

Botnet Detection Detection of DGA-generated Domain Names

Harald Vranken OUrsi, 10 May 2022

Introduction

- Harald Vranken and Hassan Alizadeh, Detection of DGA-Generated Domain Names with TF-IDF, MDPI Electronics 2022, 11, 414, <u>https://doi.org/10.3390/electronics11030414</u>
- Lars Kuipers, *Effectiveness of features in DGA detection*, Research internship thesis, Radboud University, January 2022

Mide Detection of DGA-Generated Domain	n Names with TF-IDF	Resear	ach internship er Security
larald Vranken ^{1,2, s} and Hassan Alizadeh ¹			-
¹ Department of computer sites on, Que to the bases of Landschingtmations. Second Sciences & Institute for Computing and Institutes for Computing and Institutes and Computing and Institutes Archives Electronic others apply documents many generating target areas and and and an electronic of the other and the site of the site of the site of the means of mathematic cases that the optimum DCA generating and any given the target of the site of the site of the site of the other and the site of the site of the site of the DCA generating of the site of the site of the site of the site of T2DT to means an important to deep harming models using T2DT functions computers, we also apply an 152M and other site of the site of the site of the site of the site of the site of the site of the site of the site of the other site of the site of the site of the site of the site of the site of the site of the site of the site of the other site of the site of the site of the site of the site of the site of the other site of the site of the site of the site of the site of the other site of the site of the site of the site of the site of the other site of the site of the site of the site of the site of the other site of the site of the site of the site of the site of the other site of the si	which 700 has 7000, 4401 CK Hawles, The Forbestunds; as, Ballouid Linkowig, FLO Bac 700, generation anglopathine (FCAs) to see a doubtoon by the FCAs generated annual means can be addressed by the FCAs generated annual means can be addressed by the Hol operation and annual means of the backweb by the Hol operation and annual means of the backweb by the Hol operation and annual means of the backweb by the Hol operation and annual means of the backweb by the Hol operation and annual means of the backweb by the Hol operation and annual means of the hole operation from and before the prime of the Hole operations, and and the hole has done MEM means from the hole operation of the hole operation of the hole operation means from a done has done MEM means for the hole operation of the done means from and before the Hole operation of the set of the hole operation means from a done means from a done of the Hole operation of t	RADB Effectiveness do	off features in DGA etection
<text><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></text>	aning damp hanning mexisity of systems consected to the laterest and collection of composition (steely) that of the stand and Collection (steely) that and a few transformed to the steer of the steel is such as latenching (DoS) status, a configure the ity, such as latenching (DoS) status, a configure the ity status as latenching (DoS) status, a configure ity status as latenching (DoS) status, a configure status and status as latenching (DoS) and the status status and status as latenching (DoS) and the status status and status as latenching (DoS) and the status status and status and the status as latenching (DoS) occurs attempts.	Author: Lars Raipers a1000601	First supervisor/assessor: Dr. ir. Handal Vinakom advestor vankarotivoa ad Second assessor: Dr. Kalatarina Kohk kkohkötes.ru.ad

Outline

- Botnets
- DGA
- DGA detection with TF-IDF
- Effectiveness of features for DGA detection

Botnet

- Network of *bots* (computer systems infected with malicious software)
- Bots are controlled remotely by a *botmaster* through *C&C server*
- Botmaster can employ proxy machines (*stepping-stones*) to evade detection
- Botnets are major *cybersecurity threat* ('Swiss-army knife' of cyber criminals)

Botnet structure

- C&C channels
 - push or pull
 - IRC, HTTP, DNS, ...

Bot lifecycle

- Infection: bot is infected with malware (initial infection) and downloads bot binary (secondary infection)
- *Rallying*: bot contacts C&C server and announces its presence
 - establishes C&C channel through which bot receives updates and commands
- Passive: bot waits for commands (and bot binary may be updated)
- Active: bot carries out malicious activity
 - optionally spreads infection to other hosts using *propagation* mechanisms

C&C channels

- Bot has to know *domain name* or *IP address* of C&C server
- Reverse engineering of bot binary may reveal domain name or IP address of C&C server
- Bot knows *domain name* of C&C server
 - static: hardcoded in bot binary
 - dynamic: generated using DGA (Domain name Generation Algorithm)
 - requires DNS lookup to resolve domain name into IP address
- Bot knows *IP address* of C&C server
 - static: hardcoded in bot binary
 - dynamic: seeding by providing initial list of peers (P2P botnet)
 - eliminates DNS lookup (stealthy)

DNS

Evasion tactics of botnets

- IP flux
 - frequently change IP address to evade blacklisting and blocking of IP addresses
 - real-time update of DNS facilitated by Dynamic DNS (DDNS) services
- Fast flux: IP addresses refer to proxy bots, that relay communication to C&C server
- Double flux: also IP address of name server changes frequently

Evasion tactics of botnets

0

• Domain flux

- frequently change domain name for contacting C&C server
- helps evade URL-based detection
- achieved by
 - domain wildcarding (DNS service)
 - DGA (domain name generation algorithm)

DGA

- Bot applies DGA to periodically generate a (large) number of domain names
 - only one/few are registered by botmaster
 - bot uses DNS to resolve domain names one by one
 - unregistered domain names result in Non-Existent Domain (NXDomain) responses from name servers
 - successfully resolved domain name refers to proxy bot or C&C server
- *Re-engineering* DGA by analysis of botnet binary to predict what domain names a bot will try
 - unfeasible to register all those domains by law enforcement or check which ones are malicious
 - prohibited if DGA uses dynamic seed

DGA

- DGA generates large number of pseudo-random domain names from a *seed*
 - seed is shared secret between botmaster and bots
- Static/deterministic seed
 - eg. seed derived from current date (Torpig), GMT (Conficker)
 - eg. Conficker.C generated 50,000 domain names of which bots daily tried up to 500
 - law enforcement would have to pre-register and check 50,000 domain names
 - if botmaster registers only 1 domain name, bot has 1% chance per day to contact C&C server, hence bot will contact C&C server once every 100 days on average
- Dynamic seed
 - eg. foreign exchange reference rates published daily by European Central Bank (Bedep), trending topics on Twitter (Torpig)
 - domain names cannot be precomputed in advance (small time window, also for botmasters)

Plohmann, D.; Yakdan, K.; Klatt, M.; Bader, J.; Gerhards-Padilla, E. A Comprehensive Measurement Study of Domain Generating Malware. 25th USENIX Security Symposium (USENIX Security 16); USENIX Association: Austin, TX, 2016; pp. 263–278.

DGA types

0

vhljakiutpq7.com

52efedef74d4.com

formsworkfreeall.com

redotntexplore.com

- domain names contain random letters and digits
 - Hash-based: apply hashing algorithms such as MD5 and SHA256

• Arithmetic-based: generate random sequences of ASCII characters

- domain names contain hexadecimal numbers
- Wordlist-based: concatenate sequences of words from dictionaries
 - domain names are less random, but contain no digits
- Permutation-based: permutate given domain name
 - domain names look similar to regular domain names

DGArchive

DGA family	DGA type	Count	Length	Sample 1	Sample 2
banjori	А	10,000	11 - 30	eihspartbulkyf.com	ochqfordlinnetavox.com
bedep	A	7,458	16 - 22	vhljakiutpq7.com	csejdv mqgmqj.com
chinad	Α	10,000	19 - 21	3vainry4stex8arf.cn	vfuupsix5ki5omg0.cn
conficker	Α	10,000	8 - 16	qzvwnnije.biz	dovcujbpg.biz
corebot	A	10,000	15 - 32	kr105hivgrqvo8e8ijqh1bc.ws	i472uvy6qjyvgh18mhw4k85.ws
cryptolocker	Α	10,000	15 - 21	leojfthetfyk.com	thtatcpfomflk.com
dnschanger	A	10,000	14 - 14	xxxfuhkjzu.com	viwnolcsqf.com
ebury	A	2.000	17 - 18	r2e1v3mau7h4k.info	k1i5a3w5r1x4i.net
emotet	Α	10,000	19 - 19	iqpucsfnnijdnbii.eu	olahnvuhbiitauve.eu
fobber	A	2,000	14 - 21	phtatognxg.com	vzuopketsrtaqttgk.net
gameover	Α	10,000	18 - 37	iz6b/9jwre387brksimxpkcp.net	d2u8ds1aif9oryzft8f1u052m5.org
locky	Α	10,000	8 - 23	viuoabuc.fr	rkwaoicjullpc.click
murofet	A	10,000	13 - 21	prkww.osw.eww.kfzuy.com	udumozptkqqpo.info
murofetweekly	A	10,000	35 - 51	jyi35d10gwgqlrmrhupudxdqoyc69n40d20dq.ru	buiuj26gvhxk57pvmrk17d50bwfzlxa17hrls.ru
necurs	A	10,000	10 - 28	yaatqhjjgicemhoeiu.nf	inlchelid.ug
nymaim	Α	10,000	8 - 16	xhhtaldw.net	uckvk.net
oderoor	Α	3,833	10 - 16	uyftputndw.cc	mdnaizofvm.cc
padcrypt	A	10,000	19 - 24	fkaokkbfaalfbdeb.info	menccfmdkcmaemfk.de
proslikefan	A	10,000	9 - 17	zrimegy.in	vnmwww.co
pushdo	A	10,000	11 - 16	kateetutyx.kz	lakeotux.kz
pushdotid	A	6,000	13 - 14	gxmdgfmjcx.com	opgrexsbif.net
pykspa	Α	10,000	10 - 17	rldbwwarp.net	myhmexr.net
pykspa2	A	10,000	10 - 19	iugzosiug keq.net	wkuglwiugkeq.biz
pykspa2s	Α	9,957	10 - 19	pkpycifox.com	wudmdgeoya.biz
qadars	Α	10,000	16 - 16	ysmoq4esi0q0.org	gt6b8tirkh2r.net
qakbot	A	10,000	12 - 30	xvvluuabuftqilmnynimpipb.info	tugfpmprjspprbwxdzi.biz
ramdo	A	6,000	20 - 20	skugesksmewsckwg.org	iqgieiyuigamow ca.org
ramnit	A	10,000	11 - 25	ixrghbaytyaksgug.com	bwqkmskfwpvljd.com
ranbyus	A	10,000	17 - 21	ndgpkwlmftaryloae.cc	gttfhnegjtmegkhrt.cc
rovnix	A	10,000	21 - 22	jaitc336ybcds71ykg.cn	oar7juqajea1wnyopo.cn
shifu	A	2,331	10 - 12	vhqrdfg, info	xxuissy.info
simda	A	10,000	8 - 14	rynezev.info	geboLeu
sisron	A	8,800	16 - 17	mjcwmziwmtqa.net	mjmwotiwmtga.net
sphinx	A	10,000	20 - 20	libuybegcrlrfyof.com	oixwkitoiqseltry.com
sutra	A	9,882	19 - 29	gweqifjejtoaemgw.info	hpwazeehjwpfwgaj.ru
symmi	A	10,000	17 - 24	oqmievkeedloovm.ddns.net	esitkoelmei.ddns.net
szribi	A	10,000	12 - 12	ddpuuddd.com	grawspwe.com
tempedrevetdd	A	1,380	12 - 14	gbuxwrwx.org	crwhchuda.org
tinba	A	10,000	10 - 23	bejwxxumttmh.net	rwtopxoocwtt.cc
tofsee	A	3,140	10 - 11	drndrng.biz	drodroi.biz
torpig	A	10,000	11 - 13	bfcmulj.net	bhksvgrpa.com
urlzone	A	10,000	8 - 19	ehw5jdkwkv.com	rc5iycl4suf.com
vawtrak	A	2,700	10 - 15	dmzqvyn.top	misohnatl.com
vidro	A	10,000	11 - 23	prjbemepgzkp.com	rakrfxs.com
virut	A	10,000	10 - 10	yzraho.com	ehuquf.com
xxhex	Α	4,400	12 - 13	xxa5c1b019.sg	xx3603da38.sg
bamital	Н	10,000	36 - 38	43f3d094f08dd1a2df2869352e2a9712.cz.cc	f0b79a9253cf7c58f0e1f54426f45bf4.cz.cc
dyre	Н	10,000	37 - 37	rdf36ed41339f9abd57a5a1c9f2143f513.ws	u28c43d53bb3ecafbdfd29fa34a47dae09.to
ekforward	Н	2,919	8 - 11	80a118c7.eu	9356c774.eu
infy	Н	10,000	12 - 14	1e60c5f5.space	a56bc6c6.top
pandabanker	Н	10,000	16 - 17	52efedef74d4.com	0b16dca48547.com
tinynuke	Н	10,000	36 - 36	ec893776679264b90cfff916cc5f0eaf.com	84b4a55d8ac046a9816dda8b866893b7.top
wd	Н	10,000	36 - 38	wd679ab775d15bbee733b8545f20452504.win	a0e433f4c96c6b8f3ece607d791d6546.pro
gozi	W	10,000	15 - 29	formsworkfree all.com	allowdisalloallow.me
matsnu	W	10,000	16 - 28	bitpersuadebutton.com	structuresurvey.com
nymaim2	W	10,000	11 - 33	sculpturenegative.net	shuttlefatty.it
suppobox	W	10,000	11 - 30	senseinto.ru	threeslept.net

Character distribution

Vranken, H. and Alizadeh, H., Detection of DGA-Generated Domain Names with TF-IDF, MDPI Electronics 2022, 11, 414

Prior work on detection with ML/DL

- Detecting DGA-generated domain names with machine learning
 - context-free features from domain name: length, entropy, ratios (letters, digits, vowels), pronounceability

Potoronco	Voor	Model	Dataset (Panign/Malisions)	Number of Features		
		Model	Dataset (benign/Malicious)		Context-Aware	
Chiba et al. [14]	2018	RF	Alexa/hpHosts	-	55	
Schüppen et al. [15]	2018	RF, SVM	Private/DGArchive (72 DGAs)	21	-	
Ashiq et al. [16]	2019	FFNN (2-4 hidden layers)	From [17]	8	-	
He et al. [18]	2019	Adaboost, DT, kNN, RF	Alexa/various sources	21	153	
Li et al. [19]	2019	Adaboost, C4.5, kNN, NB	.cn name server/Rustock DGA	1	31	
Liu et al. [20]	2019	SVM	Alexa/DGArchive (87 DGAs)	-	18	
Selvi et al. [21]	2019	RF	Alexa/26 DGAs	18	-	
Yang et al. [22]	2019	DT, ET, NB, SVM, ensemble (NB,ET,LR)	Cisco Umbrella/Netlab, synthetic	24	-	
Akhila et al. [23]	2020	DT, GBT, LR, RF, SVM	Alexa/Bambenek	10	-	
Alaeiyan et al. [24]	2020	RF, RNN, SVM	Alexa/MasterDGA	18	-	
Almashhadani et al. [25]	2020	BT, DT, kNN, NB, SVM	Alexa/DGArchive (20 DGAs)	16	-	
Anand et al. [26]	2020	C5.0, CART, GBM, kNN, RF, SVM	Alexa/Netlab (19 DGAs)	45	-	
Hwang et al. [27]	2020	LightGBM	KISA/KISA (20 DGAs)	110	-	
Liang et al. [28]	2020	RF, SVM, XGBoost	Alexa/various blacklists	5	5	
Mao et al. [29]	2020	NB, LSTM, MLP, RF, SVM, XGBoost	Alexa/Netlab (40 DGAs)	5	-	
Palaniappan et al. [30]	2020	LR	Alexa/various blacklists	4	13	
Sivaguru et al. [31]	2020	RF	Alexa, private/DGArchive	26	9	
Wu et al. [32]	2020	MLP, NB	Alexa/Netlab	4	-	
Zhang et al. [33]	2020	DT, LR, NB, RF, SVM, XGBoost, Voting	Alexa/UMUDGA (37 DGAs)	18	-	
Zago et al. [13]	2020	Adaboost, DT, kNN, NN, RF, SVM	Majestic/various sources (16 DGAs)	40	-	
Cucchiarelli et al. [34]	2021	MLP, RF, SVM	Alexa/Netlab (25 DGAs)	4n + 5 (<i>n</i> DGAs)	-	
Patsakis et al. [35]	2021	RF	Alexa, unipi/DGArchive, synthetic (13 DGAs)	32	-	

Vranken, H. and Alizadeh, H., Detection of DGA-Generated Domain Names with TF-IDF, MDPI Electronics 2022, 11, 414

Prior work on detection with ML/DL

- Detecting DGA-generated domain names with *deep learning*
 - word embedding of domain names

Reference	Year	Model	Dataset (Benign/Malicious)
Woodbridge et al. [36]	2016	LSTM	Alexa/Bambenek
Lison and Mavroeidis [37]	2017	RNN	Alexa/DGArchive (63 DGAs), Bambenek (11 DGAs)
Koh and Rhodes [38]	2018	LSTM	OpenDNS/Bader, Abakumov
Tran et al. [39]	2018	LSTM.MI	AÎexa/Bambenek (37 DGAs)
Vinayakumar et al. [40]	2018	LSTM, GRU, IRNN, RNN, CNN, hybrid (CNN-LSTM)	Alexa, OpenDNS/Bambenek, Bader (17 DGAs)
Xu et al. [41]	2018	CNN-based	Alexa/DGArchive (16 DGAs)
Yu et al. [42]	2018	LSTM, BiLSTM, stacked CNN, parallel CNN, hybrid (CNN-LSTM)	Alexa/Bambenek
Akarsh et al. [43]	2019	LSTM	OpenDNS, Alexa/20 public DGAs
Qiao et al. [44]	2019	LSTM	Alexa/Bambenek
Liu et al. [45]	2020	Hybrid (BiLSTM-CNN)	Alexa/Netlab (50 DGAs), Bambenek (30 DGAs)
Ren et al. [46]	2020	CNN, LSTM, CNN-BiLSTM, ATT-CNN-BiLSTM, SVM	Alexa/Bambenek, Netlab (19 DGAs)
Sivaguru et al. [31]	2020	hybrid (RF-LSTM.MI)	Alexa, private/DGArchive
Vij et al. [47]	2020	LSTM	Alexa/11 DGAs
Cucchiarelli et al. [34]	2021	BiLSTM, LSTM.MI, hybrid (CNN-BiLSTM)	Alexa/Netlab (25 DGAs)
Highnam et al. [48]	2021	hybrid (CNN-LSTM-ANN)	Alexa/DGArchive (3 DGAs)
Namgung et al. [49]	2021	CNN, LSTM, BiLSTM, hybrid (CNN-BiLSTM)	Alexa/Bambenek
Yilmaz et al. [50]	2021	LSTM	Majestic/DGArchive (68 DGAs)

DGA detection with TF-IDF as features

- TF-IDF
 - originates from information retrieval and automated text analysis
 - composed of multiplying term frequency (TF) and inverse document frequency (IDF)
- Set of *terms* $T = \{t_1, ..., t_k\}$ in set of *documents* $D = \{d_1, ..., d_N\}$
- TF_{t_i,d_i} indicates how often term t_i occurs in document d_j
 - usually normalized by document length or most frequent term count in document
 - TF is larger if term occurs more often
- IDF_{t_i} indicates the number of documents (n_i) in set D that contain term t_i
 - usually defined as $log(N/n_i)$
 - IDF is larger if term occurs in fewer documents
- TF-IDF discriminates key terms that appear often but in a smaller number of documents

TF-IDF example

···· ····

D = { "the house had a tiny little mouse", "the cat saw the mouse", "the mouse ran away from the house", "the cat finally ate the mouse", "the end of the mouse story"

T = {'mouse', 'the', 'cat', 'house', 'had', 'tiny', 'little', 'saw', 'ran', 'away, 'from', 'finally', 'ate', 'end', 'of', 'story'}

 $IDF = \{1.000, 1.000, 1.693, 1.693, 2.099,$

apply TF-IDF as measure for how relevant *n-grams* are in *domain names* use TF-IDF scores as features in ML

DGA detection with TF-IDF

• Created *dataset* with 1,076,754 domain names

Hassan's idea

- 583,954 benign domain names; 492,800 malicious domain names from 57 DGA families
- 70% in training dataset, 30% test dataset
- Determined top 5,000 of n-grams (for n=1,2,3) that occur most often in training dataset, and derive IDF
- Transform dataset from set of domain names into a set of vectors with dimension 5,000
 - each vector represents TF-IDF of top 5,000 n-grams in domain name

vhljakiut<mark>pq</mark>7.com csejdv<mark>pq</mark>gmqj.com

Research questions and method

- How accurate can *ML/DL models* classify DGA-generated domain names when using *TF-IDF as features*?
 - Considered 7 ML models (DT, GB, KN, LR, MNB, RF, SVM) and 1 DL model (MLP) that give best results as reported in related literature
 - All models are multi-class classifiers with 58 outputs (57 DGA families and non-DGA)
- How good is accuracy when compared to state-of-the-art *DL model* (LSTM) with word embedding?

Vranken, H. and Alizadeh, H., Detection of DGA-Generated Domain Names with TF-IDF, MDPI Electronics 2022, 11, 414

Metrics

- Classification results
 - true positive (TP): correct classification of DGA domain name
 - false positive (FP): *incorrect* classification of *non-DGA* domain name
 - true negative (TN): correct classification of non-DGA domain name
 - false negative (FN): *incorrect* classification of *DGA* domain name
- Precision (fraction of all positive classifications that are classified correctly): TP / (TP + FP))
- *Recall* (fraction of all DGA domain names that are classified correctly): TP / (TP + FN)
- *F1-score* (harmonic mean of precision and recall): 2 / (precision⁻¹ + recall⁻¹)

- Best results overall are obtained with LSTM (90.69% weighted average F1-score), closely followed by MLP (89.08%) and SVM (88.08%)
 - for DGA-W families and non-DGA, best results with MLP, SVM, and LR
 - DGA-H families are very easy to detect; DGA-W families are more difficult to detect
- Models with highest average F1-score also have smallest standard deviation/spread in F1-score

📕 DT 📕 GB 📃 KNN 🛄 LSTM 🔲 LR 📕 MLP 🔲 MNB 🔲 RF 📕 SVM

• Precision-recall curves for weighted-average of all classes: LSTM performs best, closely followed by MLP

Vranken, H. and Alizadeh, H., Detection of DGA-Generated Domain Names with TF-IDF, MDPI Electronics 2022, 11, 414

• ROC-curves for binary classification (DGA vs. non-DGA): MLP performs best, closely followed by LSTM

Conclusions

- DL models (LSTM, MLP) clearly yielded *better results* than ML models in multi-class classification
- Results for LSTM with standard embedding are *comparable* with results for MLP with TF-IDF features (F1: 0.907-0.891; AU-PR-C: 0.974-0.965; AU-ROC: 0.994-0.995; TPR: 0.957-0.965; FPR: 0.027-0.025)
- Results *differ per DGA type*
 - DGA-H domain names are easy to classify (up to 99.96% F1-score with LSTM)
 - DGA-W domain names are more difficult to classify (best F1-score of 83.61% with SVM)
- *Not straightforward to compare* our results with prior work
 - Different datasets of benign and malicious domain names,
 from different time periods, and different numbers and types of DGA families
 - Mix of DGA families included in the dataset has large impact
- Observed in prior work: many different (and combinations) of features for ML models are used
 - Large variety, unknown which features are more relevant

Effectiveness of features

- Research question: What features from domain names are more effective in ML classifiers for DGA detection?
- Research method
 - Considered 80 recent papers, from which 69 features were derived
 - Datasets: retrieved second-level domain name (AAA.BBB.CCC)
 - Benign from TRANCO: 999,913
 - DGA-generated domain names from DGArchive: 2,922,654 DGA-A; 2,616,128 DGA-H; 336,667 DGA-W
 - Computed feature values, frequency distributions and overlap for benign vs. DGA-A/DGA-H/DGA-W

Ы

• Overview of effectiveness of features

Feature	Arithmetic		Hash		Wordlist	
length	(X)*	69.28%	Х	7.28%	(X)*	46.81%
subdomain length mean			Х	19.86%		
entropy	(X)	72.29%	Х	26.6%		
#consonants	(X)	63.9%				
#digits	(X)	85.91%	Х	0.67%		
unique chars	(X)	72.7%	Х	22.34%		
#words over (2)-3 chars	(X)	39.32%	(X)	31.98%		
#num sequences	(X)	82.6%	Х	0.61%		
longest consonant sequence	(X)	45.52%				
longest digit sequence			Х	3.58%		
longest hex sequence			Х	0.04%		
longest prime sequence			Х	4.03%		
longest vowelless sequence	(X)	42.58%	Х	5.87%		
longest meaningful substring	(X)	39.42%	(X)	29.67%		
digit ratio			Х	1.71%		
letter ratio			Х	1.9%		
hex ratio			Х	0.52%		
prime digit ratio	(X)	86.8%	Х	3.89%		
vowel ratio	(X)	48.54%	Х	15.82%		

consonant ratio	(X)	61.12%	Х	7.89%		
ratio unique chars			Х	17.68%	(X)	59.63%
ratio meaningful chars	Х	33.42%	Х	11.68%		
ratio max seq vowels			Х	28.78%		
ratio max seq consonants			Х	17.65%		
ratio consecutive digits			Х	3.26%		
ratio consecutive consonants	(X)	60.61%	Х	28.79%		
ratio repeated characters			Х	24.53%		
consonant to vowel ratio	(X)	53.26%				
digit to letter ratio			Х	1.46%		
ratio max seq consonants	(X)	57.85%				
to max seq vowels						
ratio LMS	Х	31.76%	Х	12.07%		
ratio hex exclusive sub			(X)	36.09%		
ratio entropy			X	15.7%	(X)	49.18%
meaningful length ratio			Х	1.51%		
top used letters ratio	Х	41.66%	Х	7.93%		
least used letters ratio	(X)	44.13%				
four gram score	(X)	42.64%	X	9.57%		
conversion frequency	(X)	84.4%	Х	2.99%		
gini index	()		(X)	34.73%		
classification error			(X)	41.63%		
expected value	X	38.09%	(X)	5.93%		
contains digits			X	5.95%		
first character digit			(X)	88.15%		
is hexadecimal			(X)	60.94%		
2-gram entropy			X	15.9%	(X)	48.87%
3-gram entropy			X	13.23%	(X)	48,79%
1-gram mean of freqs			X	14.83%	(X)	59.45%
2-gram mean of freqs			(X)	29.87%	()	
3-gram mean of freqs			(X)	92.19%		
1-gram max of freqs			X	22.54%	(X)	57.44%
2-gram max of freqs			(X)	40.47%	(/	01111/0
1-gram median of freqs			X	23 59%		
1-gram 25 th percentile			(X)	69 23%		
1-gram 75 th percentile			X	21.78%	(X)	61.06%
1-gram variance			X	23.11%	(**)	0110070
2-gram variance			X	33.01%		
3_gram variane			(X)	92.21%		
1-gram st. deviation			X	24.32%		
2-gram st. deviation			X	39.84%		
3-gram st. deviation			(X)	92.04%		
3-gram circle median	Benic	m domaine e	tand or	it from ree	t in some e	ases
* (Y): the feature	ie usoful in	some specie	fie enco	e for that	DCA tro	0

A