

Interactive any object detection and counting

ConCoNet: Class-Agnostic Counting with Positive and Negative Exemplars

Adrienne Francesca O. Soliven, Daniel Stanley Tan, et al..

Standard detectors

Generating ground truth density maps

Input Image

Add a Gaussian on every matching object

Aggregation Positive Evan

Density Map

Sum = count

Handling overlapping gaussian points

Fig. 3: Consider two different Gaussians (left) as a simplified similarity map. The visualization of merging the two (right) shows that the peaks are preserved using the max but not in the averaging.

Table 1:	Ablation	\mathbf{study}	\mathbf{on}	compo	nents.	An	analysis	on	the
componen	ts of $ConC$	CoNet to	eva	aluate the	e added	perf	ormance	of e	each
combinati	ons.								

Components	Combinations				
Positive Kernel	v	X	~	~	v
Negative Kernel	×	×	×	~	✓
Sim Fusion	×	~	×	~	✓
\mathcal{L}_{posneg}	~	×	×	~	×
\mathcal{L}_{Total}	×	~	~	×	~
MAE	102.38	29.65	21.23	20.89	18.77
RMSE	143.32	86.00	59.18	56.57	59.46

Table 2: **Few-shot methods comparison.** A quantitative comparison was performed between two simple baselines(Mean, Median), five main baselines (feature Reweighting FR few-shot detector, FSOD few-shot detector, GMN, MAML, FamNet), some are classagnostic models and others are few-shot methods that are adapted and trained for counting. Results show that *ConCoNet* performed best in both the val set and test set of FSC-147.

	Val Set		Tes	t Set
Methods	MAE	RMSE	MAE	RMSE
Mean	53.38	124.53	47.55	147.67
Median	48.68	129.70	47.73	152.46
FR detector [23]	45.45	112.53	41.64	141.04
FSOD detector $[24]$	36.36	115.00	32.53	140.65
Pretrained GMN $[17]$	60.56	137.78	62.69	159.67
GMN [17]	29.66	89.81	26.52	124.57
MAML $[25]$	25.54	79.44	24.90	112.68
FamNet $[16]$	23.75	69.07	22.08	99.54
Ours (Positives Only)	21.23	59.18	22.34	91.75
Ours	18.77	59.46	18.02	93.63

Table 3: MAE performance of ConCoNet on the validation set as the number of positive and negative exemplars increases and decreases.

		# of Positives				
		1	2	3		
ves	0	24.15	23.02	21.23		
# of Negati	1	20.27 ± 0.11	19.74 ± 0.32	19.13 ± 0.03		
	2	19.55 ± 0.25	19.28 ± 0.20	18.98 ± 0.10		
	3	19.21 ± 0.23	19.11 ± 0.56	$\textbf{18.77} \pm 0.20$		

Annotation tool

Fig. 4: Semi-Automated Annotation Tool Process. The first image is the image input and green boxes are the positive exemplars bounding boxes that specify examples of the target object. The second image is the initial heat map with the count prediction. The model experienced some confusion due to the visual similarity between the target object and background. The user inputs the negative exemplars (denoted by the red bounding boxes) to specify what should be ignored. The third image is an improved heat map based on the previous user input. The last image shows that the latest heat map is converted into a dot annotation.

Less lag time

Can immediately start on a new domain Can reduce labeling efforts by propagating labels to similar objects

Interactive any object detection and counting

Thank you! Any Questions?