

Embedding ML models into Linear Optimization Case: Project Scheduling of a multi-skilled workforce

dr. Murat Firat, Computer Science - OU

Joint work with Daan van Wely, MSc - JADS Bob Gijstra, Building Blocks

12-01-2023

Outline

- Company background
- Problem description
- Literature review
- Methodology
- Experimentation
- Conclusions

Outline

Company background

- Problem description
- Literature review
- Methodology
- Experimentation
- Conclusions

Company background

- **Business and organization**
- ICT and DS Projects (mainly) with online retailer companies
- Employee position is characterized by an affiliation with pillar and tribes.

Company background Client solution lifecycle

- Prerequisite preparations
- Impact of the project: KPIs
- Required skills and workload
- Uniform effort over time

01.	Opportunity Scan
	Business & Data Scan
	Presentation
	Agreement
02	Pilot
	Pilot Enablement
	Development
	Test
	Agreement
03	Production
	Production Enablement
	Implementation
	Production

Outline

- Company background
- Problem description
- Literature review
- Methodology
- Experimentation
- Conclusions

Problem description

Basic properties

• Projects:

Release dates, deadlines Required skills, estimated workload per employee. No simultaneous skill use

Problem description

Basic properties

• Projects:

Release dates, deadlines Required skills, workload per employee. No simultaneous skill use

• Employees:

Possessed skills, availability, contract-defined capacity. Pairwise matches, project (topic) preferences.

Problem description

Basic properties

• Projects:

Release dates, deadlines Required skills, workload per employee. No simultaneous skill use

• Employees:

Possessed skills, availability, contract-based capacity. Pairwise matches, project (topic) preferences.

• Project teams:

Working in groups Average pairwise employee match Average project preferences of employees

Problem description Project efficiency

- Project teams (Planning Phase):
 - Working in groups
 - Average pairwise employee match
 - Average project preferences of employees
- Project Execution (Available after completion):
 - Cooperation of team members, progress in milestones
 - Completion time, output quality
 - Communication to customer
 - Customer satisfaction

Outline

- Company background
- Problem description

• Literature review

- Methodology
- Experimentation
- Conclusions

Literature review

Project scheduling

1- Resource Constrained Project Scheduling Problem: schedule activities subject to precedence and resource constraints.

2- Scheduling and staffing multiple projects with a multi-skilled workforce: Worker efficiencies are considered. MILP formulation is proposed as solution approach.

3- A MILP model for an integrated project scheduling and multi-skilled workforce allocation with flexible working hours: Worker efficiencies, task workloads, use of single skill.

Brucker et al, "Resource-constrained project scheduling: Notation, classification, models, and methods", 1999, EJOR, 112(1).
 Heimerl and Kolisch, "Scheduling and staffing multiple projects with a multi-skilled workforce", 2010, OR Spectrum, 32.
 Karam et al., "A MILP model for an integrated project scheduling and multi-skilled workforce allocation with flexible working hours", 2017, IFAC-PapersOnLine, 50.

Literature review

Project efficiency

1- Measuring the efficiency of project control using fictitious and empirical project data: The efficiency of controlling a project is measured and evaluated using a Monte-Carlo simulation.

2- Support Vector Machine Regression for project control forecasting: Predicting time and cost of a project execution.

[1] Vanhoucke, M., "Measuring the efficiency of project control using fictitious and empirical project data", 2012, IJPM, 30(2).
[2] Wauters and Vanhuocke, "Support Vector Machine Regression for project control forecasting", 2014, Automation in Construction, 47.

Literature review

Project efficiency

The Relationship between Project Success and Project Efficiency:

Success dimension	Measures	Time	
1. Project efficiency	Meeting schedule goal	End of project	
	Meeting budget goal		
2. Team satisfaction	Team morale	End of project	
	Skill development		
	Team member growth		
	Team member retention		
3. Impact on the customer	Meeting functional performance	Months following project	
-	Meeting technical specifications		
	Fulfilling customer needs		
	Solving a customer's problem		
	The customer is using the product		
	Customer satisfaction		
4. Business success	Commercial success	Years following project	
	Creating a large market share		
5. Preparing for the future	Creating a new market	Years following project	
	Creating a new product line		
	Developing a new technology		

Sarrador and Turner, "The Relationship between Project Success and Project Efficiency", 2014, Procedia, 119.

Outline

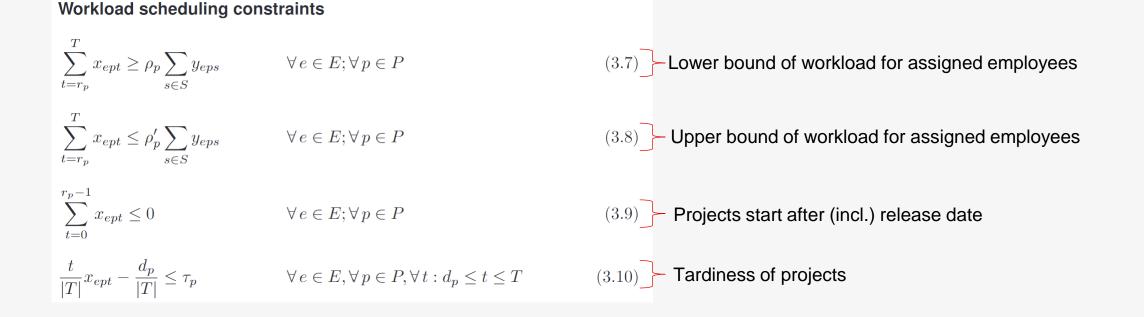
- Company background
- Problem description
- Literature review
- Methodology
- Experimentation
- Conclusions

Formulating as Mixed Integer Linear Programming (MILP) model

Decision Variables		
x_{ept}	Schedules employee e to work on project p at time t	
y_{eps}	Allocates employee e to work on project p as skill s	
$ au_p$	Tardiness of project p measured in workdays	
κ_{ew}	Number of idle workdays of employee e in week w	

Employee-Project working time scheduling

- Employee-Project skill assignment


buil

ding blo cks

Formulating as Mixed Integer Linear Programming (MILP) model

Objective function:		
$\operatorname{Min} \sum_{p \in P} \alpha w_p \tau_p + \frac{1 - \alpha}{ E W } \sum_{e \in E} \frac{1}{\alpha}$	$\frac{1}{c_e} \sum_{w \in W} \kappa_{ew}$	(3.1) Minimize project tardiness and idle times of employees
s.t.		
Workforce allocation constra	aints	
$\sum_{e \in E} Sk_{es} y_{eps} \ge Rq_{ps}$	$\forall p \in P; \forall s \in S$	(3.2) Skill requirements of the projects
$y_{eps} \le Sk_{es}$	$\forall e \in E; \forall p \in P; \forall s \in S$	(3.3) Assigning only skilled workers to projects
$\sum_{s \in S} y_{eps} \le 1$	$\forall e \in E; \forall p \in P$	(3.4) Only single skill use of employees
$y_{eps} \ge 1$	$\forall p \in P, \forall s \in S; \forall e \in E^{p,s}$	(3.5) Pre-selected employees for projects
$\sum_{s \in S} y_{ep^*s} \le \sum_{s \in S} y_{eps}$	$\forall e \in E; \forall p \in P$	(3.6) - Employees of preliminary projects also work for final projects

Formulating as Mixed Integer Linear Programming (MILP) model

Formulating as Mixed Integer Linear Programming (MILP) model

Scheduling conditions conditions	onstraints	
$\sum_{p \in P} x_{ept} \le A_{et}$	$\forall e \in E; \forall t \in T$	(3.11) - Availability of employees
$\sum_{e \in E} x_{ept} \le Rq_p \sigma_{pt}$	$\forall p \in P; \forall t \in T$	(3.12) Project works on allowed days of the week
$\sum_{p \in P} \sum_{t \in T^w} x_{ept} + \kappa_{ew} = c_e$	$\forall e \in E; \forall w \in W$	(3.13) Capacity of employees
Bounds of decision variab	bles	
$x_{e,p,t} \in \{0,1\}$	$\forall e \in E; \forall p \in P, \forall t \in T$	(3.14)
$y_{e,p,s} \in \{0,1\}$	$\forall e \in E; \forall p \in P, \forall s \in S$	(3.15)
$\tau_p \ge 0$	$\forall p \in P$	(3.16)
$0 \le \kappa_{e,w} \le c_e$	$\forall e \in E; \forall w \in W$	(3.17)

Methodology Project efficiency

• Planning Phase:

Working in groups Average pairwise employee match

Average project preferences of employees

• Project Execution:

Cooperation of team members, progress in milestones

- Completion time, output quality
- Communication to customer
- **Customer satisfaction**

Project efficiency

• Planning Phase:

Working in groups

- Average pairwise employee match
- Average project preferences of employees
- Project Execution:
 - Cooperation of team members, Progress in milestones
 - → Completion time, output quality
 - Communication to customer Customer satisfaction

Project efficiency!

Project efficiency

• Planning Phase:

Working in groups

- Average pairwise employee match
- Average project preferences of employees
- Project Execution:
 - Cooperation of team members, Progress in milestones
 - Completion time, output quality
 - Communication to customer Customer satisfaction

Project efficiency!

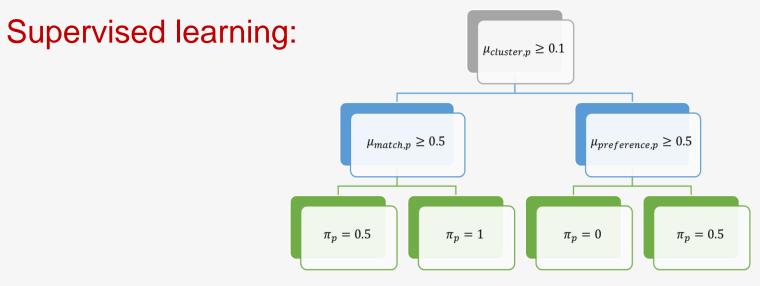
Question: How to form project teams to maximize predicted project efficiency?

Methodology Project efficiency

Question: How to form project teams to maximize predicted project efficiency?

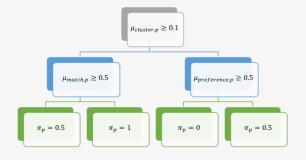
Supervised learning:

Data Features: Features of the planning phase and project execution


Data Label: Project efficiency, a qualitative measure.

Predictive model: Construct a decision tree* with only planning phase features

Methodology Project efficiency

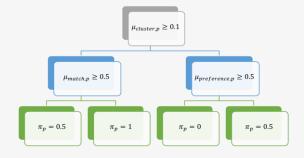

Question: How to form project teams to maximize predicted project efficiency?

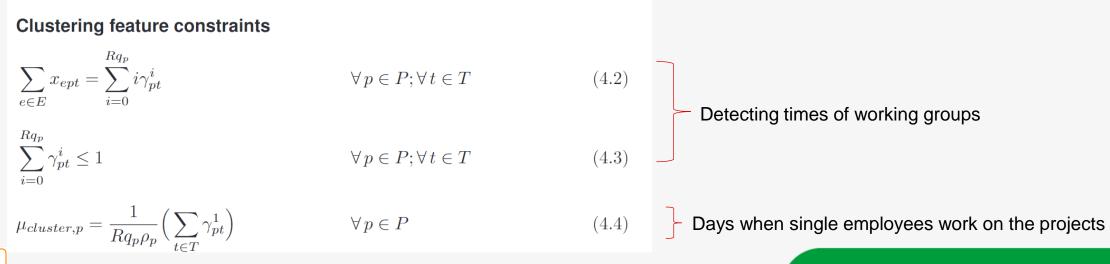
A hypothetical decision tree

MILP model with embedded decision tree

Extended objective function:

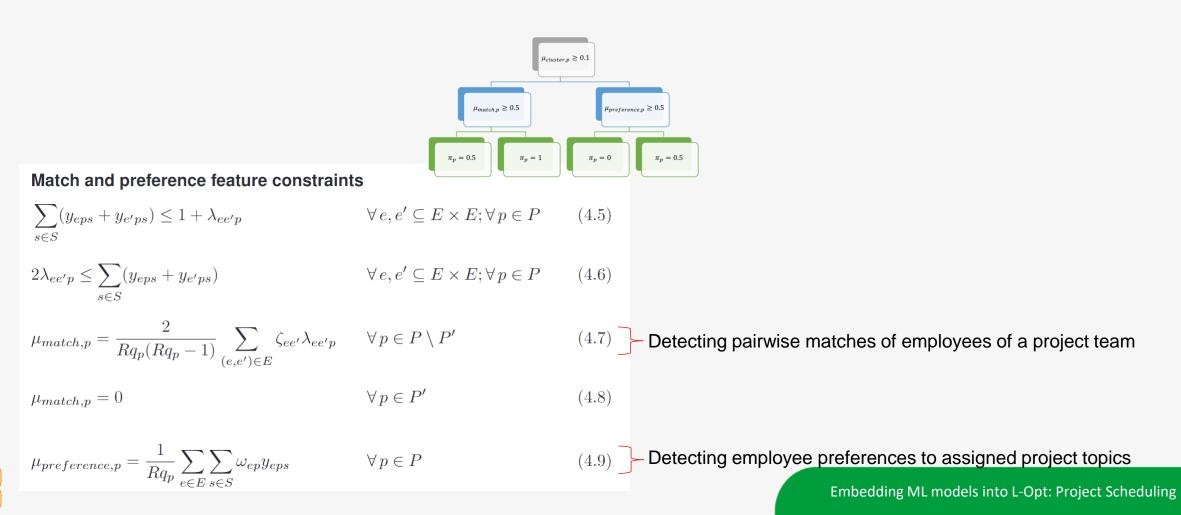
$$\begin{split} \text{Min } & \sum_{p \in P} (\alpha w_p \tau_p - \beta \xi_p \pi_p) + \frac{1 - \alpha}{|E| |W|} \sum_{e \in E} \frac{1}{c_e} \sum_{w \in W} \kappa_{ew} \\ \text{s.t.} \end{split}$$

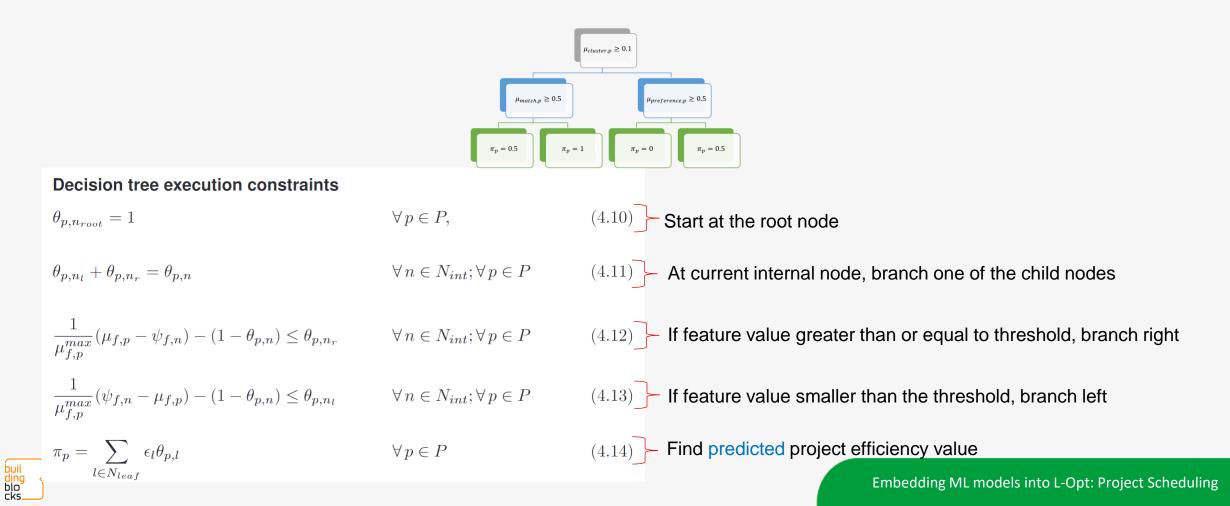

$$(4.1)$$
 - Minimize tardiness, idle times and maximize (predicted) project efficiency



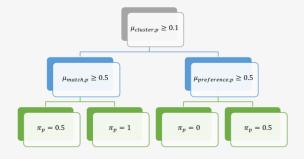
Н

buil ding blo cks


MILP model with embedded decision tree


buil ding blo cks.

MILP model with embedded decision tree


27

MILP model with embedded decision tree

28

MILP model with embedded decision tree

Bounds of decision variables

$\theta_{p,n} \in \{0,1\}$	$\forall p \in P, \forall n \in N_{int} \cup N_{leaf}$	(4.15)
$\mu_{f,p} \ge 0$	$\forall p \in P, \forall f \in F$	(4.16)
$\lambda_{e,e',p} \in \{0,1\}$	$\forall (e, e') \in E \times E; \forall p \in P$	(4.17)
$\pi_p \ge 0$	$\forall p \in P$	(4.18)

Н

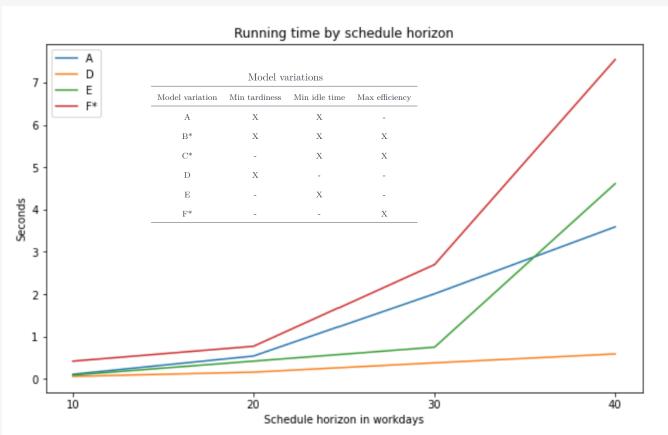
29

Outline

- Company background
- Problem description
- Literature review
- Methodology
- Experimentation
- Conclusions

• Instances:

Total 86 projects with max 10 skills types required


Number of employees 26.

Schedule horizon varies from 10 workdays to 40 workdays

Model variations			
Model variation	Min tardiness	Min idle time	Max efficiency
А	Х	Х	-
B*	Х	Х	Х
C^*	-	Х	Х
D	Х	-	-
Е	-	Х	-
F*	-	-	Х

• Computation times:

• Computation times:

Model variations

Min tardiness X

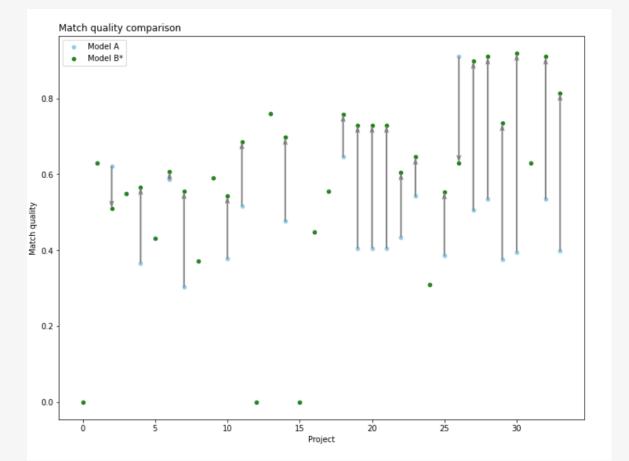
Model variation

Α

Min idle time Max efficiency

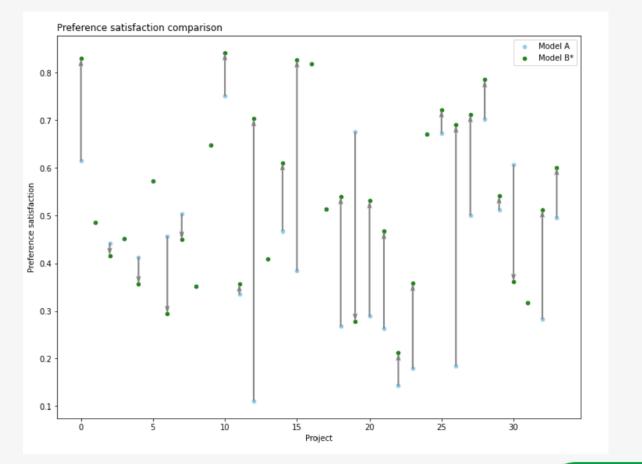
Х

Experimentation



dinc blo cks.

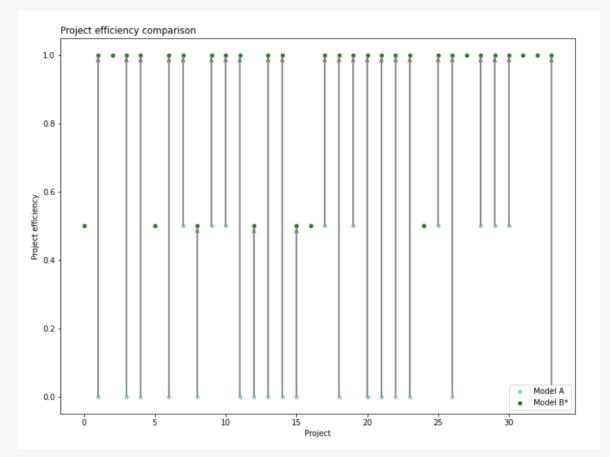
Pairwise matches

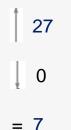


Model variations				
Model variation	Min tardiness	Min idle time	Max efficiency	
А	Х	Х	-	
B*	х	Х	х	
C^*	-	Х	Х	
D	Х	-	-	
Е	-	Х	-	
F^*	-	-	Х	

Employee preferences

Model variations				
Model variation	Min tardiness	Min idle time	Max efficiency	
А	Х	Х	-	
B*	Х	Х	х	
C^*	-	Х	Х	
D	Х	-	-	
E	-	Х	-	
F^*	-	-	Х	


Employee preferences


Model variations				
Model variation	Min tardiness	Min idle time	Max efficiency	
А	Х	Х	-	
B*	Х	Х	х	
C^*	-	Х	Х	
D	Х	-	-	
Е	-	Х	-	
F^*	-	-	Х	

Predicted project efficiency values

Model variations			
Model variation	Min tardiness	Min idle time	Max efficiency
А	Х	Х	-
B*	Х	Х	х
C^*	-	Х	Х
D	Х	-	-
Е	-	Х	-
F^*	-	-	Х

Outline

- Company background
- Problem description
- Literature review
- Methodology
- Experimentation
- Conclusions

Conclusions

Further research

• Other embeddings:

Regression Trees, Fuzzy Inferences Systems

• Application: Predictive maintenance in manufacturing

Data: Production execution data with data label 'health index'

Predict: health index HI_t using features workload amount/type, HI_{t-1}, .., HI_{t-k} values

Predictive model: Regression tree

Decision: Plan maintenance activities according to the course of the production plan.

THANKS OUR NTTINE

WWW.OU.NL