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Motivation



Birds and Mammals

Let ∆ = ∆birds ∪∆geography with:

∆birds : (birds|penguins), (fly|birds), (¬fly|penguins)
∆geography : (polar|antarctic), (africa|westernCape)

penguins |∼∆ ¬fly
penguins ∧ westernCape |∼∆ ¬fly

penguins |∼∆birds
¬fly

penguins |∼∆ ¬fly
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Birds and Beaks

Let ∆ = ∆birds ∪∆birds′ with:

∆birds : (birds|penguins), (fly|birds), (¬fly|penguins)
∆birds′ : (beaks|birds)

penguins ∧ beaks |∼∆ ¬fly
penguins |∼∆ ¬fly

penguins |∼∆birds
¬fly

penguins |∼∆ ¬fly
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Preliminaries



Background on Propositional Logic and Conditionals

Propositional Logic
L(Σ) constructed on the basis of Σ and ∧, ∨, ¬ and →.

Possible worlds ω ∈ Ω(Σ) are often denoted as complete
conjunctions. E.g. pbf .

Mod(φ) consists of the models of φ.

Conditionals
(L|L) = {(B|A) | A,B ∈ L}.

((B|A))(ω) =


1 ω |= A ∧ B
0 ω |= A ∧ ¬B
u ω |= ¬A
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Inductive Inference Operators

Definition ([KIBB20])
An inductive inference operator (from conditional belief bases) is a
mapping C : 2(L|L) 7→ 2L2 (or, more readable: ∆→ |∼∆) that
satisfies:

DI (B|A) ∈ ∆ implies A |∼∆B.

Example (∆ = {(f |b)})
b |∼∆f ,
b |∼∆f ∨ p,
. . .

Two examples of inductive inference operators are system Z and
lexicographic inference.
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Total Preorders [KLM90]

Given a total preorder (in short, TPO) � on possible worlds:

A � B iff ω � ω′ for an ω ∈ min
�

(Mod(A)) and an ω′ ∈ min
�

(Mod(B)).

A |∼�B iff (A ∧ B) ≺ (A ∧ ¬B).

Example
pbf , pbf , pb f ≺ pbf , pbf ≺ . . .

> |∼� ¬p

p |∼� b
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Z-ranking of conditionals [GP96]

A conditional (B|A) is tolerated by a finite set of conditionals ∆ if
there is a possible world ω with:

1. (B|A)(ω) = 1, and
2. (D|C)(ω) 6= 0 for every (D|C) ∈ ∆.

The Z-partitioning (∆0, . . . ,∆n) of ∆ is defined as:

• ∆0 = {δ ∈ ∆ | ∆ tolerates δ};
• ∆1, . . . ,∆n is the Z-partitioning of ∆ \∆0.

Z∆(δ) = i iff δ ∈ ∆i .

Example (∆ = {(f |b), (b|p), (¬f |p)})
∆0 = {(f |b)} (in view of pbf ), and ∆1 = {(b|p), (¬f |p)}.
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System Z [GP96]

• κZ
∆(ω) = max{Z (δ) | δ(ω) = 0, δ ∈ ∆}+ 1, with max ∅ = −1.

• A |∼ Z
∆B iff A |∼ κZ

∆
B.

Example
Recall: ∆0 = {(f |b)} and ∆1 = {(b|p), (¬f |p)}.

ω κZ
∆ ω κZ

∆ ω κZ
∆ ω κZ

∆
pbf 2 pbf 1 pbf 2 pb f 2
pbf 0 pbf 1 pbf 0 pb f 0

pbf , pbf , pb f ≺ pbf , pbf ≺ pbf , pb f , pbf

> |∼ Z
∆¬p.

p ∧ f 6|∼ Z
∆b.
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Lexicographic Inference [Leh95]

• Given ω ∈ Ω and ∆′ ⊆ ∆,
V (ω,∆′) = |({(B|A) ∈ ∆′ | (B|A)(ω) = 0}|.

• The lexicographic vector for ω is:
lex(ω) = (V (ω,∆0), . . . ,V (ω,∆n)).

• Given two vectors (x1, . . . , xn) and (y1, . . . , yn),
(x1, . . . , xn) �lex (y1, . . . , yn) iff there is some j ≤ n s.t.
xk = yk for every k > j and xj ≤ yj .

• ω �lex
∆ ω′ iff lex(ω) �lex lex(ω′).
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Lexicographic Inference [Leh95]

Example (∆ = {(f |b), (b|p), (¬f |p)})

ω lex(ω) ω lex(ω) ω lex(ω) ω lex(ω)
pbf (0,1) pbf (1,0) pbf (0,2) pb f (0,1)
pbf (0,0) pbf (1,0) pbf (0,0) pb f (0,0)

(0, 0) ≺lex (1, 0) ≺lex (0, 1) ≺lex (0, 2).

pbf , pbf , pb f ≺ pbf , pbf ≺ pbf , pb f ≺ pbf

> |∼ lex
∆ ¬p.

p ∧ f |∼ lex
∆ b.
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Syntax Splitting



Splitting Conditional Belief Bases [KIBB20]

We assume a conditional belief base ∆ that can be split into
subbases ∆1,∆2 s.t. ∆i ⊂ (Li |Li ) with Li = L(Σi ) for i = 1, 2 s.t.
Σ1 ∩ Σ2 = ∅ and Σ1 ∪ Σ2 = Σ, writing:

∆ = ∆1 ⋃
Σ1,Σ2

∆2.

Example
{(a|>), (b|>)} = {(a|>)}

⋃
{a},{b}

{(b|>)}

12



Splitting Conditional Belief Bases [KIBB20]

We assume a conditional belief base ∆ that can be split into
subbases ∆1,∆2 s.t. ∆i ⊂ (Li |Li ) with Li = L(Σi ) for i = 1, 2 s.t.
Σ1 ∩ Σ2 = ∅ and Σ1 ∪ Σ2 = Σ, writing:

∆ = ∆1 ⋃
Σ1,Σ2

∆2.

Example
{(a|>), (b|>)} = {(a|>)}

⋃
{a},{b}

{(b|>)}

12



Independence [KIBB20]

Definition (Independence (Ind))
An inductive inference operator C satisfies (Ind) if for any
∆ = ∆1 ⋃

Σ1,Σ2 ∆2 and for any A,B ∈ Li , C ∈ Lj (i , j ∈ {1, 2},
j 6= i),

A |∼∆B iff AC |∼∆B

Example (∆ = {(a|>), (b|>)})

> |∼∆a DI
b |∼∆a Ind
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Relevance

Definition (Relevance (Rel))
An inductive inference operator C satisfies (Rel) if for any
∆ = ∆1 ⋃

Σ1,Σ2 ∆2 and for any A,B ∈ Li (i ∈ {1, 2}),

A |∼∆B iff A |∼∆i B.

Example (∆ = {(a|>), (b|>)})

> |∼∆a DI
> |∼ {(a|>)}a Rel
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Syntax Splitting= Independence + Relevance

Definition (Syntax-Splitting (SynSplit))
An inductive inference operator C satisfies (SynSplit) if it satisfies
(Ind) and (Rel).

15



Proposition

C lex and CZ satisfy Rel.

Proposition

C lex satisfies Ind.

Proposition
CZ does not satisfy Ind.

Example
Let ∆ = {(a|>), (b|>)}. Then:

ab ≺Z
∆ ab, ab, ab

> |∼ Z
∆a ¬b 6|∼ Z

∆a

ab ≺lex
∆ ab, ab ≺lex

∆ ab

> |∼ lex
∆ a ¬b |∼ lex

∆ a
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The Drowning Effect



The Drowning Effect

Tweety-knowledge base together with the fact that birds typically
have beaks:

{(f |b), (b|p), (¬f |p), (e|b)}

Do penguins have beaks: p |∼∆e?

According to system Z, not: κZ
∆(pbf e) = κZ

∆(pbf e)
(since both worlds falsify the rule (f |b) ∈ ∆0).

According to lexicographic inference, they do
(since lex(pbf e) = (0, 1) ≺lex (1, 1) = lex(pbf e)).
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Syntax Splitting and the Drowning Effect

For syntax splitting to be applied, we need full syntactic separation
of the syntax of a knowledge base:

{(f |b), (b|p), (¬f |p), (e|b)}

In the paper, we define an inductive inference relation that satisfies
syntax splitting yet suffers from the drowning effect.

I.e. the drowning effect is independent of syntax splitting.
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Conditionally Splitting a Knowledge
Base



Conditional Splitting: naive attempt

Definition
We say a conditional belief base ∆ can be split into subbases
∆1,∆2 conditional on a sub-alphabet Σ3, if
∆i ⊂ (L(Σi ∪Σ3) | L(Σi ∪Σ3)) for i = 1, 2 s.t. Σ1, Σ2 and Σ3 are
pairwise disjoint and Σ = Σ1 ∪ Σ2 ∪ Σ3, writing:

∆ = ∆1 ⋃
Σ1,Σ2

∆2 | Σ3

Example (∆ = {(x |b), (¬x |a), (c|a ∧ b)})
Then

∆ = {(x |b), (¬x |a)}
⋃

{x},{c}
{(c|a ∧ b)} | {a, b}

(c|a ∧ b) (trivially) tolerates itself, yet ∆ does not tolerate
(c|a ∧ b), i.e. Z∆((c|a ∧ b)) = 1 6= Z∆2((c|a ∧ b)).

19
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(c|a ∧ b), i.e. Z∆((c|a ∧ b)) = 1 6= Z∆2((c|a ∧ b)).
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Safe Conditional Splitting

Definition

A conditional belief base ∆ = ∆1 ⋃
Σ1,Σ2 ∆2 | Σ3 can be safely split

into subbases ∆1,∆2 conditional on a sub-alphabet Σ3, writing:

∆ = ∆1
s⋃

Σ1,Σ2

∆2 | Σ3

if for every ω3 ∈ Ω(Σ3), there is a ωj ∈ Ω(Σj) s.t.
ωjω3 |= ∧

(F |E)∈∆j E → F (for i , j = 1, 2 and i 6= j).

Intuition: any information about Σi ∪Σ3 is compatible with ∆j . In
other words, toleration with respect to ∆j is independent of ∆i .
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Safe Conditional Splitting: Example

∆ = {(f |b), (b|p), (¬f |p)}
s⋃

{p,f },{e}
{(e|b)} | {b}.

since:

• for ω3 = b, bpf |= (b → f ) ∧ (p → b) ∧ (p → ¬f )
• for ω3 = b, bpf |= (b → f ) ∧ (p → b) ∧ (p → ¬f )
• and similarly for {(e|b)}.
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Safe Conditional Splitting and Toleration

Proposition

Let a conditional belief base ∆1 ⋃s
Σ1,Σ2 ∆2 | Σ3 be given. Then for

any i = 1, 2:
∆i tolerates (B|A) ∈ ∆i iff ∆ tolerates (B|A).
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Conditional Independence

Definition
An inductive inference operator C satisfies (CInd) if for any
∆1 ⋃s

Σ1,Σ2 ∆2 | Σ3, and for any A,B ∈ L(Σi ), C ∈ L(Σj) (for
i , j ∈ {1, 2}, j 6= i) and a complete conjunction D ∈ L(Σ3),

AD |∼∆B iff ADC |∼∆B
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Conditional Independence: Example

∆ = {(f |b), (b|p), (¬f |p)}
⋃

{p,f },{e}
{(e|b)} | {b}.

p ∧ b |∼∆¬f iff p ∧ e ∧ b |∼∆¬f

b |∼∆e iff p ∧ b |∼∆e
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Conditional Independence for TPOs

Proposition

An inductive inference operator for TPOs Ctpo : ∆ 7→�∆ on L
satisfies (CInd) iff for any ∆ = ∆1 ⋃s

Σ1,Σ2 ∆2 | Σ3, it holds for all
i , j ∈ {1, 2}, i 6= j , that:

ωi
1ω

j
1ω

3 � ωi
2ω

j
1ω

3 iff ωi
1ω

3 � ωi
2ω

3. (1)
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Conditional Relevance

Definition
An inductive inference operator C satisfies (CRel) if for any
∆ = ∆1 ⋃s

Σ1,Σ2 ∆2 | Σ3, and for any A,B ∈ L(Σi ), C ∈ L(Σj) (for
i , j ∈ {1, 2}, j 6= i) and a complete conjunction D ∈ L(Σ3),

AD |∼∆B iff AD |∼∆i
B
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Conditional Relevance: Example

∆ = {(f |b), (b|p), (¬f |p)}
⋃

{p,f },{e}
{(e|b)} | {b}.

p ∧ b |∼∆¬f iff p ∧ b |∼∆1¬f
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Lexicographic Inference Satisfies Conditional Syntax Splitting

Proposition

C lex satisfies CInd and CRel.

The crucial result is this:

Lemma

Let a conditional belief base ∆1 ⋃s
Σ1,Σ2 ∆2 | Σ3 with its

corresponding Z-partition (∆0, . . . ,∆n) be given. Then for every
0 ≤ i ≤ n:

V (ω,∆i ) = V (ω1ω3,∆1
i ) + V (ω2ω3,∆2

i )− V (ω3,∆1
i )

= V (ω1ω3,∆1
i ) + V (ω2ω3,∆2

i )− V (ω3,∆2
i )
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Conditional Independence and the Drowning Effect

∆ = {(f |b), (b|p), (¬f |p)}⋃
{p,f },{e}{(e|b)} | {b}.

b |∼∆e by DI (2)
b ∧ p |∼∆e by CInd and (2) (3)

For any inductive inference operator that additionally satisfies Cut
we obtain:

p |∼∆b by DI (4)
p |∼∆e by Cut, (3) and (4) (5)
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Conditional Independence and the Drowning Effect: more gen-
eral

• Do exceptional subclasses (e.g. penguins) inherit properties of
a superclass (e.g. birds), even if these properties are unrelated
to the reason for the subclass being exceptional (e.g. having
beaks)?

• Unrelatedness of propositions can formally captured by safe
splitting into subbases:

Given a belief base ∆, a proposition A is unrelated to a
proposition C iff ∆ can be safely split into subbases ∆1,∆2

conditional on a sub-alphabet Σ3, i.e. ∆ = ∆1 ⋃s
Σ1,Σ2 ∆2 |

Σ3, and A ∈ L(Σ2) and C ∈ L(Σ1 ∪ Σ3).

• The drowning effect is nothing else than a violation of (CInd):
if a typical property B of AD-individuals (AD |∼∆B) is
unrelated to an exceptional subclass C of AD, then we
can also derive that if something is ADC is typically B
(ADC |∼∆B).
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Future Work

∨ Lehmann’s “desirable properties” [Leh95] are also
consequences of conditional independence.

? Are there other TPO-based inference operators that satisfy
conditional syntax splitting?

? Do c-representations and system W satisfy conditional syntax
splitting?

? Can we give an axiomatic characterization of lexicographic
inference?

? How to discover conditional independencies?
? Implementations.
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Conclusion

• Lexicographic inference satisfies syntax splitting as defined in
[KIBB20].

• Syntax splitting is independent from the drowning effect.
• Avoidance of the drowning effect is implied by conditional

syntax splitting (not previously formulated in the literature).
• Lexicographic inference satisfies conditional syntax splitting.

• Jesse Heyninck, Gabriele Kern-Isberner and Tommie Meyer.
“Lexicographic entailment, syntax splitting and the drowning
problem”, accepted for IJCAI 2022.

• Jesse Heyninck, Gabriele Kern-Isberner and Tommie Meyer.
“Conditional Syntax Splitting, Lexicographic Entailment and
the Drowning Effect,”, accepted for NMR 2022.

32



Conclusion

• Lexicographic inference satisfies syntax splitting as defined in
[KIBB20].

• Syntax splitting is independent from the drowning effect.
• Avoidance of the drowning effect is implied by conditional

syntax splitting (not previously formulated in the literature).
• Lexicographic inference satisfies conditional syntax splitting.

• Jesse Heyninck, Gabriele Kern-Isberner and Tommie Meyer.
“Lexicographic entailment, syntax splitting and the drowning
problem”, accepted for IJCAI 2022.

• Jesse Heyninck, Gabriele Kern-Isberner and Tommie Meyer.
“Conditional Syntax Splitting, Lexicographic Entailment and
the Drowning Effect,”, accepted for NMR 2022.

32



Bibliography i

Moisés Goldszmidt and Judea Pearl.
Qualitative probabilities for default reasoning, belief
revision, and causal modeling.
AI, 84(1-2):57–112, 1996.

Gabriele Kern-Isberner, Christoph Beierle, and Gerhard
Brewka.
Syntax splitting= relevance+ independence: New
postulates for nonmonotonic reasoning from conditional
belief bases.
In Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning, volume 17, pages
560–571, 2020.

33



Bibliography ii

Sarit Kraus, Daniel Lehmann, and Menachem Magidor.
Nonmonotonic reasoning, preferential models and
cumulative logics.
Artificial intelligence, 44(1-2):167–207, 1990.

Daniel Lehmann.
Another perspective on default reasoning.
Annals of mathematics and artificial intelligence, 15(1):61–82,
1995.

34


	Motivation
	Preliminaries
	Syntax Splitting
	The Drowning Effect
	Conditionally Splitting a Knowledge Base
	Conditional Syntax Splitting

