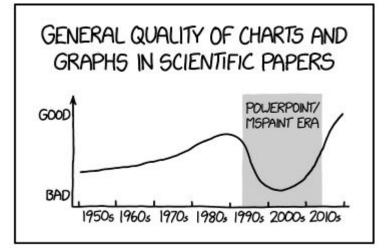
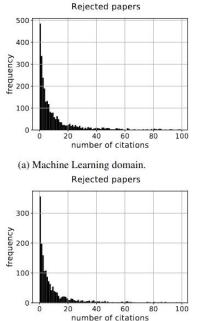
MultiSChuBERT: Effective Multimodal Fusion for Scholarly Document Quality Prediction

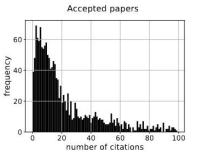
Gideon Maillette de Buy Wenniger

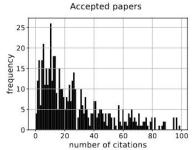
Thomas van Dongen Lambert Schomaker



Date: 7-11-2023


Scholarly Document Quality Prediction


- Predict quality from the document alone: Textual vs visual clues on quality
- What indicators of quality to predict?
 - Accept/Reject
 - Simple and well understood
 - Scarce data
 - Number of Citations
 - Large data availability
 - We predict: log(#citations +1)



Source:https://m.xkcd.com/1945/

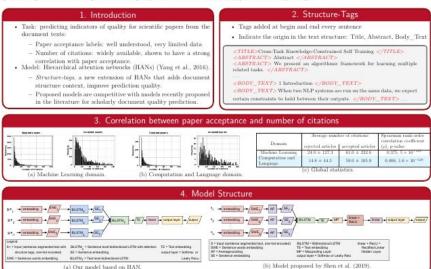
Is it reasonable to look at #citations?

Domain	Average num	ber of citations	Spearman rank-order correlation
Domain	rejected articles	accepted articles	coefficient (ρ), p-value
Machine Learning	24.0 ± 127.3	61.0 ± 232.6	$0.375, 5 \times 10^{-153}$
Computation and Language	14.8 ± 44.3	59.0 ± 105.9	$0.466, 1.6 \times 10^{-128}$

(c) Global statistics.

(b) Computation and Language domain.

Background earlier work


Structure-Tags Improve Text Classification for Scholarly Document Quality Prediction

Gideon Maillette de Buy Wenniger[†], Thomas van Dongen[†], Eleri Aedmaa[†], Herbert Teun Kruitbosch[‡] Edwin A. Valentijn[‡] and Lambert Schomaker[†]

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen

¹Center for Information Technology, University of Groningen ³Kapteyn Astronomical Institute, University of Groningen Groningen, The Netherlands

gemdbw AT gmail.com, t.a.van.dongen AT student.rug.nl, {e.aedmaa, h.t.kruitbosch, e.a.valentijn, l.r.b.schomaker} AT rug.nl

university of

groningen

SChuBERT

Scholarly Document Chunks with BERT-encoding boost Citation Count Prediction

Thomas van Dongen,

Gideon Maillette de Buy Wenniger, Lambert Schomaker

This work: multimodality

MASTER'S THESIS

UNIVERSITY OF GRONINGEN

DEPARTMENT OF ARTIFICIAL INTELLIGENCE

Quality Prediction of Scientific Documents Using Textual and Visual Content

First Supervisor: Prof. dr. L.R.B. Schomaker

Author: Thomas Anton van Dongen Second Supervisor:

Dr. G.E. Maillette de Buy Wenniger

March 22, 2021

Cornell University	We gratefully acknowledge supp
arxiv > cs > arXiv:2308.07971	Search Help Advanced
Computer Science > Computation and Language	

[Submitted on 15 Aug 2023]

MultiSChuBERT: Effective Multimodal Fusion for Scholarly **Document Quality Prediction**

Gideon Maillette de Buy Wenniger, Thomas van Dongen, Lambert Schomaker

Automatic assessment of the quality of scholarly documents is a difficult task with high potential impact. Multimodality, in particular the addition of visual information next to text, has been shown to improve the performance on scholarly document quality prediction (SDQP) tasks. We propose the multimodal predictive model MultiSChuBERT, It combines a textual model based on chunking full paper text and aggregating computed BERT chunk-encodings (SChuBERT), with a visual model based on Inception V3.Our work contributes to the current state-of-the-art in SDQP in three ways. First, we show that the method of combining visual and textual embeddings can substantially influence the results. Second, we demonstrate that gradual-unfreezing of the weights of the visual sub-model, reduces its tendency to overit the data, improving results. Third, we show the retained benefit of multimodality when replacing standard BERT_{BASE} embeddings with more recent state-of-the-art text embedding models

Using BERT_{BASE} embeddings, on the (log) number of citations prediction task with the ACL-BiblioMetry dataset, our MultiSChuBERT (text+visual) model obtains an R² score of 0.454 compared to 0.432 for the SChuBERT (text only) model. Similar improvements are obtained on the PeerRead accept/reject prediction task. In our experiments using SciBERT, scincl, SPECTER and SPECTER2.0 embeddings, we show that each of these tailored embeddings adds further improvements over the standard BERTBASE embeddings, with the SPECTER2.0 embeddings performing best

Computation and Language (cs.CL); Machine Learning (cs.LG) Subjects:

https://arxiv.org/abs/2308.07971

Selected Related work

Journal of Artificial Intelligence Research 68 (2020) 607-632

Submitted 09/2019; published 07/2020

A Multimodal Approach to Assessing Document Quality

Aili Shen Bahar Salehi Jianzhong Qi Timothy Baldwin School of Computing and Information Systems The University of Melbourne Victoria 3010, Australia AILIS@STUDENT.UNIMELB.EDU.AU BAHAR.SALEHI@GMAIL.COM JIANZHONG.QI@UNIMELB.EDU.AU TB@LDWIN.NET

Abstract

The perceived quality of a document is affected by various factors, including grammaticality, readability, stylistics, and expertise depth, making the task of document quality assessment a complex one. In this paper, we explore this task in the context of assessing the quality of Wikipedia articles and academic papers. Observing that the visual rendering of a document can capture implicit quality indicators that are not present in the document text — such as images, font choices, and visual layout — we propose a joint model that combines the text content with a visual rendering of the document for document quality assessment. Our joint model achieves state-of-the-art results over five datasets in two domains (Wikipedia and academic papers), which demonstrates the complementarity of textual and visual features, and the general applicability of our model. To examine what kinds of features our model has learned, we further train our model in a multi-task learning setting, where document quality assessment is the primary task and feature learning is an auxiliary task. Experimental results show that visual embeddings are better at learning structural features while textual embeddings are better at learning readability scores, which further verifies the complementarity of visual and textual features.

Main Question

How can we (still) get benefit from multimodality in combination with stronger textual encoders, and while using domain-specialized text embedding?

Statistics of the used datasets

(a) Data sizes and label types

(b) PeerRead accept/reject distribution

Dataset	#Documents (train + validation + test)	Labels	Dataset	Train Accept : Reject	Validation Accept : Reject	Test Accept : Reject
AI	4092 (3682 + 205 + 205)	Accept/reject	AI	10.5% : 89.5%	8.3%:91.7%	7.8%:92.2%
CL	2638 (2374 + 132 + 132)	Accept/reject	CL	24.3%:75.7%	22.0%:78.0%	31.1%:68.9%
LG	5048 (4543 + 252 + 253)	Accept/reject	LG	36.4% : 63.6%	36.5%:63.5%	32.0%:68.0%
ACL- BiblioMetry	30950 (27853 + 1548 + 1549)	Citations	2			

Data and scope this presentation

- We experiment with the ACL Bibliometry (number of citations prediction) and PeerRead (accept reject prediction) datasets
- ACL Bibliometry is much larger (30950 examples) than even the largest PeerRead (LG) subset (5048 examples)
 - Stronger models that use more context (multimodality) and full text input have more chance to thrive with larger training data
- We will focus on the ACL Bibliometry results in this presentation, but more results available in: <u>https://arxiv.org/abs/2308.07971</u>
 - Main findings on Peer Read are similar to those on ACL Bibliometry

Textual model input

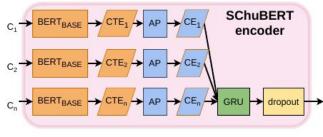
This is a long sentence which is divided into several chunks so

that BERT can extract contextualized features

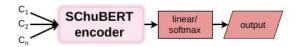
Chunk 1: This is a long sentence which Chunk 2: is divided into several chunks so Chunk 3: that BERT can extract contextualized features

Example of the chunking method. In this example, a sequence length of 6 used with no overlap.

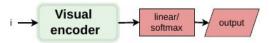
Visual model input: Overall appearance and layout

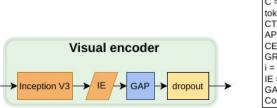

On Recursive Edit El stance Kernels with Application to Time Series Classification Terrares from terrar to the terrare and the

(a) Document grid – overview.

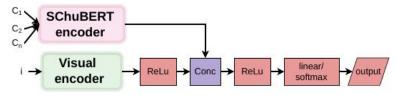

(b) Top-left part of the document grid, containing title and abstract.

Example of created document grid. The grid contains 12 pages and is of size 512x512.

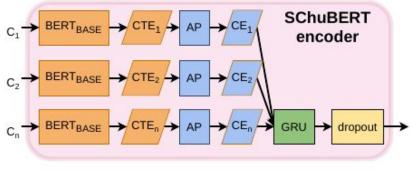

Overview of the used Text, Visual and Multimodal model


(a) SChuBERT encoder.

(d) The SChuBERT model (van Dongen, Maillette de Buy Wenniger, and Schomaker 2020).

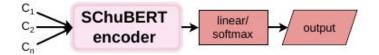

(e) The INCEPTION_{GU} model proposed in this work, based of the INCEPTION model from (Shen et al. 2019).

(b) Visual encoder.

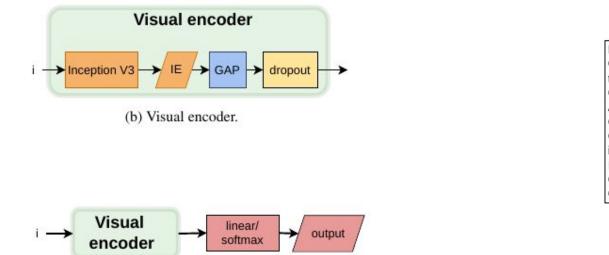

Legend C = Input (512 length text chunk, tokenized for BERT) CTE = Chunk token embedding AP = Average-pooling CE = Chunk embedding GRU = Gated recurrent unit i = Input (512x512 Grid of paper pages) IE = image embedding GAP = Global Average Pooling Conc = Concatenation Layer

(c) Legend used symbols.

(f) The MultiSChuBERT model proposed in this work.


The SChuBERT model (text)

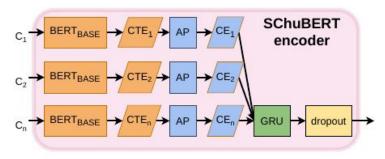
(a) SChuBERT encoder.


Legend	
C = Input (512 length text chunk,	
tokenized for BERT)	
CTE = Chunk token embedding	
AP = Average-pooling	
CE = Chunk embedding	
GRU = Gated recurrent unit	
i = Input (512x512 Grid of paper p	ages)
IE = image embedding	
GAP = Global Average Pooling	
Conc = Concatenation Layer	

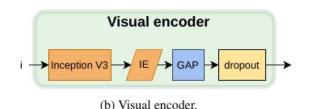
(c) Legend used symbols.

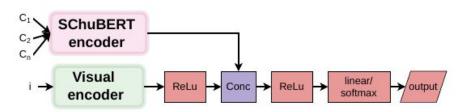
(d) The SChuBERT model (van Dongen, Maillette de Buy Wenniger, and Schomaker 2020).

The INCEPTION model (visual)



(e) The INCEPTION_{GU} model proposed in this work, based of the INCEPTION model from (Shen et al. 2019).


Legend C = Input (512 length text chunk, tokenized for BERT) CTE = Chunk token embedding AP = Average-pooling CE = Chunk embedding GRU = Gated recurrent unit i = Input (512x512 Grid of paper pages) IE = image embedding GAP = Global Average Pooling Conc = Concatenation Layer


(c) Legend used symbols.

The MultiSChuBERT model

(f) The MultiSChuBERT model proposed in this work.

Legend
C = Input (512 length text chunk,
tokenized for BERT)
CTE = Chunk token embedding
AP = Average-pooling
CE = Chunk embedding
GRU = Gated recurrent unit
i = Input (512x512 Grid of paper pages)
IE = image embedding
GAP = Global Average Pooling
Conc = Concatenation Laver

(c) Legend used symbols.

Three ways to facilitate effective multimodal fusion and further improve results:

- 1. **Gradual unfreezing**: gradually unfix the weights of the visual submodel during training
- 2. **Concatenation method:** improve the manner in which textual and visual embeddings are combined
- 3. Use of **science-domain-specialized** text embeddings in place of BERT_{BASE}: **SPECTER2.0**

Gradual unfreezing: what?

- Fix all parameters of the visual (sub-)model, except the linear output layer
- Unfreeze one (of ten) inception blocks every two epochs: 22 epochs total
- Train for 18 more epochs with all inception blocks unfrozen
- Learning rate gradually lowered, with set minimum

Gradual unfreezing: Why necessary?

The numbers of total and trainable parameters for the different base models.

	#total params	#trainable params
Model		frozen unfrozen
SChuBERT	0.8M	0.8M
INCEPTION	24.3M	24.3M
INCEPTION _{GU}	24.3M	4K 21.6<
MultiSChuBERT	25.9M	25.9M
MultiSChuBERT _{GU}	25.9M	1.3M 22.9M

- Notice: the INCEPTION submodel has much more trainable parameters than SChuBERT
- Gradual unfreezing avoids INCEPTION from immediately overfitting the data, before even properly fitting the SChuBERT submodel

Concatenation methods: How to create a multimodal embedding?

- Textual (u) and visual (v) embeddings can be combined in different ways.
- Chosen concatenation method impacts results, as shown in the literature for other applications.
- Overview concatenation methods:
 - (u, v): concatenation by taking u and v in one vector.
 - (|u v|): concatenation by taking the absolute element-wise difference between u and v.
 - (u * v): concatenation by taking the element-wise product of u and v.
 - (u, v, |u v|): concatenation of u, v and their absolute element-wise difference.
 - (u, v, u * v): concatenation of u, v and their element-wise product.
 - (u, v, |u v|, u * v): concatenation of u, v, their absolute element-wise difference, and their element-wise product.

Data & Experimental Setup

Statistics of the used datasets

(a) Data sizes and label types

(b) PeerRead accept/reject distribution

Dataset	#Documents (train + validation + test)	Labels	Dataset	Train Accept : Reject	Validation Accept : Reject	Test Accept : Reject
AI	4092 (3682 + 205 + 205)	Accept/reject	AI	10.5% : 89.5%	8.3%:91.7%	7.8%:92.2%
CL	2638 (2374 + 132 + 132)	Accept/reject	CL	24.3%:75.7%	22.0%:78.0%	31.1% : 68.9%
LG	5048 (4543 + 252 + 253)	Accept/reject	LG	36.4% : 63.6%	36.5%:63.5%	32.0% : 68.0%
ACL- BiblioMetry	30950 (27853 + 1548 + 1549)	Citations	6			

Used Hyperparameters

Table 2: Hyperparameters of the proposed models. 'AR, CIT' refers to the accept/reject prediction and citation prediction tasks. 'textual, visual' refers to the textual and visual portions of the joint model.

	SChuBERT	INCEPTION _{GU}	MultiSChuBERT
Vocabulary size	30000	N/A	30000
Optimizer	Adam	Adam	Adam
Learning rate (AR, CIT)	0.0001, 0.001	0.0001, 0.001	0.0001, 0.001
Epochs	40	40	40
Loss function (AR, CIT)	CE, MAE	CE, MAE	CE, MAE
Weight initialization	Xavier normal	Xavier normal	Xavier normal
Dropout rate (textual, visual)	0.3, N/A	N/A, 0.5	0.3, 0.5
GRU hidden size	256	N/A	256
Joint hidden size	N/A	N/A	128
Concatenation method (AR, CIT)	N/A	N/A	(u*v), (u,v, u-v)
Train batch size (AI, CL, LG, ACL)	18, 17, 17, 17	18, 17, 17, 17	18, 17, 17, 17
Val batch size (AI, CL, LG, ACL)	14, 16, 13, 15	14, 16, 13, 15	14, 16, 13, 15
Test batch size (AI, CL, LG, ACL)	15, 13, 10, 18	15, 13, 10, 18	15, 13, 10, 18
Word embedding size	768	N/A	768
Image embedding size	N/A	2048	2048

Experiments: Results #Citation Prediction

ACLBibliometry main results

(a) System performance metrics and system statistics.

Model		test scores	validation scores & statistics		
Model	R2↑	MSE↓	MAE↓	R2↑	model epoch
Avg Training Label	$\textbf{-0.005} \pm 0.000$	1.643 ± 0.000	1.028 ± 0.000	$\textbf{-0.001} \pm 0.000$	—
BiLSTM	$0.319 \ \pm 0.013$	1.110 ± 0.021	0.824 ± 0.009	—	—
HAN	0.339 ± 0.013	1.080 ± 0.021	0.820 ± 0.009	-	<u> </u>
SChuBERT*	0.398 ± 0.006	$0.985 \pm \ 0.010$	0.789 ± 0.005	-	_
CNN	0.118 ± 0.009	1.444 ± 0.013	0.952 ± 0.003	-	
INCEPTION	0.275 ± 0.029	1.186 ± 0.048	0.852 ± 0.018	0.265 ± 0.016	8.700 ± 3.302
INCEPTION _{GU}	0.332 ± 0.014	1.092 ± 0.023	0.786 ± 0.009	0.329 ± 0.011	38.400 ± 2.413
SChuBERT	0.432 ± 0.010	0.929 ± 0.017	0.765 ± 0.009	0.394 ± 0.005	23.300 ± 8.512
MultiSChuBERT	0.427 ± 0.016	0.937 ± 0.026	0.760 ± 0.009	0.409 ± 0.010	13.700 ± 6.499
MultiSChuBERT _{GU}	$\textbf{0.454} \pm \textbf{0.006}$	$\textbf{0.893} \pm \textbf{0.010}$	$\textbf{0.717} \pm \textbf{0.006}$	0.436 ± 0.012	37.600 ± 2.221

ACLBibliometry main results – statistical significance

(b) Statistical significance pairwise system score differences.

	R2				MSE					MAE								
		bas	seline	e syst	em			baseline system					baseline system					
System	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
Avg Training Label (1)		V	▼	▼	▼	▼	—	▼	▼	▼	▼	▼	—	▼	▼	V	▼	▼
INCEPTION (2)			▼	▼	▼	▼		—	▼	▼	▼	▼		_	▼	▼	▼	V
INCEPTION _{GU} (3)				▼	▼	▼			—	▼	▼	▼			-	▼	▼	▼
SChuBERT (4)				-		▼				_		▼						▼
MultiSChuBERT (5)					-	▼					—	▼	▲				_	▼
MultiSChuBERT _{GU} (6)						-						-						-

Statistical significance computed using an in-house adaptation of Multeval, multi-run resampling testing to support classification and regression metrics. \blacktriangle triangle pointing up='better than other' with p < 0.001 MultiSchubert_GU (15x) > MultiSchubert (9x) = Schubert (9x) \Rightarrow **GU is needed**

ACLBibliometry concatenation method comparison

concatenation		test scores		validation sco	ores & statistics
method	R2↑	MSE↓	MAE↓	R2↑	model epoch
(u,v)	0.446 ± 0.010	0.905 ± 0.016	0.723 ± 0.006	0.431 ± 0.005	37.700 ± 1.160
(u-v)	0.449 ± 0.007	0.901 ± 0.012	0.722 ± 0.006	0.429 ± 0.008	38.000 ± 3.266
(u * v)	0.443 ± 0.013	0.910 ± 0.021	0.731 ± 0.016	0.431 ± 0.006	35.400 ± 8.708
(u-v , u * v)	0.442 ± 0.011	0.912 ± 0.019	0.726 ± 0.008	0.424 ± 0.006	38.200 ± 2.440
(u,v,u*v)	0.445 ± 0.010	0.908 ± 0.017	0.725 ± 0.008	0.433 ± 0.007	37.900 ± 2.424
(u,v, u-v)	$0.450 \pm \ 0.005$	0.900 ± 0.009	0.721 ± 0.006	$\textbf{0.436} \pm \textbf{0.009}$	38.100 ± 2.998
(u,v, u-v ,u*v)	$\textbf{0.454} \pm \textbf{0.006}$	$\textbf{0.893} \pm \textbf{0.010}$	$\textbf{0.717} \pm \textbf{0.006}$	$\textbf{0.436} \pm \textbf{0.012}$	37.600 ± 2.221

(a) System performance metrics and system statistics.

ACLBibliometry concatenation method comparison – statistical significance

	1			R2							MSE]	MAE			
			basel	ine sy	ystem	ı				basel	ine sy	ystem	ı				basel	ine sy	stem		
System	1	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7
(u,v) (1)	-						∇							∇	23 <u></u> 23						∇
(u - v) (2)		3 -		\triangle	0				—		Δ					-		\triangle	0		
(u * v) (3)			.—.				V			, - -						V			∇	▼	▼
(u - v , u * v) (4)		∇				∇	▼		∇				∇	▼		∇		:		∇	▼
(u, v, u * v) (5)					—		▼					-					Δ		-	34	
(u,v, u-v) (6)				\triangle		-					Δ							\triangle			
(u, v, u - v , u * v) (7)	Δ						-	\triangle						-	\triangle					2	-

Experiments: Results Accept/Reject Prediction

Main Results PeerRead cs.Al

Model		test scores		validation sco	ores & statistics
Model	Accuracy↑	ROC AUC↑	F_1 -score \uparrow	Accuracy↑	model epoch
Maj Training Label	$92.2\pm0.00\%$	0.500 ± 0.000	0.000 ± 0.00	$91.7\pm0.00\%$	-
CNN	$92.2\pm0.00\%$	-	_	_	—
INCEPTION	$92.3 \pm 1.36\%$	0.834 ± 0.045	0.392 ± 0.069	$92.6 \pm 1.20\%$	1.800 ± 0.789
INCEPTION _{GU}	$93.0\pm0.87\%$	0.826 ± 0.031	0.441 ± 0.092	$92.5 \pm 0.95\%$	31.500 ± 0.707
SChuBERT	$93.5 \pm 0.52\%$	0.912 ± 0.012	0.461 ± 0.080	$91.9\pm0.35\%$	19.200 ± 5.534
MultiSChuBERT	$92.7\pm0.43\%$	0.830 ± 0.027	0.363 ± 0.160	$92.7 \pm 1.15\%$	1.900 ± 0.876
MultiSChuBERT _{GU}	$93.6\pm1.02\%$	$\textbf{0.913} \pm \textbf{0.020}$	$\textbf{0.551} \pm \textbf{0.087}$	$93.1\pm0.94\%$	26.000 ± 6.342

(a) System performance metrics and system statistics.

		1	Accu	iracy]	ROC	AUC	2				F_1 -S	Score		
		base	eline	syst	em			bas	seline	e syst	em			bas	seline	e syst	em	
System	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
Maj Training Label (1)	-			▼		∇	—	▼	V	▼	▼	▼	-	▼	▼	▼	▼	V
INCEPTION (2)		—		∇		V		—		▼		V		-				▼
INCEPTION _{GU} (3)			-						-	▼		▼			-			W
SChuBERT (4)		\triangle		-						-						-		\mathbf{V}
MultiSChuBERT (5)					-					▼	-	▼					-	▼
$MultiSChuBERT_{GU} (6)$	\triangle						▲	▲			▲	-	▲					

Main Results PeerRead cs.CL

Model		test scores		validation sco	ores & statistics
Widdel	Accuracy↑	ROC AUC↑	F_1 -score \uparrow	Accuracy↑	model epoch
Maj Training Label	$68.9 \pm 0.00\%$	0.500 ± 0.000	$0.000~\pm~0.00$	$78.0\pm0.00\%$	_
CNN	$68.9 \pm 0.00\%$	-	—	-	-
INCEPTION	$80.8 \pm \ 1.93\%$	$0.871 \ \pm \ 0.020$	0.667 ± 0.072	$82.3 \pm \ 2.08\%$	$1.200 \pm \ 0.422$
INCEPTION _{GU}	$80.2 \pm \ 3.38\%$	0.869 ± 0.020	0.661 ± 0.096	$83.9\pm2.16\%$	32.000 ± 1.633
SChuBERT	$82.4 \pm 2.14\%$	$\textbf{0.920} \pm \textbf{0.004}$	0.640 ± 0.070	$78.6 \pm 1.14\%$	9.800 ± 2.860
MultiSChuBERT	$83.3 \pm 3.04\%$	0.893 ± 0.023	0.708 ± 0.099	$\textbf{83.9} \pm \textbf{1.56\%}$	2.300 ± 0.823
MultiSChuBERT _{GU}	$\textbf{85.2} \pm \textbf{1.20\%}$	0.920 ± 0.015	$\textbf{0.740} \pm \textbf{ 0.032}$	$82.8 \pm 2.76\%$	24.100 ± 11.220

(a) System performance metrics and system statistics.

			Acc	uracy	<i>,</i>]	ROC	AUC	2				F_1 -s	core		
		ba	selin	e syst	tem			bas	seline	e syst	em			bas	seline	e syst	em	
System	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
Maj Training Label (1)	-	V	V	V	V	V	-	V	V	▼	V	V	-	V	V	V	V	V
INCEPTION (2)		-			V	V		-		V	▼	V		-			V	▼
INCEPTION $_{GU}$ (3)			s <u>-</u> s		V	V				▼	▼	▼			11 <u>-</u> 11		W	V
SChuBERT(4)				-		V				-						-	\mathbf{V}	▼
MultiSChuBERT (5)					-	∇				▼	-	▼					_	
MultiSChuBERT _{GU} (6)	۸		▲		\triangle	-									▲		e e	

Main Results PeerRead cs.LG

(a) System	performance	metrics ar	nd system	statistics.
------------	-------------	------------	-----------	-------------

Model		test scores		validation sco	ores & statistics
Model	Accuracy↑	ROC AUC↑	F_1 -score \uparrow	Accuracy↑	model epoch
Maj Training Label	$68.0\pm0.00\%$	0.500 ± 0.000	0.000 ± 0.00	$63.5 \pm 0.00\%$	
CNN	$65.7 \pm 2.79\%$	-	-	_	-
INCEPTION	$82.2\pm1.42\%$	0.904 ± 0.011	0.729 ± 0.026	$83.3 \pm 2.52\%$	2.500 ± 2.121
INCEPTION _{GU}	$83.6 \pm 1.86\%$	$0.904 \pm \ 0.013$	0.752 ± 0.023	$84.1\pm1.45\%$	31.600 ± 0.516
SChuBERT	$80.3 \pm 1.37\%$	0.880 ± 0.006	0.723 ± 0.014	$76.9 \pm \ 0.56\%$	13.000 ± 3.091
MultiSChuBERT	$83.4 \pm 1.65\%$	0.921 ± 0.012	0.750 ± 0.017	$84.9 \pm \mathbf{1.80\%}$	1.900 ± 0.876
MultiSChuBERT _{GU}	$\textbf{84.9} \pm \textbf{1.40\%}$	$\textbf{0.931} \pm \textbf{0.007}$	$\textbf{0.781} \pm \textbf{0.016}$	$83.5 \pm 1.56\%$	$32.300 \pm \ 1.947$

		ba		uracy e syste	em					AUC e syst				ba		score e syste	em	
System	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
Maj Training Label (1)	07	V	V	▼	▼	V	-	V	V	V	▼	V	1.000	V	▼	V	V	V
INCEPTION (2)		-	∇	\triangle	∇	▼		-		\triangle	V	▼		-	▼		∇	V
INCEPTION _{GU} (3)		\triangle	_			∇	▲		—		V	V			—	\triangle		V
SChuBERT (4)		∇	V		V	▼		∇	V	-	▼	V			∇	-	∇	V
MultiSChuBERT (5)		\triangle			_	∇						▼		\triangle		\triangle	<u></u> 2	▼
MultiSChuBERT _{GU} (6)	▲		\triangle	•	\triangle	-		▲		▲		-		▲		▲		-

Concatenation methods comparison PeerRead cs.Al

concatenation		test scores		validation sco	res & statistics
method	Accuracy	$ROC\uparrow AUC\uparrow$	F_1 -score \uparrow	Accuracy↑	model epoch
(u,v)	$93.9\pm0.70\%$	$\textbf{0.922} \pm \textbf{0.012}$	$\textbf{0.578} \pm \textbf{0.055}$	$92.9\pm0.70\%$	26.800 ± 2.741
(u-v)	$93.7 \pm 0.61\%$	0.912 ± 0.009	0.506 ± 0.076	$92.4\pm0.78\%$	17.500 ± 6.078
(u * v)	$93.5 \pm 0.69\%$	0.894 ± 0.008	0.481 ± 0.055	$92.2\pm0.75\%$	16.300 ± 4.473
(u - v , u * v)	$94.0\pm0.52\%$	0.907 ± 0.015	0.533 ± 0.086	$92.4\pm0.66\%$	18.000 ± 7.916
(u, v, u * v)	$93.7\pm0.78\%$	0.908 ± 0.012	0.484 ± 0.122	$92.1\pm0.71\%$	16.500 ± 5.759
(u,v, u-v)	$93.6 \pm 1.02\%$	0.913 ± 0.020	0.551 ± 0.087	$93.1\pm0.94\%$	26.000 ± 6.342
(u,v, u-v ,u*v)	$93.8\pm1.08\%$	0.909 ± 0.016	0.488 ± 0.165	$92.5 \pm 0.870\%$	16.200 ± 7.671

(a) System performance metrics and system statistics.

	1		A	ccur	acy					R	DC A	UC					F_{i}	1-sco	re		
		ł	basel	ine s	syste	m				basel	line s	ysten	n			1	baseli	ine s	ystem	ı	
System	1	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7
(u,v) (1)	-							1				Δ		Δ	-	Δ					
(u - v) (2)		1.000								Δ	2				∇	-					
(u * v) (3)								▼	∇						▼		8 — 33			∇	
(u-v , u*v) (4)				<u></u>				▼			~ _ >							_			
(u,v,u*v) (5)								∇							▼				8 <u>-</u> 2	∇	1
(u, v, u - v) (6)													-				Δ		\triangle	-	
(u, v, u - v , u * v) (7)							-	∇			2	27		-	V						-

Concatenation methods comparison PeerRead cs.CL

concatenation		test scores		validation sc	ores & statistics
method	Accuracy↑	ROC AUC↑	F_1 -score \uparrow	Accuracy↑	model epoch
(u,v)	$84.9 \pm 2.03\%$	0.917 ± 0.005	0.733 ± 0.053	$81.8\pm2.74\%$	22.400 ± 11.918
(u - v)	$85.2 \pm 1.20\%$	0.920 ± 0.015	0.740 ± 0.032	$\textbf{82.8} \pm \textbf{2.76\%}$	24.100 ± 11.220
(u * v)	$85.5 \pm 1.37\%$	$\textbf{0.921} \pm \textbf{0.007}$	0.742 ± 0.037	$78.9\pm0.54\%$	8.000 ± 1.247
(u - v , u * v)	$\textbf{85.8} \pm \textbf{1.24\%}$	0.918 ± 0.014	$\textbf{0.758} \pm \textbf{0.023}$	$80.2 \pm 1.85\%$	17.900 ± 11.949
(u,v,u*v)	$85.4\pm1.96\%$	0.918 ± 0.008	0.749 ± 0.048	$79.8\pm2.97\%$	12.700 ± 10.166
(u,v, u-v)	$\textbf{85.8} \pm \textbf{2.40\%}$	0.919 ± 0.010	0.755 ± 0.052	$81.8 \pm 2.97\%$	23.200 ± 11.708
(u,v, u-v ,u*v)	$\textbf{85.8} \pm \textbf{1.88\%}$	0.921 ± 0.006	0.747 ± 0.050	$80.5 \pm 2.81\%$	16.000 ± 11.235

(a) System performance metrics and system statistics.

			A	ccura	acy					RC	DC A	UC					F_{i}	1-sco	ore		
		b	asel	ine s	yste	m				basel	ine sy	ystem				b	aseli	ine s	ystei	n	
System	1	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7
(u,v) (1)	-									∇					-						
(u - v) (2)		-							-							-					
(u * v) (3)			-					\triangle			Δ	Δ					-				
(u - v , u * v) (4)				-						∇	-							-			
(u,v,u*v) (5)										∇		-							-		
(u,v, u-v) (6)						-							-							-	
(u, v, u - v , u * v) (7)																					-

Concatenation methods comparison PeerRead cs.LG

concatenation		test scores		validation sco	ores & statistics
method	Accuracy↑	ROC AUC↑	F_1 -score \uparrow	Accuracy↑	model epoch
(u,v)	$84.2 \pm 2.02\%$	0.924 ± 0.009	0.762 ± 0.028	$83.2\pm1.91\%$	32.500 ± 0.972
(u - v)	$84.9 \pm 1.40\%$	$\textbf{0.931} \pm \textbf{0.007}$	$\textbf{0.781} \pm \textbf{0.016}$	$83.5\pm1.56\%$	32.300 ± 1.947
(u * v)	$81.8 \pm 1.87\%$	0.908 ± 0.007	0.725 ± 0.033	$81.4 \pm 2.36\%$	26.800 ± 6.070
(u-v , u * v)	$82.6 \pm 1.68\%$	0.912 ± 0.010	0.750 ± 0.020	$81.2\pm3.11\%$	26.900 ± 6.008
(u, v, u * v)	$83.6\pm1.88\%$	0.918 ± 0.009	0.760 ± 0.020	$82.0\pm3.36\%$	27.700 ± 7.931
(u,v, u-v)	$84.2 \pm 1.59\%$	0.921 ± 0.013	0.767 ± 0.027	$82.7\pm2.73\%$	30.400 ± 4.624
$(u,v, u-v ,u\ast v)$	$82.5 \pm 1.15\%$	0.912 ± 0.009	0.750 ± 0.016	$81.7 \pm 1.96\%$	28.300 ± 6.550

(a) System performance metrics and system statistics.

		Accuracy baseline system							ROC AUC baseline system					F_1 -score baseline system							
System	1	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7
(u,v) (1)								-	∇	•				•	_	V					
(u-v)) (2)		-					•	Δ			•	•	•	•		-		•		Δ	
(u * v)) (3)	V	V	-		▼	V		V	▼	-			•		V	V	1922	V	V	V	
(u-v , u*v) (4)	▼	V		37_0	Ĵ	▼		W	V		-		▼			V				∇	
(u,v,u*v) (5)							\triangle	▼	▼				∇			V			1.000		
(u,v, u-v) (6)						-			▼	•		\triangle	-			∇	•	Δ		-	\triangle
(u, v, u - v , u * v) (7)	V	▼			∇	V	-	▼	▼				▼	-		▼				∇	

Experiments: Adding domain-specialized embeddings

Science-domain-specialized text embedding

Model		test scores		validation scores & statistics				
Widdel	R2↑	MSE↓	MAE↓	R2↑	model epoch			
Avg Training Label	-0.005 ± 0.000	1.643 ± 0.000	1.028 ± 0.000	$\textbf{-0.001} \pm 0.000$: 			
SChuBERT	0.432 ± 0.010	0.929 ± 0.017	0.765 ± 0.009	0.394 ± 0.005	23.300 ± 8.512			
MultiSChuBERT _{GU}	0.454 ± 0.006	0.893 ± 0.010	0.717 ± 0.006	0.436 ± 0.012	37.600 ± 2.221			
SChuBERT _{SCIBERT}	0.467 ± 0.014	0.871 ± 0.022	0.743 ± 0.011	0.439 ± 0.005	15.600 ± 3.658			
SChuBERT _{SCINCL}	0.460 ± 0.008	0.883 ± 0.013	0.751 ± 0.006	0.447 ± 0.006	33.300 ± 5.478			
SChuBERT _{SR}	0.447 ± 0.013	0.904 ± 0.021	0.754 ± 0.010	0.440 ± 0.009	24.700 ± 10.144			
SChuBERT _{SR2.0}	0.474 ± 0.013	0.860 ± 0.021	0.736 ± 0.009	0.460 ± 0.003	14.400 ± 6.186			
Multi- SChuBERT _{GU_SR2.0}	$\textbf{0.503} \pm \textbf{0.011}$	$\textbf{0.813} \pm \textbf{0.018}$	$\textbf{0.693} \pm \textbf{0.016}$	$\textbf{0.484} \pm \textbf{0.009}$	32.300 ± 11.898			

Unfortunately, no control for *label leakage* in these experiments: training data of the domain-specialized embedding models expected to overlap with ACL Bibliometry data.

Fixing the label-leakage problem

- SPECTER 2.0 training data is downloadable
- Obtain a list of paper titles used in training and validation examples
- Lowercase and remove spaces to maximize recall of matching papers
- Filtered about 40% of the ACL Bibliometry data this way, because of overlap with the SPECTER2.0 training/validation data
 - Produce filtered ACL Bibliometry sets without overlap with SPECTER2.0 training/validation data

SPECTER2.0 results – filtered testset

Model		test scores	validation scores & statistics				
Widdei	R2↑		MAE↓	R2↑	model epoch		
Avg Training Label	$\textbf{-0.130} \pm 0.000$	1.181 ± 0.000	0.910 ± 0.000	$\textbf{-0.001} \pm 0.000$	-		
SChuBERT	0.267 ± 0.015	0.766 ± 0.015	0.693 ± 0.009	0.394 ± 0.005	23.300 ± 8.512		
MultiSChuBERT _{GU}	0.302 ± 0.017	0.730 ± 0.018	0.652 ± 0.006	0.436 ± 0.012	37.600 ± 2.221		
SChuBERT _{SR2.0}	0.319 ± 0.016	0.711 ± 0.017	0.675 ± 0.007	0.460 ± 0.003	14.400 ± 6.186		
Multi- SChuBERT _{GU_SR2.0}	$\textbf{0.335} \pm \textbf{0.020}$	$\textbf{0.695} \pm \textbf{0.021}$	$\textbf{0.643} \pm \textbf{0.017}$	$\textbf{0.484} \pm \textbf{0.009}$	32.300 ± 11.898		

(a) System performance metrics and system statistics.

(b) Statistical significance pairwise system score differences.

	[R2						MSE				MAE				
	baseline system						baseline system					baseline system				
System	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	
Avg Training Label (1)	-	V	V	V	V	-	V	V	V	V	-	V	V	V	▼	
SChuBERT (2)	•		V	V	V	•	<u> </u>	V	V	V			V	V	•	
MultiSChuBERT _{GU} (3)			-	∇	V			-	∇	V		•	-	•	∇	
SChuBERT _{SR2.0} (4)			Δ	-	∇			Δ		∇			V		▼	
Multi-SChuBERT _{GU_SR2.0} (5)		•	•	\triangle	8			•	Δ	-		•	\triangle		3 .— 3	

Note: Negative R2 score for Avg Training Label baseline method!

Understanding the performance drop across systems

 Label statistics coherent within datasets (ACL, filtered ACL), but different across normal and filtered ACL data.

Label statistics of the original and filtered ACL datasets.

(a) ACL data

subset	train	val	test				
#examples	27852	1547	1548				
avg label	1.729 ± 1.191	1.759 ± 1.216	1.819 ± 1.279				
	(b) Filtered	ACL data					

 Mismatched label distribution between {training, validation} and {test} data explains performance drop.

subset	train	val	test
#examples	16730	957	926
avg label	1.330 ± 0.978	1.350 ± 0.991	1.360 ± 1.023

Solution

- Filter all data, not just the test set
- This restores the coherence between the train, validation and test data, at the cost of smaller training data.
 - Resulting training data size ± 60% of original

SPECTER2.0 results – filtered all data

(a) System performance metrics and system statistics.

 Note: improved results despite smaller training data!

Model		test scores	validation scores & statistics					
Widder	R2↑	MSE↓	MAE↓	R2↑	model epoch			
Avg Training Label	-0.001 ± 0.000	1.046 ± 0.000	0.861 ± 0.000	$\textbf{-0.000} \pm 0.000$	-			
SChuBERT	0.305 ± 0.008	0.726 ± 0.008	0.682 ± 0.004	0.266 ± 0.004	14.700 ± 4.270			
MultiSChuBERT _{GU}	0.332 ± 0.024	0.698 ± 0.025	0.647 ± 0.018	0.296 ± 0.017	30.400 ± 8.733			
SChuBERT _{SR2.0}	0.333 ± 0.011	0.697 ± 0.011	0.672 ± 0.005	0.325 ± 0.005	18.100 ± 5.238			
Multi- SChuBERT _{GU_SR2.0}	$\textbf{0.351} \pm \textbf{0.026}$	$\textbf{0.679} \pm \textbf{0.027}$	$\textbf{0.646} \pm \textbf{0.026}$	$\textbf{0.336} \pm \textbf{0.009}$	23.200 ± 13.831			

		basel	R2 ine s	ysten	n		MSE baseline system					MAE baseline system				
System	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	
Avg Training Label (1)	Ι	▼	▼	▼	V	-	▼	▼	▼	▼		▼	▼	▼	▼	
SChuBERT (2)		-	▼	V	V		· - · ·	V	▼	V		-	▼	V	▼	
MultiSChuBERT _{GU} (3)			-) i	▼			-		▼			_			
SChuBERT _{SR2.0} (4)				-			•		-	V			▼	-	▼	
$SChuBERT_{GU_SR2.0}$ (5)					$(1-1)^{-1}$					-					-	

Conclusions

- All SChuBERT-based methods outperform the baseline models
- MultiSChuBERT_{GU} significantly outperforms SChuBERT, MultiSChuBERT and is the best model overall
 - Gradual Unfreezing helps in mitigating parameter imbalance
- The concatenation method makes a difference, but there are multiple alternatives that perform the same (no statistically significant difference)
- The SPECTER 2.0 domain specialized text embedding further improves performance (statistically significant and while avoiding label leakage)