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CONTEXT Many aspects of modern life depend on, and are controlled by, software. When one

wakes up, the alarm clock that wakes them is controlled by software. During the day, almost

every device one uses contains software, including fridges [Tro15], cars, televisions, elevators, and

perhaps even coffee machines. Just like a driver has a huge impact on the efficiency, behaviour

and needed maintenance of a car, software has a huge impact on the efficiency, behaviour and

needed maintenance of the device running that software. With Earth’s dwindling resources, it is

important these devices, including their software, function in a sustainable manner. That is further

strengthened by the fact that software is essential to let our contemporary society function. From

tax returns, online theft reports, applications for benefits, to construction work and of course com-

munications: all are handled by software. In this thesis, methods to analyse energy consumption

and memory usage of (parts of) software are proposed. The obtained results can be used to opti-

mise energy consumption of software and the devices it runs on, therefore making these devices

more sustainable. Correctness of software is also considered, as misbehaving software can have

a significant negative impact on our environment. As much as energy can be wasted by software,

our quality of life can also be adversely affected by software’s (lack of) quality.

photo 1.1 Launch of an Ariane 5, by ESA.

If software demonstrates erroneous behaviour, unde-

sirable effects can occur. These effects can result in

having negative impact on users of the software and

devices, or to the environment of the devices running

the software. In case of safety-critical systems in

for example cars or airplanes, the consequences can

lead to serious injury or even loss of life. An early

example of problems that arouse from using software

is the medical device Therac-25, administrating doses

for radio therapy. Between 1985 and 1987, (concurrent)

programming bugs resulted in massive radiation over-

doses, over 100 times the intended dose, eventually

killing five people and leaving others serious injured.

Another notorious example with a catastrophic ending

is the launch of the first Ariane 5 rocket in 1996 (see photo 1.1), which resulted in a gigantic

explosion that polluted the environment significantly. The cause was determined to

be a number conversion errors (overflows), which originated from the reuse of existing

software. This software did function correctly aboard the Ariane 4, but changing circum-

stances were not taken into account: the Ariane 5 had a greater horizontal acceleration.
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However, the software was not tested under these new circumstances. Had such testing

occurred, it would have shown that the increased horizontal acceleration invalidated a

condition of the used software about the flight path. Although methods to verify correct-

ness existed at the time, they were not used in practice. The aftermath resulted in one of

the first large scale effective industrial applications of automated (static) analysis meth-

ods (using abstract interpretation) [Lac+98]. Nowadays, much research is dedicated to

researching safety critical systems, with numerous research programmes.

Recently, another example of (lack of) correctness was made public. General Motors re-

called 4.3 million vehicles on September 9th, 2016, due to a software bug [Tim16]. The

control system of the safety systems in the car, controlling the airbags and seat belt sys-

tems, is running software. Due to specific driving conditions, a diagnostic mode was

triggered in this system, preventing actual deployment of the airbags, and preventing

properly securing the seat belts. The vehicles were sold over a period of four years lead-

ing up to the announcement. The bug resulted in at least one death and three injures.

General Motors recalls all affected models, which is a big operation that costs a lot, be-

ing energy, manpower, gasoline, replacement parts, etc. To avoid wasting resources, we

consider correctness a prerequisite of sustainable software.

photo 1.2 A silicon wafer with multiple AMD Phe-
nom II processors, by AMD.

In order to ensure that software is correctly exe-

cuted on a processor, one must verify this hard-

ware component. A modern (Intel Haswell-EX

Xeon E7 v3, summer 2015) processor consists of

5.7 billion transistors, stacked in multiple lay-

ers, designed by hundreds of people in a period

of up to decades. A small error can cost a hard-

ware company an enormous amount of money

and work. In 1994, Intel faced a problem with

their newly introduced Pentium processors. During certain floating point operations, the

processor produces an incorrect result, from the fourth significant decimal. All affected

processors were recalled, and Intel reported a $475 million loss in earnings in 1995.

However, correctness can also extend over other quality aspects of software. Limited

memory usage is important for the correct working of software, especially in devices

intended for daily use (embedded systems). If a system runs out of memory, the program

or system could crash or enter a reduced-performance state known as trashing. This
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trashing also costs a significant amount of energy. If the result of analysing a program

yields that it will only uses a maximum of memory at any given time, these devices

can be built with exactly the right amount of memory, rather than a huge and expensive

surplus of memory. In addition to offering correctness guarantees, this in turn reduces

the cost for producing the system. Such an analysis can also give valuable insight to a

programmer, so they can optimise the memory usage of a program. An additional benefit

from this optimisation is that the amount of memory used has a significant impact on

the energy consumption of the device running the software. When reducing the memory

consumption of a program, the energy consumption will also be reduced. In order to be

sustainable, a prerequisite to software is therefore that it uses only a limited amount of

memory.

photo 1.3 Measuring pollution of a Volkswagen
Golf 2.0, by Patrick Pleul/AFP.

As traditionally many savings did occur in the

hardware side of a computer, energy consump-

tion is a blind spot when developing software.

Each next hardware generation consumed less

energy for performing the same amount of

work. However, recently this development has

lost its pace. At the same time, it becomes more

and more clear that software has a huge impact

on the behaviour and the properties of devices it runs on. A recent example of software

influencing the working of a device is the Volkswagen scandal. The car manufacturer

used software to detect if the car was being tested. If this was found to be the case, the

diesel motor was programmed to operate in such a way that it exhausted less toxic gases

and fumes (see photo 1.3). In [OZH16] it is calculated that 44,000 years of human life are

lost in Europe because of the fraud, which lasted at least 6 years. Another example are

fridges from Panasonic, which could detect if a test was going on and suppressed energy

intensive defrost cycles during this test. These are negative examples, but they do make

clear that the software is in control of the device and its (energy) behaviour.

Although software is evidently in control of the devices, there is almost no time dedicated

inmost computer science curricula to energy efficiency of software. This is peculiar since

energy is of vital importance to modern (software) industry. For years, data centres have

been located at places where the energy is cheap, and since the rise of the smartphone

more software engineers recognise that in order to get good user reviews, their software

shouldnot rapidly deplete the battery charge of the user’s phone. As a result, most aspiring
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programmers never learn to produce energy efficient code. Software engineers have

trouble assessing how much energy will be consumed by their software on a target device,

especially when the software is run on a multitude of different systems. With the advent

of the internet of things, where software is increasingly embedded in our daily life, it is

increasingly important that the software industry as a whole becomes aware of their energy

footprint, and methods are developed to reduce this footprint.

Furthermore, the combination of many individual negative effects can also affect our

society at large. Although this effect is less direct, it is no less essential. If devices that

are present in large quantities in our society all exhibit the same negative behaviour,

such as incurring needlessly a too high energy consumption, they can impact public

utilities and our economy, and will consume the finite resources of Earth even faster.

Governments increasingly recognise this societal effect, as indicated by the new laws

in the European Union issuing ecodesign requirements for all kind of devices. One of

the aims of these requirements is to make devices more energy efficient. Examples of

product categories with ecodesign requirements include vacuum cleaners, electrical mo-

tors, lightning, heaters, cooking appliances [EU-1], televisions [EU-2] and coffee machines

[EU-3]. Even requirements leading to relative small improvements in energy efficiency

can yield large results at scale, even in the case of devices of which one would expect

no significant electricity savings to be possible. Although it might not necessarily run

software, a vacuum cleaner can be such a device. By reducing the energy consumption

of vacuum cleaners alone, 20 TWh of electricity can be saved in 2020, by estimation of

the European Union itself [EU-4]. To put that number into context, the Netherlands used

96.8 TWh of electrical energy in 2013 [EU-5].

Over the past years, worldwide electricity generation continued to increase, year by year:

from 6,131 TWh in 1973 to 23,322 TWh in 2013 [IEA15a], representing a growth of 280%. The

population growth from 3,909,722,120 to 7,181,715,139 people during the same period was

84% [UN16]. More and more energy per capita is consumed around the world. Most of

the growth in energy generation per capita is attributed to China (97%), and the regional

attribution of energy generation shows that Africa, Asia and the Middle East are taking

a larger share of the worldwide production. The average energy consumption per capita

is distributed unevenly. According to [IEA15a] in 2013 the United States consumed 12,987

kWh/capita of electricity, Germany 7,022 kWh/capita, the Netherlands 6,823 kWh/capita,

Spain 5,404 kWh/capita, and Italy 5,124 kWh/capita. However, in comparison, for example

only 783 kWh/capita in India and 3778 kWh/capita in China are consumed. As a society
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figure 1.4 Growth in world electricity demand and related CO2 emissions since 1990 (left) and
related CO2 emissions by region (right). Source: figure 2 in [IEA15b].

we have already difficulty with meeting our energy appetite, which will only increase if

people in countries as China and India would consume the same amount of energy as in

the United States and Europe. According to [IEA15b], the outlook appears the same, with

a significant shift in regional CO2 emissions, as can be found in figure 1.4.

This context is the basis for the argument that it is important to reduce energy consump-

tion, even though the potential savings are relatively small: even small savings in many

devices will yield a big societal and environmental impact if combined. We consider a low

energy consumption of a device and its software a prerequisite for it to be used in practice,

as this is required for these devices to be applicable on a large scale in our society.

In this thesis we focus on three aspects of software: analysing its correctness, analysing

its memory usage and analysing its energy-consumption. Although at first sight they look

different, these share the same (sociality) context. Moreover, they share many techniques,

and build on a common foundation. Some parts of this thesis relate to all aspects, as these

parts describe general techniques that can be used for multiple intents.

Using these proposed analysis methods one can verify that certain correctness problems

are absent in a piece of software, analyse how much memory the (Java) software will use

when executed, and how much energy devices controlled by (ECA) software will consume.

A programmer can use these analysis methods to compare algorithms and implementa-

tions, and asses which one is the most sustainable. That assessment will depend heavily

on the context and evental usage of a device. We continue with discussing the techniques

used in more detail.
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1.1 Shared techniques

A common method the aspects share is resource analysis. The method starts with iden-

tifying a certain resource, and continues with analysing all the usages of this particular

resource. In this thesis the resources studied are memory and energy. A third resource,

time, is needed in order to analyse energy. We will discuss time only briefly. Resource

analysis is a static analysis method, meaning the program is analysed without running it.

This has a number of advantages as opposed to measuring the energy consumption in

a test setup. During the development phase, without actually building the product, the

energy usage can be predicted. Once the product is actually built, benchmarking energy

usage can be expensive, both in terms of energy and cost. That holds especially for large

industrial applications, e.g. a whole factory or a large communications infrastructure.

Another common theme in the following chapters is the transformation of programs. By

transforming the program into another one analysing the programbecomes feasible. This

transformed program abstracts from all kinds of details that are in the original program,

while being equivalent for one particular property, allowing it to be analysed. That prop-

erty can be memory usage or energy consumption.

Another method is, instead of making an transformation, to overapproximate a certain

property. This is a powerful techniques but it has its drawbacks. On the one side, the

use of sound overapproximations, allows one derive properties that hold always regard-

less of the input, i.e. a maximum. These are most of the time symbolic: input variables

can occur in the resulting expression, as opposed to a concrete value. In order for the

results to be correct, stronger assumptions on the input and/or the structure of the pro-

gram are needed. Another drawback is, as the name implies, imprecision: the derived

approximated maximum can be a significant factor worse than the actual maximum.

In all these shared techniques assumptions play an important role. Stronger assumptions

lead to easier to derive properties and higher-quality properties. It is therefore key to

clearly identify those properties that are important to a certain case, and make a balanced

consideration of which techniques to apply.
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1.2 Correctness

Analysing a piece of code for a certain property is often non-trivial. A large part is decid-

ing which properties to verify, but also verifying the property itself can be hard. For code

doing a concrete calculation, correctness can be defined by equivalence with the math-

ematical version of the calculation. One can check conformance to this equivalence by

hand, or automatically with model checking, or computer assisted with interactive theo-

rem proving. However, this is not enough to ensure correctness. Once calculated, one also

must ensure that the values are not modified. As an example: in the case of the program-

ming language C, there can be no accidental unintended writes (e.g. ‘dangling pointers’)

anywhere in the program. Static verification can provide the means to ensure that these

values are not modified after initialisation. However, one can also apply model checking

or interactive theorem proving to ensure no modifications, using different models as for

checking correctness of the actual calculation.

In a concurrent setting, when e.g. the loop on line 16 of listing 1.5 is executed concurrently,

the next step is to assure proper access control is applied to variables shared between

concurrent running threads. Mutual exclusion can be used to ensure that no race con-

ditions occur. Vital to the used mutual exclusion algorithm is the absence of deadlock

and absence of starvation. Otherwise no progress is made although the device running

the software is consuming energy, a huge waste of resources. The absence of deadlock

and absence of starvation is analysed for one specific mutual exclusion algorithm, the

readers-writers algorithm, in chapter 2.

A general assumption that is often made is the assumption that no errors occur in the

transformation step from program to hardware instructions. This step is done by the

compiler, and to ensure absence of errors a formally verified compiler can be used.

However, zooming in on the hardware level, many errors can occur. A production error

could impact the behaviour of the processor, resulting in unintended behaviour. Just

as in software, errors in (hardware) designs can also induce unintended behaviour in

software. Although the largest part of this thesis is about software, chapter 3 is devoted

to hardware. Hardware is essential to software: all derived prerequisites about software

hold under the assumption that the hardware running the software functions correctly,

making correctly functioning hardware a necessary condition for software. In chapter 3 a

method for analysing the correctness conditions of (parts of) processors is proposed.
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RUNNING EXAMPLE To illustrate the prerequisites to sustainable software, the C++ example

code in listing 1.5 is used as a running example. This is part of an implementation of the

Bayesian sets algorithm as described in [GH06], which can be used as a recommender system.

To give a concrete example: in the beer app ‘BierApp’ (available on iOS and Android) developed

by the author, the algorithm is used to recommend new beers to the users, based on earlier

ratings of other beers. The algorithm is fast and works offline. After the preprocessing step,

when doing a search (the term used for executing the recommendation algorithm), the alpha

and beta values are used often so it is efficient to calculate them once. All properties of an

objectmust be available, however because the input of the algorithm is groups of related beers,

a mapping objectProperties is constructed which maps objects to properties. Moreover,

the algorithmhas towork on various devices, with the lowest powered ones only having 20MiB

of memory available for the app (including the interface). This poses a serious challenge.

The values calculated must be calculated according to the algorithm in [GH06]. Static verifi-

cation can validate no values are written to the variables after initialisation, through pointers

that are faulty or in any other way.

1 template <class E>
2 class BSets {
3 static const int C = 2;
4 std::vector<E> objects;
5 std::multimap<E, int> objectProperties;
6 int propCount;
7 double* alpha = nullptr;
8 double* beta = nullptr;
9 public:

10 BSets(const std::vector<E> &elements, const std::vector<std::set<E>> &properties) :
11 objects(elements),
12 propCount(properties.size()),
13 alpha(new double[propCount]),
14 beta(new double[propCount]) {
15 double n = (double)elements.size();
16 for (int i = 0; i < properties.size(); ++i) {
17 double m = properties[i].size() / n;
18 alpha[i] = C * m;
19 beta[i] = C * (1-m);
20 for (const auto& object : properties[i])
21 objectProperties.insert(std::make_pair(object, i));
22 }
23 }
24 ...
25 }

listing 1.5 Preprocessing step performed in an C++ implementation of Bayesian sets [GH06].

Introduction 9



1
1.3 Memory

As already mentioned, if a program uses a lot of memory, the system can enter a worst

case state known as trashing. This has a huge effect on performance, and therefore also

on energy usage. Keeping the memory usage of your program in check also keeps your

energy bill in check.

Besides trashing, memory allocators have an overhead associated with them. There is a

lot of book keeping involved, to manage all the free parts of memory, and join continuous

blocks of memory together so larger allocations can use them. By reducing the number

of memory allocations, this overhead is also reduced. This saves both execution time and

energy, besides having better worst case behaviour.

RUNNING EXAMPLE The alpha and beta arrays of doubles are allocated on lines 13 and 14 of

listing 1.5, both of size propCount, which is equal to properties.size(). The element to prop-

erty map is build on line 21, which allocates for each hobject, propertyi tuple (in which object

can be of any type, as it is a template type, and property is a number signifying a property) an

internal storage node of the std::multimap class. Depending on the implementation, the number

of bytes allocated for the two objects can actually differ. Symbolically the amount of heapmemory

used after the constructor has finished is listed below, with |T| denoting the memory taken when

allocating an instance of datatype T.

2 · properties.size() · |double|+ Â
g2properties

g.size() · |std::multimap<E, int>::node|

For the programmer, a symbolic boundabstracts fromplatformspecific details, and results

in additional insight in the workings of the algorithm. This insight can be used to change

the program to allow for more memory efficient behaviour. An approach to practical

memory analysis of Java programs is proposed in chapter 4, which aids a programmer

in their day-to-day work. In addition to heap memory usage, stack memory usage is also

considered.
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1.4 Energy

As already mentioned, energy increasingly plays an important role in the software in-

dustry. Both memory and performance can be an indicator for energy consumption of

a program. However, it is also possible to analyse energy consumption more directly by

means of energy analysis on the source code level.

RUNNING EXAMPLE Returning to the example of the preprocessing step in the Bayesian Sets

algorithm, it is useful to analyse the effect of the preprocessing of alpha and beta on the energy

usage. In the preprocessing step, four arithmetic operations and two size lookups are performed.

If the energy usage of an arithmetic operation is equal to a, and a lookup equal to l, the energy

cost of a single preprocessing step is thus 4a + 2l. In the search()method of BSets, for each

unique property calculations are executed depending on a value in alpha and beta respectively.

If the number of searches is s, the amount of energy saved by preventing redundant calculations is

(s� 1) · (4a + 2l). In practice this number differs, because of caching, extra energy to maintain

extra values inmemory, and several other reasons. However, like the resultingmemory expressions,

it gives a programmer insight in the energy behaviour of the program.

An important aspect in order to analyse energy is the construction and validity of en-

ergy models of hardware. As it is the hardware that consumes energy, a realistic energy

model is needed. However, energy consumption is not in all cases easily modelled, as

it can depend on ambient temperature, wear of the hardware, radio signals, and vari-

ous other variables. To be applicable, constraints are required on the energy models of

hardware.

Lately, research in the relation between energy consumption and software has gained

traction, with numerous different approaches and views on the subject (see related work

of chapters 5 and 6). Two methods for analysing energy on source code level are proposed

in chapters 5 and 6. These chapters focus on software that controls energy consuming

hardware. The processor is not necessarily studies as a processor features many implicit

behaviours affecting the energy consumption. Examples of control software that can

be analysed with the methods in these chapters are control software for thermostats,

industrial equipment, environment control systems, and household appliances, amongst

others.

Introduction 11



1
1.5 Outline

All source code created for this thesis is available online at the web-

page listed below and through the QR-code on the right. The source

code is released under open licenses, and like this thesis, available

for all, free of charge.

https://www.bitpowder.com/~bvgastel/phdthesis

In chapter 2 a correctness analysis of a readers-writers mutual exclusion algorithm is

described. This class of algorithms is used when concurrency at process level, or within

a process using threads, is employed. The algorithm is used in the Qt library and there-

fore is present in many highly-distributed applications. The algorithm is first analysed

using model checking in the Spin tool. Using interactive theorem proving with the PVS

framework it is proved correct.

This chapter is based on [BvG-1] and based on [BvG-2] . The author found the initial

problem in the Qt framework, analysed the algorithm using model checking, corrected

the algorithm, and suggested the modifications to the makers of Qt.

In chapter 3 an analysis of hardware is described. A new technique to verify correctness

of an essential part of a processor is explored in this chapter. The various parts of a proces-

sor are connected by a communication network, which increasingly contains more logic.

This makes correctness analysis of hardware both harder and more important. For each

entry point of the communication network, the kind of packets that are injected is speci-

fied. Using symbolic execution the flow of the packets is calculated, i.e. for each channel

type inference is applied. As a result, for each channel in the network all the packets

that can reach that channel are known. This is a prerequisite for specification checking ,

which validates if the network conforms to a specification that is given for each packet at

each entry point of the network. A prototype written in C++ demonstrating the feasibility

of this approach is available.

This chapter is based on [BvG-11] . The author came up with the initial idea, worked

out the theoretical framework, and fully implemented the prototype. For this thesis the

chapter is extended with respect to the publication with specification checking, a new

case study and a more elaborate verification of the existing case study.
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In chapter 4 a memory analysis is proposed. A symbolic bound is derived for both heap

and stack memory usage using overapproximation . This analysis is implemented in the

prototype ResAna, for the Java language. This prototype partly builds on the foundation of

the prototype build in the COSTA project. This chapter resulted from the European Union

CHARTER project, in which our part was to make memory analysis practical for real time

Java programs.

This chapter is based on [BvG-4] and based on [BvG-10] . The authorworked on theheap

and stack analysis, also implementing it in the prototype. To make the specialisations

for the JamaicaVM virtual machine, the author travelled to Karlsruhe (Germany) to talk to

the creators of the virtual machine. During the validation of the heap memory analysis,

the author discovered a modelling error of arrays in COSTA, and proposed a solution.

In chapter 5 a method is proposed to deduce an overapproximated symbolic energy

consumption bound from programs written in the demonstration language ECA. This

language has explicit hardware interaction embedded in the language, enabling easier

analysis of the interactions. The overapproximation is based on a Hoare logic , which is

applied on the source-code level. Due to the nature of overapproximations, several extra

assumptions on the models are required. The approach is hardware parametric: it works

for any external hardware device. Several implementations of hardware components can

be easily exchanged in this energy analysis .

This chapter is based on [BvG-9] . The author took part in creating the idea, the Hoare

logic, and the theoretical foundations. For this thesis, the notation is improved consider-

ably, and a discussion on validity is added.

In chapter 6 an alternative method to analyse programs written in the ECA language

is proposed, using program transformations . The program transformation is based on

dependent types . The approach is also a hardware parametric energy analysis . The

alternative approach has a number of advantages, among others several limitations on

the modelling of components and the ECA language from chapter 5 do not apply. The

Hoare logic approach suffers both from lack of compositionality and from significant

overshoot in the derived bounds. This method derives a concrete precise result.

This chapter is based on [BvG-14] . The author thought of the idea, worked on the type

system, and wrote the article. For this thesis, recursion is added to the ECA language.
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ABSTRACT The classic readers-writers problem has been extensively studied. This holds to a

lesser degree for the reentrant version, where it is allowed to nest locking actions. Such nesting

is useful when a library is created with various procedures each starting and ending with a lock

operation. Allowing nesting makes it possible for these procedures to call each other.

We consider an existing widely used industrial implementation of the reentrant readers-writers

problem. Staying close to the original code, we model and analyse it using the Spin model checker

resulting in the detection of a serious error: a possible deadlock situation. The code andmodel was

improved and checked satisfactorily for a fixed number of processes. To achieve a correctness

result for an arbitrary number of processes the model is converted to a specification that is proven

with the PVS theorem prover. Using model checking we found a starvation problem. We have also

fixed the problem and checked the solution. Combining model checking with theorem proving

appeared to be very effective in reducing the time of the verification process, by quickly getting

acquainted with the problem, but also to check invariants needed for proving the theorems.

based on [BvG-1] based on [BvG-2]

correctness analysis concurrency model checking theorem proving

It is generally acknowledged that the historical growth in processor speed is reaching a

hard physical limitation. This has led to a revival of interest in concurrent processing.

Also in industrial software, concurrency is increasingly used to improve efficiency [Sut05].

It is notoriously hard to write correct concurrent software. Finding bugs in concurrent

software and proving the correctness of (parts of) this software is therefore attracting

more and more attention, in particular where the software is in the core of safety critical

or industrial critical applications.

However, it can be incredibly difficult to track down concurrent software bugs. In concur-

rent software, bugs are typically caused by infrequent ‘race conditions’ that are hard to

reproduce. Also the ability to encounter bugs depends heavily on the testing environment

used. A kernel update can trigger race conditions previously not encountered. For con-

current software, it is necessary to thoroughly investigate ‘suspicious’ parts of the system

in order to improve these components in such a way that correctness is guaranteed.

Three commonly used techniques for checking correctness of such systems are testing,

static (code) analysis and formal verification. In practice, testing is widely and successfully

used to discover faulty behaviour, but it cannot assure the absence of bugs. In particular,
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for concurrent software testing is less suited due to the typical characteristics of the bugs

(infrequent and hard to reproduce). In contrast with testing, static analysis is performed

directly and fully automatically on the source code, without actually executing it. The

information obtained from the analysis are, for example, common coding errors and sus-

picious control flow (e.g. leading to null pointer exceptions or lock order violations). There

are roughly two approaches to formal verification: model checking and theorem proving.

Model checking [CES83; QS82] has the advantage that it can be performed automatically,

provided that a suitable model of the software (or hardware) component has been created.

Furthermore, in the case a bug is found,model checking yields a counterexample scenario.

A drawback of model checking is that it suffers from the state-space explosion problem

and typically requires a closed system. In principle, theorem proving can handle any sys-

tem. However, creating a proof may be hard and it generally requires a large investment

of time. It is only partially automated and mainly driven by the user’s understanding of

the system. Besides, when theorem proving fails this does not necessarily imply that a

bug is present. It may also be that the proof could not be found by the user.

We will consider the reentrant readers-writers problem as a formal verification case study.

The classic readers-writers problem [CHP71] considers multiple processes that want to

have read and/or write access to a common resource (a global variable or a shared object).

The problem is to set up an access protocol such that no two writers are writing at the

same time and no reader is accessing the common resource while a writer is accessing

it. The classic problem is studied extensively [Pan+06]; the reentrant variant (in which

locking can be nested) has received less attention so far although it is used in Java, C#

and C++ libraries.

We have chosen a widely used industrial C++ library (Qt by Qt Group Plc, formerly Trolltech

and Nokia) that provides methods for reentrant readers-writers. For this library a serious

bug is revealed and fixed. This case study is performed in a structured manner combining

the use of a model checker with the use of a theorem prover exploiting the advantages of

these methods and avoiding their weaknesses. The main achievement of this approach is

that it significantly improves the time effectiveness of the verification process itself.

This paper can be seen as an extended version of [BvG-1]. There are two main differences.

Firstly, in this version we managed to keep the model much closer to the code using

Promela and Spin in stead of Uppaal. The model contains more of the details present

in the C++ program and it looks like the C++ program, but is still at approximately the
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same abstraction level as the model in [BvG-1]. We have manually translated both the

original C++ code into Spin models and the Spin models into PVS specifications. However,

by keeping the model and the specification so close to the C++ code, we have shown

that our approach lends itself for tool support, i.e. the used translations indicate ways of

performing the conversion in a (semi) automatic way. Secondly, in this paper we also

study starvation.

In section 2.1 we will introduce the abstract readers-writers problem. The studied Qt

implementation is discussed in 2.2. Its model will be defined, improved and checked for

a fixed number of processes in section 2.3. Using a theorem prover the model will be

fully verified in section 2.4. Finally, related work, future work and concluding remarks are

found in sections 2.5 and 2.6.

2.1 The readers-writers problem

If in a concurrent setting two threads are working on the same resource, synchronisation

of operations is (often) necessary to avoid errors. A test-and-set operation is an important

primitive for protecting common resources, commonly implemented in hardware. This

atomic (i.e. non-interruptible) instruction is used to both test and (conditionally) write

to a memory location. To ensure that only one thread is able to access a resource at

a given time, these processes usually share a global boolean variable that is controlled

via test-and-set operations, and if a process is currently performing a test-and-set, it is

guaranteed that no other process may begin another test-and-set until the first process is

done. This primitive operation can be used to implement locks. A lock has two operations:

lock and unlock. The lock operation is done before the critical section is entered, and the

unlock operation is performed after the critical section is left. However, implementing a

lock with just an atomic test-and-set operation is impracticable. More realistic solutions

will require support of the underlying operating system: threads acquiring a lock already

occupied by some thread should be de-scheduled until the lock is released. A variant of

this way of locking is called condition locking: a thread can wait until a certain condition

is satisfied, and will automatically continue when signalled (notified) that the condition

has been changed. An extension for both basic and condition locking is reentrancy, i.e.

allowing nested lock operations by the same thread.
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A so-called read-write lock functions differently from a normal lock: it either allows mul-

tiple threads to access the resource in a read-only way, or it allows one, and only one,

thread at any given time to have full access (both read and write) to the resource [Goe+06].

These locks are used in databases and file systems. Several kinds of solutions to the clas-

sical readers-writers problem exist. In this chapter we will consider a read-write locking

mechanism with the following properties:

writers preference Most solutions give priority towrite locks over read locks becausewrite

locks are assumed to be more important, smaller, exclusive, and to occur less fre-

quently. The main disadvantage of this choice is that it results in the possibility of

reader starvation: when constantly there is a thread waiting to acquire a write lock,

threads waiting for a read lock will never be able to proceed.

reentrant A thread can acquire the lock multiple times, even when the thread has not fully

released the lock. Note that this property is important for modular programming: a

function holding a lock can use other functions which possibly acquire the same

lock. We distinguish two variants of reentrancy:

weakly reentrant only permit sequences of either read or write locks;

strongly reentrant permit a thread holding a write lock to acquire a read lock. This

allows the following sequence of lock operations: write_lock(), read_lock(),

unlock(), unlock(). Note that the same function is called to unlock both a

write lock and a read lock. The sequence of a read lock followed by a write

lock is not permitted because of the evident risk of a deadlock (e.g. when two

threads both performs the locking sequence read_lock(), write_lock() they

can both read but none of them can write).

2.2 Qt’s implementation of readers-writers locks

In this section we show the C++ implementation of weakly reentrant read-write locks

being part of the multi-threading library of the Qt development framework, version 4.3.

The code is not complete; parts that are not relevant to this presentation are omitted. This

implementation uses other parts of the library: threads, mutexes and conditions. Like for

example in Java, a condition object allows a thread that owns the lock but that cannot
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1 struct QReadWriteLockPrivate {
2 QReadWriteLockPrivate()
3 : accessCount(0),
4 currentWriter(0),
5 waitingReaders(0),
6 waitingWriters(0)
7 { }
8

9 QMutex mutex;
10 QWaitCondition readerWait,
11 writerWait;
12

13 Qt::HANDLE currentWriter;
14 int accessCount,waitingReaders,
15 waitingWriters;
16 };
17

18 void QReadWriteLock::lockForRead() {
19 QMutexLocker lock(&d->mutex);
20 while (d->accessCount < 0 ||
21 d->waitingWriters) {
22 ++d->waitingReaders;
23 d->readerWait.wait(&d->mutex);
24 --d->waitingReaders;
25 }
26 ++d->accessCount;
27 Q_ASSERT_X(d->accessCount>0,
28 ”...”,”...”);
29 }

31 void QReadWriteLock::lockForWrite() {
32 QMutexLocker lock(&d->mutex);
33 Qt::HANDLE self =
34 QThread::currentThreadId();
35 while (d->accessCount != 0) {
36 if (d->accessCount < 0 &&
37 self == d->currentWriter) {
38 break; // recursive write lock
39 }
40 ++d->waitingWriters;
41 d->writerWait.wait(&d->mutex);
42 --d->waitingWriters;
43 }
44 d->currentWriter = self;
45 --d->accessCount;
46 Q_ASSERT_X(d->accessCount<0,
47 ”...”,”...”);
48 }
49

50 void QReadWriteLock::unlock() {
51 QMutexLocker lock(&d->mutex);
52 Q_ASSERT_X(d->accessCount!=0,
53 ”...”,”...”);
54 if ((d->accessCount > 0 &&
55 --d->accessCount == 0) ||
56 (d->accessCount < 0 &&
57 ++d->accessCount == 0)) {
58 d->currentWriter = 0;
59 if (d->waitingWriters) {
60 d->writerWait.wakeOne();
61 } else if (d->waitingReaders) {
62 d->readerWait.wakeAll();
63 }
64 }
65 }

listing 2.1 The QReadWriteLock class of Qt 4.3.

proceed, to wait until some condition is satisfied. When a running thread completes a

task and determines that a waiting thread can now continue, it can call a signal on the

corresponding condition. This mechanism is used in the C++ code listed in figure 2.1.

The structure QReadWriteLockPrivate contains the attributes of the class QReadWriteLock.

These attributes are accessible via an indirection named d. The attributes mutex (of type

QMutex), readerWait (of typeQWaitCondition) and writerWait (of typeQWaitCondition) are

used to synchronise access to the other administrative attributes, of which accessCount

keeps track of the number of locks acquired (including reentrant locks) for this lock. A

negative value is used for write access and a positive value for read access. The attributes
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waitingReaders and waitingWriters (both of type int) indicate the number of threads

requesting a read respectively write permission, that are currently pending. If some

thread owns the write lock, currentWriter contains a HANDLE to this thread; otherwise

currentWriter is a null pointer.

The code itself is fairly straightforward. The locking of attribute mutex, of type QMutex, is

performed via the constructor of the wrapper class QMutexLocker. Unlocking this mutex

happens implicitly in the destructor of this wrapper. A write lock can only be obtained

when the lock is completely released (d->accessCount == 0), or the thread already has

obtained a write lock (d->currentWriter == self, a reentrant write lock).

The code could be polished a bit, e.g. one of the administrative attributes can be expressed

in terms of the others. However, we have chosen not to deviate from the original code,

except for the messages in the assertions which were, of course, more informative.

2.3 Model checking readers-writers with Spin

Spin is an explicit state model checker with support for assertions and Linear Temporal

Logic (LTL), including liveness properties. Spin converts a model written in the specifica-

tion language Promela to a checker written in C. By compiling and running the checker,

properties can be checked, e.g. see [Hol04; Ben08].

In the previous version of this paper [BvG-1] we used Uppaal for modelling the system. An

advantage of Uppaal is its intuitive and easy to use graphical interface. However, we have

decided to switch to Spin for mainly two reasons: First, the input language Promela resem-

bles C, which allows us to model the code in a direct and clear way. Second, compiled

models generated by Spin appear to be more efficient than equivalent models specified in

Uppaal. This enables us to enlarge the examined state space of themodel significantly.

A few general notes can be made about modelling code in Promela. Promela is not a

(general-purpose) programming language, and therefore it lacks some features that are

found in common language like C or Java. For instance, there are no functions that return

values in Promela. For simple non-recursive procedures, one can use the inline construct

instead. Moreover, Promela does not support object oriented programming. In our trans-

lation, we will will represent the attributes of objects as structs, and non-static methods

as (inline) functions, having this as en explicit argument.
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A feature of Spin is the ability to embed C code directly. With a couple of special Promela

statements C code can be inserted in the model and is executed atomically in the model.

Spin tracks the memory used by these statements and include the memory regions in

the state space. One can easily convert source code to a Promela model by wrapping

all C code in the proper Promela statements. This method is not applicable to our case

study: the mutexes are system calls which modify memory outside the process space.

The content of these (kernel) memory regions can not be rolled back by Spin as the state

space is explored. So we have to model the whole program in Promela.

2.3.1 Modelling the basics

The Qt implementation of theQReadWriteLock class is based on two other classes: QMutex

andQWaitCondition. These components are platform dependent. In our case study we use

the Linux version, in whichQMutex andQWaitCondition are built on the pthread_mutex and

pthread_cond components of the POSIX thread library. This library is part of the operating

system. Creating a code based model of these components would require the treatment

of operating system dependent details making the whole system too complex. Instead

we will use abstract versions of these components.

Whenusing the 2.6 versionof the Linuxkernel, the default behaviour forPOSIX components

is not starvation free. Starvation free behaviour of these components can be activated

by setting the SCHED_FIFO flag when creating threads. Qt, however, uses the default be-

haviour. This is, of course, an important observationwhenweare considering the absence

of starvation of the locking mechanism. In that case we will assume that the threads are

scheduled fairly and that the underlying basic locking primitives use a first-in-first-out

(FIFO) lock assignment strategy, see section 2.3.6. However, below we study the default

behaviour of the POSIX components first.

1 typedef pthread_mutex_t {
2 bool locked = false
3 };
4

5 inline pthread_mutex_unlock(this) {
6 assert(this.locked);
7 this.locked = false;
8 }

10 inline pthread_mutex_lock(this) {
11 atomic {
12 !this.locked;
13 this.locked = true;
14 }
15 }

listing 2.2 Abstract model in Promela of the non-reentrant pthread_mutex.
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We start with modelling the basic pthread_mutex component. The two main functions

operating on this component are pthread_mutex_lock() and pthread_mutex_unlock(),

which both can be specified easily in Promela; see figure 2.2. The lock itself is represented

as a single boolean, named locked and initially set to false. The pthread_mutex_lock()

function is an atomic operation that waits until locked is false before setting the vari-

able to true. Waiting can be expressed in Promela just be using boolean expressions as

statements. If, during the execution of the model such a statement is encountered, the

corresponding computation branch is suspended until the expression becomes true. The

pthread_mutex_unlock() function resets locked to false. To check for incorrect use, an

assertion is added to the code verifying that no lock is released if it has not been obtained

before. By wrapping the locked variable in a typedef (named pthread_mutex_t) we can use

this pthread_mutex component in the same manner as in the C++ code.

We now model the pthread_cond component, listed in figure 2.3. This component allows a

thread owning the lock to wait until some condition is satisfied (while releasing the lock).

When another running thread completes a task and determines that a waiting thread

can now continue, it can wake up this thread by calling a signal on the corresponding

condition. Actually, two kinds of signal functions are available working on pthread_cond:

pthread_cond_signal() (waking one thread) and pthread_cond_broadcast() (waking

all threads). Our abstract version of pthread_cond uses a basic synchronisation mecha-

nism of Promela: (synchronous) rendez-vous channels. The pthread_cond_wait() func-

1 typedef pthread_cond_t {
2 byte waiting = 0;
3 chan cont = [0] of {bit};
4 };
5

6 inline pthread_cond_signal(this) {
7 atomic {
8 if
9 :: this.waiting > 0 ->

10 this.waiting--;
11 this.cont?_;
12 :: else
13 fi;
14 }
15 }

17 inline pthread_cond_broadcast(this) {
18 atomic {
19 do
20 :: this.waiting > 0 ->
21 this.waiting--;
22 this.cont?_;
23 :: else -> break;
24 od;
25 }
26 }
27

28 inline pthread_cond_wait(this,mutex) {
29 this.waiting++;
30 pthread_mutex_unlock(mutex);
31 this.cont!1;
32 pthread_mutex_lock(mutex);
33 }

listing 2.3 Abstract model in Promela of pthread_cond.
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1 typedef QWaitCondition {
2 pthread_mutex_t mutex;
3 pthread_cond_t cond;
4 int waiters = 0;
5 int wakeups = 0;
6 };
7

8 inline QWaitCondition_wakeOne(this) {
9 pthread_mutex_lock(this.mutex);

10 this.wakeups = min(this.wakeups + 1,
11 this.waiters);
12 pthread_cond_signal(this.cond);
13 pthread_mutex_unlock(this.mutex);
14 }
15

16 inline QWaitCondition_wakeAll(this) {
17 pthread_mutex_lock(this.mutex);
18 this.wakeups = this.waiters;
19 pthread_cond_broadcast(this.cond);
20 pthread_mutex_unlock(this.mutex);
21 }

23 inline QWaitCondition_wait(this, m) {
24 pthread_mutex_lock(this.mutex);
25 this.waiters++;
26 QMutex_unlock(m);
27 do
28 :: this.wakeups == 0 ->
29 pthread_cond_wait(this.cond,
30 this.mutex);
31 :: else ->
32 break;
33 od;
34 this.waiters--;
35 this.wakeups--;
36 pthread_mutex_unlock(this.mutex);
37 QMutex_lock(m);
38 }

listing 2.4 Concrete model in Promela of QWaitCondition.

tion uses a send operation on the rendez-vous channel cont. The thread invoking this

method will be blocked until another thread execute a receive operation. The contents

of the message sent over this channel are irrelevant, only the timing of the message

counts. On the receiver side this is specified by using an anonymous write-only variable

(in Promela: cont?_), and on the sender side by choosing some arbitrary value (in our case

the value 1, sent with the statement cont!1). Before waiting on the channel the wait func-

tion has to unlock the mutex and, after continuing, to lock the mutex again. To be able to

wake all the waiting threads, the condition keeps track of the number of waiting threads

in the field waiting. For correctness atomic blocks are used to limit the interleaving of

processes (otherwise the tests waiting > 0 and waiting-- could be interrupted). Just

like pthread_mutex the variables are wrapped in a new type pthread_cond_t.

The implementation of QMutex class appears to be rather complex, due to some opti-

misations that have been performed. As a consequence, the code base is large and it

is outside the scope of this article, to model this part faithfully. Instead we will use

pthread_mutex to provide the locking mechanism, because it has the same functional

behaviour as QMutex. Hence QMutex is a wrapper around around pthread_mutex. The im-

plementation of QWaitCondition, on the other hand, is much shorter, and can therefore

be converted to Promela straightforwardly. The result is listed in figure 2.4. Again, the
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attributes of this class are wrapped in a struct. As one can see, the class depends on

pthread_mutex, pthread_cond (appearing as attribute types), and on QMutex (passed as an

argument to the method QWaitCondition_wait()). According to the comments in the

source code ‘many vendors warn of spurious wake-ups from pthread_cond_wait(), es-

pecially after signal delivery’. Both the attribute wakeups and the loop in wait()method

are used to counter the described spurious wake-ups. In this way, a thread can only finish

the wait() method if a signal is received. The variable wakeups is used to keep track of

the number of threads allowed to wake up and is bound by the number of waiting threads,

as contained in the attribute waiters. Both the wakeOne() and the wakeAll() methods

increase the wakeups attribute, and the wait()method decreases the variable as threads

are woken. The pthread_mutex used in QWaitCondition is needed because QMutex does not

use a pthread_mutex, and such a mutex is needed for the pthread_cond_wait() function.

The parameter m of the wait() method is a mutex. This mutex is released until a signal

is received.

2.3.2 Modelling readers-writers

Now we have modelled all the components on which the QReadWriteLock class depends,

we can convert the QReadWriteLock itself to Promela. All class attributes can be ex-

pressed directly (the type Qt::HANDLE is converted to the Promela type pid, both iden-

tifying a specific process or thread). In figure 2.5 the variables of the class and the code of

lockForRead() are listed, on the left the originalC++ code, and on the right the conversion

in Promela. Methods are converted to inline definitions.

The QMutexLocker is a convenience wrapper around a lock, obtaining a lock when the

object is constructed and releasing the lock implicitly (via its destructor) when the object

is deallocated. When used as a local (stack) object, QMutexLocker obtains the lock during

its initialisationand releases the lockwhen this local object gets out of scope. This implicit

destructor invocation is converted to an explicit call of QMutexUnlock().

The translation of the code for the lockForRead()method is performed instruction-wise.

Awhile-loop is converted into a do ... od statement (which can be thought of as for in C++).

The loop is ended with a break in one of the condition blocks (prefixed by a double colon,

::). Normally, a block with a true condition is chosen non-deterministically for execution,

though in our case only one of these conditions can possibly hold at a given time.
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1 struct QReadWriteLockPrivate {
2 QMutex mutex;
3 QWaitCondition readerWait,
4 writerWait;
5 Qt::HANDLE currentWriter;
6 int accessCount,
7 waitingReaders,
8 waitingWriters;
9 };

10

11 void QReadWriteLock::lockForRead() {
12 QMutexLocker lock(&d->mutex);
13 while (d->accessCount < 0 ||
14 d->waitingWriters) {
15 ++d->waitingReaders;
16 d->readerWait.wait(&d->mutex);
17 --d->waitingReaders;
18 }
19 ++d->accessCount;
20 Q_ASSERT_X(d->accessCount > 0,
21 ”...”, ”...”);
22 }

1 typedef QReadWriteLock {
2 QMutex mutex;
3 QWaitCondition readerWait;
4 QWaitCondition writerWait;
5 pid currentWriter = NT;
6 int accessCount = 0;
7 int waitingReaders = 0;
8 int waitingWriters = 0;
9 };

10

11 inline QReadWriteLock_lockForRead(this) {
12 QMutex_lock(this.mutex);
13 do
14 :: this.accessCount < 0 ||
15 this.waitingWriters > 0 ->
16 this.waitingReaders++;
17 QWaitCondition_wait(this.readerWait,
18 this.mutex);
19 this.waitingReaders--;
20 :: else -> break;
21 od;
22 this.accessCount = this.accessCount + 1;
23 assert(this.accessCount > 0);
24 QMutex_unlock(this.mutex);
25 }

listing 2.5 Part of QReadWriteLock (Qt 4.3 version) in C++ (left) and Promela (right).

2.3.3 Modelling usage of the lock

In order to check properties we will simulate all possible usages of the QReadWriteLock.

For this reason we will define a number of threads, each (sequentially) executing a finite

number of read and/or write locks, and matching unlocks, in a proper sequence (i.e. no

unlocks if the lock isnot obtainedfirst by the threadandnowrite lock requests if the thread

already has a read lock). Eventually each thread relinquishes all locks, so other threads

are allowed to proceed. The variable maxLocks indicates how many locks a thread may

request before it relinquishes all locks. We model these threads by Promela processes as

shown in figure 2.6. Here, THREADS indicates the number of threads the model is checked

with. Note that the do statement chooses one of the options non-deterministically. The

readNest variable is used to exclude the case inwhich a (reentrant) write lock is performed

after a read lock is already obtained. Both readNest and writeNest are used to control

unlocking. Both are updated in the ‘methods’ of QReadWriteLock. As the ‘methods’ are in

fact just inlined code, they can access and update these variables.
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1 active[THREADS] proctype user() {
2 int readNest = 0;
3 int writeNest = 0;
4 int maxLocks;
5 do
6 :: maxLocks = MAXLOCKS;
7 do
8 :: maxLocks > 0 ->
9 maxLocks--;

10 if
11 :: readNest == 0 -> QReadWriteLock_lockForWrite(rwlock);
12 :: QReadWriteLock_lockForRead(rwlock);
13 fi;
14 :: writeNest + readNest > 0 ->
15 QReadWriteLock_unlock(rwlock);
16 :: maxLocks != MAXLOCKS && writeNest + readNest == 0 ->
17 break;
18 od;
19 od;
20 }

listing 2.6 Promela process of QReadWriteLock usage.

There are three kinds of properties to be checked, each invoked differently by Spin. The

absence of deadlock property is checked implicitlywhen running the verifier for assertion

violations. Each time a non-end state is encountered and no transitions out of the state

are valid an ‘invalid end state’ error is reported. The second type of properties we check

are safety properties, which are valid in each state of the model (specified as LTL formulas

beginning with the G operator). Most of the informal correctness properties specified in

section 2.1 are of this type. The last type are liveness properties, guaranteeing that each

process can make progress of some sort. Spin has special support for liveness properties,

called progress states, but they can also be checked with LTL properties. We continue with

checking for deadlock and assertions.

2.3.4 Checking for deadlock and assertions

As stated before, deadlock detection is done implicitly when checking for assertions.

Each state not marked as an end state and with no outgoing transitions is reported. Also

all assertions in the model are checked. Besides the assertions that were present in the

original code, there is one assertion in the method lockForWrite() that has been added,

to verify that no thread gets write access when readers are busy.
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1 pan: invalid end state (at depth 188)
2 pan: wrote qreadwritelock43.usage.trail
3 ...
4 pan: reducing search depth to 32
5 ...
6 0: enter lockForRead
7 0: leave lockForRead
8 1: enter lockForWrite
9 1: waiting

10 0: enter lockForRead
11 0: waiting
12 spin: trail ends after 34 steps
13 #processes: 2
14 rwlock.mutex.m.lockedBy = 255
15 rwlock.mutex.m.count = 0
16 rwlock.readerWait.waiters = 1
17 rwlock.readerWait.wakeups = 0
18 rwlock.readerWait.waiting = 1
19 rwlock.writerWait.waiters = 1
20 rwlock.writerWait.wakeups = 0
21 rwlock.writerWait.waiting = 1
22 rwlock.accessCount = 1
23 rwlock.currentWriter = 255
24 rwlock.waitingReaders = 1
25 rwlock.waitingWriters = 1
26 readers = 1
27 writers = 0
28 34: proc 0 (user) line 19 ”qwaitcondition.abs” (state 29)
29 34: proc 1 (user) line 19 ”qwaitcondition.abs” (state 187)

listing 2.7 Output of Spin when checking for a deadlock.

Running our model resulted immediately in the detection of a deadlock. The output of

Spin is given in figure 2.7. It starts with an iterative search for the shortest error trail. After

that the debug output of the shortest trail is printed. The values of all variables in the last

state are showed, and the output ends with a message in which state the processes are.

The situation reported by Spin occurs when a thread already having a read lock requests

another one, while another thread is waiting for a write lock. The deadlock is clear: the

first thread is never going to proceed with the reentrant reader because there is a writer

waiting. The second thread is never going to proceed because the lock is never released.

A change to the algorithm is needed to avoid this deadlock.

The solution to the deadlock stated above is to let a reentrant lock always proceed. To

check if a lock request is a reentrant operation, for each thread the number of calls to the

specific lock should be kept track of. If this number is positive the lock operation should

always succeed. An extra attribute count of type QHashhQt::HANDLE, inti is introduced in

chapter 228



2

the original C++ code, mapping thread identifiers to numbers. In our translated model we

represented this hash table by an integer array count in which count[pid] is the number

of reentrant locks of process pid. In Promela the array is declared with the statement

int count[THREADS].

Furthermore, we take this opportunity to change the strange use of the accessCount

variable: the sign of the value of accessCount indicateswhether active locks are read locks

or write locks. This distinction between readers and writers appears to be superfluous. In

fact, leaving out this distinction provides that our implementation is strongly reentrant.

Moreover, we changed the name of the variable into threadCount to indicate it actually

contains the number of different threads that are currently holding the lock.

After the adjustments to the model, Spin reports no assertion violations and no invalid

end states for a parameterised model with three threads and a maximum of five locking

operations. So the model is shown to be free of deadlocks with these parameters.

We reported the deadlock to Qt Group Plc. Recently, Qt Group Plc released a new version

of the thread library (version 4.4) in which the deadlock was repaired. However, the new

version of the Qt library is still only weakly reentrant, not admitting threads that have

write access to do a read lock. This limitation unnecessarily hampers modular program-

ming.

2.3.5 Checking LTL safety properties

To check the properties we introduce auxiliary variables in the model to track the number

of threads having write locks (called writers) and having read locks (called readers). The

code needed to keep track of these auxiliary variables is inserted at appropriates place

in the ‘methods’ of QReadWriteLock. The readers and writers variables are only incre-

mented on a non-reentrant call of a thread, and therefore decremented only on the final

unlock. The other variables stated in the properties are attributes of QReadWriteLock.

We now continue with checking LTL safety properties of the algorithm. These properties

are checked by querying Spin with a LTL expression. We removed a deadlock in the previ-

ous subsection, but the algorithm was not checked for conceptually flawed behaviour, for

example allowing both a reader and a writer enter the critical section at the same time.
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1 typedef QReadWriteLock {
2 QMutex mutex;
3 QWaitCondition readerWait;
4 QWaitCondition writerWait;
5

6 int threadCount = 0;
7 int waitingReaders = 0;
8 int waitingWriters = 0;
9

10 pid currentWriter = NT;
11 int count[THREADS] = 0;
12 }
13

14 inline QReadWriteLock_lockForRead(this) {
15 QMutex_lock(this.mutex);
16 if
17 :: this.count[_pid] == 0 ->
18 do
19 :: (this.currentWriter != NT ||
20 this.waitingWriters > 0) ->
21 this.waitingReaders++;
22 QWaitCondition_wait
23 (this.readerWait,this.mutex);
24 this.waitingReaders--;
25 :: else -> break;
26 od;
27 this.threadCount++;
28 assert(this.waitingWriters == 0);
29 :: else
30 fi;
31 this.count[_pid]++;
32 ... update model variables ...
33 QMutex_unlock(this.mutex);
34 }
35

36 inline QReadWriteLock_lockForWrite(this) {
37 QMutex_lock(this.mutex);
38 if
39 :: this.currentWriter != _pid ->
40 do
41 :: this.threadCount != 0 ->
42 this.waitingWriters++;
43 QWaitCondition_wait
44 (this.writerWait,this.mutex);
45 this.waitingWriters--;
46 :: else -> break;
47 od;
48 this.currentWriter = _pid;
49 this.threadCount++;
50 :: else
51 fi;
52 assert(this.threadCount == 1 &&
53 this.currentWriter == _pid);
54 this.count[_pid]++;
55 ... update model variables ...
56 QMutex_unlock(this.mutex);
57 }

59 inline QReadWriteLock_unlock(this) {
60 QMutex_lock(this.mutex);
61 this.count[_pid]--;
62 // is it the last unlock by this thread?
63 if
64 :: this.count[_pid] == 0 ->
65 this.threadCount--;
66 // is it the last unlock of the lock?
67 if
68 :: this.threadCount == 0 ->
69 this.currentWriter = NT;
70 if
71 // if available wake one writer,
72 :: this.waitingWriters > 0 ->
73 QWaitCondition_wakeOne
74 (this.writerWait);
75 // otherwise wake all readers
76 :: else ->
77 if
78 :: this.waitingReaders > 0 ->
79 QWaitCondition_wakeAll
80 (this.readerWait);
81 :: else
82 fi;
83 fi;
84 :: else
85 fi;
86 :: else
87 fi;
88 ... update model variables ...
89 QMutex_unlock(this.mutex);
90 }

listing 2.8 Updated Promela model of readers-writers algorithm.
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A predicate called outsideCS is introduced, indicating that no change can occur inside

the lock structure. In other words no thread has locked the mutex, as indicated by the

negation of the boolean attribute locked from attribute mutex fromQReadWriteLock.

Formalisation of the properties stated in section 2.1 is now straightforward. The resulting

invariants are listed below. The waitingReaders and waitingWriters variables used are

attributes of the QReadWriteLock object.

G (readers = 0 _ writers = 0)

There are not simultaneously writers and readers allowed.

G (writers  1)

No more than one writer is allowed.

G (outsideCS! (waitingWriters > 0! (readers > 0 _ writers > 0)))

States that the only possibility of waitingwriters is when there are readers or writers

busy, but only when there is no change to the lock.

G (outsideCS! (waitingReaders > 0! (writers > 0 _ waitingWriters > 0)))

States that the only possibility of waiting readers is when there are writers waiting

or writers busy, but only when there is no change to the lock.

The third and fourth invariant donot hold for this algorithm. Wedetected this issue during

model checking. There exists a state in which the proposition outsideCS is true, there

are no readers and no writers, but there are readers and/or writers waiting. The third and

fourth stated safety property are therefore violated. This occurs if a thread has just called

the unlock()method, and another thread intends to continue with acquiring a read or a

write lock. The invariants are not easily fixed, as these states can not be easily excluded.

In the next subsection, a change is proposed to avoid starvation. This change also avoids

the state mentioned above. Therefore we postpone verifying these invariants to the next

subsection.

2.3.6 Checking for absence of starvation

We continue with ensuring the absence of starvation in the algorithm. In section 2.1 we

stated that the design decision to give preference to writers results in a possible reader

starvation. Therefore it only makes sense to check the property for writers. In Spin one
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figure 2.9 Graphical representation of the counterexample indicating a starvation problem.
The thick line indicates that the mutex is hold by a thread.

can verify starvation properties by using progress states. A looping process obtaining and

releasing write locks, but no read locks, is added and labelled with a progress label. When

checking the model, it is verified that all execution cycles (i.e. an execution path on which

the same state occurs twice) contain this progress label.

As noted earlier, the original readers-writers algorithm has a starvation problem because

Qt uses the default behaviour of POSIX on Linux. However, we continue as if a fair schedul-

ing policy would have been used. To avoid starvation in the underlying pthread_mutex

and pthread_cond models, these were replaced by starvation free versions that use a FIFO

mechanism. Despite of these changes, the model still contains the possibility of writers

starvation. This appeared when we checked the model for absence of progress, and Spin

found an execution cycle with no progress states. A graphic representation of this cycle

is shown in figure 2.9. The problem is caused by the wait() method of QWaitCondition;

see figure 2.4. When thread t calls QWaitCondition_wait(), it will suspend execution (by

calling pthread_cond_wait()) until thread s signals that thread t can continue its execu-
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tion. However, at that time, thread t has no longer locked the mutex this.mutex. Each

other thread, in the figure thread s, can now lock this mutex (by calling lockForWrite())

just before t does, effectively stealing the turn of t.

This problem can be avoided by ensuring that no thread can get the mutex before the

signalled thread (t in the above example) can start executing again. This can be done by

atomically transferring the lock on the mutex from the signalling thread to the signalled

thread. Also, all stated invariants are valid, as the states mentioned in the previous sub-

section do not exists anymore because of the atomic transfer of the lock between threads.

To accommodate this behaviour we have adjusted theQWaitCondition andQMutex parts of

our Spin model. Although we were able to find a solution, the solution is rather large and

complex. The solution also includes a way to create a starvation-free condition variables

out of one starvation-free mutex and two starvation-prone condition variables. This is

needed because starvation-free condition variables are not available on most POSIX plat-

forms, including Linux,Mac OS X, and FreeBSD. For brevity, we will not present the adjusted

Spin model, but take the improvement into account in the next section. For the complete

solution and a more extensive report of our experiments, see [BvG-0]. The adjusted ver-

sion is verified free of deadlock and starvation and not violating the safety properties, for

a model with three threads with a maximum of four lock operations (actually we were

able to verify the model free of starvation for a maximum of six reentrant lock operations,

but not the other properties).

2.3.7 Results

In these experiments we have verified absence of deadlock and starvation and a number

of safety properties for a maximum of three threads, and for a maximum of four lock

operations. Although the absence of starvation was verified for six lock operations, the

safety properties and absence of deadlock were only verified for four lock operations. For

these parameters, the experiments runs in about four hours (94 minutes for deadlock

checking, and 35 minutes for starvation, and 128 minutes for the safety properties), using

127.6 gigabytes of memory. If we increase these values slightly, the execution time wors-

ens drastically and/or the memory usage increases above 128 GiB, the memory limit for

our machines. For a complete correctness result, we have to proceed differently.
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2.4 Generalised reentrant readers-writers model

In this sectionwewill formalise theSpinmodel inPVS [ORS92]. Weprove that the reentrant

algorithm is free from deadlock and writer starvation when we generalise to any number

of processes. We use the PVS interactive theorem prover for the generalised model.

The PVS system consists of a specification language and a theorem prover. The specifica-

tion language of PVS is based on classical, typed higher-order logic. It resembles common

functional programming languages, such as Haskell, LISP or ML. The choice of PVS as the

theorem prover to model the readers writers locking algorithm is purely based upon the

presence of local expertise. The proof can be reconstructed in any reasonably modern

theorem prover, for instance Isabelle [NPW02] or Coq [BC04].

The earlier translation of an Uppaal model of the algorithm to PVS [BvG-1] was specific

to that particular model. In order to derive the PVS specification from the Spin model we

use a more methodical approach, suitable for other models as well. Furthermore, this

methodical approach offers more opportunities for tool support.

2.4.1 Readers-writers model in PVS

There is no implicit notion of state or processes in PVS specifications. So, we construct a

state transition system that explicitly keeps track of a system state. This state consists

of the global variables of the Spin model, thread information, and a variable indicating

which thread is currently active. For each thread a program counter and the state of the

local variables are also part of the global transition system. Moreover, whether a thread

is allowed to be scheduled is kept by means of a ThreadState. When it is Running the

scheduler will allow the thread to progress. However, when it is Sleeping, it will not be

permitted to run until woken up. A thread can have an atomic flag set. This flag tells

the scheduler that only this thread can be executed. The atomic flag is set whenever the

atomic primitive is used in Spin and is reset when the atomic block ends. Each critical

section in the Spin model starts with a QMutex_lock() and ends with a QMutex_unlock()

(see figure 2.8). These method calls enforce mutual exclusion of access to all the global

variables in the Spin model. We abstract away from these method calls by setting the

atomic flag when a thread enters its critical section and resetting the flag once it leaves

the critical section. This is semantically the same as using the mutual exclusion mecha-

nism, because threads use only local variables outside of their critical sections.
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A thread can transfer its atomic status to another one, say with the ThreadID tid, by set-

ting the field to tid. Only tidwill be able to be scheduled next. With NT denoting the total

number of processes, we get a general representation of threads, listed below. The kind

of local and global variables that are used is left open. These can be instantiated for each

particular Spin model with a model specific collection of local and global variables.

1 Threads[NT:nat, PC:TYPE, LV:TYPE, GV:TYPE] : THEORY

2 BEGIN

3 ThreadID : TYPE= below(NT)

4 ThreadStateType : TYPE= { Running, Waiting, Terminated }

5 ThreadState : TYPE= [# state : ThreadStateType

6 , local : LV

7 , PC : PC

8 , atomic : boolean #]

9 Threads : TYPE= ARRAY[ ThreadID ! ThreadState]

10 System : TYPE= [# threads : Threads

11 , currentTID, transfer : ThreadID

12 , global : GV #]

13 END Threads

The predicate interleave simulates parallel execution of threads, see below. A thread

is only allowed to switch its context when it is not atomic or when the lock is trans-

ferred from one thread to another. With isNull is tested whether transfer contains a

valid ThreadID. This thread becomes the next current thread. Only Running threads are

scheduled. The predicate only holds for a subset of the System data type, signified by the

validState? predicate, further explained in section 2.4.3.

1 interleave(s1,s3:(validState?)) : boolean=

2 9 (s2:System) : chain_atomic(s1,s2)

3 ^ IF isNull(s2‘transfer)

4 THEN 9 (tid:ThreadID) : s3 = s2 WITH [ ‘currentTID := tid ]

5 ^ s3‘threads(tid)‘state= Running

6 ELSE s3 = s2 WITH [ ‘currentTID := s2‘transfer

7 , ‘transfer := NT ]

8 ENDIF

Before possibly switching its context, the current thread performs a series of execution

steps using the chain_atomic relationship. It is assumed that a next relation is provided,

representing a single step in the execution of a thread. The non-deterministic choice

which thread gets to execute is modeled by the existential quantifier that states that any

thread can become the next current thread, unless there is an explicit lock transfer.
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A single step, as described by the next relation, is atomic by definition. A sequence of such

steps is executed recursively until the thread has released its atomic flag. The predicate

for this is listed below. This recursive relationship terminates because there are no cycles

in the progression of states a thread can transfer to with its atomic flag set.

1 chain_atomic(s1:System, s2:System) : RECURSIVE boolean=

2 ¬s2‘threads(s2‘currentTID)‘atomic
3 ^ (next(s1,s2)_ 9 (s:System): next(s1,s)^ s1‘currentTID= s‘currentTID

4 ^ s1‘threads(s1‘currentTID)‘atomic

5 ^ s1‘threads(s1‘currentTID)‘atomic= s‘threads(s‘currentTID)‘atomic

6 ^ chain_atomic(s,s2))

7 MEASURE s1 BY state_order

The PVS specification used here is semantically slightly different from the one used in Qt.

This model not only wakes up a process, but also passes the lock on with the transfer

field to one of the woken threads to avoid writer starvation, mentioned as a solution to the

starvation problem at the end of section 2.3.6. Note that this is only possible if a thread

immediately leaves its critical section after synchronisation. The model is based on a

FIFO queue that holds all processes, such that they will be woken in the order that they

have been put to sleep.

1 QWaitCondition : TYPE= list[ThreadID]
2 NEQWaitCondition : TYPE= {wc:QWaitCondition | length(wc) > 0 }
3 wait(s:System, q:QWaitCondition) : [System, QWaitCondition] =
4 (s WITH [ ‘threads(s‘currentTID)‘state := Waiting
5 , ‘threads(s‘currentTID)‘atomic := false ]
6 , append(q, cons(s‘currentTID, null)))
7 wakeOne(s:System, q:NEQWaitCondition) : [System, QWaitCondition] =
8 (s WITH [ ‘threads(car(q))‘state := Running
9 , ‘threads(s‘currentTID)‘atomic := false

10 , ‘threads(car(q))‘atomic := true
11 , ‘transfer := car(q)], cdr(q))
12 wakeAll(s:System, q:NEQWaitCondition) : [System, QWaitCondition] =
13 LET newthreads= l (p:ThreadID) : s‘threads(p)
14 WITH [ state := IF member(p,q)
15 THEN Running
16 ELSE s‘threads(p)‘state
17 ENDIF ] IN
18 (s WITH [ ‘threads := newthreads
19 , ‘threads(s‘currentTID)‘atomic := false
20 , ‘threads(car(q))‘atomic := true
21 , ‘transfer := car(q)], null)

listing 2.10 PVS model for QWaitCondition.
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The type QWaitCondition, as listed in listing 2.10, is a list that holds the ThreadID s of all

threads that are put to sleep. The wait function takes a wait queue and changes the state

of the current thread to Waiting and releases the atomic flag. The wakeOne and wakeAll

functions are used to wake up one waiting writer and all waiting readers respectively.

Their states are set to Running, so they can be scheduled and the lock is transferred to the

process that is first in the queue.

2.4.2 Translation from Spin to PVS

After having defined all the components, the total state of the model is defined by all

the local and global variables. These are exactly the same as in the original Spin model

as defined in figure 2.8. The ProgramCounterStates refer to the locations of the pro-

gram counter as the Spin model executes. For instance, the start of the outer do loop

in the user() function defined in figure 2.6 contributes user05 to ProgramCounterStates.

ProgramCounterStates, defined below, instantiatesPC in the theoryThreads and similarly,

both LocalVariables and GlobalVariables instantiate LV and GV respectively.

1 ProgramCounterStates : TYPE= { lockForRead17, ... , user05 }

2 LocalVariables : TYPE= [# readNest, writeNest, maxLocks : nat #]

3 QReadWriteLock : TYPE=

4 [# readerWait, writerWait : QWaitCondition

5 , count : [ThreadID ! nat]

6 , currentWriter : ThreadID

7 , threadCount, waitingReaders, waitingWriters : nat #]

8 GlobalVariables : TYPE=

9 [# readers, writers : nat, rwlock : QReadWriteLock #]

The relation next(s1,s2 : System) : boolean specifies the global state transitions,

which can be found in listing 2.11. The body of this function is derived directly from

the Spin model using the following method:

— at each position where there can be a context switch in the Spin model, there is a

location added to the program counter type.

— control structures like do are translated by setting the program counter to the ap-

propriate location. Location labels are derived from the function names, appended

with the line numbers in the Spin source code.

— assignments are translated to modifications of the variables in the state.
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1 next(s1:System, s2:System) : boolean=
2 [ .. removed some code for brevity .. ]
3 CASES s1‘threads(currentTID)‘PC OF
4 user05:
5 s2 = s1 WITH [ ‘threads(currentTID)‘local‘maxLocks := MAXLOCKS
6 , ‘threads(currentTID)‘PC := user07 ],
7 user07:
8 ( IF maxLocks> 0
9 THEN s2 = s1 WITH [ ‘threads(currentTID)‘local‘maxLocks := maxLocks-1

10 , ‘threads(currentTID)‘PC := user10]
11 ELSE FALSE ENDIF
12 _ IF writeNest + readNest> 0
13 THEN s2 = s1 WITH [ ‘threads(currentTID)‘PC := unlock67]
14 ELSE FALSE ENDIF
15 _ IF writeNest + readNest= 0
16 THEN s2 = s1 WITH [ ‘threads(currentTID)‘PC := user05 ]
17 ELSE FALSE ENDIF ),
18 user10:
19 ( IF readNest= 0
20 THEN s2 = s1 WITH [ ‘threads(currentTID)‘PC := lockForWrite42]
21 ELSE FALSE ENDIF
22 _ s2 = s1 WITH [ ‘threads(currentTID)‘PC := lockForRead17] ),
23 [ .. transition relation continues with cases for lockForRead, etc .. ]

listing 2.11 PVS model of the user function.

— non-deterministic choices are modelled as disjunctions in the transition relation.

There is one disjunct for each non-deterministic choice.

— function calls are done by setting the programcounter to the location of the function.

Since no function is called from more than one location, using a return address or

even using a stack for more than one return address has been omitted.

The auxiliary variables readNest, writeNest and MAXLOCKS restrict the Spin model to a

maximum number of nested reads and writes. They also prevent unwanted sequences

of lock/unlock operations, e.g. when a write lock request occurs after a read lock has

already been obtained. This user() function from figure 2.6 is directly coded in the state

transition model, where each label corresponds to the line number in the original.

As an example we provide the transition model derived from the Spin code in figure 2.8

for the lockForRead() function by using the rules specified earlier, shown in listing 2.12.

After obtaining a read lock, the variable readNest is increased, corresponding with the

code that updates the model variables in the original Spin model. The transition model

starts out with all threads in a Running state and with the local variables at their initial

values. Also, the global variables are all initialised and all queues are empty.
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1 CASES s1‘threads(currentTID)‘PC OF
2 [ .. removed some code for brevity .. ]
3 lockForRead17:
4 s2 = s1 WITH [ ‘threads(currentTID)‘atomic := true % QMutexLock
5 , ‘threads(currentTID)‘PC := lockForRead18 ],
6 lockForRead18:
7 IF count(currentTID) = 0
8 THEN s2 = s1 WITH [ ‘threads(currentTID)‘PC := lockForRead20 ]
9 ELSE s2 = s1 WITH [ ‘threads(currentTID)‘PC := lockForRead35 ]

10 ENDIF,
11 lockForRead20:
12 IF currentWriter 6= NT_ waitingWriters> 0
13 THEN LET s = s1 WITH [ ‘global‘rwlock‘waitingReaders
14 := waitingReaders + 1
15 , ‘threads(currentTID)‘PC := lockForRead26 ]
16 IN LET (s_upd,q_upd) = wait(s, readerWait)
17 IN s2 = s_upd WITH [ ‘global‘rwlock‘readerWait := q_upd ]
18 ELSE %¬(s1‘global‘currentWriter 6= NT) _ s1‘global‘waitingWriters > 0)
19 s2 = s1 WITH [ ‘threads(currentTID)‘PC := lockForRead31 ]
20 ENDIF,
21 lockForRead26:
22 s2 = s1 WITH [ ‘global‘rwlock‘waitingReaders := waitingReaders - 1
23 , ‘threads(currentTID)‘PC := lockForRead20 ],
24 lockForRead31:
25 s2 = s1 WITH [ ‘global‘rwlock‘threadCount := threadCount + 1
26 , ‘threads(currentTID)‘PC := lockForRead35 ],
27 lockForRead35:
28 S2 = s1 WITH [ ‘global‘rwlock‘count(currentTID)
29 := count(currentTID) + 1
30 , ‘threads(currentTID)‘atomic := false
31 , ‘threads(currentTID)‘PC := incReadNest01],

listing 2.12 PVS model of the readLock function.

2.4.3 System invariants

In a system state, not every combination of variables will be reached during normal exe-

cution of the program. A certain amount of redundancy is present in the set of variables

in the model. For instance, the number of writers waiting can be deduced both from the

waitingWriters variable as well as the length of the wait queue. Also, variables are main-

tained that keep track of the total amount of processes that occupy the critical section

and of the number of processes that are waiting for a lock. We express the integrity of the

values of those variables by using a validState? predicate. This is an invariant on the

global state of all the processes and essential in proving that the algorithm is deadlock

free. We want to express in this invariant that the global state is sane and safe at the time

a context switch can take place. Sanity is defined as:
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— the value of the waitingReaders should be equal to the total number of processes

with a status of Waiting and that are a member of the readerWait queue. Counting

the members of the wait queue is done by the recursive waitingReaders function.

1 waitReadInv(s:System) : bool=

2 s‘global‘rwlock‘waitingReaders= waitingReaders(s)

— the value of the waitingWriters should be equal to the total number of processes

with a status of Waiting and that are a member of the writerWait queue. The

waitingWriters function counts the waiters in the queue.

1 waitWriteInv(s:System) : bool=

2 s‘global‘rwlock‘waitingWriters= waitingWriters(s)

— the value of the threadCount variable should be equal to the number of processes

with a lock count of 1 or higher and at the same time this equals the total number of

readers and writers. Again, recursively defined in the count function.

1 countInv(s:System) : bool=

2 s‘global‘rwlock‘threadCount= count(s‘threads)

Besides the redundant variables having sane values, we also prove that the invariant

implies that a waiting process does not have a lock, indicated by having a count of zero.

If it has obtained a lock, it must necessarily be Running.

1 statusInv(s:System): bool= 8(tid:ThreadID):
2 LET thr = s‘threads(tid) IN

3 thr‘state= Waiting ) s‘global‘rwlock‘count(thr) = 0

4 ^ s‘global‘rwlock‘count(thr) > 0 ) thr‘state= Running

Part of the invariants defined in section 2.4.3 are defined as safetyInv:

1 safetyInv(s:System) : bool=

2 (readers= 0_ writers= 0 )^ writers 1

When a process has obtained a write lock, only that process is in the critical section:

1 writeLockedByInv(s:System) : bool=

2 currentWriter 6= NT ) threadCount= 1^
3 count(currentWriter) > 0^
4 8(tid:ThreadID): tid 6= currentWriter ) count(tid) = 0))
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The combination of all these invariants makes up a valid state.

1 validState?(s:System) : bool= countInv(s)^ waitWriteInv(s)^
2 statusInv(s)^ writeLockedByInv(s)^ safetyInv(s)^ waitReadInv(s)

The definition of interleave generates a type correctness condition that will guarantee

that if we are in a valid state, we will transition with an interleaving to another state

that is still valid. We also show that the starting state is a valid state. The proof of this

correctness condition is a straightforward, albeit large, case distinction.

2.4.4 Freedom from deadlocks and livelocks

The theorem-prover PVS does not have an innate notion of deadlock. If, however, we con-

sider the state-transition model as a directed graph, in which the edges are determined

by the interleave function, deadlock can be determined by identifying states in the state

transition graph having no outgoing edges. This interpretation of deadlock, however, can

be too limited. If, for example, there is a situation where a process alters one of the state

variables in a non terminating loop, a deadlock will not be detected, because each state

has an outgoing edge. There still can be livelock; transitions are possible, but there will be

no progress. To prove there can be no livelock, we define a well founded ordering on the all

valid system states and show that for each state reachable from the starting state (except

for the starting state itself), there exists a transition to a smaller state according to that

ordering. The smallest element within the order is the starting state. This means that

for each reachable state there exists a path back to the starting state and consequently

it is impossible for any process to get stuck in a such a loop indefinitely. Moreover, this

also covers the situation in which we would have a local deadlock (i.e. several but not all

processes are waiting for each other).

We create a well founded ordering by defining a state to become smaller if the number

of waiting processes decreases or alternatively, if the number of waiting processes re-

mains the same and the total count of the number of processes that have obtained a

lock is decreasing. Well foundedness follows directly from the well foundedness of the

lexicographical ordering on pairs of natural numbers.

1 smallerState(s2, s1 : (validState?)) : bool=

2 numberWaiting(s2) < numberWaiting(s1)_
3 numberWaiting(s2) = numberWaiting(s1)^
4 totalCount(s2) < totalCount(s1)
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The numberWaiting function is a function on the array of thread-states that yields the

number of processes that have a Waiting status. The totalCount function computes the

sum of all the elements of the count array.

Once we have established that each state transition maintains the validState? invariant,

all we have to prove is that each transition has outgoing states and that all of these states

(except for the starting state) will possibly result in a state that is smaller. This is the

noDeadlock theorem.

1 noDeadlock: THEOREM

2 8(s1: (validState?)) : 9(s2: (validState?)) :

3 interleave(s1, s2)^ (¬startingState(s1) ) smallerState(s2, s1))

All that is needed to prove this theorem is a case distinction and inductive proofs of auxil-

iary lemmas that state that the recursively defined counting functions used in the invari-

ant definitions are only decreased and increased if certain preconditions are met.

The proofs of the absence of deadlock proceeds analogously to the proof demonstrated

for an earlier, more abstract, version of this model by the same authors in [BvG-1].

2.4.5 Freedom from starvation

There is no builtin notion of starvation in PVS either. We define the absence of starvation

as a theorem stating that if a thread intends to acquire a lock, it will eventually obtain it.

The intention is identified by the thread entering the lockForWrite part of the code.

1 noWriterStarvation: THEOREM

2 8 (s1:(validState?)) :

3 s1‘threads(s1‘currentTID)‘PC = lockForWrite42 )
4 lock_on_trace(s1, s1‘currentTID)

Eventually obtaining the lock is definedusing the observation that for all traces of possible

interleavings, the thread wanting to acquire a lock will become the current writer.

1 lock_on_trace(s1:System, lockTID:ThreadID) : RECURSIVE boolean=

2 8 (s2:(ValidState?)) : interleave(s1,s2)^
3 (s2‘global‘rwlock‘currentWriter= lockTID_
4 lock_on_trace(s2, lockTID))

5 MEASURE s1 BY lock_on_trace_measure(lockTID)
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This recursive relationship is well-founded, since the measure defined in this function

guarantees termination. Proving that for each interleaving the measure decreases, again,

is done by a massive case distinction. The complete proof, including the proof of the

absence of writer starvation is available digitally.

2.5 Related and future work

Several studies investigated either the conversion of code to state transition models, as is

done in [Eek+08] with mCRL2, or the transformation of a state transition model specified

in a model checker to a state transition model specified in a theorem prover, as is done e.g.

in [Kat01] using VeriTech. With the tool TAME one can specify a time automaton directly

in the theorem prover PVS [AHS98]. For the purpose of developing consistent requirement

specifications, the transformation of specifications in a model checker (Uppaal [LPY97])

to specifications in PVS has been studied in [Gro08].

In [Pan+06] model checking and theorem proving are combined to analyse the classic

non-reentrant (in contrast to the reentrant version studied in our paper) readers-writers

problem. The authors do not start with actual industrial source code but they start from

a tabular specification that can be translated straightforwardly into Spin and PVS. Safety

and clean completion properties are derived semi-automatically. [HS96] reports on experi-

ments in combing theorem proving with model checking for verifying transition systems.

The complexity of systems is reduced abstracting out sources for unboundedness using

theorem proving, resulting in a bounded system suited for being model checked.

The verification framework SAL [Sha00] combines different analysis tools and techniques

for analysing transition systems. Besides model checking and theorem proving it pro-

vides program slicing, abstraction and invariant generation.

In [Ha+04] part of an aircraft control system is analysed, using a theorem prover. On a

single configuration this was previously studied with a model checker. A technique called

feature-based decomposition is proposed to determine inductive invariants. It appears

that this approach admits incremental extension of an initially simple basemodelmaking

it better scalable than traditional techniques.
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Directly operating on Java source code is Java Pathfinder (JPF) [Vis+03], which makes

source code transformation superfluous. If the code studied would have been written in

Java, JPF would have been the foremost candidate tool for this case study. This can be

done directly within JPF or, if that is desirable, even by generating Promela code as was

done originally in [HP00]. It would be interesting to compare the effort, ease of modelling

and ease/performance of model checking of tools for different languages by taking the

case study of this paper and performing it also for the same algorithm written in Java

using e.g. the extension of JPF with symbolic execution [APV07]. Alternatively, Bandera

[Cor+00] could be used for such a comparative case study. Bandera includes support for

abstractions which may be very useful in such a case study. It translates Java programs to

the input languages of SMV and Spin. There is an interesting connection between Bandera

and PVS. To express that properties do not depend on specific values, Bandera provides

a dedicated language for specifying abstractions, i.e. concrete values are automatically

replaced by abstract values, thus reducing the state space. The introduction of these

abstract values may lead to prove obligations which can be proven in PVS.

In [Rob+06] a model checking method is given which uses an extension of JML [LKP07] to

check properties of multi-threaded Java programs. With Zing [And+04] on the one hand

models can be created from source code and on the other hand executable versions of

the transition relation of a model can be generated from the model. This has been used

successfully by Microsoft to model check parts of their concurrency libraries.

Future work The methodology used (creating in a structured way a model close to the

code, model checking it first and proving it afterwards [SE08]) proved to be very valuable.

We found a bug, improved the code, extended the capabilities of the code and proved it

correct. One can say that the model checker was used to develop the formal model which

was proven with the theorem prover. This decreased significantly the time investment

of the use of a theorem prover to enhance reliability. However, every model was created

manually. We identified several opportunities for tool support and further research:

deep versus shallow embedding A complete specification of the semantics and syntax

of Promela in PVS was avoided in our construction of the PVS model. We focused

on methodically translating between the two models. Greater confidence of the

translation may be achieved by using a translation that preserves the structure of

the original Promela code instead.
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bounded model related to source code Tool support could behelpful here: not only to ’trans-

late’ the code from the source language to the model checker’s language. It could

also be used to record the abstractions that are made. In this case that were: basic

locks! lock process model, hash tables! arrays, threads! processes and some

name changes. A tool that recorded these abstractions, could assist in creating

trusted source code from the model checked model.

relation of finite to unbounded model It would be interesting to prove that the model in the

theorem prover and the model checked are properly related, e.g. by establishing a

refinement relation [Bar05] between them. Interesting methods to do this would

be using a semantic compiler, as was done in the European Robin project [Tew+08],

or employing a specially designed formal library for models created with a model

checker, e.g. TAME [AHS98].

relation of unbounded model to source code Another interesting future research option is

to investigate generating code from a fully proven PVS model. This could be code

generated from code-carrying theories [JSW07] or it could be proof-carrying code

through the use of refinement techniques [Bar05].

2.6 Discussion

We have investigated Qt’s widely used industrial implementation of the reentrant readers-

writers problem. Model checking revealed an error in the implementation (version 4.3).

Qt Group Plc was informed about the bug, after which Qt Group Plc released a new version

of Qt (version 4.4) in which the error was repaired. However, the new version of the Qt

library is still only weakly reentrant, not admitting threads that have write access to do a

read lock. This limitation unnecessarily hampers modular programming.

The improved readers-writers model described in this paper is deadlock free and strongly

reentrant. The model was first developed and checked for a limited number of processes

using a model checker. Then, the properties were proven for any number of processes

using a theorem prover. We also studied the absence of starvation. With model checking

a starvation problem was revealed. We created a starvation-free implementation and ver-

ified it with model checking. The outline of a proof for this implementation was sketched

in PVS.
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ABSTRACT For software to function correctly, the hardware running the software also has to be

correct. In the multi-core era, on-chip communication networks are key to system correctness

and performance. To deal with their growing complexity, micro-architectural models capture the

intent of architects and provide means for formal analysis. However, the analysis of such micro-

architectural models is restricted to non-scalable and/or very specific approaches. We present a

novel scalable approach using symbolic execution on large micro-architectural models described

in the xMAS language proposed by Intel. Symbolic channel types are inferred by an algorithm that

computes all possiblemessages that can occur in a communication channel, treating their payload

symbolically. These symbolic types are used to verify absence of misrouting. These results can

be used for further analysis such as deriving inductive invariants and deadlock detection. We

illustrate our approach with a prototype on a 2D mesh, and a Spidergon network developed at

STMicroelectronics.

based on [BvG-11]

correctness analysis hardware symbolic execution type inference

The communication network of a processor is crucial to the overall correctness and

performance of a modern multi-processor Systems-on-Chip (SoC). When the number of

interconnected system elements increases, performance of bus-based architecture de-

grades [BM02]. Networks-on-Chip (NoC) designs have emerged as solid high performance

communications architectures. Recently, Intel proposed a language – called xMAS, for eXe-

cutable Micro-Architectural Specification – to capture the intent of architects [CKO10; CKO12].

These models are executable and also amenable to formal verification. It is possible to

extract high-level information about a Verilog design from its xMAS abstraction. This

information can then be used to improve model checking the Verilog description [CK10;

GCK11; CK12]. Efficient deadlock verification on large xMAS models was demonstrated in

[VS11; VS12]. Although many concrete simulation techniques exist, they lack scalability

because they simulate a NoC with clock cycle precision, and are therefore not applicable

to a communication-centric SoC [RJE03]. We place ourselves in the context of the scalable

verification at the level of xMAS models.

Our main contribution is to extend the analysis of xMAS models with the inference of

channel types. Our approach is based on a symbolic propagation algorithm. This effec-

tively computes the typing information of all channels, i.e. for each channel it computes

the set of packets that can possibly traverse this channel. We define two symbolic types,
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enumeration and interval range. Every component/packet/function in the network is

modelled in terms of sets and operations on sets of these symbolic types. Due to this

modelling, a symbolic packet can be split and eventually end up in multiple sinks with

different payloads. Our network representation closely matches the formal semantics of

xMAS networks as described in [BvG-5], in order to make it feasible to use this approach

in a generic formal proof. We implemented our algorithm in C++. Starting from a repre-

sentation of an xMAS network (including the description of what kind of packets each

node may inject), our procedure is fully automatic. We demonstrate the application and

scalability of our algorithm on the Spidergon design from STMicroelectronics, and a 2D

mesh.

3.1 The xMAS language

A model in xMAS is a network of primitives connected via typed channels. A channel is

connected to an initiator and a target primitive. A channel is composed of three signals.

Channel signal c.irdy and c.trdy indicates respectively whether the initiator is ready

to write to channel c, and indicates whether the target is ready to read from channel c.

Channel signal c.data contains data that are transferred from the initiator output to the

target input if and only if both signals c.irdy and c.trdy are set to true. The eight primi-

tives of the xMAS language are listed in figure 3.1. A function primitive manipulates data.

Its parameter is a function that produces an outgoing packet from an incoming packet.

Typically, functions are used to convert packet types and represent message dependen-

cies inside the fabric or in the model of the environment. A fork duplicates an incoming

packet to its two outputs. Such a transfer takes place if and only if the input is ready to

source
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switch

sink

merge

function
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join
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fork
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queue
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figure 3.1 The eight xMAS primitives.
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send and the two outputs are both ready to read. The dual of a fork is a join. The function

parameter determines how the two incoming packets are merged. Transfers take place

if and only if the two inputs are ready to send and the output is ready to read. A switch

uses its function parameter to determine to which output an incoming packet must be

routed. Amerge is an arbiter. It grants its output to one of its inputs. The arbitration policy

is a parameter of the merge. A queue stores data. Messages are non-deterministically

produced and consumed at sources and sinks. Sources and sinks may process multiple

packet types.

The execution semantics of an xMASnetwork consists in a combinatorial and a sequential

part. The combinatorial part updates the values of channel signals. The sequential part

is the synchronous update of all queues according to the values of the channel signals.

A simulation cycle consists of a combinatorial and a sequential update. A sequential up-

date only concerns queues, sinks, and sources. We denote these primitives as sequential

primitives. Other primitives are denoted as combinatorial.

For each output port o, signal o.irdy is set to true if the primitive can transmit a packet

towards channel o, i.e. port o is ready to transmit to its target. For each input port i, signal

i.trdy is set to true if the primitive can accept a packet from input channel i, i.e. the target

of channel i is ready to receive. In a sequential primitive, the values of output signals

depend on the values of the input signals and an internal state. Queues accept packets

only when they are empty. A source and a sink produces or consumes a packet according

to an internal oracle modelling non-determinism.

3.2 The Spidergon design

Spidergon is a Network-on-Chip developed at STMicroelectronics [Cop+09]. The basic archi-

tecture consists of eight nodes connected in a ring with across links, as can be seen in

figure 3.2. A popular routing algorithm for this network is across first. The idea is that if a

packet needs to use across links to minimise the travel distance an across hop is always

performed first.

A micro-architectural model of a Spidergon router is shown in figure 3.3. The router has

four inputs and four outputs. Packets are coming fromeither other routers or from input A,

i.e. the local input. Switches are used to route packets towards their respective output

ports. Arbiters are used to handle conflicting requests for output ports.
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figure 3.2 Topology of an eight node Spidergon network
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figure 3.3 Internals of a Spidergon router with across, cw (clockwise) and ccw (counterclock-
wise) incoming and outgoing connections, and two sorts of local cores (master and
slaves).
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Different kinds of cores can be connected to the routers (see figure 3.3). For sake of an

example that includes message dependencies [HGR07] we have a setup with masters and

slaves. Masters inject requests and consume responses. Slaves transform requests into

responses. For a topology of n nodes, a master injects packets that contain the following

fields:

dst An integer ranging from 0 to n that represents the destination of the

packet. This destination is always a slave.

src An integer ranging from 0 to n representing the original injection point

of the packet. This is used to send the packet back after arriving at its

destination.

colour Either request (when it is injected) or response (when the packet has

visited its destination and is returning to its original injection point).

payload Some 32 bit integer.

In the remainder of this paper, we will use the Spidergon design as a running example. We

will show how one can define the routing functions within the switches and specify at

sources what kind of packets can be injected. We will use our algorithm to compute all

typing information for configurations going from 8 to 1024 nodes.

3.3 Specification of packets

A simple expression based language is needed to express the intent and effect of primi-

tives. Packets consist of a number of fields. Each field is either an integer (e.g. dst and src

in the Spidergon example) or an enumeration (e.g. the colour field). There are two kinds

of expressions supported: matching expressions and modifying expressions. Matching ex-

pressions are used in xMAS sources and xMAS switches to determine which packets are

injected. Modifying expressions are used in the xMAS function to express how a packet

is altered.

For example, the following matching expression (automatically generated) corresponds

to the xMAS switch connected to the local input a (see figure 3.3). This switch decides

whether the incomingpacket is routed across. We consider the fourthnode in thenetwork,

meaning that packets destined for 0, 1, and 7 should be routed across. The following
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expression generates two intervals: [�1 .. 1] and [7 .. 9]. As the dst field signifies a node

number (which in the example is between 0 and 7), this expression only matches for

nodes 0, 1, and 7, as desired:

(dst > 4 ? dst > 6 : dst > -2) && (dst > 4 ? dst < 10 : dst < 2)

The followingmodifyingexpression transformrequests into responses in a slavenode:

dst := src, colour := colour with {req: rsp}

This expression yields a new packet with as destination the original source. The new

colour is obtained by means of a mapping, which turns requests into responses.

We use the syntax described by the following BNF grammar formatching expressions:

hexpri ::= henum-matchi | hinteger-matchi
| ‘(’ hexpri ‘)’

| ‘!’ hexpri
| hexpri ‘?’ hexpri ‘:’ hexpri
| hexpri hlogical-opi hexpri

hlogical-opi ::= ‘and’ | ‘&&’ | ‘or’ | ‘||’

henum-matchi ::= hvariablei
| hvariablei ‘in’ ‘{’ henum-contentsi ‘}’

| hvariablei ‘not’ ‘in’ ‘{’ henum-contentsi ‘}’

henum-contentsi ::= hlabeli | hlabeli ‘,’ henum-contentsi
hinteger-matchi ::= hvariablei

| hvariablei hcompare-opi hconstanti
| hvariablei ‘in’ ‘[’ hconstanti ‘..’ hconstanti ‘]’

| hvariablei ‘not’ ‘in’ ‘[’ hconstanti ‘..’ hconstanti ‘]’

hcompare-opi ::= ‘<’ | ‘<=’ | ‘>=’ | ‘>’ | ‘==’ | ‘!=’

hconstanti ::= hintegeri
| hconstanti hconstant-opi hconstanti
| ‘(’ hconstanti ‘)’

hconstant-opi ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘^’
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For defining modifying expressions we support another syntax, as they express another

kind of intent. The following BNF grammar describes these expressions:

hexpri ::= hfield-definitioni
| hexpri ‘,’ hfield-definitioni

hfield-definitioni ::= hvariablei ‘:=’ hvalue-expri
hvalue-expri ::= hvariablei | hintegeri | ‘(’ hvalue-expri ‘)’

| hvalue-expri harithmetic-opi hvalue-expri
| hvalue-expri ‘with’ ‘{’ hsubstitution-defi ‘}’

harithmetic-opi ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

hsubstitution-defi ::= hlabeli ‘:’ hlabeli
| hlabeli ‘:’ hlabeli ‘,’ hsubstitution-defi

If a substitution is defined on an expression, a special label ‘_’ can be defined, which is

the default (fail-over) case of the substitution.

3.4 Symbolic representation of packets

The basic principle of our symbolic computation is to represent a set of concrete packets

in a significantly smaller set of symbolic packets. The computation of all paths for con-

crete packets is effectively done by propagating their symbolic representations. Fields

of the integer kind are symbolically represented by intervals, fields of the enum kind are

represented by abstract enumeration labels.

Tomanipulate symbolic packets, weassume the followingcommonoperationsonfields:

intersection of two sets.

difference of set a and b, defined as a \ b. This can be computed

without having the means to take the complement of a set.

subset to check if a set is a subset of another set.
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Note that the union operation is not explicitly listed, as we can represent the union of

two symbolic packets by associating these two symbolic packets with the same channel

independently of each other.

These operations are used for the manipulation of symbolic packets, by applying them in

a field-wise fashion. We assume that each packet-field has a unique label. For each field

operation a 2 b (2 is intersection or difference) and for each label l of the first argument, if

the label is also present in the second argument, perform a

l

2 b

l

. If the label is not present,

the resulting field for label l in the result is equal to the field in the first argument a.

Consider again the Spidergon example. For an eight node Spidergon network, the source

and destination fields will be in a range of 0 to 7. The payload can be any value between

0 and 2

32 � 1. All possible concrete packets of these fields, can be represented in the

following singleton set containing one symbolic packet:

(
dst! [0 .. 7] colour! {request, response}
src! [0 .. 7] payload! ⇥

0 .. 2

32 � 1

⇤

)

We continue with describing the field operations that are specific for each field kind.

3.4.1 Enumerate kind

This kind is the standard enumeration type, where the labels are kept symbolic. The only

operation defined on this kind is a mapping operation, converting one value in another

one. We denote an enumerate field by {a, b, c, d}.

3.4.2 Interval range kind

Intervals have a lower bound l and an upper bound h, both represented as an integer for

which l  h. A number of integer arithmetic operations are supported on these types,

such as addition and subtraction on intervals, and comparisons with a concrete number,

like the operators greater than, less than, etc. Multiplication is supported, but as it can

result in multiple non-continuous regions it is prone to state explosion. An interval field

is denoted by [l .. h].
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The addition of two bounds is defined by adding the lower bounds together for the new

lower bound, and doing the same for the upper bound. Formally, we use the following

definition:

[a .. b] + [c .. d] = [(a + c) .. (b + d)]

The unary minus operation is defined as:

� [a .. b] = [�b .. � a]

Combining these two definition, subtraction is defined as follows:

[a .. b]� [c .. d] = [(a� d) .. (b� c)]

Multiplication results in multiple nonadjacent intervals, and is defined as follows:

[a .. b]⇥ [c .. d] = 8
i2[a .. b]8j2[c .. d] [(i⇥ j) .. (i⇥ j)]

Division is defined below. As division by zero is not defined on integers, we also consider

division by an interval that includes zero an error as it should not occur.

[a .. b] / [c .. d] =

j
a

d

k
..

⇠
b

c

⇡�

3.4.3 Symbolic semantics for xMAS

Queues, merges, forks and sinks do not modify packets, i.e. all packets going into the primi-

tive propagate to all the output channels unmodified. Regarding the remaining primitives,

they can either filter packets (xMAS switch), modify the packets (xMAS function), combine

two packets together (xMAS join) or serve as an injection point to the network (xMAS

source). We now detail the semantics of these primitives.

xMAS switch A switch has a switching condition associated with it. This condition de-

scribes a set of packets that should be routed to output a. Since a symbolic packet signifies

a set of possible values, a symbolic packet sw can be used to represent the switching con-

dition.
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The effect of the xMAS switch on packets in the input channel can be expressed using

set operators, specifically the intersection and difference operators. The intersection of p

with sw will yield the resulting packets that will be propagated to the channel connected

to the a output: p \ sw. Calculating which packets will propagate to the b output can be

done by taking the intersection of p with the complement of sw: input \ sw.

The switching condition is described using the syntax for matching expressions as de-

scribed in section 3.3. We showbyexamplehowwederive a symbolic packet sw fromsuch

an expression. The expression a <= 10 describes the field a interval [0 .. 10]. Combining

this restriction with another can be expressed by a <= 10 && a >= 5, which will yield

the intersections of [0 .. 10] and [5 .. •], and result in the interval [5 .. 10]. The conditional

expression can also be expressed as a series of set operations: we define the semantic

of c?a:b as (c \ a) [ (c \ b), which results in two symbolic packets stored in the as-

sociated channel (as the union operation is not explicitly defined). Stating conflicting

types for the same label in one expression, e.g. a = {req,rsp} && a < 5, is considered

a type error and should be handled as such. A runtime typing error can occur if a field is

accessed that does not exists (e.g. a switching function depends on a field that does not

exists in a symbolic packet that is being propagated through the switch).

EXAMPLE A switch routes packets based on the colour of the packet, as seen in figure 3.4. From

the matching expression colour in {R} a symbolic representation is derived: {colour !
{R}}. If the symbolic packet {colour! {R, G, B}} is located in c0, the effect of propagating

the packet can be calculated using set operators. The resulting type in c1 will be the intersection

of the input packet with the symbolic representation of the switching condition: {colour !
{R, G, B}} \ {colour ! {R}}, resulting in {colour ! {R}}. Likewise, the resulting type

in channel c2 will be {colour ! {R, G, B}} \ {colour! {R}}, resulting in {colour !
{G, B}}.

{colour: {R,G,B}}

colour in {R}
c1

c2

c0

sink0

switch sink1

source

figure 3.4 Network demonstrating a switching function.
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xMAS function The function primitive applies a function on a packet going through the

primitive. Although the function is defined over concrete packets, the same function can

be applied to symbolic packets. The effect of a xMAS function is specific to a kind of a

field.

EXAMPLE A network containing a function result := x + y (with result, x, y of the interval

kind) transforms concrete packets going into the function. We can also calculate the effect of the

function symbolically by using the symbolic semantics on intervals. If the function is applied to

a symbolic packet {x! [0 .. 16] , y! [8 .. 32]}, the result will be combining the two intervals.

The resulting packet will be {result! [8 .. 48]}.

xMAS join A join primitive combines the available symbolic packets of the two inputs

into one packet, with each field prefixed with a_ or b_ to make clear from which input

channel the field came. This is a somewhat different semantics as opposed to the original

xMAS paper [CKO12], as we split their join in our join and a normal xMAS function. This

eliminates the need to separately handle the function part of the xMAS join, so we do not

need to define any additional syntax for joining expressions.

xMAS source An expression on a xMAS source primitive signifies which symbolic packets

might be inserted at this point, which constitute a set of possible values that can be

injected. These expressions are also described using the syntax formatching expressions,

the same as for the xMAS switch.

3.5 Type inference algorithm

The type inference algorithm, listed in listing 3.5, is based on iteratively propagating a sym-

bolic packet from a channel to the next channel, connected by a primitive. Propagation

continues until a fix point has been reached, where no new inference can be performed.

The algorithm outputs for each channel the set of symbolic packets describing which

concrete packets can occur at the channel.
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inject source types into channels;
while not all types in the network are marked as propagated do

forall channels in the network do
normalise types in channel;
forall types in the channel do

if type is not marked as propagated then
propagate type;
mark type as propagated;

listing 3.5 The basic propagation algorithm

A normalisation procedure is required to reach a fix point. If packets are added to a chan-

nel, all the available packets in the channel are normalised. The normalisation consists

of two parts: eliminating symbolic packets that are already contained in other symbolic

packets, and combining two symbolic packets together if possible. Both parts of the nor-

malisation are essential.

The elimination step checks whether a symbolic packet is already described by another

symbolic packet. If so, the symbolic packet can be removed with no effect on correctness.

A symbolic packet is assumed to be described by another symbolic packet, if for each

field in the symbolic packet the other symbolic packet contains a superset of the values

allowed by that field.

The second step of the normalisation is the combination step. A symbolic packet is com-

binable if and only if all fields are equal, except for one field, and if this one field is combin-

able independently of the other fields. For enumeration field kinds, two fields are always

combinable. For interval fields a and b are combinable if and only if

(a.min  b.min^ b.min  a.max + 1) _ (a.min  b.max^ b.max  a.max)

i.e. if one of the bounds of b lies in the interval as represented by a. For example, an

interval of [a .. b] and [(b + 1) .. c] can be combined into one interval of [a .. c]. This step

is used to reduce the runtime of the algorithm as it reduces the number of propagation

steps that are needed.
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{colour: {R,G,B},
      payload: [0..31]}

colour in {R}

source
q1

q0

switch

sink

merge

figure 3.6 Network demonstrating the combination step.

EXAMPLE We demonstrate the combination step using a small network as shown in figure 3.6.

In this network, the channel at the source and the sink have the same symbolic type {colour!
{R, G, B}, payload ! [0 .. 31]}. In the input channel of q0 there are only symbolic packets

with {colour! {R}, payload! [0 .. 31]}, as the switching condition only matches packets

that are of colour R. The remaining packets are routed to the lower route with q1. The merge

propagates all the packets from the channels of the queues to the last channel. The type occurring

at the sink is the result of combining the type

{colour! {R}, payload! [0 .. 31]}

with the type from the bottom route

{colour! {G, B}, payload! [0 .. 31]}

3.6 Checking correctness of specification

The derived channel types can be used to check if a network conforms to a given spec-

ification. With each matching expression at a xMAS source we can add a specification:

multiple destinations (xMAS sinks) with the corresponding expected packet as it should

arrive at this destination. These hdestination, symbolic packeti tuples can be joined to-

gether with logical and and or operators. xMAS primitives that modifying packets (function

and join) are supported by specifying explicitly the symbolic packet as it should arrive

in the specified sink. We extend the BNF grammar for matching expressions to support

this construct. We add the following rules to the grammar, which in essence supports a

hpacketi ‘->’ ‘(’ hdestination-nodei ‘,’ hpacketi ‘)’ form at each xMAS source.
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hsourcei ::= hsource-expri
| hsource-expri ‘,’ hsourcei

hsource-expri ::= hexpri
| hexpri ‘->’ hspeci

hspeci ::= ‘(’ hnodei ‘,’ hexpri ‘)’

| hspeci hlogical-opi hspeci

First lets give an example of a specification, before continuing with describing the work-

ings of the specification checking algorithm. For Spidergon networks with n nodes, with

the first n

4

nodes slaves, typically one would inject at a given source in master node i

request packets (which are represented as packet with the colour set to req) having the

dst field set to a slave node. We add an additional field src to indicate to which node the

packets should be returned. This will result in the following expression:

colour in {req} && dst < n

4

&& src == i

Slave nodes can convert a request to a response with the following expression, keeping

information to which slave node was visited. If a response is received by a slave node,

the substitution statement with is defined to raise an error.

colour := colour with {req: rsp}, dst := src, src := dst

We can convert this into a specification which enforces that a packet injected at a node

traverses the network to the specified slave node, and returns to the originating master

node with the content of the packet modified as supposed to. The following expression is

specified at the fifth node, a master, in a eight node Spidergon network (which has 2 slave

nodes):

colour in {req} && dst == 0 && src == 5

-> (sink5, colour in {rsp} && dst == 5 && src == 0),

colour in {req} && dst == 1 && src == 5

-> (sink5, colour in {rsp} && dst == 5 && src == 1)

The algorithm constructs formulas by traversing the xMAS network for each given source

specification. The formula contains hdestination, symbolic packeti tuples combinedwith

and and or operators. The current symbolic packet is propagated, and upon reaching a

sink such a tuple is constructed (with the current sink and current symbolic packet). This

tuple is then propagated backwards along the same route.
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The manner of constructing the formulas depend on the xMAS primitive being traversed.

A source, queue and merge just (back) propagates the packet/tuple. A function modifies

the packet, and back propagates the tuple unmodified. A switch will propagate the packet,

modified to account for the switching condition, and constructs an or formula from the

tuples that are back propagated. A fork works likewise, and constructs an and formula.

A join is special, as it needs the symbolic types inferred in the previous step. As packets

are joined with the other channel from the join, the symbolic types that can occur in that

channel are used to calculate the new symbolic packet that gets propagated. In a join, the

return tuple is back propagated unmodified.

3.7 Implementation

We have implemented the aforementioned algorithms in a prototype called sym-xmas

written in C++, without any external library dependencies. Our tool chain consists of this

checker and a separate graphical editor for xMAS networks, as shown in figure 3.7. The

network representation is outputted by this graphical tool. This representation can be

read by our sym-xmas tool. For easy of testing we have included a few options in sym-xmas

to generate networks in memory, to avoid large input files.

The syntax of expressions used in functions, switches and joins is defined in section 3.3.

This syntax is read using a recursive descent parser. For matching expressions a set of

possible values is generated by evaluating the expressions during parsing. We also added

a constant expression evaluator for convenience of the user, so constant expressions

with addition, subtraction, multiplication are supported. For modifying expressions we

use an internal representation which applies the operations as defined in section 3.4.

Our tool defines someextra operations (e.g. hash function andprinting a string representa-

tion) that are not essential to the algorithm but aid in execution speed and the debugging

effort. All kinds of typing errors are detected, both conflicting restrictions on fields as

well as applying expressions on non existent fields.

We developed our tool to be a common foundation to deploy all sorts of algorithms to

analyse various correctness properties. Therefore it is important to maximise the flexibil-

ity of the network data structure. Two aspects are important. Foremost, the data structure

supports the visitor design pattern [PJ98], enabling the decoupling of the algorithm exe-

cuting on a data structure and the data structure itself. It enables add methods to the
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editor

{type: {R,G,B},
      payload: [0..31]}

type in {R}

source
q1

q0

switch

sink

merge

JSON file
  {"NETWORK": [

    {

      "id": "ring_CW2",

      "type": "queue",

      "outs": [

        {

          "id": "ring_DOWN_sw25",

          "in_port": 0

        }

      ],

      "fields": [
        {

          "size": 4

        }

      ]

    },

    {

      "id": "ring_CW1",

      "type": "queue",

      "outs": [

        {

          "id": "ring_UP_CW_LOC_CW",

          "in_port": 0

        }

      ],

      "fields": [
        {

          "size": 4

        }

      ]

    },

switch

queue queue

datastructure

syntax checker  combinatorial cycle
checker

type inference
of channels

algorithms
specification checking

figure 3.7 The tool chain.

data structure without modifying the data structure itself, so a new algorithm or features

can be added without modifying all the code depending on this data structure. Secondly,

each object of the network can have algorithm specific data structure attached to it. This

avoids costly lookups in mappings and enables easier algorithm design. In the future

other algorithms can be based on this foundation. In fact our specification checking is

implemented using this design.

There are two basic correctness requirements to xMAS networks: syntactic correctness

and absence of combinatorial cycles. Before we symbolically infer types we check that

an input xMAS network satisfies these correctness properties, otherwise the results of

the type inference are not sound. Both are implemented using the data structure and

the visitor pattern as mentioned before. The first one is easily checked by ensuring all

ports are connected and output ports are only connected to input ports. This is a quick

superficial check. The latter requirement is described in the paper introducing xMAS

[CKO12]. In short it ensures a stable state can be reached between clock cycles, ensuring

the data transferred is deterministic. A combinatorial cycle is a cycle of dependencies

of irdy and trdy wires. Absence thereof can be verified using a standard cycle detection

algorithm for a directed graph [Cor+01].

We implemented most steps single threaded, as the execution time was either small

or making it multithreaded showed no savings. However, specification checking was

faster multithreaded, because the shared data was only used to read. Therefore for the

specification checking the number of cores directly influenced the result. In the next

section we will describe two small case-studies of our tool.
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3.8 Application to Spidergon

Using our sym-xmas tool, the symbolic types of channels in the Spidergon design were

inferred. In our Spidergon example, the nodes of the first quadrant are slaves. All other

nodes are masters. All packets have a payload of a 32-bits integer. In order to attain a

notion of correctness, we keep the original injection point in the responses. This allows

us to validate that the packets that are evacuated from the network are indeed correctly

handled by the communication fabric. At the sinks in the network, the types inferred are

stated below, with n the concrete value of the node number the sink is located in:

(
dst! [n .. n] colour! {response}
src! [n .. n] payload! ⇥

0 .. 2

32 � 1

⇤

)

This expression shows that node n only receives responses destined for n, that were orig-

inally injected at that same node. In other words, in the network requests and responses

are correctly handled. By using specifications as described in section 3.6, we can auto-

mate this checking process. For larger networks, automatic checking is essential.

Actually during development of our algorithm, the version we analysed contained (with-

out our knowledge) a wrong switching expression for the counter clockwise channel,

resulting in packets misrouted to the wrong node. This error was easily detected and

corrected. The source of the problem was a off-by-one error in a switching condition of a

switch in the router.

The experiment was conducted on a 2 GHz quad core Intel Core i7 2635QM running Mac

OS X 10.11.5, with the Apple LLVM clang 703.0.31 compiler. Results are listed in table 3.8.

nodes primitives type inference specification checking memory
8 88 0.002 s 0.001 s 1.48 MiB

16 176 0.013 s 0.004 s 2.41 MiB
32 352 0.091 s 0.023 s 5.46 MiB
64 704 0.529 s 0.156 s 19.35 MiB

128 1408 4.325 s 1.187 s 65.16 MiB
256 2816 40.635 s 10.038 s 254.22 MiB

table 3.8 Results of the experiments on a Spidergon design using a 2 GHz quad core Intel
Core i7 2635QM.
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3.9 Application to a 2D mesh

A topology in Network-on-Chips that is studied frequently is a two dimensional mesh of

nodes. Each node has a router component and local core. The router component connects

the local corewith the nodes adjacent to this node. If the node is on the border of themesh,

those connections are left out, simplifying the router logic of the node. We implemented

the router component as shown in figure 3.10, which works with with XY routing.

Like the previous case study, we could apply the same approach to the 2D mesh design.

Packets are composed of five fields: the coordinates of the source and the destination,

a bit indicating the type/colour (request or response) of the packet, and a payload of 32

bits. Masters inject requests and consume responses, similar to the Spidergon case study.

Slaves swap the source and destination coordinates to produce a response sent back to

its sender. The layout is such that masters are in the left half of the mesh and slaves are

in the right half of the mesh. The results of our tool are listed in table 3.9.

size primitives type inference specification checking memory
20 x 20 6880 14.223 s 16.719 s 133.46 MiB
22 x 22 8360 24.664 s 27.327 s 201.21 MiB
24 x 24 9984 42.972 s 43.095 s 268.19 MiB
26 x 26 11752 74.165 s 64.279 s 350.53 MiB
28 x 28 13664 120.361 s 94.117 s 468.26 MiB
30 x 30 15720 206.980 s 135.788 s 594.95 MiB
32 x 32 17920 336.727 s 186.666 s 738.76 MiB
34 x 34 20264 507.672 s 246.822 s 956.00 MiB
36 x 36 22752 802.077 s 329.945 s 1141.55 MiB
38 x 38 25384 1248.430 s 439.082 s 1389.69 MiB
40 x 40 28160 3136.850 s 560.885 s 1907.86 MiB
42 x 42 31080 2890.370 s 731.258 s 2070.29 MiB

table 3.9 Results of the experiments on a 2D mesh design using a 2 GHz quad core Intel Core
i7 2635QM.
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3.10 Discussion

For large networks, the explicit simulation of all possible values is not feasible. For such

networks, our approach provides a scalable alternative. We presented an algorithm that

efficiently infers the type of all channels in large networks described in the xMAS lan-

guage proposed by Intel. By ‘channel type’, we denote the information about which packet

can traverse the channel. This information is key in the analysis of xMAS networks. Our

type inference algorithm produces at every sink, the set of packets which can possi-

bly reach that sink. We also introduced an algorithm which, using the inferred types,

checks whether the network corresponds to the specification of a designer, proving the

absence of misrouting. We demonstrated this approach on two case studies, the Spider-

gon design and a two dimensional mesh, using a prototype implementing the proposed

algorithms.

An future direction is the automatic generation of Register Transfer Level descriptions from

xMAS networks. In this context, the knowledge of channel types can be used to determine

the bit-width of all wires. Verification of deadlock freedom [VS11] also depends on Infer-

ring channel types. Currently, all possible channel types in the mentioned freedom of

deadlock verification method are constructed one by one trying out all values, with a con-

crete representation. The symbolic execution technique discussed in this chapter should

be incorporated in the freedom of deadlock verification method. A soundness proof for

the technique presented in this chapter should be constructed. This can be done using

monotone frameworks, or by other means.

The method used in this chapter, symbolic execution, has seen wide application on soft-

ware. This shows there are similarities between hardware and software, although they

differ greatly. Software has often a reduced concurrency level, however, hardware fea-

tures highly parallel designs. One could envision incorporating state of the art techniques

of symbolic execution, e.g. in order to avoid complexity in the symbolic simulation of

loops in the circuit designs. Applying other techniques traditionally associated with

software analysis would be interesting, for example abstract interpolation, or other tech-

niques.
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ABSTRACT For real-time and embedded systems limiting the consumption of time and memory

resources is often an important part of the requirements. Being able to predict bounds on the

consumption of such resources during the development process of the code can be of great

value. In this chapter we focus mainly on memory related bounds. Freedom of deadlock and

starvation, as covered in chapter 2, is a condition for properly deriving memory bounds. Correctly

functioning hardware is also assumed, which can for example be analysedwith themethod covered

in chapter 3.

Recent research results have advanced the state of the art of resource consumption analysis. In

this chapter we present a toolset ResAna that makes it possible to apply these research results in

practice enabling developers to analyse symbolic loop bounds, symbolic bounds on heap size and

both symbolic and numeric bounds on stack size. We describe which theoretical additions were

needed in order to achieve this. Our toolset works on real-time systems written in Java.

We give an overview of the capabilities of this toolset. The toolset can not only perform generally

applicable analyses, but it also contains a part of the analysis which is dedicated to the devel-

opers’ (real-time) virtual machine, such that the results apply directly to the actual development

environment that is used in practice.

based on [BvG-4] based on [BvG-10]

memory analysis symbolic overapproximation

Both in industry and in academia there is an increasing interest in more detailed resource

analysis bounds than orders of complexity. In correctness verification for industrial criti-

cal systems, the focus is often mainly on functional correctness: does the program deliver

the right output with the right input. However, for such systems it is just as important to

make sure that bounds for the consumption of time and space are not exceeded. Other-

wise, a program may not react within the required time or it may run out of memory and

come to a halt (making it vulnerable to a denial of service attack).

Traditionally, the focus has been on performance analysis taking time as resource which

is consumed. More recently, several researchers have produced significant results in

heap and stack bound analysis. In this chapter we focus on suchmemory related resource

analysis. The symbolic loop bound analysis part however may be used both for memory

and for time analysis.

chapter 470



4

Many real-time and embedded systems critically depend on operating within a fixed

amount of memory. Clearly, for such systems it can be important to know an upper

bound on the consumed memory. For safety critical applications it can be essential.

Programmers may be able to guess a bound and to prove it by hand. That activity is quite

tedious and error-prone. A tool that in many cases is able to automatically infer bounds

and prove them may be very helpful in the software development process. This chapter

presents such a tool.

For safety-critical applications often domain specific programming languages are used

that have strong support for loop bounding or regular programming languages with strict

coding conventions. In the recently finished European Union Artemis CHARTER (Criti-

cal and High Assurance Requirements Transformed through Engineering Rigour) project,

realtime Java was considered as possible programming language for safety-critical sys-

tems. Reasons for studying realtime Java include more possibilities for code reuse, more

available tools and more programmers that are highly experienced in the use of the lan-

guage. The ResAna toolset, which is presented in this chapter, is one of the results of the

CHARTER project [MRH12; WW12; BvG-4]. Together, the tools produced by the CHARTER

project provide a first step towards the use of general programming languages for safety-

critical systems. For full deployment in safety-critical context the CHARTER tool chain

should be advanced further. For now, the ResAna toolset can already be used in everyday

practice, e.g. for inferring and proving memory consumption properties of existing library

functions and of non-critical applications for which memory bounds are relevant like

applications for mobile devices. Another usage may be the development of prototype

applications with verified resource consumption properties. These prototypes can then

be transformed to the language that is in actual use for the safety-critical system. The

techniques presented in this chapter can in principle be used for other languages too.

Of course, that would require both an adaptation of the front-end of the tool and of the

annotation language that is used for expressing the properties.

Even if memory is abundantly available, applications can be hindered significantly when

more memory is consumed than expected. Effectively the system may come to a halt

due to excessive swapping. Some denial of service attacks are based on this principle. A

known upper bound of consumed memory may prevent attacks of that kind.
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A variety of memory analysis techniques have been developed independently not only

on the language level but also on the byte code level [Alb+11a]. Researchers use poly-

nomial interpolation [KSE08], reachability-bound analysis [GZ10], amortisation [HAH11],

polynomial quasi-interpretation [Ama05] andnew language features such as programmer-

controlled destruction and copying of data structures [DMP10]. Of course, such analyses

are undecidable in general. In practice, however, an increasingly large set of problems

can be handled.

This research builds upon earlier resource analysis work developed in the Dutch NWO

AHA project [Eek+07]. In this chapter, we focus on the Java language and on resource

consumptionproperties related toheap and stackusage. Using the scopedmemorywhich

is offered by realtime Java one can enforce memory bounds and facilitate simple memory

management. However, in order to deal with more complex bounds, a more thorough

analysis is needed. While our research mainly focuses on realtime Java, the techniques

and the tool described here are also applicable to regular Java programs. The loop bound

analysis provided by the ResAna tool can be of further use both for deriving memory

bounds and for deriving time bounds. This chapter is an extended version of [BvG-4].

How this chapter extends [BvG-4] is described in section 4.5.

With the goals of making these results applicable in practice, our heap and stack resource

analysis goes beyond orders of complexity. We aim at obtaining bounds that are expres-

sions of relevant variables and parameters. If a resource is consumed quadratically with

respect to the value of a parameter x, then a typical bound could be e.g. 2x

2 � 4x + 15

thus indicating the exact dependency of the bound on the variable. In order to achieve

that in practice, we developed a tool, ResAna, that contains a general process which has

two phases:

inference In the inference phase the ResAna tool analyses the Java source of the program

in order to propose a possible resource bound for the program. It uses traditional

analysis techniques like solving cost-relation systems and a novel polynomial inter-

polation technique. This interpolation-based approach is very powerful. It allows

also non-monotonic polynomial bounds to be derived (the developer does not have

to indicate the exact dependencies: they are derived). The obtained result is added

to the Java program via an annotation using the JML specification language [Lea+13].
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verification Results are achieved by solving cost relations or by interpolating polynomi-

als. Solving cost relations is sound by construction. The use of interpolation is not

guaranteed to be sound. Therefore, the results achieved by interpolation must be

verified, e.g. by the KeY verification tool [BHS07] or the QEPCAD algebraic decom-

position tool [Bro03]. If the tool is not able to verify them, one can proceed with a

new inference phase with other user options, such as e.g. trying a higher degree

polynomial.

The ResAna tool supports three kinds of analysis:

loop bound analysis An expression that gives a symbolic upper bound for the number

times a loop is executed may be derived and verified using the integrated combina-

tion of the tools ResAna and KeY.

heap bound analysis An expression for a symbolic upper bound of the consumed heap is

derived using ResAna extended with a variant of the external tool COSTA [Alb+08].

The COSTA tool has been adapted to produce accurate values for OpenJDK, as well

as the real-time JamaicaVM virtual machine [Sie02]. Furthermore, the capabilities

of the COSTA tool have been enlarged through the internal use of interpolation tech-

nology [Mon+12].

stack bound analysis An expression for a symbolic upper bound of the space for the stack

is derived using ResAna with the enlarged COSTA that provides an upper bound for

the depth of recursive calls; this information is used by the VeriFlux tool [HTS08] to

obtain a numeric stack bound.

These three kinds of analysis are integrated in a common program development envi-

ronment through an Eclipse plug-in, such that a developer can easily switch between

development and verification activities guaranteeing the memory safety of critical real-

time software applications.

In section 4.1 loop bound analysis is described. Heap bound analysis and the adjust-

ments that have been made to make it applicable in practice are presented in section 4.2.

Analysing stack bounds is discussed in section 4.3. User experience with ResAna is de-

scribed in section 4.4. Finally, in sections 4.5 and 4.6, related work is discussed and

conclusions are drawn.
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4.1 Loop-bound analysis

In order to prove the termination of a piece of software or, even harder, to calculate bounds

on run-time or usage of resources such as heap space or energy, finding bounds on the

number of iterations that the loops can make is a prerequisite. While in some cases a loop

may iterate a fixed number of times, its execution will often depend on program input.

Therefore we consider symbolic loop bounds, or ranking functions.

A loop ranking function is a function over (some of) the programvariables used in the loop,

that decreases at each iteration and is bounded by zero. A simple while loop is shown in

listing 4.1. Although 100� i is a perfectly fine ranking function as well, the most precise

one for this loop is 15� i. This gives the exact number of iterations the loop will make,

for arbitrary i (given that i < 15, see section 4.1.6).

In this section, we present a method for the automatic inference of polynomial ranking

functions for loops, based on polynomial interpolation. The basic procedure was first

presented in [SKv10]. It can infer polynomial ranking functions, whereas other methods

are limited to linear symbolic or concrete bounds. Note that to derive concrete bounds

from symbolic bounds, the analysis could be combined with data-flow analysis. To de-

rive concrete upper and lower bounds on the number of iterations of a loop, upper and

lower bounds have to be known statically for all the program variables in the symbolic

bound.

We introduce polynomial-interpolation-based ranking function inference in section 4.1.1.

In section 4.1.2, a quadratic example is given. The soundness of themethod is discussed in

section 4.1.3. Then, extensions to the basic method are discussed in section 4.1.4 (ranking

functions with rational or real coefficients), section 4.1.5 (branching inside the loop body)

and section 4.1.6 (disjunctional loop guards). In section 4.1.7 a limitation to the extension

for disjunctional loop guards and a solution are discussed. Another application of our

polynomial interpolation method is discussed in section 4.2.1.

1 while (i < 15)
2 i++;

listing 4.1 A simple while loop, with most precise ranking function 15� i.
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4.1.1 Test-based inference of polynomial ranking functions for loops

In [SKv10] a method for the inference of polynomial ranking functions for loops is pre-

sented. Only loops in which the guards are conjunctions over arithmetical (in)equalities

are considered. These have the following form, where hnumi is a numerical program

variable or constant and � := {<,>,=, 6=,,�}:
hguardi ::= hinequalityi | hinequalityi ^ hguardi
hinequalityi ::= hnumi� hnumi

The method proceeds in the following steps:

1 instrument the loop with a counter

2 run tests on a well-chosen set of input values

3 find the polynomial interpolation of the results

In this contextwell-chosenmeans that test-nodes have to be picked such that there exists

a unique interpolating polynomial. This is the reason we can refer to the polynomial inter-

polation in step 3. Remember that a polynomial p(z
1

, . . . , z

k

) of degree d and dimension

k (the number of variables) has N

k

d

= (d+k

k

) = (d+k)!
d!·k!

coefficients. This is the number

of test-nodes that we need. To ensure the existence of a unique interpolation, the test

nodes are chosen to lie in so-called Node Configuration A (NCA). This condition was first

presented in [CL87]; its application to loop-bound analysis is described in [SKv10]. Besides

lying in NCA, test-nodes must also satisfy the guard of the considered loop. An algorithm

for node search is presented in [SKv10].

In the current version of ResAna, the ranking function can contain primitive data types,

object field access and array access. Note that in theory, the method could also handle

loops forwhich the ranking functiondepends on for instance theheight of a tree. However,

since this height is not readily available in a program variable, this would require the

addition of such a variable expressing the tree height by the programmer.

4.1.2 Quadratic example

Consider the example in listing 4.2. The most precise ranking function for this loop is the

degree 2 polynomial a · b� c + 1.
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1 while (a > 0 && c <= b && c > 0) {
2 if (c == b) { a--; c = 0; }
3 c++;
4 }

figure 4.2 A while loop with degree 2 ranking function a · b� c + 1.

public void m(int a, int b, int c) {
  while (a > 0 && c <= b && c > 0) {
    if (c == b) { a−−; c = 0; }
    c++;
  }
}

public int m(int a, int b, int c) {
  int count = 0;
  while (a > 0 && c <= b && c > 0) {
    if (c == b) { a−−; c = 0; }
    c++;
    count++;
  }
  return count;
}

Test runs

1st group: degree 2 NCA on plane
a=1, b=1, c=1 => count=1
a=1, b=2, c=1 => count=2
a=1, b=3, c=1 => count=3
a=1, b=2, c=2 => count=1
a=1, b=3, c=2 => count=2
a=1, b=3, c=3 => count=1

2nd group: degree 1 NCA on plane
a=2, b=1, c=1 => count=2
a=2, b=2, c=1 => count=4
a=2, b=2, c=2 => count=3

3rd group: degree 0 NCA on plane
a=3, b=1, c=1 => count=3

Find the interpolating polynomial 
and generate the method

annotated with the corresponding 
ranking function:

RF(a, b, c) = a • b – c + 1

Expected degree of 
polynomial (here: d=2)

figure 4.3 Test-based inference method applied to the example from listing 4.2.

1 //@ decreases (a > 0) && (c <= b) && (c > 0) ? a*b-c+1 : 0;
2 while (a > 0 && c <= b && c > 0) {
3 if (c == b) { a--; c = 0; }
4 c++;
5 }

listing 4.4 The loop from listing 4.2, annotated with its ranking function.
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The inference of a ranking function for the loop in listing 4.2 is depicted in figure 4.3. First,

the loop is instrumented with a counter. The user inputs the expected degree 2 of the

polynomial ranking function. Since there are 3 variables, a set of N

3

2

= (2+3)!
2!·3!

= 10

test-nodes in NCA is generated. By interpolating the results from test runs using these

input values, the most precise quadratic ranking function a · b� c + 1 is found.

4.1.3 Soundness

The presented method infers a hypothetical ranking function. It is not sound by itself, but

requires an external verifier. The Java Modelling Language (JML) is used to express the

ranking functions [Cha+06]. Inferred ranking functions are expressed in JML by defining

a decreases clause on the loop. This is an expression which must decrease by at least 1

on each iteration and has a value greater than or equal to 0, see the JML reference manual

[Lea+13]. It therefore forms an upper-bound on the number of iterations of the loop. An

example is shown in listing 4.4.

When the loop condition does not hold, the loop iterates zero times. Therefore the shown

annotation actually expresses the maximum of a · b� c + 1 and 0. In general, a ranking

function RF( ¯

v) for a loop with condition b can be expressed as follows: decreases b ?

RF( ¯

v) : 0. Such JML annotations can be verified by a variety of tools, for instance KeY

[BHS07]. The procedure described here should be used in conjunction with such a prover

to provide soundness.

A bird’s eye view of the overall procedure is depicted in figure 4.5. After a ranking function

is inferred, the Java sources are annotated and sent to the verification tool (KeY). The

verifier might be able to prove correctness of the annotation automatically, manual steps

may be needed for complex ranking functions (non-linear, rational coefficients, et cetera)

Java source verified ranking function

manual interaction needed

rejection, repeat with higher degree

annotated sources external
checking tool

(KeY)

test based
inference
procedure

figure 4.5 The basic inference procedure from a bird’s eye view: infer-and-check cycle.
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or the user may not be able to construct a proof at all. In the latter case, the user can

go back and try the procedure for a higher expected degree of the polynomial ranking

function. If an expected degree higher than the actual degree of the polynomial is used,

the correct result will still be found. There will however be a performance penalty on the

analysis.

4.1.4 Ranking functions with rational or real coefficients

The ranking functions inferred by the basicmethod are polynomialswith coefficients that

are natural, rational or real numbers. However, when a polynomial has rational or real

coefficients, its result is not necessarily a natural number, which, of course, any estimate

of a number of loop iterations must be. Consider for instance the loop in listing 4.6.

The exact number of iterations of this loop is given by d end�start
4

e. In other words, when
end�start

4

does not equate to a natural number, for instance to 3

4

, it must be ceiled. In

general, when the coefficients of an inferred polynomial ranking function RF( ¯

v) are not

natural numbers, ceiling should be added as such: dRF( ¯

v)e. Unfortunately, there is no

ceiling operator in JML. KeY simply truncates non-integer values after the decimal. We

therefore chose to overestimate ceiling by adding one to the KeY truncation:

dRF( ¯

v)e  RF( ¯

v) + 1

When choosing test nodes for the loop in listing 4.6 naively, for instance (0,1), (1,2) and

(1,3), an incorrect ranking function will be the result (in this case the constant 1). We must

take into account that if a variable v is updated by increasing or decreasing by a constant

step, the test-nodes must lie step apart. In this example, if we pick test nodes (0,4), (4,8)

and (4,12), then the correct ranking function will be found.

1 while (start < end) {
2 start += 4;
3 }

listing 4.6 An example with a loop-bound function
that is a polynomial over rational coeffi-
cients.

1 while (i > 0) {
2 if (i > 100)
3 i -= 10;
4 else
5 i -= 1;
6 }

listing 4.7 The basic method supplies an incorrect
ranking function. Branch-splitting is ap-
plied, yielding the pessimistic, but correct,
ranking function i.
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4.1.5 Branching inside the loop body

The basic procedure finds correct ranking functions for most loops containing branching,

such as for example the one in listing 4.2. However, there are cases in which the basic

procedure fails, because the different paths affect the bound in different ways. Such a

case is shown in listing 4.7.

To solve this problem, we introduce branch-splitting. This procedure finds ranking func-

tions for loops where the if-statements, if they exist in a loop body, have the following

worst-case computation path (WCCP) property:

For each loop body, there is an execution path such that, for any collection of values of the loop

variables, if one follows this execution path in every loop iteration one reaches the worst-case, i.e.

the upper bound on the number of iterations.

TheWCCP property is not checked by the loop bound inference procedure. It is given here

to specify the class of loops for which the procedure is successful. Soundness of the result

is ensured by verification using KeY.

By branch-splitting, we mean that we generate multiple new loops from the original, one

for each possible path. We then do the analysis for each of these paths. The ranking

function is then the maximum of all the inferred ranking functions. Thanks to the WCCP

property, we can easily find the ranking function that always specifies the maximum, by

supplying a set of values for the variables (say, all ones) to all the ranking functions. For

the example in listing 4.7, this yields the ranking function i.

4.1.6 Piecewise ranking functions for loops with disjunctive guards

In this section, we formally describe an extension to the basic procedure for handling

loops with disjunctions in their guards. The set of considered loops is here thus extended

to thosewith as guard any propositional logical expression over arithmetical (in)equalities,

including disjunctions. We will see that for those loops for which the guard contains

disjunctions, the ranking function will become piecewise.
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1 while ((i > 0 && i < 20) || i > 50) {
2 if (i > 50)
3 i--;
4 else
5 i++;
6 }

listing 4.8 A while loop with a piecewise ranking function.

Note that in fact, any ranking function for a well-formed loop is a piecewise one, since

there is always the piece where the loop guard does not hold and the loop iterates zero

times. For instance, for the loop in listing 4.1, the ranking function is actually:

(
15� i if i < 15

0 otherwise
(4.1)

This is of course a trivial case. A more involved example of a loop for which a piecewise

ranking function can be defined is shown in listing 4.8. Its ranking function is:
8
>><

>>:

20� i if (i > 0) ^ (i < 20)

i� 50 if i > 50

0 otherwise

(4.2)

We will now formally define a generic method for inferring ranking functions for loops

with disjunctive guards. The first step is to transform the guard into disjunctive normal

form (DNF), using the laws of distribution and DeMorgan’s theorems, resulting in a form

as given below, with � 2 {<,>,=, 6=,,�}, and hnumi a variable or constant:

hguardi ::= hconji | hconji _ hguardi
hconji ::= hinequalityi | hinequalityi ^ hconji
hinequalityi ::= hnumi� hnumi

Let c

i

represent a logical conjunction over numerical (in)equalities. We can now split up

the guard by applying the following function:

DNFsplit(c
1

_ . . . _ c

n

) :=

8
<

:
^

c

i

2CP

c

i

^ ^

c

j

2C

rest

¬c

j

������
CP 2 P({c

1

, . . . ,c

n

})\∆
C

rest

= {c

1

, . . . ,c

n

}\CP

9
=

;
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This transforms the condition c

1

_ . . . _ c

n

into a set Pieces of 2

n � 1 conjunctive condi-

tions. For instance, DNFsplit(i > 10_ i < 3) yields three pieces:

1 i > 10^ ¬i < 3 2 i < 3^ ¬i > 10 3 i > 10^ i < 3

This set may be simplified using a Satisfiability Modulo Theories (SMT) solver. In this case,

the negations can be removed from the first two conditions. The third condition is un-

satisfiable, thus it may be removed altogether. We refer to the procedure of transforming

a guard into disjunctive normal form and separating the pieces as DNF-splitting. The set

Pieces defines the pieces of the piecewise polynomial ranking function.

After DNF-splitting, the basic method can be applied separately to each of the pieces. If

RF

p

is the polynomial ranking function inferred for a piece p 2 Pieces, the piecewise

ranking function listed below is yielded. In this piecewise polynomial ranking function,

m  2

n � 1, because unsatisfiable pieces have been removed.

8
>>>><

>>>>:

RF

p

1

if p

1

. . . if …

RF

p

m

if p

m

0 otherwise

(4.3)

4.1.7 Condition jumping

In this section we define a complication that may arise during DNF-splitting, which we

call condition jumping. We show how to detect its occurrence and how to infer ranking

functions even in the presence of condition jumping.

Consider the loop in listing 4.9. Naively, one could say that its ranking function is the

following, which is an oversimplification:
8
>><

>>:

d(20� i)/4e if (i > 0) ^ (i < 20)

i� 22 if i > 22

0 otherwise

(4.4)
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1 while ((i > 0 && i < 20) || i > 22) {
2 if (i > 22)
3 i--;
4 else
5 i += 4;
6 }

listing 4.9 Jumping between the disjunctive conditions in a while loop.

But, what if i is 19, 15, or any n 2 [1,19] with n mod 4 = 3? Indeed, then there is a shift

from the first condition (0 < i < 20) to the second one (i > 22). We call this condition

jumping. Jumping from the second condition into the first one is not possible in this case.

Because of the presence of condition jumping, regular DNF-splitting does not suffice here.

The set of nodes fromwhich condition jumping occursmust be considered separately:

8
>>>><

>>>>:

d(20� i)/4e+ 1 if (i > 0) ^ (i < 20) ^ i mod 4 = 3

d(20� i)/4e if (i > 0) ^ (i < 20) ^ i mod 4 6= 3

i� 22 if i > 22

0 otherwise

(4.5)

In the remainder of this section, we first describe a method to detect condition jumping.

This method is then applied in an algorithm which detects all nodes for which jumping

occurs, in order to infer a correct piecewise ranking function.

To detect condition jumping in the example in listing 4.9, we first use symbolic execution

[Kin76] to construct an update function, which captures the relation between the values

of the program variables pre and post execution of the loop body. We can then use this

relation as input to an SMT solver and search for a model for which one part of the loop

guard is true pre-execution of the loop body and another part is true post-execution.

Obtaining an update function We will name the pre/post execution relation for a variable

v the next

v

function. The function next

i

:: Int ! Int for the loop in listing 4.9 can be

determined by symbolically executing the loop with value a
i

for i. This results in the

following symbolic post-execution value, which we will name f
i

:

f
i

(a
i

) =

(
a

i

� 1 if a
i

> 22

a
i

+ 4 otherwise
(4.6)
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By substituting the a
i

symbol with i, we obtain the next

i

function we are looking for:

next

i

(i) =

(
i� 1 if i > 22

i + 4 otherwise
(4.7)

In general, such an update function can be derived by symbolic execution of the loop body.

Start by giving the variables v

1

. . . v

n

symbolic values a
1

, . . . , a
n

. If we restrict our method

to loop bodies with polynomial effects, after the symbolic execution of the loop body, each

variable v

i

will have a value which is a set of polynomials over the symbols a
1

, . . . , a
n

and

constants, with associated path conditions, which capture branching. Effectively, this is

again a piecewise polynomial. The function next

v

i

is now obtained by replacing the a’s

by the corresponding program variables in this piecewise polynomial.

Detecting condition jumping We use SMT-LIB, a library of SMT background theories and

benchmarks [BST10]. It has a common file format for SMT problems, which can be read by

most SMT-solvers. An SMT-LIB script to detect jumping in the example from figure 4.9 is

given in figure 4.10. The function next

i

:: Int! Int from equation 4.7 is defined on line 2.

Then on line 4 we define the condition expressing that jumping occurs for this example

and on line 6 we check satisfiability of this condition.

Let us now consider the general case. Condition jumping will be detected pairwise for

conditions with multiple disjunctions. Here we thus consider a single condition-pair, i.e.

a loop with guard b

1

_ b

2

. Here b

1

and b

2

are conditions over CV ✓ LV ✓ PV , where CV

are the program variables in the condition, LV are the program variables in the loop and

PV are all program variables.

For each v

i

2 LV , we can define an associated function next

v

i

:: T

v

1

! . . . ! T

v

i

!
. . . ! T

v

n

! T

v

i

, where T

v

i

is the type of v

i

and n = |LV|, which takes the values of

all v 2 LV as the state and computes the value of v after a single execution of the loop

1 (declare-fun i () Int)
2 (define-fun nexti ((x Int)) Int
3 (ite (> x 22) (- x 1) (+ x 4)))
4 (assert (and (and (> i 0) (< i 20))
5 (> (nexti i) 22)))
6 (check-sat)
7 (exit)

listing 4.10 SMT-LIB script to detect jumping in the code of figure 4.9.
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body in that state, by following the procedure described in the previous paragraph. Once

these functions have been derived, the question whether jumping from b

1

to b

2

is possible

can be answered by any SMT-LIB conforming SMT solver (for instance Z3 by Microsoft) by

determining the satisfiability of b

1

(v
1

, . . . , v

n

) ^ b

2

(next

v

1

(LV), . . . , next

v

n

(LV)).

The SMT-LIB script in figure 4.10 can be used to find a model for which jumping occurs by

adding the expression (get-value (i)). A model is an instantiation of the variables for

which the formula for which satisfiability is checked holds. In the SMT-LIB script from

listing 4.10, a model for i is 19.

Subsequently, by adding the expression (assert (distinct i 19)), one can search for

models other than i = 19 for which jumping occurs. The answer of the SMT solver is that

the combination of propositions in this script is unsatisfiable. Thus, i = 19 is the only

possiblemodel. Wecannowsee if there are anymodels fromwhich the state i = 19 canbe

reached in a single iteration, by changing the comparison on line 6 to(= (nexti i) 19)).

In the example, this will be the model i = 15. Subsequently and similarly, we can search

for other nodes that can reach the state i = 19 in a single step, or that can reach the state

i = 15. By repeating these steps, we can find the set J = {3, 7, 11, 15, 19}. These are the

models from which jumping can occur.

In general, the method described above can be extended to detect all models from which

condition jumping can occur, by first finding all models that can jump directly from b

1

to

b

2

and then recursively finding models that can reach a model from this first set. This can

be done by implementing the following algorithmaround an SMT-solver. In this algorithm,

J is the set of models of which it is known that condition jumping occurs and Q is a queue

of models. We assume a function next :: M! M (where M is the type of a model), which

applies to each variable v

i

in a model ¯

v its corresponding next

v

i

function. The algorithm

is listed in listing 4.11.

After execution, J contains exactly all nodes forwhich jumping occurs. Since here a queue

is used, this algorithm implements a breadth-first search. This can easily be adapted to

a depth-first search by using a stack. Since the set of models is finite, the algorithm will

always terminate. It may however require |J| runs of the SMT-solver, so one may choose

to set an upper bound on the size of J and abort (‘give up’) early.
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forall ¯

v that satisfy b

1

( ¯

v) ^ b

2

(next( ¯

v)) ^ ¯

v 62 J do

add ¯

v to J and Q

while Q 6= ∆ do

¯

q = first item of Q

forall ¯

v that satisfy b

1

( ¯

v) ^ next( ¯

v) = ¯

q ^ ¯

v 62 J do

add ¯

v to J and Q

remove ¯

q from Q

listing 4.11 Condition jumping detection algorithm.

Now that we know J, we can split condition b

1

into two: b

1

( ¯

v) ^ ¯

v 2 J and b

1

( ¯

v) ^ ¯

v 62 J.

We can then apply the basic method to each of these disjunctive pieces. This algorithm

only detects jumping from one piece into another. It should be applied iteratively over

all the pieces, until no more jumping can occur. Note that this approach does not termi-

nate until all condition jumping cases have been found. Since there are loops for which

jumping occurs for every value of for instance an integer, it should ‘give up’ after an upper-

bound on the number of jumps is reached.

4.2 Heap-space usage analysis

The heap consumption analysis of ResAna is based on the COSTA [Alb+08] tool, which pro-

vides a generic analysis infrastructure for Java byte code. The symbolic upper bound that

COSTA generates for a method depends on the logical sizes of the method’s arguments,

structures pointed to by the object fields and the costs of the called (library) methods. The

(logical) size of an integer is the maximum of the integer and 0, the size of an array is its

length, the size of an object is its maximal reference chain. These assumptions constitute

the size model in the COSTA terminology. For instance, let a method allocate n objects of

class X, where integer n is a parameter of the method. Then COSTA generates a symbolic

bound of the form nat(n)⇥ c(size(X)), where nat(n) is the logical size max(n, 0), and

c(size(X)) is the memory cost of creating an object of type X.

COSTA implements different garbage collection models [AGG10]. This functionality is

retained in ResAna. Inside Java real-time threads no garbage collection is used, so in

ResAna a user can select to ignore garbage collection. For normal Java code one can

select to use the garbage collection feature of COSTA, which calculates an upper bound for

all possible executions of a program. First, for every method, the amount of memory that
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can escape the method’s scope is deduced. Using this information, peak consumption

cost relationships are calculated and solved, which give upper bounds on the amount of

memory used, even if using garbage collection.

We have added a number of improvements to the existing COSTA tool. Firstly, the re-

currence solver was improved with interpolation-based height analysis. Secondly, we

have changed the calculation of bounds for arrays, from an under-approximation to an

overapproximation. Thirdly, the ability to calculate concrete bounds for a number of Java

virtual machines, like OpenJDK and JamaicaVM, was added. And finally we added a post-

processing step to simplify the expressions, so a programmer can easily interpret the

information.

4.2.1 Interpolation-based height analysis for improving a recurrence solver

The approach of COSTA to resource analysis is based on the classical method devised

by Wegbreit [Weg75], which involves the generation of a recurrence relation capturing

the costs of the program being analysed, and the consecutive computation of a closed

form (non-recursive cost expression) which bounds the results of this recurrence relation.

In COSTA terminology, a recurrence relation is called a Cost Relation System (CRS). The

main feature that distinguishes CRS s from the classical concept of recurrence relations

is non-determinism: a CRS defining the costs of a Java method may be defined by a set of

equations guarded by non-disjoint conditions.

As an example, consider the loop in listing 4.12. We assume that the value of the if con-

dition cannot be determined at compile time. Its memory costs are described by the

following (simplified) CRS, where c denotes the constant c(size(java.lang.Object)), i.e. the

memory cost of creating an instance of Object.

T(x,y) = 0 {x > y} (4.8)

T(x,y) = c + T(x + 1,y) {x  y} (4.9)

T(x,y) = c + T(x,y� 2) {x  y} (4.10)

The COSTA system provides the recurrence solver PUBS [Alb+11a], which computes the

following closed-form:

nat(y� x + 1)⇥ c(size(java.lang.Object)) + c(size(java.lang.Object))
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1 while (x <= y) {
2 new Object();
3 if (...)
4 x = x + 1;
5 else
6 y = y - 2;
7 }

listing 4.12 Example loop.

This is an upper-bound to the values of T(x,y) given above. The resulting closed form

corresponds to the worst-case execution of the loop (i.e. when the if condition always

holds).

An important issue in the search of a closed-form of a CRS is to approximate the maxi-

mum number of unfoldings that must be undergone in order to reach a base case (height

analysis). If we consider the CRS as a function being evaluated in a non-deterministic

way, the number of unfoldings is closely related with the concept of ranking functions

(see section 4.1). For instance, in the CRS given above we get the following unfolding

sequence of length y� x + 1:

T(x,y)! T(x + 1,y)! T(x + 2,y)! · · ·! T(y,y)
| {z }

y�x+1 unfoldings

PUBS derives a ranking function for T by applying Podelski and Rybalchenko’s method

[PR04], which is complete for linear ranking functions. Unfortunately, it fails when the

number of unfoldings does not depend linearly on the arguments of the CRS, as the fol-

lowing example shows:

R(x,y) = c {x = 0, y = 0} (4.11)

R(x,y) = c + R(x� 1,x� 1) {x > 0, y = 0} (4.12)

R(x,y) = c + R(x,y� 1) {x � 0, y > 0} (4.13)

By equation (4.13) the variable y is decreased in every recursive call, until it reaches zero.

Then, by equation (4.12) it is set to x � 1, from which it starts decreasing again. The

worst-case evaluation of R(x,y) yields a chain of length 1

2

x

2 + 1

2

x + y + 1, which does

not depend linearly on (x,y).
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We have extended the PUBS system so that it can infer polynomial ranking functions via

testing and polynomial interpolation, as has been explained in section 4.1. This exten-

sion was described in detail in [Mon+12]. It is described briefly here, with an additional

contribution of verification of the interpolation results. The approach is, essentially, the

same: choose a set of points (lying in a NCA) in the domain of the relation defined by the

CRS, evaluate the CRS at these points, and find the interpolating polynomial. However,

the evaluation of a CRS is more involved than the evaluation of a program instrumented

with a counter, as it was done in section 4.1.1. The main difficulty lies in non-determinism.

Assume we want to evaluate T(5,9), where T is defined as in the CRS shown in (4.8-4.10).

We can unfold the definition of T(5,9) by using (4.10) until we reach a base case:

T(5,9)! T(5,7)! T(5,5)

This sequence is of length three, which is not maximal, since we could have evaluated T

by always using (4.9), so as to obtain a longer sequence:

T(5,9)! T(6,9)! T(7,9)! T(8,9)! T(9,9)

As a consequence of this, we would have to examine all the possible evaluations of T(5,9)

in order to obtain the longest unfolding sequence. However, the number of possible eval-

uations may be infinite even if the evaluation yields a finite number of results. We have

addressed this problem by evaluating the CRS in a bottom-up way (figure 4.13 left). We

start from the set B

1

of pairs (x,y) such that the evaluation of T(x,y) does not fall into a

recursive case. The longest obtainable sequence in these cases is of length one. Now let

us define the set B

2

of pairs (x,y) such that the evaluation of T(x,y) falls into a recursive

case, but the recursive call belongs to B

1

. Thus we ensure that the evaluation of these

B3

B2

B1

base cases

T(x4, y4) T(x5, y5)

T(x2, y2) T(x3, y3)

T(x0, y0) T(x1, y1)

B2B3B4

B1

figure 4.13 Meaning of the B

i

sets and their representation as convex polyhedra.
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pairs does not require more than two unfoldings. By following this procedure we obtain

a sequence of sets {B

i

} each of which can be described as a disjoint union of convex

polyhedra with the help of quantifier elimination techniques.

We use a gradient-based approach for selecting the interpolation nodes from the B

i

sets

(figure 4.13 right). The algorithm involves the search of climbing paths starting at the B

1

set, and minimising the distance between B

i

and B

i+1

for each i 2 N. It is possible

that, given a point (x,y) in a set B

i

, there are several candidates in the next level B

i+1

lying at the same distance from (x,y). In this case the climbing path forks, and the next

interpolation nodes are searched from all these candidates. The process ends when the

interpolating polynomial is uniquely determined.

Once we have found the interpolating polynomial on the set of test nodes, we have to

check whether the resulting bound is correct. This can be done as follows: for each CRS

the system can derive some predicates, whose satisfiability is a sufficient condition guar-

anteeing that the polynomial is an upper bound to the values of the CRS. These conditions

involve inequalities between polynomial expressions, which are decidable in Tarski’s the-

ory of real closed fields. For instance, the system would generate the following logical

statement for checking that y� x + 1 is an upper bound to T(x,y):

8x,y,x

0
,y

0
: ((x  y ^ x

0 = x + 1^ y

0 = y) _ (x  y ^ x

0 = x ^ y

0 = y� 2))

=) y� x + 1 � 1 + y

0 � x

0 + 1

If these generated predicates hold, then y� x + 1 is indeed an upper bound to T(x,y). Our

extension to PUBS delegates the task of checking such inequalities to the QEPCAD tool

[Bro03]. For our running example T(x,y), the script in figure 4.14 is generated. For this

script, QEPCAD yields true as an equivalent formula, validating the inferred bound.

1 [ Proving correctness of the bound corresponding to simpleLoop ]
2 (x,y,x’,y’) -- Variables
3 0 -- Number of free variables in the formula
4 (A x) (A y) (A x’) (A y’)
5 [[[x >= 0 /\ y >= 0 /\ x’ >= 0 /\ y’ >= 0] /\
6 [[[(-1) x + 1 y’ >= (-2) /\ 1 x + (-1) x’ = 0 /\ 1 y + (-1) y’ = 2] \/
7 [(-1) x + 1 y’ >= 0 /\ 1 x + (-1) x’ = (-1) /\ 1 y + (-1) y’ = 0]]]]
8 ==> [(-1) x + 1 y + 1 >= 1 + (-1) x’ + 1 y’ + 1]].
9 finish

listing 4.14 QEPCAD script for our running example T(x,y). Variables have been renamed for
better readability.
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4.2.2 Correct array-size analysis

Due to the way memory is handled, an array header will always be included with in-

formation about the array. As an array is a regular Java object the array header also

includes the normal object header. Almost all architectures impose constraints on the

memory allocator, e.g. memory allocators on the x86 architecture will allocate memory

blocks in multiples 4 byte words. Although fewer bytes are requested, the memory allo-

cator will add padding to an object that cannot be used for other purposes. This array

header and padding need to be taken into account, otherwise the bound would be an

under-approximation.

For instance, all JamaicaVM allocations are in (multiple) blocks of 32 bytes, considering

the 32-bit version of JamaicaVM. If multiple blocks are needed they are stored in a tree

structure with the array content stored in the leafs of the tree. The array header is 16 bytes

long, so this leaves up to four pointers to the tree structures. In partial trees (in which the

number of elements is not 4⇥ 8

n), nodes leading to unused array contents and unused

array contents blocks are not stored, e.g. 16 pointers (four bytes each) stored will take only

three blocks: two for the leafs and one intermediate block pointing to the leafs [Sie02].

An example array structure is shown in figure 4.15. COSTA takes into account neither the
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figure 4.15 Graphical representation of a JamaicaVM array of size n, with 33  n  255,
with a[i] representing the contents of the array. Allocating an array of 63 elements
takes 10 blocks.
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array header, nor the structure needed to store the contents, nor padding. Only the space

needed by the array contents (object references and primitive types) is included in the

bound. This results in COSTA producing a bound for new int[n] equal to n⇥ size(int),

making it indistinguishable from the sequence new int[1]; new int[n-1], so neglect-

ing to account for the extra array header, padding and structure overhead. The (structure)

overhead is dependent on the virtual machine used. To deal with these deficiencies we

implemented a special mode in COSTA, as explained next.

4.2.3 Virtual-machine specialisation by adding type-size information

COSTA has no knowledge of specific Java virtual machines like JamaicaVM. Our approach

is to replace in all the symbolic bounds generated by COSTA the symbolic object sizes by

the exact sizes of objects in bytes. The exact sizes are retrieved from the target virtual

machine by means of a specially generated program. For JamaicaVM, this generated

program depends on the Scoped Memory extensions of realtime Java. For other Java

virtual machines we use the reflection interface in Java, which is more general and can

be run on any virtual machine which supports the reflection interface. We validated this

method for OpenJDK, by interfacing directly with the virtual machine by means of a JNI

plugin.

For generating bounds for arrays allocated in an instance of JamaicaVM, we adjusted

COSTA to include an overapproximation. A simple way of calculating the size of arrays,

by means of the small recursive function defined in equation 4.14, could not be imple-

mented in COSTA, because of the manner COSTA represents and calculates the bounds

internally.

arrayblocks(n) =

(
n if n  8

⌃
n

8

⌥
+ arrayblocks(

⌃
n

8

⌥
) otherwise

(4.14)

This recursive function is valid for data types of four bytes, which correspond to the size

of pointers used in the tree structure pointing to the leafs, resulting in a cleaner formula.

Alternate data-types (e.g. byte, char, short, double), can be calculated by multiplying the

input n by a factor (of 1

4

, 1

2

, 1

2

, 2 respectively).

By transforming the formula to an overapproximation (by replacing d n

8

e with n+7

8

), we

were able to solve this new recurrence equation. The results in a new formula, and after in-

tegrating adjustments for the start cases, is listed in equation 4.15. We have implemented
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this solution in our version ofCOSTA, which is included inResAna, so that analysing arrays

now gives a correct overapproximation.

arrayblocks(n)  n + 5

7

+ (log

8

n + 7) (4.15)

We have a similar formula for arrays in OpenJDK, which uses continuous allocation with

a small header by default (an array of n elements uses 4n + 8 bytes, on a 32 bits target

architecture). For each new Java virtual machine a new specialisation for arrays needs

to be added in order to correctly generate bounds for code using arrays.

4.2.4 Simplification of bounds

COSTA internally calculates the symbolic bounds without considering the format of the

expression. The produced expressions are not necessary user friendly, for instance:

nat(n)⇥ (nat(n)⇥ (c(size(java.lang.Object, 1))+ c(size(java.lang.Object, 2)))+

nat(n)⇥ (c(size(java.lang.Object, 1))+ c(size(java.lang.Object, 2)))+

nat(n)⇥ (c(size(java.lang.Object, 1))+ c(size(java.lang.Object, 2))))

We implemented a recursive descent parserwith reductions ofmathematical expressions

in order to make the expressions generated by COSTAmore user readable. The result of an

expression is not altered in essence, but the formula is reordered and reduced to a more

user friendly expression. Technically the output is altered a little bit as the allocation

order, which only matters internally, is neglected. The allocation order is included in the

size construct as the second argument. The nat function is also omitted for brevity, and

should always be applied to variables. The expression above is transformed, and listed

below. One can now easily see that the bound is quadratic. This simplification is built

into ResAna and applied to all user-visible expressions. The transformed expression:

6n

2 ⇥ size(java.lang.Object)

4.2.5 Example

The run-time complexity, in terms of methods calls, of calculating the nth Fibonacci num-

ber iswell known. The complexity of a functionusing a double recursion isO(jn)method

calls, which is related to the golden ratio j = 1+
p

5

2

. Standard textbooks on complexity
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1 int fib(int n) {
2 new Object();
3 if (n < 2)
4 return n;
5 return fib(n-1) + fib(n-2);
6 }

listing 4.16 Adaptation of a double recursive func-
tion calculating Fibonacci numbers, al-
locating an object in each call.

1 int _fib(int a, int b, int n) {
2 new Object();
3 if (n <= 0)
4 return a;
5 return _fib(b, a+b, n-1);
6 }
7 int fib(int n) { return _fib(0, 1, n); }

listing 4.17 Adaptation of a single recursive function
calculating Fibonacci numbers, allocat-
ing an object in each call.

analysis use overapproximation, which results in a complexity of O(2n) for the same

function. By adding an object allocation to each method call, the number of allocations

equals the number of method calls. Therefore, in this example the heap consumption

should be related to the run-time complexity. Our tool annotates this function, listed in

listing 4.16, with the following bound, matching the expected bound:

(2n � 1)⇥ size(java.lang.Object)

The nth Fibonacci number can also be calculated by using a single recursion, for which

the complexity is O(n) method calls. The code, like the previous example with added

object allocations, is listed in listing 4.17. This single recursive function is annotated by

our tool with the following bound, also matching the expected complexity bound:

(n + 1)⇥ size(java.lang.Object)

4.3 Stack-size analysis

The proposed method of stack analysis requires global knowledge of the program, includ-

ing its data. VeriFlux [HTS08], a static data-flow analyser, is used to provide this.

Analysis of recursive methods is a challenge in static evaluation of stack consumption. To

deal with it, the stack-size analysis of VeriFlux relies on recursion-depth annotations. A

recursion-depth annotation consists of an expression that evaluates to a natural number

that is an upper bound on the number of nested recursive calls. Syntactically, recursion-

depth annotations are provided asmeasured_by clauses in the JML syntax. Ameasured_by
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expression is a usual symbolic expression like a.length - 1. VeriFlux outputs the stack

bound in bytes, which is the number computed from the annotations and the input data

of the main method. If VeriFlux discovers recursive methods that do not carry a recursion

depth annotation, it uses a default recursion depth, which is a positive natural number or

infinity. This number can be configured in the user interface of the tool. In case the default

recursion depth is configured to be infinity, the stack size analysis will report an infinite

stack size for all threads that call recursive methods that do not carry a recursion-depth

annotation.

Expressions for measured_by annotations are obtained using COSTA, which computes

both for a given (recursive) method:

— a symbolic upper bound on the depth of recursion (i.e. a ‘ranking function’).

— a symbolic upper bound on the number of calls of the method from itself.

The former corresponds to the height of the call tree, the latter represents the number of

the nodes in the call tree. For instance, the depth of recursion for a typical implementa-

tion of the n-th Fibonacci number calculation belongs toO(n), whereas the number of call

belongs to O(2n). Both a ranking function and a bound on the number of recursive calls,

can be used as measured_by expressions. The former and the latter coincide if the recur-

sion branching factor b < 2. The number of calls leads to exponential overapproximation

when b � 2.

Initially, COSTA did not output ranking functions, even though they were a part of the

tool its internal computations. The tool has been adjusted within the CHARTER project by

adding an option that allows ranking functions to be shown.

Consider the method fib(), computing the n-th Fibonacci number, in listing 4.16. As

expected, COSTA produces the ranking function nat(n� 1). This represents the depth of

the recursion tree. It is transformed by ResAna into the annotation measured_by n-1. The

upper bound on the number of recursive calls that COSTA generates is 2⇥ (2nat(n�1) � 1).

This corresponds to the total number of nodes in the recursion tree.

A Java virtualmachine has two stacks: a Java stack and anative one. Interpreted code and

dynamically generated code execute on the Java stack. External C libraries, JIT compiled

(Java) code and Java functionality implementednatively execute on thenative stack. Both
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have different stack usage characteristics. We consider Java stack usage while running

the virtual machine in interpreted mode. While methods utilising the native stack cannot

be analysed automatically, the user can specify bounds in their JML contracts.

Java applications typically callmethods from libraries. To obtain good stack-consumption

bounds for such applications, one should provide stack-consumption bounds for library

methods. In principle, library methods are analysed by CHARTER methodology in the

same manner as applications, i.e. as the example above. However, analysis of libraries

requires additional technical overhead, because of two issues: libraries are large and

library methods may call native routines.

4.3.1 Adjustments for analysis of libraries

Since a call to a library-method typically amounts to long chains of calls to other methods,

the corresponding call graph becomes very large. The COSTA analysis is based on call

graphs, so obtaining resource bounds in this case becomes unfeasible. Computations

take too much time and/or at the end one obtains a huge unreadable symbolic expression.

Therefore, when performing the stack analysis on programs with library calls, it is best

to begin with analysis of the methods belonging to one strongly-connected component

of the call graph. Recall that a strongly connected component of a directed graph is a

sub-graph in which for any two nodes a and b, there is a path from a to b and vice versa.

From our experience, COSTA performs it in reasonable time. After that, methods that

call the already analysed ones can be analysed. The annotations of the already analysed

methods can now be used as contracts. Eventually, all the library is analysed in a bottom-

up manner.

Technically, native stacks are needed to copewithmethods that are compiled to nativema-

chine code (for optimisation purposes) and with native methods that are called through

the Java Native Interface (JNI, used to access the kernel and platform-specific native li-

braries). VeriFlux does not address StackOverflowError s due to overflows of native stacks.

Since verification of C native methods is beyond of scope of this work, one has to rely

on the known information about the behaviour of these methods, i.e. corresponding con-

tracts.
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1 String toString(int i) {
2 if (i == Integer.MIN_VALUE)
3 return ”-2147483648”;
4 int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
5 char[] buf = new char[size];
6 getChars(i, size, buf);
7 return MyString.valueOf(buf, 0, size);
8 }

listing 4.18 The toString()method from the Integer class in the Java standard library.

As an example for both issues, consider the toString() method, which belongs to the

Integer class and maps an integer number to a string, shown in listing 4.18. Before running

COSTA, place this method in the abstracted classMyInteger, that contains only toString()

methodand themethods called from it. Create the abstractedversions of the classesString

and StringIndexOutOfBoundsException, that contain the methods called from toString(),

and the ones called from them, et cetera. COSTA produces a ranking function that symbol-

ically depends on the costs of two native methods: copyChars() and cast2string(). If

their contracts say that they do not call Java methods (which is, indeed, the case for this

example), their costs are turned into zeros by ResAna and the final measured_by expres-

sion is 0. This result can be validated by an accurate data-flow analysis of the method

toString() using pen and paper.

4.3.2 Stack-size analysis by VeriFlux

In this section we consider the principles on which the stack analysis of VeriFlux is based.

VeriFlux computes an invocation graph, in which nodes correspond to methods and edges

represent method invocations. Recursive method calls correspond to cycles in the graph.

In order to eliminate cycles, one first computes the strongly connected components (SCCs)

of the invocation graph. Each SCC with more than zero nodes is then replaced by a single

node that is annotated by the sum of the sizes of all stack frames that correspond to nodes

(i.e. method invocations) in that SCC, multiplied by the maximal recursion depth over all

the nodes (i.e. method invocations) in that SCC. The recursion depths are computed by

evaluating the measured_by annotations of invoked methods or using the default recur-

sion depth for methods that do not carry these annotations. All nodes that are not in a

SCCwith more than zero nodes are simply annotated by the size of the stack frame of the

corresponding method invocation.
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1 public static void main(String[] args) {
2 fib(21);
3 }

listing 4.19 Calling the fib()method from the main()method.

After merging each SCC, one is left with a directed acyclic graph (DAG), where each node is

annotated with a positive integer. Let this annotation be called the stack-frame size of

the node. To obtain the final result, VeriFlux adds the stack frame size of the node to the

maximum of the (recursively computed) stack sizes of its successor nodes. This can be

achieved, for all nodes, in a depth-first traversal of the DAG.

From the user perspective, VeriFlux performs stack analysis in the following way. The

tool starts from the main method and evaluates themeasured_by annotations of all called

methods in an abstract environment. Variables (and expressions) in this environment are

evaluated to intervals that represent all possible values they may have according to data-

flow analysis. For instance a variable n is replaced with the interval [0, 21] if data-flow

analysis shows that fib()will be called on n from 0 to 21.

The value that VeriFlux outputs is an upper bound on the used stack in bytes, computed

from the symbolicmeasured_by expressions and the input data of the main method. Note

that VeriFlux’s computation of the abstract environment is approximate. In the worst case,

VeriFlux may have computed the abstract value any for some of the variables that occur

in the measured_by expression. Then the concrete value of the measured_by expression

evaluates to any aswell. If a symbolicmeasured_by expression is not given, thena concrete

default bound is involved, given by the user. The correctness of this givennumerical upper

bound is not checked, VeriFlux simply uses this value in the analysis. The upper bounds

computed by VeriFlux are not tight, i.e. they may be higher than necessary.

Now, we proceed with the Fibonacci example, called from the main method in listing 4.19.

VeriFlux computes the depth of recursion, which, as expected, is equal to 20. The upper

bound on consumed stack space computed by VeriFlux is 1156 bytes. This consists of 20

stack frames for the fib()method, which use 56 bytes each, plus 36 bytes of stack space

needed to call the method. Performing the same method for fib(22) results in a bound of

1212 bytes. This means that a stack overflow will not occur if 1156 and 1212 bytes of stack

space are reserved for the main thread in the first and in the second case respectively.
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To deal with virtual method invocations, VeriFlux has an option ‘resolve opaque calls’.

When switched on, it considers all possible implementations or subclasses of a given

interface or a superclass. If the analysis cannot resolve which virtual method is actually

called, the maximum over the stack sizes of all those methods that are possibly called

is used. Conceptually, the invocation graph will then have edges from the caller to all

possibly called methods.

4.4 User experience

We have combined all the CHARTER verification tools in a VirtualBox image for easy in-

stallation. This image, the Eclipse plug-in and the source code, is available for free online.

The Dutch national aerospace laboratory NLR has used the VirtualBox image in the devel-

opment of a safety-critical avionics application. Their experience is described in [WW12].

They have selected their environment control system on board an aircraft for evaluating

the CHARTER tool-chain. This system is responsible for air conditioning and air pressuri-

sation. The application is written in realtime Java and runs on JamaicaVM.

Before using the CHARTER tools, NLR did not determine any ranking functions for loops

or memory-usage bounds, because manually devising them would require a very large

effort. Now, thanks to ResAna, these bounds can be inferred relatively quickly, so the pro-

grammers now have a better understanding of the workings and hardware-requirements

of their software. They applied ResAna for loop bound and heap space analysis. The tool

was found to be easy to use. Their industrial user feedback has led to several (small but

important) improvements of the ResAna tool. NLR has used the complete CHARTER tool-

chain in their evaluation. The use of the tool set resulted in a 21% decrease of the required

software engineering effort.

1 synchronized (lock) {
2 while (producedFrames != consumedFrames) {
3 try {
4 lock.wait();
5 } catch (Exception e) { }
6 }
7 }

listing 4.20 Example loop from CDx located in the class
immortal.FrameSynchronizer. No ranking
function can be inferred for this loop.

1 for (int i = 0; i < arrays.length; i++) {
2 Object o = arrays[i];
3 if (o != null)
4 currentRetention += ((byte[])o).length;
5 }

listing 4.21 Example loop from CDx located in the class
heap.MemoryAllocator. The ranking func-
tion inferred by ResAna, and proven by KeY,
is arrays.length - i.

chapter 498



4

# loops analysable percentage
Hunt et al. 2 2 100%
DIANA 4 4 100%
CDx 38 23 61%
Total 44 29 66%

table 4.22 Summary of the cases studied.

We also have conducted several case studies. For loop bound analysis three case studies,

suggested by our CHARTER partners, were performed. These are parts of safety-critical

Java systems. Roughly two-thirds of the loops found in the case studies are handled,

i.e. ranking functions are inferred for these loops using our prototype and prove it using

KeY. Almost all of the loops for which no ranking function could be inferred are loops for

which the guard depends on a different thread, e.g. in listing 4.20. Analysing the temporal

behaviour of such loops would require a fundamentally different analysis, which should

take into account the code of all threads as well as the scheduling of threads. An example

of a loop from the case studies for which a ranking function could be inferred and proved

is given in listing 4.21. The results are shown in table 4.22. The case studies are:

collision detector case study The first case is the collision detector example from the pa-

per “Provable Correct Loop bounds for Realtime Java Programs” by James Hunt et

al [Hun+06]. This code stems from a safety-critical avionics application.

package DIANA This package [Sch+09] is developed in the project Distributed, equipment

Independent environment for Advanced avioNics Applications (DIANA).

collision detector package CDx The CDx collision detector package is a publicly available

real-time Java benchmark. It is described in [Kal+09].

Furthermore, during a course on software analysis, for several consecutive years, we

have asked Master students to perform a series of exercises using ResAna. Students

successfully used the tool to infer ranking functions, heap bounds and stack bounds for

various examples. Also, they performed a small case study on the code of Pygmy (a small

web server). Again, ranking functions could be generated for roughly two thirds of the

loops. Similar exercises were also given to PhD students at the Institute for Programming

research and Algorithmics (IPA) school in 2013 on ‘Software Engineering and Technology’

[BvG-19], who found the tool to be very useful.
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4.5 Related work

The polynomial interpolation based technique was successfully applied in the analysis

of output-on-input data-structure size relations for functions in a functional language in

[KSE08; SKE07; SET11; SEK09; TSv09] and [GSE13]. This method can, for instance, be used

to determine that if the append() function gets two lists of lengths n and m as input, it

will return a list of length n + m.

4.5.1 Loop-bound analysis

Hunt et al. discuss the expression of manually conceived ranking functions in JML, their

verification using KeY and the combination with data-flow analysis in [Hun+06]. What is

‘missing’ in the method is the automated inference of ranking functions, which ResAna

supplies.

In [Alb+11b], an approach that is similar to ours is taken, in the combination of COSTAwith

the KeY tool. The results that COSTA gives are output as JML annotations, that may then

be verified using KeY.

Various other research results on bounding the number of loop iterations are described in

the literature. However, most approaches generate concrete (numerical) bounds [Erm+07;

Lok+09; Mic+08], as opposed to symbolic bounds. The methods that are able to infer sym-

bolic loop bounds are limited to either bounds that depend linearly on program variables

(the procedure used in ResAna infers polynomial bounds) [PR04] or that are constructed

from monotonic subformulae [Gul09; GZ10].

Several syntactical methods are discussed [FJ10; GJK09], which will be more efficient for

simple cases, but less general. Our procedure can be seen as complementary to those

methods. In case a syntacticalmethod is not applicable to a certain loop, ourmore general

method can be used.

To generate algebraic loop invariants, Sharma et al. [Sha+13] use a procedure which, as

our loop-bound inference algorithm, employs interpolation and separated inference and

verification phases. They refer to their algorithm as guess-and-check, as it employs a

non-sound inference phase and a verification phase. In the inference phase, the program
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is executed on data from unit tests and results are interpolated. For checking the in-

variants they use a SMT solver. The main difference to our work is that they search for

so-called algebraic invariants, which are defined as algebraic equalities over program vari-

ables, whereas we search for a specific variant (a ranking function) specifying the number

of remaining iterations of the loop, the value of which is required to decrease on each

iteration. This ranking function implies an algebraic inequality as invariant.

4.5.2 Timing analysis

There are a number of parallels of our work with timing analysis. This can be average

execution time analysis or, more common, Worst Case Execution Time (WCET) analysis.

As already mentioned, loop-bound inference can be used for time analysis, in particular

for WCET analysis. Depending on the cost function associated with each iteration of the

loop, one can compute a memory bound or a timing bound. To properly use this for WCET

analysis one has to incorporate extra analysis of e.g. cache behaviour, context switches,

et cetera, to precisely approximate the WCET as is done in [Wil+08; Rei+07].

As memory allocators and cache policies are rather slow and unpredictable, the number

and the amount of memory allocated have an impact on performance [Rei+07]. One has

to resort to special means to alleviate these problems [Her+11]. Our heap analysis can also

be used to gain insight into the allocations of a program. This can help reduce the number

and amount of allocations in a program, which can lead to smaller worst case execution

times.

4.5.3 Heap and stack size analysis

We have taken the COSTA system [Alb+08] as our point of reference. The authors have

recently improved [AGM11] the precision of PUBS, its recurrence solver, by considering

upper and lower bounds to the cost of each loop iteration. In a different direction, COSTA

has improved its memory analysis in order to take different models of garbage collection

into account [AGG10]. However, the authors claim that this extension does not require any

changes to the recurrence solver PUBS. Thus, the techniques presented in section 4.2.1

should fit with these extensions.
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In the field of functional languages, a seminal paper on static inference ofmemory bounds

is [HJ03]. A special type inference algorithm generates a set of linear constraints which,

if satisfiable, specify a safe linear bound on the heap consumption. One of the authors ex-

tended this type system in [HH10; HAH11] in order to infer multivariate polynomial bounds.

Surprisingly, the constraints resulting from the new type system are still linear.

Deduced heap and stack bounds can be certified, based on the work in [DP11]. As an analy-

sis can be unsound, or an implementation can be incorrect, verification of the bounds can

be needed. An Isabelle/HOL proof needs to be performed once, and for each program a set

of premisses needs to be verified. This method can also be applied for bounds deduced

by hand.

In [MPS15], by iteratively reapplying the analysis with the previous bound, the result can

be improved. The derived bounds are sound, and deal with both heap and stack memory

usage for a functional language called Safe.

In practice, stack usage in Java is often measured by instrumenting or transforming the

source code so that it counts consumed resources (and computes other relevant infor-

mation) on the inputs of the original code. To our knowledge, there are two commercial

tools that perform Java stack analysis: Coverity Static Analyzer and Klockwork, with its

kwstackoverflow. Another tool, GNATStack, analyses object-oriented applications, auto-

matically determining maximum stack usage on code that uses dynamic dispatching in

Ada and C++.

In [Wan+10], a static stack-bound analysis for abstract Java bytecode is described. The

described method considers Java bytecode with recovered high-level control structures

(conditionals and while-loops). The inference process is divided into three key stages:

frame-bound inference, abstract-state inference and stack-bound inference. Recall that

a frame is a piece of stack reserved for each method invocation. Each stage applies a

corresponding set of inference rules. In these rules the authors use Presburger (linear)

arithmetic formulae to describe states of programs. It is stated that an implementation is

under development.
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4.6 Discussion

To assist in making resource analysis practical, we have introduced new techniques and

combined these techniques in our new tool, ResAna. Complex loop, heap and stack bounds

can be inferred in an integratedwaywithin the Eclipse IDE. Bounds can be inferred that are

specific for the underlying virtual machine (shown both for JamaicaVM andOpenJDK).

Obviously, a full resource analysis tool would also need to build in an elaborate time analy-

sis. For now, we will rely on other tools to provide such information. The ability to infer

resource bounds contributes to improving the development process of producing real-

time safety-critical systems both with respect to ease of development and with respect

to improved reliability. The Dutch national aerospace laboratory NLR has successfully

used ResAna in the development of a demonstrator safety-critical realtime Java avionics

application.

Future work A more thorough evaluation of ResAna would be very valuable. A practical

case study could point out weak points of the different analyses and suggest directions

for improvement. Furthermore, the capabilities of timing analysis tools could be incorpo-

rated in our tool or it could be made easy to exchange information between our tool and

timing analysis tools. Another direction of future research could be to include work on

other kinds of resources that are consumed, e.g. also inferring and proving energy related

properties of Java programsmight be important. Furthermore, one could define, instead of

a single overall memory bound for the complete run-time of a program, a time-dependent

memory bound which gives a bound for the consumption on a certain moment in the

execution of a program. Such a time-dependent bound is called a live memory bound. To-

gether with information on synchronisation moments, this opens up the possibility to

derive more precise memory bounds by adding upper bounds of processes in the periods

between synchronisation moments.
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ABSTRACT Energy inefficient software implementations may cause battery drain for small sys-

tems and high energy costs for large systems. Therefore it can be essential for the success of a

system under development to be able to derive and optimise its resource consumption. Dynamic

energy analysis is often applied to mitigate these issues. However, this is often hardware-specific

and requires repetitive measurements using special equipment. Using similar techniques as used

in chapter 4, a static analysis is introduced to analyse energy consumption instead of memory.

We present a static analysis overapproximating the energy consumption based on an energy-

aware Hoare logic. To achieve this, software is considered together with models of the hardware it

controls. The Hoare logic is parametric with respect to the hardware. Energy models of hardware

components can be specified separately from the logic. Parametrised with one or more of such

component models, the analysis can statically produce a sound (overapproximated) upper-bound

for the energy-usage of the hardware controlled by the software.

based on [BvG-9]

energy analysis symbolic Hoare logic overapproximation

Power consumption and green computing are nowadays important topics in IT. From

small systems such as wireless sensor nodes, cell-phones and embedded devices to big

architectures such as data centres, mainframes and servers, energy consumption is an

important factor. Small devices are often powered by a battery, which should last as long

as possible. For larger devices, the problem lies mostly with the costs of powering the

device. These costs are often amplified by inefficient power-supplies and cooling.

Obviously, power consumption depends not only on hardware, but also on the software

controlling the hardware. Currently, most of the methods available to programmers to

analyse energy consumption caused by software use dynamic analysis: measuring while

the software is running. Power consumption measurement of a system and especially of

its individual components is not a trivial task. A designated measuring set-up is required.

This means that most programmers currently have no idea how much energy their soft-

ware consumes. A static analysis of energy consumption would offer a big improvement,

potentially leading to improvements in the energy-efficiency of software.

Energy consumption may depend on hardware state, values of variables and bounds

on the execution time. An energy analysis should incorporate these, in order to yield a

realistic result.
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Related work There is a large body of work on energy-efficiency of software. Most publi-

cations approach the problem on a high level, defining programming and design patterns

for writing energy-efficient code, see e.g. [Alb10; Sax10; Ran10]. In [Bri+13], a modular

design for energy-aware software is presented that is based on a series of rules on UML

schemes. In [Coh+12] and [Sam+11], a program is divided into “phases” describing similar

behaviour. Based on the behaviour of the software, design level optimisations are pro-

posed to achieve lower energy consumption. A lot of research is dedicated to building

compilers that optimise code for energy-efficiency, e.g. in GCC [Zhu+09] or in an iterative

compiler [GCB05]. Petri-net based energy modelling techniques for embedded systems

are proposed in [Jun+06] and [Nog+11].

Analyses for consumption of generic resources are built using recurrence relation solv-

ing [Alb+08], amortised analysis [HAH11], amortisation and separation logic [Atk10] and

a Vienna Development Method style program logic [Asp+07]. The main differences with

our work are that we include an explicit hardware model and a context in the form of

component states. This context enables the inclusion of state-dependent energy con-

sumption.

Relatively close to our approach are [JML06] and [Ker+13a], in which energy consump-

tion of embedded software is analysed for specific architectures (SimpleScalar in [JML06],

and [Ker+13a] for XMOS ISA-level models), while our approach is hardware-parametric.

Several tools perform a static analysis of the energy-consumption of the CPU based on

per-instruction measurements, such as JouleTrack [SC01] and Wattch [BTM00]. Further-

more, tools exist for energy profiling of software libraries, i.e. using dynamic analysis

[KZ08]. SEProf is an advanced tool that combines dynamic profiling with static estimation

of energy consumption [TC12]. One difference is that, while our analysis is geared towards

complete systems, SEProf only estimates the energy usage of the CPU. Moreover, while

SEProf estimates energy-usage, our analysis gives bounds that are sound with respect to

the hardware model.

In [Bri+14], an abstraction of the resource behaviour of components is presented, called

Resource-Utilisation Models (RUMs). Our component models can be viewed as an instantia-

tion of a RUM. RUMs can be analysed, e.g. with the model checkerUppaal. A possible future

research direction is to find a way to analyse also algorithms with RUM s as component

models.
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Our approach Contrary to the approaches above, we are interested in statically deriving

bounds on energy-consumption using anovel, generic approach that is parametrisedwith

hardware models. Energy consumption analysis is an instance of resource consumption

analysis. Other instances are worst-case execution time [Wil+08], size [SEK09], and loop

bound and memory analysis as in chapter 4.

The focus of this chapter is on energy analysis. Energy consumption models of hardware

components constitute the input for our analysis. The analysis requires information

about the software, such as dependencies between variables and information about the

number of loop iterations. For this reason we assume that a previous analysis (properly

instantiated for our case) has been made deriving loop bounds, e.g. chapter 4 or [PR04],

and variable dependency information, e.g. [HTS08].

Essentially our approach is an energy-awareHoare logic that is proven soundwith respect

to an energy-aware semantics. Both the semantics and the logic assume energy-aware

component models to be present. The software, however, has the central control. Con-

sequently, the analysis is done on a hybrid system of software and models of hardware

components. The Hoare logic yields an upper bound on the energy consumption of a

system of hardware components that are controlled by software.

Our contribution The main contributions of this chapter are:

— A novel hardware-parametric energy-aware software semantics.

— A corresponding energy-aware Hoare logic that enables formal reasoning about

energy consumption such as deriving an upper-bound for the energy consumption

of the system.

— A soundness proof of the derived upper-bounds with respect to the semantics.

The basic modelling and semantics are presented in section 5.1. Energy-awareness is

added and the logic is presented in section 5.2. An example is given in section 5.3 and the

soundness proof is outlined in section 5.4. The chapter is concluded in section 5.5.
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5.1 Modelling hybrid systems

Most modern electronic systems consist of hardware and software. In order to study the

energy consumption of suchhybrid systemswewill consider both hardware and software

in one single modelling framework. This section defines a programming language, with

(energy) semantics, in which hardware components can be explicitly controlled. The

hardware components are modelled in such a way that only the relevant information

about the energy consumption and the behaviour influencing the software is present.

5.1.1 Language

Our analysis is performed on the simple while language ECA. The grammar for our lan-

guage is defined in listing 5.1. This language is used for illustration purposes, so the only

supported type in the language is unsigned integer. There are no explicit Booleans. The

value 0 is handled as a false value, while all the other values are handled as a true value.

There are no global variables and parameters are passed by-value, so functions do not

have side-effects on the program state. Furthermore, while loops are supported but recur-

sion is not. Functions are statically scoped and can be defined anywhere in the program,

since they are statements. There are explicit statements for operations on hardware

components, like the processor, memory, storage or network devices. By explicitly intro-

ducing these statements it is easier to reason about those components, as opposed to,

hfun-defi ::= ‘function’ hfunction-namei ‘(’ hvari ‘)’ ‘begin’ hexpri ‘end’

hbin-opi ::= ‘+’ | ‘-’ | ‘*’ | ‘>’ | ‘>=’ | ‘==’ | ‘!=’ | ‘<=’ | ‘<’ | ‘and’ | ‘or’

hexpri ::= hconsti | hvari
| hvari ‘:=’ hexpri | hexpri hbin-opi hexpri
| hcomponenti ‘.’ hfunction-namei ‘(’ hexpri ‘)’
| hfunction-namei ‘(’ hexpri ‘)’
| hstmti ‘,’ hexpri

hstmti ::= ‘skip’ | hstmti ‘;’ hstmti | hexpri
| ‘if’ hexpri ‘then’ hstmti ‘else’ hstmti ‘end’
| ‘while’ ‘[’ hboundi ‘]’ hexpri ‘do’ hstmti ‘end’
| hfun-defi hstmti

listing 5.1 Grammar for the ECA language, with the while rule.
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for instance, using conventions about certain memory regions that will map to certain

hardware devices. Functions on components have one argument and always return a

value. The notation C. f will refer to a function f() operating on a component C.

5.1.2 Modelling components

To reason about hybrid systemsweneed away tomodel hardware components (e.g. mem-

ory, hard-disk, network controller) that captures the behaviour of those components with

respect to resource consumption. Hence, we introduce a component model that consists

of a state and a set of functions that can change the state: component functions. A com-

ponent state s is a collection of variables of any type. They can signify e.g. that the com-

ponent is on, off or in stand-by.

A component function is modelled by a function rv

f

that produces the return value and a

function d
f

that updates the internal state of the component. Both functions are functions

over the state variables. The update function d
f

and the return value function rv

f

take

the state s and the argument a passed to the component function and return respectively

the new state of the component and the return value. These functions are part of the

function environment D (which is extended later on with language functions). Each com-

ponent C may have multiple component functions. All the state changes in components

must be explicit in the source code as an operation, a component function, on that specific

component.

5.1.3 Regular semantics

Standard, non-energy-aware semantics can be defined for our language. Full semantics

are listed in figure 5.2, and can also be found together with more explanation in our tech-

nical report [BvG-20]. The assignment rule sAssign and the component function call rule

sCmpF are given below to illustrate the notation and the way of handling components.

The rules are defined over triples hS, s, Gi and he, s, Giwith respectively a program state-

ment S or a expression e, the program state function s and the component state environ-

ment G. The program state function returns for every variable its actual value. D is an

environment of function definitions. s[x
i

 n] is used as notation for substitution.

D ` he
1

, s, Gi e! hn, s0, G0i
(sAssign)

D ` hx := e

1

, s, G, ti e! hn, s0[x  n], G0i
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(sConst)
D ` hc, s, Gi e! hc, s, Gi

(sVar)
D ` hx, s, Gi e! hs(x), s, Gi

D ` he
1

, s, Gi e! hn, s0 , G0 i D ` he
2

, s0 , G0 i e! hm, s00 , G00 i
(sBinOp)

D ` he
1

� e

2

, s, Gi e! hn � m, s00 , G00 i

D ` he
1

, s, Gi e! hn, s0 , G0 i
(sAssign)

D ` hx := e

1

, s, G, ti e! hn, s0 [x  n], G0 i

D ` he
1

, s, Gi e! ha, s0 , G0 i
(sCmpF)

D, C. f =(d
f

, rv

f

) ` hC. f (e
1

), s, Gi e! hrv

f

(G0(C), a), s0 , G0 [C  d
f

(G0(C), a)]i

D ` he
1

, s, Gi e! ha, s0 , G0 i D ` he
f

, [x
f

 a], G0 i e! hn, s00 , G00 i
(sCallF)

D, f = (e
f

, x

f

) ` h f (e
1

), s, Gi e! hn, s0 , G00 i

D ` hS
1

, s, Gi s! hs0 , G0 i D ` he
1

, s0 , G0 i e! hn, s00 , G00 i
(sExprConcat)

D ` h S

1

,e
1

, s, Gi e! hn, s00 , G00 i

D ` he
1

, s, Gi e! hn, s0 , G0 i
(sExprAsStmt)

D ` he
1

, s, Gi s! hs0 , G0 i
(sSkip)

D ` hskip, s, Gi s! hs, Gi

D ` hS
1

, s, Gi s! hs0 , G0 i D ` hS
2

, s0 , G0 i s! hs00 , G00 i
(sStmtConcat)

D ` hS
1

;S
2

, s, Gi s! hs00 , G00 i

D ` he
1

, s, Gi e! h0, s0 , G0 i D ` hS
2

, s0 , G0 i s! hs00 , G00 i
(sIf-False)

D ` hif e

1

then S

1

else S

2

end, s, Gi s! hs00 , G00 i

n 6= 0 D ` he
1

, s, Gi e! hn, s0 , G0 i D ` hS
1

, s0 , G0 i s! hs00 , G00 i
(sIf-True)

D ` hif e

1

then S

1

else S

2

end, s, Gi s! hs00 , G00 i

D ` he
1

, s, Gi e! h0, s0 , G0 i
(sWhile-False)

D ` hwhile[b] e

1

do S

1

end, s, Gi s! hs0 , G0 i

D ` he
1

, s, Gi e! hn, s0 , G0 i n 6= 0 D ` hS
1

;while[b] e

1

do S

1

end, s0 , G0 i s! hs00 , G00 i
(sWhile-True)

D ` hwhile[b] e

1

do S

1

end, s, Gi s! hs00 , G00 i

D, f = (e
1

, x) ` hS
1

, s, Gi s! hs0 , G0 i
(sFuncDef)

D ` hfunction f (x) begin e

1

end S

1

, s, Gi s! hs0 , G0 i

figure 5.2 Regular semantics for the ECA language, without energy consumption semantics.
Note that c stands for a hconsti term, x for a hvari term, e for a hexpri term, S for
a hstmti term,� for a hbin-opi, f for a hfunction-namei, and C for a hcomponenti.
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The sCmpF rule shows the calculation of the new component state G. With s(G(C)) we

denote the state of component C in G. The reduction symbol e! is used for expressions,

which evaluate to a value, a new state function and a new component state environment.

We use s! for statements, which only evaluate to a new state function and component

state environment.

D ` he
1

, s, Gi e! ha, s0, G0i
(sCmpF)

D, C. f =(d
f

, rv

f

) ` hC. f (e
1

), s, Gi e! hrv

f

(G0(C), a), s0, G0[C  d
f

(G0(C), a)]i

In the following sectionswewill defineenergy-aware semantics andenergyanalysis rules.

We used a consistent naming scheme for the different variants of the rules (e.g. sAssign,

eAssign and aAssign for the assignment rule in respectively the standard (non energy-

aware) semantics, the energy aware semantics and the energy analysis rules).

5.2 Energy analysis of hybrid systems

In this section we extend our hybrid modeling, in order to reason about the energy con-

sumption of programs. We distinguish two kinds of energy usage: incidental and time-

dependent. The former represents an operation that uses a constant amount of energy,

disregarding any time aspect. The latter signifies a change in the state of the component;

while a component is in a certain state it is assumed to draw a constant amount of energy

per time unit.

5.2.1 Energy-aware semantics

As energy consumption can be based on time, we first need to extend our semantics

to be time-aware. We effectively extend all the rules of the semantics with an extra

argument, a global timestamp t. Using this timestamp we are able to model and analyse

time-dependent energy usage.

We track energy usage for each component individually, by using an accumulator a that is

added to the component model. For time-dependent energy usage, with each component

state change, the energy used while the component was in the previous state is added to

the accumulator. To enable calculation of the time spent in the current state s, we add t

to the component model, signifying the timestamp at which the component entered

the current state. In the energy-aware component model of component C, the above
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(eConst)
D ` hc, s, G, ti e! hc, s, G, ti

(eVar)
D ` hx, s, G, ti e! hs(x), s, G, ti

D ` he
1

, s, G, ti e! hn, s0 , G0 , t

0 i D ` he
2

, s0 , G0 , t

0 i e! hm, s00 , G00 , t

00 i
(eBinOp)

D ` he
1

� e

2

, s, G, ti e! hn � m, s00 , G00 , t

00 + t�i

D ` he
1

, s, G, ti e! hn, s0 , G0 , t

0 i
(eAssign)

D ` hx := e

1

, s, G, ti e! hn, s0 [x  n], G0 , t

0 + t

assign

i

D ` he
1

, s, G, ti e! ha, s0 , G0 , t

0 i G0 [C  hd
f

(s(G0(C)), a), a(C) + E

C. f

+ td(G0(C), t), t

0 i] = G00
(eCmpF)

D, C. f =(d
f

, rv

C. f

, t

C. f

, E

C. f

) ` hC. f (e
1

), s, G, ti e! hrv

C. f

(s(G0(C)), a), s0 , G00 , t

0 + t

C. f

i

D ` he
1

, s, G, ti e! ha, s0 , G0 , t

0 i D ` he
f

, [x
f

 a], G0 , t

0 i e! hn, s00 , G00 , t

00 i
(eCallF)

D, f = (e
f

, x

f

) ` h f (e
1

), s, G, ti e! hn, s0 , G00 , t

00 i

D ` hS
1

, s, G, ti s! hs0 , G0 , t

0 i D ` he
1

, s0 , G0 , t

0 i e! hn, s00 , G00 , t

00 i
(eExprConcat)

D ` h S

1

,e
1

, s, G, ti e! hn, s00 , G00 , t

00 i

D ` he
1

, s, G, ti e! hn, s0 , G0 , t

0 i
(eExprAsStmt)

D ` he
1

, s, G, ti s! hs0 , G0 , t

0 i
(eSkip)

D ` hskip, s, G, ti s! hs, G, ti

D ` hS
1

, s, G, ti s! hs0 , G0 , t

0 i D ` hS
2

, s0 , G0 , t

0 i s! hs00 , G00 , t

00 i
(eStmtConcat)

D ` hS
1

;S
2

, s, G, ti s! hs00 , G00 , t

00 i

D ` he
1

, s, G, ti e! h0, s0 , G0 , t

0 i D ` hS
2

, s0 , G0 , t

0 i s! hs00 , G00 , t

00 i
(eIf-False)

D ` hif e

1

then S

1

else S

2

end, s, G, ti s! hs00 , G00 , t

00+ tifi

D ` he
1

, s, G, ti e! hn, s0 , G0 , t

0 i n 6= 0 D ` hS
1

, s0 , G0 , t

0 i s! hs00 , G00 , t

00 i
(eIf-True)

D ` hif e

1

then S

1

else S

2

end, s, G, ti s! hs00 , G00 , t

00+ tifi

D ` he
1

, s, G, ti e! h0, s0 , G0 , t

0 i
(eWhile-False)

D ` hwhile[b] e

1

do S

1

end, s, G, ti s! hs0 , G0 , t

0 + twhilei

n 6= 0

D ` he
1

, s, G, ti e! hn, s0 , G0 , t

0 i D ` hS
1

;while[b] e

1

do S

1

end, s0 , G0 , t

0 + twhilei s! hs00 , G00 , t

00 i
(eWhile-True)

D ` hwhile[b] e

1

do S

1

end, s, G, ti s! hs00 , G00 , t

00 i

D, f = (e
1

, x) ` hS
1

, s, G, ti s! hs0 , G0 , t

0 i
(eFuncDef)

D ` hfunction f (x) begin e

1

end S

1

, s, G, ti s! hs0 , G0 , t

0 i

figure 5.3 Energy-aware semantics. Note that c stands for a hconsti term, x for a hvari term,
e for a hexpri term, S for a hstmti term,� for a hbin-opi, f for a hfunction-namei,
and C for a hcomponenti.
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mentioned variables are stored as a tuple t of hs, a, ti. We use s(t) to retrieve the state,

a(t) to retrieve the energy consumed until the last state change, and t(t) to retrieve the

timestamp of the previous state change.

We assume that each component has a constant power draw while in a state. Therefore,

the component model function f
C

maps component states onto the corresponding power

draw, independent of time. To calculate the power consumed while in a certain state we

define the td function, with as arguments the component and the current timestamp:

td(C, t) = f
C

(s(C)) · (t� t(C))

We model incidental energy usage associated with a component function C. f with the

constant EC.f. For each call to a component function we add this constant to the energy

accumulator.

A component function call can influence energy consumption in two ways: through its

associated incidental energy consumption and by changing the state, thereby influenc-

ing time-dependent energy usage. This is expressed by the semantic rule eCmpF for

component functions as defined below, with d
C. f

, rv

C. f

, t

C. f

representing the state up-

date function, the return value function, and the time it costs to execute this component

function. These variables are expected to be part of the environment D.

D ` he
1

, s, G, ti e! ha, s0 , G0 , t

0 i G0 [C  hd
f

(s(G0(C)), a), a(C) + E

C. f

+ td(G0(C), t), t

0 i] = G00
(eCmpF)

D, C. f =(d
f

, rv

C. f

, t

C. f

, E

C. f

) ` hC. f (e
1

), s, G, ti e! hrv

C. f

(s(G0(C)), a), s0 , G00 , t

0 + t

C. f

i

Note the addition of the incidental energy consumption E

C. f

and the time dependent

energy consumption td(G0(C), t) to the energy accumulator a(C), the increment of the

global time with t

f

and the update of the component timestamp t(C). Evaluation by!
in the energy-aware semantics extends the regular semantics with a timestamp and

an energy accumulator, which are used to calculate the total energy consumption of

the evaluation (a
system

as defined below). The full energy-aware semantics are given in

figure 5.3.

The energy accumulator of the components is not always up to date with respect to the

current time, as it is only updated in the eCmpF rule. This is done for simplicity; other-

wise each rule that adjusts the global time needs to update the energy accumulator of all

components.
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To calculate the total actual energy usage, the time the components are in their current

state should still be accounted for. This means we have to add the result of the td function

for each component. The total energy consumption of the system can be calculated at

any time as follows:

a

system

(G, t) = Â
C

a(G(C)) + td(G(C), t)

To be able to calculate time-dependent consumption, we need a timing analysis. De-

pending on your application and desired precision, a Worst-Case Execution Time (WCET)

can be integrated, possible in an external fashion. However, we keep it simple for now.

Each construct in the language therefore has an associated execution time, for instance

tif, t

assign

, twhile and t� with � signifying an operation in hbin-opi.

To capture the resource consumption of these basic operations, we extend the associated

rules in the semantics. The energy-aware rule for assignment eAssign is listed below,

with t

assign

for the time it takes to perform an assignment.

D ` he
1

, s, G, ti e! hn, s0, G0, t

0i
(eAssign)

D ` hx := e

1

, s, G, ti e! hn, s0[x  n], G0, t

0 + t

assign

i

All computations of resource consumption and new component states are done sym-

bolically. In the logic, these values are added, multiplied and subtracted or their max is

taken. Hence, every t, a, and t, as well as the values in component states, are polynomial

expressions, extended with the max operator, over program variables. Additionally, sym-

bolic states are used, both as input for the program and as start state for the components.

The aforementioned polynomials also range over the symbols used in these symbolic

states.

5.2.2 Energy-aware modelling

Energy-aware models will be used to derive upper-bounds for energy consumption of the

modelled system. In order for the energy-aware model to be suited for the analysis the

model should reflect an upper-bound on the actual consumption. This can be based on

detailed documentation or on actual energy measurements.
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To provide a sound analysis, we need to assume that components are modelled in such

a way that the component states reflect different power-levels and are partially ordered.

Greater states should imply greater power draw. We will use finite state models only to

enable fix point calculation in our analysis of while loops. The modelling should be such

that the following properties hold (in the context of the full soundness proof in [BvG-20]

these properties are axioms):

components states form a finite lattice with a partial order based on the ordering of poly-

nomials (extended with max()) over symbolic variables. Within the lattice each pair

of component states has a least upper-bound.

energy-aware component states are partially ordered This ordering extends the ordering

on component states in a natural way by adding an energy accumulator and a times-

tamp. The timestamp stores the time of the latest change to the component state.

The earliest timestamp therefore reflects the highest energy usage. Therefore, with

respect to timestamps the energy-aware component state ordering should be de-

fined such that smaller timestamps lead to greater energy-aware component states.

power draw functions preserve the ordering i.e. larger states consume more energy than

smaller states.

component state update functions d preserve the ordering s

1

> s

2

! d(s
1

) > d(s
2

). For

this reason, d
f

cannot depend on the arguments of f . To signify this, we will use d(s)

in the logic, instead of d(s, a). As a result, component models cannot influence each

other. Our soundness proof (theorem 2 in section 5.4) requires this assumption.

5.2.3 Severeness of model restrictions

There are several restrictions to the modelling that may seem far from reality:

with each component state a constant power draw is associated However, some hardware

may accumulate heat over time incurring increasing energy consumption over time.

Such a ‘heating’ problem can be modelled e.g. by changing state to a higher energy

level with every call of a component function. This is still an approximation of

course. In the future, we want to study models with time driven state change or

with time-dependent power draw.
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components are modelled as finite state machines Modelling systemswith finite statema-

chines is not uncommon, e.g using model checking and the right kind of abstraction

for the property that is studied. In our models the abstraction should be such that

the energy consumption is modelled as close as possible.

component state functions take up a constant amount of time and incidental energy This is

needed for the soundness proof. For instance, when a radio component sends a

message, the duration of the function call cannot directly depend on the number of

bytes in the message. In most cases this can be dealt with by using a different way

of modelling. First, one can use an overestimation. Second, such dependencies can

be removed by distributing the costs over multiple function calls. For instance, the

radio component can have a function to send a fixed number of bytes. If it internally

keeps a queue, the additional costs of sending the full queue can be modelled by dis-

tributing it over separate queueing operations. Energy consumption of components

must remain fixed per component state.

limited dependencies of the component state functions The arguments of a function in the

ECA language can not influence the outcome of applying the corresponding state

function d. In otherwords, the effect of component state functions cannot dependon

the arguments of the function in models. Also, component models cannot influence

each other. Both restrictions are needed for soundness guarantee of our analysis.

This restricts the modelling. Using multiple component state functions instead

of dynamic arguments and cross-component calls is a way of modelling that can

mitigate these restrictions in certain cases. Relieving these restrictions in general

is part of future work.

An alternative approach is presented in chapter 6, which relieves most of these restric-

tions. This approach is precise, as opposed to the overapproximation as proposed in this

chapter.

5.2.4 A Hoare logic for energy analysis

This section treats the definition of an energy-aware logic with energy analysis rules that

can be used to bound the energy consumption of the analysed system. The full set of

rules is given in figure 5.4. These rules are deterministic; at each moment only one rule

can be applied.
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Our energy consumption analysis depends on external symbolic analysis of variables

and loop analysis. The results of this external analysis are assumed to be accessible in

our Hoare logic in two ways.

First, we restrict the scope of our analysis to programs that are bound in terms of execu-

tion. We assume that all loops and component functions terminate on any input. Each

loop is annotated with a bound: while[b]. The bound is a polynomial over the input vari-

ables, which expresses an upper-bound on the number of iterations of the loop. We have

added the b to the while rule in the energy analysis rules to make this assumption ex-

plicit. Derivation of bounds is considered out of scope for our analysis. We assume that

an external analysis has produced a sound bound.

Second, the symbolic state environment r gives a symbolic state of every variable at each

line of code, e.g. {x

1

= e

1

} x

1

:= x

1

+ x

2

+ x

3

{x

1

= e

1

+ x

2

+ x

3

}, plus other non-energy

related properties invariants that have previously been proven. In figure 5.4 we included

this prerequisite by denoting r, r
1

, … explicitly. As these variables represent external

input, thet are not bounded by our logic.

All the judgements in the rules have the following shape: {G; t; r} S {G0; t

0
; r0}, where

G is the set of all energy aware component states, t is the global time and r represents

the symbolic state environment retrieved from the earlier standard analysis. As (energy-

aware) component states are partially ordered, we can take a least upper bound of states

lub(s
1

, s

2

) and sets of energy-aware component states lub(G
1

, G
2

).

Wewill highlight themost relevant aspects of the rules. TheaCmpF rule uses the td(G(C), t)

function to estimate the time-dependent energy consumption of component function

calls. The aIf rule takes the least upper bound of the energy-aware component states and

the maximum of the time estimates.

Special attention is warranted for the aWhile rule. We study the body of the while loop

in isolation. This requires processing the time-dependent energy consumption that oc-

curred before the loop process-td. An overestimation oe of the energy consumption of

the loop will be calculated by taking the product of the bound on the number of iterations

and an overestimation of the energy consumption of a single iteration, i.e. the worst-case

iteration wci. The worst-case-iteration is determined by taking the least upper-bound of

the set of all states that can occur during the execution of the loop. As there are a finite

number of states for each component, this set can be determined via a fix point construc-
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(aConst){G; t; r} n {G; t; r} (aVar){G; t; r} x {G; t; r}

{G; t; r} e

1

{G
1

; t

1

; r
1

} {G
1

; t

1

; r
1

} e

2

{G
2

; t

2

; r
2

}
(aBinOp){G; t; r} e

1

� e

2

{G
2

; t

2

+ t�; r
2

}

{G; t; r} e {G
1

; t

1

; r
1

}
(aAssign){G; t; r} x := e {G

1

; t

1

+ t

assign

; r
2

}

G[C  hd
C. f

(s(G(C))), a(G(C)) + EC.f + td(G(C), t), ti] = G
1

(aCmpF){G; t; r} C. f (args) {G
1

; t + tC.f; r}

e = a 2 r

{G; t; r} e {G
1

; t

1

; r
1

}
{G

1

; t

1

; r
1

[x0  a]} e

1

[x
f

 x

0 ] {G
2

; t

2

; r
2

} x

0 fresh in e

1

(aCallF)
D, f = (e

1

,x

f

) ` {G; t; r} f (e) {G
2

; t

2

; r
2

}

(aSkip){G; t; r} skip {G; t; r}
{G} S {G

1

} {G
1

} e {G
2

}
(aExprConcat){G} S,e {G

2

}

{G; t; r} S

1

{G
1

; t

1

; r
1

} {G
1

; t

1

; r
1

} S

2

{G
2

; t

2

; r
2

}
(aConcat){G; t; r} S

1

;S
2

{G
2

; t

2

; r
2

}

{G; t; r} e {G
1

; t

1

; r
1

}
{G

1

; t

1

+ tif; r
1

} S

1

{G
2

; t

2

; r
2

}
{G

1

; t

1

+ tif; r
1

} S

2

{G
3

; t

3

; r
3

}
(aIf){G; t; r} if e then S

1

else S

2

end {lub(G
2

, G
3

); max(t
2

, t

3

); r
4

}

G
1

= process-td(G, t) {wci(G
1

,e;S); t; r} e {G
2

; t

1

; r
1

} {G
2

; t

1

+ twhile; r
1

} S {G
3

; t

2

; r
2

}
(aWhile){G; t; r} while[b] e do S end {oe(G

1

, t, G
3

, t

2

, b); t + b · (t
2

� t); r
3

}

figure 5.4 Energy analysis rules.

tion fix. The fix point is calculated by iterating the component iteration function ci. In

order to support the analysis of statements after the loop, also an overestimation of the

component states after the loop has to be calculated. For brevity, in figure 5.4, this is dealt

with in the calculation of oe. Five calculations are needed:

1 Component iteration function ci. The component iteration function ci

i

(S) aggre-

gates the (possibly overestimated) effects of S on C. It performs the analysis on S,

then considers only the effects on C. If there are nested loops or conditionals, the

effects on the state of C are overestimated in the same manner as in the rest of

the analysis. By ci

n

i

(S) we mean the component iteration function applied n times:

ci

i

(S) � ci

n�1

i

(S), with ci

1

i

(S) = ci

i

(S).
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2 Fix point function fix. Because component states are finite, there is an iteration

after which a component is in a state that it has already been in, earlier in the loop

(unless the loop is already finished before this point is reached). Since components

are independent, the behaviour of the component will be identical to its behaviour

the first time itwas in this state. This is a fixpoint on the set of component states that

can be reached in the loop. It can be found using the fix

i

(S) function, which finds

the smallest n for which 9k. ci

n+1

i

(S) = ci

k

i

(S). The number of possible component

states is an upper bound for n.

3 Worst-case iteration function wci. To make a sound overestimation of the energy

consumption of a loop, we need to find the iteration that consumes the most. As our

analysis is non-decreasing with respect to component states, this is the iteration

which starts with the largest component state in the precondition. For this purpose,

we introduce the worst-case iteration function wci

i

(S), which computes the least-

upper bound of all the states up to the fix point:

wci

i

(S) = lub(ci

0

i

(S), ci

1

i

(S), . . . , ci

fix

i

(S)
i

(S))

The global version wci(G,S) is defined by iteratively applying the wci

i

(S) function

to each component C in G.

4 Overestimation function oe. This function overestimates the energy-aware output

states of thewhile loop. It needs to do three things: find the largest non-energy-aware

output states, find theminimal timestamps and add the resource consumption of the

loop itself. This function gets as input: the start state of the loop G
in

, the start time t,

the output state from the analysis of the worst-case iteration G
out

, the end time from

the analysis of the worst-case iteration t

0 and the iteration bound b. It returns an

overestimated energy-aware component state and an overestimated global time.

Because component state update functions d preserve the ordering, the analysis

of the worst-case iteration results in the maximum output state for any iteration.

This, however, does not yet address the case where the loop is not entered at all.

Therefore, we need to take the least-upper bound of the start state and the result of

the analysis of the worst-case iteration.
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To overestimate time-dependent energy usage, we must revert component times-

tamps to the time of entering the loop. So, if a component is switched to a greater

state at somepoint in the loop, the analysis assumes it has been in this state since en-

tering the loop. Note that the least-upper bound of energy-aware component states

does exactly this: maximise the non-energy-aware component state and minimise

the timestamp. Taking G
base

= lub(G
in

, G
out

) we find both the maximum output

states and the minimum timestamps.

Now, we can calculate the consumption of the loop, calculating per component:

a(G
base

(C)) = a(G
in

(C)) + b · (a(G
out

(C))� a(G
in

(C))). We perform something

similar for the execution time: t

ret

= t + b · (t0 � t).

5 Processing time-dependent energy function process-td. When analysing an itera-

tion of a loop, we must take care not to include any energy consumption outside

of the iteration. This would lead to a large overestimation, since it would be mul-

tiplied by the number of iterations. Before analysing the body, we add the time-

dependent energy consumption to the energy accumulator for each component and

set all timestamps to the current time. Otherwise, the consumption before the loop

would also be included in the analysis of the iteration. We introduce process-td(G, t),

which adds td(C, t) to a(C) and sets t(C) to t, for each component C in G.

Applying the rules overestimates the sum of the incidental energy consumption and the

time-dependent energy consumption. However, the time-dependent energy consump-

tion is only added to the accumulator at changes of component states. So, as for the

energy-aware semantics, the time the components are in their current state should still

be accounted for by calculating a

system

(G
end

, t

end

).

5.3 Wireless sensor node example

To illustrate our analysis, we model a wireless sensor node, which has a sensor S and a

radio R. We analyse the energy usage of a program that repeatedly measures the sensor

for ten seconds, then sends the measurement over the radio, shown in figure 5.5. The

example illustrates both time-dependent (sensor) and incidental (radio) energy usage. We

choose a highly abstract modelling to keep the example brief. A more elaborate example

can be found in [Sch+14], where two algorithms are compared using an implementation of

this analysis. A similar analysis of two algorithms is performed in [BvG-20] by hand.
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1 while[n] n > 0 do
2 S.on();
3 ... some code taking 10 seconds ...
4 x := S.off();
5 R.send(x);
6 n := n - 1;
7 end

listing 5.5 Example program.

Modelling The sensor component S has two states: on and off. It does not have any in-

cidental energy consumption. It has a power draw (thus time-dependent consumption)

only when on. For this power draw we introduce the constant aon. There are two compo-

nent functions, namely on() and off(), which switch between the two component states.

The radio component R only has incidental energy consumption. It does not have a state.

Its single component function is send(), which uses tR.send time and ER.send energy. We

also need a timing model. For the sake of presentation, a very simply model is used in

which only assignment takes time t

assign

. The other language constructs are assumed to

execute instantly.

Application of the semantics from figure 5.3 on the loop body results in a time tbody of

10 + tR.send + 2 · t

assign

and an energy consumption abody of 10 · aon + ER.send. Intuitively,

the time and energy consumption of the whole loop are n · tbody and n · abody.

Energy consumption analysis The analysis (figure 5.4) always starts with a symbolic state.

Note that only the sensor component S has a state. We introduce the symbol on

s

0

for the

symbolic start-state (on or off) of the sensor. We start the analysis with the while loop.

To apply the aWhile rule, we first have to resolve the process-td and wci functions, then

analyse the loop guard and body, then determine the final results with the oe function.

The instantiated aWhile rule, with the twhile constant omitted because it is 0:

G
1

= process-td(G
0

, t

0

)

{wci(G
1

,n > 0; Sbody); t

0

; r
0

} n > 0 {G
2

; t

1

; r
1

} {G
2

; t

1

; r
1

} Sbody {G
it

; t

it

; r
it

}
(aWhile){G

0

; t

0

; r
0

} while[n] n > 0 do S

it

end {oe(G
1

, t

0

, G
it

, t

it

, r(n)); t

0

+ n · (t
it

� t

0

); r
end

}
We first add time-dependent energy consumption and set timestamps to t

0

for all com-

ponents using the process-td function. If we would not do this, the time-dependent en-

ergy consumption before the loop would be included in the calculation of the resource

consumption of the worst-case iteration. As this would be multiplied by the number of
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iterations, it would lead to a large overestimation. R does not have a state, so we only need

to add the time-dependent consumption of S: td(S, t

0

) = f
S

(on

s

0

) · (t
0

� t
0

(S)), where

t
0

(S) is the symbolic timestamp when starting the analysis.

We must now find the worst-case iteration, using the wci function. For the S component

we need the ci

s

(n > 0; Sbody) function. As the other components do not have a state,

ci

imp

(n > 0; Sbody) and ci

r

(n > 0; Sbody) are the identity function. The loop body sets the

sensor state to soff, independent of the start state. So, ci

s

(n > 0; Sbody) always results in

soff. Now we can find the fix point. In the first iteration, we enter the loop with symbolic

state on

s

0

. In the second iteration, the loop is entered with soff. In the third iteration, the

loop is again entered with soff, which is therefore the fix point. Intuitively, this means that,

since after any number of iterations the sensor is off, the symbolic start state, in which it

is unknown whether the sensor is on or off, yields the worst-case. As there are no costs

associated with the evaluation of expressions, the analysis of n > 0 using the aBinOp rule

does not have any effect on the state. The worst-case iteration is calculated by:

wci

s

(n > 0; Sbody) = lub(ci

0

s

(n > 0; Sbody), ci

1

s

(n > 0; Sbody)) = on

s

0

We continue with the loop body, starting with a component function call to on():

G
3

= G
2

[S hd
S.on

(s(G
2

(S))), a(G
2

(S)) + td(G(C), t

1

), t

1

i]
(aCmpF){G

2

; t

1

; r
1

} S.on() {G
3

; t

1

; r
2

}
There is no incidental energy consumption or time consumption associated with the call.

However, we add the time-dependent energy consumption to the energy accumulator, by

adding td(S, t). Since we have just set t(S) to t

0

and the evaluation of n > 0 costs no

time, hence t

1

= t

0

, td(S, t

1

) results in 0. The function dR.on produces component state

son. It also saves the current timestamp to the component state, in order to know when

the last state transition occurred. For simplicity, we omit the application of aConcat.

After ten seconds of executing other statements (which we assume only cost time, no

energy), the sensor is turned off. The call to the function off() returns the measurement,

which is assigned to x. We therefore first apply the aAssign rule, which adds t

assign

to

the global time. We now apply the aCmpF rule to the right-hand side of the assignment,

S.off(). This updates the state of the component to soff. In order to determine the energy

cost of the component being on for ten seconds, the rule calculates td(S, t

2

). Because t

2

=

t(S) + 10 and our model specifies a power draw of aon for son, this results in 10 · aon.
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We apply the aCmpF rule again, this time for the send() function of the radio. As the

transmission costs a fixed amount of energy, all time-dependent constants associated

with transmitting are set to zero. The application of aCmpF only adds the incidental

energy usage specified by ER.send and the constant time usage tR.send. Finally, we apply

aBinOp, which adds no costs, and the aAssign rule, which again adds t

assign

.

Analysis of theworst-case iteration results in global time t

it

andenergy-aware component

state environment G
it

. Next we apply the overestimation function oe(G
1

, t

0

, G
it

, t

it

, r(n)).

This takes as base the least-upper bound of G
1

and G
it

, which in this case is exactly G
1

(note that the state of the sensor is overestimated as on

s

0

). It then adds the consumption of

the worst-case iteration, multiplied by the number of iterations. The worst-case iteration

results in a global time of t

0

+ 10+ tR.send + 2 · t

assign

. So, oe results in a global time t

end

of

t

0

+ n · (10 + tR.send + 2 · t

assign

). Note that this is equal to the time consumption yielded

by the energy-aware semantics.

A similar calculation is made for energy consumption, for each component, before we

can calculate a

system

. In total, the oe function results in an energy usage of a

0

+ n · (10 ·
aon + ER.send). However, we still need to add the time-dependent energy consumption for

each component. This is where potential overestimation occurs in this example. Since R

does not have a state, we only need to add the time-dependent consumption of S. After

the analysis of the loop, the state of the sensor is overestimated as on

s

0

. This leads to an

overestimation when on

s

0

= son ^ n > 0, and otherwise the result is equal to that of the

energy-aware semantics. The added consumption is:

td(S, t

end

) = f
S

(on

s

0

) · (t
end

� t

0

) = f
S

(on

s

0

) · n · (10 + tR.send + 2 · t

assign

)

5.4 Soundness

We outline a proof of the soundness of the energy-aware Hoare logic with respect to the

energy-aware semantics. Intuitively, thismeansweprove that the analysis overestimates

the actual energy consumption. We present only the fundamental theorems, the full

proof is given in [BvG-20]. To guarantee soundness of the final result, soundness of the

annotations, loop bounds, and symbolic states is assumed. We first show that the logic

overestimates time consumption.
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THEOREM 5.1 Timing overestimation.

If hS, s, G, ti s! hs0, G0, t

0i, then for any {G; t; r} S {G
1

; t

1

; r
1

} holds that t

1

� t

0.

PROOF 5.1 Theorem 1 derives from the property that the analysis does not depend on the times-

tamp in the precondition. For {G
1

; t

1

; r
1

} S {G
2

; t

2

; r
2

}, the duration t

2

� t

1

always overesti-

mates the duration of every possible real execution of the statement S. Theorem 1 is proved by

induction on the energy-aware semantics and the energy analysis rules. The only source of any

overestimation are the rules aIf and aWhile. The aIf rule computes a maximum between the final

timestamps of its branches. In the aWhile rule, the execution time of one iteration of the loop is

overestimated and multiplied by the loop bound, itself an overestimation of the number of itera-

tions of the loop. ⇤

Overestimating the component state is fundamental for overestimating the total energy

consumption. A larger component state requires more power and hence consumes more

energy.

THEOREM 5.2 Component state overestimation.

If {G; t; r} S {G
1

; t

1

; r
1

} and hS, s, G, ti s! hs0, G0, t

0i then G
1

� G0.

PROOF 5.2 Induction on the energy-aware semantics and the energy analysis rules, yields that

the update function d preserves the ordering on component states (see section 5.2.2). ⇤

Now, we can formulate and prove the main soundness theorem:

THEOREM 5.3 Soundness.

If {t; G; r} S {t

1

; G
1

; r
1

} and hS, s, G, ti s!hs0, G0, t

0i thena

system

(G
1

,t

1

)� a

system

(G0,t0).

PROOF 5.3 By induction on the energy-aware semantics and the energy analysis rules. As the-

orem 1 ensures that the final timestamp is an overestimation of the actual time-consumption,

hence the calculation of energy usage is based on an overestimated period of time. Next, theo-

rem 2 ensures (given that the analysis is non-decreasing with respect to component states a larger

input state means a larger output state) that we find the maximum state (including incidental

energy-usage) that can result from an iteration of a loop body with the logic. This depends on the

wci function determining the maximal initial state for any iteration. It follows, by the definition

of a

system

that a

system

(G
1

,t

1

)� a

system

(G0,t0). The total energy consumption resulting from the

analysis is larger than that of every possible execution of the analysed program. ⇤
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5.5 Discussion

Wepresented ahybrid, energy-awareHoare logic for reasoning about energy consumption

of systems controlled by software. The logic comes with an analysis which is proven to be

sound with respect to the semantics. To our knowledge, our approach is the first attempt

at bounding energy-consumption statically in a way which is parametric with respect to

hardware models. This is a first step towards a hybrid approach to energy consumption

analysis in which the software is analysed automatically together with the hardware it

controls. In the Software Analysis course atRadboudUniversity Nijmegen students have used

this approach (supported by an implementation of this analysis as described in [Sch+14])

for exercises, successfully modelling various algorithms and hardware components.

Validity There are several validity constraints to the technique discussed in this chapter.

Although the derivation of bounds is sound, the quality of the bounds derived depends

directly on the quality of the component models used. The restrictions on component

models are severe, e.g. the energy consumption is assumed to be constant in every state

of the component. This is in practice not true for most devices, e.g. the energy con-

sumption can be a function over time. To correctly derive a bound, component models

should be bound on their maximum energy usage by other means. To this end, alternative

techniques can potentially be applied, such as model transformations and timed model

checking, however this is left for future research.

The construction and validation of component models is hard, as there are several real

world practical issues. If basing the component model on specifications from hardware

vendors, all kinds of errors in the specification are transferred to the component model.

Production errors in the hardware, and eventually the degradation of hardware, can in-

duce erratic energy consumption behaviour that does not conform to the specification/-

component model. Validating a component model with a test setup is hard, as energy is

hard to measure. Small differences in energy consumption are hard to measure correctly,

and outside condition like temperature can influence the results greatly. It differs signifi-

cantly from the other resources discussed in the other chapters, which are measurable

with great precision within a computer by the computer itself. Validating if the number

of states a component model can be in, is the same number of states a hardware model

can be in is a hard problem by itself. With powerful models, this validation process with

real hardware can potentially last a life time, as least of the hardware in question.
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There is another potential source of derived bounds not matching the actual bounds of a

realistic situation. Compiler errors and optimisations can impact the (energy) behaviour

of a source program greatly. The compiler has influence on the timing of high level

language constructs. The timing constants used for these language constructs should

match the upper bound it takes to execute those language constructs. Complicating

matters even more is the complex design of modern processors executing the software.

Even relatively small embedded microprocessors have features, like a register bypass,

which impact the execution timing of statements significantly.

These constraints on modelling hardware components and validity implications should

be lifted and investigated in future work to make the technique discusses applicable

to general real-world problems. However, depending on the context and the precision

needed, the current technique can already be applicable. If the hardware component is

relatively simple, a conforming component model can be constructed. Another relevant

area for the techniques discussed is to give feedback to a prospective programmer, so

during construction of software he can optimise the energy consumption.

Future work Many future research directions can be envisioned: performing energy mea-

surements for defining component models, modelling of software components and en-

abling thedevelopment of tools that canautomatically derive energy consumptionbounds

for large systems, finding the most suited tool(s) to provide the right loop bounds and an-

notations for our analysis and study energy usage per time unit on systems that are

always running, removing certain termination restrictions.

Another research direction is the use of timed automata for modelling non linear en-

ergy consumption. Such timed automata can induce a state change after a certain time

autonomous, without interaction from software. This can be used to model energy con-

sumption behaviour where the consumption is depending on the time passed. This way,

one can approximate models where each state has an energy consumption function f

over time.

A Hoare logic for energy consumption analysis 127





USING DEPENDENT TYPES
TO DEFINE ENERGY

AUGMENTED SEMANTICS
OF PROGRAMS

6



6

ABSTRACT A hardware parametric overapproximating approach to analyse energy consumption

statically has been proposed in chapter 5. The approach involves creating energy models for

hardware components and passing the hardware models as a parameter to the analysis of the

software that controls the system. The foundation of that analysis is an energy aware Hoare

logic. However, the Hoare logic approach suffers both from lack of compositionality and from

significant overshoot in the derived bounds. For large systems compositionality is a key property

for an analysis to be applicable in practice.

This chapter presents a hardware-parametric, compositional and precise type system to derive en-

ergy consumption functions. These energy functions describe the energy consumption behaviour

of hardware controlled by the software. This type system has the potential to predict energy con-

sumptions of algorithms and hardware configurations, which can be used on design level or for

optimisation.

We instantiate the derived consumption functions for each function call, making the system com-

posable. This way a library can be pre-analysed and annotated. A feature missing from the original

ECA language was recursion, but using these same signatures, recursion is supported in this

alternative approach.

based on [BvG-14]

energy analysis program transformation dependent types precise

Green computing is an important emerging field within computer science. Much atten-

tion is devoted to developing energy-efficient systems, with a traditional focus on hard-

ware. However, this hardware is controlled by software, which therefore has an energy-

footprint as well.

A few options are available to a programmer who wants to write energy-efficient code.

The programmer can look for programming guidelines and design patterns, which gen-

erally produce more energy-efficient programs, e.g. [Sax10]. Then, he/she might make

use of a compiler that optimises for energy-efficiency, e.g. [Zhu+09]. If the programmer is

lucky, there is an energy analysis available for his specific platform, such as [JML06] for

a processor that is modeled in SimpleScalar (this only analyses the energy consumption

of the processor).
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However, for most platforms this is not a viable option. In that case, the programmer

might use dynamic analysis with a measurement set-up. This, however, is not a trivial

task and requires a complex set-up [Jag+16; Fer+13]. Moreover, it only yields information

for a specific benchmark [Mog+15]. Nevertheless, these approaches are always applicable.

However we envision an approach that yields additional insight to the programmer in a

predictive manner.

Our approach We propose a dependent type system, which can be used to analyse energy

consumption of software, with respect to a set of hardware component models. Such

models can be constructed once, using a measurement set-up. Alternatively, they might

be derived from hardware specifications. This type system is precise, in the sense that no

overapproximation is used. By expressing energy analysis as a dependent type system,

one can easily reuse energy signatures for functions which were derived earlier. This

makes this new dependent type system modular and composable. Furthermore, the

use of energy signatures that form a precise description of energy consumption can be

a flexible, modular basis for various kinds of analyses and estimations using different

techniques (e.g. lower or upper bound static analysis using approximations or average

case analysis using dynamic profiling information).

The presented work is related to our results in chapter 5, where we present an overapprox-

imating energy analysis for software, parametric with respect to a hardware model. That

analysis is based on an energy awareHoare logic and operates on a simplewhile-language.

This previous work poses many limitations on hardware models in order to overapproxi-

mate and requires re-analysis of the body of a function at each function call.

The most important contributions of this chapter are:

— a dependent type system that, for the analysed code, captures both energy consump-

tion and the effect on the state of hardware components.

— through the use of energy type signatures the system is compositional, making it

more suitable for larger systems. By using this compositionality we can support

recursion in the ECA language.

— thedependent type systemderivesprecise information. This in contrast to the energy

aware Hoare logic in chapter 5, which uses overapproximations for conditionals and

loops.
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— compared with chapter 5 many restrictions on component models and component

functions are now removed. Effectively all that is required now, is that the power

consumption of a device can be modelled by a finite state machine in which states

correspond to level of power draw and state transitions correspond to changes of

power draw level. State transitions occur due to (external) calls of component func-

tions. The state transition itself may consume a certain amount of energy. This

makes the system very suited for control software for various devices where the

actuators are performed directly without the need for synchronisation.

— the dependently typed energy signatures can form a solid, modular basis for various

approximations with various different static or dynamic techniques.

— the artificial environment r that was introduced in chapter 5 to incorporate user

verified properties, is not needed in this dependent type setting. Using dependent

types, such properties can be incorporated in a more elegant way.

We start with a discussion of the applications in section 6.1 to define the scope. Using

that scope, the considered language and its (energy) semantics in described in section 6.2.

Next, an basic dependent type system is introduced in section 6.3 to build the energy type

system on. Continuing in section 6.4, we extend the basic type system into an energy

type system. This extended type system derives from each statement and expression

both an energy bound and a component state effect. To demonstrate the type system, we

analyse and compare two example programs in section 6.5. We conclude this chapter

with future work, and a discussion.

6.1 Applications

The foreseen application area of the proposed analysis is predicting the energy consump-

tion of control systems, in which software controls a number of peripherals. This includes

control systems in factories, cars, airplanes, smart-home applications, etc. Examples of

hardware components range from a disk drive or sound card, to heaters, engines, mo-

tors and urban lighting. The proposed analysis can predict the energy consumption of

multiple algorithms and/or different hardware configurations. The choice of algorithm or

configuration may depend on the expected workload. This makes the proposed technique

useful for both programmers and operators.
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The used hardware models can be abstracted, making clear the relative differences

between component-methods and component-states. Thismakes the proposed approach

still applicable even when no final hardware component is available for basing the hard-

ware model on, or this model is not yet created. We observe that many decisions are

based on relative properties between systems.

The type system derives precise types, in a syntax-directed manner. Soundness and

completeness can be proven by induction on the syntax structure of the program. This

proof is similar to the proof in [BvG-20], but more straightforward due to the absence of

approximations.

There are certain properties hardware models must satisfy. Foremost, the models are

discrete. Implicit state changes by hardware components cannot be expressed. Energy

consumption that gradually increases or decreases over time can therefore not be mod-

elled directly. However, discrete approximations may be used. Compared to the Hoare

logic in 5, many restrictions are not present in the proposed type system. Foremost, this

type system does not have the limitation that state change cannot depend on the argu-

ment of a component function nor that the return value of a component function cannot

depend on the state of the component. More realistic models can therefore be used.

The quality of the derived energy expressions is directly related to the quality of the used

hardware models. We envision that, in many cases, relative consumption information is

sufficient to support design decisions. Depending on the goal, it is possible to use multiple

models for one and the same hardware component. For instance, if the hardware model is

constructed as a worst-case model, the type system will produce worst-case information.

Similarly one can use average-case models to derive average case information.

6.2 Hybrid modelling: language and semantics

Modern electronic systems typically consist of both hardware and software. As we aim to

analyse energy consumption of such hybrid systems, we consider hardware and software

in a single modelling framework. Software plays a central role, controlling various hard-

ware components. Our analysis works on a simple, special purpose language, called ECA.

This language has a special construct for calling functions on hardware components. It
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hfun-defi ::= ‘function’ hfunction-namei ‘(’ hvari ‘)’ ‘begin’ hexpri ‘end’

hbin-opi ::= ‘+’ | ‘-’ | ‘*’ | ‘>’ | ‘>=’ | ‘==’ | ‘!=’ | ‘<=’ | ‘<’ | ‘and’ | ‘or’

hexpri ::= hconsti | hvari
| hvari ‘:=’ hexpri | hexpri hbin-opi hexpri
| hcomponenti ‘.’ hfunction-namei ‘(’ hexpri ‘)’
| hfunction-namei ‘(’ hexpri ‘)’
| hstmti ‘,’ hexpri

hstmti ::= ‘skip’ | hstmti ‘;’ hstmti | hexpri
| ‘if’ hexpri ‘then’ hstmti ‘else’ hstmti ‘end’
| ‘repeat’ hexpri ‘begin’ hstmti ‘end’
| hfun-defi hstmti
listing 6.1 Grammar for the ECA language, with the repeat construct.

is assumed that models exist for all the used hardware components, which model the

energy consumption characteristics of these components, as well as the state changes

induced by and return values of component function calls.

The ECA language is described in section 6.2.1. Modelling of hardware components is dis-

cussed in section 6.2.2. Energy-aware semantics forECAarediscussed in section6.2.4.

6.2.1 ECA language

The grammar for the ECA language is defined in listing 6.1. We presume there is a

way to differentiate between identifiers that represents variables hvari, function names

hfunction-namei, components hcomponenti, and constants hconsti.

The only supported type in the ECA language is a signed integer. There are no explicit

booleans. The value 0 is handled as false, any other value is handled as true. The absence

of global variables and the by-value passing of variables to functions imply that functions

do not have side-effects on the program state. Functions are statically scoped. Unlike the

previous chapter, recursion is supported.

The language has an explicit construct for operations onhardware components (e.g.mem-

ory, storage or network devices). This allows us to reason about components in a straight-

forward manner. Functions on components have a single parameter and always return a

value. The notation C. f refers to a function f() operating on a component C.
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The language supports a repeat construct, which makes the bound an obvious part of the

loop and removes the need for evaluating the loop guard with every iteration (as with a

while). The dlangrepeat is used for presentation purposes, without loss of generality, since

the more commonly used while has the same expressive power.

A typical (predictive recursive descent) parser of this language is in the LL(2) class of

parsers, with a small second pass. This second pass is needed, to avoid a possible infinite

lookahead that is needed to differentiate between expressions and statements. During

the first phase expressions and statements are combined as the same construct. The

small post processing step differentiates between the two. This way the language can

still be efficiently parsed in a simple manner.

6.2.2 Hardware component modelling

In order to reason about hybrid systems, we need to model hardware components. A

component model consists of a component state and a set of component functions which

operate on the component state. A component model must capture the behaviour of the

hardware component with respect to energy consumption. Component models are used

to derive dependent types signifying the energy consumption of the modelled hybrid

system. The model can be based on measurements or detailed hardware specifications.

Alternatively, a generic component model might be used (e.g. for a generic hard disk

drive).

A component state is a collection of variables of any type. They can signify e.g. that the

component is on, off, or in stand-by. A component function is modelled by two functions:

rv

f

which produces the return value, and d
f

which updates the (component) state. A

component can have multiple component functions. Any state change in components

can only occur during a component function call and therefore is made explicit in the

source code.

To model energy consumption, each component has a power draw, which depends on

the component state. The function f in the component model maps the component state

to a power draw. The result of this function is used to calculate time-dependent energy

consumption.
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(sConst)
Ds ` hc, s, Gi e�! hZ(c), s, Gi

(sVar)
Ds ` hx, s, Gi e�! hs(x), s, Gi

Ds ` he
1

, s, Gi e�! hn, s0 , G0 i Ds ` he
2

, s0 , G0 i e�! hm, s00 , G00 i
(sBinOp)

Ds ` he
1

� e

2

, s, Gi e�! hn � m, s00 , G00 i

Ds ` he
1

, s, Gi e�! hn, s0 , G0 i
(sAssign)

Ds ` hx := e

1

, s, Gi e�! hn, s0 [x  n], G0 i

Ds ` he
1

, s, Gi e�! ha, s0 , G0 i
(sCmp)

Ds

, C. f =(d
f

, rv

f

) ` hC. f (e
1

), s, Gi e�! hrv

f

(G0(C), a), s0 , G0 [C  d
f
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, f =(e
f
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f

, [x 7! a], G0 i e�! hn, s00 , G00 i
(sCall)
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, f =(e
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(sExprConcat)

Ds ` hS
1
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(sSkip)
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2

, s0 , G0 i s�! hs00 , G00 i
(sStmtConcat)

Ds ` hS
1

;S
2

, s, Gi s�! hs00 , G00 i

Ds ` he
1

, s, Gi e�! h0, s0 , G0 i Ds ` hS
2

, s0 , G0 i s�! hs00 , G00 i
(sIf-False)

Ds ` hif e

1

then S

1

else S

2

end, s, Gi s�! hs00 , G00 i

Ds ` he
1

, s, Gi e�! hn, s0 , G0 i n 6= 0 Ds ` hS
1

, s0 , G0 i s�! hs00 , G00 i
(sIf-True)

Ds ` hif e

1

then S

1

else S

2

end, s, Gi s�! hs00 , G00 i
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end S
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figure 6.2 Regular semantics. Note that c stands for a hconsti term, x for a hvari term, e for
a hexpri term, S for a hstmti term,� for a hbin-opi, f for a hfunction-namei, and
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6.2.3 Regular semantics

We use a fairly standard semantics for our ECA language, to which we add energy con-

sumption semantics later on. The semantics are listed in figure 6.2. We explain the used

notation below.

The function environment Ds (s for semantics) contains both the aforementioned com-

ponent function signatures (for now a pair of a state transition function d and a return

value function rv) and function definitions (pairs of function body e and parameter x).

Component states are collected in the component environment G. We use the following

notation for substitution: s[x  a]. With [x 7! a], we construct a new environment in

which x has the value a. We differentiate two kinds of reductions. Expressions reduce

from a triple of the expression, program state s and component state environment G, to a

triple of a value, a new program state and a new component state environment, with the
e�! operator. As statements do not result in a value, they reduce from a triple of the state-

ment, s, and G to a pair of a new program state and a new component state environment,

with the s�! operator.

There are three rules for the repeat loop. The one labelled esRepeat calculates the value

of expression e, i.e. the number of iterations for the loop. The esRepeatLoop rule then

handles each iteration, until the number of remaining iterations is 0. At that point, the

evaluation of the loop is ended with the esRepeatBase rule. To differentiate it from the

normal evaluation rules we use a tuple of the statement to be evaluated and the number

of times the statement should be evaluated.

6.2.4 Energy-aware semantics

The regular semantics are extended to include energy consumed by the components

while running the program. To this end both the reduction functions e�! and s�! are

extended so they also return the energy consumed.

Components consume energy in two distinct ways. A component function might directly

induce a time-independent energy consumption. Apart from that, it can change the state

of the component, affecting its time-dependent energy consumption. To be able to calcu-

late time-dependent consumption, we need a basic timing analysis. Each construct in the

language therefore has an associated execution time, for instance tif. Every component
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function f has a constant time consumption t

f

that is part of its function signature, along

with d
f

and rv

f

, as described in section 6.2.2. The pair stored in Des (es for energy seman-

tics) for each component function f is extended to also contain the execution time t

f

,

and an incidental energy consumption E

f

. The full energy-aware semantics are given in

figure 6.3.

A significant difference from the semantics as used in chapter 5 is the absence of global

time. As at each step the power consumption is calculated (by calculating the power draw

of each component times the duration), global timestamps are not needed.

As our system allows for a fixed number of components, known before the analysis is per-

formed, we assume a global function F is present. This F sums the power draw for each

known component, by applying the component power draw function f to the component

state as contained in G.

6.3 Basic dependent type system

Before we can introduce a dependent type system that can be used to derive energy

consumption expressions of an ECA program, we need to define a standard dependent

type system to reason about variable values. We separately introduce this for presentation

purposes.

Note that, instead of direct expressions over input variables, we derive functions that

calculate a value based on the concrete values of the input variables. This allows us to

combine these functions using function composition and to reuse them as signatures for

methods and parts of the code.

We will start with a series of definitions. A program state environment called PState is

a function from a variable identifier to a value, i.e. PState : Var 7! Value. Values are

of type Z, like the data type in ECA. A component state CState is collection of states of

components that the component function can work on. A value function is a function that,

given a (program and component) state, will yield a concrete value, i.e. its signature is

PState⇥CState ! Value. A state update function is a function from PState⇥CState to

PState⇥CState. Such a function expresses changes to the state, caused by the execution

of statements or expressions.
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(btConst)
Dv ` c : h constN (c) , id i (btVar)

Dv ` x : h lookup

x

, id i

Dv ` e

1

: hV
1

, S
1

i Dv ` e

2

: hV
2

, S
2

i
(btBinOp)

Dv ` e

1

� e

2

: hV
1

� (S
1

>>> V

2

), S
1

>>> S
2

i
Dv ` e : hV, Si

(btAssign)
Dv ` x := e : hV, S >>> assign

x

(V)i
Dv ` e : hV

ex

, S
ex

i
(btCmp)

Dv

, C. f = (x

f

, V

f

, S
f

) `
C. f (e) : h[x

f

7! V

ex

, S
ex

] >>> V

f

, split(S
ex

, [x
f

7! V

ex

, S
ex

] >>> S
f

)i

Dv

, f =(x

f

, V

f

, S
f

) ` e : hV
ex

, S
ex

i
(btCall)

Dv

, f =(x

f

, V

f

, S
f

) `
f (e) : h[x

f

7! V

ex

, S
ex

] >>> subst(V
f

, rec

V

( f )), split(S
ex

, [x
f

7! V

ex

, S
ex

] >>> subst(S
f

, recS( f )))i

Dv

, f =(x

f

) ` e : hV
ex

, S
ex

i
(btRec)

Dv

, f =(x

f

) `
f (e) : h[x

f

7! V

ex

, S
ex

] >>> rec

V

( f ), split(S
ex

, [x
f

7! V

ex

, S
ex

] >>> recS( f ))i

Dv ` S : S
st

Dv ` e : hV
ex

, S
ex

i
(btExprConcat)

Dv ` S,e : hS
st

>>> V

ex

, S
st

>>> S
ex

i
Dv ` e : hV, Si

(btExprAsStmt)
Dv ` e : S

(btSkip)
Dv ` skip : id

Dv ` S

1

: S
1

Dv ` S

2

: S
2 (btStmtConcat)

Dv ` S

1

;S
2

: S
1

>>> S
2

Dv ` e : hV
ex

, S
ex

i Dv ` S

t

: S
t

Dv ` S

f

: S
f

(btIf)
Dv ` if e then S

t

else S

f

end : if(V
ex

, S
ex

>>> S
t

, S
ex

>>> S
f

)

Dv ` e : hV
ex

, S
ex

i Dv ` S : S
st

(btRepeat)
Dv ` repeat e begin S end : repeat

v(V
ex

, S
ex

, S
st

)

Dv

, f =(x) ` e : hV
ex

, S
ex

i Dv

, f =(x, V

ex

, S
ex

) ` S : S
st

(btFuncDef)
Dv ` function f (x) begin e end S : S

st

figure 6.4 Basic dependent type system. For expressions it yields a tuple of a value function
and a state update function. For statements the type system only derives a state
update function. Note that c stands for a hconsti term, x for a hvari term, e for a
hexpri term, S for a hstmti term,� for a hbin-opi, f for a hfunction-namei, and C

for a hcomponenti.
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To make the typing rules more clear, we explain a number of rules in more detail. The full

typing rules can be found in figure 6.4. We will start with the variable access rule:

(btVar)
Dv ` x : h lookup

x

, id i

All rules for evaluation of an expression return a tuple of a function returning the value

of the expression when evaluated and a function that modifies the program state and

component state. The former one captures the value, i.e. it is a state value function. The

latter one captures the effect, i.e. it is a state update function. To access a variable, we

return the lookup function (defined below), which is parametrised by the variable that

is returned. Variable access does not affect the state, hence for that part the identity

function id is returned.

The lookup function that the btVar rule depends on is defined as follows:

lookup

x

: PState⇥CState! Value

lookup

x

(ps, cs) = ps(x)

Likewise we need to define a function for the btConst rule, dealing with constants:

const

x

: PState⇥CState! Value

const

x

(ps, cs) = x

Before we can continue we need to introduce the >>> operator. We can compose state

update functions with the >>> operator. Note that the composition is reversed with

respect to standard mathematical function composition, in order to maintain the order of

program execution. For now, T is PState⇥CState. The >>> operator can be interpreted

as: first apply the effect of the left operand, then execute the right operand on the resulting

state. The >>> operator is defined as:

>>> : (PState⇥CState! PState⇥CState)⇥ (PState⇥CState! T)

! (PState⇥CState! T)

(A >>> B)(ps, cs) = B(ps

0
, cs

0) where (ps

0
, cs

0) = A(ps, cs)
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Moving on, we can explain the assignment rule below, which assigns a value expressed by

expression e to variable x. As an assignment does not modify the value of the expression,

the part capturing the value is propagated from the rule deriving the type of x. More

interesting is the effect that captures the state change when evaluating the rule. This

consists of first applying the state change Sv of evaluating the expression e and thereafter

replacing the variable x with the result of e (as done by the assign function, defined below).

This effect is reached with the >>> operator:

Dv ` e : hV, Svi
(btAssign)

Dv ` x := e : hV, Sv >>> assign

x

(V)i

The operator for assigning a new value to a program variable in the type environment:

assign

x

: (PState⇥CState! Value)! (PState⇥CState! PState⇥CState)

assign

x

(V)(ps, cs) = (ps[x 7! V(ps, cs)], cs)

In order to support binary operations we need to define a higher order operator � where

� 2 {+,�,⇥,÷, . . .}. It evaluates the two arguments and combines the results using�.

For now, T is Value.

� : (PState⇥CState! T)⇥ (PState⇥CState! T)

! (PState⇥CState! T)

(A � B)(ps, cs) = A(ps, cs)� B(ps, cs)

The binary operation rule can now be introduced. The pattern used in the rule reoccurs

multiple times if two expressions (or statements) need to be combined. First the value

function representing the first expression, V

1

, is evaluated and is combined with the re-

sult representing the second expression, V

2

, e.g. using the � operator. But this second

value function needs to be evaluated in the correct context (state): evaluating the first

expression can have side-effects and therefore change the program and component state,

and influence the outcome of a value function (as the expression can include function

calls, assignments, component function calls, etc). To evaluate V

2

in the correct context

we first must apply the side effects of the first expressions using a state update func-

tion S
1

, expressed as S
1

>>> V

2

. We can express the value function that represents the

combination of two expressions as V

1

� (S
1

>>> V

2

). The complete definition:
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Dv ` e

1

: hV
1

, S
1

i Dv ` e

2

: hV
2

, S
2

i
(btBinOp)

Dv ` e

1

� e

2

: hV
1

� (S
1

>>> V

2

), S
1

>>> S
2

i

Without explaining the rule indetail, we introduce the conditional operator. The ifoperator

captures the behaviour of a conditional inside the dependent type. The first argument

denotes a function expressing the value of the conditional. For now, T stands for a tuple

PState⇥CState.

if : (PState⇥CState! Value)⇥ (PState⇥CState! T)

⇥ (PState⇥CState! T)

! (PState⇥CState! T)

if(c, then, else)(ps, cs) =

8
<

:
then(ps, cs) if c(ps, cs) 6= 0

else(ps, cs) if c(ps, cs) = 0

The btRepeat rule can be used to illustrate a more complex rule. The effect of repeat is

the composition of evaluating the bound and evaluating the body a number of times. The

latter is captured in a repeat function that is defined below. The resulting effect can be

defined as follows:

Dv ` e : hV
ex

, Sv

ex

i Dv ` S : Sv

st (btRepeat)
Dv ` repeat e begin S end : repeat

v(V
ex

, Sv

ex

, Sv

st

)

The repeat operator needed in the btRepeat rule captures the behaviour of a loop inside

the dependent type. It gets a function that calculates the number of iterations from a type

environment, as well as an environment update function for the loop body, and results in

an environment update function that represents the effects of the entire loop. Because

the value of the bound must be evaluated in the context before the effect is evaluated, we

need an extra function:
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repeat

v

: (PState⇥CState! Value)⇥ (PState⇥CState! PState⇥CState)

⇥ (PState⇥CState! PState⇥CState)

! (PState⇥CState! PState⇥CState)

repeat

v(c, start, body)(ps, cs) = repeat

0v(c(ps, cs), body, ps

0
, cs

0)

where (ps

0
, cs

0) = start(ps, cs)

The actual recursion is in the repeat

0v function, defined as:

repeat

0v
: Z⇥ (PState⇥CState! PState⇥CState)⇥ PState⇥CState

! PState⇥CState

repeat

0v(n, body, ps, cs) =

8
>>><

>>>:

(ps, cs) if n  0

repeat

0v(n� 1, body, ps

0
, cs

0) if n > 0

where (ps

0
, cs

0) = body(ps, cs)

In order to explain the component call rule btCmp and function call rule btCall, we need an

operator for higher order scoping. This operator creates a new program environment, but

retains the component state. It can even update the component state given a S function,

which is needed because this S needs to be evaluated using the original program state.

The definition is as follows:

[x 7! V, S] : Var⇥(PState⇥CState! Value)

⇥ (PState⇥CState! PState⇥CState)

! (PState⇥CState! PState⇥CState)

[x 7! V, S](ps, cs) = ([x 7! V(ps, cs)], cs

0) where (_, cs

0) = S(ps, cs)

We also need an additional operator split, because the program state is isolated but the

component state is not. The split function forks the evaluation into two state update

functions and joins the results together. The first argument defines the resulting program

state, the second defines the resulting component state.
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split : (PState⇥CState! PState⇥CState)

⇥ (PState⇥CState! PState⇥CState)

! (PState⇥CState! PState⇥CState)

split(A, B)(ps, cs) = (ps

0
, cs

0)

where (ps

0
, _) = A(ps, cs) and (_, cs

0) = B(ps, cs)

The component functions and normal functions are stored in the environment Dv. For

each function, both component and language ones, a triple is stored, which states the

variable name of the argument, a value function that represents the return value, and

a state update function that represents the effect on the state of executing the called

function. We assume the component function calls are already in the environment. The

component function call, listed below, can now be easily expressed:

Dv ` e : hV
ex

, S
ex

i
(btCmp)

Dv

, C. f = (x

f

, V

f

, S
f

) `
C. f (e) : h[x

f

7! V

ex

, S
ex

] >>> V

f

, split(S
ex

, [x
f

7! V

ex

, S
ex

] >>> S
f

)i

Like the component call, we can define the function call. However, to support recursion,

a special subst higher order function is introduced to unfold the function definition once,

just before it is executed on a concrete environment. The subst is defined as:

subst : (PState⇥CState! T)

⇥ (PState⇥CState! T)

! (PState⇥CState! T)

subst(T, R)(ps, cs) = (T[R subst(T, R)])(ps, cs)

A recursive call is represented by the abstract higher order function rec, a sort of place-

holder for applying substitution on. There are multiple variants, depending on the result-

ing type, with the rec

V

one for a resulting value function, and the recS one for a resulting

state update function.

rec

V

: PState⇥CState! Value

recS : PState⇥CState! PState⇥CState
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If there is a function body B computing a Value with for example rec

V

in it, the value

of the recursive function can be computed by executing subst(B, rec

V

). As long as the

original function terminates on the given input environment, this analysis will terminate

on the same input. This is the essential difference from the btCmp rule, as can be seen in

the definition of btCall below:

Dv

, f =(x

f

, V

f

, S
f

) ` e : hV
ex

, S
ex

i
(btCall)

Dv

, f =(x

f

, V

f

, S
f

) ` f (e) : h [x
f

7! V

ex

, S
ex

] >>> subst(V
f

, rec

V

( f )),

split(S
ex

, [x
f

7! V

ex

, S
ex

] >>> subst(S
f

, recS( f ))) i

For each language function, a definition is placed in Dv by means of the btFuncDef rule.

The body of the function is analysed, and recursive calls to the function are replaced with

rec placeholders using the btRec rule. To support this, the function definition rule inserts

a special definition in the function environment Dv , on which the btRec rule works. This

leads to the following definition of btFuncDef:

Dv

, f =(x) ` e : hV
ex

, S
ex

i Dv

, f =(x, V

ex

, S
ex

) ` S : S
st

(btFuncDef)
Dv ` function f (x) begin e end S : S

st

The placeholders are inserted using the btRec rule. This rule analyse the expression used

as argument, like the component and function call rules do. The definition is in fact very

similar to those definitions:

Dv

, f =(x

f

) ` e : hV
ex

, S
ex

i
(btRec)

Dv

, f =(x

f

) `
f (e) : h[x

f

7! V

ex

, S
ex

] >>> rec

V

( f ), split(S
ex

, [x
f

7! V

ex

, S
ex

] >>> recS( f ))i

6.4 Energy-aware dependent type system

In this section, we present the complete type system, which can be used to determine the

energy consumption of ECA programs. The type system presented here should be viewed

as an extension of the basic type system in section 6.3. Each time the three dot symbol . . .

is used, that part of the rule is unchangedwith respect to the previous section. An element

is added to each tuple signifying the energy cost. Expressions now yield a triple, state-

ments yield a pair. The added element is a function that, when evaluated on a concrete

environment and component state, results in a concrete energy consumption.
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An important energy judgment is the td

ec function. To account for time-dependent energy

usage, we need this function which calculates the energy usage of all the components

over a certain time period. The td

ec function is a higher order function that takes the time

it accounts for as argument. It results in a function that is just like the other function

calculating energy bounds: taking two arguments, a PState and a CState. The definition

is given below, which depends on the power draw function f that maps a component

state to an energy consumption (as explained in section 6.2.2):

td

ec

: Time! (PState⇥CState! EnergyCost)

td

ec(t)(ps, cs) = t · Â
e2cs

f(e)

We can use this td

ec function to define a rule for variable lookup, as the only energy cost

that is induced by variable access is the energy used by all components for the duration

of the variable access. This is expressed in the etVar rule, in which the dots correspond

to figure 6.3 (the first position is lookup

x

, the second id):

(etVar)
Dec ` x : h..., ..., td

ec(tvar)i

Using the + operator (introduced as �, with type T equal to EnergyCost), we can define

the energy costs of a binary operation. Although the rule looks complex, it uses pattern

introduced in section 6.3 for the binary operation. Basically, the energy cost of a binary

operation is the cost of evaluating the operands, plus the cost of the binary operation

itself. The binary operation itself only has an associated run-time and by this means

induces energy consumption of components. This is expressed by the td

ec(t�) function.

For the binary operation rule we need to apply this pattern twice, in a nested manner,

as the time-dependent function must be evaluated in the context after evaluating both

arguments. The (three) energy consumptions are added by+. One can express the binary

operation rule as:

Dec ` e

1

: h..., S
1

, E

1

i Dec ` e

2

: h..., S
2

, E

2

i
(etBinOp)

Dec ` e

1

� e

2

: h..., ..., E

1

+ (S
1

>>> (E

2

+ (S
2

>>> td

ec(t�))))i

Next is the component function call. The energy cost of a component function call con-

sists of the time taken to execute this function and of explicit energy cost attributed to

this call. The environment Dec is extended for each component function C. f with two

elements: an energy judgment E

f

0 and a run-time t

f

0 . Time independent energy usage
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(etConst)
Dec ` c : h..., ..., td

ec(tconst)i
(etVar)

Dec ` x : h..., ..., td

ec(tvar)i

Dec ` e

1

: h..., S
1

, E

1

i Dec ` e

2

: h..., S
2

, E

2

i
(etBinOp)

Dec ` e

1

� e

2

: h..., ..., E

1

+ (S
1

>>> (E

2

+ (S
2

>>> td

ec(t�))))i
Dec ` e : h..., S, Ei

(etAssign)
Dec ` x := e : h..., ..., E + (S >>> td

ec(tassign))i
Dec ` e : hV

ex

, S
ex

, E

ex

i
(etCmp)

Dec

, C. f = (x

f

, ... , ... , E

f

, t

f

) `
C. f (e) : h..., ..., E

ex

+ ([x
f

7! V

ex

, S
ex

] >>> (tdec(t
f

) + E

f

))i

Dec

, f =(x

f

, ... , ... , E

f

) ` e : hV
ex

, S
ex

, E

ex

i
(etCall)

Dec

, f =(x

f

, ... , ... , E

f

) ` f (e) : h..., ..., E

ex

+ ([x
f

7! V

ex

, S
ex

] >>> subst(E

f

, rec

E

( f )))i

Dec

, f =(x

f

) ` e : hV
ex

, S
ex

, E

ex

i
(etRec)

Dec

, f =(x

f

) ` f (e) : h..., ..., [x
f

7! V

ex

, S
ex

] >>> rec

E

( f )i

Dec ` S : hS
st

, E

st

i Dec ` e : h..., ..., E

ex

i
(etExprConcat)

Dec ` S,e : h..., ..., E

st

+ (S
st

>>> E

ex

)i
Dec ` e : h..., S, Ei

(etExprAsStmt)
Dec ` e : hS, Ei

(etSkip)
Dec ` skip : h ... , zero i

Dec ` S

1

: hS
1

, E

1

i Dec ` S

2

: h ... , E

2

i
(etStmtConcat)

Dec ` S

1

;S
2

: h ... , E

1

+ (S
1

>>> E

2

)i
Dec ` e : hV

ex

, S
ex

, E

ex

i Dec ` S

t

: h ... , E

t

i Dec ` S

f

: h ... , E

f

i
(etIf)

Dec ` if e then S

t

else S

f

end :

h ... , E

ex

+ (S
ex

>>> td

ec(tif)) + if(V
ex

, S
ex

>>> E

t

, S
ex

>>> E

f

)i

Dec ` e : hV
ex

, S
ex

, E

ex

i Dec ` S : hS
st

, E

st

i
(etRepeat)

Dec ` repeat e begin S end : h ... , E

ex

+ repeat

ec(V
ex

, S
ex

, E

st

, S
st

)i
Dec

, f =(x) ` e : hV
ex

, S
ex

, E

ex

i Dec

, f =(x, V

ex

, S
ex

, E

ex

) ` S : hS
st

, E

st

i
(etFuncDef)

Dec ` function f (x) begin e end S : hE
st

, S
st

i

figure 6.5 Energy-aware dependent type system. It adds an element to the resulting tuples
of figure 6.4 signifying the energy consumption of executing the statement or ex-
pression. Note that c stands for a hconsti term, x for a hvari term, e for a hexpri
term, S for a hstmti term, � for a hbin-opi, f for a hfunction-namei, and C for a
hcomponenti.
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can be encoded into this E

f

0 function. For functions defined in the language the derived

energy judgement is inserted into the environment. There is no need for these functions

for an explicit run-time as this is part of the derived energy judgement. Using the patterns

described above the component function call is expressed as:

Dec ` e : hV
ex

, S
ex

, E

ex

i
(etCmp)

Dec

, C. f = (x

f

, ... , ... , E

f

, t

f

) `
C. f (e) : h..., ..., E

ex

+ ([x
f

7! V

ex

, S
ex

] >>> (tdec(t
f

) + E

f

))i

Calculating the energy cost of the repeat loop can be calculated by evaluating an energy

cost function for each loop iteration (in the right context). We therefore have to modify

the repeat

v function to yield an energy cost, resulting in a new function definition:

repeat

ec

: (PState⇥CState! Value)⇥ (PState⇥CState! PState⇥CState)

⇥ (PState⇥CState! EnergyCost)⇥ (PState⇥CState! PState⇥CState)

! (PState⇥CState! EnergyCost)

repeat

ec(c, start, cost, body)(ps, cs) =

repeat

0ec(c(ps, cs), cost, body, ps

0
, cs

0) where (ps

0
, cs

0) = start(ps, cs)

repeat

0ec

: Z⇥ (PState⇥CState! EnergyCost)

⇥ (PState⇥CState! PState⇥CState)

⇥ PState⇥CState! EnergyCost

repeat

0ec(n, cost, body, ps, cs) =

8
>>>>>><

>>>>>>:

0 if n  0

repeat

0ec(n� 1, cost, body, ps

0
, cs

0) if n > 0

+ cost(ps, cs)

where (ps

0
, cs

0) = body(ps, cs)

Using this repeat

ec function, the definition of the rule for the repeat is analogous to the

previous definition.

Dec ` e : hV
ex

, S
ex

, E

ex

i Dec ` S : hS
st

, E

st

i
(etRepeat)

Dec ` repeat e begin S end : h ... , E

ex

+ repeat

ec(V
ex

, S
ex

, E

st

, S
st

)i
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6.5 Example

In this section, we demonstrate our analysis on two example programs, comparing their

energy usage. Each ECA language construct has an associated execution time bound.

These execution times are used in calculating the energy consumption that is time-

dependent. Another source of energy consumption in our modelling is time-independent

energy usage, which can also be associated with any ECA construct. Adding these two

sources together yields the energy consumption.

Consider the example programs in figures 6.6 and 6.7. Both programs play #n beeps at #hz

Hz (#n and #hz are input variables). The effect of the first statement is starting a compo-

nent named SoundSystem, which models a sound card (actually, functions have a single

parameter; this parameter is omitted here as it is not used). After enabling component

SoundSystem, beeps are played by calling the function playBeepAtHz() on SoundSystem.

Eventually the device is switched off. The sound system has two states, off < on.

For this example, we will assume a start state in which the component is in the off state

and an input n 2 Z. Furthermore, the SoundSystem.playBeepAtHz() function has a time-

independent energy cost of i, and a call to this function has an execution time of t seconds.

The System.sleep() has no associated (time-independent) energy usage, and takes s

seconds to complete. The other component function calls and the loop construct are

assumed to have zero execution time and zero (time-independent) energy consumption.

While switched on, the component has a power draw of u J/s (or W).

We will start with an intuitive explanation of the energy consumption of the program in

figure 6.6, then continue by applying the analysis presented in this paper and comparing

these results. Quickly calculating the execution time of the program yields a result of

n · (t + s) seconds. As the component is switched on at the start and switched off at the

1 SoundSystem.on();
2 repeat #n begin
3 SoundSystem.playBeepAtHz(#hz);
4 System.sleep()
5 end;
6 SoundSystem.off()

listing 6.6 Example program.

1 repeat #n begin
2 SoundSystem.on();
3 SoundSystem.playBeepAtHz(#hz);
4 SoundSystem.off();
5 System.sleep()
6 end

listing 6.7 Alternative program.
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end of the program, the time-dependent energy consumption is n · (t + s) · u. The time-

independent energy usage is equal to the number of calls to transmit, thus n · i, resulting

in an energy consumption of n · (i + (t + s) · u) J.

Now, we will show the results from our analysis. Applying the energy-aware dependent

typing rules ultimately yields an energy consumption function and a state update func-

tion. Both take a typing and a component state environment as input. The first rule to

apply is etStmtConcat, with the SoundSystem.on() call as S

1

and the remainder of the pro-

gram as S

2

. The effect of the component function call, calculated with etCmp, is that the

component state is increased (as this signifies a higher time-dependent energy usage).

This effect is represented in the component state update function dSoundSystem.on. Since

we have assumed that the call costs zero time and has no time-independent energy cost,

the resulting energy consumption function is the identity function id.

Wecannowanalyse the loopwith the etRepeat rule. Wefirst derive the typeof expression e,

which determines the number of iterations of the loop. As the expression is a simple

variable access, which we assumed not to have any associated costs, the program state

and the component states are not touched. For the result of the expression the type

system derives lookup#n as V

ex

in the rule, which is (a look-up of) n. This is a function

that, when given an input environment, calculates a number in Z which signifies the

number of iterations.

Moving on, we analyse the body of the loop. This means we again apply the etCmp rule

to determine the resource consumption of the call to SoundSystem.playBeepAtHz(). The

call takes time t. Its energy consumption is u if the component is switched on. For ease of

presentation, the component states {off,on} are represented as a variable e 2 {0,1}. The

time-independent energy usage of the loop body is i. The energy consumption function

E

st

of the body is i + e · (t + s) · u J.

We can now combine the results of the analysis of the number of iterations and the re-

source consumption of the loop body (E
st

) to calculate the consumption of the entire

loop. Basically, the resource consumption of the loop E

st

is multiplied by the number

of iterations V

ex

. This is done in the function repeat

ec(V
ex

, S
ex

, E

st

, S
st

), in this case

repeat

ec(lookup#n, id, E

st

, id). Evaluation after the state update function (corresponding

to the SoundSystem.on() call), which will update the state of the sound system to on. Eval-

uating the sequence of both expressions on the start state results in n · (i + (t + s) · u) J,

signifying the energy consumption of the code fragment.
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Analysing the code fragment listed in figure 6.7 will result in a type equivalent to n · (i +
t · u) J, as the cost of switching the sound system on or off is zero. Given the energy

characteristics of the sound system, the second code fragment will have a lower energy

consumption. Depending on the realistic characteristics (switching a device on or off

normally takes time and energy), a realistic trade-off can be made.

6.6 Related work

Much of the research that has been devoted to producing green software is focussed on a

very abstract level, defining programming anddesign patterns forwriting energy-efficient

code [PBL13; Alb10; Sax10; Ran10; NW01; Siv+02]. In [Bri+13], a modular design for energy-

aware software is presented that is based on a series of rules on UML schemes. In [Coh+12]

and [Sam+11], a program is divided into ‘phases’ describing similar behaviour. Based on

the behaviour of the software, design level optimisations are proposed to achieve lower

energy consumption.

Contrary to the abstract levels of the aforementioned papers, there is also research on

producing green software on a very low, hardware-specific level [JML06; Ker+13a]. Such

analysis methods work on specific architectures ([JML06] on SimpleScalar, [Ker+13a] on

XMOS ISA-level models), while our approach is hardware-parametric.

Furthermore, there is research on building compilers that optimize code for energy-

efficiency. In [Zhu+09], the implementation of several energy optimisation methods,

including dynamic voltage scaling and bit-switching minimisation, into the GCC com-

piler is described and evaluated. Iterative compilation is applied to energy consumption

in [GCB05]. In [Meh+97], a technique is proposed in which register labels are encoded

alternatively to minimise switching costs. This saves an average of 4.25% of energy, with-

out affecting performance. The human-written assembly code for an MP3 decoder is

optimised by hand in [Šim+00], guided by an energy profiling tool based on a proprietary

ARM simulator. In [Zha+03], functional units are disabled to reduce (leakage) energy con-

sumption of a VLIW processor. The same is done for an adaptation of a DEC Alpha 21264

in [YLL06]. Reduced bit-width instruction set architectures are exploited to save energy

in [SD04]. Energy is saved on memory optimisations in [Joo+02; Ver+06; Jon+09; LC03],

while [OYI01; Sap+02] focus on variable-voltage processors.

chapter 6152



6

Sustainability can also be seen as a quality property, as explained in [Lag+15]. A frame-

work calledGreen is presented in [BC10], allowing programmers to approximate expensive

functions and calculate Quality of Service (QoS) statistics. It can thus help leverage a trade-

off between performance and energy consumption on the one hand, and QoS on the

other.

In [Bri+14], Resource-Utilization Models (RUMs) are presented, which are an abstraction of

the resource behaviour of hardware components. The component models in this paper

can be viewed as an instance of a RUM. RUMs can be analysed, e.g. with the model checker

Uppaal, while we use a dedicated dependent type system. A possible future research

direction is to incorporate RUMs into our analysis as component models.

Analyses for consumption of generic resources are built using recurrence relation solv-

ing [Alb+11a], amortised analysis [HAH11], amortisation and separation logic [Atk10] and

a Vienna Development Method style program logic [Asp+07]. The main differences with

our work are that we include an explicit hardware model and a context in the form of

component states. This context enables the inclusion of power-draw that depends on the

state of components..

Several dependently typed programming languages exist, such as Epigram [McB05] and

Agda [BDN09]. The Deputy system, which adds dependent typing to the C language, is

described in [Con+07]. Dependent types are applied to security in [ML10]. Security types

there enforce access control and information flow policies.

6.7 Future work

In future work, we aim to implement this analysis in order to evaluate its suitability for

larger systems and validate practical applicability. We intend to experiment with im-

plementations of various derived approximating analyses in order evaluate which tech-

niques / approximations work best in which context.

A limitation is currently that only a system controlled by one central process (proces-

sor) can be analysed. Modern systems often consists of a network of interacting sys-

tems. Therefore, incorporating interacting systems would increase applicability of the

approach.
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To make the presentation more concise, the subject language can be a first-order strict-

evaluation functional program. This alleviates the need to have a separate basic depen-

dent type system which transform all variables into expressions over input variables.

However, expressions still need to be expressed in terms over input variables.

On the language level the type system is precise, however it does not take into account

optimisations and transformations below the language level. This can be achieved by

analysing the software on a lower level, for example the intermediate representation of a

modern compiler. Another motivation to use such an intermediate representation as the

language that is analysed, is the ability to support (combinations of) many higher level

languages. In this way, programs written in and consisting of multiple languages can be

analysed. It can also account for optimisations (such as common subexpression elimina-

tion, inlining, statically evaluating expressions), which in general reduce the execution

time of the program and therefore impact the time-dependent energy usage (calls with

side effects like component function calls are generally not optimised).

Another future research direction is to expand the supported language that is analysed.

In order to support data types, a size analysis of data types is needed to enable iteration

over data structures, e.g. using techniques similar to [SET13; TSv09].

Compared with the previous chapter, the derived energy consumption is precise instead

of overapproximated. Future research can show if the expressions derived by this type

system can be transformed in such a way that upper bound expressions are derived. To

support this, recursion and loops should be transformed in a Cost Relation System (CRS), a

special case of recurrence relations. Solving thisCRS, one gets a direct formula expressing

the energy consumption of the recursive function or loop. The difficult part is the manner

in which the state update functions are overapproximated. To overapproximate these,

heavy restrictions on component states and component functions were applied in the

previous chapter. However, to work with realistic models of components, less restrictions

should be imposed.

A systematic approach to constructing component models should be looked into. One

can create a model from the specifications given by the vendor. Another way is using

model learning techniques, that creates a finite state model from blackbox testing and

measuring. All the states should have a time dependent energy consumption assigned

to them, and all the transitions should be assigned incidental energy consumption. This

model can be used as a component model.
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6.8 Discussion

The presented type system captures energy bounds for software that is executed on hard-

ware components of which component models are available. It is precise, modular and

elegant, yet retains the hardware-parametric aspect.

The new type system is in itself precise, as there is no overestimation, as opposed to the

Hoare logic in chapter 5, in which the conditional and loop are overestimated. Also the

class of programs that can be studied is larger, as many of the restrictions needed for the

overapproximation are now lifted. However, the same considerations on the validity of

component models apply as mentioned in the discussion of the previous chapter.

The presented hardware-parametric dependent type system with function signatures

enables modularity. While analysing the energy consumption of an electronic system,

instead of re-analysing the body of functions each time a function call is encountered,

the function signature is reused. This same signature is used to support recursion in the

input language.

By using a dependent type system, the resulting approach is elegant and concise, for a

couple of reasons. First, no externally verified properties are needed, like the r in the

previous chapter. The basics of the type system consists of only a small number of higher

order operators. The type system is gradually expanded from a basic type system to an

energy type system, which is easier in the presentation.
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SUMMARY The approaches proposed in this thesis are a first step inmaking the software industry

more aware of the resources they consume, and thereby making them more sustainable. The

presented methods enable programmers to asses the footprint of their software, in terms of

memory and energy.

These approaches show that resource analysis is feasible for different resources, being

memory or energy, in a precise or overapproximated fashion. Most of these approaches

are implemented in prototypes, which demonstrate that these methods can be applied

in a practical setting: the analysis methods require neither a supercomputer nor huge

amounts of resources to use. Implementation details of the software analysed impact the

resource consumption significantly, and this is reflected by the bounds (or types) yielded

by applying these methods.

Results from these analysis methods can be used in different ways, either directly or

indirectly. An indirect way to reduce energy usage is to reduce memory usage, as energy

consumption of current embedded system can for a significant part be attributed to the

energy consumption of the memory system: keeping state, moving data and invalidating

caches. A direct way to use the results is to calculate the conditions that are required for

a piece of software to function, e.g. the amount of memory needed in a system or the the

remaining battery charge required to maintain a working state for the required amount of

time for an operation. Another direct way to use the results is to compare two algorithms.

Depending on the envisioned use, the most energy-efficient algorithm can be selected.

Because we define sustainable software as correct software with a relatively low energy

consumption, this can be used to select the most sustainable algorithm.

Abstraction and encapsulation are often propagated in computer science as a design

philosophy. However, they can hinder the insight of programmers into the behaviour of

their programs. The proposed analysis methods, and more specifically the accompanying

case studies, show that the implementation details have a significant influence on the

derived resource consumption bounds. More layers of abstraction and encapsulation

means less control, and potentially higher resource consumption.

Correctness plays an important role in resource consumption. Erroneously behaving

software and devices running the software can be expensive, in terms of maintenance,

keeping thedevice active or replacing thedevice altogether. If a system is faulty, resources

can be consumed without producing meaningful results. For one of the publications by
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the author, [BvG-3], a correctness bug, hampering processing data, resulted in loss of 3.5

days of work by 800 cores in about 80 cluster nodes. This is equivalent to the energy

consumption of about four households in the Netherlands for the period of one year. Only

after it was too late, the author realised that proper testing should be done before large

deployments. This is one personal example, but there are numerous publicly available

similar mishaps, yet education in these matters is limited. Computer science curricula

could devote more time to increase the awareness of the resources used by the software

industry.

In this thesis, a symbolic execution method that has seen wide application on software,

has been applied to hardware designs to deduce channel types. This shows there are

similarities between hardware and software, although they differ greatly. Software has

often a reduced concurrency level, however, hardware features highly parallel designs.

Nevertheless, the derived channel types can be used to check absence of misrouting, and

is therefore a correctness property.

Scientifically speaking, there is still much work to be done. This includes, but is not

limited to, the following list.

analysing parallel programs for resource usage Parallel programs have many interesting

interactions, for a large part depending on the exact timing. This makes deriving

upper bounds on resource analysis difficult, as the precision suffers. As a result, the

derived bound is often overestimated, making it less useful in practice.

integrate timing in the resource bounds Resourceusage canbeviewedas a time-dependent

function over time. This particular view can give new insight into software’s re-

source usage. Together with timing information on process or thread synchronisa-

tion, and scheduling policies, this opens up the possibility to derive more precise

resource bounds by adding bounds of processes in the periods between synchroni-

sation moments.

making the tools applicable in practice The methods are demonstrated using prototypes

in limited case studies. These methods are yet to be tested on a large scale in a

practical setting, by programmers. Ideally, these are integrated in an IDE, enabling

their use as tools to be used in a daily workflow of a programmer.
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support for programming languages used in practice Not all language constructs used in

the latest iterations of programming languages are supported by the analysis meth-

ods. There will always be a gap between the latest versions of programming lan-

guages and analysismethods, as certain programming constructs hamper the analy-

sis of programs. Just as the use of goto is considered harmful, certain constructs

should be avoided if a programmer wants to keep their code analysable by these

approaches. Other constructs need to be implemented and/or the analysis methods

adjusted to cover these constructs.

symbolic execution for energy Another approach is possible besides the program trans-

formation deriving an exact bound for concrete input and the overapproximation

resulting in symbolic bounds. By using symbolic execution, a result can be obtained

that is both symbolic and precise. Future research should be focussed on using a

different interpretation of the types derived in chapter 6, so that these types can

become a common foundation to base multiple kinds of analyses on.

validation study A validation study, validating the obtained bounds with measurements

from a real setup, should be performed. This is useful to verify the reliability of the

approaches presented in this thesis.

Returning to the societal impact of software as discussed in the introduction, the meth-

ods presented in this thesis can help to verify that software does not negatively impact

society, not even when large quantities of devices are running the software. When de-

velopment teams are able to apply these approaches, they may gain additional insight

in the behaviour of their software and may better assess its energy footprint. Problems

may be spotted early in the design and development process, before mass production and

distribution of the devices. The ability to analyse programs in this way is one essential

step towards making the software industry more sustainable. However, much remains

to be done. The approaches presented in this thesis have, together with contributions of

others in this line of research, potentially a high societal relevance.
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A SUMMARY

Motivation Many aspects of modern life depend on, and are controlled by, software. Al-

most every modern device contains software. Because we heavily depend on these de-

vices, it is important to asses the sustainability of software running on these devices. We

define sustainable software as correct software with a relatively low energy consump-

tion.

If software demonstrates erroneous behaviour, undesirable effects can occur. This can

impact users and the environment heavily. Limited memory usage is important for the

correct working of software, especially in devices one uses daily. Erroneously behaving

software and devices running the software can be expensive, in terms of maintenance,

keeping the device active or replacing the device altogether. To avoid wasting resources,

we consider correctness a prerequisite of sustainable software.

The second aspect of sustainable software is energy usage. As traditionally many energy

savings did occur in the hardware side of a computer, energy consumption is a blind

spot when developing software. However, recently the advancement in these hardware

savings has lost its pace. At the same time, it becomes more and more clear that software

has a huge impact on the behaviour and the properties of devices it runs on. Software is

in control of the device and its energy consumption.

Small effects are aggravated at large scale. The combination of many individual negative

effects can affect our society at large. If devices that are present in large quantities in

our society all exhibit the same negative behaviour, it can impact public utilities and our

economy.

In this thesis, methods are proposed to analyse energy and memory consumption, and

correctness of software. These methods enable a programmer to improve the sustainabil-

ity of the software they are developing.
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Results The analysis methods as proposed in this thesis are a first step in making the soft-

ware industry more aware of the resources they consume. These approaches show that

resource analysis is feasible for different resources, being memory or energy, in a precise

or overapproximated fashion. Most of these approaches are implemented in prototypes,

which demonstrate that these methods can be applied automatically in a practical set-

ting, since these analysis methods neither require a super computer nor huge amounts

of resources to use. Implementation details of the software that is analysed impact the

energy and memory consumption of software significantly, and this is reflected by the

bounds (and types) yielded by applying these methods.

Results from these analysis methods can be used in different ways, either directly or indi-

rectly. An indirect way to reduce energy usage is to reduce memory usage. A direct way

to use the results is to compare two algorithms. Depending on the envisioned use, the

most sustainable algorithm can be selected. Correctness plays an important role in re-

source consumption: if a system is faulty, resources can be consumed without producing

meaningful results.

Abstraction and encapsulation are often propagated, however, they can hinder the insight

of programmers into the behaviour of their programs. The proposed analysis methods,

and more specifically the accompanying case studies, show that the implementation de-

tails hidden by abstraction and encapsulation have a significant influence on the derived

resource consumption bounds. More layers of abstraction and encapsulation means less

control, and potentially higher resource consumption.

Impact The methods presented in this thesis can help to asses whether software is sus-

tainable. This can prevent that software impacts society negatively, even when large

quantities of devices are running the software. The presented methods enable program-

mers to asses the footprint of their software, in terms of memory and energy. When

development teams are able to apply these approaches, they may gain additional insight

in the behaviour of their software. Due to the shift in energy consumption globally, it is

essential that the software industry becomes sustainable. The ability to analyse programs

in this way is one necessary step towards making the software industry more sustainable.

The approaches presented in this thesis have, together with contributions of others in

this line of research, potentially a high societal relevance.
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B SAMENVATTING

Motivatie Grote delen van ons moderne leven hangen af van, of worden geleid door, soft-

ware. Bijna alle moderne apparaten bevatten software. Omdat we afhankelijk zijn van

deze apparaten, is het belangrijk om te weten of de software die erop draait duurzaam is.

Onder duurzaamheid van software verstaan we het correct functioneren ervan met een

relatief laag energieverbruik.

Als software niet correct functioneert, kunnen ongewenste effecten optreden. Dit kan

weer grote gevolgen hebben voor de gebruikers of voor ons milieu. Tevens is beperkt

geheugengebruik belangrijk voor het correct functioneren van software, met name voor

apparaten die dagelijks gebruikt worden. Slecht functionerende software en apparaten

waarop het draait kunnen duur zijn in onderhoud, duur in exploitatie en duur om ze

eventueel te vervangen. Om verspilling te voorkomen, beschouwen we correctheid van

software als een noodzakelijke voorwaarde voor duurzame software.

Het tweede aspect van duurzame software is energieverbruik. Van oudsher werd energie

bespaard binnen de hardware kant van een computer, waardoor energieverbruik een

blinde vlek was tijdens het ontwikkelen van software. Echter, de laatste tijd gaan de on-

twikkelingenophet gebied vandeze energiebesparingenbij hardware langzamer. Tegelijk

wordt het duidelijker dat software een grote rol speelt bij het gedrag en de eigenschappen

van de apparaten waarop de software draait. Met andere woorden, software is de baas

over het apparaat, en daarmee ook over het energieverbruik ervan.

Kleine effecten kunnen op grote schaal gevolgen hebben. De optelsom van veel kleine

individuele effecten kan invloed hebben op onze samenleving. Als apparaten die veel

voorkomen in onze samenleving allemaal hetzelfde negatieve gedrag vertonen, kan dat

leiden tot schade aan onze publieke voorzieningen en onze economie.

In dit proefschrift worden methoden ontwikkeld om correctheid, geheugengebruik, en

energieverbruik van software te analyseren. Deze methoden stellen een programmeur in

staat om de software die hij/zij ontwikkelt duurzamer te maken.
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Resultaten De analysemethoden zoals voorgesteld in dit proefschrift zijn een eerste stap

om de software industrie (nog)meer bewust te maken van hun invloed op de samenleving

en het milieu. Deze methoden tonen aan dat het mogelijk is om software te analyseren

voor verschillende aspecten zoals geheugengebruik en energieverbruik. Van de meeste

methoden zijn automatische prototypes gemaakt. Deze prototypes demonstreren dat

de methoden ook in de praktijk automatisch toegepast kunnen worden, aangezien de

prototypes noch een snelle computer nodig hebben noch grote hoeveelheden geheugen

of energie om te gebruiken. Uit de resultaten van dit proefschrift komt naar voren dat de

manier waarop software opgebouwd is grote invloed heeft op het gedrag van software in

termen van correctheid, geheugengebruik, en energieverbruik.

Resultaten van deze methoden kunnen direct of indirect gebruikt worden. Een indirecte

manier om energieverbruik te beperken is om het geheugenverbruik te beperken. Een

meer directe manier is het vergelijken van de verschillende manieren waarop software

is opgebouwd. Afhankelijk van het verwachte verbruik van de software, kan de keuze

gemaakt worden welke opbouwmanier het meest duurzaam is. Correctheid is noodzake-

lijk: foutieve software kan energie verbruiken zonder nuttige resultaten op te leveren.

Abstractie wordt vaak ingezet binnen informatica, maar kan het inzicht van program-

meurs in het gedrag van software hinderen. De voorgestelde analysemethoden en de

bijbehorende praktijkstudies laten zien dat juist de opbouwdetails die verborgen worden

door abstractie grote invloed kunnen hebben op het verbruik van software. Meer abstrac-

tielagen betekent minder controle, en mogelijk hoger verbruik.

Impact De methoden die voorgesteld worden in dit proefschrift kunnen gebruikt worden

om aan te tonen of software duurzaam is. Hiermee kan worden voorkomen dat software

ontwikkeld wordt die de samenleving negatief beïnvloedt, zelfs als het apparaat waarop

de software draait in groten getale aanwezig is. De voorgestelde methoden stellen pro-

grammeurs in staat om de voetafdruk van hun software vast te stellen, in termen van

correctheid, geheugengebruik, en energieverbruik.

Voorspellingen geven aandat hetwereldwijde energieverbruik nog gaat stijgen. Ditmaakt

het noodzakelijk dat ook de software industrie duurzamer wordt. De mogelijkheid om pro-

gramma’s te analyseren is een eerste stap om de software industrie duurzamer te maken.

De voorgestelde methoden in dit proefschrift hebben daardoor, samen met bijdragen van

andere in dit wetenschapsgebied, potentieel een grote maatschappelijke relevantie.
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