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Scholarly Document Quality Prediction
• Predict quality from the document alone: Textual vs visual clues on quality

• What indicators of quality to predict?
– Accept/Reject

• Simple and well understood 
• Scarce data

– Number of Citations
• Large data availability
• We predict: log(#citations +1) Source:https://m.xkcd.com/1945/
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Is it reasonable to look at #citations?
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Background earlier work
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This work: multimodality
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https://arxiv.org/abs/2308.07971

https://arxiv.org/abs/2308.07971


Selected Related work
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Main Question
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How can we (still) get benefit from multimodality in combination 
with stronger textual encoders, and while using 
domain-specialized text embedding?



Statistics of the used datasets
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Data and scope this presentation
• We experiment with the ACL Bibliometry (number of citations prediction) 

and PeerRead (accept reject prediction) datasets

• ACL Bibliometry is much larger (30950 examples) than even the largest 
PeerRead (LG) subset  (5048 examples)
– Stronger models that use more context (multimodality) and full text 

input have more chance to thrive with larger training data

• We will focus on the ACL Bibliometry results in this presentation, but more 
results available in: https://arxiv.org/abs/2308.07971
– Main findings on Peer Read are similar to those on 

ACL Bibliometry 9

https://arxiv.org/abs/2308.07971


Textual model input
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Visual model input: Overall appearance and layout
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Overview of the used Text,Visual and Multimodal model
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The SChuBERT model (text)
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The INCEPTION model (visual)
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The MultiSChuBERT model
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Three ways to facilitate effective multimodal fusion and 
further improve results:
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1. Gradual unfreezing: gradually unfix the weights of the visual 
submodel during training

2. Concatenation method: improve the manner in which textual and 
visual embeddings are combined

3. Use of science-domain-specialized text embeddings in place of 
BERTBASE :  SPECTER2.0



Gradual unfreezing: what?
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● Fix all parameters of the visual (sub-)model, except the linear output layer

● Unfreeze one (of ten) inception blocks every two epochs: 22 epochs total

● Train for 18 more epochs with all inception blocks unfrozen

● Learning rate gradually lowered, with set minimum



Gradual unfreezing: Why necessary?
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● Notice: the INCEPTION submodel has much more trainable 
parameters than SChuBERT

● Gradual unfreezing avoids INCEPTION from immediately overfitting 
the data, before even properly fitting the SChuBERT submodel



Concatenation methods: How to create a multimodal embedding?
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● Textual (u) and visual (v) embeddings can be combined in different ways.

● Chosen concatenation method impacts results, as shown in the literature 
for other applications.

● Overview concatenation methods:
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Experiments:
○ Data & Experimental Setup



Statistics of the used datasets
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Used Hyperparameters
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Experiments:
○ Results #Citation Prediction



ACLBibliometry main results
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ACLBibliometry main results – statistical 
significance
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Statistical significance computed using an in-house adaptation of Multeval, multi-run resampling testing to 
support classification and regression metrics. ▲ triangle pointing up=’better than other’ with p < 0.001 
MultiSchubert_GU (15x) > MultiSchubert (9x) = Schubert (9x) ⇒ GU is needed



ACLBibliometry concatenation method 
comparison
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ACLBibliometry concatenation method 
comparison – statistical significance
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Experiments:
○ Results Accept/Reject 

Prediction



Main Results PeerRead cs.AI
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Main Results PeerRead cs.CL
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Main Results PeerRead cs.LG
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Concatenation methods comparison PeerRead cs.AI
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Concatenation methods comparison PeerRead cs.CL
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Concatenation methods comparison PeerRead cs.LG
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Experiments:
○ Adding domain-specialized 

embeddings



Science-domain-specialized text embedding
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Unfortunately, no control for label leakage in these experiments: training data of the domain-specialized 
embedding models expected to overlap with ACL Bibliometry data.



Fixing the label-leakage problem
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● SPECTER 2.0 training data is downloadable

● Obtain a list of paper titles used in training and validation examples

● Lowercase and remove spaces to maximize recall of matching papers 

● Filtered about 40% of the ACL Bibliometry data this way, because of 
overlap with the SPECTER2.0 training/validation data
○ Produce filtered ACL Bibliometry sets without overlap with 

SPECTER2.0 training/validation data



SPECTER2.0 results – filtered testset

38Note: Negative R2 score for Avg Training Label baseline method!



Understanding the performance drop across systems

39

● Label statistics coherent 
within datasets (ACL, 
filtered ACL), but different 
across normal and filtered 
ACL data.

● Mismatched label 
distribution between 
{training, validation} and 
{test} data explains 
performance drop.



Solution
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● Filter all data, not just the test set

● This restores the coherence between the train, validation and test 
data, at the cost of smaller training data.
○ Resulting training data  size ± 60% of original



SPECTER2.0 results – filtered all data
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● Note: improved 
results despite 
smaller training 
data!



Conclusions
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● All SChuBERT-based methods outperform the baseline models

● MultiSChuBERTGU significantly outperforms SChuBERT, 
MultiSChuBERT and is the best model overall

○ Gradual Unfreezing helps in mitigating parameter imbalance

● The concatenation method makes a difference, but there are multiple 
alternatives that perform the same (no statistically significant 
difference)

● The SPECTER 2.0 domain specialized text embedding further 
improves performance (statistically significant and while avoiding 
label leakage)


