cDVGAN: One Flexible Model for Multi-class Gravitational Wave Transient Generation

Tom Dooney, Open Universiteit

Email: td1@ou.nl

23/01/2024

Contents

- Introduction
- Model Architecture
- Training data and generations
- Evaluation
- Conclusions
- Future Work

Tom Dooney, td1@ou.nl

Introduction

- Simulating realistic GWs and glitch events offers many benefits
 - O Learn underlying distributions
 - O Bypass expensive simulations
 - O Data augmentation class imbalance
 - O Validate detection schemes
 - O Mock data challenges
- We focus on the Generative Adversarial Network (GAN) framework for transient time-domain observations (0.25s)
- cDVGAN Conditional Derivative GAN
 - O Conditions on multiple signal classes -glitches, bursts, CBC
 - O Uses derivative signals as a form of regularization
 - O Extension: cDVGAN2 (second-order derivatives)
 - O One flexible model More user control
 - O We can leverage class mixing
 - Generate data outside training distribution

Fig: Output of 2D GAN conditioned on emotions

cGAN and cDVGAN

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

- cDVGAN(2) uses extra discriminator(s)
 - First (and second) order derivatives
 - o Wasserstein GAN

Fig: GAN output during training

Training Data

- Gravity Spy Glitches denoised
 - O Blip and Tomte (O3)
 - O Whiten and bandpass (20, 350) Hz
 - O Savitzky-Golay filters
- BBHs from IMRPhenomD
 - O 30-160 solar masses (m1>m2)
 - O Plus polarization only
- 7,500 samples
 - o 2,500 each class
 - 0 4,096 Hz
 - 0 1,024 data points (0.25s)
- 500 epochs

PCA on training data

cDVGAN- Vertex Dataset

• Standard signal classes

cDVGAN – Simplex Dataset

- Points on a k=2 simplex
 O Triangle
- Simplest surface that intersects all training classes
- Class vector sums to 1

cDVGAN – Uniform Dataset

• Sample each point on U[0,1]

Tom Dooney, td1@ou.nl

PCA – Real vs Generated Data

- Experiment search for transients in background noise using convolutional neural networks (CNNs)
 - O Binary classification: Noise only / Noise + sample
 - O Inject training and testing samples into LIGO detector background
 - O Injected at SNR in [1,16]
 - O Train CNN on fake, test on real holdout set
- Test set: 15,000 samples
 - 0 7,500 Noise only, 7,500 samples + Noise
 - O Samples from GAN training data distribution (2,500 each class)
- We train 3 CNNs on 3 datasets from each GAN
 - 0 Vertex
 - O Simplex
 - O Uniform
 - 0 100,000 samples in each training set, 20 epochs
- We want to investigate 2 things
 - 1. Effectiveness of derivative discriminators
 - 2. Effectiveness of hybrid datasets for training CNNs

Fig: Two classes to predict Noise only (0) and Signal+Noise (1)

Fig: CNN detector

- We present the effect of derivative discriminators through ablation studies
- Ablation:
 - Selectively turning on/off a model component to understand its effect
 - Disable auxiliary discriminators
- Five GAN models
 - 1. cDVGAN
 - 2. cDVGAN2
 - 3. cWGAN
 - 4. McGANn
 - 5. McDVGANn

Fig: Two classes to predict Noise only (0) and Sample+Noise (1)

Tom Dooney, td1@ou.nl

ROC Curves

Fig: ROC curves for three datasets from each GAN

Area-Under-Curve (AUC) results

Dataset	cDVGAN (ours)	cDVGAN2 (ours)	cWGAN	McGANn	McDVGANn (ours)
Vertex-Trained	0.771 ± 0.012	0.758 ± 0.008	0.762 ± 0.018	0.768 ± 0.016	0.768 ± 0.022
Simplex-Trained	$\textbf{0.802} \pm 0.019$	0.789 ± 0.010	0.788 ± 0.009	0.759 ± 0.010	0.786 ± 0.012
Uniform-Trained	0.797 ± 0.022	0.791 ± 0.009	0.777 ± 0.014	$\textit{0.770} \pm 0.014$	0.778 ± 0.012

Tab: $\mu \pm \sigma$ AUC values on a real holdout test set (5 iterations).

Area-Under-Curve (AUC) results

Dataset	cDVGAN (ours)	cDVGAN2 (ours)	cWGAN	McGANn	McDVGANn (ours)
Vertex-Trained	0.771 ± 0.012	0.758 ± 0.008	0.762 ± 0.018	0.768 ± 0.016	0.768 ± 0.022
Simplex-Trained	0.802 ± 0.019	0.789 ± 0.010	0.788 ± 0.009	0.759 ± 0.010	0.786 ± 0.012
Uniform-Trained	0.797 ± 0.022	0.791 ± 0.009	0.777 ± 0.014	$\textit{0.770} \pm 0.014$	0.778 ± 0.012

Tab: $\mu \pm \sigma$ AUC values on a real holdout test set (5 iterations).

Conclusions

- GANs can be useful for learning underlying distributions of transient signals
 - Data augmentation
 - Validate detection schemes
 - o Mock Data Challenges
 - Next generation glitch generator
- Conditional GANs allow us to explore the variation between sample classes
 - Inter-class and intra-class variation
 - Generate data outside the training data distribution
- Derivative discriminators can be effective at improving the features across multiple GAN architectures
 - o cWGAN and traditional cGAN
 - Improves SNR in context of signal searches
- Hybrid samples useful for searching for multi-model distributions in background

Future Work

- Combine synthetic datasets for searches
- Expand cDVGAN to more signal (glitch) classes
 - Improved data augmentation
- Use BayesWave for more faithful training data
- Optimize architecture
 - Discriminator contributions to generator loss
 - Consitency term

Train your own cDVGAN!

https://git.ligo.org/tom.dooney/cdvgan_paper.git

cDVGAN architecture

		Discriminator			(3.5M param.
Operation	Output shape	Kernel size	Stride	Dropout	Activation
Signal input	(1024)	-	-	0	-
Reshape	(64,16)	-	-	0	-
Convolutional	(64,128)	14	2	0.5	Leaky ReLU
Convolutional	(32,128)	14	2	0.5	Leaky ReLU
Convolutional	(16, 256)	14	2	0.5	Leaky ReLU
Convolutional	(8, 256)	14	2	0.5	Leaky ReLU
Convolutional	(4, 512)	14	2	0.5	Leaky ReLU
Global Avg. Pooling	(512)	-	-	0.5	-
Avg. Pooling Dense	(128)	-	-	0.2	Leaky ReLU
Dense	(1)	-	-	0	Linear
Class Input	(3)	-	-	-	-
Class Dense	(128)	-	-	0	Linear
Scalar Product	(1)	-	-	-	-
Dense + Scalar Product	(1)	-	-	-	-
		DV Discriminator			(1.1M param
Operation	Output shape	Kernel size	Stride	Dropout	Activation
Signal input	(1023)	-	-	0	-
Dense	(512)	-	-	0	Leaky ReLU
Reshape	(32,16)	-	-	0	-
Convolutional	(32, 64)	5	2	0.5	Leaky ReLU
Convolutional	(16,128)	5	2	0.5	Leaky ReLU
Convolutional	(8,256)	5	2	0.5	Leaky ReLU
Convolutional	(4,256)	5	2	0.5	Leaky ReLU
Global Avg. Pooling	(256)	-	-	0.5	-
Avg. Pooling Dense	(128)	-	-	0.2	Leaky ReLU
Dense	(1)	-	-	0	Linear
Class Input	(3)	-	-	-	-
Class Dense	(128)	-	-	0	Linear
Scalar Product	(1)	-	-	-	-
Dense + Scalar Product	(1)	-	-	-	-
		Generator			3.5M param.
Operation	Output shape	Kernel size	Stride	BN	Activation
Latent input	(100)	-	-	X	-
Class Input	(3)	-	-	×	-
Class Dense	(32)	-	-	×	-
Concatenate	(132)	-	-	x	-
Dense	(1024)	-	-	×	ReLU
Reshape	(32,32)	-	-	×	-
Transposed conv.	(64, 512)	18	2	1	ReLU
Transposed conv.	(128, 256)	18	2	1	ReLU
Transposed conv.	(256,128)	18	2	1	ReLU
Transposed conv.	(512, 64)	18	2	1	ReLU
Transposed conv.	(1024.1)	18	2	x	Linear
Flatten	(1024)	-	_	×	-
Optimizer	$\dot{RMSprop}(\alpha = 0.0001)$				
Batch size	512				
Epochs	500				
Loss	Wasserstein				

Conditioning Approaches

Tom Dooney, td1@ou.nl

Questions?

Tom Dooney, td1@ou.nl

Appendix

Training Data - Blips

Training Data - Tomte

AUC results

Dataset	cDVGAN (ours)	cDVGAN2 (ours)	cWGAN	McGANn	McDVGANn (ours)
Vertex-Trained	0.689 ± 0.009	0.680 ± 0.006	0.685 ± 0.017	0.687 ± 0.010	0.668 ± 0.020
Simplex-Trained	0.698 ± 0.013	0.686 ± 0.007	0.695 ± 0.010	0.673 ± 0.008	0.676 ± 0.010
Uniform-Trained	0.702 ± 0.014	0.693 ± 0.008	0.692 ± 0.009	0.680 ± 0.013	0.671 ± 0.006

Tab: AUC results for SNR < 8

Dataset	cDVGAN (ours)	cDVGAN2 (ours)	cWGAN	McGANn	McDVGANn (ours)
Vertex-Trained	0.844 ± 0.015	0.827 ± 0.010	0.830 ± 0.022	0.841 ± 0.021	0.856 ± 0.027
Simplex-Trained	0.893 ± 0.029	0.881 ± 0.013	$\textit{0.867} \pm 0.010$	0.836 ± 0.012	0.885 ± 0.013
Uniform-Trained	0.883 ± 0.031	0.878 ± 0.011	0.851 ± 0.020	0.852 ± 0.020	0.873 ± 0.014

Tab: AUC results for SNR > 8

AUC results

	Real:Fake	Real:Fake	Real:Fake	Real:Fake Re	eal:Fake
SNR	100:0	75:25	50:50	25:75	0:100
1-16	0.900 ± 0.001	0.898 ± 0.002	0.893 ± 0.002	0.887 ± 0.002	0.802 ± 0.019
1-8	0.799 ± 0.001	0.792 ± 0.005	0.787 ± 0.003	0.777 ± 0.003	0.698 ± 0.013
8-16	0.988 ± 0.001	0.987 ± 0.001	0.987 ± 0.001	0.985 ± 0.001	0.893 ± 0.029

Tab: AUC values over three SNR ranges for different proportions of real:synthetic data for a training set fixed at 100,000 samples.