
Formal Specifcation and
Verifcation of JDK's Identity
Hash Map Implementation

Open Universiteit
Faculteit Management, Science & Technology

Martin de Boer, Stijn de Gouw, Jonas Klamroth,
Christian Jung, Mattias Ulbrich, Alexander Weigl
Martin de Boer, Stijn de Gouw, Jonas Klamroth,
Christian Jung, Mattias Ulbrich, Alexander Weigl

1

API: core methods

V get(Object key)
Returns the value to which the specifee ey is mappee,
or null if this map contains no mapping for the ey.

V put(K key, V value)
Associates the specifee value with the specifee ey in this ieentty hash map.

V remove(Object key)
Removes the mapping for this ey from this map if present.

containsKey(Object key)
Tests whether the specifee object reference is a ey in this ieentty hash map.

Map: collection of key-value pairs, where keys are unique
(similar to functions in mathematics)

2

https://docs.oracle.com/javase/7/docs/api/java/util/IdentityHashMap.html#get(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/util/IdentityHashMap.html#get(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/util/IdentityHashMap.html#get(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/7/docs/api/java/util/IdentityHashMap.html#put(K,%20V)
https://docs.oracle.com/javase/7/docs/api/java/util/IdentityHashMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/IdentityHashMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/IdentityHashMap.html#remove(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/util/IdentityHashMap.html#remove(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/7/docs/api/java/util/IdentityHashMap.html#containsKey(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

IdentityHashMap
• Real-world hash map implementation,

part of the Java Collection Framework

• No known previous formal verifcation attempts

• Complex class, but simpler than other HashMaps
• State space / representation simpler than other HashMap

implementations: all entries are stored in a single array
• Compares keys with `==’ rather than equals method
• Integer overfow semantics exploited, bitwise operations
• > 1200 LoC (incl. comments / white space)
• Challenge: analyse (nearly) unaltered code

3

Idealized hash maps
Study by Christian Jung with maps optimized for verif

• SP-…: collision resolution with separate chaining
• LP-…: collision resolution with linear probing
• …-WI: keys are ints (compared with ==)
• …-NE: keys are objects compared with ==
• …-WE: separate chaining with objects and equals(..)

4

hash, put, get
• Key unicity based on reference equality `==’
• Hash table: key stored at even index determined by

hash function, values at (next) odd index

Object k = maskNull(key);
int i = hash(k, len);
while (true) {
 Object item = tab[i];
 if (item == k)
 return (V) tab[i + 1];
 if (item == null)
 return null;
 i = nextKeyIndex(i, len);
}

5

Collision resolution
• Good hash is often unique, but no guarantees
• Different key, same hash: collision
• Resolve collisions with linear probing

6

Empty slot

Hash table must never get fully occupied

Object k = maskNull(key);
int i = hash(k, len);
while (true) {
 Object item = tab[i];
 if (item == k)
 return (V) tab[i + 1];
 if (item == null)
 return null;
 i = nextKeyIndex(i, len);
}

7

remove

8

remove (2)

9

Specifcation:
Class invariant
• Main conditions:
• Keys must be unique (reference equality)
• No gaps (empty slots) between keys with

identical hashes
• Table must at all times have at least one empty

entry
• …

10

Class invariant (2)

11

Proof containsKey
• Method preserves class invariant (trivial)
• Method satisfes below JML-contract

12

Proof containsKey (3)

13

Proof containsKey (2)

Loop termination
• First phase: hash < i < len-2. Clearly hash+len-i

is positive. If i=len-2, then hash+len-i = hash+2
• Second phase, after wraparound: 0 < i < hash. If

i=0 then hash-i = hash (i.e. >0 and decreasing)
And if i increases then hash-i decreases
• Furthermore, i cannot become equal to hash

since all keys are then != null according to the
loop inv, while the class inv implies there must
be a null (at an even index).

14

Proof containsKey (4)

15

Hybrid analysis
Main goal: decreasing the effort of formal analysis
• Small change in specs, such as class invariant,

typically break (re-)loading existing partial proof early
• Currently ongoing experiment: use proof scripts

• Main bottleneck: writing good (correct, sufcient) specs

16

Hybrid approach
Early detection of specifcation errors

• JMLUnit/JMLUnitNG not maintained anymore, we aborted after
(too) much effort needed to load case study

• OpenJML lib too complex but did discover syntactic / visibility
errors in specs (more sensitive than KeY)

• JUnit/Refection (unit tests)

• JJBMC (model checker, Jonas Klamroth (KIT/FZI))

17

JUnit/Refection

Strong points
• Detection of semantic

errors in specs
• Refection provides access

to a class’s inner state
• When carefully designed,

re-use of automatic
testing of the class-
invariant is possible for
all methods

Limitations
• ‘Manual’ translation of

JML to Java
• False positives
• False negatives

• Not suitable for loop
invariants and block
contracts

• Extra maintenance during
analysis process

18

JJBMC: strong points
• Good developer Improved tool quickly based on case study
• Fully automatic, limited time needed to load case study
• Early detection of errors in several method specs, including discovery

of non-trivial semantic errors

• Can identify whether specs are insufcient
• Outputs counter-example

19

JJBMC: limitations
Future work?

• State space explosion (capacity upper-bound of 4 entries)

• Limitations in OpenJML dialect (e.g. exceptional behaviour not
supported, bsum, bprod, loop invariants)

• No support for functions without Java method body
• user-defned functions/predicates from a .key fle
• calls to native code

• Limitations wrt aliasing (diff vars cannot alias)
20

Effort ratio
• Difcult to measure: how to compare with and

without hybrid analysis?

• Rough estimate from student based on planned
hours: efciency improved with about 12,54%
due to hybrid approach (junit tests and JJBMC)

21

Discovered bugs?
How to fx?

22

Capacity

MAXIMUM_CAPACITY = 1 << 29 = 229 = 536.870.912

MINIMUM_CAPACITY = 4
23

Capacity error
(3 * 1431655766) / 2 = 1 ✕

capacity(1431655766) = 4 ✕ (expected: 536870912)

(3 * 1431655772) / 2 = 10 ✕

capacity(1431655772) = 16 ✕ (expected: 536870912)

Error is triggered in range 1.431.655.765 – 1.610.612.736

Consequences of undetected overfow
• Table allocated with far too little capacity
• Main purpose of constructor with expected max size: increased

performance
• Many resizes when putting new entries in table: entries shufed

to other positions due to recalculated hashes
• Performance declined by about 45%

24

New capacity in later JDK update

MAXIMUM_CAPACITY = 1 << 29 = 229 = 536870912

MINIMUM_CAPACITY = 4

25

Serialization: readObject
Used for serialization: writing an IdentityHashMap object +
contents to a stream (e.g. a fle)

26

Serialization: readObject
Note: no resize!

27

Serialization: readObject
Observation
• Effectively, readObject is a constructor
• Constructors should establish class invariant

Potential security issue
• Attacker uses hex editor to modify fle with hash map, say

with size > MAX_CAPACITY (and new entries)
• Victim deserializes the rogue hash map with readObject,

which creates table array of MAX_CAPACITY
• Infnite loop triggered in putForCreate: no empty slot

Rough idea for fx: perform input validation to ensure that the
stored IdentityHashMap satisfes the class invariant

28

put

• adds a key/value to
the table

• resizes (allocates
new table array) if the
load factor becomes
larger than 2/3,
except when the table
is already at
MAX_CAPACITY

• If size =
MAX_CAPACITY-1
then resize throws an
exception

29

put

• Exception only thrown
after table is modifed!

• Modifed table has no
empty slot anymore:
breaks class invariant

• No failure atomicity
• Map is corrupted,

cannot be used
afterwards in operations
like get, containsKey,
etc.: trigger infnite loop
because no empty slot

• Vulnerability exploitable
in DoS attack?

30

New put in later JDK update
• Map not modifed if

resize fails: failure
atomicity

• resize rehashes all keys
based on new table
length, entries may
move to very different
index

• So: insertion point for
key must be determined
from scratch after resize

• Ugly control-fow to
determine insertion
point: empty for-loop
just to use continue

31

put in newer JDK
• Better fx: extract

method refactoring
with loop that searches
the index of a key, or
its insertion point
• return the index

(positive number) if key
is found

• return negative index if
key is not found (e.g.
-10 if key should be
inserted at index 10)

• Avoids code duplication
and ugly control-fow:
call the new helper
method in put, get, etc.

32

Conclusion
• Hybrid analysis can be useful to speed up writing good specs

• If the effort to load the case and to use the tool is reasonably small
• JJBMC most successful, found semantic errors

• Ongoing experiment with proof scripts
• Should be more robust than proof fles (rules in proof fles explicitly refer to the

index of formulas in the sequent, so adding a new clause in a spec may shift the
index of existing clauses and break proof loading)

• Scripts ideally automatically generated from user interactions

• Introduce additional strategy macros?
• Automatically simplify arithmetical ops that do not overfow
• Better heap simplifcation (currently generates terms like self.a = self.a)

• Failure to ensure class inv in deserialization may be widespread

• More details in iFM 2022 paper (paper title same as this talk).
33

Questions?

34

	Slide 1
	API: core methods
	IdentityHashMap
	Idealized hash maps
	hash, put, get
	Collision resolution
	Empty slot
	remove
	remove (2)
	Specification: Class invariant
	Class invariant (2)
	Proof containsKey
	Proof containsKey (3)
	Proof containsKey (2)
	Proof containsKey (4)
	Hybrid analysis
	Hybrid approach
	JUnit/Reflection
	JJBMC: strong points
	JJBMC: limitations
	Effort ratio
	Discovered bugs? How to fix?
	Capacity
	Capacity error
	New capacity in later JDK update
	Serialization: readObject
	Serialization: readObject
	Serialization: readObject
	put
	put
	New put in later JDK update
	put in newer JDK
	Conclusion
	Questions?

