
DVCL: A Distributed Virtual
Computer Lab for Security and

Network Education

Proefschrift

ter verkrijging van de graad van doctor
aan de Open Universiteit

op gezag van de rector magnificus
prof. mr. A. Oskamp

ten overstaan van een door het
College voor promoties ingestelde commissie

in het openbaar te verdedigen

op vrĳdag 22 juni 2018 te Heerlen
om 13.30 uur precies

door

Jens Haag
geboren op 9 augustus 1976 te Düsseldorf

Promotor
Prof. dr. M.C.J.D. van Eekelen Open Universiteit

Radboud Universiteit

Copromotors
Prof. dr. S. Karsch TH Köln
Dr. ir. H.P.E. Vranken Open Universiteit

Leden beoordelingscommissie
Prof. Di Battista Roma Tre University
Prof. dr. J. Keller FernUniversität in Hagen
Prof. dr. H. L. Stahl TH Köln
Prof. dr. J.T. Jeuring Open Universiteit

Universiteit Utrecht

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibli-
ografie; detaillierte bibliografische Daten sind im Internet über <https://dnb.de> abrufbar.

ISBN: 978-3-86387-892-4
Zugel.: Open Universiteit Nederland, Univ., Diss., 2018

Dieses Werk ist urheberrechtlich geschützt.
Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches,
oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung
des Verlages in irgendeiner Form reproduziert oder unter Verwendung elektronischer Systeme
verarbeitet, vervielfältigt oder verbreitet werden.
Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen, usw. in diesem Werk berechtigt
auch ohne besondere Kennzeichnung nicht zur Annahme, dass solche Namen im Sinne der
Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von
jedermann benutzt werden dürfen.

This document is protected by copyright law.
No part of this document may be reproduced in any form by any means without prior written
authorization of the publisher.

Coverbild © Antonioguillem- Fotolia.com
Alle Rechte vorbehalten | all rights reserved

© Mensch und Buch Verlag 2018 Choriner Str. 85 - 10119 Berlin
verlag@menschundbuch.de
www.menschundbuch.de

https://dnb.de

Contents

1 Introduction 1
1.1 Computer Labs in Education 3
1.2 Technical Background of this Thesis 8

1.2.1 User Mode Linux (UML) and Netkit 8
1.2.2 Virtual Computer Security Lab (VCSL) 12

1.3 Organization of this Thesis 14
1.3.1 Involved People and Environments 14
1.3.2 Contribution and Organization of this Thesis 16

I Design Issues of DVCL 19

2 Distributed Virtual Computer Lab 21
2.1 Core DVCL Architecture 22
2.2 DVCL Example Setups . 27
2.3 Conclusion . 32

3 Adding a Central Authority 35
3.1 Core CA Architecture . 36
3.2 CA Example Setup . 38
3.3 Discussion on Scalability . 41
3.4 Conclusion . 41

4 Applicability Enhancements 45
4.1 Security . 46
4.2 Graphical User Interface . 52

CONTENTS

4.3 Conclusion . 59

II Educational Aspects of DVCL 61

5 Course Evaluation 63
5.1 Learning Situation and Environment 64
5.2 Networking Assignment Example 65
5.3 Evaluation . 66
5.4 Conclusion . 73

6 Electronic Exercise Assistant 77
6.1 A Typical Exercise Example 78
6.2 Performance of a Human Course Advisor 79
6.3 Technical Feasibility . 81
6.4 Educational Feasibility . 88
6.5 The Electronic Exercise Assistant 95
6.6 Example for Educational Feasibility 98
6.7 Conclusion . 102

7 Educational Enhancements 105
7.1 Classroom Settings . 106
7.2 Virtual Classroom Prototype 111
7.3 Conclusion . 114

Summary 117

Bibliography 121

Curriculum Vitae 133

Chapter 1

Introduction

Knowledge distribution and knowledge acquisition are essentials for educa-
tional establishments. Usually they are built on two components: Theory
and hands-on experience1. We find this in many academic disciplines,
one discipline is the field of information technology (IT) resp. computer
science. Here, the theory is traditionally taught in lessons or by text-
books. The knowledge, that people learn, is often illustrated, deepened
and anchored by carrying out practical (hands-on) exercises [Yang and
Reddington, 2014, Crowley, 2004, Peltsverger and Zhang, 2014, Catuogno
and De Santis, 2008, Yuan, 2017, Yuan et al., 2011, Xu et al., 2012, Sarkar,
2006].

While the content of a discipline is usually fixed in the curriculum,
a challenge is how to organize the hands-on experience. Especially in
the field of communication technology and IT security, which are sub-
disciplines of computer science, special requirements occur with respect to
the hands-on learning environment, e.g. the isolated real-world character
and manageability.

Usually, an exercise is derived from and also targeted at a real-world
setting, e.g. setting up and configuring hosts and networks or attacking
a system within a network. This requires, that the learning environment
feels like and behaves as close as the real-world setting to the learner. To
gather experiences, learners should be able to try out things they learned

1By “hands-on” we mean tasks in which learners observe or manipulate real objects
or material.

1

2 CHAPTER 1. INTRODUCTION

in theory. This includes the way of doing things right as well as doing
things wrong. In the scope of communication technology, this could mean
that students will set up a network environment, either with a valid or
an invalid configuration. With respect to IT security, this could mean
that someone will protect a system and another one tries to attack it.
Depending on the aim of a certain task, everything is working fine, the
environment gets down or damaged or something in between can happen.
However, this requires that the learning environment is isolated from the
real world in order to prevent interferences. Also, the manageability of
the hands-on learning environment is crucial for both lecturer as well as
learner. E.g. the lecturer may use the environment in different courses
with several learners, so a time-saving clean-up and reset process of the
environment is required to get an equal initial state for each learner in
each course. For the learner, a great user experience as well as a short
training period might result in an increased acceptance level which finally
can lead to an improved learning outcome.

A common way to organize hands-on experiences is to use a computer
laboratory or computer security laboratory for education. A computer
lab in the scope of communication technology and IT security typically
consists of a computer or a group of computer systems usually connected
into a network. The systems as well as the network behave as in the real
world but they are not connected to it - they are neither part of a critical
infrastructure nor can connect to any. In other words, the system and
also the network are isolated from the outside world. Many tasks can be
realized using a computer lab which otherwise would not be possible, are
forbidden or can cause damage. In the scope of communication technology
and IT security, the use of a computer lab is a suitable and common way
for hands-on experiences. Nevertheless, this situation still holds challenges
and thus can be improved.

The following section 1.1 discusses computer labs in education and
covers physical and virtual labs, the educational context and also the
research challenge. The technical background specific to this thesis is
introduced in the subsequent section 1.2. Section 1.3 introduces the
organization of this thesis and covers involved people and environments as
well as the contribution and organization of this thesis.

1.1. COMPUTER LABS IN EDUCATION 3

1.1 Computer Labs in Education

Computer labs are of great value in courses that teach security of computer
systems and networks. The knowledge that students learn from textbooks
or in lessons, is illustrated, deepened, and anchored by carrying out prac-
tical exercises in such a lab. In addition, students usually like carrying
out practical exercises next to studying theory, thereby improving their
motivation and results. E.g. it is exciting to do hacking exercises that
would be forbidden or illegal in real systems.

Physical and Virtual Labs

The idea of using an isolated network as an environment to perform IT
related tasks for the purpose of research or education is widely recognized
[Bishop and Heberlein, 1996, Agarwal et al., 2001, Taylor et al., 1996, Lo
et al., 2014, Bardas and Ou, 2013]. There are two general approaches to
create such an environment:

The first approach is to create or use an isolated, physical network
with physical hosts that is separated from an operational network such as
a campus network [Bishop and Heberlein, 1996, Jakab et al., 2009]. This
isolation may be achieved by physical separation of the networks or by
using components like firewalls to restrict data flow between network areas
[Yang et al., 2004]. Within this isolated network the students can perform
exercises and work with a real-world like network setup. Remote access to
such a network may be granted by using remote access technologies such
as Virtual Private Network (VPN) [Yoo and Hovis, 2004]. Administration
and maintenance of such a lab however is labour-intensive. Students work
in the lab with super-user rights and can modify system configurations
at will. After a session, it is necessary to clean up system configurations,
which may even require reinstalling operating systems.

The second approach makes use of virtualization technologies to create
an isolated, virtual network with virtual hosts. Literature refers to such
an environment in the context of education or e-learning usually as a
virtual lab [Brian Hay, 2006, Bullers et al., 2006, Damiani, 2006, Keller and
Naues, 2006, O’Leary, 2006, Li, 2009a]. This approach significantly reduces
the amount of physical hardware resources (e.g., switches, routers, hosts),
since the required resources are created by virtualization. Cleaning up or

4 CHAPTER 1. INTRODUCTION

reinstalling a virtual lab simply means reloading the virtual environments,
which can even be an automated task.

Literature also reports two main approaches to provide an isolated
network. In the first one, the environment is located at a central place,
usually at the university [Drigas et al., 2005, Border, 2007, Hu et al.,
2005, Keller and Naues, 2006, Krishna et al., 2005, Lahoud and Tang,
2006] and students can get physical or remote access by using a secured
network connection. A central place could also be a cloud [Ellabidy and
Russo, 2014, Mhd Wael Bazzaza, 2015, Salah, 2014] or a federated lab
[Peterson et al., 2003, Berman et al., 2014]. Although such labs may
be accessed remotely at any time from any place, they are generally not
easily scalable. Allowing an arbitrary number of students to participate
at the same time requires students to reserve timeslots in advance for
working in the lab. This may impose restrictions for students in distance
education, who usually study in evening hours and weekends. Provisioning
a remote lab for peak access outside office hours, may result in a largely
over-dimensioned lab with a low average degree of utilization and hence a
waste of resources.

Second, the environment is provided as a preconfigured, stand-alone
software package which can be installed and used by students on any com-
puter, usually their private computer [Li, 2009b, Vranken and Koppelman,
2009, Li, 2010, Seeling, 2008]. This gives the students the opportunity to
safely carry out assignments wherever and whenever they want to.

Educational Context

The Open Universiteit (Netherlands) as well as the Cologne University of
Applied Sciences (Germany) offer courses in the field of computer networks
and IT security. While the Open Universiteit is a university for distance
education, the Cologne University of Applied Sciences is a traditional on-
campus university. Both universities offer practical courses in networking
and IT security, but the setting is mostly different.

The Open Universiteit offers courses meant for distance teaching. For
courses in computer networks and IT security, the Open Universiteit
implemented a virtual computer security lab consisting of an isolated,
secured software environment that each individual student can easily install
on his PC. In this virtual lab, the student can configure and simulate virtual

1.1. COMPUTER LABS IN EDUCATION 5

hosts, connect them into virtual computer networks and safely carry out
experiments related to security. It is neither required to provide a computer
lab at the campus (or in the cloud) nor required for students to travel
there [Vranken and Koppelman, 2009].

The Cologne University of Applied Sciences offers courses for classroom
teaching. This university provides the students a classic computer lab
to work in. All students of a certain Bachelor program have to take
part in the course “Communication technology and networks”, where
they learn about concepts and standards of computer networks, hosts
and intercommunications. The course consists of lectures in a classroom,
accompanied and supplemented by a practical course. Students are required
to pass the practical course as a prerequisite to take the exam. According
to the curriculum, the practical course’s outcome is either pass or fail
while the exam is being graded. The practical course is organized as
follows: Students have to register to take part. In a kick off meeting they
will get to know the course advisers, the assignments and the computer
laboratory. The course advisers are members of the academic staff at the
university, have expert knowledge about the course content and are able
to support and guide the students. The assignments are related to certain
theoretical concepts of the lecture and facilitate that students have to
apply their previously acquired knowledge. The aim of the practical course
is to make sure, that every student has learned the concepts related to the
assignment, has an understanding of the solution and is able to reproduce
and defend the solution. To successfully complete the course each student
has to demonstrate and defend the solved assignment in a final bilateral
expert talk with a course advisor. The course advisor knows the solution
and possible ways of solving. He is able to judge whether a student has
successfully acquired and applied theoretical concepts of the lecture.

Research Challenge

Providing a safe playground is only one requirement of a computer lab.
The challenge at this point is to figure out what environment fits best
in a certain learning scenario. This requires to find a balance between
technical opportunities, educational requirements and also the demands
of the learners. This context is illustrated in figure 1.1 on the following
page. Unfortunately, this balance cannot be found as the ultimate solution.

6 CHAPTER 1. INTRODUCTION

E.g. in [Lahoud and Tang, 2006], “it was able to address the needs of
distance learning students taking security classes” but “a broadband-based
Internet service is recommended for such lab experiments in order to take
full advantage of its functionality”. In [Seeling, 2008], “The main benefits
resulting from this approach are that students can progress at a time and
pace of their choice and the reduced costs in infrastructure for schools”, but
“one potential drawback of this approach is the hard drive space required on
the computers of instructor and students.”. [Salah, 2014] states, that “At the
end of the one-semester course, the overall reaction from the students and
instructor was very positive.”, but “MITM (Man-In-The-Middle) attacks
are not feasible in the cloud”. We proceed on the assumption that each
setting will have its own strengths and weaknesses.

Balance

Technical
Opportunities

Educational
Requirements

Demands of
the Learners

Figure 1.1: The challenge is to find a balance for a certain setting

The aim of the thesis is to improve education. The general idea is to
explore the possibilities when combining aspects of two established labs for
hands-on experiences in networking and it security courses. A prerequisite

1.1. COMPUTER LABS IN EDUCATION 7

is, that the labs are predominantly different but have an essential overlap in
educational requirements. We combine strengths of both labs2. We assume,
that this can significantly improve the learners hands-on experience.

In 2009, the Open Universiteit as well as the Cologne University of
Applied Sciences started a research cooperation in order to improve the
quality of learning by means of better support to students and to grant them
more flexibility with respect to their learning environment. Both computer
labs - the physical lab at the Cologne University of Applied Sciences as
well as the virtual computer security lab at the Open University - work
fine within their own scope. E.g., the freedom for students to learn at any
time and place meets exactly the requirements of a university for distance
education. Also, the possibility to intercommunicate face-to-face with other
students or with the course advisor is natural at an on-campus university.
It becomes interesting when we try to cover or cross both scopes. E.g.
students, working in the evening hours at home using the virtual lab, want
to be able to solve a networking exercise in a group or the support of a
course advisor is needed. Also, students at the on-campus university want
to be able to learn outside of the opening hours of the lab. As previously
mentioned, each setting will have its own strengths and also weaknesses.

For our research, we identified the following challenges in creating a
virtual environment for security and network education. These challenges
are

• enabling group work,

• supporting ease of use,

• identifying key aspects for acceptance of the system and

• addressing those key aspects in the system.

The first challenge is targeted at enabling group work in a virtual
lab, which was designed to run as a single isolated instance on a student’s
computer, completely independent of other systems, networks or individuals.
This is effectively achieved by extending the existing virtual lab to a

2A similar approach can be found in the concept of blended learning [Bonk et al.,
2005]. In blended learning, online digital media will be combined with traditional
classroom methods.

8 CHAPTER 1. INTRODUCTION

distributed virtual computer lab for security and network education. The
second challenge is fulfilled by simplifying the way how students will
organize their group and how they connect their labs, followed by some
applicability enhancements of the new system. The third challenge is dealt
with by interrogating students to discover their preferences in learning
behaviour. The fourth challenge is achieved in two ways. Firstly, by
introducing an electronic exercise assistant, which is able to support and
guide students as well as verify a final solution even if a human course
advisor is not available. Secondly, we deal with it by creating a virtual
computer lab as a social place, where students e.g. meet, form learning
groups, enrol for an assignment, talk and discuss.

1.2 Technical Background of this Thesis

The following section will introduce the virtualization environment called
User Mode Linux (UML). UML is a special kind of virtualization and is
also the base where Netkit is built upon. Netkit will also be introduced
afterwards because Netkit is the base where the VCSL is built upon. Finally,
this cohesion is the base where this thesis is built upon.

1.2.1 User Mode Linux (UML) and Netkit

The following part is an abstract of [Rimondini, 2007] and also refers to
[Dike, 2006].

User Mode Linux (UML) User-Mode Linux3 (UML)[Dike, 2006, Dike,
2000] is a port of the standard Linux kernel 4 which is designed to run as a
userspace process. Being a kernel in itself, UML comes with its own kernel
subsystems, including scheduler, memory manager, filesystem, network
and devices. In this sense, an instance of UML provides a virtualized
environment in which everything (processes, memory, filesystem, etc.) is
controlled by itself instead of the host kernel. In practice, UML appears

3The User-Mode Linux Kernel Home Page, http://user-mode-linux.sourceforge.
net, Online, accessed March 2017

4The Linux Kernel Archives, https://www.kernel.org, Online, accessed March 2017

http://user-mode-linux.sourceforge.net
http://user-mode-linux.sourceforge.net
https://www.kernel.org

1.2. TECHNICAL BACKGROUND OF THIS THESIS 9

as a userspace process on the hosting machine and acts as a kernel for its
own processes.

Development In the past UML used to be available in the form of
a patch to a standard Linux kernel. Most recent kernels already include
user-mode code, thus a UML kernel can be simply built by specifying um
as target architecture while compiling a vanilla kernel. Since 2002, there
also exists a set of additional patches called SKAS that can be optionally
applied to the host kernel to change the way UML behaves. The patches
have beneficial effects in terms of both security and performance.

Virtualization of CPU and RAM There is an important differ-
ence in the approach adopted by full virtualization products, e.g. VMware
and that adopted in UML. Full virtualization products usually attain vir-
tualization by directly interfacing with the host hardware, and provide an
abstraction layer implementing an architecture that may also be different
from the one of the host they are running on. In the case of UML, virtu-
alization takes place within the host kernel rather than at the hardware
layer. In other words, UML provides simulated hardware constructed on
the basis of services provided by the host kernel. Essentially, UML is a
port of the Linux kernel to the Linux system call interface rather than to
a specific hardware interface. User space code simply runs natively (no
emulation), while processes in kernel mode see a special environment which
limits access to host resources. This makes the virtualization faster and
more responsive, and is the reason why UML is considered a lightweight
emulator. The drawback of this approach is that it only allows to run
emulated Linux boxes.

Virtual machines are equipped with a disk, whose raw image is a file
in the host machine; they have their own memory region, whose size can
be set upon startup; and they can be configured with an arbitrary number
of virtual network interfaces which are connected to a virtual hub.

Virtualization of Hard Drive Disk UML mounts a virtual disk
device provided by the user and boots the Linux distribution it finds inside
it. Virtual disks are managed by a User-mode Block Device (UBD) driver,
which uses a standard file on the host filesystem as storage area. This file

10 CHAPTER 1. INTRODUCTION

can be considered as a disk image. This disk image can be filled with Linux
software in a way that is very similar to what would happen on a real
host. Indeed, the disk image can be made available as a loopback device on
the host machine by using the losetup 5 command. Once done, it can be
initialized by using appropriate filesystem tools (e.g. mkfs) and populated
by using tools such as debootstrap on Debian or pacman on ArchLinux.

Being a lightweight environment, it is possible to implement complex
setups consisting of several instances of UML based virtual machines. Since
each virtual machine writes on its own filesystem, this potentially implies
using several disk images, which size is often not negligible (hundreds
of megabytes). However, the block driver technology is able to support
sharing of a filesystem among different virtual machines. This is achieved
by writing changes to the disk image into a different file, a technique
that is also known as Copy-On-Write (COW). Therefore, a typical setup
of a complex emulated scenario consists of a single large disk image file
containing a model filesystem and several small COW files that store the
changes to the model filesystem. Thus, filesystem information for a virtual
machine can only be reconstructed based on both its own COW file and the
disk image. Each COW file can only be used together with the backing file
it was created from. However, by using the UML utility uml_moo, it is also
possible to merge the two and get a standalone disk image that contains
all the filesystem information for that virtual machine. Furthermore, COW
files are implemented as sparse files. A sparse file is one which efficiently
uses the filesystem by allocating space only when data is actually written
to the file.

Virtualization of Network Interfaces UML allows to configure
virtual machines with an arbitrary number of network interfaces. By
using appropriate UML command line arguments, these interfaces can be
attached to a uml_switch process running on the host, which simulates
the behaviour of a network switch or network hub. In this way, different
virtual machines attached to the same switch can exchange data with each
other. More specifically, UML virtual network interfaces can be attached
to a UNIX socket. In turn, an uml_switch can be attached to the same

5Linux Manual Page: "losetup is used to associate loop devices with regular files or
block devices, to detach loop devices and to query the status of a loop device."

1.2. TECHNICAL BACKGROUND OF THIS THESIS 11

socket and forward packets among the virtual machines that are connected
to that socket. Figure 1.2 shows an example of two connected UML virtual
machines.

Host kernel

UML kernelUML kernel

UNIX socket

uml_switch

Forwarding process

Physical
network

interface

network

interface

tap

Network
interface

Network
interface

Figure 7: This diagram shows how Netkit virtual machines are networked, possibly with a connection to
an external network.

are connected to that socket. Netkit scripts take care of automatically starting uml_switch processes
according to user’s needs.

From the point of view of the network stack, Netkit provides implementations of the ISO-OSI layers
as described in Figure 8.

• The physical layer is implemented by a set if uml_switch processes running on the host. They are
configured to behave as hubs, and packets are forwarded to interfaces of other virtual machines
by using UNIX sockets. For this reason, in this paper we also refer to the uml_switch as virtual
hub. At present this mechanism does not provide support for simulating delay, packet loss, and
reordering.

• The data link layer supports the Ethernet protocol, but collisions cannot happen because the
uml_switch avoids them. Unless differently specified, emulated network interfaces are assigned an
automatically generated MAC address.

• The network layer supports both IPv4 and IPv6 by means of kernel code and user space utilities.

• What happens on upper layers is up to the specific software being run inside virtual machines. For
example, running a web server would introduce support to HTTP.

Notice that layers from data-link through transport are (at least partly) implemented inside the UML
kernel. Therefore, changing the kernel results in making new implementations and features available.

The configuration of network interfaces in Netkit is straightforward thanks to the existence of scripts
set up for the purpose. In order to slightly abstract from the technicalities of how networking is imple-
mented, Netkit presents uml_switches as virtual collision domains. Each virtual network interface must
be attached to a collision domain that is identified by an arbitrary name. Therefore, connecting virtual
machines is simply a matter of attaching their interfaces on the same collision domain.

For example, the following command line starts up a virtual machine named foo with a single network
interface attached to collision domain COLL-DOM-A.

vstart foo --eth0=COLL-DOM-A

13

Figure 1.2: This diagram shows how Netkit virtual machines are networked

From the point of view of the network stack, UML provides implemen-
tations of the following ISO/OSI6 layers:

• The physical layer is implemented by a set of uml_switch processes
running on the host. They are configured to behave as hubs, and
packets are forwarded to interfaces of other virtual machines by using
UNIX sockets.

• The data link layer supports the Ethernet protocol, but collisions
cannot happen because the uml_switch avoids them.

• The network layer supports both IPv4 and IPv6 by means of kernel
code and user space utilities.

• What happens on upper layers is up to the specific software being
run inside virtual machines. For example, running a web server would
introduce support to HTTP.

6ITU-T X.200: Reference Model of Open Systems Interconnection

12 CHAPTER 1. INTRODUCTION

Netkit Virtual machine settings can be passed to UML via a command
line interface. While this is an effective way of specifying configuration
parameters, it is often the case that users interested in just emulating
networks are not willing to deal with complex kernel invocation commands.
Furthermore, compiling an UML kernel is complex and takes a lot of time.
Also preparing the disk image is not an easy task. For this reason, a
software package called Netkit was developed at the Roma Tre University7
to provide a higher-level user interface to UML.

The goal of Netkit is to provide a ready-to-use virtual experience based
on UML. Netkit enriches UML by an intuitive interface consisting of several
scripts and a preconfigured disk image (filesystem) containing most state
of the art networking tools.

Netkit is conceived for easy installation and usage and does not require
administrative privileges for either one of these operations. Starting a
virtual machine means starting a UML instance, which often requires
dealing with somewhat complex command line arguments. For this reason,
Netkit supports straightforward configuration and management of virtual
machines. A virtual host can be started by the Netkit’s command line
utility vstart followed by a hostname and parameters which defines the
network connectivity. Netkit scripts take also care of automatically starting
uml_switch processes.

While UML is a lightweight and powerful virtualization environment,
Netkit turns UML to a ready-to-use experience for emulating hosts and
networks. Since 2017, Netkit is going to become container-based [Bonofiglio
et al., 2018]. An improved implementation called Kathará8 uses Python
and Docker which allow to have much better scalability.

1.2.2 Virtual Computer Security Lab (VCSL)

This chapter introduces the technical architecture of the Virtual Computer
Security Lab (VCSL). It is based on and summarizes the work of Harald

7Università degli Studi Roma Tre, Via Ostiense 169 - 00154 Rome, Italy, http:
//www.uniroma3.it

8Kathará: Implementation of the notorious Netkit using Python and Docker, http:
//www.kathara.org/

http://www.uniroma3.it
http://www.uniroma3.it
http://www.kathara.org/
http://www.kathara.org/

1.2. TECHNICAL BACKGROUND OF THIS THESIS 13

Vranken, who is the originator of the VCSL [Vranken and Koppelman,
2009]. This VCSL is the basis for the research work in Part I and Part II
of this thesis.

The VCSL is a stand-alone environment, composed of two nested software
virtualization layers, that each student can install on his/her computer.
The software components to build the VCSL are freeware or open source,
and are distributed to students on a DVD. Recently, students can also
download the VCSL from a website.

	

Host	
 machine	

Virtual	
 host	
 machine	

UML	
 virtual	
 machines	

in	
 virtual	
 network	

Figure 1.3: Architecture of VCSL

The VCSL is composed of one physical host and two virtualization
layers, as shown in figure 1.3. The host machine is the student’s computer,
which runs an arbitrary operating system, i.e., the host operating system.
The first virtualization layer creates the virtual host machine. It consists
of virtualization software such as VMware Player9 (freeware) or Oracle
VM VirtualBox10 (open source), which runs on the host machine just
like an ordinary application. Versions of this software are available for a

9VMware Player, http://www.vmware.com, Online, accessed November 2017
10VirtualBox, http://www.virtualbox.org, Online, accessed November 2017

http://www.vmware.com
http://www.virtualbox.org

14 CHAPTER 1. INTRODUCTION

large range of platforms. VirtualBox for instance runs on host machines
with either Windows, Linux or Mac OS X. This first virtualization layer
therefore runs on nearly all student computers, regardless of the hardware
and the host operating system. The virtual host machine runs the virtual
host operating system. For the VCSL we selected Linux, since it is open
source and can be distributed to students without licensing costs. In fact,
we selected Knoppix, a bootable live Linux system containing a collection
of GNU/Linux applications and the KDE graphical desktop environment.

The second virtualization layer is a Linux application, called Netkit
[Pizzonia and Rimondini, 2008, Pizzonia and Rimondini, 2016], that runs
inside the virtual host machine. This second virtualization layer allows to
instantiate multiple virtual machines that all run Linux. Netkit applies
virtualization based upon User Mode Linux (UML) and allows to setup
and configure UML virtual machines with virtual network interfaces, and
to connect these into virtual networks.

The hardware requirements for running the VCSL are very modest. A
few UML virtual machines can already be run smoothly on a PC with
a Pentium-4 processor and 256 MB memory. The VCSL has been used
successfully in a security course by hundreds of students with only few
minor problems.

In the thesis, we refer to the VCSL (Virtual Computer Security Lab)
with the abbreviation VCL (Virtual Computer Lab).

1.3 Organization of this Thesis

This section introduces involved people and environments in the scope of
this thesis. This section also describes the organization of the remaining
of this thesis and highlights my contributions and my role within related
projects.

1.3.1 Involved People and Environments

This thesis is the outcome of an international research cooperation between
the Dutch Open Universiteit11 and the German Cologne University of

11Open Universiteit, Valkenburgerweg 177, 6419 AT Heerlen, Netherlands

1.3. ORGANIZATION OF THIS THESIS 15

Applied Sciences, Campus Gummersbach12,13. In 2008, a research group
was formed with the aim to improve the support for students working
on practical networking and IT security exercises in a virtual lab. Major
members of this research group were

• Dr. Ir. Harald Vranken, Associate Professor at the Department of
Computer Science, which is a subdivision of the Faculty of Manage-
ment, Science & Technology at the Open Universiteit,

• Prof. Dr. Stefan Karsch, leading Professor at the Laboratory for
Communication Technology and Data Security14, affiliated to the
Department of Computer Science, which is a subdivision of the
Faculty of Computer Science and Engineering Science at the Cologne
University of Applied Sciences and

• Graduate Computer Scientist (Diplom-Informatiker FH) Jens Haag,
Academic Staff Member at the Laboratory for Communication Tech-
nology and Data Security, affiliated to the Department of Computer
Science, which is a subdivision of the Faculty of Computer Science and
Engineering Science at the Cologne University of Applied Sciences.

In 2012, also
• Prof. Dr. Marko van Eekelen, Professor Software Technology in

the Faculty of Management Science and Technology at the Open
University and also Associate Professor at the research section Digital
Security of the Institute for Computing and Information Sciences
within the Faculty of Science of the Radboud University Nijmegen15.

joined this research cooperation.
Some work was done, developed and evaluated with or by students

at the Laboratory for Communication Technology and Data Security,
where I worked from 2008 to 2014. Some findings were gained from and
also integrated in the course “Communication Technology and Networks”,
lectured by Prof. Dr. Hans Ludwig Stahl.

12Fachhochschule Köln / Cologne University of Applied Sciences, Campus Gummers-
bach, Steinmüllerallee 1, 51643 Gummersbach, Germany

13Please note, that the The Fachhochschule Köln / Cologne University of Applied
Sciences was renamed to Technische Hochschule Köln / University of Applied Sciences
in September 2015

14http://www.ktds-koeln.de
15Radboud University Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen, Netherlands

16 CHAPTER 1. INTRODUCTION

1.3.2 Contribution and Organization of this Thesis

This thesis is divided into two parts. The first part Design Issues of
DVCL reflects the work I was part of, which addresses concepts, design
and implementation of the Distributed Virtual Computer Lab. This part is
focused on technical issues. The second part Educational Aspects of DVCL
reflects the work I was part of, which addresses the educational use of the
DVCL.

All chapters within these two parts are based on journal articles [Haag
et al., 2014a, Haag et al., 2017], reviewed publications at international
conferences [Vranken et al., 2011, Haag et al., 2011, Haag et al., 2012, Haag
et al., 2013, Haag et al., 2014b], bachelor theses and student project works.
This origin is also indicated in a footnote at the beginning of each chapter.
I am the author (first author) or co-author (second author) of each con-
ference paper and I was predominantly also the presenter at the related
conference. I acted as initiator, mentor, consultant and supporter for the
bachelor theses and student projects. All student workings were success-
fully finished at the Cologne University of Applied Sciences and graded
by at least one of the following scientists: Prof. Dr. Stefan Karsch, Prof.
Dr. Hans Ludwig Stahl, Prof. Dr. Heiner Klocke and Associate Prof. Dr.
Harald Vranken.

Chapter 2: Distributed Virtual Computer Lab addresses the concep-
tual and technical base of the Distributed Virtual Computer Lab, which
extends the previous work of Harald Vranken’s and Herman Koppelman’s
Virtual Computer Security Lab [Vranken and Koppelman, 2009]. This
chapter is based on the first part of Tobias Horsman’s bachelor thesis
[Horsmann, 2011] and a conference paper [Vranken et al., 2011]. I was
mentor, consultant and supporter for the bachelor thesis and I am the
co-author of the conference paper. The paper was reviewed and accepted
at the 3rd International Conference on Computer Supported Education
(CSEDU 2011) and presented by Harald Vranken.

Chapter 3: Adding a Central Authority addresses the conceptual and
technical base of the Central Authority for the Distributed Virtual Com-
puter Lab. This chapter is based on the second part of Tobias Horsman’s

1.3. ORGANIZATION OF THIS THESIS 17

bachelor thesis [Horsmann, 2011] and a conference paper [Haag et al., 2011].
I was mentor, consultant and supporter for the bachelor thesis and I am
the author of the conference paper. The paper was reviewed and accepted
at the Computer Science Education Research Conference (CSERC 2011)
and presented by me.

Chapter 4: Applicability Enhancements addresses work that arises
during the research and development process of the DVCL. This work was
necessary and essential to push the prototypical implementation of the
DVCL environment closer to a productive learning environment. Section
4.1: Security covers and resolves security issues and is based on Chris-
tian Doehring’s and Sandra Kahrau’s student project work [Döhring and
Kahrau, 2011], which was supported and supervised by me. The outcomes
are published in [Haag et al., 2017]. Section 4.2: Graphical User Interface
introduces a Graphical User Interface to increase the usability of the DVCL
environment. This chapter is based on Christian Doehring’s student project
work [Döhring, 2012], also supported and supervised by me. The outcomes
are part of [Haag et al., 2017] too.

Chapter 5: Course Evaluation shows the results of an evaluation I
did in a practical networking course at the Cologne University of Applied
Sciences with about 200 participants, in order to get key factors about
student’s learning behaviour and success. This chapter is based on a
paper [Haag et al., 2013], reviewed and accepted at the 2nd International
Conference on E-Learning and E-Technologies in Education (ICEEE 2013)
and presented by me. Furthermore, I am the author of an extended version
of these research results, reviewed and published in the Yükseköğretim
Dergisi / Journal of Higher Education [Haag et al., 2014a].

Chapter 6: Electronic Exercise Assistant introduces a new software
program, which was designed and developed by me. I also did major parts
of the coding. This program is able to guide and verify certain networking
exercises in the DVCL. This chapter is based on two reviewed conference
papers [Haag et al., 2012, Haag et al., 2014b] and a bachelor thesis [Alfers,
2013], which I supported and supervised at the Cologne University of Ap-
plied Sciences. I am the author of both papers, the first one was presented

18 CHAPTER 1. INTRODUCTION

by me at the 3rd Annual International Conference on Computer Science
Education: Innovation and Technology (CSEIT 2012), the second one was
presented by my then colleague Christian Witte at the 6th International
Conference on Computer Supported Education (CSEDU 2014). Our con-
tribution at the CSEDU 2014 conference won the best student paper award.

Chapter 7: Educational Enhancements introduces a virtual classroom
concept for the DVCL environment and a related prototype. Similar to
chapter 4, this student work was also targeted to push the prototypical
implementation of the DVCL environment closer to a productive learning
environment. This chapter is based on Christian Doehring’s bachelor thesis
[Döhring, 2013], where I was mentor, supporter and consultant. The results
are also published in [Haag et al., 2017].

Part I

Design Issues of DVCL

19

Chapter 2

Distributed Virtual
Computer Lab

The Virtual Computer Security Lab (VCSL) [Vranken and Koppelman,
2009] can be easily installed and run locally on each student’s computer.
This decentralized approach is suited to accommodate any number of
students, provides students the freedom to run the lab whenever and
wherever they want, and eliminates the need for a central lab at the
university. A shortcoming however is that students have to work on
their own. It is for instance impossible to offer exercises on distributed
attacks involving large botnets, or hacking games in which students are
challenged to attack each other’s systems and securing their systems against
attacks from fellow students. We therefore extended the VCSL towards a
distributed virtual computer lab (DVCL). The DVCL allows connecting
the VCSL’s of multiple students into a large virtual network running over
the internet. Traffic inside the virtual network is completely isolated from
the outside world. Hence, communication between virtual hosts inside the
DVCL and hosts outside the DVCL is impossible. Students can therefore
safely carry out assignments related to security without any restrictions -
even spreading malware could be allowed - without the risk of accidentally
(or intentionally) attacking or infecting hosts on the internet.

In this chapter, we outline the architecture and implementation of

This chapter is based on the following publications: [Horsmann, 2011, Vranken et al.,
2011]

21

22 CHAPTER 2. DISTRIBUTED VIRTUAL COMPUTER LAB

the DVCL. Each VCSL consists of a number of UML virtual machines,
connected by virtual networks, and also connected to the virtual host
machine. For building a DVCL, a transparent connection between the
virtual host machines of distinct VCSL’s is required. We therefore equip
each VCSL with an interface, such that a point-to-point connection can be
created between two VCSL’s.

2.1 Core DVCL Architecture

In order to connect two VCSL’s transparently, we connect the VCSL’s
at OSI-layer 216. We presume Ethernet-based networks, and hence the
Ethernet protocol running at OSI-layer 2. Connecting two virtual networks
at OSI-layer 2 requires that Ethernet frames in the first virtual network
should be transmitted transparently to the second, remote virtual network
and vice versa. By connecting VCSL’s at OSI-layer 2, the connected virtual
networks will behave like a single broadcast domain [Comer, 2008]. Hence,
students working in the DVCL have the notion of being connected to
other students over an Ethernet Local Area Network (LAN), although the
actual connection is by a Wide Area Network (WAN) using the public
internet involving the entire TCP/IP protocol-stack. This is in contrast
with conventional network operation, where LAN-frames are converted
into WAN-packets at the network perimeter by gateways, preserving the
original payload of the upper OSI layers. Our approach also differs from
VPN’s, where tunnelling is generally done at OSI-layer 317 (e.g., when
applying IPsec) or above (e.g., when applying SSL).

Performing practical exercises on networking and IT-security introduces
an additional requirement: network data that is transported inside a DVCL
must not harm non-participating systems also connected the WAN. It
should be absolutely assured that non-participating systems, such as the
host systems on which the VCSL’s run and any other hosts in the internet,
are not affected by the transmitted data. Hence, traffic inside the DVCL
should be completely isolated from the world outside the DVCL.

To connect virtual networks, we first examine the virtual networking
architecture of Netkit.

16Open Systems Interconnection Model (OSI) Layer 2 is the data link layer
17Open Systems Interconnection Model (OSI) Layer 3 is the network layer

2.1. CORE DVCL ARCHITECTURE 23

	

User Mode Linux (UML)

NetKit-Scripts

Logical View Technical View

UML-Switch

UML-
Kernel

UML-
Kernel

Virtual
Network

Virtual
Host

Virtual
Host

Figure 2.1: Architecture of Netkit

Figure 2.1 shows the architecture of Netkit and provides a logical and
a technical view of its components. The logical view shows two virtual
hosts which are connected in a virtual network. In the technical view, the
virtual hosts are UML-kernels that communicate with each other using the
service provided by an UML-Switch.

As the name implies, a UML-Switch connects two or more virtual
hosts with switch-like behaviour. A network switch establishes a logical
point-to-point connection between hosts in a network that are connected
to the ports of the switch.

The UML-Switch can also be configured to behave like a hub [Dike,
2006]. Virtual hosts that are connected in a virtual network with hub-
like behaviour can be considered to be connected in the same network
segment [Schreiner, 2009]. In a network segment, a host receives all data
sent by other hosts in the network segment, even if the host is not the
designated receiver of the data. Netkit uses the UML-Switch with this
hub-like behaviour, which offers users the opportunity to analyse data
transmitted from any virtual host in the virtual network.

In the DVCL, we connect two remote virtual networks by extracting
data at a local UML-Switch and sending it across a connection network to

24 CHAPTER 2. DISTRIBUTED VIRTUAL COMPUTER LAB

a remote UML-Switch where the extracted data is then injected, and vice
versa. In this way two virtual networks can be connected. Implementing
this approach is done by two subtasks:
• Subtask A: extracting and injecting network data at a UML-Switch.
• Subtask B: sending and receiving the extracted network data across a

network.

Subtask A: extracting and injecting

We examine the technical implementation of a virtual network as shown in
figure 2.1 on the preceding page in which the UML-Switch is involved. For
each virtual network, an instance of the UML-Switch is running, which in
fact uses a UNIX-Socket to communicate with the virtual hosts. A UNIX-
Socket is a system resource which serves as a communication endpoint and
can be used for remote communication or local inter-process communication
[Stevens, 2003].

The UML-Switch attaches itself to a UNIX-Socket, and listens for
incoming data sent by the virtual hosts to the UNIX-Socket. The UML-
Switch reads the network data from the UNIX-Socket and writes the data
to all other connected virtual hosts, which creates the hub-like behaviour
of the UML-Switch.

	

UML-Switch
UNIX-Socket

VHVH

Virtual
Network

Figure 2.2: Construction of a virtual network

Figure 2.2 shows the architecture of a virtual network. For simplicity,
only two virtual hosts (VH’s) are shown, but multiple VH’s can be con-
nected to the virtual network. The VH’s are connected to the UNIX-Socket.
Communication over the virtual network is realized by the VH’s sending
data to the UNIX-Socket, and the UML-Switch forwarding this data to all
other connected VH’s in the same virtual network.

2.1. CORE DVCL ARCHITECTURE 25

Extracting data from the UML-Switch and injecting data from a remote
virtual network into the UML-Switch, relies on the hub-like behaviour
of the UML-Switch. We developed a new software component, that is
applied in the virtual host operating system and that connects itself to the
UNIX-Socket of the virtual network. This component can be considered
as a ghost host in the virtual network because it is completely transparent
to the other components. With this ghost host, it is possible to extract all
Ethernet frames from the UNIX-Socket, as well as to inject frames received
from a remote virtual network. Compared to a normal virtual host, the
ghost host is not jailed in the Netkit environment. The ghost host can
therefore communicate with the outside world, which cannot be done by a
normal virtual host. The UML-Switch with hub-like behaviour guarantees
that network data received from a remote virtual network is distributed to
all other locally connected virtual hosts.

	

UML-Switch

VHVHNet
Kit

Guest
OS GHUNIX-Socket

Figure 2.3: Virtual network with ghost host

Figure 2.3 shows the construction of the virtual network in figure 2.2 on
the preceding page. The figure also shows the logical layers of the virtual
network. The virtual hosts are located and jailed within the Netkit layer.
The implementation of the virtual network is realized in the virtual host
operating system, which may also be referred to as the guest OS. In the
guest OS layer, a ghost host (GH) is located which realizes subtask A.
The ghost host can extract all data that is sent over the virtual network
and can forward the data to a destination outside the guest OS (cloud).
Incoming data from outside (cloud) can be injected in the UNIX-Socket
using the ghost host.

26 CHAPTER 2. DISTRIBUTED VIRTUAL COMPUTER LAB

Hence, the ghost host provides an interface to the virtual network,
where Ethernet frames can be extracted and injected without the need to
modify any existing components of Netkit or UML.

Subtask B: sending and receiving

Subtask B consists of sending the extracted Ethernet frames from one ghost
host to another ghost host in a remote system. Ethernet frames cannot
be sent directly over the internet or a WAN [Comer, 2008], since those
networks require a network protocol which runs on OSI-layer 3, presumably
the Internet Protocol (IP). To resolve this issue, the Ethernet frames are
sent over a remote bridge which is established between two ghost hosts.

A remote bridge can connect two distant networks by using a connection
network [Schürmann, 2004]. A benefit of the remote bridge is that the
connection network and the distant networks can use different protocols.
Even if the protocols of the connection network and the distant networks
are equal, the remote bridge ensures that the distant networks cannot
intercommunicate with the connection network. The remote bridge consists
of two remote bridge endpoints which connect two networks at OSI-layer 2.
Such an endpoint encapsulates an Ethernet frame of the local environment
in a transport protocol, and sends the data to the remote endpoint where
the transport protocol is removed and the OSI-layer 2 data is injected in
the remote environment.

We extended the ghost host component and added functionality of a
remote bridge endpoint. The Ethernet frames that are extracted by the
ghost host, are first encapsulated in the IP protocol (acting as transport
protocol), and next sent to the remote bridge endpoint of a fixed distant
destination. For incoming data, the IP protocol is removed by the ghost
host and the Ethernet frames are sent into the local network, respectively
the local UNIX-Socket.

Building the DVCL

With subtask A and B in place, we can connect two distant virtual networks
by interfacing to a remote bridge between the virtual networks. Extracted
data of one virtual network is encapsulated by the remote bridge endpoint

2.2. DVCL EXAMPLE SETUPS 27

into a transport protocol, and sent to a distant remote bridge endpoint
where the data is unpacked and injected into the local virtual network.

	

RBE UML-Switch

VH VH

UNIX-Socket
RBE

IP
TCP /
UDP

Transport Layer
Network Layer

Ethernet
Link Layer

GHGH
UML-Switch

VH VH

UNIX-Socket

Figure 2.4: Connecting two virtual networks

Figure 2.4 shows an example of two virtual networks. Each virtual
network has two virtual hosts (VH) and a ghost host (GH) offering a remote
bridge endpoint (RBE), attached to the UNIX-Socket. The Ethernet frames
that are extracted from a virtual network are sent across a transport
network (cloud) encapsulated into a transport protocol. As transport
protocol TCP/IP or UDP/IP is assumed.

2.2 DVCL Example Setups

Figure 2.5 on page 29 shows an example setup of a DVCL for two students
(Student A and Student B). It is presumed that each student uses his/her
own computer connected via a local or wide area network (LAN/WAN).
In the example setup, Student A is at IP address 192.168.2.102 and
can reach Student B at IP address 192.168.2.101, and vice versa. Each
student locally runs a VCSL environment, but a student may also run a
native Linux operating system, thereby eliminating the need for running

28 CHAPTER 2. DISTRIBUTED VIRTUAL COMPUTER LAB

the first virtualization layer. In the example, each student sets up a
Netkit environment consisting of two virtual hosts (VH) connected in a
local virtual network. For example, Student A starts VH1 by issuing the
commands in listing 2.1.

Listing 2.1: Setup virtual host

1 // Start VH1 connected to network netA
2 vstart VH1 --eth0=netA
3 // Setup network interface on VH1
4 ifconfig eth0 192.168.2.200 netmask 255.255.255.0 up

In a similar way, Student A starts VH2, and Student B starts VH3 and
VH4 connected to netB. The local networks are connected as a distributed
local subnet by using our developed utility, consisting of a remote bridge
endpoint and a ghost host. Listing 2.2 shows the command, used by student
A, to connect to the remote bridge endpoint of Student B, using this user
application named “plug”.

Listing 2.2: Remote connection

1 // Start remote connection to Student B
2 plug --source -ip 192.168.2.102 --source -port 53838 --

destination -ip 192.168.2.101 --destination -port 32000 --
uml -switch -socket /path/to/vhub_USERNAME_netA.cntc

Student B will do the same, connecting to the remote bridge endpoint
of Student A. From now on, netA and netB are connected with each other,
and all four virtual hosts can reach each other.

In the following, we provide two scenarios that demonstrate the correct
and secure operation of the DVCL shown in figure 2.5. In these scenarios,
we use “ping”, a well-known tool for testing the connectivity between
two computer systems by sending an ICMP echo requests18 and receiving
an ICMP echo reply. We use Wireshark (www.wireshark.org), a tool for
network protocol analysis, to visualize the recorded network data.

18RFC792: Internet Control Message Protocol, pages 14–15

2.2. DVCL EXAMPLE SETUPS 29

	

UML-Switch

VH
2

VH
1

UNIX-Socket
RBE UML-Switch

VH
3

VH
4

UNIX-Socket
RBE

NetKit

Linux
OS

192.168.2.200 /24 192.168.2.150 /24 192.168.2.100 /24 192.168.2.50 /24

192.168.2.102 /24 192.168.2.101 /24

Student A Student B

GH GH

NetKit

Linux
OS

Figure 2.5: Example setup

Scenario 1

Scenario 1 demonstrates that virtual host VH1 of student A can commu-
nicate with virtual host VH4 of student B. Moreover, scenario 1 shows
that the virtual hosts of student A and B act as if they were connected
in the same network segment (hub-like behaviour). Student A runs “ping”
on VH1, trying to connect to VH4. The expected result is that VH1
first sends an address resolution request, using ARP (Address Resolution
Protocol), to obtain the Media Access Control (MAC) address of VH4.
This procedure is common for IP/Ethernet-based networks to obtain the
Ethernet address of a host when only its IP address is known. Once the
MAC address of VH4 is obtained, VH1 sends an echo request which is
answered by an echo reply. The network data which is sent between the
Linux operating systems should be encapsulated in a transport protocol.

Figure 2.6 on the next page shows the network data captured at virtual
network interface eth0 of VH1. As expected, an ARP request is sent to
obtain the MAC address of virtual host VH4 (No. 1). Receiving the
ARP reply indicates that both hosts are in the same local subnet (No. 2).
Afterwards, the echo request is sent which is replied by VH4 (No. 3-4).
The IP addresses of the virtual network interfaces of VH1 and VH4 are
correctly shown as source and destination addresses.

Figure 2.7 on the following page shows the network data that is sent

30 CHAPTER 2. DISTRIBUTED VIRTUAL COMPUTER LAB

	

Figure 2.6: Wireshark capture inside the virtual lab (Scenario 1)

between VH1 and VH4, captured at the network interface of the underlying
Linux operating system on student A’s computer. Due to the encapsulation
of the network data in a transport protocol (shown as UDP), the IP
addresses of the Linux operating systems are correctly shown as source
and destination addresses. The payload of the first UDP packet has a
size of 42 bytes which corresponds to the size of the ARP request as seen
in figure 2.6. We conclude that the virtual hosts of the two students are
capable of communicating with each other and that the network data is
sent encapsulated in a transport protocol.

Scenario 2

Scenario 2 demonstrates that virtual host VH1 of student A cannot com-
municate with the Linux operating system of student B, although their
IP addresses are located in a common subnet (192.168.2.0/24). The

	

Figure 2.7: Wireshark capture outside the virtual lab (Scenario 1)

2.2. DVCL EXAMPLE SETUPS 31

	

Figure 2.8: Wireshark capture inside the virtual lab (Scenario 2)

expected result for this scenario is that no communication between VH1
and the Linux operating system of student B is possible due to the strictly
separated networks. VH1 sends ARP requests to obtain the MAC address
of Student B’s Linux operating system, but these ARP requests will never
be received by the Linux operating system of Student B. Instead, they are
encapsulated and sent to the remote bridge endpoint of Student B.

Figure 2.8 shows that VH1 tries to obtain the MAC address of the
Linux operating system of Student B by sending ARP requests several
times. These requests are not answered due to non-existing connectivity
to the network of the Linux operating systems.

Figure 2.9 on the following page shows that the Linux operating system
receives the ARP request encapsulated in the transport protocol. The
payloads of the UDP packets have a size of 42 bytes which corresponds to
the size of the ARP requests as seen in figure 2.8. Due to the encapsulation,
the Linux operating system does not recognize the packets as ARP requests.
It therefore does not send a reply, but sends the network data to the remote
bridge endpoint. The virtual network of student B however does not contain
a VH with IP address 192.168.2.101, and hence no echo reply will be
sent. (This also shows that student B may add a VH with this IP address.
Hence there is no restriction on the IP addresses that can be used for VH’s
inside the DVCL.)

We conclude that no connectivity is possible between the Linux oper-
ating systems and the virtual hosts, although they use the same subnet.
This shows that the DVCL is securely isolated from the outside world.

32 CHAPTER 2. DISTRIBUTED VIRTUAL COMPUTER LAB

Other use of DVCL

A recent application of the DVCL in a different scope can be found in
[Jonkman, 2016]. J. H. A. Jonkman shows theoretically and practically
that botnet19 simulations are possible in the DVCL. This makes it possible
to perform repeatable and verifiable scientific empirical research on botnets
using our DVCL.

2.3 Conclusion

We presented a DVCL in which remote students can perform network
security exercises inside an encapsulated common networking environment.
The DVCL is built by connecting distinct VCSL’s transparently at OSI-
layer 2 across an arbitrary TCP/IP-based WAN infrastructure like the
internet. To implement this connection, we designed a software component
called ghost host with an interface to access local virtual network traffic.
The ghost host can extract and inject Ethernet frames. We used the
concept of a remote bridge endpoint to transport all local OSI-layer 2
traffic between remote ghost hosts across a TCP/IP-based WAN. As a
proof of concept, we demonstrated an example setup which shows that
both major goals of our effort are reached: the remote virtual networks are
connected transparently at OSI-layer 2 and no intentional or unintentional

19“Bots or software robots are unwanted software applications that are remotely
managed by a botmaster, often unknowingly by the owner of the infected computer
system. The botmaster can give these bots commands and thereby cause harm to users
on the Internet. The botmaster accomplices this via the C&C Systems of the botnet.”

	

Figure 2.9: Wireshark capture outside the virtual lab (Scenario 2)

2.3. CONCLUSION 33

damage can affect systems not participating in the DVCL.
Summarized our DVCL will allow remote students to attend practical

courses in network security similar to courses performed in a real safe-
guarded networking laboratory on a technical level. As an overall result,
this is a considerable step towards combining the advantages of distance
education and on-site training.

34 CHAPTER 2. DISTRIBUTED VIRTUAL COMPUTER LAB

Chapter 3

Adding a Central Authority

In the previous chapter we showed how a DVCL can be built by means
of a transparent connection between two or more VCSL’s [Vranken et al.,
2011]. This resulted in a decentralized architecture with point-to-point
connections between the VCSL’s. We equip each VCSL with an interface
consisting of a ghost host and a remote bridge endpoint, such that a
transparent point-to-point connection can be established.

For connecting to a remote bridge endpoint, a student needs to know
the IP address and port of the computer where the remote bridge endpoint
is located. He has to perform configurations on the guest operating system
level and inside the UML environment. With the point-to-point connection,
also more than two VCSL’s can be connected, e.g., student A can connect
to student B and student B can connect to student C. As result, the three
virtual networks are interconnected into a distributed virtual network and
all virtual hosts in these virtual networks can communicate with each other.
However, connecting three or more VCSL’s can lead to an endless circular
flow of network data and causes high network load. Avoiding circular flow
requires careful planning by the students, which becomes more error prone
as the number of interconnected virtual networks grows. Thus, managing
and organizing the actual setup may consume more time than carrying out
the actual assignment. To solve this, we suggest a centralized architecture,
involving a central authority that connects and manages multiple VCSL’s.

This chapter is based on the following publications: [Haag et al., 2011, Horsmann,
2011]

35

36 CHAPTER 3. ADDING A CENTRAL AUTHORITY

With an appropriate design, the central authority provides a scalable
architecture to which preconfigured VCSL’s can be connected easily.

3.1 Core CA Architecture

The DVCL with central authority (CA) consists of the VCSL’s that run
at the computers of remote students, and that are all connected to the
central authority. Students interact with the central authority only when
connecting their VCSL to the DVCL, and for managing the DVCL. Once
the DVCL has been set up, the central authority is completely transparent.
It acts as a point of distribution: network data that is send between
virtual hosts in different VCSL’s, is forwarded by the central authority
in a transparent way. In fact, since all connected VCSL’s form a single
broadcast domain, the central authority broadcasts the network data send
by a VCSL to all other connected VCSL’s.

The central authority offers functionality to manage multiple DVCL’s.
Hence, different, disjunct groups of students can work in separate DVCL’s,
that are all created and managed using the central authority. The central
authority refers to each DVCL as a session. Hence, a session corresponds to
group of interconnected VCSL’s. By adding sessions and session manage-
ment, two functional layers can be differentiated in the central authority:
a control layer for managing the sessions, and a session layer in which the
actual DVCL’s run. The control layer is used by the students to operate
the DVCL, using the operations as shown in table 3.1.

Table 3.1: Student’s interaction with central authority

No. Description
1 Querying a running session
2 Creating a new session
3 Joining a session
4 Deleting a session

3.1. CORE CA ARCHITECTURE 37

Based on the differentiation of two layers, conceptually also two kinds
of communication channels are differentiated: the control channel for
transporting control data, and the session channel for transporting session
data that is sent to a running session at the session layer. Since the central
authority is a central component where all network and management data
passes, it is an ideal location to record data. Event data (for example:
log-in, log-off of students) can be recorded at both the control layer and
the session layer, while the session layer also offers recording of the sent
network data for each session. An instructor or tutor can examine and
evaluate this data, and provide feedback to the students or grade their
work, or analyse statistics about usage of the DVCL.

Virtual Machine

NetKit

VH

Virtual Network

V
C
SL

Host Operating System

DVCL
Central Authority

Virtual Machine

Guest Operating
System

NetKit

VH

Virtual Network

V
C
S

L

Host Operating System

Student A Student B

Guest Operating
System

Session A

Control Channel Control Channel

Distributor

Session Channel
GH

R
B
E

Control
Layer

Session
Layer

IP
TCP /
UDP

OSI-Layer 4
OSI-Layer 3

Ethernet
OSI-Layer 2

GH
R
B
E

Network
data

Event
data

Event
data

Figure 3.1: Connecting two virtual networks

Figure 3.1 shows a DVCL with CA running a single session. The figure

38 CHAPTER 3. ADDING A CENTRAL AUTHORITY

shows two students running a VCSL on their host operating system. In
those VCSL’s, each student runs a single virtual host (VH). Obviously,
each student can run multiple VH’s and connect them into a virtual
network, multiple students can connect their VCSL, and different groups
of students can run multiple sessions. This scalability is omitted in the
figure for simplicity. The students use the control channel to operate the
central authority and connect their virtual network to a session, using
the operations shown in table 3.1 on page 36. Once the student decides
to connect his virtual network to a certain session, a ghost host with
remote bridge endpoint is created which connects the virtual network to
the session. The ghost host sends the network data of the virtual network
across the session channel to the session it is connected to. Through this
connection, the virtual hosts in the student virtual networks are capable
to communicate with each other, as if they were connected in the same
local network. Figure 3.2 on the next page shows the transmission of an
encapsulated OSI-Layer 2 frame across the session channel. The figure
also shows that event data is recorded at both layers, and network data is
recorded at the session layer.

3.2 CA Example Setup

We implemented a prototype of the DVCL with central authority using
a client-server architecture. The central authority acts as a server and is
hosted by the university. Each student runs a management client appli-
cation which supports connecting his/her VCSL to the central authority.
Figure 3.2 on the facing page shows an example setup of the DVCL with
central authority connecting three VCSL’s. For simplicity, also this figure
only shows VCSL’s with a single virtual host and a single session. The
VCSL’s underlying virtual machine and host operating system layer, as
shown in figure 3.1 on the previous page, are omitted in figure 3.2. We
also omit the first virtualization layer as indicated in figure 1.3 on page 13,
assuming that the host operating system is the Linux operating system
in which Netkit runs. Figure 3.2 shows the control channels and session
channels as well as the IP addresses and port numbers which are assumed
for this example.

We demonstrate in listing 3.1 on page 43 how each student first starts

3.2. CA EXAMPLE SETUP 39

NetKit

S
tu

de
nt

 A
’s

 V
C

S
L

Session A

Virtual Network A
(VNA)

VH1

Operating System
+ Management Client
IP: 192.168.123.10

Distributor

DVCL
Central Authority

GH
R
B
E

NetKit

Student B’s VCSL

Virtual Network B
(VNB)

VH2

NetKit

S
tudent C

’s V
C

S
L

Virtual Network C
(VNC)

VH3GH
R
B
E

GH
R
B
E

IP: 192.168.123.100
Port: 32000

Operating System
+ Management Client
IP: 192.168.123.30

192.168.2.50 /24 192.168.2.100 /24 192.168.2.150 /24

Session
Channel

Session
Channel

Session
Channel

Control
Channel

Control
Channel

Port: 32001

Operating System
+ Management Client
IP: 192.168.123.20

Figure 3.2: Example setup

40 CHAPTER 3. ADDING A CENTRAL AUTHORITY

his VCSL, and next connects to the DVCL. For both operations, the
student enters command lines in a shell of the operating system in which
Netkit runs.

Student A first runs a Netkit script to start virtual machine VH1. VH1 has
a virtual network interface eth0 that is connected to virtual network VNA.
Once VH1 is started, the student configures the virtual network interface.
Similarly, student B starts VH2. VH2 has a virtual network interface eth0
that is connected to virtual network VNB. Once VH2 is started, student B
configures the virtual network interface on VH2. And similarly, student C
starts VH3. VH3 has a virtual network interface eth0 that is connected to
virtual network VNC. Once VH3 is started, student C configures the virtual
network interface on VH3.

For connecting the created virtual networks according to figure 3.2,
we assume that student A first connects to the central authority using
the management client. Please note, that all IP addresses and ports are
exemplary. The management client connects to port 32000 at IP address
192.168.123.100, which is at the server running the central authority.
The server offers port 32000 to serve incoming connections. Next, the
student can use the operations shown in table 3.1 on page 36. Presuming
that no session is running yet, student A creates a new session. Each
session corresponds to a port number on the machine running the central
authority. In this example port 32001 is presumed to be used by session_A.
For connecting virtual network VNA to session_A, the student uses the
join operation and provides the port number of the session. By joining
the session, the ghost host with remote bridge endpoint is created that
exchanges the virtual network’s data with session_A. Student A is now
connected to the central authority and awaits other students to join.

Next, student B connects to the central authority in a similar way.
Student B queries which sessions are running and the central authority
returns the list of all running sessions. The last step is to connect virtual
network VNB to the session created by student A.

Student C performs commands analogous to student B. The virtual
networks of the students are now connected into a distributed virtual
network with a common broadcast domain. Communication between the
virtual hosts VH1, VH2 and VH3 is enabled now. The Ethernet frames that
are exchanged between these virtual hosts are encapsulated/decapsulated

3.3. DISCUSSION ON SCALABILITY 41

in the communication interface of each VCSL and distributed by the central
authority.

3.3 Discussion on Scalability
A shortcoming however is the scalability. Depending on the student’s task,
more or less network traffic will occur. E.g. setting up and configuring
a certain network scenario (e.g. NAT) will result in a small number of
network packets, compared to a botnet simulation, where a huge amount of
network traffic can be expected. In any case all network traffic has to pass
or rather has to be distributed by the CA. This could lead into a resource
issue with different side effects, e.g. in settings, where timing is crucial, the
intermediate CA will cause a delay because the packets may have to pass
additional hops. Also, the maximum network load at the CA should be
taken into account to avoid an overload. This can affect the availability of
the CA and maybe other systems within the provider’s network. If a higher
load of network traffic is expected, the use of the DVCL command line
client (see chapter 2) is recommended to establish a direct (peer-to-peer)
connection between the remote virtual networks. Another solution could
be that the CA initiates direct connections between the DVCL clients for
the Session Channel, e.g. by using UDP hole punching20. This could also
reduce network load at the CA.

However, a benefit of managing and distributing all network traffic of
the VCSL clients is the “god mode”. The network traffic of all started and
connected virtual networks will pass the CA and can therefore be accessed
and observed. This is necessary if the Electronic Exercise Assistant (see
chapter 6) will be added.

3.4 Conclusion
The DVCL enables remote students to perform network security exercises
inside an encapsulated common networking environment. The DVCL is
built by connecting distinct VCSL’s transparently at OSI-layer 2 across an

20UDP hole punching is a method for establishing bidirectional UDP connections
between Internet hosts in private networks using network address translation. https:
//en.wikipedia.org/wiki/UDP_hole_punching, Online, accessed November 2017

https://en.wikipedia.org/wiki/UDP_hole_punching
https://en.wikipedia.org/wiki/UDP_hole_punching

42 CHAPTER 3. ADDING A CENTRAL AUTHORITY

arbitrary TCP/IP-based WAN infrastructure like the internet. To imple-
ment this connection, we designed a communication interface consisting of
a ghost host, to extract and inject Ethernet frames, and a remote bridge
endpoint, to transport these frames between remote ghost hosts across
a TCP/IP-based WAN. Each VCSL is connected through this communi-
cation interface to a session at the central authority, which manages the
connections and distributes network data among the connected VCSL’s
within the session. The central authority can manage multiple sessions.
We demonstrated a prototypical implementation of a DVCL with central
authority using a client-server architecture. A big benefit of this CA is that
it is not anymore required for students to deal with IP addresses of other
learning partners. The CA takes care of all connections and additionally
reduces the risk of a misconfiguration.

3.4. CONCLUSION 43

Listing 3.1: Example Setup

1 // Student A starts VH1
2 vstart VH1 --eth0=VNA
3 // Student A configures the network interface of VH1
4 ifconfig eth0 192.168.2.50 netmask 255.255.255.0 up

5 // Student B starts VH2
6 vstart VH2 --eth0=VNB
7 // Student B configures the network interface of VH2
8 ifconfig eth0 192.168.2.100 netmask 255.255.255.0 up

9 // Student C starts VH3
10 vstart VH3 --eth0=VNC
11 // Student C configures the network interface of VH3
12 ifconfig eth0 192.168.2.150 netmask 255.255.255.0 up

13 // Student A connects to the CA
14 connect VNA to 192.168.123.100:32000
15 // Student A creates a new session
16 create session_A
17 // Student A joins the created session
18 join session_A :32001

19 // Student B connects to the CA
20 connect VNB to 192.168.123.100:32000
21 // Student B queries which sessions are running
22 query sessions
23 // CA returns list of running sessions
24 running sessions:
25 session_A :32001
26 // Student B joins the session
27 join session_A :32001

28 // Student C conncts to the CA and performs commands
analogous to student B

44 CHAPTER 3. ADDING A CENTRAL AUTHORITY

Chapter 4

Applicability Enhancements

This chapter addresses work that arose during the research and development
process of the DVCL environment. This work was necessary and essential
to push our prototypical implementation closer to a productive learning
environment.

The first issue addresses security: The DVCL and the DVCL with
Central Authority (CA) prototypes are able to connect student’s local labs,
even if they are distant from each other. The system ensures, that no other
hosts will be harmed by malicious network packets. The topic, that was
not covered so far, is, that there is always a risk that third parties will try
to unauthorized use, interfere or attack our system. This risk will increase
by the importance of the system. If our system, meaning the DVCL client
and the CA server, will no longer be used in a dedicated example group
for evaluation but in a productive mode (go-live), new requirements will
appear. If the system will be e.g. used to grade a student’s work, it will
be obvious that someone will try e.g. to influence the results. In section
4.1 we disclose, cover and resolve security issues in in the DVCL system
in order to be able to use our system in a productive environment.

The second issue addresses usability: Up to now the DVCL client is
designed as a tool to be used in a command line interface (CLI) environment.
The CLI is a text-based input-output system provided by the operating
system, where a user can interact with the system or a service by entering
certain commands including parameters and receiving textual responses.
The DVCL client requires providing different parameters, e.g. the IP and

45

46 CHAPTER 4. APPLICABILITY ENHANCEMENTS

the port of the DVCL’s Central Authority (CA). The benefits include
a flexible and easy way to add, remove and change parameters, the re-
usability in other programs (batch-mode) and low development effort. A
shortcoming however is, that students first have to learn utilizing the
CLI including certain parameters in order to learn with the DVCL. One
possibility would be to predefine values as far as possible, but this will
not be feasible for certain parameters, e.g. the name of the local network.
In section 4.2 we introduce a Graphical User Interface to increase the
usability of the DVCL client for students.

4.1 Security

In this section, we disclose some security issues of the current DVCL proto-
type. While these issues occurred as minor issues during the development
and testing phase, they will become major issues in a productive environ-
ment. Therefore, we decided to resolve the identified security issues using
appropriate counter-measures.

In the remainder of this chapter, the terms authenticity, integrity and
confidentiality are used according to [Eckert, 2013]:
• Authenticity means the genuineness and the credibility of an object

or subject, which can be verified by using a unique identity and charac-
teristic properties.

• Integrity means, that certain information cannot be manipulated
unauthorized and undetected.

• Confidentiality means, that only authorized subjects are able to access
certain information.

Use case scenario

The DVCL with CA system was designed that remote students can work
together. While the students will use their own computer, the university
has to provide the CA. In our use case scenario, we assume that a student
uses the DVCL client outside the university (e.g. at home) utilizing an

The section 4.1: Security is based on the following publications: [Haag et al.,
2017, Döhring and Kahrau, 2011]

4.1. SECURITY 47

internet connection to connect to the CA. A mobile environment using a
cellular data plan is also possible.

Home University

User

Desktop

Internet

Server

Central Authority
(Session)

Central Authority
Control Channel

Data Channel

DVCL
(Client)

Figure 4.1: Use case diagram of the DVCL with CA

Figure 4.1 shows a corresponding use case diagram of the DVCL with
CA. The left side represents the student’s home, connected via internet
(cloud in the middle) to the university’s CA on the right side. A student,
as a user of his desktop or laptop computer, utilizes the DVCL client to
interact with a university’s CA using a control channel connection. An
additional data channel connection will be established for each remotely
connected virtual network.

Security Issues

During the development, some security issues appeared. Details for each
issue are listed in table 4.1 on the following page. This table first describes
the security issue. E.g. the first issue addresses the fact, that everybody
is able to use the CA if the IP address is known. This may be a desired
behaviour for a general public learning environment, but the security
objective for a university would be to limit the access, e.g. to their own
students. Affected by this issue is the control channel which is open
for everyone to connect to. An appropriate counter measure is to add
a mechanism that users have to authenticate using a previously issued

48 CHAPTER 4. APPLICABILITY ENHANCEMENTS

username and password first. If the credentials are valid, the CA authorizes
the user, otherwise the user will be rejected.

Table 4.1: Security Issues and Counter-Measures

No. 1 Authenticity of the user
Issue Everybody can use the CA if the IP address is known /

public. Furthermore, users or third parties can also connect
to an already started session without connecting to the
control channel first. As a result, it is possible to observe
the network traffic of a certain session and also to inject
packets.

Objective Only certain authorized users, e.g. the participants of a
network course, should be able to use the CA provided
by the university. Furthermore, only authenticated users
should be able to connect to a session.

Affected Control channel on the CA’s side, data channel on the CA’s
side.

Measure 1 The CA shall require a username and password first to
access the control channel.

Measure 2 The CA shall issue an access token for authenticated users
on the control channel, which will be required to use a data
channel.

No. 2 Authenticity of the CA and a CA session
Issue The source code of the DVCL with CA will be public,

because everybody should be able to serve a CA.
Objective The university’s CA as well as their sessions should be

authentic.
Affected CA, CA session.
Measure 3 A verifiable certificate shall be added to the CA.
Measure 4 A verifiable certificate shall be also added to the CA ses-

sions.

4.1. SECURITY 49

No. 3 Confidentiality of the control and session data
Issue Data sent between the client and the CA resp. session

can be read and also reused (e.g. the credentials) by third
parties, if they are in a privileged position.

Objective The data transmitted between client and CA resp. sessions
should be confidential.

Affected Control channel and data channel.
Measure 5 The data transmitted on the control channel should be

encrypted.
Measure 6 The data transmitted on the data channel should also be

encrypted.
No. 4 Integrity of the control and session data
Issue Data sent between the client and the CA can be modified

by third parties, if they are in a privileged position, e.g.
within the same local network using a Man-in-the-middle
attack.

Objective Nobody should be able to modify commands or packets
from or to a student’s lab. This is essential if the DVCL
with CA will be used for an exam.

Affected Control channel and data channel
Measure 7 A verifiable signature for the transmitted data shall be

added.

Security Measures

According to Table 4.1 on the preceding page, four security issues were
identified. These issues can be resolved by adding (resp. implementing)
the following seven measures to our DVCL client server architecture.

Measure 1: Credentials

There are already existing, common concepts to issue and verify user
credentials. For a university, it could be wise to use existing directories, e.g.
via Lightweight Directory Access Protocol (LDAP) or Network Information

50 CHAPTER 4. APPLICABILITY ENHANCEMENTS

Service (NIS), to authorize students and to keep the administration effort
low. For our prototype, we decided to issue and use a combination of
username and password, stored and verifiable using a text file on the
CA. Once a student will connect to the CA, a valid credential will be
required first. For security reasons, it is recommended for final productive
systems to store the passwords hashed rather than in plain text. Equipped
with a username and a password, the DVCL CA tries to find a matching
combination using the database. Once a valid combination is found, the
user is authenticated, otherwise rejected. We successfully added this
measure to our DVCL with CA prototype.

Measure 2: Token

The control and the data channel are separated, independent channels
and rely on different transport protocols (TCP and UDP). An authorized
connection on the control channel does not involve the data channel. We
decided to issue an access token on the control channel when a user was
successfully authorized. This token will be required to authenticate on
the data channel. Since the token will be issued and verified using an
encrypted connection (see Encryption), it cannot be captured and reused
by third parties.

Measure 3 and 4: Certificate

A common concept to be able to verify the authenticity of a certain host is to
use a certificate based on a public key infrastructure (PKI). A PKI involves
a private and a public key pair, based on strong mathematical algorithms.
A message encrypted with a private key, can only be decrypted using the
corresponding public key, and vice versa. For server authentication, the
client uses the server’s public key to encrypt a secret key. The server can
get access to this secret key only if it can decrypt the data from the client
with the correct private key. A common software package, that is able
to deal with a PKI is Open Secure Socket Layer (OpenSSL) 21. Using
OpenSSL, it is possible to create a private key and a certificate for the
server. The key server.key has to be private and stored on the server

21OpenSSL: The Open Source toolkit for SSL/TLS, http://www.openssl.org, Online,
accessed July 2014

http://www.openssl.org

4.1. SECURITY 51

while the certificate server.crt is public and will be used by the server to
identify himself, and also by the client to verify the server’s authenticity.

Using and verifying a certificate can be added with some lines of code to
the DVCL environment. When the DVCL client connects to the server, he
is able to verify the server’s authenticity. In case of an unexpected or faked
certificate, a message will be printed to the student and the connection
will be aborted.

Measure 5 and 6: Encryption

A common method to use encryption in software components is to use
an existing, public software library, for example the Open Secure Socket
Layer (OpenSSL), which provides different symmetric and asymmetric
cryptography algorithms and adjustable key sizes. The implementation of
such a library into an application is rather simple, compared to a self-made
library. We decided to use TCP-based Transport Layer Security (TLS)
[Dierks and Allen, 1999, Dierks and Rescorla, 2006, Dierks and Rescorla,
2008] for the control channel and UDP-based Datagram Transport Layer
Security (DTLS) [Rescorla and Modadugu, 2006, Rescorla and Modadugu,
2012] for the data channel.

Measure 7: Signature

The use of OpenSSL for encryption and decryption does also ensure data
integrity by calculating and verifying a message digest. This digest of the
message will be calculated and appended to the encrypted data before it
is sent to the network. When the message arrives at the destination node,
OpenSSL recalculates the digest based on the data and compares that
digest to the digest appended to the message. If the values do not match,
the data has been corrupted and will not be processed. This is a build-in
process of the TLS22 specification.

22RFC4346, page 3: “The primary goal of the TLS Protocol is to provide privacy
and data integrity between two communicating applications. [...] The connection is
reliable. Message transport includes a message integrity check using a keyed Message
Authentication Code (MAC)”

52 CHAPTER 4. APPLICABILITY ENHANCEMENTS

4.2 Graphical User Interface

A way to improve the usability of the DVCL can be the introduction of
a graphical user interface (GUI) to control the DVCL client. Since the
students are usually more familiar with using a GUI instead of using a CLI,
a lower training period can be expected. This can result in an increased
acceptance level, enables more time for learning and finally can lead to an
improved learning outcome. In order to reduce the training period, the GUI
should support typical DVCL use-cases. Also, common misconfigurations
should be prevented.

Command Line Example

To work in Netkit with networks, which are open for remote connections,
two steps are necessary: First, the creation of at least one virtual host, which
is connected to at least one virtual network and secondly the establishment
of a connection between at least one virtual network and the DVCL Central
Authority. A typical example of these steps is presented in listing 4.1 on
the facing page, starting with the creation of a virtual host, which will
be connected to a virtual network named net1. This network can be
identified and referenced via the file vhub_jens_net1.cnct, which will
be created and resides by default in a subdirectory called .netkit/hubs,
located in the user’s home directory. This identifier and additional required
parameters such as IP address and port of the CA, as well as the path to
the corresponding public certificate, are required to start the DVCL client.
If the certificate is valid, the user has to authenticate using credentials. An
invalid certificate or unknown credentials will terminate the connection.
Using menu item 2 within the dialogue mode provided by the CA, a new
named session can be created. Finally, the virtual network’s local file handle
will be connected to this session by choosing menu item 3. The local virtual
network net1 is now open for remote connections. If another student, for
example a distant learning partner, also connects a local network to the
same session, both networks will behave like a single broadcast domain.

The chapter 4.2: Graphical User Interface is based on the following publication:
[Haag et al., 2017], and also the project output: [Döhring, 2012]

4.2. GRAPHICAL USER INTERFACE 53

Listing 4.1: Using the DVCL via command line

1 # Start the client in Netkit
2 vstart client --eth0=net1

3 # Prepare the virtual network for remote connection
4 DVCLClient -i 192.168.1.25 -p 14534 -f /home/users/jens/.

netkit/hubs/vhub_jens_net1.cnct -c server.crt

5 # Dialogue with the DVCL CA
6 Username: Jens
7 Password: ****

8 Menu
9 1.) Get list of open sessions

10 2.) Create new session
11 3.) Connect to session (Port -Number needed , see 1.) or 2.))
12 4.) Delete session by port number
13 5.) End.

14 Choice: 2
15 Please provide a short description for your session: net1
16 Your created session runs with port number: 14535

17 Choice: 3
18 Connection to session on Port 14535 established.

19 v

Common Use Cases

Table 4.2 on the next page lists typical use cases, which can occur while
utilizing Netkit and the DVCL client. The table starts with different cases
on working with Netkit, followed by major cases occurring while adminis-
trating the CA using the client, and closes with cases originated by the
interaction of Netkit and the client, respectively a remote connection. All
cases except two should be supported in a GUI. To create a host without a
network connection does not make sense in a learning environment which
focuses on networking practices. Connecting a local network to more than
one remote sessions is technical possible but increases the risk of a circle,
which can lead to a failure of all involved systems.

54 CHAPTER 4. APPLICABILITY ENHANCEMENTS

Table 4.2: Use Cases

No. Case
1 Create a host without a network connection 2
2 Create a host with a network connection 4
3 Create a host with more than one network connection 4

4 Login to the CA with username and password 4
5 List available remote sessions 4
6 Create a new remote session 4
7 Delete a remote session 4

8 Create a local network without a remote connection 4
9 Connect a local network to a remote session 4
10 Connect a local network to more than one remote session 2
11 Connect more than one local network to one remote session 4
12 Disconnect a local network from a remotely connected session 4

Explanation:
4 This case should be supported via GUI.
2 This case should not be supported via GUI.

In addition to these common cases, this GUI should have the ability
to predefine certain required parameters, e.g. the IP address of the CA.
Nevertheless, these parameters should be still editable. Moreover, the CLI
client should not be replaced by the GUI but should be used optionally,
for example in custom scripts.

A GUI for the DVCL Client

This section introduces a developed example GUI for the DVCL client,
which supports the use cases listed in table 4.2. These GUI can be started
as usual by clicking on a program icon. This can also be an automatic
process within the DVCL environment using the autostart feature of the
underlying operating system. The following screenshots within this chapter

4.2. GRAPHICAL USER INTERFACE 55

were captured using an Ubuntu Linux distribution. The look, fonts and
the colours were set by the Ubuntu theme and will look different on other
desktop environments.

At first, a logon screen will appear as shown in figure 4.2. This screen
is responsible to support case no. 4. The address of the CA and also
the path to the certificate are predefined but still editable. Since the
certificate is stored as a text file, the related path can be entered directly
or the button “Browse” can be used to open a file requester. Also, a
username and a password have to be entered in order to continue. The
button “Reset” will set back all entries to their default values. The button
“Login” establishes a connection to the given CA and sends username and
password for verification. The certificate will also be validated. If one
of these processes fails, the connection will be aborted and the GUI will
report an error.

Figure 4.2: GUI login

If the credentials and also the certificate are successfully validated, the
main screen will appear as illustrated in 4.3 on the next page. This screen
consists of three essential areas: The local area on the left, the remote
area on the right and the status area at the bottom.

The local area can be used to administrate local Netkit hosts and
networks and thus is responsible for case no. 2 and 3. Using the button
“Create virtual Host/Network” will present a dialog shown in figure 4.4 on
page 57. This dialogue can be used to create a new virtual host connected
to at least one virtual network. A hostname and at least one named
network are required, fulfilling case no. 1. The button “+” can be used
to add and name additional networks, for example to create a router.

56 CHAPTER 4. APPLICABILITY ENHANCEMENTS

Figure 4.3: GUI main view

The button “Cancel” will close this dialogue, the button “OK” creates a
Netkit host according to the settings of the dialogue. This host will run
in a new window, this is identical to a start via CLI (e.g. vstart client
--eth0=net1). The new network(s) will appear in a list at the left area.
This list also captures virtual networks, which are not started using the
GUI but the CLI. We utilize a function of the linux kernel called inotify
to observe a certain directory and to detect, if something has changed.
If a Netkit network was started, a file handle will be placed in a certain
preconfigured directory. This file handle will be used by the virtual hosts
to connect to a certain virtual network.

An example screen can be found in figure 4.6 on page 58.
The remote area can be used to administrate sessions of the CA. In

the GUI, the term session was mapped to the closer matching network

4.2. GRAPHICAL USER INTERFACE 57

Figure 4.4: GUI to create a new Netkit host

term Hub. Already existing sessions will be listed directly after the login,
according to case no. 5. A new session can be created according to case no.
6 using the button “Create Hub”. This leads to a new dialogue, which is
presented in figure 4.5. The session first requires a name. Additionally, two
features are planned but still not implemented: The creator of the session
as the “owner” should be able to set a password. Other participants, e.g.
the learning group members, have to know and also have to enter this
password in order to connect to this session. Also, the invitation of an
electronic exercise assistant (see chapter 6: Electronic Exercise Assistant),
e.g. to guide certain exercises, is planned. The button “Cancel” will close
this dialogue without any results, “OK” will create a new remote session
on the CA. This session will appear immediately in the remote area. An
example screen can also be found in figure 4.6.

Figure 4.5: GUI to create a new remote hub

Local networks can stay local, according to case no. 8. A local network

58 CHAPTER 4. APPLICABILITY ENHANCEMENTS

can also be connected to a remote session (case no. 9), by using the button
“Connect”. This requires to select a previously created network in the
local area and an existing session in the remote area first. An established
connection between a local network and a remote session will be displayed
in the status area. This connection can be terminated by selecting the
related entry and using the button “Disconnect” (case no. 12). It is possible
to connect more than one local network to the same remote session (case
no. 11). An additional connection attempt from an already connected
local network will be aborted and a message will pop up (case no. 10).

Figure 4.6: GUI showing a connected network

4.3. CONCLUSION 59

4.3 Conclusion
In section 4.1 security issues in our DVCL environment were presented and
each of them can lead to a threat. This is why we added counter-measures
to cover each security issue. Summarized, these measures are targeted
• to get authentic users,
• to get confidential and unmodified data between the DVCL client and

the CA server,
• to provide a verifiable authentic CA and
• to get also authentic users within a DVCL session.

These new gained properties of our DVCL environment express a sig-
nificant step towards a productive learning environment. Nevertheless, the
process of identifying security issues followed by adding counter-measures
is a continuous process where the system including the applied measures
needs to be reviewed again. Furthermore, we used a generic scenario
which does not cover special situations, for example incorporating certain
examination rules. These situations may require a stronger security setting
and thus again a security review.

In section 4.2 we showed that the developed GUI is an example on how
essential interactions with the DVCL can be graphically supported and
simplified. Since command line parameters are not required, the training
period for students can be shortened and they can spend more time working
on the exercises. Moreover, we expect a higher acceptance level and more
students willing to use our DVCL environment for learning.

We also created a possibility that students can intercommunicate within
the GUI in a so-called lobby. An example can be viewed in figure 4.7 on
the next page. Using the lobby, students can write text messages which
can be read by other participants in realtime. The primary goal is that
connected DVCL users can arrange and coordinate themselves on their
own without the need of third party tools, e.g. phone, Skype, Whatsapp.
A further development of this lobby in the form of a virtual classroom can
be found in chapter 7.

60 CHAPTER 4. APPLICABILITY ENHANCEMENTS

Figure 4.7: Lobby Chat

Part II

Educational Aspects of
DVCL

61

Chapter 5

Course Evaluation

Computer science curricula for students at universities nowadays include
courses on networking and information technology (IT) security. Teaching
theory on networking and IT security is usually done by means of textbooks
and classes (either face-to-face classes or virtual classes, which are popular
at universities for distance education). To anchor and deepen the acquired
theoretical knowledge, a commonly used teaching method is to hand out
practical assignments. While solving the assignments can be voluntary,
a mandatory practical course can be used to guide the students at the
university while working on the assignments and to finally verify if the
students have successfully applied their theoretical knowledge.

In a steadily changing world with new technologies, growing mobile
connectivity and everytime-everywhere character it seems natural that
these changes may impact the students’ needs and requirements regarding
their learning environment. With respect to students working on assign-
ments in a physical lab at a traditional university, we expect a growing
demand for computer supported learning environments. The obvious ques-
tion is whether our aforementioned concepts and prototypes fit into and
can improve upon a classic on-campus learning environment. A way for
educational staff to answer this question is to interrogate the students
about their opinions (acceptance research).

In the winter semester 2012, we evaluated a practical course at the

This chapter is based on the following publication: [Haag et al., 2013, Haag et al.,
2014a]

63

64 CHAPTER 5. COURSE EVALUATION

Cologne University of Applied Sciences, where students have to work out
and solve assignments. They also have to defend their solutions. A special
property of this course is that the students are given a high degree of
flexibility during their assignment preparation time. We wanted to discover
the learning behaviour of students who are free to choose their learning
environment in order to successfully complete the course. In addition, we
wanted to determine the success of the course. The results will be used as
a motivation for future work with respect to an optimized alignment of
our technical implementation and practical course concepts in place.

5.1 Learning Situation and Environment

All 3rd semester students of the Bachelor programs at the department
of computer science at the Cologne University of Applied Sciences in
Germany have to take part in the course “Communication technology
and networks (German: Kommunikationstechnik und Netze)”, where they
learn about concepts and standards of computer networks, hosts and
intercommunications. The course consists of two hours of weekly lectures,
accompanied and supplemented by one additional hour, where students
work on their assignments in a practical course (in German: Praktikum).
Students are required to pass the practical course as a prerequisite to take
the exam. According to the curriculum, the practical course’s outcome is
either pass or fail while the exam is being graded. It is planned but not
mandatory to participate in the lecture and practical course within the
same semester.

The practical course is organized as follows: Students have to register to
take part. In a kick off meeting they will get to know the course advisors, the
assignments and the computer laboratory. The course advisors are members
of the academic staff at the university, have expert knowledge about the
course content and are able to support and guide the students. The
assignments are related to certain theoretical concepts of the lecture and
facilitate that students have to apply their previously acquired knowledge,
e.g. by setting up and configuring real world networking scenarios or by
analysing network traffic.

After the kick off meeting the students have to work out and solve the
assignments within a specified time (currently 3 weeks). Students were told

5.2. NETWORKING ASSIGNMENT EXAMPLE 65

that they are free to choose their learning environment; the assignments
were prepared not to require any special setting. Students can work e.g.
alone, in a learning group, at home, at the lab or in any combination. No
matter what specific learning environment they end up choosing, they work
on the same assignments. The students that choose to work in groups are
free in forming groups of any size and organize the group and work as they
please. Students were also told to be able to get support in guided learning
hours, which are regularly offered by the course advisors. The students
are given this flexibility, so that they can choose the learning environment
that best suits their respective learning.

The aim of the practical course is to make sure that every student has
learned the concepts related to the assignment, has an understanding of the
solution and is able to reproduce and defend the solution. To successfully
complete the course each student has to demonstrate and defend the solved
assignment in a final bilateral expert talk with a course advisor. The course
advisor knows the solution and possible ways of solving. He is able to
judge whether a student has successfully acquired and applied theoretical
concepts of the lecture.

5.2 Networking Assignment Example

Most of today’s intra- and internetworking were set up and configured in a
decentralized manner by several different IT network administrators. This
decentralized approach works, because that interconnection of computer
hosts is based on commonly accepted and applied standards. In our
practical course, the students were given real world assignments in order
to practice the application of the aforementioned networking standards
and the configuration of modern networks. One such assignment taken
from the examined course is:

“Set up and configure a scenario with at least four hosts (e.g. client,
router1, router2, server) to demonstrate routing behaviour. The client and
the server should be located in different networks. The client should be able
to intercommunicate with the server by using the intermediate router1 and
router2.”

66 CHAPTER 5. COURSE EVALUATION

The minimal requirement for this setup is shown in Figure 5.1, consisting
of at least four hosts. The client and the server have one network interface;
the routers are equipped with two network interfaces.

	

SERVER

ROUTER1

CLIENT

NETWORK1 NETWORK3

ROUTER2

NETWORK2

Figure 5.1: Example network setup

A valid and straightforward solution for this networking assignment
example solved in the virtual environment Netkit is stated in listing 5.1.

In order to accomplish the given task, students will have to start
four virtual hosts and interconnect them accordingly within three virtual
networks. They will then have to assign appropriate addresses to these
networks and hosts and ultimately configure the routing on each host.
Once the network is configured properly, students can demonstrate the
validity of their solution by sending network packets between client and
server and by using a suitable tool (e.g. tcpdump23) to analyse the packet
flow. Students have to assure that the packets match their expectations
based on the aforementioned standards.

After working through this exercise, the students have learned about
network classes, the OSI layer model, the concept of routing, basic net-
work configuration tools in Unix-based systems, routing tables and their
manipulation and tools to analyse network packets and network behaviour.

5.3 Evaluation

In the winter semester 2012, 249 students signed up for the practical course
“Communication technology and networks”. 178 of them (71%) participated
in our evaluation process. The students were divided into smaller groups

23tcpdump: a powerful command-line packet analyser. http://www.tcpdump.org,
Online, accessed December 2017

http://www.tcpdump.org

5.3. EVALUATION 67

Listing 5.1: Example Solution

1 // Create the virtual environment
2 vstart client --eth0=network1
3 vstart router1 --eth0=network1 --eth1=network2
4 vstart router2 --eth0=network2 --eth2=network3
5 vstart server --eth0=network3

6 // Configure the client
7 ifconfig eth0 150.0.0.1 up
8 route add default gw 150.0.0.2

9 // Configure router1
10 ifconfig eth0 150.0.0.2 up
11 ifconfig eth1 160.0.0.1 up
12 route add -net 170.0.0.0 netmask 255.255.0.0 gateway

160.0.0.2

13 // Configure router2
14 ifconfig eth0 160.0.0.2 up
15 ifconfig eth1 170.0.0.1 up
16 route add -net 150.0.0.0 netmask 255.255.0.0 gateway

160.0.0.1

17 // Configure the server
18 ifconfig eth0 170.0.0.2 up
19 route add default gw 170.0.0.1

with reserved timeslots to get an evenly distributed utilization of the
laboratory. These groups were created for organizational purpose only
and were not related to any didactic concept. Three course advisors were
working at the laboratory which provides 15 computer workstations for
the students.

We prepared and distributed a free and anonymous questionnaire at
the end of the winter semester, after the students completed their last
expert talk. The aim of this summative evaluation was to evaluate the
learning behaviour of the students when they work on the assignments,
and the success of the practical networking course. Our major motivation
was to determine whether the learning situation and environment in our

68 CHAPTER 5. COURSE EVALUATION

practical course meet the needs of the students and to get findings about
key factors with respect to possible improvements to the course. For that
purpose, questions were designed to interrogate about different parameters,
which should give us an answer to the following questions:

Q1: Which learning environment did the students choose with respect
to learning location, learning method and guided learning, and which
environment would they prefer with respect to form of education?

Q2: What is the objective and subjective success of the course?

For Q1 we designed 6 questions to interrogate the students. The
appropriate evaluation can be found in the following sections A to D. To
assess the course success (Q2) we designed 3 questions for the students in
order to interrogate their subjective course success. In addition, we utilize
the course’s list of passed and failed students in order to get an objective
success rate. The appropriate evaluation can be found in section E.

The questions were designed to interrogate students in the actual
course. The results may be biased, e.g. by student’s previous experiences
on e-learning or group work. Nevertheless, with a sample size of over 200
students we expect a convincing result.

A. Learning Location

The students were able to work on the assignments without the need
for own equipment. The university provided all resources needed (e.g.
computer lab with host and network infrastructure, staff, schedule) so that
students could work according to their fixed lesson plan. In addition to
this, the assignments were prepared to be solved without the need to be
at the lab physically by using virtualization technology. The aim was to
give students as much flexibility as possible preparing the assignments.
We wanted to know how this flexibility was accepted by the students. We
therefore asked them: “Did you work primarily at home, in the laboratory,
or in a combination of the two?”

Figure 5.2 on the facing page shows that with 51% a little more than
half of the students worked in the laboratory almost exclusively, 22%

5.3. EVALUATION 69

22%

51%

25%

2%

0%

10%

20%

30%

40%

50%

60%

at home in laboratory in combination not specified

St
u

d
en

ts

Rating

Figure 5.2: Learning Location

worked only at home and 25% used a combined approach. This shows that
76% of students rely on utilizing the university’s resources by working in
the laboratory, while 47% of our students accept the offer to work at home
independently from the lab, at least partially.

B. Learning Method

The students were free to choose whether to learn and work on their
own or in a group setting. Given that they had to defend their solution
individually, we wanted to know which learning method they chose for
preparing the assignments. Our question was “Did you work primarily
alone, in a group, or a combination of the two?”

Figure 5.3 on the next page shows that 16% learned on their own, 66%
learned in a group setting, and 17% used a combination of both approaches.
This adds up to 83% of our students for whom a group setting is an
important part of their learning process, despite being tested individually.

C. Guided Learning

The students had the opportunity to get support when working on their
assignments by means of getting help and guidance from the course advisors.

70 CHAPTER 5. COURSE EVALUATION

16%

66%

17%

1%
0%

10%

20%

30%

40%

50%

60%

70%

alone in a group in combination not specified

St
u

d
en

ts

Rating

Figure 5.3: Learning Method

Guided learning hours were scheduled for this, which were open to all
of the students. We did so to enable all our students that needed help
to ask for and to receive it, and they were made voluntary, so that not
every student needed to commute to the lab, i.e. the university, despite
not needing any guidance. We wanted to know how much of a demand
for these hours existed among the students, and how these hours were
perceived by them. First, we asked them: “How often have you utilized
the guided learning hours?”

Figure 5.4 on the facing page shows, that there was an even distribution
of students who felt they needed a lot of help, students that needed very
little help or no help at all, and students that fell just in between. That
shows that these guided learning hours are very valuable to a lot of students,
and that their existence seems vital to the course design. It also shows that
a voluntary nature is very reasonable when it comes to guided learning
hours. Next, we wanted to know how students assess the availability of the
course advisors in order to verify students are indeed able to get support
if they need to. In our evaluation, we asked the students: “How do you
rate the availability of the course advisors?”

While most of the students (85%) were being able to get support if
they needed to, nobody was left alone (see figure 5.5 on the next page).

5.3. EVALUATION 71

33%
31%

35%

1%

0%

5%

10%

15%

20%

25%

30%

35%

40%

often from time to time rarely not specified

St
u

d
en

ts

Rating

Figure 5.4: Utilization of the guided learning hours

85%

14%

0% 1%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

good medium bad not specified

St
u

d
en

ts

Rating

Figure 5.5: Availability of the course advisors

72 CHAPTER 5. COURSE EVALUATION

83%

15%

2% 0%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

good medium bad not specified

St
u

d
en

ts

Rating

Figure 5.6: Quality of support

Next, we asked the students: “How do you rate the quality of support
during the guided learning hours?”

Figure 5.6 shows that the vast majority felt that the support’s quality
was very good, and only 2% thought poorly of it.

D. Preferred Style of Education

With respect to the blended learning approach, where conventional class-
room settings and e-learning will be combined, we wanted to know what
form of education the students would prefer. We asked: “In which of the
following scenarios would you expect your learning success to be high-
est: working online with an e-learning system, working in the lab in a
face-to-face setting, or in a combination of the two?”

According to figure 5.7 on page 74, 8% of the students would prefer
to learn exclusively in an e-learning environment, 43% prefer to learn
exclusively in a conventional face-to-face classroom setting and 41% of the
students think it would be beneficial to combine these two approaches.
While this shows that the majority (84%) of the students think of a classical
face-to-face environment as essential to their learning process, 49% would
welcome the introduction of an additional e-learning environment.

5.4. CONCLUSION 73

E. Success Rate

The objective success rate of the course was 77%. Out of 249 registered
students, 191 students passed, i.e. they worked out the assignments, and
demonstrated and defended their solutions successfully. Most of the 23%
unsuccessful students registered but did not participate at all; some seemed
to have other shortcomings; a few tried but could not defend their solution
properly. Because of the anonymous nature of our evaluation and because
the practical course is not graded but has a result of either passed of failed,
we cannot deduce whether or how the success rates differ among different
groups of students. We also wanted to know what students thought about
their subjective learning success. We first asked them: “How would you
rate your own knowledge acquisition with respect to the practical course?”

According to Figure 5.8 on the following page, a majority of 78% rated
their personal knowledge acquisition as high. Next, we wanted to know
what skills students had before the course. We asked them: “How would
you assess your level of familiarity with the course’s contents prior to the
course?”

The evaluation in Figure 5.9 on page 75 shows that 21% of the students
assess their own familiarity with the course content as high, 25% as medium
and nearly half of the students assess their pre-course knowledge as low.
In a third question, we asked the students: “How do you rate the difficulty
level of this practical course?”

Figure 5.10 on page 75 shows that a majority of the students (70%)
assessed the difficulty level of the practical course as medium. Only 9%
found it easy and only 13% struggled and found the assignments hard to
solve.

5.4 Conclusion
With a participation rate of over 70% of 249 students in our evaluation we
acquired a representative sample of the learning behaviour in a practical
networking course. With respect to our second research question Q2 we
found out that we obviously observed an objectively successful course, as
participants had a success rate of over 75% in the winter semester 2012.
The flexibility granted to the students in preparing their assignments was
generally well accepted and the students utilized all possibilities to varying

74 CHAPTER 5. COURSE EVALUATION

8%

43%
41%

8%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

e-learning face-to-face in combination not specified

St
u

d
en

ts

Rating

Figure 5.7: Style of education

78%

13%

1%

8%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

high medium low not specified

St
u

d
en

ts

Rating

Figure 5.8: Knowledge acquisition

5.4. CONCLUSION 75

21%

25%

47%

7%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

high medium low not specified

St
u

d
en

ts

Rating

Figure 5.9: Preknowledge

9%

70%

13%

7%

0%

10%

20%

30%

40%

50%

60%

70%

80%

easy medium hard not specified

St
u

d
en

ts

Rating

Figure 5.10: Difficulty level of the course

76 CHAPTER 5. COURSE EVALUATION

degrees. Without being recommended certain learning environments or a
certain learning behaviour, the students seemingly chose what they deemed
best for them personally, resulting in a high success rate of the course. We
were also able to find results regarding our research question Q1. While the
preferences for learning environments and behaviour were fairly distributed,
a predominant majority of the students thought of working in groups as
well as receiving guidance and feedback as crucial to their learning success.
Students are also interested in new and modernized learning environments.
It is important that these new environments do not replace more traditional
ones, but rather add on to them.

One way of modernizing the practical course would be the introduction
of an e-learning system, which would be explicitly welcomed by 49% of the
students. In addition to that, nearly half of the students said that they
would like to work independently from the lab at least partially, which
they would be enabled to do by the introduction of such a system.

Given the students’ preference for group working and guided learning,
one should take these two key factors into account when introducing
an e-learning system. This means that, in order to gain the students’
acceptance, an e-learning system should enable collaboration as well as
guidance, and shouldn’t be limited to simply providing an environment for
solving assignments online.

Chapter 6

Electronic Exercise
Assistant

Recent evaluation shows that students of a traditional on-campus network-
ing course deem it crucial for their learning success to be able to get support
from a course advisor (see chapter 5). While an on-campus university will
be able to provide course advisors, which can support students in so-called
guided learning hours, this support is no longer feasible if students work
e.g. at home in the evening hours using a virtual lab.

A common way to resolve this issue is an intelligent tutoring systems
(ITS). An intelligent tutoring system is a computer system that aims
to provide instruction or feedback to learners, usually without requiring
intervention from a human advisor [Corbett et al., 1997, Psotka et al., 1988].
Literature reports many scopes where tutoring systems were developed
or applied, e.g. in the scope of teaching mathematics [Heeren et al.,
2008, Gerdes et al., 2010, Melis et al., 2004, Canfield, 2001], databases [Yang,
2011, Kenny and Pahl, 2005, Suraweera and Mitrovic, 2004], programming
languages [Queirós and Leal, 2012] like JAVA [Sykes and Franek, 2003,
Vesin et al., 2013] or Haskell [Jeuring et al., 2014], IT security [Hu et al.,
2003, Mahdi et al., 2016, Hu et al., 2004], and physics [Vanlehn et al.,
2005, Albacete and VanLehn, 2000].

In this chapter, we introduce a tutoring system called Electronic Exer-

This chapter is based on the following publications: [Haag et al., 2012, Alfers,
2013, Haag et al., 2014b]

77

78 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

cise Assistant (EEA) for our DVCL environment. The aim of this EEA is
to offer support and guidance for students while working out an exercise,
even if a human course advisor is not available.

This section is divided into six sections. In the first section, we start by
showing a typical network example exercise and an appropriate possible
solution using our VCSL, followed by operating principles of a human
course advisor with respect to this exercise in the second section. In the
third section, we introduce our concept of an Electronic Exercise Assistant
(EEA) an we demonstrate the technical feasibility: Our EEA is able to
detect a student’s lab setup based on a given exercise and observed network
traffic. In the following fourth section, we show the educational feasibility.
We introduce our concept to model exercises in order to be able to verify
and also to guide different exercises. The fifth section introduces the
architecture of our Electronic Exercise Assistant followed and concluded
by a complete guidance example in section six.

6.1 A Typical Exercise Example

A very common task for future IT network administrators is to setup,
configure and probably secure a network. Therefore, an example assignment
for students participating in a networking course could be:

“Setup and configure a scenario with at least three hosts (client, router,
server). Client and server should be located within different subnets. The
client should be able to intercommunicate with the server by using the
intermediate router. The routing should be based on static routing tables.”

The minimal requirement for this setup is shown in Figure 6.1, consisting
of at least three hosts. The client and the server have one network interface;
the router is equipped with two network interfaces: one interface connects
to a network with the server, the other one with the client.

In this example exercise, students will have to set up hosts and intercon-
nect them accordingly within two different networks. They will then have
to assign appropriate IP addresses to these hosts and ultimately configure
the routing by altering the routing tables on the hosts. Once the setup is

6.2. PERFORMANCE OF A HUMAN COURSE ADVISOR 79

Host	
 server

Host	
 router

Host	
 client

Network	
 n1 Network	
 n2

Figure 6.1: Example Network Setup

configured properly, students can demonstrate the validity of their solution,
e.g. by sending network packets between client and server.

While setting up and configuring this scenario, the students can gather
several basic and advanced practical experiences, like designing, preparing
and setting up an example network scenario according to the assignment,
configuring the hosts and network interfaces, configuring the routing and
discovering different behaviour caused by different configurations.

Solve the Exercise

To solve this exercise, students need to know at least the basic commands
to start and to administrate the virtual lab (Netkit). In addition, they have
to apply their networking knowledge to configure the hosts according to
the assignment. Using the VCSL, a valid and straightforward configuration
to solve the example assignment may look like stated in listing 6.1 on the
next page.

6.2 Performance of a Human Course Advisor
While working on this assignment, the human course advisor can guide the
students in several ways by asking, checking or discussing questions like:

• How should the final setup look like?

• How many hosts are already there?

• Do we have at least two networks?

• Do we have appropriate IPs?

• Can the client and the server intercommunicate with the router?

80 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

Listing 6.1: Valid solution using Netkit

1 // Create the hosts and networks in Netkit
2 vstart client --eth0=n1
3 vstart router --eth0=n1 --eth1=n2
4 vstart server --eth0=n2

5 // Assign IP address on the client
6 ifconfig eth0 10.0.0.1 up

7 // Assign IP address on the router
8 ifconfig eth0 10.0.0.2 up
9 ifconfig eth1 11.0.0.2 up

10 // Assign IP address on the server
11 ifconfig eth0 11.0.0.1 up

12 // Set default gateway on the client
13 route add default gw 10.0.0.2

14 // Set default gateway on the server
15 route add default gw 11.0.0.2

16 // Connection test on client to the server
17 ping 11.0.0.1

• Is the gateway correctly set?

• Can the client communicate with the server and vice versa?

Finally, the course advisor will check the setup to verify that the
students’ work fulfils the requirements of the assignment. Possible checks
could be:

• Do we have at least three hosts and two networks?

• Do we have a router between two hosts?

• Does the routing work?

The course advisor knows different, well-known ways to detect routing
functionality within a network. In addition, he needs access to the students’

6.3. TECHNICAL FEASIBILITY 81

setup. If the network architecture is known, a simple ping24 command
between two hosts located in different subnets shows if they can reach
each other, ergo the routing works or not. If the command traceroute25

reports one or more hosts between the source and destination host, the
routing should also work. The tools ping and traceroute are powerful
tools often used by network administrators in real world scenarios to
analyse a network. They use special techniques on the network layer to
determine the network behaviour and will provide their results to the
administrator. A shortcoming however is that these tools are connected
neither to an assignment nor to a desired setup or network behaviour in
any way. Choosing suitable tools and checking a student’s setup is usually
based on the course advisor’s expert knowledge.

6.3 Technical Feasibility

One aspect to be considered when designing an Electronic Exercise Assis-
tant (EEA) is the technical feasibility. One initial question is:

Is it possible to check the students’ VCL setup by an EEA with respect to
an existing exercise?

In the following we show that our EEA prototype is able to check a
VCL setup within the scope of the previously introduced network example
exercise in chapter 6.1. Strictly speaking, the EEA can detect if routing
occurs in a given Netkit setup.

24RFC1208, A Glossary of Networking Terms, page 13: “ping: Packet internet groper.
A program used to test reachability of destinations by sending them an ICMP echo
request and waiting for a reply.”

25RFC1393, Traceroute Using an IP Option, page 2: “The existing traceroute operates
by sending out a packet with a Time To Live (TTL) of 1. The first hop then sends back
an ICMP error message indicating that the packet could not be forwarded because the
TTL expired. The packet is then resent with a TTL of 2, and the second hop returns
the TTL expired. This process continues until the destination is reached. The purpose
behind this is to record the source of each ICMP TTL exceeded message to provide a
trace of the path the packet took to reach the destination.”

82 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

Concept

When students work out the networking example exercise, network packets
will occur. A big benefit of the VCL is that all started virtual networks are
located on the local computer and can therefore be accessed and observed.
While the course advisor uses tools at a specific point of time (e.g. when
the student thinks that he finished the exercise), the EEA will be able to
constantly observe the network packet flow. In the next step, we try to
model the knowledge, which is used by the course advisor to check the
student’s setup, to be also processed by the ECA. An example to determine
routing behaviour within a network is:

“Routing occurs if an OSI layer 3 IP transmission of a network packet
between two hosts is based on more than one OSI layer 2 transmissions”.

Major parts of the course advisor’s knowledge could be represented as
rules of this kind. Finally, the EEA should be able to apply this knowledge
to the observed network packets to determine whether desired network
behaviour occurs (e.g. routed network packets).

The communication concept of the EEA is shown in Figure 6.2. We
created a new software program which consists of two major processes:

The first process automatically captures all network packets from
all local virtual networks of a student’s VCL and stores them into a
database. This capturing will be done by using ghost hosts. A ghost
host is an additional virtual host connected to a virtual network but is
completely transparent to other hosts and therefore does not interfere
with the student’s setup. The virtual network with hub-like behaviour
guarantees that network data is distributed to all other locally connected
virtual hosts, even to the ghost host. A ghost host will be attached to
every started virtual network. Storing the network packets will be done
by using a SQlite26 database. SQlite is a relational database and can
be managed by using standard SQL commands. A big benefit is that a
SQlite database does not need an additional database server but can be

26SQlite: "SQLite is a software library that implements a self-contained, server-less,
zero-configuration, transactional SQL database engine." http://www.sqlite.org, Online,
accessed April 2015.

http://www.sqlite.org

6.3. TECHNICAL FEASIBILITY 83

Electronic Exercise Assistant (EEA) Architecture Netkit Environment

Virtual Netkit Host
(client)

Virtual Netkit Host
(router)

Virtual Netkit Host
(server)

Ghost Host
(subnet1)

Ghost Host
(subnet2)

Database
Modeled

Knowledge

Student

EEA

Student starts the EEA
and receives its output

Student
administrates

and uses Netkit

Figure 6.2: Architecture of the EEA interacting with a student and Netkit

embedded completely into the EEA. In addition, SQlite is open source
software and available for free. An entry of the EEA’s database contains
the raw network packet, a network identifier which represents the virtual
network origin and several extracted packet header fields like MAC and IP
addresses.

The second process runs parallel to the first process and is able to
continuously apply the knowledge. In future concepts knowledge should be
represented by ontologies or grammars on an additional implementation
layer. In our exemplary implementation, we decided to use a canonical
approach by directly transforming rules to SQL queries on the database
containing recorded network packets. In particular, we modelled the routing
statement by using only one SQL query (see listing 6.2 on the following
page) to prove this statement.

The result of this SQL query is either “YES” or “NO”, depending on the

84 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

Listing 6.2: SQL query to detect routing

1 -- Subquery (3)
2 SELECT
3 CASE WHEN COUNT(HOPS) = 0 THEN 'NO' ELSE 'YES' END
4 AS ROUTING_DETECTED
5 FROM
6 (
7 -- Subquery (2)
8 SELECT IPv4_SOURCE , IPv4_DESTINATION ,
9 COUNT(SOURCE) as HOPS

10 FROM
11 (
12 -- Subquery (1)
13 SELECT IPv4_SOURCE , SOURCE , IPv4_DESTINATION
14 FROM ETHERNET
15 WHERE IPv4_SOURCE NOTNULL
16 AND IPv4_DESTINATION NOTNULL
17 GROUP BY SOURCE , IPv4_SOURCE ,
18 DESTINATION , IPv4_DESTINATION
19 -- Closing Subquery (2)
20)
21 GROUP BY IPv4_SOURCE , IPv4_DESTINATION
22 -- Closing Subquery (3)
23)
24 WHERE HOPS > 1;

stored packets matching the routing statement. The first query (1) gathers
all OSI layer 2 and 3 connections between hosts excluding broadcasts and
non-IP traffic like ARP. Based on the result, the second query (2) counts
the MAC tuples for each IP connection. Based on this result, the third
query (3) will report “YES” if the second query found an IP connection
based on more than one MAC tuples and “NO” otherwise. The return
values “YES” or “NO” are for demonstration purposes only. They will be
processed further by the EEA and could lead to the output “Assignment
successfully finished” or to a message that something went wrong.

6.3. TECHNICAL FEASIBILITY 85

Example

Detecting routing functionality is only one example. Based on the traced
network packets in the database the EEA will be able to detect several
properties and behaviours within a Netkit setup like:

• Presence and configuration of hosts and networks

• Occurrences and properties of application-based data communication,
e.g. sent E-Mail, FTP transfer

• Network behaviour, e.g. routing, NAT

Similar to the human course advisor, the EEA should be able to simulate
the behaviour of a real course advisor on a technical level. Prepared with
more knowledge, optionally aligned in a particular order, the EEA will not
be limited to check the final setup, but will be able to guide students while
they are working on an assignment, to provide them with hints and help
when something goes wrong, and to verify and perhaps grade the students’
work.

Finally, we show an example guidance of the Electronic Course Advisor
prototype for the previously introduced network example assignment. The
listings show the output of the EEA while a student solves the assignment.
The output is ordered top-down; new messages from the EEA arrive at
the bottom and can supersede previous messages.

The student will first start the EEA, which can even be an automated
task, and receives the output of listing 6.3. The VCL is initially clean
which means that no host or network is started yet.

Listing 6.3: Example screen 1

The Electronic Course Advisor is now online.
[TODO] I can see 0 network(s). This exercise requires at least 2.

v

The first event that could be detected by the EEA is a newly created
network. This implies, that at least one host is started as well. Nevertheless,
the host will start with an unconfigured network interface and therefore

86 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

cannot be seen by the EEA yet. This is why the check for existing networks
is done first. The student will now start the client, connected to a network,
by typing the command in line 2 of listing 6.1 on page 80.

Listing 6.4: Example screen 2

The Electronic Course Advisor is now online.
[TODO] I can see 0 network(s). This exercise requires at least 2.
[TODO] I can see 1 network(s). This exercise requires at least 2.
[TODO] I can see 0 hosts(s). This exercise requires at least 3.

v

The started network will be noticed by the EEA as shown in listing
6.4 and triggers the check for hosts. After this, the student will start the
router and the server according to line 3 and 4 of listing 6.1.

Listing 6.5: Example screen 3

The Electronic Course Advisor is now online.
[TODO] I can see 0 network(s). This exercise requires at least 2.
[TODO] I can see 1 network(s). This exercise requires at least 2.
[TODO] I can see 0 hosts(s). This exercise requires at least 3.
[OK] I can see 2 network(s). This is fine for this exercise.

v

The appearance of two networks can be recognized by the EEA as
shown in listing 6.5. While the network interfaces of the hosts are still
unconfigured, the presence of the hosts cannot be detected by the EEA yet.
The student will now configure and start the network interface of the client
according to line 6 of listing 6.1 on page 80. This could be recognized by
the EEA as shown in listing 6.6 on the facing page due to some network
discovery packets initially sent by the TCP/IP protocol stack.

Proceeding the student will configure and start the network interfaces
of the router and the server as well. The approperiate commands can
be found in line 8, 9 and 11 of listing 6.1 on page 80. The EEA already
noticed in listing 6.6 on the facing page, that the minimal count of different
networks (2) was fulfilled. Now the minimal count of hosts (3) will be
fulfilled as well (see listing 6.7 on the next page). Adding the default

6.3. TECHNICAL FEASIBILITY 87

Listing 6.6: Example screen 4

The Electronic Course Advisor is now online.
[TODO] I can see 0 network(s). This exercise requires at least 2.
[TODO] I can see 1 network(s). This exercise requires at least 2.
[TODO] I can see 0 hosts(s). This exercise requires at least 3.
[OK] I can see 2 network(s). This is fine for this exercise.
[TODO] I can see 1 hosts(s). This exercise requires at least 3.

v

gateway as listed in line 13 and 15 of listing 6.1 on page 80 did not cause
network packets and cannot be detected by the EA.

Listing 6.7: Example screen 5

The Electronic Course Advisor is now online.
[TODO] I can see 0 network(s). This exercise requires at least 2.
[TODO] I can see 1 network(s). This exercise requires at least 2.
[TODO] I can see 0 hosts(s). This exercise requires at least 3.
[OK] I can see 2 network(s). This is fine for this exercise.
[TODO] I can see 1 hosts(s). This exercise requires at least 3.
[TODO] I can see 2 hosts(s). This exercise requires at least 3.
[OK] I can see 3 host(s). This is fine for the current exercise.
[TODO] Show me that your routing setup is correct.

v

To finish the exercise the EEA asks the student at the end of listing
6.7 to show that the current setup is suitable to demonstrate routing. The
student can for example use the command ping 11.0.0.1 on the client,
trying to reach the server. The EEA uses the previously introduced SQL
query to check for routing behaviour.

If the ping command succeeds, the EEA will notice the routing be-
haviour and can finally congratulate the student in listing 6.8 on the next
page because of a successfully solved exercise.

The output generated by the EEA is for demonstration purpose only
and should be seen as an example for guidance. For this example, the EEA
was prepared with knowledge to detect when students did something right
and to give feedback on what is missing with respect to the assignment.
Another requirement is that the EEA should be able to deal with situations

88 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

Listing 6.8: Example screen 6

The Electronic Course Advisor is now online.
[TODO] I can see 0 network(s). This exercise requires at least 2.
[TODO] I can see 1 network(s). This exercise requires at least 2.
[TODO] I can see 0 hosts(s). This exercise requires at least 3.
[OK] I can see 2 network(s). This is fine for this exercise.
[TODO] I can see 1 hosts(s). This exercise requires at least 3.
[TODO] I can see 2 hosts(s). This exercise requires at least 3.
[OK] I can see 3 host(s). This is fine for the current exercise.
[TODO] Show me that your routing setup is correct.
[OK] Routing detected.
Congratulation , your routing setup seems to work. Well done!

v

where students make mistakes. The EEA then e.g. should give hints on
what is wrong and how this could be corrected. Determining when the
student will get what kind of information needs further research.

6.4 Educational Feasibility
For a proof of concept implementation our SQL based approach is very
applicable. However, an open task is to find a proper and efficient way to
model the advisor’s knowledge in a more human centred way than SQL
statements.

In this section, we introduce an exercise assistant for networking courses
which is able to support students while they work on networking exercises.
Equipped with a formal model of an exercise, the exercise assistant can
be run on a student’s computer whenever and wherever support is needed.
The effort to author such an exercise has to be done once while instances
of the exercise assistant equipped with this exercise will then be able to
support any number of students.

Exercise Modelling
In the following we show how the exercises can be transferred into a formal
representation, in order to be processed by a computer program. First,
we will show the partition of our example exercise into activities that will

6.4. EDUCATIONAL FEASIBILITY 89

then be organized in a graph structure. This graph will then be extended
with conditions that will make the activities verifiable. We also show a
way to add feedback attributes to the graph in order to model a certain
feedback strategy. Finally, we introduce probing, a mechanism to improve
the verifiability of activities.

Activities

Typically, exercises will start with an empty lab. Students have to perform
activities that result in a working network environment, configured accord-
ing to the requirements of the given exercise. While listing 6.1 on page 80
shows the commands needed to solve the exercise in Netkit, the minimal
conceptual activities needed for solving this exercise are listed in table 6.1
on page 104.

While A10 is the final activity, the order of the activities A1 through
A9 shows only one possible sequence. The order can vary because some
activities are independent from each other (e.g. A1 and A2), while some
other activities have interdependencies (e.g. A1 is a precondition for A3).

These activities and their interdependencies can be modelled as an
acyclic, directed graph with exactly one sink (node N with outdegree(N)=0)
and at least one source (node N with indegree(N)=0). Activities are
represented by nodes. A precondition is modelled as a directed edge from
the predecessor to the successor, seamlessly indicating the order of the
activities. The final activity will be represented by a sink. Activities
without a precondition will be represented by sources.

A valid graph for our example exercise is shown in figure 6.3 on the
following page. This graph is based on the activities stated in table 6.1 on
page 104. The interdependencies and thus possible sequences of activities
show a valid example. These can of course vary, depending on the exercise
and the author’s intent, too.

Conditions

In order to process the graph, the activities have to be verifiable. That
means that a condition is needed to detect or to decide, whether an activity
is deemed passed, i.e. whether the student has successfully solved a part
of the exercise.

90 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

A1 A2

A3 A4A5 A6

A7 A8A9

A10

Figure 6.3: Example graph

In chapter 6.3 and [Haag et al., 2012] we showed, that network packets,
obtained from the student’s Netkit lab, can be used to detect and verify
network properties and behaviour of an Ethernet based network. By
modelling network specific expert knowledge as predicates and verifying
these predicates using the captured network packets, it is possible to detect
e.g. the presence of certain hosts and also routing behaviour. While the
prototype demonstrated the technical feasibility of that approach by using
SQL queries to model predicates, we improved on it by using description
logics [Baader et al., 2003].

For the terminological box (TBox) we created a network ontology for
Ethernet based networks, representing the network layers 2 and above
[Tanenbaum, 1985], including but not limited to the header and payload
fields of the most commonly used protocols, e.g. Ethernet (RFC1042),
ARP (RFC826), IP (RFC791), TCP (RFC793) and UDP (RFC768). In
addition, we added a unique identifier for each packet and the network
origin. An excerpt of our ontology for Ethernet networks is shown in
Figure 6.4 on the facing page.

6.4. EDUCATIONAL FEASIBILITY 91

Packet

ID

Network

Ethernet
Source MAC
Destination MAC

IP
Source IP
Destination IP

TCP
Source Port

Destination Port

UDP
Source Port

Destination Port

ARP

Operation
Source MAC

Source IP
Destination MAC

Destination IP

Figure 6.4: Ontology excerpt for Ethernet networks

Using this ontology, it is possible to model expert knowledge as predi-
cates using a logic programming language, e.g. Prolog [Colmerauer and
Roussel, 1993]. For example, the expert knowledge to describe the network
behaviour “routing” is:

“Routing occurs if an OSI layer 3 IP transmission of a network packet
between two hosts is based on more than one OSI layer 2 transmissions.”

The technical background is shown in figure 6.5 on the next page. The
client wants to communicate with the server using the IP protocol, but the
server is located in a different network segment. Direct intercommunication
between client and server is not possible because the underlying Ethernet
protocol does not support communication over network borders. The client
has to use a known router located in the same network as itself, and thus
reachable by Ethernet. The client now sends an IP packet addressed to
the IP address of the server, but the underlying Ethernet packet will be
addressed to the router. When the router does receive such a packet, it
will forward it to the server. While the two packets that the client and the
router send do not differ on the IP layer (both are sent from the client, and
addressed to the server), both differ on the Ethernet layer, with different
source and destination MAC addresses.

Based on the Ethernet network ontology, this behaviour can be ex-
pressed as the Prolog predicate in listing 6.9 on page 93. This predicate

92 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

server

router

client

n1 n2

IP	
 Packet	
 Y
SourceIP:	
 Client	
 (A)

DestinationIP:	
 Server	
 (B)

Ethernet	
 Packet	
 2
SourceMAC:	
 Router	
 (M3)

DestinationMAC:	
 Server	
 (M4)

Ethernet	
 Packet	
 1
SourceMAC:	
 Client	
 (M1)

DestinationMAC:	
 Router	
 (M2)

IP	
 Packet	
 X
SourceIP:	
 Client	
 (A)

DestinationIP:	
 Server	
 (B)

IP	
 transmission	
 via	
 ROUTING
Source:	
 Client

Destination:	
 Server

Figure 6.5: Routing packet flow example

6.4. EDUCATIONAL FEASIBILITY 93

Listing 6.9: Prolog predicate for routing

1 routing :-
2 ip_packet(X,A,B),
3 ip_packet(Y,A,B),
4 ethernet_packet(X,M1,M2),
5 ethernet_packet(Y,M3,M4),
6 M1 \= M3, M2 \= M4.

can be read as “routing occurs, when there are two IP layer packets X and
Y, both sent from IP address A to IP address B, for which the source and
destination addresses differ on the Ethernet layer.”

Predicates can be used as conditions to detect activities. E.g. the
predicate “routing” can be used to verify the activity A10. We extended
the graph, so that every activity can be associated with a condition to
verify that activity.

Routing is only one example. We successfully created predicates de-
scribing e.g. the presence of hosts and networks, the network behaviour
NAT or routing and also higher-level usage. E.g. ARP spoofing behaviour
can be detected if two hosts within the same subnet having different MAC
addresses pretend to own the same IP address using the ARP protocol.
However, this behaviour can also be caused by a misconfiguration of the
hosts. For that reason, this condition requires preconditions to verify a
valid and error-free setup.

We also found a trade-off between the shape of an assignment and
the capabilities to design predicates. If the assignment is more tightly
controlled (e.g. predefined network names and IP addresses), more precise
predicates can be designed to detect activities. If the assignment is more
generic, the predicates also have to be designed in a more generalized
manner.

Feedback

There are various types of feedback strategies which can be used to support
students working on the exercise, e.g. suggestions, complete guiding or
an exam mode. The specific shape will be either customized to match

94 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

the author’s aims or customized to the learning style of the learner or a
combination. Usually recent progress the student has made in the exercise
graph should trigger interaction with the student according to the feedback
strategy.

Therefore, we extended the graph with feedback attributes. The graph
as a whole can be associated with an attribute containing the exercise
description; all activities can be associated with different attributes for
feedback control, i.e. text messages that give hints about what the next
activity might involve (pre-messages), or text messages that give feedback
about detected activities (post-messages). An example for activity A1 from
our example exercise look like listing 6.10.

While our message mechanism provides the technical means for the
implementation of various feedback strategies, the evaluation and choice of
an appropriate strategy resides with the exercise author.

Probing

While the verification of activities based on passively observed network
packets works for many activities, there still are limitations. One such
limitation occurs when an activity needs to be verified that does not have
immediate results in the form of network packets.

An example for that would be A9 from our example exercise: the
routing functionality has to be activated on the router. Students can do
that by setting the appropriate kernel flag27 on the router if this flag is
not enabled by default. This however will not result in the occurrence
of observable network packets, until packets are sent to the router for
being routed. A possible solution would be to ask the student to send
appropriate network packets himself. We followed a different approach. For

27Enable IP Forwarding: echo 1 > /proc/sys/net/ipv4/ip_forward

Listing 6.10: Example feedback attributes

1 pre_message = "You will need at least one host connected to
network 'n1 '."

2 post_message = "Network 'n1' detected."

6.5. THE ELECTRONIC EXERCISE ASSISTANT 95

detecting certain activities, we inject special predefined network packets
into the Netkit environment to provoke a certain predictable behaviour.
This behaviour can also be expressed as a predicate. In the routing example,
we inject an Ethernet packet addressed to the router into the client network
that is addressed to a host in the server network (which does not have to
exist) on the IP level. If routing is enabled in the router, the router will
try to reach that host in the server network using ARP requests. These
packets can be used to verify that routing is indeed enabled on the router.

Such a “probing” packet can be assembled by strictly following the
network stack, starting with an Ethernet frame. The destination MAC
address must be the router’s NIC connected to network n1. In Netkit, the
MAC address of a network interface is bound to the name of the client,
resulting in a predictable MAC address for the router’s first NIC eth0:
0aab64910980. The source MAC address can be virtual, e.g. eeba7b99bca5,
followed by an IPv4 ethertype identifier (0x0800). The encapsulated IP
packet starts with the version identifier (0x4), followed by mandatory
header fields, e.g. length and checksum. The source IP address can be
virtual but should be located within the IP range of network n1. The
destination IP address can also be virtual but must be part of subnet
n2. The IP packet encapsulates an ICMP echo request just to get a
complete and valid network packet. This customized packet layout can
be represented by a hexadecimal character array, e.g. 0aab6491 0980eeba
7b99bca5 08004500 001c1234 4000ff01 549c0a00 00010b00 00100800
f7fd0001 0001. Tools, e.g. PackEth28, can help authors to design and
validate such packets.

We extended the graph, so that every activity can be associated with
a custom network “probing” packet to be sent once before verifying its
condition. While that actively alters the environment, it enables the
verification of additional activities.

6.5 The Electronic Exercise Assistant

In order to support a student while working on an exercise, we developed an
exercise assistant, which can be used in the VCSL. As shown in figure 6.6,

28PackEth: Packet generator tool for ethernet. http://packeth.sourceforge.net,
Online, accessed April 2015.

http://packeth.sourceforge.net

96 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

the exercise assistant is composed of three components: reasoning engine,
feedback engine, and an interface to the student’s working environment
called Netkit interface.

The reasoning engine itself is composed of a reasoner and a knowledge
base, which contains a TBox (“terminology box”) and an ABox (“assertion
box”). The TBox contains knowledge about the domain, i.e. our ontology,
in the form of predefined predicates that can be extended by the author
with exercise specific extensions, while the ABox contains the concrete
instantiations.

The data in the ABox is obtained through an interface to the “real
world”, in our case the Netkit interface. The Netkit interface consists of
one or more Ghost Hosts [Vranken et al., 2011] that record network packets
from their respective Netkit network, extract the information in them and
store that information in the ABox. The Ghost Hosts can also be used to
inject special network packets into the environment.

The feedback engine is the part where the activity graph will be
processed. Our exercise assistant is able to read an exercise graph stored in
the GraphML29 [Brandes et al., 2002] format. Once read, the activities are
continuously processed according to their interdependencies, starting at the
source nodes which represent activities without preconditions. Processing
the activities in this case means verifying their conditions and giving the
student feedback according to the feedback attributes of that activity. Once
the activity is completed it will be removed from the graph and thus as a
precondition for its successors. The feedback engine can also use the Netkit
interface, respectively the Ghost Hosts, to insert custom network packets
into the environment in order to provoke certain network behaviour to
verify an activity’s condition using the reasoning engine.

The Exercise Assistant is a software program written in the program-
ming language C using SWI-Prolog30 [Wielemaker, 2009] as the reasoning
engine.

29GraphML: "GraphML is a comprehensive and easy-to-use file format for graphs.",
http://graphml.graphdrawing.org, Online, accessed April 2015

30SWI-Prolog: "SWI-Prolog offers a comprehensive free Prolog environment.", http:
//www.swi-prolog.org, Online, accessed April 2015.

http://graphml.graphdrawing.org
http://www.swi-prolog.org
http://www.swi-prolog.org

6.5. THE ELECTRONIC EXERCISE ASSISTANT 97

Ex
er
ci
se
	
 C
on

fig
ur
at
io
n

Ex
er
ci
se
	
 A
ss
ist
an
t

Ne
tk
it	

En
vi
ro
nm

en
t

Vi
rt
ua
l	
 N

et
ki
t	
 H

os
t

(c
lie
nt
)

Vi
rt
ua
l	
 N

et
ki
t	
 H

os
t

(ro
ut
er
)

Vi
rt
ua
l	
 N

et
ki
t	
 H

os
t

(s
er
ve
r)

Ne
tk
it	

In
te
rf
ac
e

Re
as
on
in
g	

En
gi
ne

AB
ox

TB
ox

St
ud

en
t

St
ud

en
t	

ad
m
in
ist
ra
te
s

an
d	

us
es
	
 N
et
ki
t

Ex
er
ci
se

Sp
ec
ifi
c

Ex
te
ns
io
ns

Ex
er
ci
se

Sp
ec
ifi
c

St
or
yb
oa
rd

Au
th
or

Au
th
or

pr
ep
ar
es

ex
er
ci
se

Fe
ed

ba
ck
	

En
gi
ne

Gh
os
t	
 H

os
t

(n
et
1)

Gh
os
t	
 H

os
t

(n
et
2)

Fe
ed

ba
ck

Re
as
on
er

Figure 6.6: Exercise assistant architecture draft

98 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

6.6 Example for Educational Feasibility
Using the VCSL, the window layout of the desktop presented to the students
looks like figure 6.7. The exercise assistant shell is a window where the
student can keep track of the feedback generated by the feedback engine.
The Linux shell is a window where the student is able to administrate
and use Netkit in order to e.g. create hosts and networks. Once a host is
started, it will open a respective shell enabling the student to administrate
the host itself. Further hosts, e.g. the router and the server, will open
respective shells, too.

Desktop

Linux Shell

> vstart client --eth0=n1
Netkit is starting client...

Exercise Assistant Shell

Welcome to Example Exercise 1: IP Routing
[TODO] A01: You need at least one host connected to network n1.
[TODO] A02: You need at least one host connected to network n2.
[OK] A01: Network n1 detected.

Client Shell Router Shell Server Shell

> ifconfig eth0 10.0.0.1 up
> ...

> >

Figure 6.7: DVCL Desktop Draft

The following figures show the exercise assistant shell, guiding the
example exercise. The Linux desktop window theme was replaced by a
sketch to improve the readability. We authored the activities of table 6.1 on
page 104 according to the exercise graph of figure 6.3 on page 90 and added
verbose feedback. The introduced routing predicate is used to verify the
final activity (A10). The intermediate activities too have been modelled
using our ontology, partially by utilizing probing packets. Once started,
the exercise assistant introduces the exercise by displaying the exercise

6.6. EXAMPLE FOR EDUCATIONAL FEASIBILITY 99

description. Starting with the activities without precondition (A1 and
A2), the exercise assistant will prompt the student using the respective
pre_messages (see output in figure 6.8).

Exercise Assistant Shell

Example Exercise 1: IP Routing

Setup and configure at least three hosts (client, router, server).
Client and server should be located in different networks. The
client should be able to intercommunicate with the server by using
the intermediate router. Verify your routing environment by
sending routed network packets between client and server.

Please name the network(s) and the host(s) according to the
diagram below.

Diagram:
 +------+ +------+ +------+
 |client| <-----n1-----> |router| <-----n2-----> |server|
 +------+ +------+ +------+

IP addresses:

 client router
 10.0.0.1 <-----n1-----> 10.0.0.2
 | server
 11.0.0.2 <-----n2-----> 11.0.0.1

Good luck!

[TODO] A01: You will need at least one host connected to 'n1'.
[TODO] A02: You will need at least one host connected to 'n2'.

Figure 6.8: EA Guiding Example 1

The student can start solving the exercise according to figure 6.1. After
the first command vstart client --eth0=n1 is entered using the linux
shell, the exercise assistant is able to confirm this valid activity (see output
in figure 6.9 on the following page).

While A1 is being marked as verified, using the respective post_message
of A1, the remaining independent activities without preconditions will be
displayed again, superseding the preceding messages. According to the
exercise graph, the student is now able to choose A2, A3 or A5 as the next

100 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

Exercise Assistant Shell

[OK] A01: Network n1 detected.

[TODO] A02: You need at least one host connected to network 'n2'.
[TODO] A03: Please configure the NIC of the client.
[TODO] A05: Please configure the router's NIC connected to 'n1'.

Figure 6.9: EA Guiding Example 2

activity. Starting the router connected to network n1 and n2 results in a
verified presence of n2 (see output in figure 6.10).

Exercise Assistant Shell

[OK] A02: Network n2 detected.

[TODO] A03: Please configure the NIC of the client.
[TODO] A04: Please configure the NIC of the server.
[TODO] A05: Please configure the router's NIC connected to 'n1'.
[TODO] A06: Please configure the router's NIC connected to 'n2'.

Figure 6.10: EA Guiding Example 3

While the presence of the two networks is verified now, the exercise
assistant is not able to detect whether the student has started the server,
unless its network interface card gets assigned an IP address. Therefore the
pre_messages are authored to prompt the student properly. Choosing to
assign the client’s IP address as next activity, using the command ifconfig
eth0 10.0.0.1 up in the client shell, will result in a verified activity A3
(see output in figure 6.11 on the facing page).

Still missing IP addresses of router’s and server’s NICs, the student
can proceed to configure the router’s NICs (see output in figure 6.12 on
page 101 and succeeding output in figure 6.13 on page 101).

Having verified that the two NICs of the router are present, the exercise
assistant is able to verify A9 using a probe packet. For the simple reason
that routing is enabled per default for hosts in the Netkit environment,
the condition of A9 can be verified immediately (see output in figure 6.14).

After assigning an IP address to the remaining NIC of the server, the

6.6. EXAMPLE FOR EDUCATIONAL FEASIBILITY 101

Exercise Assistant Shell

[OK] A03: Client host with IP address 10.0.0.1 detected.

[TODO] A04: Please configure the NIC of the server.
[TODO] A05: Please configure the router's NIC connected to 'n1'.
[TODO] A06: Please configure the router's NIC connected to 'n2'.

Figure 6.11: EA Guiding Example 4

Exercise Assistant Shell

[OK] A05: Router's NIC with IP 10.0.0.2 detected.

[TODO] A04: Please configure the NIC of the server.
[TODO] A06: Please configure the router's NIC connected to 'n2'.
[TODO] A07: Please adjust client's routing table to use the router.

Figure 6.12: EA Guiding Example 5

Exercise Assistant Shell

[OK] A06: Router's NIC with IP 11.0.0.2 detected.

[TODO] A04: Please configure the NIC of the server.
[TODO] A07: Please adjust client's routing table to use the router.
[TODO] A09: Ensure, that the router is able to route packets.
[OK] A09: Router acts as a router between n1 and n2.

[TODO] A04: Please configure the NIC of the server.
[TODO] A07: Please adjust client's routing table to use the router.

Figure 6.13: EA Guiding Example 6

Exercise Assistant Shell

[OK] A04: Server's NIC with IP 11.0.0.1 detected.

[TODO] A07: Please adjust client's routing table to use the router.
[TODO] A08: Please adjust server's routing table to use the router.

Figure 6.14: EA Guiding Example 7

102 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

student has to alter the routing table on the client and on the server. The
exercise assistant is also able to verify these activities by using probing
packets (see output in figure 6.15).

Exercise Assistant Shell

[OK] A07: Client uses router as gateway to 'n2'.

[TODO] A08: Please adjust server's routing table to use the router.
[OK] A08: Server uses router as gateway to 'n1'.

[TODO] A10: Finally, show me that client and server can
intercommunicate.

Figure 6.15: EA Guiding Example 8

Finally, the student is asked to demonstrate the routing functionality
by sending packets between the client and the server using the intermediate
router. One valid solution is to use the command ping.

Exercise Assistant Shell

[OK] A10: Setup verified, exercise completed.

[DEBUG] Solved in 7 minutes and 42 seconds.
[OK] Finished! Well done!

Figure 6.16: EA Guiding Example 9

Once the final activity is verified, the exercise assistant congratulates
the student and then quits (see output in figure 6.16).

6.7 Conclusion

We presented a concept for an Electronic Exercise Assistant in a virtual
computer security lab for courses in networking and computer security. By
transforming a real-world assignment from a physical lab to an EEA setting
in a virtual lab we exemplary describe, how the correctness of a student
solution can be proven by the EEA as well how an EEA can offer guidance

6.7. CONCLUSION 103

and support to the students. For the proof of the technical feasibility we
use a canonical approach by modelling the real-world advisor’s knowledge
as SQL queries to a database containing all network packets generated
during a virtual lab session. As an intermediate step, we give rules on the
entirety of all network packets processed.

For the proof of the educational feasibility we also presented an approach
to formally model exercises in a manner processable by the exercise assistant.
For that purpose, the exercise author can define possible activities and
sequences using a graph structure. Description logic is used to define
conditions for the verification of these activities. The exercise author is
also able to define a feedback strategy by adding feedback attributes to
the graph. This includes pre- and post-messages as immediate feedback
and does not cover delayed feedback [Mory, 2003, Erev et al., 2006, Hattie
and Timperley, 2007] yet.

While the current version of the EEA can give feedback based on
observed network packets, a future version may incorporate more values,
e.g. typed commands of a student to administrate NetKit, to issue feedback
in a more accurate way.

Especially for courses with many participants, our first experience
shows that teaching staff can benefit from utilizing the exercise assistant.
While the teaching method of tutors personally and individually supporting
students is certainly one of the most effective for knowledge transfer, it
is not feasible for courses of sufficient size [Odekirk-Hash and Zachary,
2001]. In such scenarios, the exercise assistant can e.g. be used to offer all
students a basic guided tutoring support not only wherever and whenever
they want, but also at the speed that best suits their own learning style
and their own abilities.

104 CHAPTER 6. ELECTRONIC EXERCISE ASSISTANT

Table 6.1: Activities needed to solve the example exercise

Activity ID
The client network has to be created. A1
The server network has to be created. A2
The client has to be connected to the client network and an
appropriate IP address has to be assigned.

A3

The server has to be connected to the server network and an
appropriate IP address has to be assigned.

A4

One NIC of the router has to be connected to the client network
and an IP address from the client network has to be assigned.

A5

One NIC of the router has to be connected to the server network
and an IP address from the server network has to be assigned.

A6

The client has to be configured to use the router’s NIC in the
client network as default gateway.

A7

The server has to be configured to use the router’s NIC in the
server network as default gateway.

A8

Routing has to be enabled on the router. A9
Client and server must intercommunicate via the intermediate
router using the IP protocol.

A10

Chapter 7

Educational Enhancements

The Virtual Computer Lab (VCL) environment enables students to work
on practical networking exercises whenever and wherever they want. While
they have to work on their own using the VCL, the Distributed Virtual
Computer Lab (DVCL) extension enables students to work and learn
together, even if they are distant. Many students rely on group work, thus
the DVCL is a reasonable learning environment.

Our experiences with practical on-campus networking courses show
that the laboratory, where the courses take place, is more than a room
with computer and networking facilities. Rather it is a social place, where
students e.g. meet, form learning groups, talk and discuss. Also, the
course advisers are involved, e.g. they offer support, manage that learning
groups have a certain size and can finally verify an exercise. A shortcoming
however is, that the current DVCL environment does not support such
interactions. If we model a distributed virtual lab on an on-campus lab,
requirements also arise from a social viewpoint.

A student project in 2012 was started to deal with this issue. The aim
of this project was to add support for social interactions to the DVCL
environment. First, an existing practical on-campus networking course was
observed in order to get key factors about student’s social behaviour in the
lab. Using these key factors, a concept was developed to support certain
identified major social interactions in our DVCL environment. Finally, a

This chapter is based on the following publication: [Döhring, 2012, Döhring, 2013,
Haag et al., 2017]

105

106 CHAPTER 7. EDUCATIONAL ENHANCEMENTS

prototype was developed to demonstrate the new DVCL virtual classroom.

7.1 Classroom Settings

On-Campus Classroom

We observed a basic practical on-campus networking course with nearly
200 participants and we gained the following major insights:
• The exercises will be delivered in hard copy or electronical (via PDF31

document) by the course advisers to the students.
• Some students are working out the exercises on their own and not in a

group. Sometimes they talk with other students in the lab.
• Some students are forming a learning group to jointly solve an exer-

cise. They exchange information within the group and between two
students. Sometimes one part of the group disturbs the rest of the
group. Sometimes they interact with other students or groups.

• Most of the time the students arrange their groups on their own resulting
in groups with different size.

• In many cases the intervening of a course advisor is needed if the learning
groups should have a fixed size of participants.

• Sometimes a learning group is stalled because the participants have to
wait for additional students if the learning group requires to have a
fixed size. Another case is that the learning group will start working on
an exercise having an insufficient group size.

• Students (with higher skills) will be contacted and asked by other
students to get support. Sometimes they will be asked to join a group.

• In rare cases students will leave or join a group subsequently.
• Students, resp. learning groups are able to get support by a course

advisor.
• According to the course design, a final solution of an exercise can be

verified, revised, rated and graded by a course advisor.

31PDF: Portable Document Format, http://www.adobe.com, Online, accessed Decem-
ber 2017

http://www.adobe.com

7.1. CLASSROOM SETTINGS 107

Virtual Classroom Concept

Based on our observation, we identified three major groups of activities,
which should be supported in the DVCL in addition to the pre-existing
environment (cf. part I on page 21 pp.): Communication Activities,
Organizational Activities and Educational Activities. Each group and also
the interaction between these groups will be introduced in the remainder
of this section.

Communicational Activities

An important issue is the communication, especially when students utilize
the DVCL from different locations. Based on our observations, we decided
to support the following three communication models.
1. Lobby Chat The lobby chat is modelled on the classroom (the on-

campus lab). Each student, which logs on to the DVCL, enters the
lobby chat automatically. He can read messages from all other users.
He can write a message which will be visible by all other users instantly.

2. Group Chat The group chat is a separate, independent area, which
will be created if a group is formed. A sent message will only arrive
at other group members. The group chat is meant for communication
within a group.

3. Private Chat The private chat is meant for communication between
two students. A sent message will be readable only by the conversation
partner.

Organizational Activities

If no learning style is given, our experiences shows that the students will
choose different styles, which are suitable to work best for them. The
majority will choose group work in combination with single person working
(see figure 5.3 on page 70). According to that, the DVCL should support
single person working, that students are able to utilize the lab without
being reliant on others. The DVCL should also support group work. For
group work, we decided to support the following three models:
1. Automatic Group Forming Students can subscribe to an exercise.

The DVCL will automatically arrange and assign subscribed students to

108 CHAPTER 7. EDUCATIONAL ENHANCEMENTS

groups of sufficient size. An advantage of this model is that this process
is fast. A group can be created once enough students subscribed to
an exercise. Furthermore, the students are not involved in the group
forming process and no social interactions are needed. The groups are
arranged without personal preferences. A disadvantage is that personal
preferences or pre-existing learning groups will be disregarded; even
single person working will be impossible.

2. Manual Group Forming Students will create the groups on their
own. An advantage is that personal preferences can be considered.
Also, single person working will be possible, since no group has to be
formed. A disadvantage is that the group forming process will be slower
compared to an automatic process. This is because students must get
active to create a group, and also agreements are required. Another
issue is that more than one group with insufficient participants willing
to work on the same exercise can occur.

3. Combination The advantages of the automatic and the manual group
forming model will be combined. Students can work on their own, can
create a group on their own or can subscribe to an exercise accepting
the automatic group forming process.

In certain cases, there will be not enough DVCL participants to form a
group with sufficient size. Then, a learning group will be unable to start
the exercise. To resolve this issue, the group should be able to start the
exercise by overwriting the predefined value for the group size. However,
this will require the approval of all group members.

Educational Activities

The DVCL as a technical platform is able to provide an environment where
students can work on networking exercises. We identified three issues
which have to be taken into consideration.
1. Exercises The exercises should be available and selectable within the

DVCL environment. This will turn the distributed lab as a technical
platform even closer to a learning platform. An exercise author would be
able to publish exercises directly and he would be able to add attributes,
e.g. a predefined group size, which can be processed and managed by
the DVCL environment. Levels of difficulty, which will be offered one
after another to a student, are also imaginable.

7.1. CLASSROOM SETTINGS 109

2. Support Providing support to students, which are not working in
an on-campus classroom but in the DVCL, is a complex topic, which
requires more research. One approach could be, that a human course
advisor will join the DVCL at different times to support students while
solving an exercise. The course advisor will be able to answer questions
but he will be unable to verify a certain configuration of a student’s
solution because there is currently no remote access to a student’s lab.
Using remote desktop access could be a solution for this. An interesting
approach can be adapting the electronic exercise assistant (cf. chapter 6
on page 77) to support a distributed lab environment.

3. Resources Resources need to be rearranged when the group size will
change and the exercise has already begun. E.g. when a student will
leave a group, his part must be accomplished by another group member.
Since leaving the group means also losing brought in virtual networks
and hosts within the DVCL, this case is within this project out of scope
and requires further investigation.

Functional Interaction

The three major groups communicational, organizational and educational
activities are illustrated in figure 7.1 on the following page. Each group is
represented as a coloured circle within the outer circle, which represents
the classroom.

A student will start by entering the classroom. He is now able to pick
an activity, e.g. he asks other students in the classroom if everybody is
fine. This means using the classroom chat as part of the communicational
activities. As an example of an educational activity, he can decide to select
an exercise. An example for an organizational activity is to form a learning
group by inviting other students.

The selection is not limited to one activity. Furthermore, the activities
can be connected but it is not mandatory. E.g. students can find other
students in an informal talk, using the classroom chat, and jointly decide
to form a learning group. This is a combination of a communicational
and an organizational activity, represented as the intersection between
these activities in figure 7.1. In another example, a student will choose
an exercise (educational activity) and starts talking with another student

110 CHAPTER 7. EDUCATIONAL ENHANCEMENTS

Communicational
Activities

Organizational
Activities

Educational
Activities

Classroom

Figure 7.1: Activities in classroom

(communication activity) at the same time.

An example for the intersection of all activity groups is: Some Students
will meet in the classroom chat (communication activity). They decide to
form a learning group (organizational activity) and jointly solve a certain
exercise (educational activity). Another example is: A student selects
a certain exercise (educational activity), the automatic group forming
process will assign him to an existing group with missing members (orga-
nizational activity) and the student starts talking by using the group chat
(communication activity).

7.2. VIRTUAL CLASSROOM PROTOTYPE 111

7.2 Virtual Classroom Prototype
The virtual classroom prototype is based, utilizes and extends our existing
DVCL (cf. chapter 2 on page 21) with Central Authority (cf. chapter 3 on
page 35), including the security enhancements (cf. chapter 4.1 on page 46)
and the GUI (cf. chapter 4.2 on page 52). The prototype is written using
the programming language C and relies on the GTK32 toolkit.

A student has first to login to use the DVCL. The related screenshot
can be found in figure 7.2. Once logged in, the main screen with the lobby,
resp. the classroom chat will be presented as illustrated in figure 7.3 on the
following page. The lobby consists of three areas: An area where messages
will appear to the left, an area with a list of users currently logged in to the
right and an area with a text input box to create and send own messages
at the bottom.

Figure 7.2: GUI login

The student will have more than one activities to proceed. He can
start a private chat with another student (communication activity), or
he can invite another student to create a group, or he will be invited by
another student to join a group (both are organizational activities), or he
can proceed to the exercise selection area (educational activity). Starting
a private chat will open a new tab similar to the lobby chat, except that
messages will only be readable by the selected dialogue partner. A private
chat is independently of other states. For a manual group forming, the
student can select another student to invite him into a group (Figure 7.4a),

32GTK: "GTK+, or the GIMP Toolkit, is a multi-platform toolkit for creating graphical
user interfaces." http://www.gtk.org, Online, accessed April 2015

http://www.gtk.org

112 CHAPTER 7. EDUCATIONAL ENHANCEMENTS

Figure 7.3: DVCL classroom main screen

7.2. VIRTUAL CLASSROOM PROTOTYPE 113

(a) Invite Option (b) Confirmation Dialogue Box

Figure 7.4: Manual Group Forming

or he will be invited to join a group. A pending invitation has to be
accepted or rejected in a dialogue prompt (Figure 7.4b). If a group with at
least two students was formed, a new tab will appear for the group chat.
This tab is similar to the lobby chat, except that messages will only be
readable by the group members.

Despite a group already exists or not, the student can access the exercise
selection area using the menu on the top (Figure 7.3). By selecting Exercise
> Choose exercise, a new window will appear where the exercises are
listed and can be selected. The exercise consists of a title, a description
and attributes, e.g. the desired group size. In figure 7.5, one exercise titled
Basic Networking A1 is included with a group size of 3. After selecting the
exercise, the student has to decide to work alone or to search for a group.
If the student is already a member of a group, which does not have an
exercise selected yet, a third option will be available to assign the selected
exercise to this pre-existing group.

Work alone means that the exercise will start immediately without
waiting for group members. By selecting Search a group, the DVCL
environment will look for an already existing group, where at least one
group member is still missing and the group decided to solve the same
exercise. If such a group is found, the student will be assigned to this
group. If no suitable group can be found, the student will be assigned to
a waiting queue (see figure 7.6). In case that the queue already holds a
suitable student (who has selected the same exercise), a new group will be
created for them. Finally, the group size will be checked. If the group is
already complete, which means, that the group has the predefined group
size, the exercise will be started. If the group is still incomplete, the group

114 CHAPTER 7. EDUCATIONAL ENHANCEMENTS

members can vote to start (see figure 7.7) the exercise anyway, but this
action will require the approval of all other group members (see figure 7.8).

Figure 7.5: Exercise Selection

Figure 7.6: Student is assigned to waiting queue

Figure 7.7: Overwrite a predefined group size

7.3 Conclusion
Our concept and the prototype shows a way to turn the distributed lab as
a technical platform even closer to a distributed learning platform with
benefits for all involved parties. The course advisor will get a single place

7.3. CONCLUSION 115

Figure 7.8: Confirmation Dialogue

where exercises can be published. Moreover, rules can be predefined, e.g.
the group size, which will be managed, preserved and verified by the DVCL
environment, even if a human course advisor is not present. For students,
the DVCL is no longer a technical platform, where virtual networks can be
remotely connected but a virtual place, where they can meet, communicate,
arrange learning groups, exchange experiences and work on exercises.

116 CHAPTER 7. EDUCATIONAL ENHANCEMENTS

Summary

Teaching networking and IT security in higher education requires a safe
playground for students, where they can safely carry out hands-on exercises.
This safe playground is known as a computer lab. Universities have to
design and to provide such a lab with respect to certain criteria, e.g.
technical opportunities, educational requirements and demands of the
learners. Since there is no one-size-fits-all lab, the labs will be designed to
fit into a certain context and thus have own strengths and weaknesses.

In this thesis, we investigate and work with two established labs, which
were designed for hands-on experiences in networking and it security courses.
These labs are predominantly different but have an essential overlap in
educational requirements.

One lab is developed by the Open University. It is dedicated for distance
learning. It is based on virtualization and every student is able to start
this lab on his own computer. Students can work out exercises whenever
and wherever they want. A shortcoming however is that students have to
work alone, (distant) group work is not possible due to the isolated lab
architecture. This lab is the technical base for our research.

The other lab is developed by the Cologne University. It is a physical
lab, dedicated for on-campus courses and thus it is not portable. But
students can meet in the lab, work in groups and are able to get support
from a course advisor, who is also able to verify exercises. A shortcoming
however is that students must be present (they have to travel to the
university) and they are dependent on the opening hours of the laboratory
and the availability of the course advisers.

In two research parts, we show how such two different lab approaches
can be combined and what can be achieved.

117

118 SUMMARY

The first research part is about design issues.
Initially, we enable group work in our lab for distance education, since

group work is an essential part in on-campus classes. Also remote students
should be able to work together. Since the lab is designed as an isolated
system, the challenge is to connect two of them on the network level but
without creating a potential bridge between the isolated and the outside
world. We achieved this by adding a communication interface to the lab
architecture. This communication interface consists of a ghost host to
extract and inject network packets, and a remote bridge endpoint, to
transport these packets between remote ghost hosts across an intermediate
connection, e.g. the internet. The developed prototype is called Distributed
Virtual Computer Lab (DVCL) and enables to connect two or more distant
labs while preserving the isolated character.

The DVCL is then extended and improved by a central authority (CA).
While the point-to-point connection of the communication interface can
connect two remote networks in a handy way, more connections require
careful planning by the students. We show that a CA simplifies the usage
of our DVCL for the students (and also for academic staff) and in addition
to it avoids administrative configuration errors while connecting remote
labs, e.g. a circular flow which leads to an unusable lab.

The first part is completed by two applicability enhancements. The
first enhancement covers and resolves security issues in order to push
our prototypical implementation of the DVCL and the CA closer to a
productive learning environment. The second enhancement introduces a
Graphical User Interface to increase the usability of the DVCL.

The second research part is about educational aspects.
In the first part, we assume that working independent from a physical

on-campus lab as well as group work is essential for our students. Our
evaluation of more than 200 students participating in an on-campus net-
working course shows, that nearly half of the students actually say, that
they would like to work independently from the university at least partially
and they would welcome the introduction of an e-learning system. In
addition, a predominant majority think of working in groups as well as
receiving guidance and feedback as crucial to their learning success. This
result justifies and confirms our research and also reveals an additional
requirement.

119

The challenge is to provide feedback and guidance to a student, who is
working on an exercise and a human course advisor is not available. This
is e.g. when students use the DVCL at home in the evening hours. We
show, that captured network traffic of a lab can give some indication of
what a student has already configured according to a certain exercise. We
use this insight to develop an Electronic Exercise Assistant. This software
program is able to recognize the progress of an exercise and can provide
appropriate feedback and support, based on preloaded rules and conditions.
This significantly improves the learning situation for students working
remotely in lab. Besides this automatic support, the exercise assistant can
verify intermediate and complete solutions of an exercise.

The second part is completed by an educational enhancement. Our
evaluation and also own observations show, that a lab is more than a
room with computer and network facilities. Rather it is a social place
where students e.g. meet, form learning groups, talk and discuss. We
use these insights and enhance the DVCL to support social interactions.
Based on our on-campus lab as source, we model a set of communicational,
organizational as well as educational activities and implement them in our
DVCL. The result shows, that our DVCL prototype is no longer a technical
platform but a virtual place, where students can meet, communicate,
arrange learning groups, exchange experiences and work on exercises.

This thesis shows that aspects of our two different lab environments can
be combined. Our resulting Distributed Virtual Computer Lab incorporates
strengths of each source lab. It is a gain for distance teaching as well as for
on-campus classes. Remote students are now able to utilize the lab being a
virtual classroom, where they can learn in groups, assisted by an electronic
advisor and without the need for a face-to-face meeting. On-campus classes
can offer students a new learning environment, where they can learn in a
classroom character without the need to travel to the university.

120 SUMMARY

Bibliography

[Agarwal et al., 2001] Agarwal, K. K., Critcher, A., Foley, D., Sanati, R.,
and Sigle, J. (2001). Setting up a classroom lab. J. Comput. Sci. Coll.,
16(3):281–286. Cited on page 3.

[Albacete and VanLehn, 2000] Albacete, P. and VanLehn, K. (2000). The
conceptual helper: An intelligent tutoring system for teaching funda-
mental physics concepts. In Intelligent tutoring systems, pages 564–573.
Springer. Cited on page 77.

[Alfers, 2013] Alfers, T. (2013). Formale Beschreibung komplexer Prak-
tikumsaufgaben aus dem Bereich Netze und IT-Sicherheit – Weiteren-
twicklung eines Systems zur automatisierten Verifikation von Lösungen.
Bachelor’s thesis (Studienarbeit), Cologne University of Applied Sciences,
Campus Gummersbach, Gummersbach, Germany. Cited on pages 17
and 77.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi,
D., and Patel-Schneider, P. F., editors (2003). The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, New York, NY, USA. Cited on page 90.

[Bardas and Ou, 2013] Bardas, A. G. and Ou, X. (2013). Setting up and
using a cyber security lab for education purposes. J. Comput. Sci. Coll.,
28(5):191–197. Cited on page 3.

[Berman et al., 2014] Berman, M., Chase, J. S., Landweber, L., Nakao,
A., Ott, M., Raychaudhuri, D., Ricci, R., and Seskar, I. (2014). GENI:
A federated testbed for innovative network experiments. Computer
Networks, 61(0):5–23. Cited on page 4.

121

122 BIBLIOGRAPHY

[Bishop and Heberlein, 1996] Bishop, M. and Heberlein, L. (1996). An
isolated network for research. In Proceedings of the Nineteenth National
Information Systems Security Conference, pages 349—-360. Cited on
page 3.

[Bonk et al., 2005] Bonk, C. J., Graham, C. R., Cross, J., and Moore,
M. G. (2005). The Handbook of Blended Learning: Global Perspectives,
Local Designs. Pfeiffer & Company. Cited on page 7.

[Bonofiglio et al., 2018] Bonofiglio, G., Iovinella, V., Lospoto, G., and
Battista, G. D. (2018). Kathará: A container-based framework for
implementing network function virtualization and software defined net-
works. To appear at IEEE/IFIP Network Operations and Management
Symposium, 23-27 April 2018, Taipei, Taiwan. Cited on page 12.

[Border, 2007] Border, C. (2007). The development and deployment of a
multi-user, remote access virtualization system for networking, security,
and system administration classes. In Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education, SIGCSE ’07,
pages 576–580, New York, NY, USA. ACM. Cited on page 4.

[Brandes et al., 2002] Brandes, U., Eiglsperger, M., Herman, I., Himsolt,
M., and Marshall, M. (2002). Graphml progress report structural layer
proposal. In Mutzel, P., Jünger, M., and Leipert, S., editors, Graph
Drawing, volume 2265 of Lecture Notes in Computer Science, pages
501–512. Springer Berlin Heidelberg. Cited on page 96.

[Brian Hay, 2006] Brian Hay, K. L. N. (2006). Evolution of the assert com-
puter security lab. In Proceedings of the 10th Colloquium for Information
Systems Security Education. Cited on page 3.

[Bullers et al., 2006] Bullers, Jr., W. I., Burd, S., and Seazzu, A. F. (2006).
Virtual machines - an idea whose time has returned: Application to
network, security, and database courses. In Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science Education, SIGCSE
’06, pages 102–106, New York, NY, USA. ACM. Cited on page 3.

[Canfield, 2001] Canfield, W. (2001). Aleks: A web-based intelligent tu-
toring system. Mathematics and Computer Education, 35(2):152. Cited
on page 77.

BIBLIOGRAPHY 123

[Catuogno and De Santis, 2008] Catuogno, L. and De Santis, A. (2008).
An internet role-game for the laboratory of network security course. In
Proceedings of the 13th Annual Conference on Innovation and Technology
in Computer Science Education, ITiCSE ’08, pages 240–244, New York,
NY, USA. ACM. Cited on page 1.

[Colmerauer and Roussel, 1993] Colmerauer, A. and Roussel, P. (1993).
The birth of prolog. In The Second ACM SIGPLAN Conference on
History of Programming Languages, HOPL-II, pages 37–52, New York,
NY, USA. ACM. Cited on page 91.

[Comer, 2008] Comer, D. E. (2008). Computer Networks and Internets.
Prentice Hall, 5rd edition. Cited on pages 22 and 26.

[Corbett et al., 1997] Corbett, A. T., Koedinger, K. R., and Anderson,
J. R. (1997). Intelligent tutoring systems. Handbook of human-computer
interaction, 5:849–874. Cited on page 77.

[Crowley, 2004] Crowley, E. (2004). Experiential learning and security lab
design. In Proceedings of the 5th Conference on Information Technology
Education, CITC5 ’04, pages 169–176, New York, NY, USA. ACM.
Cited on page 1.

[Damiani, 2006] Damiani, E. (2006). The open source virtual lab: a case
study. In Proceedings of the Workshop on Free and Open Source Learning
Environments and Tools, FOSLET ’06. Cited on page 3.

[Dierks and Allen, 1999] Dierks, T. and Allen, C. (1999). The tls protocol
version 1.0. http://www.ietf.org/rfc/rfc2246.txt. [Online; accessed
22-July-2014]. Cited on page 51.

[Dierks and Rescorla, 2006] Dierks, T. and Rescorla, E. (2006). The trans-
port layer security (tls) protocol version 1.1. http://www.ietf.org/rfc/
rfc4346.txt. [Online; accessed 22-July-2014]. Cited on page 51.

[Dierks and Rescorla, 2008] Dierks, T. and Rescorla, E. (2008). The trans-
port layer security (tls) protocol version 1.2. http://www.ietf.org/rfc/
rfc5246.txt. [Online; accessed 22-July-2014]. Cited on page 51.

http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt

124 BIBLIOGRAPHY

[Dike, 2000] Dike, J. (2000). A user-mode port of the linux kernel. In
Proceedings of the 4th Annual Linux Showcase & Conference - Volume
4, ALS’00, pages 7–7, Berkeley, CA, USA. USENIX Association. Cited
on page 8.

[Dike, 2006] Dike, J. (2006). User Mode Linux. Prentice Hall. Cited on
pages 8 and 23.

[Drigas et al., 2005] Drigas, A. S., Vrettaros, J., Koukianakis, L. G., and
Glentzes, J. G. (2005). A virtual lab and e-learning system for renewable
energy sources. In Proceedings of the 1st WSEAS/IASME Conference
on Educational Technologies, EDUTE ’05, pages 149–153. Cited on
page 4.

[Döhring, 2012] Döhring, C. (2012). Konzeption und Implementierung
eines grafischen Userinterfaces für das DVCSL. Project work (Praxis-
Projekt) in the scope of the Computer Science Bachelor’s Program at the
Cologne University of Applied Sciences, Campus Gummersbach. Cited
on pages 17, 52, and 105.

[Döhring, 2013] Döhring, C. (2013). Konzeption und Teilimplementierung
einer Plattform für kollaboratives Arbeiten in einem verteilten virtuellen
Computersicherheitslabor. Bachelor’s thesis (Studienarbeit), Cologne
University of Applied Sciences, Campus Gummersbach, Gummersbach,
Germany. Cited on pages 18 and 105.

[Döhring and Kahrau, 2011] Döhring, C. and Kahrau, S. (2011). Ein-
führung einer Zugangsbeschränkung eines verteilten virtuellen Computer-
Sicherheitslabors (kurz DVCSL). Project work (AI-Projekt) in the scope
of the Computer Science Bachelor’s Program at the Cologne University
of Applied Sciences, Campus Gummersbach. Cited on pages 17 and 46.

[Eckert, 2013] Eckert, C. (2013). IT Sicherheit, chapter 1.2 Security Ob-
jectives. Oldenbourg Verlag. Cited on page 46.

[Ellabidy and Russo, 2014] Ellabidy, M. and Russo, J. P. (2014). Using
the cloud to replace traditional physical networking laboratories. In
Proceedings of the 45th ACM Technical Symposium on Computer Science
Education, SIGCSE ’14, pages 729–729, New York, NY, USA. ACM.
Cited on page 4.

BIBLIOGRAPHY 125

[Erev et al., 2006] Erev, A., Luria, A., and Erev, I. (2006). On the effect
of immediate feedback. Cited on page 103.

[Gerdes et al., 2010] Gerdes, A., Heeren, B., and Jeuring, J. (2010). Prop-
erties of exercise strategies. In Proceedings International Workshop on
Strategies in Rewriting, Proving, and Programming, IWS 2010, Edin-
burgh, UK, 9th July 2010., pages 21–34. Cited on page 77.

[Haag et al., 2011] Haag, J., Horsmann, T., Karsch, S., and Vranken, H.
(2011). A distributed virtual computer security lab with central authority.
In Proceedings of the Computer Science Education Research Conference,
CSERC ’11, pages 89–95. Open Universiteit, Heerlen. Cited on pages 16,
17, and 35.

[Haag et al., 2012] Haag, J., Karsch, S., Vranken, H., and Van Eekelen,
M. (2012). A virtual computer security lab as learning environment
for networking and security courses. In Proceedings of the 3rd Annual
International Conference on Computer Science Education: Innovation
and Technology, CSEIT ’12, pages 61–68. Global Science & Technology
Forum. Cited on pages 16, 17, 77, and 90.

[Haag et al., 2017] Haag, J., Vranken, H., and Van Eekelen, M. (2017). A
virtual class room for cybersecurity education. Manuscript submitted
for publication. Cited on pages 16, 17, 18, 46, 52, and 105.

[Haag et al., 2013] Haag, J., Witte, C., Karsch, S., Vranken, H., and
Van Eekelen, M. (2013). Evaluation of students’ learning behaviour
and success in a practical computer networking course. In Proceedings
of the 2nd International Conference on E-Learning and E-Technologies
in Education, ICEEE ’13, pages 201–206. IEEE Xplore Digital Library.
Cited on pages 16, 17, and 63.

[Haag et al., 2014a] Haag, J., Witte, C., Karsch, S., Vranken, H., and
Van Eekelen, M. (2014a). Evaluation of students’ learning behaviour and
success as a prerequisite for modernizing practical on-campus networking
courses in higher education. Yükseköğretim Dergisi / Journal of Higher
Education, 4(2):83–90. Cited on pages 16, 17, and 63.

[Haag et al., 2014b] Haag, J., Witte, C., Karsch, S., Vranken, H., and
Van Eekelen, M. (2014b). An exercise assistant for practical networking

126 BIBLIOGRAPHY

courses. In Proceedings of the 6th International Conference on Computer
Supported Education, CSEDU ’14, pages 97–104. Cited on pages 16, 17,
and 77.

[Hattie and Timperley, 2007] Hattie, J. and Timperley, H. (2007). The
power of feedback. Review of Educational Research, 77(1):81–112. Cited
on page 103.

[Heeren et al., 2008] Heeren, B., Jeuring, J., van Leeuwen, A., and Gerdes,
A. (2008). Specifying Strategies for Exercises, pages 430–445. Springer
Berlin Heidelberg, Berlin, Heidelberg. Cited on page 77.

[Horsmann, 2011] Horsmann, T. (2011). Design and implementation of a
communication concept for an encapsulated distributed virtual computer
security lab. Bachelor’s thesis (Studienarbeit), Cologne University of
Applied Sciences, Campus Gummersbach, Gummersbach, Germany.
Cited on pages 16, 17, 21, and 35.

[Hu et al., 2005] Hu, J., Cordel, D., and Meinel, C. (2005). Virtual machine
management for tele-lab "it-security" server. In Proceedings of the 10th
IEEE Symposium on Computers and Communications, ISCC ’05, pages
448–453. IEEE Computer Society. Cited on page 4.

[Hu et al., 2004] Hu, J., Meinel, C., and Schmitt, M. (2004). Tele-lab it
security: An architecture for interactive lessons for security education.
In Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’04, pages 412–416, New York, NY, USA.
ACM. Cited on page 77.

[Hu et al., 2003] Hu, J., Schmitt, M., Willems, C., and Meinel, C. (2003).
A tutoring system for it security. In Security education and critical
infrastructures, pages 51–60. Springer. Cited on page 77.

[Jakab et al., 2009] Jakab, F., Janitor, J., and Nagy, M. (2009). Virtual
lab in a distributed international environment - svc edinet. In Fifth
International Conference on Networking and Services, ICNS ’09, pages
576–580. Cited on page 3.

[Jeuring et al., 2014] Jeuring, J., van Binsbergen, L. T., Gerdes, A., and
Heeren, B. (2014). Model solutions and properties for diagnosing student

BIBLIOGRAPHY 127

programs in ask-elle. In Proceedings of the Computer Science Education
Research Conference, CSERC ’14, pages 31–40, New York, NY, USA.
ACM. Cited on page 77.

[Jonkman, 2016] Jonkman, J. H. A. (2016). Botnet Simulation in a Dis-
tributed Virtual Computer Security Lab. Master’s thesis (Studienarbeit),
Open Universiteit, Heerlen, The Netherlands. Cited on page 32.

[Keller and Naues, 2006] Keller, J. and Naues, R. (2006). Design of a vir-
tual computer security lab. In Proceedings of the IASTED International
Conference on Communication, Network, and Information Security,
CNIS ’06, pages 211–215. Acta Press. Cited on pages 3 and 4.

[Kenny and Pahl, 2005] Kenny, C. and Pahl, C. (2005). Automated tutor-
ing for a database skills training environment, volume 37. ACM. Cited
on page 77.

[Krishna et al., 2005] Krishna, K., Sun, W., Rana, P., Li, T., and Sekar,
R. (2005). V-netlab: A cost-effective platform to support course projects
in computer security. In Proceedings of 9th Colloquium for Information
Systems Security Education. The Printing House, Inc. Cited on page 4.

[Lahoud and Tang, 2006] Lahoud, PhD (ABD), H. A. and Tang, PhD, X.
(2006). Information security labs in ids/ips for distance education. In
Proceedings of the 7th Conference on Information Technology Education,
SIGITE ’06, pages 47–52, New York, NY, USA. ACM. Cited on pages 4
and 6.

[Li, 2009a] Li, P. (2009a). Exploring virtual environments in a decentral-
ized lab. SIGITERes. IT, 6(1):4–10. Cited on page 3.

[Li, 2009b] Li, P. (2009b). Exploring virtual environments in a decentral-
ized lab. SIGITERes. IT, 6(1):4–10. Cited on page 4.

[Li, 2010] Li, P. (2010). Centralized and decentralized lab approaches based
on different virtualization models. J. Comput. Sci. Coll., 26(2):263–269.
Cited on page 4.

[Lo et al., 2014] Lo, D. C.-T., Qian, K., Chen, W., Shahriar, H., and
Clincy, V. (2014). Authentic learning in network and security with

128 BIBLIOGRAPHY

portable labs. 2014 IEEE Frontiers in Education Conference (FIE),
00:1–5. Cited on page 3.

[Mahdi et al., 2016] Mahdi, A., Alhabbash, M., and Abu Naser, S. (2016).
An intelligent tutoring system for teaching advanced topics in information
security. 2:1–9. Cited on page 77.

[Melis et al., 2004] Melis, E., Siekmann, J., et al. (2004). Activemath: An
intelligent tutoring system for mathematics. In ICAISC, pages 91–101.
Springer. Cited on page 77.

[Mhd Wael Bazzaza, 2015] Mhd Wael Bazzaza, K. S. (2015). Using the
cloud to teach computer networks. In Proceedings of the 2015 IEEE/ACM
8th International Conference on Utility and Cloud Computing (UCC),
UCC ’15, pages 310–314. Cited on page 4.

[Mory, 2003] Mory, E. H. (2003). Feedback research revisited. In Handbook
of research for educational communications and technology. Cited on
page 103.

[Odekirk-Hash and Zachary, 2001] Odekirk-Hash, E. and Zachary, J. L.
(2001). Automated feedback on programs means students need less help
from teachers. SIGCSE Bull., 33(1):55–59. Cited on page 103.

[O’Leary, 2006] O’Leary, M. (2006). A laboratory based capstone course
in computer security for undergraduates. In Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science Education, SIGCSE
’06, pages 2–6, New York, NY, USA. ACM. Cited on page 3.

[Peltsverger and Zhang, 2014] Peltsverger, S. and Zhang, C. (2014). Bot-
tleneck analysis with netkit: Teaching information security with hands-on
labs. In Proceedings of the 15th Annual Conference on Information Tech-
nology Education, SIGITE ’14, pages 45–50, New York, NY, USA. ACM.
Cited on page 1.

[Peterson et al., 2003] Peterson, L., Anderson, T., Culler, D., and Roscoe,
T. (2003). A blueprint for introducing disruptive technology into the
internet. SIGCOMM Comput. Commun. Rev., 33(1):59–64. Cited on
page 4.

BIBLIOGRAPHY 129

[Pizzonia and Rimondini, 2008] Pizzonia, M. and Rimondini, M. (2008).
Netkit: Easy emulation of complex networks on inexpensive hardware.
In Proceedings of the 4th International Conference on Testbeds and Re-
search Infrastructures for the Development of Networks & Communities,
TridentCom ’08, pages 7:1–7:10, ICST, Brussels, Belgium, Belgium.
ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering). Cited on page 14.

[Pizzonia and Rimondini, 2016] Pizzonia, M. and Rimondini, M. (2016).
Netkit: Network emulation for education. Software: Practice and Ex-
perience, 46(2):133–165. First appeared online in 2014. Cited on
page 14.

[Psotka et al., 1988] Psotka, J., Massey, L. D., and Mutter, S. A. (1988).
Intelligent tutoring systems: Lessons learned. Psychology Press. Cited
on page 77.

[Queirós and Leal, 2012] Queirós, R. A. P. and Leal, J. P. (2012). Petcha:
A programming exercises teaching assistant. In Proceedings of the 17th
ACM Annual Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’12, pages 192–197, New York, NY, USA.
ACM. Cited on page 77.

[Rescorla and Modadugu, 2006] Rescorla, E. and Modadugu, N. (2006).
Datagram transport layer security. http://www.ietf.org/rfc/rfc4347.
txt. [Online; accessed 22-July-2014]. Cited on page 51.

[Rescorla and Modadugu, 2012] Rescorla, E. and Modadugu, N. (2012).
Datagram transport layer security version 1.2. http://www.ietf.org/
rfc/rfc6347.txt. [Online; accessed 22-July-2014]. Cited on page 51.

[Rimondini, 2007] Rimondini, M. (2007). Emulation of computer net-
works with netkit. Technical Report RT-DIA-113-2007, Department of
Computer Science and Automation, Roma Tre University. Cited on
page 8.

[Salah, 2014] Salah, K. (2014). Harnessing the cloud for teaching cyber-
security. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, SIGCSE ’14, pages 529–534, New York,
NY, USA. ACM. Cited on pages 4 and 6.

http://www.ietf.org/rfc/rfc4347.txt
http://www.ietf.org/rfc/rfc4347.txt
http://www.ietf.org/rfc/rfc6347.txt
http://www.ietf.org/rfc/rfc6347.txt

130 BIBLIOGRAPHY

[Sarkar, 2006] Sarkar, N. I. (2006). Teaching computer networking fun-
damentals using practical laboratory exercises. IEEE Transactions on
education, 49(2):285–291. Cited on page 1.

[Schreiner, 2009] Schreiner, R. (2009). Computernetzwerke: Von den
Grundlagen zur Funktion und Anwendung. Carl Hanser Verlag GmbH &
Co. KG. Cited on page 23.

[Schürmann, 2004] Schürmann, B. (2004). Grundlagen der Rechnerkom-
munikation. Vieweg+Teubner Verlag. Cited on page 26.

[Seeling, 2008] Seeling, P. (2008). Labs@home. SIGCSE Bull., 40(4):75–77.
Cited on pages 4 and 6.

[Stevens, 2003] Stevens, W. R. (2003). Unix Network Programming, Vol-
ume 1: The Sockets Networking API. Addison-Wesley Professional, 2rd
edition. Cited on page 24.

[Suraweera and Mitrovic, 2004] Suraweera, P. and Mitrovic, A. (2004). An
intelligent tutoring system for entity relationship modelling. Interna-
tional Journal of Artificial Intelligence in Education, 14(3, 4):375–417.
Cited on page 77.

[Sykes and Franek, 2003] Sykes, E. R. and Franek, F. (2003). A prototype
for an intelligent tutoring system for students learning to program in
java (tm). In Proceedings of the IASTED International Conference on
Computers and Advanced Technology in Education, pages 78–83. Cited
on page 77.

[Tanenbaum, 1985] Tanenbaum, A. S. (1985). Computer Networks. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA. Cited on page 90.

[Taylor et al., 1996] Taylor, K. D., Honchell, J. W., and DeWitt, W. E.
(1996). Distance learning in courses with a laboratory. In Proceedings
of the 26th Annual Frontiers in Education - Volume 01, FIE ’96, pages
44–46, Washington, DC, USA. IEEE Computer Society. Cited on page 3.

[Vanlehn et al., 2005] Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J. A.,
Shelby, R., Taylor, L., Treacy, D., Weinstein, A., and Wintersgill, M.

BIBLIOGRAPHY 131

(2005). The andes physics tutoring system: Lessons learned. Inter-
national Journal of Artificial Intelligence in Education, 15(3):147–204.
Cited on page 77.

[Vesin et al., 2013] Vesin, B., Ivanović, M., Klašnja-Milićević, A., and
Budimac, Z. (2013). Ontology-based architecture with recommendation
strategy in java tutoring system. Computer Science and Information
Systems, 10(1):237–261. Cited on page 77.

[Vranken et al., 2011] Vranken, H., Haag, J., Horsmann, T., and Karsch,
S. (2011). A distributed virtual computer security lab. In Proceedings
of the 3rd International Conference on Computer Supported Education,
CSEDU ’11, pages 110–119. SciTePress. Cited on pages 16, 21, 35,
and 96.

[Vranken and Koppelman, 2009] Vranken, H. and Koppelman, H. (2009).
A virtual computer security lab for distance education. In Proceedings
of the 5th IASTED European Conference on Internet and Multimedia
Systems and Applications, EuroIMSA ’09, pages 21–27. Acta Press.
Cited on pages 4, 5, 13, 16, and 21.

[Wielemaker, 2009] Wielemaker, J. (2009). Logic programming for
knowledge-intensive interactive applications. PhD thesis, University
of Amsterdam. Cited on page 96.

[Xu et al., 2012] Xu, L., Huang, D., and Tsai, W.-T. (2012). V-lab: A
cloud-based virtual laboratory platform for hands-on networking courses.
In Proceedings of the 17th ACM Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’12, pages 256–261,
New York, NY, USA. ACM. Cited on page 1.

[Yang, 2011] Yang, F.-J. (2011). A virtual tutor for relational schema
normalization. ACM Inroads, 2(3):38–42. Cited on page 77.

[Yang and Reddington, 2014] Yang, J. and Reddington, T. (2014). En-
hance learning through developing network security hands-on lab for
online students. In Proceedings of the 2014 Information Security Cur-
riculum Development Conference, InfoSec ’14, pages 11:1–11:1, New
York, NY, USA. ACM. Cited on page 1.

132 BIBLIOGRAPHY

[Yang et al., 2004] Yang, T. A., Yue, K.-B., Liaw, M., Collins, G., Venka-
traman, J. T., Achar, S., Sadasivam, K., and Chen, P. (2004). Design of
a distributed computer security lab. Journal of Computing Sciences in
Colleges, 20(1):332–346. Cited on page 3.

[Yoo and Hovis, 2004] Yoo, S. and Hovis, S. (2004). Remote access inter-
networking laboratory. In Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, SIGCSE ’04, pages 311–314,
New York, NY, USA. ACM. Cited on page 3.

[Yuan, 2017] Yuan, D. (2017). Developing a hands-on cybersecurity labo-
ratory with virtualization. J. Comput. Sci. Coll., 32(5):118–124. Cited
on page 1.

[Yuan et al., 2011] Yuan, D., Cody, L., and Zhong, J. (2011). Developing
ip telephony laboratory and curriculum with private cloud computing. In
Proceedings of the 2011 Conference on Information Technology Education,
SIGITE ’11, pages 107–112, New York, NY, USA. ACM. Cited on
page 1.

Curriculum Vitae

1976 Born in Düsseldorf, Germany
1987 - 1993 Gesamtschule der Stadt Kierspe (GSKi)

Secondary School
1993 - 1996 Gesamtschule der Stadt Kierspe (GSKi)

Extended Secondary School
1997 - 2008 Cologne University of Applied Sciences

Higher Education
1998 he-microsystems

Student Associate
1999 - 2001 Babcock GmbH

Student Associate
2001 - 2003 Pickard+Heffner GmbH

Student Associate
2006 - 2008 Cologne University of Applied Sciences

Student Associate
2008 - 2014 Cologne University of Applied Sciences

Academic Staff Member
since 2012 Open Universiteit in the Netherlands

External Doctoral Candidate
since 2015 Federal University of Applied

Administrative Sciences
Lecturer in Information Technology

133

	Introduction
	Computer Labs in Education
	Technical Background of this Thesis
	User Mode Linux (UML) and Netkit
	Virtual Computer Security Lab (VCSL)

	Organization of this Thesis
	Involved People and Environments
	Contribution and Organization of this Thesis

	I Design Issues of DVCL
	Distributed Virtual Computer Lab
	Core DVCL Architecture
	DVCL Example Setups
	Conclusion

	Adding a Central Authority
	Core CA Architecture
	CA Example Setup
	Discussion on Scalability
	Conclusion

	Applicability Enhancements
	Security
	Graphical User Interface
	Conclusion

	II Educational Aspects of DVCL
	Course Evaluation
	Learning Situation and Environment
	Networking Assignment Example
	Evaluation
	Conclusion

	Electronic Exercise Assistant
	A Typical Exercise Example
	Performance of a Human Course Advisor
	Technical Feasibility
	Educational Feasibility
	The Electronic Exercise Assistant
	Example for Educational Feasibility
	Conclusion

	Educational Enhancements
	Classroom Settings
	Virtual Classroom Prototype
	Conclusion

	Summary
	Bibliography
	Curriculum Vitae

