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Context
Preliminaries

▶ Some authors in distributed computing still refer to knowledge
only informally
▶ It is important to develop tools to formalize such a concept

▶ Interpreted systems
▶ Halpern & Moses (80’s)

▶ Connection of distributed computing & dynamic epistemic
logic through action models
▶ Pfleger & Schmid (2018)
▶ Goubault, Ledent & Rajsbaum (since 2018)

▶ Kripke frames cat. and simplicial complex cat. are equivalent
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Context
Epistemic logic

Syntax
LK ∋ φ ::= p | ¬φ | φ ∧ φ | Kaφ

where a ∈ A, and p ∈ P
No update modality

Semantics

M,w |= p iff p ∈ L(w)

M,w |= ¬φ iff M,w ̸|= φ

M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

M,w |= Kaφ iff M,w′ |= φ for all w′ such that w ∼a w′



Context
Epistemic logic

Syntax
LK ∋ φ ::= p | ¬φ | φ ∧ φ | Kaφ

where a ∈ A, and p ∈ P
No update modality

Semantics

M,w |= p iff p ∈ L(w)

M,w |= ¬φ iff M,w ̸|= φ

M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

M,w |= Kaφ iff M,w′ |= φ for all w′ such that w ∼a w′



Context
Distributed computing models

Agents (processes)

▶ State machines

▶ Private input (local state)
▶ Execute a protocol of communication

▶ All gathered information is sent (full-information)

Dynamic-network models

▶ Synchronous (round closed) communication
▶ An adversary decides who communicates with whom

▶ Picks a communication graph in every round

a b
*reflexive relation

▶ Oblivious
▶ any communication graph in a given set of communication

graphs may occur in any round
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Iterated immediate snapshot model (IIS)

IIS model
▶ processes write to a shared memory and then take a snapshot

▶ Concurrent read
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Iterated immediate snapshot model (IIS)

Epistemic model (Kripke models with equivalence relations)
▶ A triple (W,∼, L)

▶ Worlds
▶ Indistinguishability relations
▶ True valued propositions
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Action models
▶ Update mechanism

▶ Action model (Structure) M = (E,R,Pre)
▶ Events
▶ Indistinguishability relations
▶ Precondition formulas

▶ Restricted modal product
▶ M ⊗M = M ′
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M ′ = (W ′,∼′,L′) = M ⊗M is defined as follows:

▶ W ′ = {(w , e) ∈ W × E |M,w |= Pre(e)}
▶ ∼′

a = {((w , e), (w ′, e′)) ∈ W ′ ×W ′ | w ∼a w
′ and e Ra e′}

▶ L′(w, e) = L(w)
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Modeling epistemic change with action models through rounds of
communication has drawbacks

▶ Direct application is simple but inefficient

▶ Finding compact action models is not clear
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▶ The events are communication graphs
▶ The restricted modal product allows preconditions
▶ A protocol can be a parameter of the product (not only

full-information)
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Pattern models

Let Ga = {b ∈ A | bGa} be the in-neighbourhood of a in G

(W ′,∼′, L′) = M ′ = M ⊙ P is defined as follows:

▶ W ′ = {(w,G) ∈W ×G |M,w |= Pre(G)}

▶ ∼′
a= {((w,G), (w′, G′)) ∈W ′ ×W ′ |
Ga = G′a (same in-neighbourhood)
and w ∼a w

′ ∀a ∈ Ga}
▶ L′(w,G) = L(w)
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▶ The full-information protocol is explicit in the product
definition
▶ This non-parametrized version is useful for studying

computability

▶ The full-information protocol is not practical in real systems
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Loc, set of local states
Msg , set of message contents

A protocol π = (µ, λ),

▶ µ : Loc → (Msg ∪ {⊥})|A|

▶ λ : Loc × (Msg ∪ {⊥})|A| → Loc
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Parametrized pattern models

Mw
a |G is the set of messages that a gets when G occurs in w

(W ′,∼′, L′, S′) = M ′ = M ⊙π P is defined as follows:

▶ W ′ = {(w,G) ∈W ×G |M,w |= Pre(G)}
▶ ∼′

a= {((w,G), (w′, G′)) ∈W ′ ×W ′ |
λ(S(w, a), Mw

a |G ) = λ(S(w′, a), Mw′
a |G′ )

▶ L′(w,G) = L(w)
▶ S′(a, (w,G)) = λ(S(w, a),Mw

a |G)
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A = {a}

I = {0, 1}
Msg = Loc = I ∪ {−}

▶ π = (µ, λ) (Forget)
▶ µ(x) = (x)
▶ λ(x′) = − (Constant function)

G
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Pattern models

▶ This parametrized version is useful for designing efficient
protocols
▶ Automated formal verification of protocols



Results

▶ Systematic construction of pattern models for each round of
communication given an arbitrary adversary

▶ Proof of correctness of such pattern models
▶ The correctness is still valid with the parametrized version

▶ Oblivious dynamic-network models requires constant space
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