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Introducing: PIFO

Just a PQ, with a ranking function,
pbut with rank-ties broken in FIFO order.
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free language

shape expressivity

Compare expressivity of languages”
Compare expressivity of trees”

Compile a program so it runs against a new tree”
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Vlap root to root, leaves to leaves. Respect ancestry.

Iwo new algorithms,
pboth starting with heterogeneous source trees.

1. If target tree Is regular d-ary for some @.
2. It target tree Is Itself heterogeneous.
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