Formal Abstractions for
Packet Scheduling

Mohan, Liu, Foster, Kappe, Kozen

’

X

X

SDN made networks
programmable.

Katwijk A
VL RS
/L‘elden <2

~
Ihe Hague

Den Helder

A

Emmelt

p)
Bergen

Alkmaar

mpurmerend

Heemskerk Lelystad

‘%(>

A
Amsterdam I-\\Imere A

Harderwijk
’ “} Ly,
‘ Ulthoorn ‘ i

A

/

"

Amersfoort’
.

Y *-,
IS -_ Utrecht

} . Nieuwegein Veenendaal

2 p .') T et ._“-.‘

Rotterdam

] .\‘ .
v :, Leerdam ‘-‘
e e 2 o’

Den Helder

SDN made networks .
programmable.

~) Emmelt

Early goal: routing. N AP

[t 5

Heemskerk wpurmerend Lelystad
+F
~ . e
Amsterdamp Aimere 2
‘) Harderwijk
‘ N n NS /-
" ‘U'th ‘ “ , Putten
' »% Uithoorn -

V4 n . . . ' v '
Katwijk~ 2<% v '
Vi 2o L |
/Lelden . P P ; :)ersfoort.

Dronte

N
< Utrecht

Nieuwegein Veenendaal

o\. ‘.“ *
¢, g .7

SDN made networks - U
programmable. | 1

carly goal: routing. x

But now we need J
: 4 .-
control over scheduling. pterde

) , ltten
iu .‘~ s ’ ‘.' s ° ". : o L
' ye Amersfoort
* -
, \

< Utrecht

programmable.

carly goal: routing. x

But now we need J
control over scheauling. Amstefda

. Amersfoort’
\ / .."

SDN made networks 4\ &Y

Putten

< Utrecht

SDN made networks
programmable.

carly goal: routing.

Heemskerk p rmerend

But now we need
1 Aﬁ‘.{eklam Almer
control over scheauling. =

Basic tools work fine...

SDN made networks
programmable.

carly goal: routing.

But now we need
control over scheduling.

Basic tools work fine...

SDN made networks
programmable.

carly goal: routing.

But now we need
control over scheduling.

Basic tools work fine...

But modern scheduling
requires more.

/

Den Helder

A

p)
Bergen

Alkmaar

mpurmerend

Heemskerk

‘\?

Amsterdam

Katwijk~ 2% y

\/.
/L‘elden

Lelystad

“'.
o

e
Almere -
L = Harderwijk

Amersfoort’

Utrecht

Nieuwegein

Veenendaal

. Leerdam

But modern scheduling
requires more.

R traffic goes to either \k
Purmerend or [he Hague.

Lelystad

e

Amsterdam Aimere A
\ Harderwijk

4 , f'Ctten
‘ Uithoorn ‘ . ' _~
Amersfoort’
~ / ‘:"

Utrecht

But modern scheduling
requires more.

R traffic goes to either . }X
Purmerend or [he Hague. p,,, /

=
Amsterd,a‘m ;\u{gg%

But modern scheduling
requires more.

= traffic goes to either
Purmerend or [he Hague.

Goal:

INnterleave R and B;
iNterleave P ana |I.

But modern scheduling
requires more.

R traffic goes to either }X
Purmerend or [he Hague. wp _/

> e

Goal:

But modern scheduling
requires more.

= traffic goes to either
Purmerend or [he Hague.

Goal:

Den Helder

New plan! D

3
Bergen

AlKmaar

¥alystad Dronte

D/

New plan!

INterleave
small, medium, and large
Dackets.

1

I he ﬁague) -

-

N\ 7\ i

NCA
\~

\ "

3
Bergen

AlKmaar

New plan!

INterleave
small, medium, and large
Dackets.

/

1

Dhe ﬁague/ >

-

N\ S\ i

NCA
\~

\ "

3
Bergen

AlKmaar

New plan!

INterleave
small, medium, and large
Dackets.

/

1

I he ﬁag ue) -

-

N\ 7\ i

NCA
\~

\ "

3
Bergen

AlKmaar

NO general way to deploy our gadget.

NO general way to deploy our gadget.

(>

A human needs a O
range of trees.

NO general way to deploy our gadget.

(>

A human needs a S 1he haraware wants
range of trees. to support one tree.

NO general way to deploy our gadget.

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

NO general way to deploy our gadget.

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

NO general way to deploy our gadget.

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

NO general way to deploy our gadget.

this work

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

Aside: PIFO Trees

Sivaraman et al. at SIGCOMM 16

Review: FIFO

Just an ordered collection.

Review: FIFO

Just an ordered collection.
Iwo ways of Interacting with the collection:

([T TTTTTT]

Review: FIFO

Just an ordered collection.
Iwo ways of Interacting with the collection:

oush

([T TTTTTT]

Review: FIFO

Just an ordered collection.
Iwo ways of Interacting with the collection:

oush

g

Review: FIFO

Just an ordered collection.
Iwo ways of Interacting with the collection:

oush

,\/ /

Review: FIFO

Just an ordered collection.
Iwo ways of Interacting with the collection:

oush POP

,\/ /

Review: FIFO

Just an ordered collection.
Iwo ways of Interacting with the collection:

oush POP

S I I O)

Review: FIFO

Just an ordered collection.
Iwo ways of Interacting with the collection:

oush POP

S I I O)

Review: FIFO

Just an ordered collection.
Iwo ways of Interacting with the collection:

oush POP

([T TTTTTT]

Review: priority queue

Everything from before holds,
but we have a little more control.

([T TTTTTT]

Review: priority queue

Everything from before holds,
but we have a little more control.

Say we have a queue prioritized by pH.

([T TTTTTT]

Review: priority queue

Everything from before holds,
but we have a little more control.

Say we have a queue prioritized by pH.

g

Review: priority queue

Everything from before holds,
but we have a little more control.

Say we have a queue prioritized by pH.

,/ ~
* I'®

Review: priority queue

Everything from before holds,
but we have a little more control.

Say we have a queue prioritized by pH.

g

Review: priority queue

Everything from before holds,
but we have a little more control.

Say we have a queue prioritized by pH.

g

Review: priority queue

Everything from before holds,
but we have a little more control.

Say we have a queue prioritized by pH.

([T TTTTTT]

Review: priority queue

1 he priority need not be inherent to the item!

Review: priority queue

1 he priority need not be inherent to the item!
We can have a ranking function:

Review: priority queue

1 he priority need not be inherent to the item!
We can have a ranking function:

Review: priority queue

1 he priority need not be inherent to the item!
We can have a ranking function:

Review: priority queue

1 he priority need not be inherent to the item!
We can have a ranking function:

Review: priority queue

1 he priority need not be inherent to the item!
We can have a ranking function:

Review: priority queue

1 he priority need not be inherent to the item!
We can have a ranking function:

Review: priority queue

1 he priority need not be inherent to the item!
We can have a ranking function:

Review: priority queue

1 he priority need not be inherent to the item!
We can have a ranking function:

Introducing: PIFO

Just a PQ, with a ranking function,
pbut with rank-ties broken in FIFO order.

10

Den Helder

Traffic Incoming <
from Rotterdam and Beverwik

-

p)
Bergen

AlKmaar

[r

Heemskerk &Purmerend Lelystad
s

Amsterdam Almere A

Harderwijk

s / :

Dronte

| ., Putten

ei o Amersfoort’
Ihe Hague * L ST
Nigl vegein ~
'. Gouda - - Veenensiaal

Rotterdam " "
AN\ L [

[raffic Incoming
from Rotterdam and Beverwik

Goal: interleave R and B \X
W

Lelystad

e
Amsterdam Almere

' .
> .
he Hague »
'. Gouda |

Rotterdam o - ‘ ‘
) :, Leerda - 7

[raffic Incoming
from Rotterdam and Beverwik

Goal: interleave R and B \X
‘N
A PIFO will suffice.

Lelystad
‘J;
g

e
Amsterdam Almere

. .
‘/ “
lhe Hague *
'. Gouda - _
Rotterdam o - ‘ ‘
) :, Leerda - 7

11

11

[raffic Incoming
from Rotterdam and Beverwik

Goal: Interleave R and B

A PIFO will suftice.

R
ouda

11

[raffic Incoming

from Rotterdam and Beverwik

Goal: Interleave R and B

A PIFO will suftice.

3., ..., B1, (R,B)*

~

/ 4
Katwijk /
\/.
/L‘elden
/&,\A

’he Hague »

11

[raffic Incoming

from Rotterdam and Beverwik

oal: interleave R and B
A PIFO will suffice.

.

B, ... B1, (R,B)*

~

/ 4
Katwijk /
\/.
/L‘elden
/&,\A

’he Hague »

11

[raffic Incoming

from Rotterdam and Beverwik

Goal: Interleave R and B

A PIFO will suftice.

~

/ 4
Katwijk /
\/.
/L‘elden
/&,\A

’he Hague »

11

[raffic Incoming

from Rotterdam and Beverwik

Goal: Interleave R and B

A PIFO will suftice.

3., ..., B1, (R,B)*

~

/ 4
Katwijk /
\/.
/L‘elden
/&,\A

’he Hague »

11

[raffic Incoming
from Rotterdam and Beverwik

Goal: Interleave R and B

A PIFO will suftice.

3., ..., B1, (R,B)*

eems

Rn, ey R‘I, (R,B)* /&f\A

The Hague >

er

R
ouda

11

[raffic Incoming
from Rotterdam and Beverwik

Goal: Interleave R and B

A PIFO will suftice.

3., ..., B1, (R,B)*
Rn, ..., Ri, (R,B)*
(R,B)°

Katw

L

eems

/&’\A

The Hague >

er

R
ouda

12

= traffic goes to elther

Purmerend or The Hague.

Den Helder

A

/

-

Bergen b
Hoorn '
Alkmaar
. \‘
Uelystad Dronte

Heem&‘»kerk Purmerend

e
Amsterdam ’}'@g\

ol
. . -
’ .
»
"
‘ »
-
’
- .

. Amersfoort

N'¢ wvegein Veenendaal

.‘. .." *
¢, . Ny

= traffic goes to elther
Purmerend or The Hague.

(Goal: o \\X
W\
INnterleave R and B; % __

interleave P and 1. » N

I
Amsterdam ;\un]gre/

- ‘\. ..‘l *
\ o, —

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

B3, B, P2, B1, P+

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

T1=—> B3, B2, P2, B1, P:

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

T1=—> B3, B2, P2, B1, P

Ba, B2, P2, 11, B1, P+

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

T1=—> B3, B2, P2, B1, P

Ba, B2, P2, 11, B1, P+
B3, B2, P2, B1, 11, P+

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

T1=——> B3, B2, P2, B1, P

Ba, B2, P2, 11, B1, P+
B3, B2, P2, B1, 11, P+
B3, B2, P2, B1, P1, |+

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

T1=——> B3, B2, P2, B1, P

3, B2, LA, B8/, 8
B3, Bo,]l B, I B
Bs, B2, [} B1. I} B

Dual goals: Bs, Bz, P2, T1, B1, P
interleave R anad &; B3, B, Po, By, T+, P

interleave - and |. Bs, Bo, Po, B1, Py, T

T1+—> B3, B2, P2, B1, P

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

B3, P2, Bo, 11, B1, P+

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

Ba, P2, Bo, 11, B1, P+
B3, P2, Bo, P1, B1, |+

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

Ba, P2, Bo, 11, B1, P+
B3, P2, Bo, P1, B1, |+

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

B Py, By, T+, Bi. P
B3, P2, Bo, P41, B1, |+

Dual goals:
Nterleave R and B;
Nterleave ¥ and |I.

Bs, P2, Bo, Ty, By, Py,
Ba, P2, B2, P1,.B1, T4

ENngueueing a packet can
require the reordering of
puffered packets.

No PIFO can do this.

Introducing: PIFO trees

10

Introducing: PIFO trees

This behaves like a queue!

10

Introducing: PIFO trees

1his behaves like a queue!
How do we pop It/

Introducing: PIFO trees

1his behaves like a queue!
How do we pop It/

Introducing: PIFO trees

1his behaves like a queue!
How do we pop It/

Introducing: PIFO trees

1his behaves like a queue!
How do we pop It/

Introducing: PIFO trees

1his behaves like a queue!
How do we pop It/

Introducing: PIFO trees

1his behaves like a queue!
How do we pop It/

Introducing: PIFO trees

1his behaves like a queue!
How do we pop It/

Introducing: PIFO trees

1his behaves like a queue!
How do we pop It/

Introducing: PIFO trees

This behaves like a queue!
How do we pop It/

Introducing: PIFO trees

This behaves like a queue!
How do we pop It/

Introducing: PIFO trees

This behaves like a queue!
How do we pop It/

Introducing: PIFO trees

This behaves like a queue!
How do we pop It/
How do we push into it

B3, B2, P2, B1, P1

Introducing: PIFO trees

Introducing: PIFO trees nterleave R and B;

iNterleave P and |.
m

lllllllllllllllllllllll

10

Introducing: PIFO trees nterleave R and B;

iNterleave P and |.
m

lllllllllllllllllllllll

10

Introducing: PIFO trees

iNterleave R and B;

iNterleave P and |.
m

10

Introducing: PIFO trees

iNterleave R and B;

iNterleave P and |.
m

10

Introducing: PIFO trees nterleave R and B;

iNterleave P and |.
m

B3, B2, P2, B1, P

10

Introducing: PIFO trees nterleave R and B;

iNterleave P and |.
m

B3, Bo, P2, B1, P Bz, P2, Bo, Tq, B1, P+

10

Introducing: PIFO trees nterleave R and B;

iNterleave P and |.
m

10

| R and B;
Introducing: PIFO trees nterleave

iNterleave P and |.
m

10

| R and B;
Introducing: PIFO trees nterleave

iNterleave P and |.
m

10

= traffic goes to elther
Purmerend or The Hague.

(Goal: o \\X
W\
INnterleave R and B; % __

interleave P and 1. » N

I
Amsterdam ;\un]gre/

- ‘\. ..‘l *
\ o, —

17

= traffic goes to elther

Purmerend or The Hague.

Goal:

INterleave R and B:
Nterleave ¥ and |I.

eems

Aside: PIFO Trees

Sivaraman et al. at SIGCOMM 16

18

Key Insignt

A PIFO tree manifests a
programming language.

Key Insignt

A PIFO tree manifests a
programming language.

A program IS precisely a 1 &

scheaduling algorithm.

Key Insignt

A PIFO tree manifests a

. S =
programming language.

A program IS precisely a 1 &

scheaduling algorithm.

Key Insignt
Path: [(2,7q),(B1,1,)]

A PIFO tree manifests a B, —>

programming language.

A program IS precisely a 1 &

scheaduling algorithm.

Key Insignt
Path: [(2,7q),(B1,1,)]

A PIFO tree manifests a
programming language.

A program IS precisely a
scheaduling algorithm.

Key Insignt
Path: [(2,7q),(B1,1,)]

A PIFO tree manifests a
programming language.

A program IS precisely a
scheaduling algorithm.

Key Insignt

A PIFO tree manifests a
programming language.

A program IS precisely a
scheaduling algorithm.

free language

shape expressivity

Path: [(2,77),(B1,7)]

Which leads to some very PL-ey questions:

free language

shape expressivity

Which leads to some very PL-ey questions:

free language

shape expressivity

Compare expressivity of languages”

Which leads to some very PL-ey questions:

free language

shape expressivity

Compare expressivity of languages”
Compare expressivity of trees”

Which leads to some very PL-ey questions:

free language

shape expressivity

Compare expressivity of languages”
Compare expressivity of trees”

Compile a program so it runs against a new tree”

NO general way to deploy our gadget.

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

NoO general way to-deptey-our gadget.

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

21

NoO general way to-deptey-our gadget.

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

21

NoO general way to-deptey-our gadget.

compilation

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

21

Contributions

Contributions

Formal model of PIFO trees

Contributions

Formal model of PIFO trees

General theorems of expressiveness
w.r.1. tree shape

22

Contributions

Formal model of PIFO trees

General theorems of expressiveness
w.r.1. tree shape

Compiler

22

Contributions

Formal model of PIFO trees

General theorems of expressiveness
w.r.1. tree shape

Compiler

Simulator

22

EXpressivity of trees

Irees with more leaves are more expressive.
laller trees are more expressive.

23

EXpressivity of trees

Irees with more leaves are more expressive.
laller trees are more expressive.

Captured elegantly by:

23

EXpressivity of trees

Irees with more leaves are more expressive.
laller trees are more expressive.

Captured elegantly by:

Homomorphic embedaing.
Map root to root, leaves to leaves. Respect ancestry.

EXpressivity of trees

Homomorphic embedaing.
Map root to root, leaves to leaves. Respect ancestry.

EXpressivity of trees

Homomorphic embedaing.
Map root to root, leaves to leaves. Respect ancestry.

EXpressivity of trees

Homomorphic embedaing.
Map root to root, leaves to leaves. Respect ancestry.

Compiling programs

Compiling programs

Compiling programs

Compiling programs

Compiling programs

Compiling programs

Compiling programs

Compiling programs

OO0l

Compiling programs

goleli
e

transient

Compiling programs

1,3,1,2,3,1,2,3

1

2\3
I I I

Compiling programs

1,3,1,2,3,1,2,3

1,3,1,2,3,1,2,3

1

2\3
I I I

Compiling programs

1,3,1,2,3,1,2,3

1

2\3
I I I

1,3,1,2,3,1,2,3

25

Compiling programs

1,3,1,2,3,1,2,3

1

2\3
I I I

1,2,1,2,2,1, 2,2

25

Compiling programs

1,3,1,2,3,1,2,3

1

2\3
I I I

1,2,1,2,2,1, 2,2

25

Compiling programs

B 1!3!1!2!3!1!2!3

1

2\3
I I I

1,2,1,2,2,1, 2,2

25

Compiling programs

1,2,1,2,2,1, 2,2

Path: [(2,77), ...]

B 1!3!1!2!3!1!2!3

1

2\3
I I I

Compiling programs

1,2,1,2,2,1, 2,2

Path: [(2,71), ...]
B

1

2\3
I I I

Compiling programs

1,2,1,2,2,1, 2,2

Path: [(2,71), ...]
B

1

2\3
I I I

Compiling programs

Path: [(2,71), ...]
B

1

2\3
I I I

Compiling programs

[\ Path: [(2,r), (1,ry), ...]

Path: [(2,71), ...]
B

1

2\3
I I I

Compiling programs

Path: ((2,rq), (1,19), ...]

Path: [(2,71), ...]
B

1

2\3
I I I

Compiling programs
Path: ((2,rq), (1,19), ...]
B

] 2

]
1 2

Path: [(2,71), ...]
B

1
i

2\3
L] [

Compiling programs
Path: ((2,rq), (1,19), ...]
B

] 2

]
1 2

Path: [(2,71), ...]
B

1
i

2\3
L] [

Given an embedding, we lift
t to arrive at a compiller. Path: [(2,r), (1,7), ...

B 1!2!2!1!2!2!1!2!2
] 2

]
1 2

Path: [(2,71), ...]
B

1
i

2\3
L] [

Generating embeddings automatically

Generating embeddings automatically

Homomorphic embedaing.
Map root to root, leaves to leaves. Respect ancestry.

20

Generating embeddings automatically

Homomorphic embedaing.
Vlap root to root, leaves to leaves. Respect ancestry.

Iwo new algorithms,
pboth starting with heterogeneous source trees.

Generating embeddings automatically

Homomorphic embedaing.
Vlap root to root, leaves to leaves. Respect ancestry.

Iwo new algorithms,
pboth starting with heterogeneous source trees.

1. If target tree Is regular d-ary for some @.

Generating embeddings automatically

Homomorphic embedaing.
Vlap root to root, leaves to leaves. Respect ancestry.

Iwo new algorithms,
pboth starting with heterogeneous source trees.

1. If target tree Is regular d-ary for some @.
2. It target tree Is Itself heterogeneous.

Workflow

8] [RR

D] [WrQ: 10/40/50

27

Workflow

WFQ: 40/40/20

e

o i o
D WFQ: 10/40/50

logical o i

Workflow

WFQ: 40/40/20

e

o i o
D WFQ: 10/40/50

AN

logical o i

G

But the hardware supports
a regular-branching binary tree.

27

Workflow

WFQ: 40/40/20

e

o i o
D WFQ: 10/40/50

AN

logical o i

G

But the hardware supports
a regular-branching binary tree.

NO problem.
Here’s how I'll use that tree.

Workflow

WFQ: 40/40/20 WFQ 40/40/20

o i = RR
./[l) }Qr 10<W50
ogical ® i & 0

D]

NO problem.
Here’s how I'll use that tree.

Workflow

WFQ: 40/40/20

e

o i o
D WFQ: 10/40/50

AN

logical o i

WFQ: 40/40/20

YRR
wac} 10/40/50
: j\c
F

actual

Simulation

WFQ: 40/40/20

e

o i o
D WFQ: 10/40/50

AN

logical o i

WFQ: 40/40/20

YRR
wac} 10/40/50
: j\c
F

actual

Simulation

WFQ: 40/40/20
o =
logical o =

WFQ: 40/40/20

RR

<
ﬂ./ : WFQ: 10/40/50

actual

Simulation

WFQ: 40/40/20

o =
logical o =

WFQ: 40/40/20

RR

<
ﬂ./ : WFQ: 10/40/50

actual

Underlying formalism

Underlying formalism

PUSH(p, pkt,r) = p’
push(Leaf (p), pkt,r) = Leaf(p")

push(gs[i], pkt, pt) = ¢’ PUSH(p, i,r) = p’

push(Internal(gs, p), pkt, (i,r) :: pt) = Internal(gs[i/q’], p")

28

Underlying formalism

pUsH(p, pkt,r) = p’ push(gs[i], pkt,pt) =q" pusu(p,i,r) =p’

push(Leaf (p), pkt,r) = Leaf(p") push(Internal(gs, p), pkt, (i,r) :: pt) = Internal(gs[i/q’], p")
Path

Underlying formalism

r € Rk

ts € Topo” 1<i<n r € Rk pt € Path(ts[i])

r € Path(x)

PUSH(p, pkt,r) = p’

(i,r) :: pt € Path(Node(ts))

push(gs[i], pkt, pt) = ¢’ PUSH(p, i,r) = p’

push(Leaf (p), pkt,r) = Leaf(p")

push(Internal(gs, p), pkt, (i,r) :: pt) = Internal(gs[i/q’], p")
Path

28

Underlying formalism

r € Rk ts € Topo” 1<i<n r € Rk pt € Path(ts[i])
r € Path(x) (i,r) :: pt € Path(Node(ts))
PUSH(p, pkt,r) = p’ push(gs[i], pkt, pt) = q° PUSH(p, i,7) = p’

push(Leaf (p), pkt,r) = Leaf(p") push(Internal(gs, p), pkt, (i,r) :: pt) = Internal(gs[i/q’], p")
PIFOTree Path PIFOTree

Underlying formalism

neN ts € Topo” p € PIFO({1,..., n})

p € PIFO(Pkt) V1 < i < n.gs|i] € PIFOTree(ts|i])
Leaf(p) € PIFOTree(x) Internal(gs, p) € PIFOTree(Node(ts))
r € Rk ts € Topo” 1<i<n r € Rk pt € Path(ts[i])
r € Path(x) (i,r) :: pt € Path(Node(ts))
PUSH(p, pkt,r) = p’ push(gs[i], pkt, pt) = ¢’ PUSH(p, i,r) = p’

push(Leaf (p), pkt,r) = Leaf(p") push(Internal(gs, p), pkt, (i,r) :: pt) = Internal(gs[i/q’], p")
PIFOTree Path PIFOTree

Underlying formalism

neN ts € Topo” p € PIFO({1,..., n})

p € PIFO(Pkt) V1 < i < n.gs|i] € PIFOTree(ts|i])
Leaf(p) € PIFOTree(x) Internal(gs, p) € PIFOTree(Node(ts))
Topo Topo
r € Rk ts € Topo” 1<i<n r € Rk pt € Path(ts[i])
r € Path(x) (i,r) :: pt € Path(Node(ts))
Topo Topo
PUSH(p, pkt,r) = p’ push(gs[i], pkt, pt) = ¢’ PUSH(p, i,r) = p’

push(Leaf (p), pkt,r) = Leaf(p") push(Internal(gs, p), pkt, (i,r) :: pt) = Internal(gs[i/q’], p")
PIFOTree Path PIFOTree

Underlying formalism

neN ts € Topo”

* € Topo Node(ts) € Topo

neN ts € Topo” p € PIFO({1,..., n})

p € PIFO(Pkt) V1 < i < n.gs|i] € PIFOTree(ts|i])
Leaf(p) € PIFOTree(x) Internal(gs, p) € PIFOTree(Node(ts))
Topo Topo
r € Rk ts € Topo” 1<i<n r € Rk pt € Path(ts[i])
r € Path(x) (i,r) :: pt € Path(Node(ts))
Topo Topo
PUSH(p, pkt,r) = p’ push(gs[i], pkt, pt) = ¢’ PUSH(p, i,r) = p’

push(Leaf (p), pkt,r) = Leaf(p") push(Internal(gs, p), pkt, (i,r) :: pt) = Internal(gs[i/q’], p")
PIFOTree Path PIFOTree

A general way to deploy PIFO trees

A general way to deploy PIFO trees

A general way to deploy PIFO trees

| et the hardware
SUPPOrt Some tree.

A general way to deploy PIFO trees

| et the hardware
SUPPOrt Some tree.

A general way to deploy PIFO trees

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees

X

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

Formal Abstractions for
Packet Scheduling

Mohan, Liu, Foster, Kappe, Kozen

cs.cornell.edu/~amohan

