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A little bit about me

My research interests:
« Computer Vision
* (Deep) Machine Learning
* Creative Al



Anomaly Detection

Defect Detection
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(Controllable) Style Transfer

Controlling

Controlling
Stroke Strength

Pattern Density |

Lighter Sirokes

Image-to-image Translation

Input Image

Available Data:
Smiling and Not Smiling

Stronger Sirokes

Available Data:
Male and Female

Initial Domains
Blonde

Black

Preserved Domains
Black

Increment
Expression Blonde

Increment
Gender

Preserved Domains

Expression  Black Blonde

Input Image

asodmosagq)

sjudyno ajsuen
s A

Anchor Styles

Available Data:
Positive and Negative Examples of Pink

Available Data:
Positive and Negative Examples of Purple

Initial Domains

White Yellow
" i

Preserved Domains
White

Increment

Yellow

Preserved Domains
Pink White

Increment
Purple

ke




Defect Detection



Defect Detection

Task of detecting faults or imperfections in a product

Defective
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Challenge in detecting defects

Differences can be subtle!

Normal Defective
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Challenge in detecting defects

Defects can be anything and do not necessarily look alike!

Can't collect a dataset that covers all possible defect types, making it
difficult to employ standard classifiers

Normal Defective




Learn the distribution of normal data

Everything far from normal are considered defects
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Auto-encoder based defect detection

Training Time

Only Normal Images Reconstruction
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Auto-encoder based defect detection

Input Image Reconstruction Difference Map
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Limitations

Assumes training data only contains normal images.
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Normal Images Reconstruction

Making it difficult for fast changing product designs such as gadgets and laptop
models since it adds delays and annotation overhead



Limitations

Can be overly general and unintentionally reconstruct defects
Further aggravated when noise (defective images) leak into the training data

Input Image Reconstruction Difference Map
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TrustMAE

* Allows training on noisy data, significantly reducing the burden of annotation

. Intermediate

7 Reconstruction Feature Maps
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Trust Region

19



TrustMAE

Memory Auto-Encoder

i . Intermediate

7 Reconstruction Feature Maps
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Reconstructing from Memory Perceptual Distance to Extract Difference

Reconstructs a normal version of the input.
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TrustMAE

Trust Region Memory Updates

M Intermediate
Input 7 Reconstruction Feature Maps
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Reconstructing from Memory Perceptual Distance to Extract Difference

Prevents memory from being contaminated by defects.
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TrustMAE

Spatial Perceptual Distance

Intermediate
Feature Maps

. - . Distance Map

Intermediate . (
Feature Maps
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Reconstructing from Memory Perceptual Distance to Extract Difference

Computes distance to normal.
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Memory Auto-Encoder
Training Time

Memory

Normal Images

2 Reconstruction
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*First assume that training contains only normal data. We will remove this constraint later on
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Memory Auto-Encoder

Test Time

Use normal features

to reconstruct
Z Reconstruction

Get closest
Z features

B\
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Memory Auto-Encoder

With Memory

Out of
distribution
oint

N>

Reconstruction

N)

Latent Space (£)

Since we are projecting the point to the memory space, we will always construct normal images
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Memory Auto-Encoder

Problem: Given noisy data, how do we ensure
the memory space is clean (i.e. defect-free)?
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Trust Region Memory Updates

Pull vectors within

the trust region Two key assumptions:
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Now we have a noise resilient memory auto-encoder.

We need to compute the input’s distance to the
reconstructed normal

29/78



Shallow distances are not enough

(Ours)
Input Image  Reconstruction MSE SSIM Spatial Perceptual Ground Truth
Distance
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Memory Auto-Encoder Sparse Addressing Trust Region Updates Spatial Perceptual Distance

Spatial Perceptual Distance

Input

@8-\

(Deep) Feature Maps

* Captures texture and high
level features extracted by
the network in computing
distances

Difference

 Contains invariances learned

by th en EtWO I’k Difference Map
I:> iﬁ
Reconstruction (Deep) Feature Maps
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Classlificatior|1 Pelrf&)trJrgance Seg mer)tation Performance Visual Results
( mage_ EVE ) (P|Xe|‘|eve| AUC) Input Reconstruction  Error Map Ground Truth
Method mean AUC | Method mean AUC
GeoTrans [1] 67.23 AE-L2 [6] 80.40
GANomaly [2] 76.15 ;E‘Tsligﬂ 5[6] 2;?2
ARNet [3] 83.93 emAE [5] - '
£-Ano-GAN [4] 65.95 Towards Visually Explaining [7] 86.07
“AeT 260 CNN Feature Dictionary [8] 78.07
MemAE [5] 81.85 AnoGAN [9] 7497
TrustMAE-noise free 00.78 AE-SSIM Grad [10] 86.38
~-VAE Grad [10] 88.77
AE-L2 Grad [10] 88.77
VAE Grad [10] 89.29
TrustMAE-noise free 93.94

[1] [NeurlIPS ‘18] Golan et al. Deep anomaly detection using geomertric transtormations.

[2] [ACCV’18] Akcay et al. Ganomaly: Semi-supervised anomaly detection via adversarial training.

[3] [arxiv’'20] Huang et al. Inverse-transform autoencoder for anomaly detection

[4] [Medical image analysis ‘19] Schlegl et al. f-anogan: Fast unsupervised anomaly detection with generative adversarial networks
[5] [ICCV’'19] Gong et al. Memorizing Normality to detect anomaly.

[6] [VISIGRAPP “19] Bergmann et al. Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
[7] [CVPR’20] Liu et al. Towards visually explaining variational autoencoders.

[8] [Sensors ‘19] Napoletano et al. Anomaly detection in nanofibrous materials by cnn-based self-similarity.

[9] [CIRP “19] Staar et al. Anomaly detection with convolutional neural networks for industrial surface inspection.

[10] [ICLR '20] Dehaene et al. Iterative energy-based projection on a normal data manifold for anomaly localization
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Different Noise Levels
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Visual Results

Input Reconstruction Error Map Ground Truth [nput Reconstruction Error Map Ground Truth
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Reconstruction Error Map Ground Truth [nput Reconstruction Error Map Ground Truth
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lmage Forensics



Pristine
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Challenges

Not easily perceptible

« A good fake image hides its manipulations
cleverly with the semantic contents of the
Image

Hard to extract and isolate weak signals
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Main Idea

An image undergoes several stages of processing, each
of which imprints a spatial signature onto the image.

Raw Sensor Input

Compression

I

Camera

Processing
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Resizing
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Main Idea

Under pristine conditions, these signatures are regular, but for forgeries
these are broken.

Pristine Image Splice Forgery Object Removal
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Camera Model Same Camera Model Diff Camera Model Same
JPEG Alignment Same| | JPEG Alignment Diff JPEG Alignment Diff
Scale Same| | Scale Same Scale Same
Prediction: Pristine Prediction: Forgery Prediction: Forgery

Our model leverages on statistical differences as well as spatial
inconsistencies of these signatures in detecting forgeries
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Contrastive Learning

Training Stage Inference Stage

Input Image Predicted
E; Ground Truth

Camera A

Agglomerative

Clustering '
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Contrastive Learning

Same camera same location Stride multiple of 8  Stride proportional to scaling factor

» @
(a) Learning camera signa- (b) Learning JPEG signa- (c¢) Learning rescaling signa-
tures tures tures

» @
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Table 1: Comparison of forgery localization performance (MCC). Numbers in
parenthesis use an image-specific threshold tuned on the ground truth labels;
other numbers do not. HLED [3] and C-RCNN [50] trained on a subset of NC16,
while CAT-NET [28] trained on IMD2020. We grayed those numbers out and
excluded them in computing the average. We highlighted the best scores in
bold and italicized the second best. For our method, the standard deviation is
measured over 5 runs.

Avg. DSO-1 NC16  NC17-dev RT MFC18  IMD2020
ManTraNet [48] 19.8 (25.0) 41.8 (46.7) 11.6 (16.3) 14.8 (19.7) 19.1 (24.2) 10.2 (14.8) 21.6 (28.6)
GSRNet [53] 24.8 (34.1) 28.7 (46.2) 31.1 (40 9) 19.3 (22.7) 28.9 (36.8) 14.8 (20.8) 25.9 (37.1)
EXIF-SC [23] 24.9 (36.1) 41.0 (52.9) 25.7 (35.5) 29.2 (41.7) 17.0 (27.8) 18.2 (26.1) 18.4 (32.7)
InfoPrint [20] - 55.0 (69.0) 28.0 (40.0) 25.0 (38.0) - -
Noiseprint [13] 31.8 (42.7) 70.1 (75.8) 28.1 (38.7) 24.6 (36.1) 21.8 (34.5) 23.9 (33.4) 22.2 (37 4)
ForensicGraph [36]  33.8 (41.1) 75.1 (80.2) 27.2 (35.2) 28.6 (36.9) 31.0 (38.0) 16.1 (23.2) 24.6 (33.4)
HLED [3] 20.8 (26.5) 18.2 (22.5) 40.4 (45.4) 14.1 (20.3) 16.7 (22.6) 14.3 (20.1) 21.4 (28.1)
C-RCNN [50] 18.4 (22.9) 21.2(26.5) 93.1 (94.3) 23.8(26.3) 14.9 (18.5) 14.4 (18.0) 17.7 (20 1)
CAT-Net [28] 38.4 (45.4) 75.3 (80.5) 44.4 (56.5) 21.6 (26.3) 20.4 (23.9) 30.6 (39.9) 88.8 (92.7)
CAT-Net (no qtable) 34.2 (39.4) 75.3 (80.5) 30.1 (36.9) 21.4 (25.6) 20.4 (23.9) 23.9 (30.4) 88.8 (92.7)

Ours 39.4 (48.1) 85.7 (90.7) 35.4 (41.7) 28.9 (40.9) 34.7 (41.5) 2/.3 (35.5) 27.7 (37.5)

+0.92 (£0.68) +£1.51 (4£0.73) £1.25 (+0.97) £0.76 (+£0.84) +0.72 (£0.54) +0.69 (£0.56) +0.58 (40.43)




Ours EXIF SC Noiseprint

Input - top 90th per- Ground Truth
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(Controllable) Style Transfer



Neural Style Transfer

Can apply new styles to other images BUT does not allow for any artistic control
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Density and Stroke Control

Controlling
Pattern Density 8] /T
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- Controlling
‘ Stroke Strength

)

‘Lighter Strokes Stronger Strokes.

49



One way to control the size and density of patterns is to
change the style resolution / receptive field

Surprisingly not as straightforward!

Ghosting effect!

Syl Resolution Syl Resolution Style Resolution o tyl Resolution
256 %256 512x512 256 %256 512%512
(a) Gram Matrix [5] (b) Ours - Centered

(covariance)
xXxT X —ux) (X — .UX)T
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- ENEN N -

Gram = 12, Centered =-30.25 Gram = 12, Centered =-0.25 Gram = 12, Centered =-0.03
(a) Strong Negative Correlation (b) Weak Negative Correlation‘ (¢) No Correlation (Random Shuffle)
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Neural Style Palette

Can we decompose a style image into “sub-styles”?

Style

53



Content Anchor Styles

[+

Decompose
Style
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Work in Progress:
Detecting and counting Crop Pests

Goals:

» Crop pest and disease monitoring and surveillance (Early warning system)
« Assess efficacy of treatment plans (currently done with visual inspection)
* More precise treatment plans




Let me know if you want to collaborate!
Thank you!

Daniel Stanley Tan
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