Jilyan Bianca Dy, Daniel Stanley Tan, Kai-Lung Hua

Content-aware resizing

What is image retargeting or content-aware resizing?

Resizing

Changes the scale of objects

Distorts the shape if aspect ratio is not preserved

Image Retargeting

Idea: Replicate rows or columns of pixels

Seam Carving (Method used in Photoshop)

Stretching artifacts

Image Retargeting

Why not replicate patches / objects?

Image Retargeting

Problem: It has no idea what it should and should not replicate

Our goal / contribution

 Reduce generation of unnatural objects due to lack of semantic understanding

Our goal / contribution

- Reduce generation of unnatural objects due to lack of semantic understanding
- Allow user to have control over desired object
 - (i.e., changing object location, replicating, removing)

How can we de-associate the objects that can be replicated from those that should not be replicated?

Method

Output

How can inputting random noise produce anything useful?

 \tilde{x}_n - Generated image at scale nN = 7

MCGAN Model

Fine

- 1 Upsample
- $O(\cdot)$ Overlay Function
- G_n Generator
- D_n Discriminator

MCGAN Model

$\min_{G_n} \max_{D_n} \mathcal{L}_{adv}(G_n, D_n) + \alpha \mathcal{L}_{rec}(G_n) + \lambda \mathcal{L}_{DA}(G_n)$

- \mathcal{L}_{adv} Adversarial Loss
- \mathcal{L}_{rec} Reconstruction Loss
- \mathcal{L}_{DA} De-association Loss
- G_n Generator at scale n
- D_n Discriminator at scale n
- α , λ Hyperparameters

$\min_{G_n} \max_{D_n} \mathcal{L}_{adv}(G_n, D_n) + \alpha \mathcal{L}_{rec}(G_n) + \lambda \mathcal{L}_{DA}(G_n)$

- \mathcal{L}_{adv} Adversarial Loss
- \mathcal{L}_{rec} Reconstruction Loss
- \mathcal{L}_{DA} De-association Loss
- G_n Generator at scale n
- D_n Discriminator at scale n
- α , λ Hyperparameters

- Discriminator: distinguish real and fake
- Generator: fool discriminator into thinking generated image is real

We used the Wasserstein GAN with gradient penalty (WGAN-GP)

 $\mathbb{E}_{\tilde{x} \sim P_g}[D(\tilde{x})] - \mathbb{E}_{x \sim P_r}[D(x)] + \lambda_{GP} \mathbb{E}_{\hat{x}}[(\|\nabla_{\hat{x}} D(\hat{x})\|_2 - 1)^2]$

G: generate fake samples

G: generate fake samples that can fool *D D*: classify fake samples vs. real images

[Goodfellow et al. 2014]

$\min_{G} \max_{D} \mathbb{E}_{z,x}[\log D(x) + \log(1 - D(G(z)))]$

[Goodfellow et al. 2014]

$\min_{G} \max_{D} \mathbb{E}_{z,x}[\log D(x) + \log(1 - D(G(z)))]$

$\min_{G} \max_{D} \mathbb{E}_{z,x} [\log D(x) + \log(1 - \frac{D(G(z))}{fake})]$ [Goodfellow et al. 2014]

 $\min_{G} \max_{D} \mathbb{E}_{z,x}[\log \frac{D(x)}{real} + \log(1 - D(G(z)))]$ real
[Goodfellow et al. 2014]

$\min_{G} \max_{D} \mathbb{E}_{z,x} [\log D(x) + \frac{\log(1 - D(G(z)))}{\text{Update } G}]$

Discriminator implicitly learns a measure of realism from examples of real and fake

$\min_{G_n} \max_{D_n} \mathcal{L}_{adv}(G_n, D_n) + \alpha \mathcal{L}_{rec}(G_n) + \lambda \mathcal{L}_{DA}(G_n)$

- \mathcal{L}_{adv} Adversarial Loss
- \mathcal{L}_{rec} Reconstruction Loss
- \mathcal{L}_{DA} De-association Loss
- G_n Generator at scale n
- D_n Discriminator at scale n
- α , λ Hyperparameters

- Discriminator: distinguish real and fake
- Generator: fool discriminator into thinking generated image is real

We used the Wasserstein GAN with gradient penalty (WGAN-GP)

 $\mathbb{E}_{\tilde{x} \sim P_g}[D(\tilde{x})] - \mathbb{E}_{x \sim P_r}[D(x)] + \lambda_{GP} \mathbb{E}_{\hat{x}}[(\|\nabla_{\hat{x}} D(\hat{x})\|_2 - 1)^2]$

 $\min_{G_n} \max_{D_n} \mathcal{L}_{adv}(G_n, D_n) + \alpha \mathcal{L}_{rec}(G_n) + \lambda \mathcal{L}_{DA}(G_n)$

- \mathcal{L}_{adv} Adversarial Loss
- \mathcal{L}_{rec} Reconstruction Loss
- \mathcal{L}_{DA} De-association Loss
- G_n Generator at scale n
- D_n Discriminator at scale n
- α , λ Hyperparameters

Ensures that we can reconstruct the original image

```
||G_n(z_n^{rec}, (\tilde{x}_{n+1}^{rec})\uparrow^r) - x_n||_2
```

- G_n Generator at scale n
- z_n^{rec} upsampled noise map
- (\tilde{x}_{n+1}^{rec}) \uparrow^r upsampled generated image from previous scale
- x_n downsampled original image for scale n

 Discriminator views the image as patches

- The discriminator associates the patches with each other
- Image is fake if for example patch a is not beside patch b

Similarly, discriminator

 associates the blue patches
 (object of interest) with the red
 patches (its surroundings)

De-Association Loss

 $\mathcal{L}_{DA} = ||(M_n \times \tilde{x}_n) - 0||_2$

Ablation Study

Input

Remove \mathcal{L}_{DA}

Remove Overlay

Setting Object Location

Setting Image Size and Object Location

Input

Object Replication

Training

Mask

Image

Mask

Testing

Object Removal

Training

Object Removal

Training

Testing

Mask

Image

Loose Masks

Fitted (Original)

Paint Brush

Box

Comparison: Seam Carving

Seam Carving

Input

Comparison: Seam Carving

Seam Carving

Input

Comparison: GAN-Based Approach InGAN (ICCV 2019)

Input

SinGAN (ICCV2019)

Comparison: GAN-Based Approach

Input

InGAN (ICCV 2019)

Comparison: GAN-Based Approach InGAN (ICCV 2019)

Input

SinGAN (ICCV2019)

There's still a lot of room for improvement!

Please contact me (<u>daniel.tan@ou.nl</u>) if you are interested or know someone who is interested in working on this!

Very suitable topic for Master's students!

- Not computationally expensive
 - Deep learning that only uses 1 image.
- Fast to train \Rightarrow Fast to iterate ideas
- Less competition (not overly hyped)

Thank you! Any questions?

Please contact me (<u>daniel.tan@ou.nl</u>) if you are interested or know someone who is interested in working on this!

Future ConCoNet: Class-Agnostic Counting with Positive and Negative Exemplars

Can count anything! Only specify what to count at test time

GT Count: 15

Pred Count: 14.62

Pred Count: 134.66

