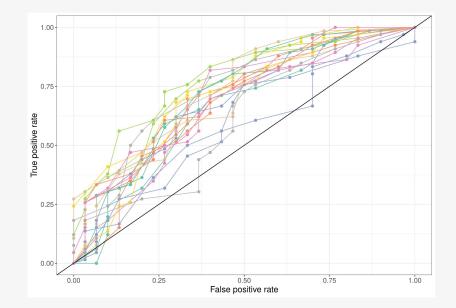

1

1

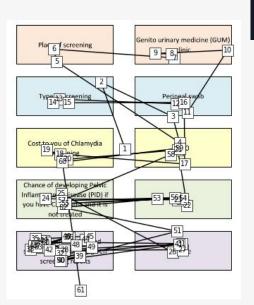
0


1 1 1


Workflow: Access performance


Accuracy = 0.6770833 AUC = 0.6510101

Multiple splits in training / test needed



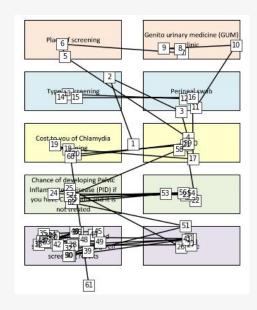
Types of predictions

- Input features
 - Coding information on screen
 - Coding eye movements
 - No sequence information (bag of words without n-grams; shuffle order in LSTM)
 - Sequence information (bag of words with n-grams; original order in LSTM)
 - Coding of location
 - Coding of information fixated
- Classifier / method
 - Random forest / KNN/ LR / decision tree...
 - LSTM (DL)

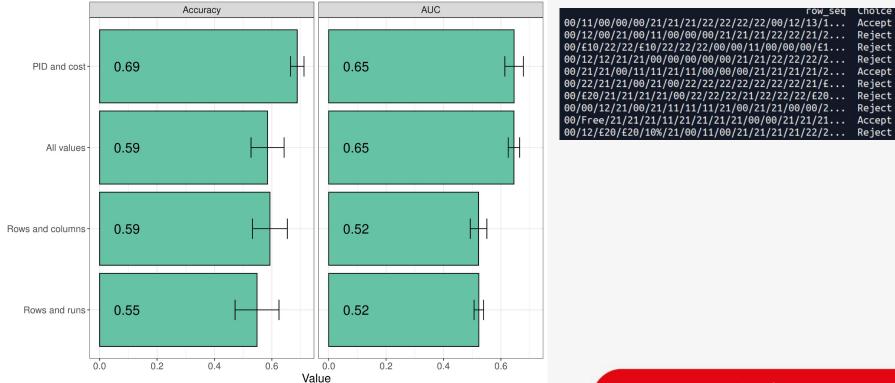
Example input for standard ML

['Participant', 'ChoiceNumber', '0/1', '0/2', '0/3', '0/4', '0/5', '1/0', '1/2', '1/3', '1/4', '1/5', '2/0', '2/1', '2/3', '2/4', '2/5', '3/0', '3/1', '3/2', '3/4', '3/5', '4/0', '4/1', '4/2', '4/3', '4/5', '5/0', '5/1', '5/2', '5/3', '5/4', 'n0', 'n1', 'n2', 'n3', 'n4', 'n5', 'first', 'last', 'n', 'n_unique', 'choice_bin', 'Choice'],

Participant	ChoiceNumber	0/1	0/2	 n	n_unique	choice_bin
1	1	2	1	 15	6	1.0
1	2	3	1	 18	6	0.0
1	3	2	0	 19	6	0.0
1	4	1	1	 22	6	0.0
1	5	3	0	 15	6	1.0


Example input for LSTM

Row information only


row_seq	Choice
0/1/0/1/2/0/2/3/4/5/2/3/4/1/2	Accept
0/2/0/1/0/1/0/1/2/1/2/3/4/5/4/5/4/3	Reject
0/3/2/3/2/0/1/0/3/4/5/4/3/2/1/0/1/5/3	Reject
0/2/1/0/1/2/3/4/3/2/1/2/3/0/5/4/3/2/1/3/4/3	Reject
0/1/0/1/0/1/2/3/0/4/3/2/1/2/5	Accept

Information fixated

Choice row seq 00/11/00/00/Family planning clinic/Family p... Accept 00/12/00/Family planning clinic/00/11/00/00/00... Reject 00/£10/Urine test/Urine test/£10/Urine test/Ur... Reject 00/12/12/At home/At home/00/00/00/00/00/At hom... Reject 00/At home/At home/00/11/11/At home/11/00/00/0... Accept 00/Full pelvic/At GP clinic/At GP clinic/00/At... Reject 00/£20/Family planning clinic/Family planning ... Reject 00/00/12/GUM clinic/00/GUM clinic/11/11/11/GUM... Reject 00/Free/GUM clinic/GUM clinic/GUM clinic/11/GU... Accept 00/12/£20/£20/10%/At home/00/11/00/At home/At ... Reject

Results LSTM

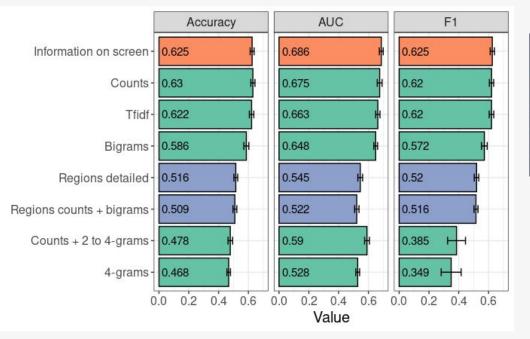
Bag of words + random forest

- Create a corpus
- Count number of times each "word" occurs

['00 11 00 00 Family_planning_clinic Family_planning_clinic Family_planning_clinic Full_pelvic Full_pelvic Full_pelvic 00 12 13 13 13 13 13 15 10% 14 14 None None Full_pelvic Full_pelvic 50 10% Family_planning_clinic Family_planning_clinic Family_planning_clinic Family_planning_clinic Family_planning_clinic Family_planning_clinic Full_pelvic Full_pelvic Full_pelvic Full_pelvic Full_pelvic', '00 12 00 Family_planning_clinic 00 11 00 00 0Family_planning_clinic

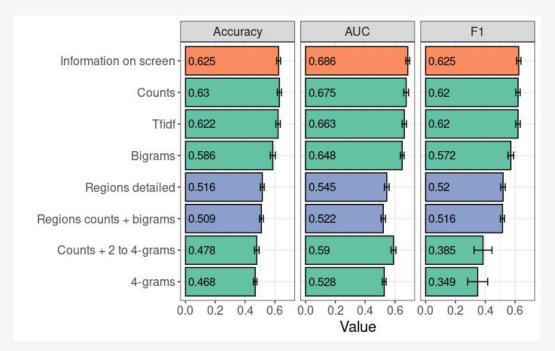
]	5,	2, 0],	1,	1,	6,	2,	0,	0,	0,	0,	9,	0,	12,	0,	0,	2,
	0,	0],														
]	6,	3, 0],	1,	2,	0,	19,	2,	0,	0,	0,	7,	0,	0,	0,	0,	3,
	7,	0],														
]	8,	9,	3,	0,	0,	3,	0,	0,	0,	0,	0,	0,	0,	3,	4,	0,
	0,	10]])													

Including N-grams


['00 11 00 00 00 Family_planning_clinic Family_planning_clinic Family_planning_clinic Full_pelvic Full_pelvic Full_pelvic Full_pelvic 00 12 13 13 13 13 13 15 10% 14 14 None None Full_pelvic Full_pelvic £5 10% Family_planning_clinic Family_planning_clinic Family_planning_clinic Family_planning_clinic Family_planning_clinic Family_planning_clinic Full_pelvic Full_pelvic Full_pelvic Full_pelvic Full_pelvic Full_pelvic',

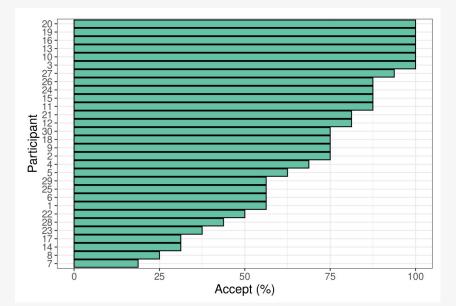
Including bi-gram counts

Ο. 0, 0, 0, 0. 0, 0, 0. 0. 0. 0. 0 0. 0. 0 0, 0. 0, 0, 0, 0, 0, 0, 0. 0. 0. 0. 0, Ο. 0. 0. 0. 0. 0 Θ. 0. 6. 0. 0. 0, Θ. 0. 0. 0. 0, 0 2, 0, 0. Θ. 0, 0. 0. 0. 0, 0, 0. 0, 0. 0. 0. 0. 0. 0. 0. 0. 0, 0, 0. 0, 0, 0, 0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0, 0, 0. 0, 0, 0, 0, 0, 0. 0. 0, 0 0. 0. 0. 0. 0, 0. 0 0. 0. 0. 0, 0 0 0, 0. 0 0, 0. 7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0, 0, 0, 9, 0. 0, 0, 0 0. 0. 0 0, 0. 0. 0. Ο. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0, 0. 0. 0, 0, 0, 0 0. 0, 0, 0. 0, 0. 0, 0. 0, 0. 0, 0, 0, 0. 0. ο. 0, 0, 0, 0. 0. Θ. Θ. 0. 0, 0, 0, 0], 0. 0.


Results Bag of words

['00 11 00 00 00 Family_planning_clinic Family_planning_clinic Family_planning_clinic Full_pelvic Full_pelvic Full_pelvic Full_pelvic 00 12 13 13 13 13 13 55 10% 14 14 None Full_pelvic Full_pelvic £5 10% Family_planning_clinic Family_planning_clinic Family_planning_clinic Family_planning_clinic Family_planning_clinic Family_planning_clinic Full_pelvic Full_pelvic Full_pelvic Full_pelvic Full_pelvic Full_pelvic',

Summary


- Eye movements reveal:
 - attention,
 - ANA,
 - sequence effects,
 - individual differences
- Accuracy models no better than majority class (66.7%)
- AUC suggests some predictive power

Future directions: Individual differences

- Machine learning for "nested" data (individual differences)
- Train models on one set of participants, test on another
- Adjust threshold for baseline accept rates

Risk of Long Covid after infection	1 in 20 rather than 1 in 10
Risk of hospitalization after infection	1 in 40000 rather than 1 in 5000
Risk of death after infection	1 in 2 million rather than 1 in 500k
Risk of mild side effects	1 in 10
Risk of serious side effects	1 in 1000000

Discussion

- When is the time to publish results?
 - Only when a "working model" has been obtained?
- How much effort to put in finding a "working model"?
 - "Publish or perish"
 - Better pay off for studies where you quickly find a "working model"?
 - Overlap with "file drawer" effect

