
Balanced ω-regular languages

Luc Edixhoven

19 April 2022

1 / 32

Who am I?

Internal PhD student since september 2019

Under the enlightening supervision of Sung(-Shik Jongmans)

2 / 32

Why this talk?

Nelma Moreira
Rogério Reis (Eds.)

LN
CS

 1
28

11

Developments
in Language Theory
25th International Conference, DLT 2021
Porto, Portugal, August 16–20, 2021
Proceedings

Balanced-By-Construction Regular

and ω-Regular Languages

Luc Edixhoven1,2(B) and Sung-Shik Jongmans1,2

1 Open University, Heerlen, The Netherlands
{led,ssj}@ou.nl

2 Centrum Wiskunde and Informatica (CWI), Amsterdam, The Netherlands

Abstract. Parenn is the typical generalisation of the Dyck language to
multiple types of parentheses. We generalise its notion of balancedness to
allow parentheses of different types to freely commute. We show that bal-
anced regular and ω-regular languages can be characterised by syntactic
constraints on regular and ω-regular expressions and, using the shuffle on
trajectories operator, we define grammars for balanced-by-construction
expressions with which one can express every balanced regular and ω-
regular language.

Keywords: Dyck language · Shuffle on trajectories · Regular
languages

1 Introduction

The Dyck language of balanced parentheses is a textbook example of a context-
free language. Its typical generalisation to multiple types of parentheses, Parenn,
is central in characterising the class of context-free languages, as shown by the
Chomsky-Schützenberger theorem [1]. Many other generalisations of the Dyck
language have been studied over the years [2,4,5,8,9].

The notion of balancedness in Parenn requires parentheses of different types
to be properly nested: [1[2]2]1 is balanced but [1[2]1]2 is not. In this paper,
we consider a more general notion of balancedness, in which parentheses of the
same type must be properly nested but parentheses of different types may freely
commute. This notion of balancedness is of particular interest in the context of
distributed computing, where different components communicate by exchanging
messages: if we assign a unique type of parentheses to every communication chan-
nel between two participants, and interpret a left parenthesis as a message send
event and a right parenthesis as a receive event, then balancedness characterises
precisely all sequences of communication with no lost or orphan messages.

Specifically, we are interested in specifying languages that are balanced by
construction, which correspond to communication protocols that are free of lost
and orphan messages. More precisely, we aim to answer the question: can we
define balanced atoms and a set of balancedness-preserving operators with which
one can express all balanced languages?

c© Springer Nature Switzerland AG 2021
N. Moreira and R. Reis (Eds.): DLT 2021, LNCS 12811, pp. 130–142, 2021.
https://doi.org/10.1007/978-3-030-81508-0_11

3 / 32

Disclaimer

The announcement:

The actual talk:

4 / 32

Disclaimer

The announcement:

The actual talk:

4 / 32

What was the first half about?

• Formal languages over brackets [1,]1, [2,]2, . . .

• Words are balanced if all brackets occur in ordered pairs
• [1]1[2]2 is balanced
• [1[2]1]2 is balanced (interleaving is fine)
• [1[2]1 is not, nor is]1[2[1]2

• A language is balanced if all of its words are, and so are
automata and expressions

[[]] [[[]] []]

5 / 32

Balanced automata

q0

q1

q2

q3

q4

q5 q6

q7

[i]i

[i]i

[i]i

[i

]i

]i

• q7 must have an i-balance of 0

• q4 must have an i-balance of 1

• . . .

• All balances must be non-negative, initial state must be 0

6 / 32

Balanced automata

q0

q1

q2

q3

q4

q5 q6

q7

[i]i

[i]i

[i]i

[i

]i

]i

• q7 must have an i-balance of 0

• q4 must have an i-balance of 1

• . . .

• All balances must be non-negative, initial state must be 0

6 / 32

Balanced automata

q0

q1

q2

q3

q4

q5 q6

q7

[i]i

[i]i

[i]i

[i

]i

]i

• q7 must have an i-balance of 0

• q4 must have an i-balance of 1

• . . .

• All balances must be non-negative, initial state must be 0

6 / 32

Balanced automata

q0

q1

q2

q3

q4

q5 q6

q7

[i]i

[i]i

[i]i

[i

]i

]i

• q7 must have an i-balance of 0

• q4 must have an i-balance of 1

• . . .

• All balances must be non-negative, initial state must be 0

6 / 32

Balanced automata

q0

q1

q2

q3

q4

q5 q6

q7

[i]i

[i]i

[i]i

[i

]i

]i

• q7 must have an i-balance of 0

• q4 must have an i-balance of 1

• . . .

• All balances must be non-negative, initial state must be 0

6 / 32

Balanced regular expressions

• [i has an i-balance of 1,]i has an i-balance of −1

• [i]i has an i-balance of 0. . .

but so does]i[i

• Solution: minimum i-balance. That of [i]i is 0, while that of
]i[i is −1.

• The i-balance of [i + ([i]i[i) is 1

• The i-balance of [i + ([i]i) is undefined

• The i-balance of ([i]i)∗ is 0

• The i-balance of ([i)∗ is undefined

Balances and minimum balances should all be 0.

7 / 32

Balanced regular expressions

• [i has an i-balance of 1,]i has an i-balance of −1

• [i]i has an i-balance of 0. . . but so does]i[i

• Solution: minimum i-balance. That of [i]i is 0, while that of
]i[i is −1.

• The i-balance of [i + ([i]i[i) is 1

• The i-balance of [i + ([i]i) is undefined

• The i-balance of ([i]i)∗ is 0

• The i-balance of ([i)∗ is undefined

Balances and minimum balances should all be 0.

7 / 32

Balanced regular expressions

• [i has an i-balance of 1,]i has an i-balance of −1

• [i]i has an i-balance of 0. . . but so does]i[i

• Solution: minimum i-balance. That of [i]i is 0, while that of
]i[i is −1.

• The i-balance of [i + ([i]i[i) is 1

• The i-balance of [i + ([i]i) is undefined

• The i-balance of ([i]i)∗ is 0

• The i-balance of ([i)∗ is undefined

Balances and minimum balances should all be 0.

7 / 32

Balanced regular expressions

• [i has an i-balance of 1,]i has an i-balance of −1

• [i]i has an i-balance of 0. . . but so does]i[i

• Solution: minimum i-balance. That of [i]i is 0, while that of
]i[i is −1.

• The i-balance of [i + ([i]i[i) is 1

• The i-balance of [i + ([i]i) is undefined

• The i-balance of ([i]i)∗ is 0

• The i-balance of ([i)∗ is undefined

Balances and minimum balances should all be 0.

7 / 32

Balanced expression grammar

e ::= ∅ | λ | [1 |]1 | [2 |]2 | . . .
| e · e | e + e | e∗

Can express all balanced regular languages, but also unbalanced
ones.

Solution:

e ::= ∅ | λ | [1 ·]1 | [2 ·]2 | . . .
| e1 · e2 | e1 + e2 | e∗

| �1
θ (e1) | �2

θ (e1, e2) | . . .

θ ::= ∅ | λ | 1 | 2 | . . .
| θ1 · θ2 | θ1 + θ2 | θ∗

8 / 32

Balanced expression grammar

e ::= ∅ | λ | [1 |]1 | [2 |]2 | . . .
| e · e | e + e | e∗

Can express all balanced regular languages, but also unbalanced
ones.

Solution:

e ::= ∅ | λ | [1 ·]1 | [2 ·]2 | . . .
| e1 · e2 | e1 + e2 | e∗

| �1
θ (e1) | �2

θ (e1, e2) | . . .

θ ::= ∅ | λ | 1 | 2 | . . .
| θ1 · θ2 | θ1 + θ2 | θ∗

8 / 32

Shuffle on trajectories

Mateescu et al.: “Shuffle on trajectories” (1998)

Trajectory

�
2
1221112112 (abcdef, ghij)

= aghbcdiefj

1

2

a b c d e f

g

h

i

j

• Only defined if the trajectory fits the operands

• Generalises to languages and expressions

9 / 32

Soundness

“All expressions are balanced and regular”

• Proof by constructing a balanced automaton

10 / 32

Completeness

“All balanced regular languages can be expressed”

• Rewrite regular expression in normal form to get rid of +

• Rewrite subexpressions as shuffles of ‘factors’

• Number of unbalanced factors correlates with balance and
minimum balance

11 / 32

Factors

Balanced factors

k
i = ([i]i)k([i]i)∗ → λ k

i = (k
i)∗ →

Unbalanced factors

+ k
i = k

i [i →

− k
i =]i k

i →

± k
i =]i k

i [i → ? k
i = (± k

i)∗ →

12 / 32

Merging
Lemma (Merge)
If [. . .] then �T (L1, . . . , Ln−1, Ln) = �T ′(L1, . . . , Ln−1Ln).

Specifically:

→ →

→ →

→ →

→ →

→ →

13 / 32

Concatenating

Lemma (Concatenation)
If [. . .] then �T1(L1, . . . , Ln) ·�T2(Ln+1, . . . , Ln+m) =
�T (L1, . . . , Ln+m) = �T ′(Lk , . . . , L`).

·

14 / 32

Loops

Lemma (Star)
If [. . .] then (�T (L1, . . . , Ln))∗ = �T∗(L∗

1, . . . , L
∗
n).

15 / 32

Example

·

· ·

[1 ∗ [1 ·

·]1]1

∗ ∗

· ·

[1]1]1 [1

16 / 32

Example

·

· ·

∗ ·

·

∗ ∗

· ·

16 / 32

Example

·

· ·

∗ ·

·

∗ ∗

·

16 / 32

Example

·

· ·

∗ ·

·

∗ ∗

16 / 32

Example

·

· ·

∗

·

∗ ∗

16 / 32

Example

·

·

∗

·

∗ ∗

16 / 32

Example

·

·

∗

·

∗

16 / 32

Example

·

·

∗

·

16 / 32

Example

·

·

∗

16 / 32

Example

·

·

16 / 32

Example

·

16 / 32

Example

16 / 32

Example

16 / 32

What’s new?

17 / 32

What’s new?

17 / 32

Balancedness

Balancedness += Boundedness

([])ω !

[([])ω !

([[])ω %

18 / 32

Balanced ω-automata

q0

q1q2 q3

[1[1

]1 [2

]2

q0 q1 q2

]1

[1
[1

[1

{{q1, q2} , {q1, q3} , {q1, q2, q3}} {{q1, q2}}

[1([1]1 + [2]2)ω (λ+ [1)([1]1)ω

Unbalanced Balanced

Modified acceptance criterion Split balance in two

19 / 32

Balanced ω-regular expressions

As before, but:

• Keep track of guaranteed infinite ocurrences

• Balance now consists of both a lower and an upper bound

• [1([1]1 + [2]2)ω: 2-balance is between 0 and 0, 1-balance is
between 1 and 1; 1-brackets not guaranteed to occur infinitely
often

• (λ+ [1)([1]1)ω: 1-balance is 0; 1-brackets guaranteed to
occur infinitely often

Balance bounds and minimum balances should all be 0.

20 / 32

Balanced ω-expression grammar

e ::= ∅ | e + e | E · e | Eω+ | �Tω (C , . . . ,C) (ω-regular)
E ::= ∅ | λ | P | E + E | E · E | E ∗ | �T (E , . . . ,E) (regular)

E+ ::= ∅ | P | E+ + E+ | E · E+ · E | �T+ (E , . . . ,E) (no λ)
P ::= [1 ·]1 | [2 ·]2 | . . . (parentheses)
C ::= e | E (ω-shuffle operand)

T ::= ∅ | λ | 1 | 2 | . . . | T + T | T · T | T ∗ (trajectory)
T+ ::= ∅ | 1 | 2 | . . . | T+ + T+ | T · T+ · T (no λ)
Tω ::= ∅ | Tω + Tω | T · Tω | Tω

+ (ω-trajectory)

21 / 32

Soundness

“All expressions are balanced and ω-regular”

• Proof by constructing a balanced ω-automaton

22 / 32

Completeness

“All balanced ω-regular languages can be expressed”

• Normal form: e1e
ω
2 + . . .+ e2m−1e

ω
2m

• Rewrite all ei as shuffles of factors, then merge

23 / 32

ω-factors

ω
i = ([i]i)ω → ± ω

i = (]i[i)ω →

→ →

→

24 / 32

ω-factors

ω
i = ([i]i)ω → ± ω

i = (]i[i)ω →

→ →

→

24 / 32

Problems

[i[i (]i[i)ω [i ([i]i (]i[i)∗)ω [i ([i]i)ω

Too few instead of No

25 / 32

Too few

Perks of infinity: eω = (ee)ω

·

26 / 32

instead of

·

27 / 32

No

·

28 / 32

Problems

[i[i (]i[i)ω [i ([i]i (]i[i)∗)ω [i ([i]i)ω

Too few instead of No!!!
29 / 32

Example

[i ([i]i)ω

·

·

· ·

·

·

30 / 32

What’s next?

• Context-free languages

• Binary shuffles

31 / 32

That’s all folks!

32 / 32

