Overview of my research projects

Daniel Stanley Tan

I come from the Philippines Lecturer at De La Salle University (~3 years)

I come from the Philippines 🏂

Lecturer at De La Salle University (~3 years)

Studied and worked at Taiwan

PhD at National Taiwan University of Science and Technology

I come from the Philippines 🏂

Lecturer at De La Salle University (~3 years)

Studied and worked at Taiwan

PhD at National Taiwan University of Science and Technology

Research Intern at Inventec

I come from the Philippines ≥

Lecturer at De La Salle University (~3 years)

Studied and worked at Taiwan

PhD at National Taiwan University of Science and Technology

Research Intern at Inventec

Postdoctoral researcher at Academia Sinica

I come from the Philippines 🏂

Lecturer at De La Salle University (~3 years)

Studied and worked at Taiwan

PhD at National Taiwan University of Science and Technology

Research Intern at Inventec

Postdoctoral researcher at Academia Sinica

Now in the Netherlands Joining the faculty of Open Universiteit!

- My research interests:
 - Computer Vision
 - (Deep) Machine Learning
 - Creative AI

Anomaly Detection

Defect Detection

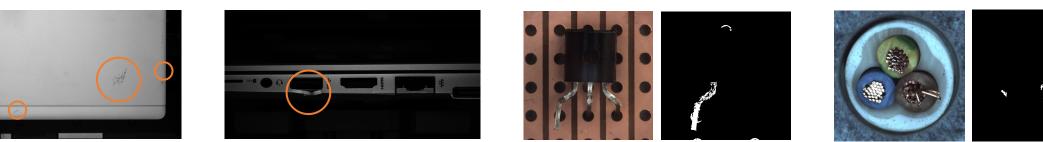
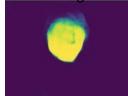
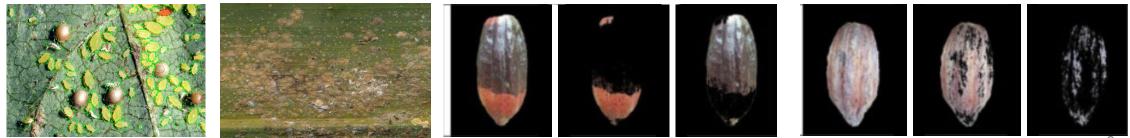


Image Forensics

Fake Regions



Crop Pest and Disease Detection



Creative Al

(Controllable) Style Transfer

Image-to-image Translation

	Available Data: Smiling and Not Smiling			Available Data: Male and Female					
	Initial I	Domains	Increment	Preserved	Domains	Increment	Pres	ains	
Input Image	Black	Blonde	Expression	Black	Blonde	Gender	Expression	Black	Blonde
	Ø	0		6	6	Ø		Ø	6

			Available Data: Positive and Negative Examples of Pink			Available Data: Positive and Negative Examples of Purple			
	Initial Domains		Increment	Preserved Domains		Increment	Preserved Domains		
Input Image	White	Yellow	Pink	White	Yellow	Purple	Pink	White	Yellow

Defect Detection

Defect Detection

Task of detecting faults or imperfections in a product

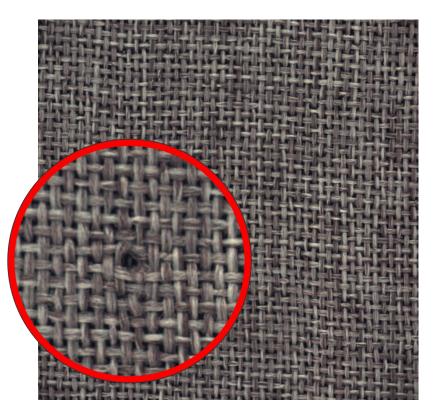
Defective

Challenge in detecting defects

Differences can be subtle!

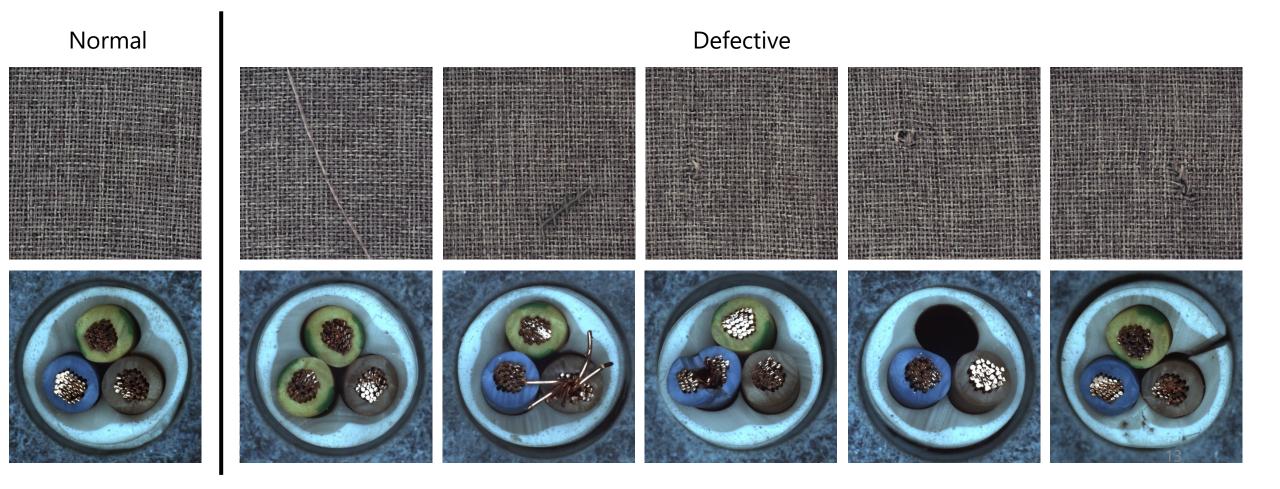
Normal

Defective

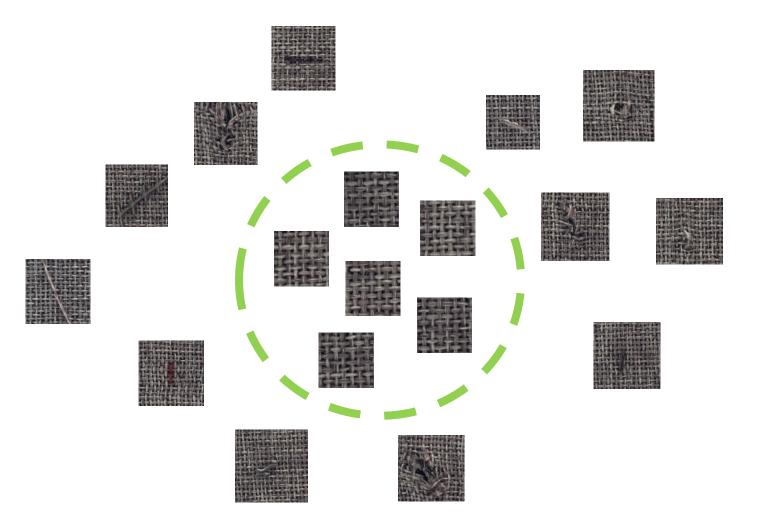


Challenge in detecting defects

Defects can be anything and do not necessarily look alike! Can't collect a dataset that covers all possible defect types, making it difficult to employ standard classifiers



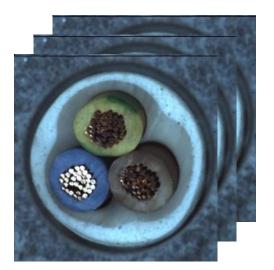
Learn the distribution of normal data



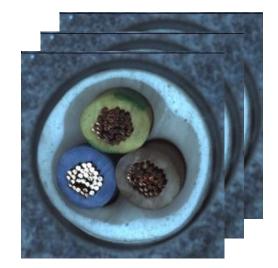
Everything far from normal are considered defects

Auto-encoder based defect detection

Training Time



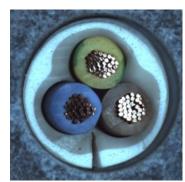
Only Normal Images



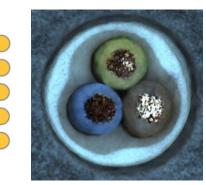
Reconstruction

Auto-encoder based defect detection

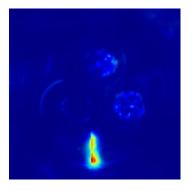
Test Time



Input Image



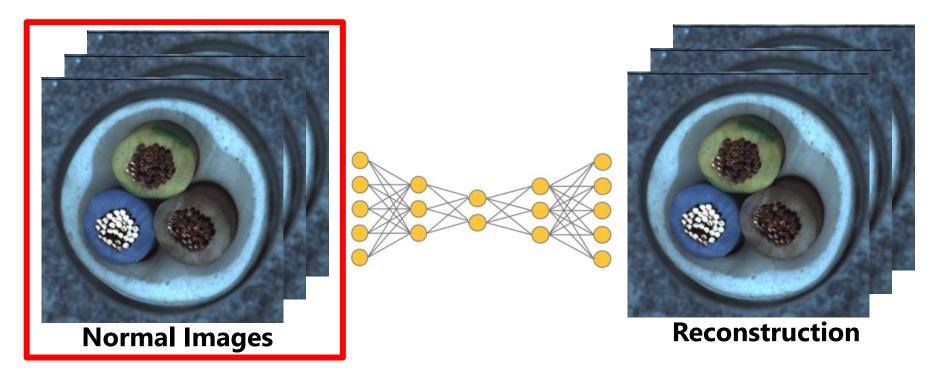
Reconstruction



Difference Map

Limitations

Assumes training data only contains normal images.

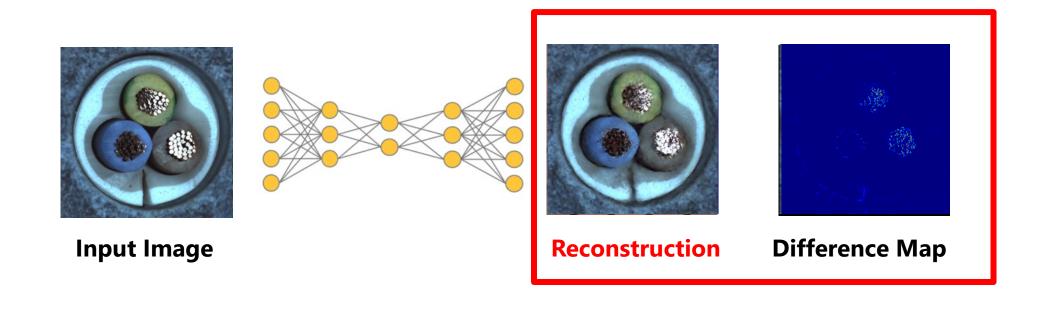


Making it difficult for fast changing product designs such as gadgets and laptop models since it adds delays and annotation overhead

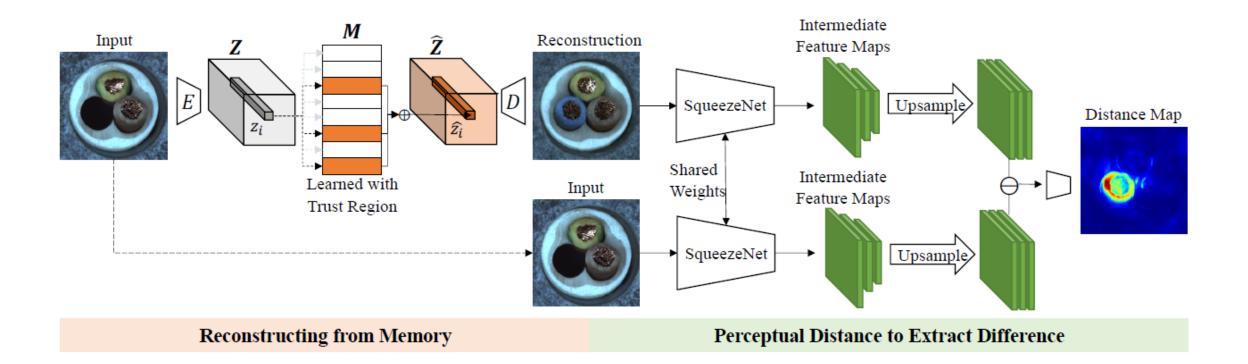
17

Limitations

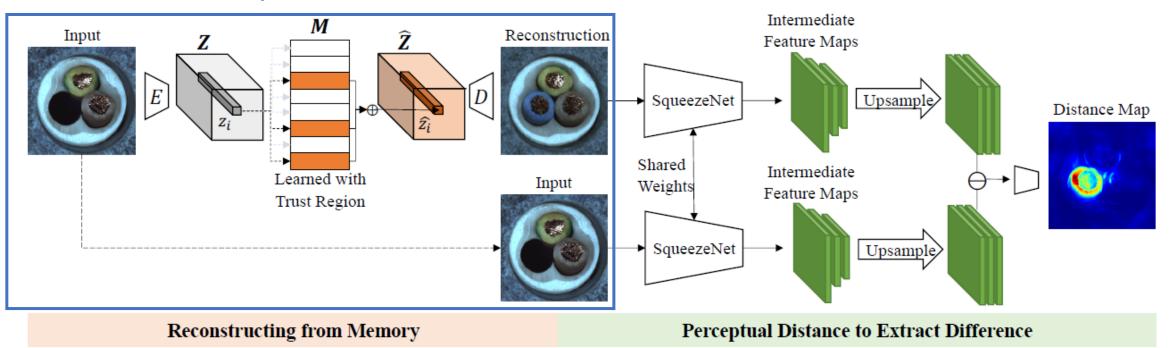
Can be overly general and unintentionally reconstruct defects Further aggravated when noise (defective images) leak into the training data



• Allows training on noisy data, significantly reducing the burden of annotation

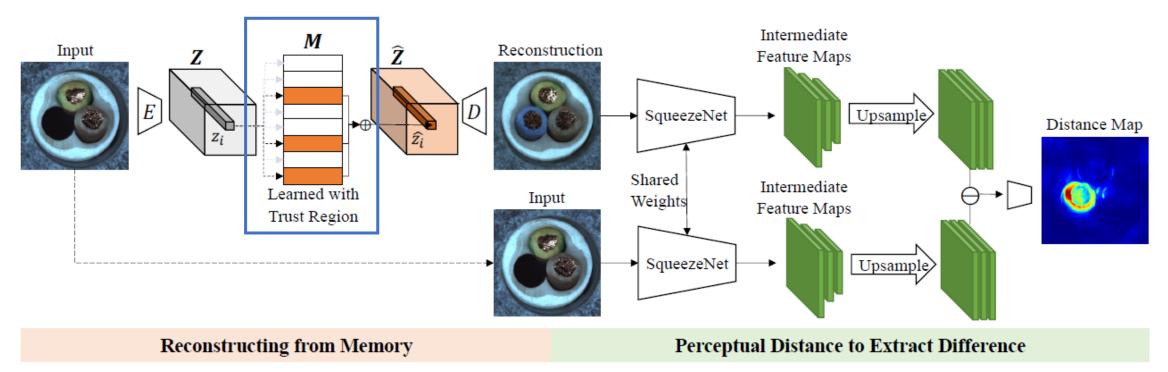


Memory Auto-Encoder



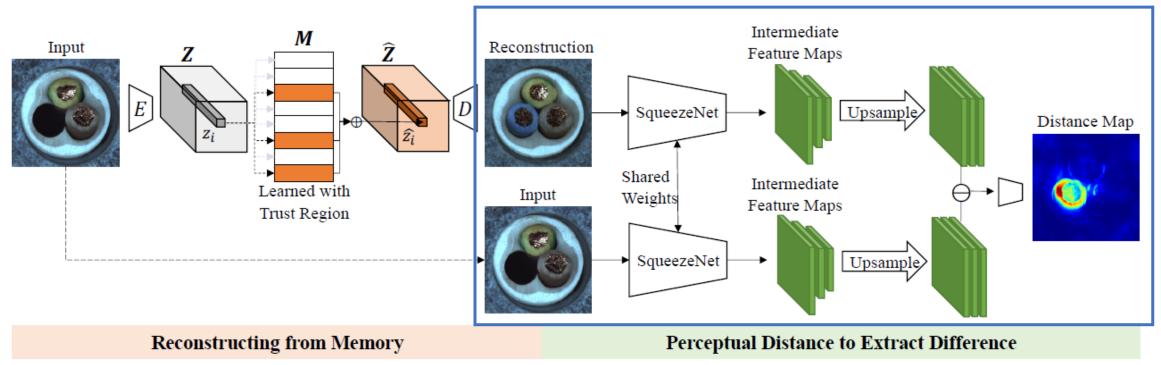
Reconstructs a normal version of the input.

Trust Region Memory Updates

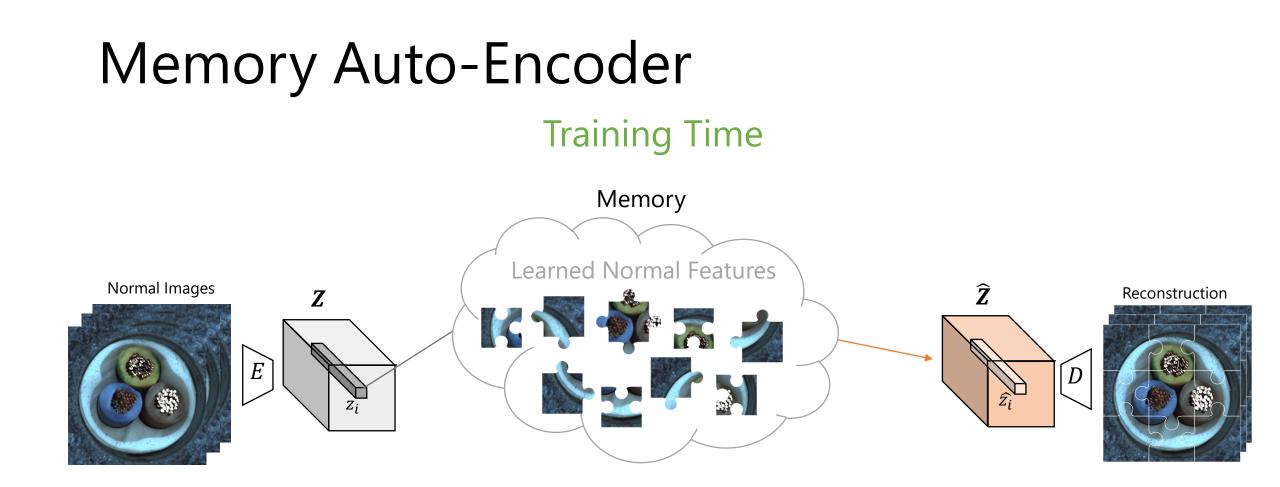


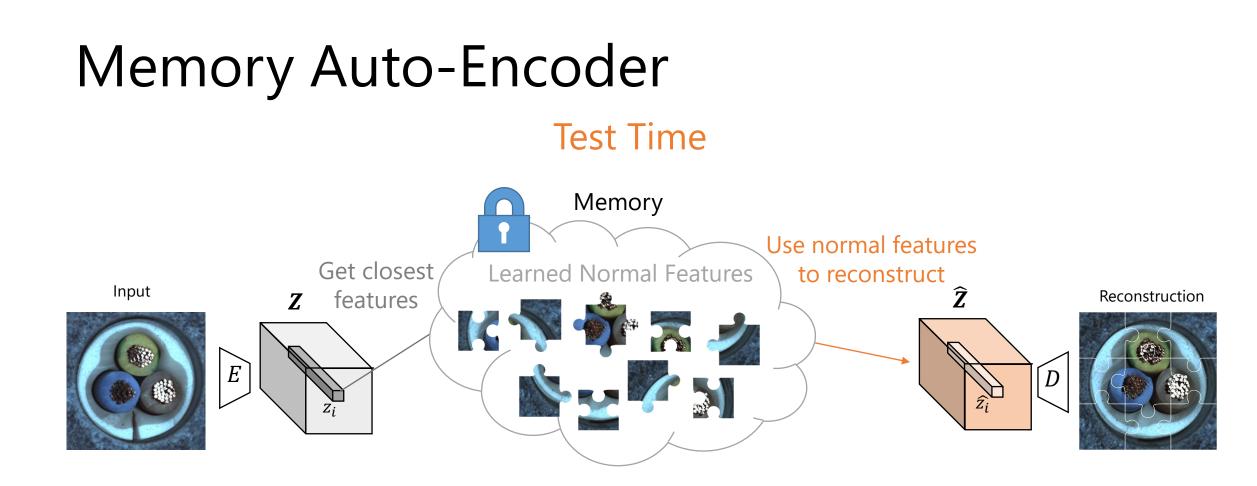
Prevents memory from being contaminated by defects.

Spatial Perceptual Distance



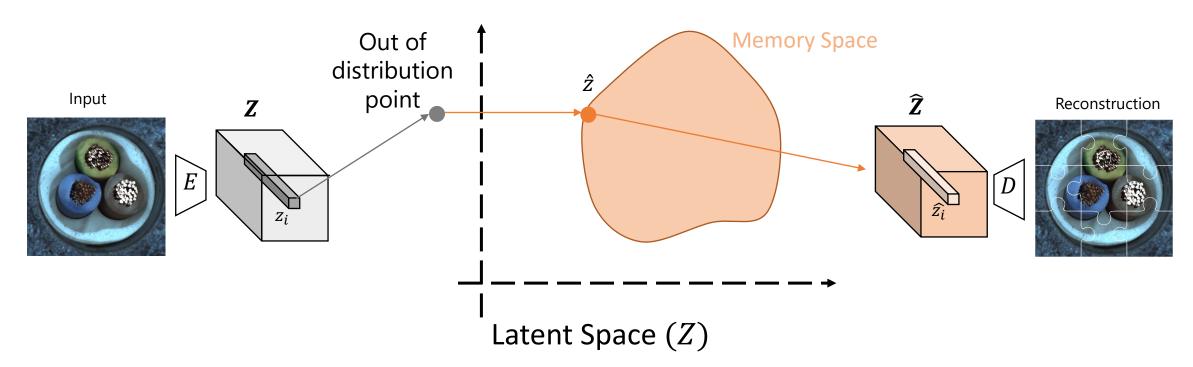
Computes distance to normal.





Memory Auto-Encoder

With Memory

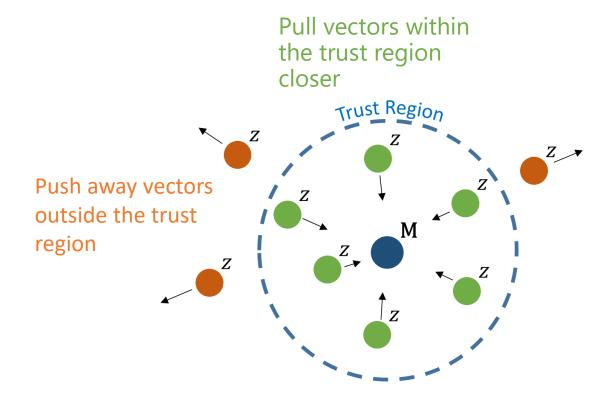


Since we are projecting the point to the memory space, we will always construct normal images

Memory Auto-Encoder

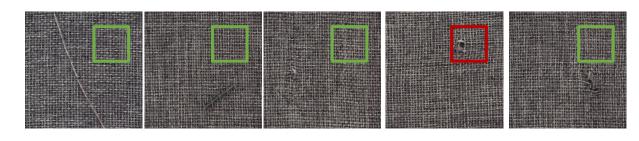
Problem: Given noisy data, how do we ensure the memory space is clean (i.e. defect-free)?

Trust Region Memory Updates



Two key assumptions:

• Defects do not always appear in the same location.

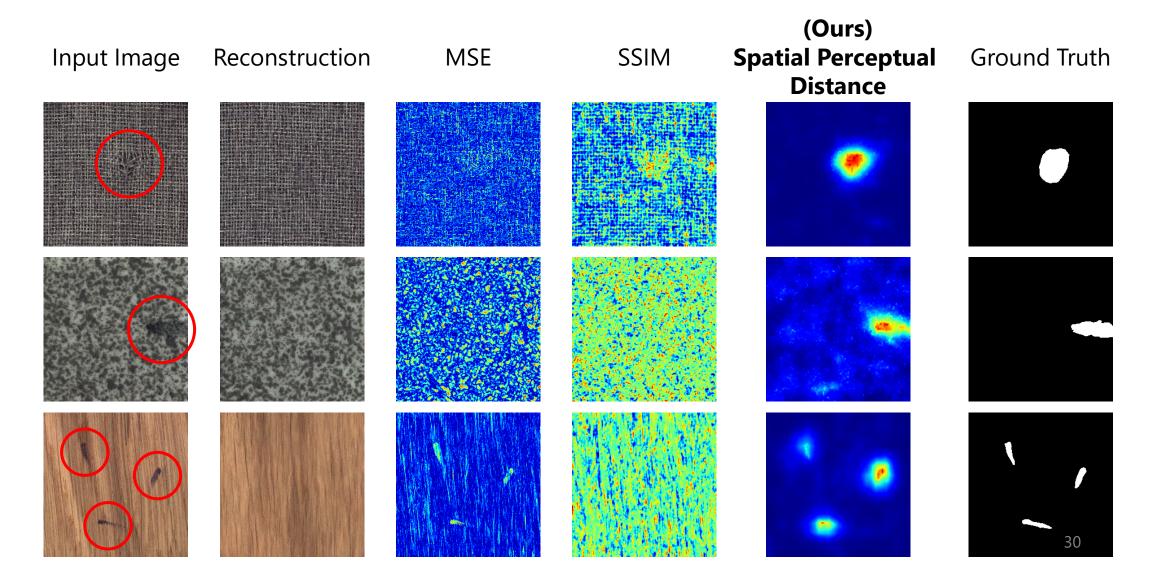


• Normal data have regularity in appearance

Now we have a noise resilient memory auto-encoder.

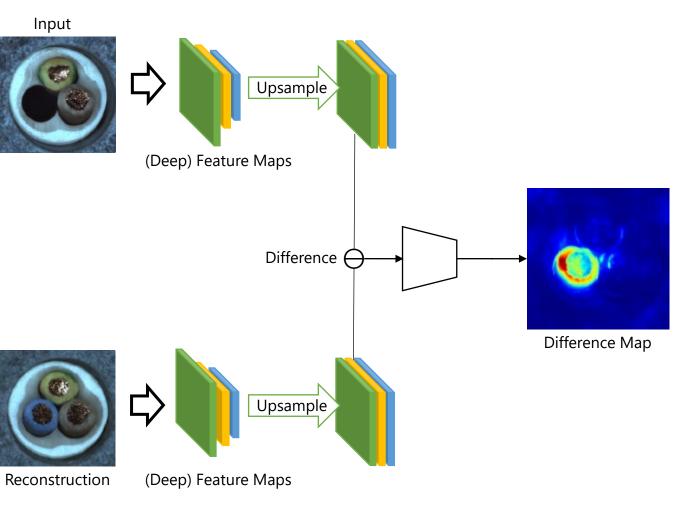
We need to compute the input's distance to the reconstructed normal

Shallow distances are not enough



Spatial Perceptual Distance

- Captures texture and high level features extracted by the network in computing distances
- Contains invariances learned by the network



Zhang et a^{§,1}CVPR '18

Classification Per (Image-level	formance AUC)	Segmentation Performance (Pixel-level AUC)			
Method	mean AUC	Method	mean AUC		
GeoTrans [1]	67.23	AE-L2 [6]	80.40		
GANomaly [2]	76.15	AE-SSIM [6]	81.83		
ARNet [3]	83.93	MemAE [5]	85.74		
		Towards Visually Explaining [7]	86.07		
f-Ano-GAN [4]	65.85	CNN Feature Dictionary [8]	78.07		
MemAE [5]	81.85	AnoGAN [9]	74.27		
TrustMAE-noise free	90.78	AE-SSIM Grad [10]	86.38		
		γ -VAE Grad [10]	88.77		
		AE-L2 Grad [10]	88.77		
		VAE Grad [10]	89.29		
		TrustMAE-noise free	93.94		

Visual Results Input Reconstruction Error Map Ground Truth 1 111111

[1] [NeurIPS '18] Golan et al. Deep anomaly detection using geometric transformations.

[2] [ACCV'18] Akcay et al. Ganomaly: Semi-supervised anomaly detection via adversarial training.

[3] [arxiv'20] Huang et al. Inverse-transform autoencoder for anomaly detection

[4] [Medical image analysis '19] Schlegl et al. f-anogan: Fast unsupervised anomaly detection with generative adversarial networks

[5] [ICCV'19] Gong et al. Memorizing Normality to detect anomaly.

[6] [VISIGRAPP '19] Bergmann et al. Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders

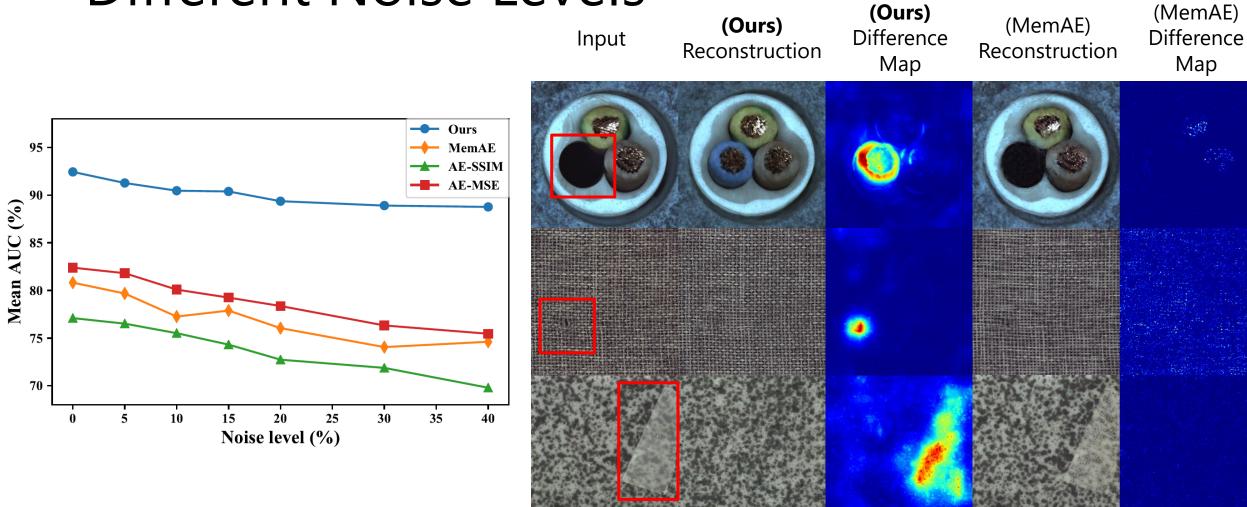
[7] [CVPR'20] Liu et al. Towards visually explaining variational autoencoders.

[8] [Sensors '19] Napoletano et al. Anomaly detection in nanofibrous materials by cnn-based self-similarity.

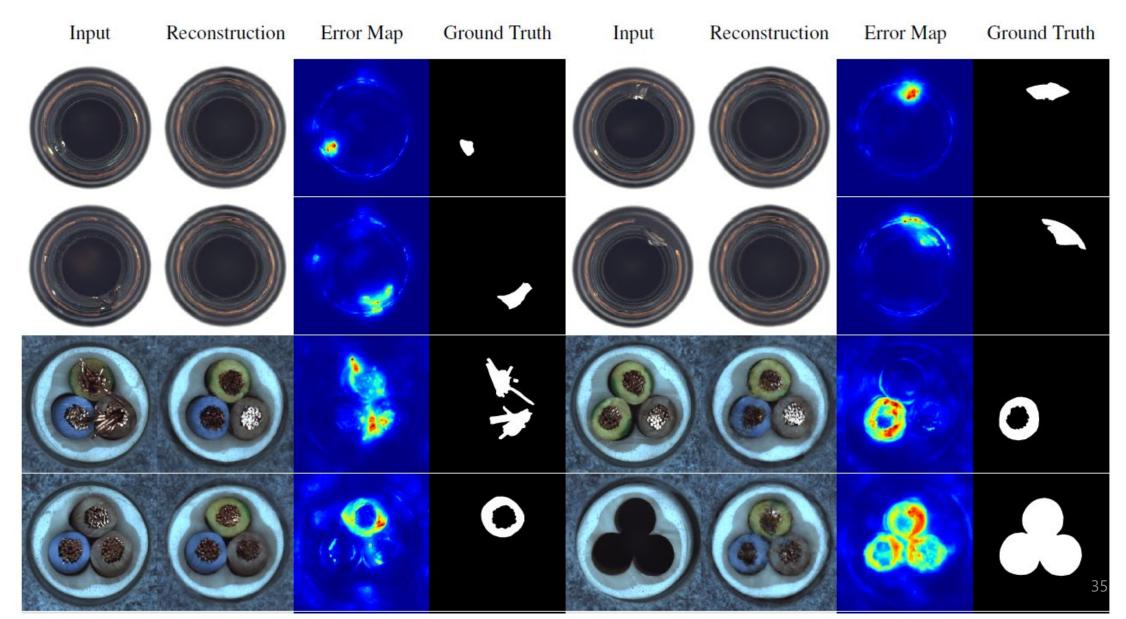
[9] [CIRP '19] Staar et al. Anomaly detection with convolutional neural networks for industrial surface inspection.

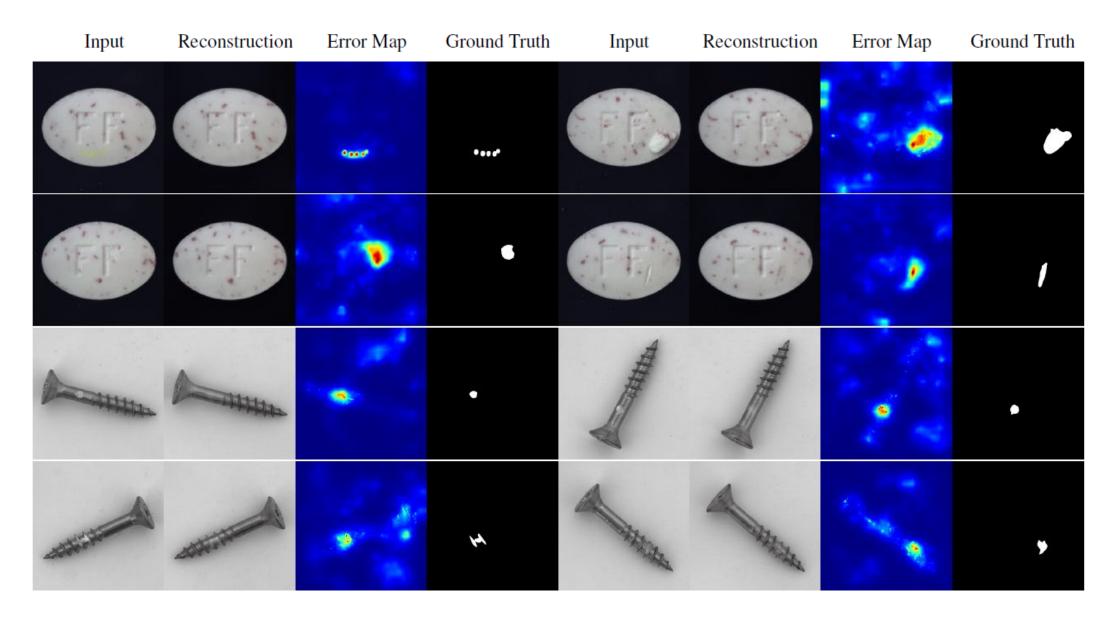
[10] [ICLR '20] Dehaene et al. Iterative energy-based projection on a normal data manifold for anomaly localization

Different Noise Levels



Visual Results





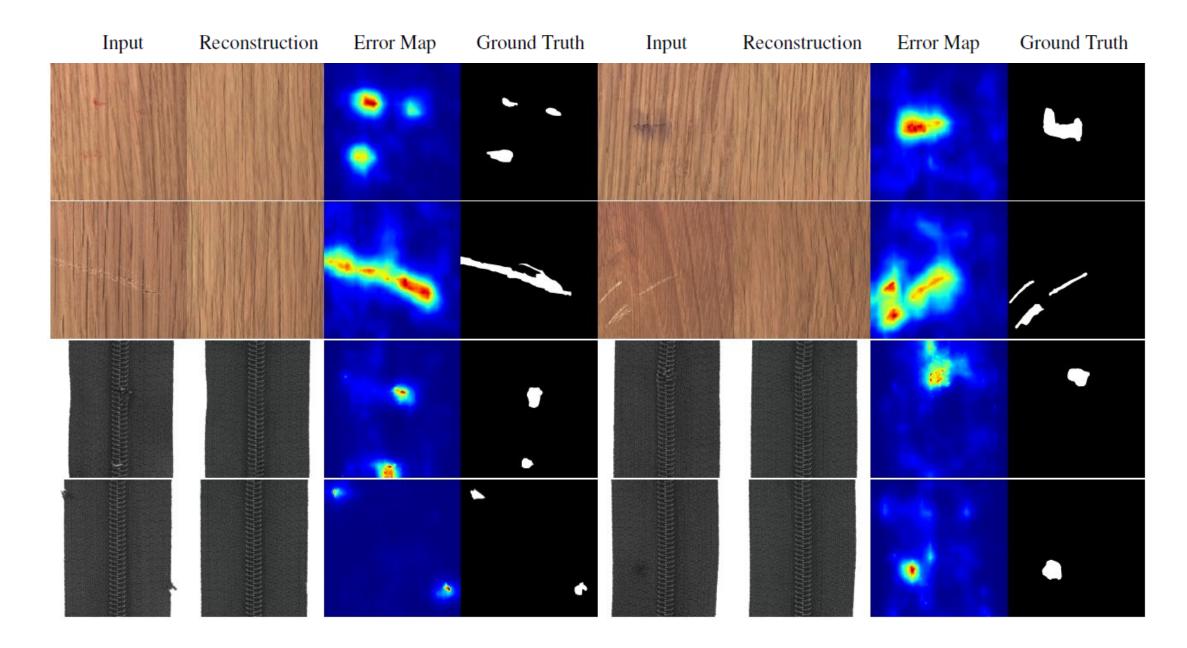


Image Forensics

Pristine

Fake

Fake

Challenges

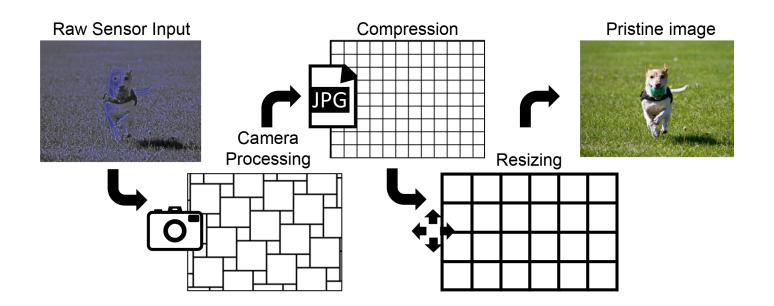
Not easily perceptible

 A good fake image hides its manipulations cleverly with the semantic contents of the image

Hard to extract and isolate weak signals

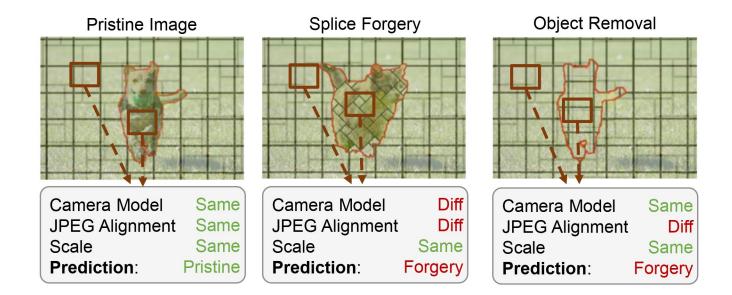
Main Idea

An image undergoes several stages of processing, each of which imprints a spatial signature onto the image.



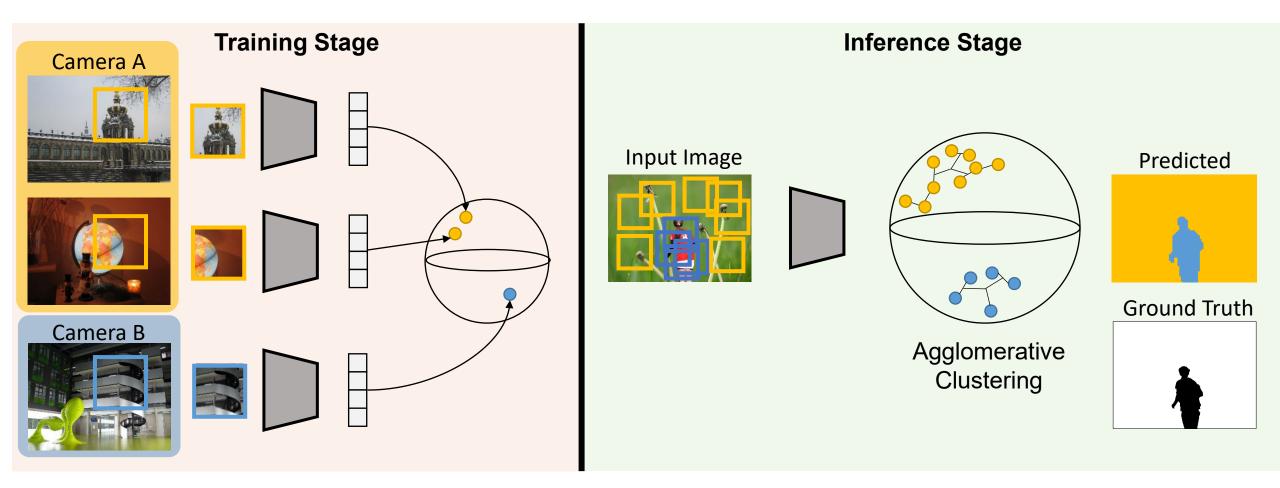
Main Idea

Under pristine conditions, these signatures are regular, but for forgeries these are broken.



Our model leverages on statistical differences as well as spatial inconsistencies of these signatures in detecting forgeries

Contrastive Learning



Contrastive Learning

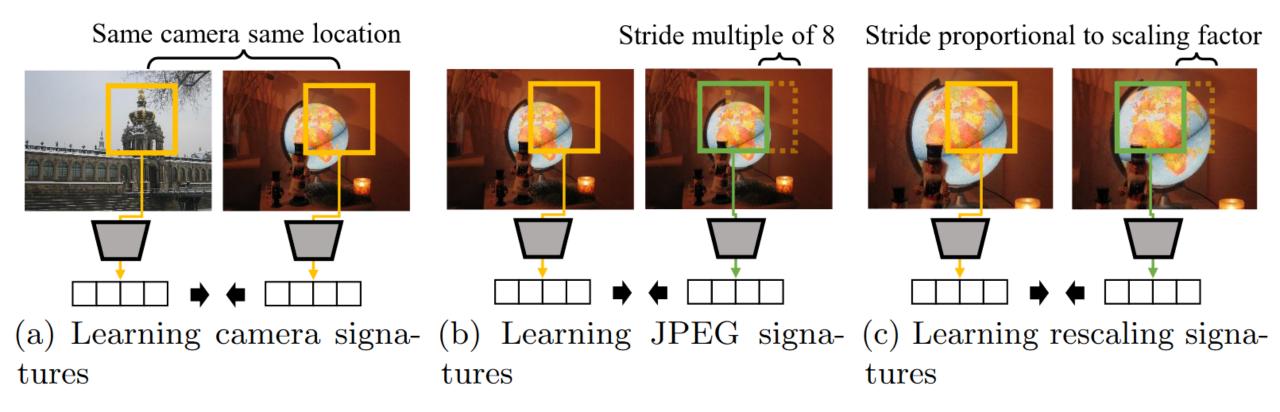
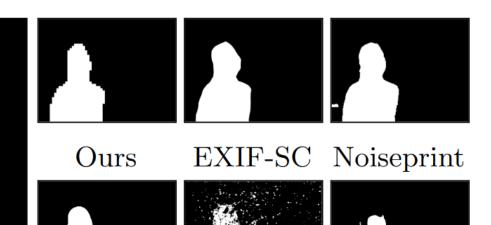


Table 1: Comparison of forgery localization performance (MCC). Numbers in parenthesis use an image-specific threshold tuned on the ground truth labels; other numbers do not. HLED [3] and C-RCNN [50] trained on a subset of NC16, while CAT-NET [28] trained on IMD2020. We grayed those numbers out and excluded them in computing the average. We highlighted the best scores in bold and italicized the second best. For our method, the standard deviation is measured over 5 runs.

	Avg.	DSO-1	NC16	NC17-dev	RT	MFC18	IMD2020
ManTraNet [48]	19.8(25.0)	41.8 (46.7)	11.6(16.3)	14.8 (19.7)	19.1(24.2)	10.2 (14.8)	21.6(28.6)
GSRNet [53]	24.8(34.1)	28.7(46.2)	31.1(40.9)	19.3(22.7)	28.9(36.8)	14.8(20.8)	25.9(37.1)
EXIF-SC [23]	24.9(36.1)	41.0(52.9)	25.7(35.5)	29.2 (41.7)	17.0(27.8)	18.2(26.1)	18.4(32.7)
InfoPrint [20]	-	55.0(69.0)	28.0(40.0)	25.0(38.0)	-	-	_
Noiseprint [13]	31.8(42.7)	70.1 (75.8)	28.1(38.7)	24.6(36.1)	21.8(34.5)	23.9(33.4)	22.2(37.4)
ForensicGraph [36]	33.8(41.1)	75.1 (80.2)	27.2(35.2)	28.6(36.9)	31.0 (38.0)	16.1(23.2)	24.6(33.4)
HLED [3]	20.8(26.5)	18.2(22.5)	40.4(45.4)	14.1(20.3)	16.7(22.6)	14.3(20.1)	21.4(28.1)
C-RCNN [50]	18.4(22.9)	21.2(26.5)	93.1(94.3)	23.8(26.3)	14.9(18.5)	14.4(18.0)	17.7(25.1)
CAT-Net [28]	38.4 (45.4)	75.3 (80.5)	44.4 (56.5)	21.6(26.3)	20.4(23.9)	30.6 (39.9)	88.8 (92.7)
CAT-Net (no qtable)	34.2(39.4)	75.3 (80.5)	30.1(36.9)	21.4(25.6)	20.4(23.9)	23.9(30.4)	88.8 (92.7)
Ours	39.4 (48.1)	85.7 (90.7)	35.4 (41.7)	28.9 (40.9)	34.7 (41.5)	24.3 (35.5)	27.7 (37.5)
	$\pm 0.92 \ (\pm 0.68)$	$\pm 1.51 \ (\pm 0.73)$	$\pm 1.25 \ (\pm 0.97)$	± 0.76 (± 0.84)	$\pm 0.72 \ (\pm 0.54)$	$\pm 0.69 \ (\pm 0.56)$	$\pm 0.58 \ (\pm 0.43)$

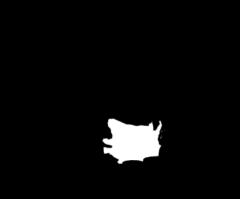


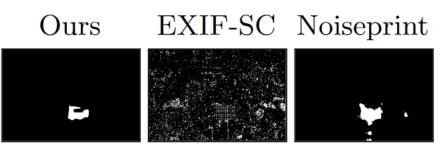
Input - top 90th percentile

Ground Truth

ForensicG. MantraNet CAT-NET

Input - top 90th percentile





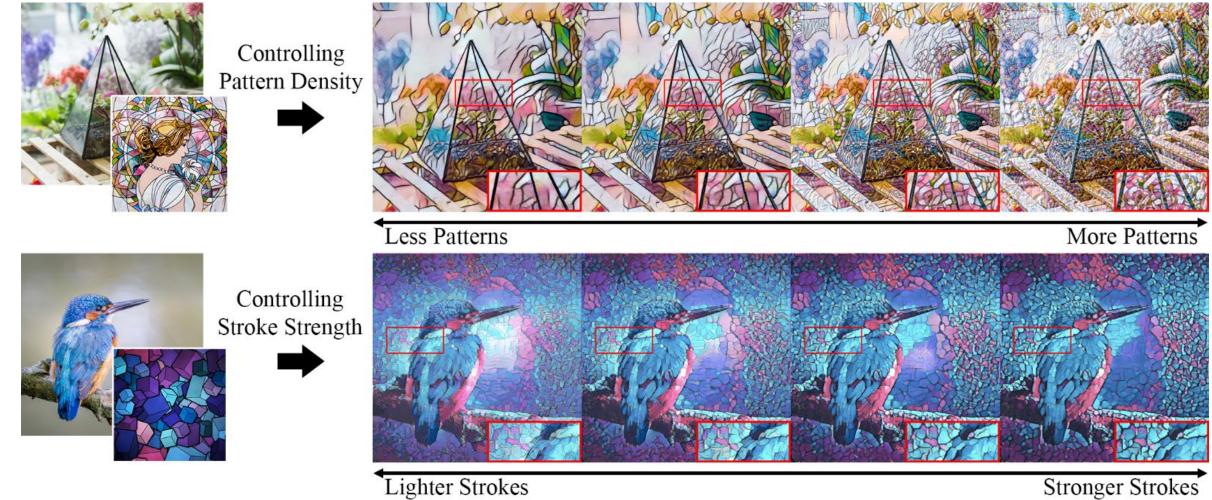
ForensicG. MantraNet CAT-NET

(Controllable) Style Transfer

Neural Style Transfer

Can apply new styles to other images **BUT does not allow for any artistic control**

Density and Stroke Control

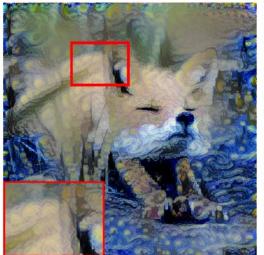


Lighter Strokes

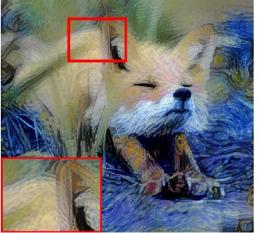
One way to control the size and density of patterns is to change the style resolution / receptive field

Surprisingly not as straightforward!

Ghosting effect!







Style Resolution 512×512

(a) Gram Matrix [5]

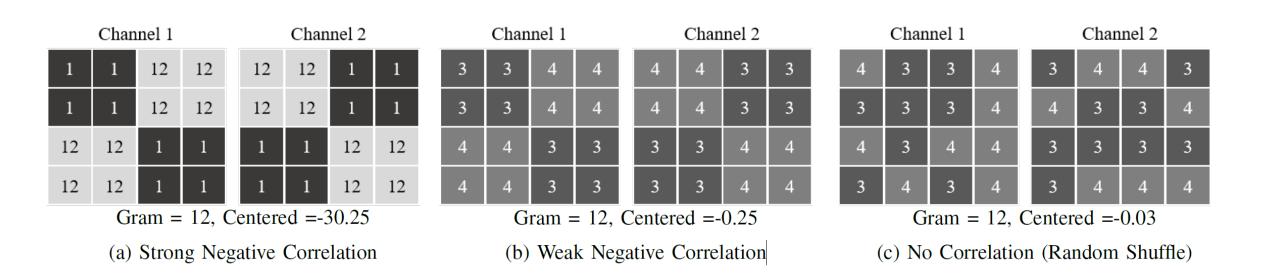
 XX^T

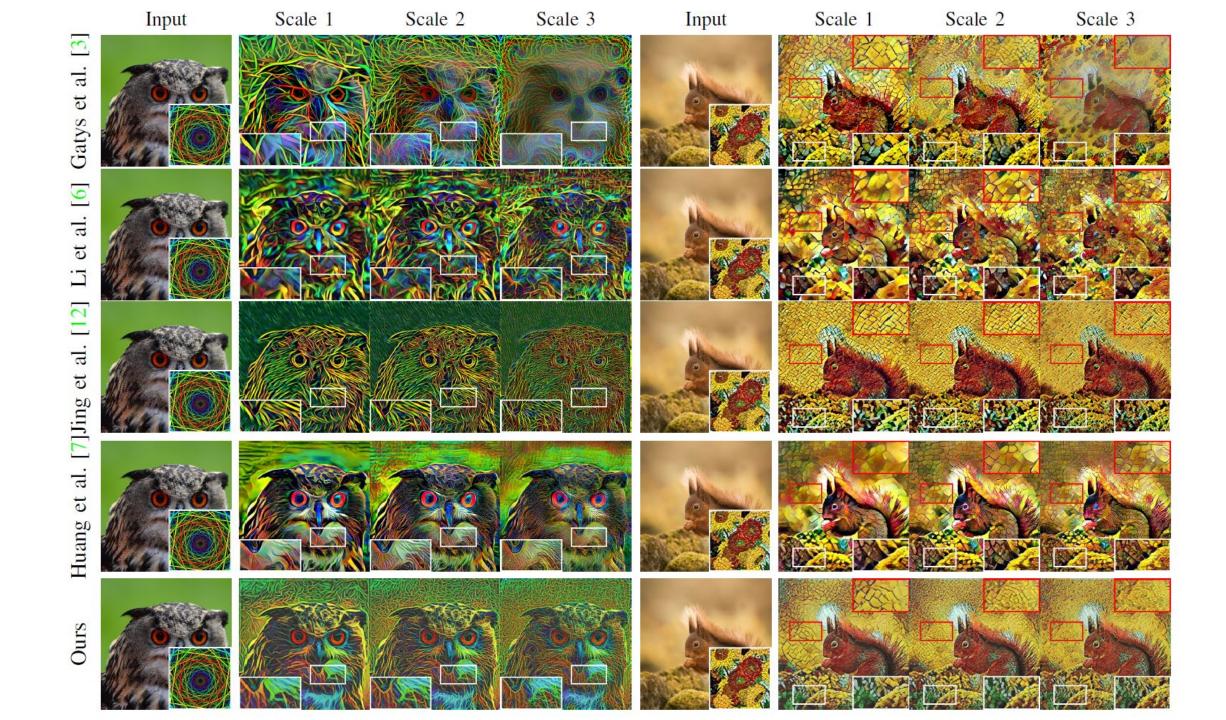
Style Resolution 256×256

Style Resolution 512×512

(b) Ours - Centered

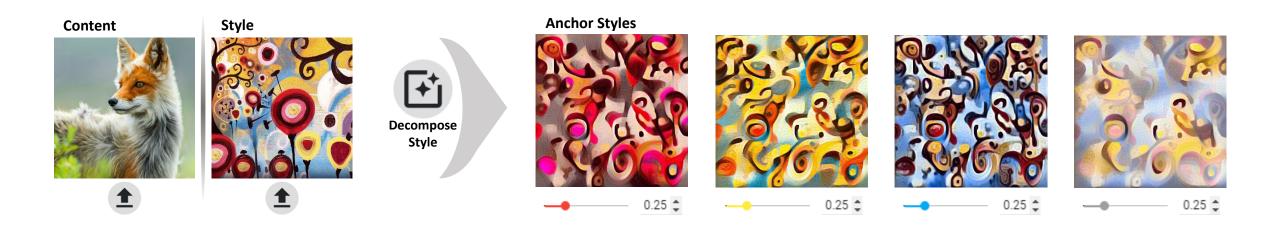
(covariance) $(X - \mu_X)(X - \mu_X)^T$

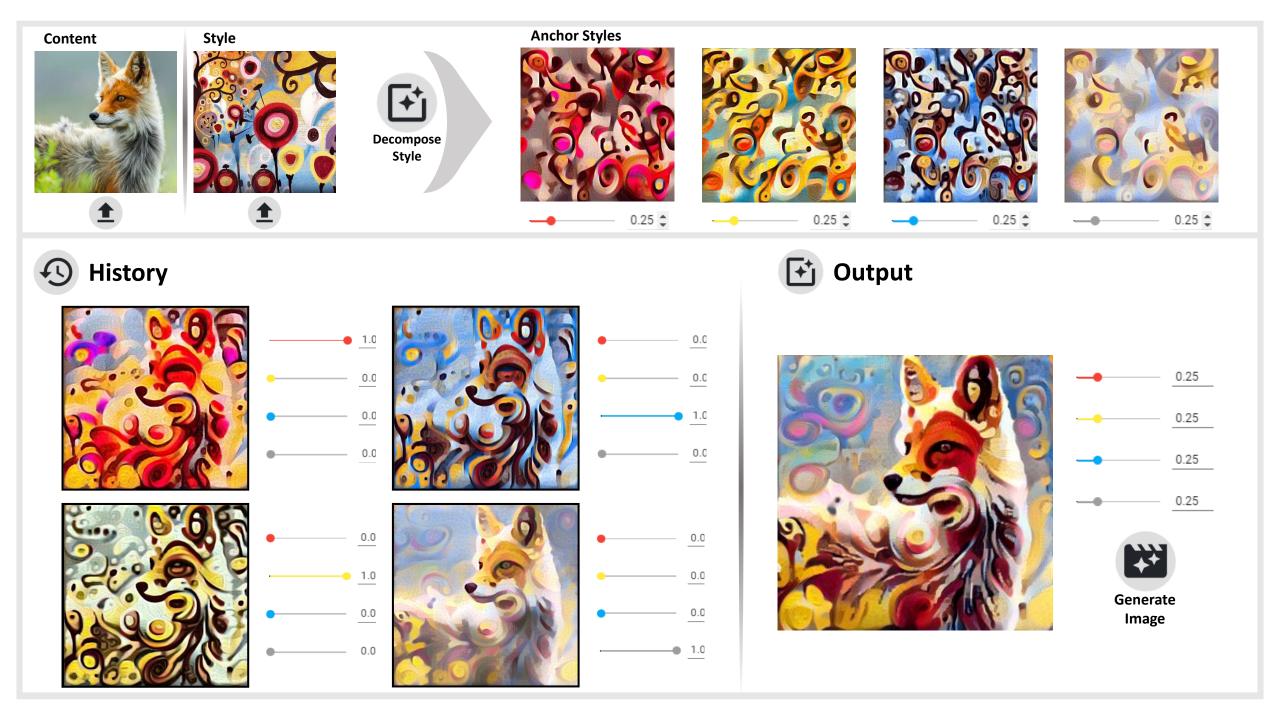




Neural Style Palette

Can we decompose a style image into "sub-styles"?





Work in Progress: Detecting and counting Crop Pests

Goals:

- Crop pest and disease monitoring and surveillance (Early warning system)
- Assess efficacy of treatment plans (currently done with visual inspection)
- More precise treatment plans

Let me know if you want to collaborate! Thank you!

Daniel Stanley Tan