
The Design and Use of Tools
for Teaching Logic

Josje Lodder

The Design and Use of Tools for
Teaching Logic

Proefschrift

ter verkrijging van de graad van doctor
aan de Open Universiteit

op gezag van de rector magnificus
prof. dr. Th. J. Bastiaens

ten overstaan van een door het
College voor promoties ingestelde commissie

in het openbaar te verdedigen

op vrijdag 11 september 2020 te Heerlen
om 13:30 uur precies

door

Jacoba Sophia Lodder

geboren op 10 september 1956 te Den Haag

Promotor
Prof. dr. J. T. (Johan) Jeuring Open Universiteit

Universiteit Utrecht

Co-promotor
Dr. B. J. (Bastiaan) Heeren Open Universiteit

Leden van de beoordelingscommissie
Prof. dr. M. G. (Maŕıa) Manzano Universidad de Salamanca
Prof. dr. L.C. (Rineke) Verbrugge Rijksuniversiteit Groningen
Prof. dr. E. (Erik) Barendsen Radboud Universiteit Nijmegen

Open Universiteit
Em. prof. dr. G. (Bert) Zwaneveld Open Universiteit
Dr. H.P. (Hans) van Ditmarsch CNRS, Frankrijk

Cover design: Marco Smeets, Open Universiteit
Printed by Canon Business Service, Heerlen.

Inhoudsopgave

1 Introduction 7
1.1 Logic Tutoring . 7

1.2 Feedback and feed forward . 9

1.3 Research questions . 10

1.4 Content of this thesis . 12

2 A Domain Reasoner for Propositional Logic 17
2.1 Introduction . 17

2.2 Example interactions in an LE for propositional logic 19

2.3 Characteristics of tutoring systems 21

2.3.1 Tasks . 21

2.3.2 Interactions in the inner loop 21

2.3.3 Feedback . 21

2.3.4 Feed forward . 22

2.3.5 Solutions . 22

2.3.6 Adaptability . 23

2.4 A comparison of tools for teaching logic 23

2.4.1 Rewriting a formula in normal form 23

2.4.2 Proving equivalences . 25

2.4.3 A comparison . 26

2.5 Feedback services . 27

2.5.1 Services for the outer loop . 28

2.5.2 Services for the inner loop . 28

2.5.3 Alternative approaches . 29

2.5.4 The use of services in the LogEx learning environment . . . 29

2.5.5 Rules . 30

2.5.6 A strategy language . 31

2.6 Strategies for propositional logic exercises 32

2.6.1 A strategy for rewriting a formula to DNF 32

2.6.2 Adapting a strategy . 35

2.6.3 A rewriting strategy for proving two formulae equivalent . . . 35

2.7 Experimental results . 37

2.8 Conclusions . 39

3

Inhoudsopgave

3 A comparison of elaborated and restricted feedback in LogEx, a tool
for teaching rewriting logical formulae 41

3.1 Introduction . 41

3.2 Evaluation results from other LEs 43

3.3 LogEx . 44

3.3.1 Pilot studies . 47

3.4 Method . 47

3.4.1 Pilot . 48

3.4.2 Experiment . 48

3.5 Results and discussion . 50

3.5.1 Results of pre test and post test 50

3.5.2 Exam results . 56

3.5.3 Results of the loggings . 58

3.6 Conclusion and future work . 63

3.A Appendix . 64

4 Generation and Use of Hints and Feedback in a Hilbert-style Axiomatic
Proof Tutor 65

4.1 Introduction . 65

4.2 Teaching Hilbert-style axiomatic proofs 66

4.3 An e-learning tool for Hilbert-style axiomatic proofs 68

4.4 An algorithm for generating proof graphs 70

4.5 Distilling proofs for students . 74

4.6 Lemmas . 76

4.7 Hints and feedback . 77

4.7.1 Hints . 77

4.7.2 Feedback . 79

4.8 Evaluation of the generated proofs 81

4.8.1 Comparison of the generated proofs with expert proofs 81

4.8.2 Recognition of student solutions 83

4.9 Small-scale experiments with students 85

4.9.1 Evaluation of hints and feedback 85

4.9.2 Use of LogAx . 88

4.9.3 Evaluation of learning effects 88

4.10 Related work . 90

4.11 Conclusion and future work . 91

Appendices . 93

4.A Exercise 11.1.5 . 93

4.B Metamath theorems compared with LogAx with lemmas 93

4.C Exercises used in the experiment and the posttest 93

4

Inhoudsopgave

5 Providing Hints, Next Steps and Feedback in a Tutoring System for
Structural Induction 97
5.1 Introduction . 97
5.2 Terminology . 98
5.3 Related work . 99
5.4 Students’ problems with structural induction 101
5.5 LogInd, a tool for teaching structural induction 103
5.6 Generation of solutions, hints and next steps 107
5.7 Constraints and feedback . 108
5.8 Evaluation . 111
5.9 Conclusion and future work . 114
Appendices . 115
5.A Sketch of a completeness proof for the strategy used by LogInd . . 115

6 Epilogue 119
6.1 Conclusion . 119
6.2 Future work . 120

Samenvatting 123

Dankwoord 127

Curriculum vitae 129

Bibliography 131

5

1 Introduction

1.1 Logic Tutoring

Consider the next argument:

Some employees of the Open University do not like computers.

All staff members of the Computer Science department of the Open University
are employees of the Open University.

Hence some staff members of the Computer Science department of the Open
University do not like computers.

Students have difficulty recognizing that the kind of reasoning given above is in-
correct (Øhrstrøm et al., 2013). Logic courses teach students how to formalize
such arguments, and either to prove that an argument is correct, or show that it is
incorrect by giving a counter example.

Students learn logic in programs such as mathematics, philosophy, computer
science, law, etc. For example, the ACM IEEE Computer Science Curricula 20131

mentions several topics in logic in its Core.
A typical course in logic contains amongst others the following topics (Burris,

1998; Huth and Ryan, 2004; Goldrei, 2005):

• syntax and semantics of propositional logic (truth tables)

• syntax of predicate language

• ‘translation’ of propositional and predicate formulae into natural language
and vice versa

• a formal notion of semantics of predicate logic

• logical consequences in propositional and predicate logic

• standard equivalences and normal forms (disjunctive and conjunctive normal
forms, prenex forms)

• one or more proof systems for propositional and predicate logic (natural de-
duction, Hilbert-style axiomatic proofs)

1http://www.acm.org/education/CS2013-final-report.pdf

7

http://www.acm.org/education/CS2013-final-report.pdf

1 Introduction

• metatheorems (completeness etc.)

• induction

Similar topics can be found in online logic courses, such as the Stanford Intro-
duction to Logic.2 Depending on the target group other topics such as resolution,
Hoare calculus, modal logic etc. are included.

Two essential factors underpinning successful learning are ‘learning by doing’
and ‘learning through feedback’ (Race, 2005). Students learning logic practice by
solving exercises about the above mentioned topics. The nature of these exercises
is rather diverse. A solution to an exercise may consist of a single step, for example
the translation of a natural language sentence in logic, but most of the exercises
ask for a derivation or a proof. Some exercises have a unique correct answer (for
example the truth value of a formula, given a valuation), but most exercises have
more than one correct answer or solution.

Textbooks for logic (Benthem et al., 2003; Hurley, 2008; Vrie and Lodder et al.,
2009; Burris, 1998; Kelly, 1997) sometimes describe how exercises are solved, and
give examples of good solutions. Because there are often many good solutions,
it is infeasible to give all of them in a textbook, or to provide them online. A
student who has solved an exercise in a way that is different from the solution in
the textbook cannot check her solution for correctness by comparing it with the
textbook solution. Hence, students need other sources of feedback when working
on exercises in logic. Many universities organise exercise classes or office hours to
help students with their work. However, it is not always possible to have a human
tutor available. A student may be working at home, studying at a distance teaching
university, or the teaching budget may be too limited to appoint enough tutors.
For multi-step exercises, access to an intelligent tutoring system (ITS) (VanLehn,
2006) that provides feedback at step level might be of help. An ITS provides several
services to students and teachers. Important services of ITSs are selecting tasks
to be solved by the student, determining the level and progress of the student,
diagnosing student actions, and giving feedback and hints to students. An ITS
that follows the steps of a student when solving a task can be almost as effective
as a human tutor (VanLehn, 2011).

As far as we know the first tutoring system for logic was developed in 1963
by Suppes (1971). His system supports the construction of natural deduction style
proofs. A student can enter the name of a rule and the lines on which this rule
should be applied. If the rule is applicable, the system performs this step auto-
matically, otherwise the student receives an error message containing information
about the mistake, for example that modus ponens is not applicable since the line
that should contain an implication contains a conjunction instead.

2http://intrologic.stanford.edu/public/index.php

8

http://intrologic.stanford.edu/public/index.php

1.2 Feedback and feed forward

Since this first system, many systems have been developed and quite a lot have
been abandoned. In 1993, Goldson evaluated eight tutoring systems available at
that moment (Goldson et al., 1993), based on three criteria: what languages and
logics are supported, is the system easy to use and is it useful for teaching purposes.
Van Ditmarsch collected tutoring systems for different types of logics3 and com-
pared the interface of various tools for natural deduction (Van Ditmarsch, 1998).
Since the year 2000, the conference Tools for Teaching Logic offers a platform for re-
search in logic education. At the third conference, Huertas presented a comparative
study of 26 different tools (Huertas, 2011). She discussed functional characteristics
(basic functionalities and logical content), interaction characteristics (interactivity,
feedback and help) and assessment characteristics. These overviews show that the
distribution of the tools among the various topics is quite uneven, and the amount
of support provided by the tools is very diverse. For example, there are some tools
on natural deduction with extensive feedback services, but the few tools on axio-
matic proofs or structural induction provide hardly any feedback, and they cannot
help a student who does not know how to proceed. In the related work sections in
the next chapters we will further discuss other tools for teaching logic.

1.2 Feedback and feed forward

This section introduces the terms feedback and feed forward, discusses how we use
them, and contains some pointers to further literature.

Teaching and learning are as old as mankind. According to Morrison and Miller
(2017), language plays an essential role in human teaching and learning, and they
conjecture that the need to transmit cultural knowledge and skills might have influ-
enced the evolution of language. The added value of using language in education is
confirmed by an experiment set up by Morgan et al. (2015), in which students learn
how to produce stone tools. The students were divided into groups that received
different teaching interventions. In just one of the groups, the teacher was allowed
to use language. When looking at the results, this group clearly outperformed the
other groups. The use of language in teaching can have different functions such as
instruction, explanation, but also feedback. According to Castro and Toro (2004),
the capacity to provide feedback was a key factor in cultural evolution, since ap-
proval and disapproval make learning much more efficient than learning based on
pure imitation.

The research on feedback in education is vast, and the field is still very active.
Several authors performed reviews for different purposes. For example, Natriello
(1987) developed a conceptual framework for integrating research on evaluation
processes in schools and classrooms, Jaehnig and Miller (2007) identified and ana-
lysed studies on the effect of different types of feedback, Crooks (1988) studied the
results of different evaluation practices on student results, Black and Wiliam (1998)

3http://www.ucalgary.ca/aslcle/logic-courseware

9

http://www.ucalgary.ca/aslcle/logic-courseware

1 Introduction

continued the work of Natriello and Crooks for the period 1988–1998, and Shute
(2008) formulated guidelines for feedback.

Different authors use the term ‘feedback’ in different ways. For example, Boud
and Molloy (2013) define feedback by

“Feedback is a process whereby learners obtain information about their
work in order to appreciate the similarities and differences between the
appropriate standards for any given work, and the qualities of the work
itself, in order to generate improved work.”

This definition puts the learner in the centre. Evans (2013) distinguishes several
aspects in definitions of the term ‘feedback’, for example product versus process,
the function of feedback, and the approach such as constructivist or cognitive.
Although we recognize that the role of the student in feedback is essential, in this
thesis we will mainly use the term feedback for the product, by which we mean the
comments provided by the ITS on the answers of the student. Narciss (2008) gives
a classification of different types of feedback, which we will use in Chapter 2 in a
review of tools for teaching the rewriting of logical formulae.

Where different definitions of feedback do have a common core, authors use the
term ‘feed forward’ in at least two different meanings. For example, Rodŕıguez-
Gómez and Ibarra-Sáiz (2015) define feed forward as

“strategies and comments that provide information about the results of
assessment in a way that enables students to take a proactive approach
to making progress.”

In their definition feed forward is provided after the completion of a task, and it
is meant to be used in a next task. Other authors such as Koedinger and Aleven
(2007); Nakevska et al. (2014); Herding (2013) use the term ‘feed forward’ to denote
information that hints or tells the student what to do next. In this thesis we will use
this second meaning; we use the term feed forward for hints and next steps provided
by an ITS. Effectiveness of feed forward may depend on factors such as timing,
content, level and presentation (Herding, 2013; Goldin and Carlson, 2013; Goldin
et al., 2012; Perrenet and Groen, 1993). An ITS can provide feed forward without
being asked, but often the initiative to request feedback lies with the student. In
that case, hint abuse or underuse of feed forward may be a problem (Aleven et al.,
2004).

1.3 Research questions

In this thesis we are interested in the design of ITSs for logic that support multiple-
step exercises with different possible solutions. We will look at the following topics:

10

1.3 Research questions

• standard equivalences and normal forms (disjunctive and conjunctive normal
forms)

• Hilbert-style axiomatic proofs

• structural induction

In general, the rewriting of a propositional formula to normal form takes several
steps, and both the rewriting and the final solution are not unique. Also, most
axiomatic proofs consist of more than a single step, and the number of possible
correct proofs is infinite, although in practice one only comes across a limited
number of different solutions. Inductive proofs contain at least a base case and an
inductive case in which the induction hypothesis has to be applied. Hence, this is
also a multi-step exercise, with in general different possibilities (for example in the
order of the steps) for completing a proof.

Topics such as syntax (writing correct formulae, producing a syntax tree etc.)
and semantics (translations of natural language in logic and vice versa, finding
models for predicate logic formulae etc.) are not part of this research. Some topics
ask for activities that are completely mechanical and that lead to a unique answer,
such as finding the truth value of a formula given a valuation. In general, tools to
support this kind of exercises are already available.4 Also, we do not investigate
natural deduction and semantic tableaux since there are already several learning
environments for these topics (Bornat, 2017; Sieg, 2007; Broda et al., 2006; Minica,
2015)5, nor metatheorems, since in most courses students do not learn to prove
such theorems by themselves. However, we will investigate structural induction, a
basic proof technique for metatheorems.

The architecture of intelligent tutoring systems can be described by four compo-
nents corresponding to domain expertise, pedagogical expertise, a student model
and a user interface (Wenger, 1987). The domain expert module describes the do-
main knowledge necessary for solving a problem in the domain. A domain reasoner
for logic contains the rules that may be used, and describes how the rules can be
applied to construct a proof. A second task of this module is to check a student
solution. The pedagogical module performs decisions about interventions and the
sequencing of tasks. The student model contains information about the student
knowledge, and the student communicates with the system via the interface. Not
all ITSs contain all four components, and the boundaries between the components
are not always sharp. Our interest is mainly in the domain expert module, which we
denote by the domain reasoner, a term introduced by Goguadze (2010). To build
an ITS we investigate how we can represent the knowledge about the subdomain
of logic we want to model in a domain reasoner. A next question is how we can
use this domain reasoner to provide feedback that points out common mistakes or

4see for example https://www.cs.utexas.edu/~learnlogic/truthtables/ or https://www.ixl.
com/math/geometry/truth-tables

5and online for example https://creativeandcritical.net/prooftools

11

https://www.cs.utexas.edu/~learnlogic/truthtables/
https://www.ixl.com/math/geometry/truth-tables
https://www.ixl.com/math/geometry/truth-tables
https://creativeandcritical.net/prooftools

1 Introduction

misconceptions, and to help a student who gets stuck with a hint, a next step or
an example solution. Whether students indeed learn by using an ITS for logic is
a question that can only be answered by having students practice with the ITS.
The feedback services of the Ideas framework (Heeren and Jeuring, 2014) serve as
a basis for a learning environment for logic. These services have been developed
to provide feedback and feed forward for exercises that can be solved stepwise.
The services themselves are domain independent, and they can be applied to any
domain with a domain reasoner that contains rules and strategies to solve exercises.

Summarizing, in this thesis we study the domains of standard equivalences and
normal forms, Hilbert-style axiomatic proofs, and structural induction. The main
questions we address are:

R1 How can we describe the expert knowledge of these topics in a domain rea-
soner?

R2 How can we generate feedback and feed forward?

R3 What is the effect of the use of the designed tools in logic education?

1.4 Content of this thesis

In the next subsections we will summarize the contents of the main chapters in this
thesis.

Chapter 2: A domain reasoner for propositional logic

An important topic in courses in propositional logic is rewriting propositional for-
mulae with standard equivalences. This chapter analyses what kind of feedback is
offered by the various learning environments for rewriting propositional logic formu-
lae, and discusses how we can provide these kinds of feedback in a learning environ-
ment. To give feedback and feed forward, we define solution strategies for several
classes of exercises. We offer an extensive description of the knowledge necessary
to support solving this kind of propositional logic exercises in a learning environ-
ment and introduce our implementation LogEx, an ITS for rewriting formulas in
normal form and proving equivalences. Normal form rewritings and equivalence
proofs may differ in the direction in which the rewritings are performed. Where
a rewriting in normal form starts with the formula that has to be rewritten, an
equivalence proof can be performed in two directions, starting with the left-hand
side or the right-hand side formula. Also switching direction during the proof is
possible. We describe our solution to the problem how to provide feedback and
feed forward when a student changes the direction of the proof. Textbooks give
standard strategies for rewriting formulas in normal form and equivalence proofs

12

1.4 Content of this thesis

can use these. However, it is often possible to find shorter and more elegant soluti-
ons using heuristics. In this chapter we describe some of the implemented heurisics.

The origin of this chapter is:

Lodder, J., Heeren, B., and Jeuring, J. (2016). A domain reasoner for propositi-
onal logic. Journal of Universal Computer Science, 22(8):1097–1122

Chapter 3: A comparison of elaborated and restricted feedback
in LogEx, a tool for teaching rewriting logical formulae

This chapter describes an experiment with LogEx, an e-learning environment that
supports students in learning how to prove the equivalence between two logical for-
mulae, using standard equivalences such as DeMorgan. In the experiment, we
compare two groups of students. The first group uses the complete learning en-
vironment, including hints, next steps, worked solutions and informative timely
feedback. The second group uses a version of the environment without hints or
next steps, but with worked solutions, and delayed flag feedback. We use pre and
post tests to measure the performance of both groups with respect to error rate and
completion of the exercises. We analyze the loggings of the student activities in
the learning environment to compare its use by the different groups. Both groups
score significantly better on the post test than on the pre test. We did not find
significant differences between the groups in the post test, although the group using
the full learning environment performed slightly better than the other group. In
the examination, which took place five weeks after the experiment, the group of
students who used the complete learning environment scored significantly better
than a group of students who did not participate in the experiment, even when
correcting for different skills in discrete mathematics.

This origin of this chapter is:

Lodder, J., Heeren, B., and Jeuring, J. (2019). A comparison of elaborated and
restricted feedback in LogEx, a tool for teaching rewriting logical formulae. Journal
of Computer Assisted Learning, 35(5):620–632

Chapter 4: Generation and use of hints and feedback in a
Hilbert-style axiomatic proof tutor

This chapter describes LogAx, an interactive tutoring tool that gives hints and
feedback to a student who stepwise constructs a Hilbert-style axiomatic proof in
propositional logic. LogAx generates proofs to calculate hints and feedback. We
use an adaptation of an existing algorithm for natural deduction proofs to generate

13

1 Introduction

axiomatic proofs. We compare these generated proofs with expert proofs and stu-
dent solutions, and conclude that the quality of the generated proofs is comparable
to that of expert proofs. LogAx recognizes most steps that students take when
constructing a proof. Even if a student diverges from the generated solution, Lo-
gAx still provides hints, including next steps or reachable subgoals, and feedback.
With a few improvements in the design of the set of buggy rules, LogAx will co-
ver about 80% of the mistakes made by students by buggy rules. The hints help
students to complete the exercises.

This chapter is an extended version of:

Lodder, J., Heeren, B., and Jeuring, J. (2017). Generating Hints and Feedback
for Hilbert-style Axiomatic Proofs. In Caspersen, M. E., Edwards, S. H., Barnes,
T., and Garcia, D. D., editors, Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, Seattle, WA, USA, March 8-11, 2017,
pages 387–392. ACM

The extension of this paper is partially based on the research from Wendy Neij-
enhuis for her MSc thesis on ‘Using lemmas in an intelligent tutoring system for
axiomatic derivation’.

Chapter 5: Providing Hints, Next Steps and Feedback in a
Tutoring System for Structural Induction

Structural induction is a proof technique that is widely used to prove statements
about discrete structures. Students find it hard to construct inductive proofs, and
when learning to construct such proofs, receiving feedback is important. In this
chapter we discuss the design of a tutoring system, LogInd, that helps students
with constructing stepwise inductive proofs by providing hints, next steps and feed-
back. As far as we know, this is the first tutoring system for structural induction
with this functionality. We explain how we use a strategy to construct proofs for
a restricted class of problems. This strategy can also be used to complete partial
student solutions, and hence to provide hints or next steps. We use constraints
to provide feedback. A pilot evaluation with a small group of students shows that
LogInd indeed can give hints and next steps in almost all cases.

The origin of this chapter is:

Lodder, J., Heeren, B., and Jeuring, J. (2020). Providing Hints, Next Steps and
Feedback in a Tutoring System for Structural Induction. Electronic Proceedings in
Theoretical Computer Science, 313:17–34

14

1.4 Content of this thesis

Chapter 6: Epilogue

This last chapter offers some conclusions and directions for future work.

Contribution of the candidate and co-authors in these chapters:

The candidate designed the research, performed the experiments, analysed the
results, and wrote the papers, Bastiaan Heeren helped in implementing the software,
and both Bastiaan Heeren and Johan Jeuring contributed to the discussions about
the research, experiments, and results, and helped writing the papers.

15

2 A Domain Reasoner for
Propositional Logic

2.1 Introduction

Students learn propositional logic in programs such as mathematics, philosophy,
computer science, law, etc. Students learning propositional logic practice by solving
exercises about rewriting propositional formulae. Most textbooks for propositional
logic (Benthem et al., 2003; Hurley, 2008; Vrie and Lodder et al., 2009; Burris,
1998; Kelly, 1997) contain these kinds of exercises. Such an exercise is typically
solved in multiple steps, and may be solved in various correct ways. Textbooks
sometimes describe how such exercises are solved, and give examples of good so-
lutions. Because there often are many good solutions, it is infeasible to give all of
them in a textbook, or provide them online.

How do students receive feedback when working on exercises in propositional
logic? Many universities organise exercise classes or office hours to help students
with their work. However, it is not always possible to have a human tutor available.
In these cases, access to an intelligent tutoring system (ITS) (VanLehn, 2006) might
be of help.

Feedback is an important aspect of an ITS. Usually an ITS offers various kinds of
feedback: a diagnosis of a student step, a hint for the next step to take, in various
levels of detail, or a completely worked-out solution. A diagnosis of a student step
may analyse the syntax of the expression entered by the student, whether or not
the step brings a student closer to a solution, or whether or not the step follows a
preferred solution strategy, etc. An ITS that follows the steps of a student when
solving a task can be almost as effective as a human tutor (VanLehn, 2011).

What kind of feedback do ITSs for propositional logic give? There are many
tutoring systems for logic available (Huertas, 2011). In this paper we look at
systems that deal with standard equivalences, in which a student has to learn to
rewrite formulae, either to a normal form or to prove an equivalence. We analyse
what kind of feedback is offered by the various learning environments for rewriting
propositional logic formulae, and what kind of feedback is missing, and we discuss
how we can provide these kinds of feedback in a learning environment. To give
feedback we define solution strategies (procedures describing how basic steps may
be combined to find a solution) for several classes of exercises, and we discuss the
role of our strategy language in defining these solution strategies.

17

2 A Domain Reasoner for Propositional Logic

Figuur 2.1: Screenshot of our learning environment for logic

Some interesting aspects of solving exercises in propositional logic are:

– Exercises such as proving equivalences can be solved from left to right (or top
to bottom), or vice versa. How do we support solving exercises in which a
student can take steps at different positions?

– Proving the equivalence of two formulae requires heuristics. These heuristics
support effective reasoning and the flexible application of solution strategies
in these proofs. How do we formulate heuristics in our solution strategies for
solving these kinds of exercises? How ‘good’ are our solutions compared to
expert solutions?

– Reuse and adaptivity play an important role in this domain: different teachers
allow different rules, rewriting to normal form is reused, in combination with
heuristics, in proving equivalences, etc. How can we support reusing and
adapting solution strategies for logic exercises?

This paper describes the knowledge necessary to support solving propositional logic
exercises in a learning environment, including solutions to the above aspects of
solving propositional logic exercises.

Most existing systems for propositional logic do not have a student model; this
paper calls such systems learning environments (LE). This paper focusses on the
components necessary for providing feedback and feed forward in a propositional lo-
gic LE. However, we have also developed an LE on top of these components (Lodder
et al., 2006), see Figure 2.1.1

This paper is organised as follows. Section 2.2 gives an example of an interaction
of a student with a (hypothetical) LE. Section 2.3 describes the characteristics of

1http://ideas.cs.uu.nl/logex/

18

http://ideas.cs.uu.nl/logex/

2.2 Example interactions in an LE for propositional logic

LEs for propositional logic, which Section 2.4 uses to compare existing LEs. We
identify a number of aspects that have not been solved satisfactorily, and describe
our approach to tutoring propositional logic in Section 2.5. Until Section 2.5 we
describe a theoretical framework and look at related work. From section 2.5 on we
present our own approach to tutoring propositional logic using so-called feedback
services, and the implementation of our approach in the LogEx environment. Sec-
tion 2.6 shows how this approach supports solving logic exercises for rewriting logic
expressions to disjunctive or conjunctive normal form and for proving the equiva-
lence of two logical formulae. We conclude with briefly describing the results of
several small experiments we performed with LogEx.

2.2 Example interactions in an LE for propositional
logic

This section gives some examples of interactions of a student with a logic tutor
with advanced feedback facilities. Suppose a student has to solve the exercise of
rewriting the formula

¬((q → p) ∧ p) ∧ q

into disjunctive normal form (DNF). The student might go through the following
steps:

(¬(q → p) ∧ ¬p ∧ q (2.1)

If a student submits this expression the LE reports that a parenthesis is missing in
this formula. After correction the formula becomes:

(¬(q → p) ∧ ¬p) ∧ q (2.2)

The LE reports that this formula is equivalent to the previous formula, but it cannot
determine which rule has been applied: either the student performs multiple steps,
or applies an incorrect step. In this case the student has very likely made a mistake
in applying the DeMorgan rule. Correcting this, the student submits:

(¬(q → p) ∨ ¬p) ∧ q

Now the LE recognises the rule applied (DeMorgan), and adds the formula to the
derivation. Suppose the student does not know how to proceed here, and asks for
a hint. The LE responds with: use Implication elimination. The student asks the
LE to perform this step, which results in:

¬((¬q ∨ p) ∨ ¬p) ∧ q

19

2 A Domain Reasoner for Propositional Logic

The student continues with:

(¬¬q ∨ ¬p ∨ ¬p) ∧ q (2.3)

The LE reports that this step is not correct, and mentions that when applying
DeMorgan’s rule, a disjunction is transformed into a conjunction. Note that in
the second step of this hypothetical interactive session, the student made the same
mistake, but since the formulae were accidentally semantically the same, the LE
did not search for common mistakes there. The student corrects the mistake:

((¬¬q ∧ ¬p) ∨ ¬p) ∧ q

and the LE appends this step to the derivation, together with the name of the rule
applied (DeMorgan). The next step of the student,

¬p ∧ q

is also appended to the derivation, together with the name of the rule applied
(Absorption). At this point, the student may recognise that the formula is in DNF,
and ask the LE to check whether or not the exercise is completed.

As a second example we look at an exercise in which a student has to prove that
two formulae are equivalent:

(¬q ∧ p)→ p ⇔ (¬q ↔ q)→ p

The LE places the right-hand side formula below the left-hand side formula, and
the student has to fill in the steps in between. It is possible to enter steps top-
down or bottom-up, or to mix the two directions. The student chooses to enter a
bottom-up step and to rewrite

(¬q ↔ q)→ p

into:

¬(¬q ↔ q) ∨ p

If she does not know how to proceed, she can ask for a hint. The LE suggests to
rewrite this last formula; a first hint for these kinds of exercises will always refer
to the direction of the proof. Now she can choose to perform this rewriting or she
can ask for a second hint. This hint will suggest to use equivalence elimination.

She can continue to finish the exercise, but she can also ask the LE to provide a
complete solution.

20

2.3 Characteristics of tutoring systems

2.3 Characteristics of tutoring systems

This section introduces a number of characteristics of tutoring systems, which we
will use for the comparison of existing LEs for logic in Section 2.4. This is not
a complete description of the characteristics of LEs, but large enough to cover
the most important components, such as the inner and outer loop of tutoring sys-
tems (VanLehn, 2006), and to compare existing tools. The outer loop of an ITS
presents different tasks to a student, in some order, depending on a student model,
or by letting a student select a task. The inner loop of an ITS monitors the inter-
actions between a student and a system when a student is solving a particular task.
Important aspects of the inner loop are the analyses performed and the feedback
provided. We distinguish feedback consisting of reactions of the system on steps
performed by the students, and hints, next steps and complete solutions provided
by the system. Although Narciss (and others) call this last category also feedback,
others use the term feed forward (Hattie and Timperley, 2007), which we also will
use in this paper. For the interactions in the inner loop, some aspects are specific
for LEs for logic.

2.3.1 Tasks

The starting point of any LE is the tasks it offers. The kind of tasks we consi-
der in this paper are calculating normal forms (NF; in the text we introduce the
abbreviations used in the overview in Figure 2.2) and proving an equivalence (EQ).

An LE may contain a fixed set of exercises (FI), but it may also randomly generate
exercises (RA). Some LEs offer the possibility to enter user-defined exercises (US).

2.3.2 Interactions in the inner loop

In the inner loop of an LE, a student works on a particular task. In most LEs for
rewriting logical formulae a student can submit intermediate steps. Some systems
allow a student to rewrite a formula without providing the name of a rewrite rule
(FO), in other systems she chooses a rule and the system rewrites the formula using
that rule (RU). Some LEs require a student to provide both the name of the rule
to apply, and the result of rewriting with that rule (RaF).

The interactions in the inner loop are facilitated by the user-interface. A user
interface for an LE for logic needs to satisfy all kinds of requirements; too many
to list in this paper. For our comparison, we only look at offering a student the
possibility to work in two directions when constructing a proof (2D).

2.3.3 Feedback

How does an LE give feedback on a step of a student? To distinguish the various
types of feedback, we give a list of possible mistakes. The numbers refer to examples

21

2 A Domain Reasoner for Propositional Logic

of these mistakes in Section 2.2.

– A syntactical mistake (2.1)
– A mistake in applying a rule. We distinguish two ways to solve an exercise

in an LE depending on whether or not a student has to select the rule she
wants to apply. If she indicates the rule she wants to apply, she can make the
following mistakes: perform an incorrect step by applying the rule incorrectly
or perform a correct step that does not correspond to the indicated rule. If a
student does not select the rule she wants to apply, the categories of possible
mistakes are somewhat different. A student can rewrite a formula into a
semantically equivalent formula, but the LE has no rule that results in this
formula. This might be caused by the student applying two or more rules
in a single step, but also by applying an erroneous rule, which accidentally
leads to an equivalent formula (2.2). A second possibility is the rewriting of
a formula into a semantically different formula (2.3).

– A strategic mistake. A student may submit a syntactically and semantically
correct formula, but this step does not bring her closer to a solution. We call
this a strategic mistake.

We distinguish three categories of mistakes: syntactic errors, errors in applying
a rule, and strategic errors. Narciss characterises classes of feedback depending
on how information is presented to a student (Narciss, 2008). When a student
has made an error, we can provide the following kinds of feedback: Knowledge of
result/response (KR, correct or incorrect), knowledge of the correct results (KCR,
description of the correct response), knowledge about mistakes (KM, location of
mistakes and explanations about the errors), and knowledge about how to proceed
(KH).

2.3.4 Feed forward

To help a student with making progress when solving a task, LEs use feed forward:
they may give a hint about which next step to take (HI, in various levels of detail),
they may give the next step explicitly (NE), or they may give a general description
of the components that can be used to solve an exercise (GE). If steps can be taken
both bottom-up and top-down, is feed forward also given in both directions (FF2),
or just in one of the two directions (FF1)?

2.3.5 Solutions

Some LEs offer worked-out examples (WO), or solutions to all exercises available
in the tool (SOL).

22

2.4 A comparison of tools for teaching logic

2.3.6 Adaptability

Finally, we look at flexibility and adaptability. Can a teacher or a student change
the set of rules or connectives (YES, NO)?

2.4 A comparison of tools for teaching logic

This section describes some LEs for logic using the characteristics from the previous
section. We build upon a previous overview of tools for teaching logic by Huertas
(2011). Some of the tools described by Huertas no longer exist, and other, new tools
have been developed. We do not give a complete overview of the tools that currently
exist, but restrict ourselves to tools that support one or more of the exercise types
of LogEx: rewriting a formula in normal form and proving an equivalence using
standard equivalences as rewrite rules. Quite a few tools for logic support learning
natural deduction, which is out of scope for our comparison. We summarise our
findings in Figure 2.2.

2.4.1 Rewriting a formula in normal form

Using Organon2 Dostálová and Lang (2011, 2007), a student practices rewriting
propositional formulae into DNF or CNF (conjunctive normal form). It automati-
cally generates exercises, based on a set of schemas. A student cannot indicate a
rule she wants to apply when taking a step. If a rewritten formula is semantically
equivalent Organon accepts it, even if the student probably made a mistake, as
in (2.2). When a student enters a syntactically erroneous or non-equivalent for-
mula, Organon gives a KR error message. In training mode, a student can ask for
a next step. The steps performed by Organon are at a rather high level: it removes
several implications in a single step, or combines DeMorgan with double negation.
A student can ask for a demo, in which case Organon constructs a DNF stepwise.

FMA contains exercises on rewriting propositional formulae to complete normal
form: a DNF or CNF where each conjunct respectively disjunct contains all the
occurring variables, possibly negated (Prank, 2014). A student highlights the sub-
formula she wants to change. In input mode, she enters the changed subformula.
The tool checks the syntax, and provides syntax error messages if necessary. In
rule mode, a student chooses a rule, and FMA applies this rule to a subformula, or
it gives an error message if it cannot apply it. In 2013, an analyser was added to
FMA. The analyser analyses a complete solution, and provides error messages on
steps where a student solution diverges from a solution obtained from a predefined
strategy. For example, the analyser might give the feedback: “Distributivity used
too early”.

2http://organon.kfi.zcu.cz/organon/

23

http://organon.kfi.zcu.cz/organon/

2 A Domain Reasoner for Propositional Logic

ou
ter

lo
op

︷
︸︸

︷
in

teraction
s

︷
︸︸

︷
feed

b
a
ck

︷
︸︸

︷
feed

forw
ard

︷
︸︸

︷
to

ol
ty

p
e

ex
ercises

in
p

u
t

d
irection

sy
n
ta

x
ru

le
str

h
in

t
solu

tion
ad

ap
t.

O
rg

a
n

o
n

N
F

R
A

F
O

n
.a.

K
R

K
R

-
N

E
W

O
N

O
F

M
A

N
F

R
A

,
F

I
F

O
,

R
U

n
.a

K
R

K
R

K
C

R
-

-
N

O
L

og
icw

eb
N

F
*

F
I,

U
S

R
U

n
.a.

K
R

n
.a

.
K

R
-

-
N

O
S

etS
ails

E
Q

F
I,

U
S

R
aF

2D
K

C
R

K
C

R
-

G
E

*
*
*

-
Y

E
S

L
og

ic
C

afe
E

Q
,

C
O

F
I,

U
S

R
aF

2D
K

R
K

C
R

-
G

E
,

F
F

1
W

O
N

O
F

O
L

eq
u
ivalen

ce
E

Q
**

F
I

R
aF

?
?

K
M

?
-

?
-

N
O

F
igu

u
r

2.2:
C

om
p
arison

of
logic

to
o
ls

a
n

d
th

eir
ch

a
ra

cteristics

T
y
p

e
N

F
:

n
o
rm

a
l

fo
rm

;
E

Q
:

eq
u

iv
a
len

ce
p

ro
o
fs;

*
:

n
o
rm

a
l

fo
rm

s
a
s

p
a
rt

o
f

a
reso

lu
tio

n
p

ro
o
f;

*
*
:

eq
u

iv
a
len

ce
p

ro
o
f

in
fi
rst

o
rd

er
lo

g
ic

E
x
ercises

U
S

:
u

ser
d

efi
n

ed
ex

ercises;
R

A
:

ra
n

d
o
m

ly
g
en

era
lised

ex
ercises;

F
I:

fi
x
ed

set
In

p
u

t
F

O
:

in
p

u
t

a
fo

rm
u

la
;

R
U

:
in

p
u

t
a

ru
le

n
a
m

e;
R

a
F

:
in

p
u

t
a

ru
le

n
a
m

e
a
n

d
a

fo
rm

u
la

D
irectio

n
2
D

:
stu

d
en

t
ca

n
w

o
rk

fo
rw

a
rd

s
a
n

d
b

a
ck

w
a
rd

s;
n

.a
.:

n
o
t

a
p

p
lica

b
le,

b
eca

u
se

to
o
l

d
o
es

n
o
t

o
ff

er
th

ese
ex

ercises
S

y
n
ta

x
n

.a
.:

n
o
t

a
p

p
lica

b
le;

K
R

:
co

rrect/
in

co
rrect;

K
C

R
:

co
rrectio

n
o
f

(so
m

e)
sy

n
ta

x
erro

rs
R

u
le

n
.a

.:
n

o
t

a
p

p
lica

b
le;

K
R

:
co

rrect/
in

co
rrect;

K
C

R
:

ex
p

la
n

a
tio

n
i.e.

a
ru

le-ex
a
m

p
le

S
tr

n
.a

.:
n

o
t

a
p

p
lica

b
le;

K
R

:
step

d
o
es/

d
o
es

n
o
t

fo
llo

w
a

d
esired

stra
teg

y
;

K
C

R
:

ex
p

la
n

a
tio

n
w

h
y

a
step

d
o
es

n
o
t

fo
llo

w
a

d
esired

stra
teg

y
H

in
t

N
E

:
L

E
p

ro
v
id

es
n

ex
t

step
;

G
E

:
list

o
f

p
o
ssib

le
u

sefu
l

ru
les,

su
b

g
o
a
l,

etc.;
*
*
*
:

n
o
t

a
lw

a
y
s

a
v
a
ila

b
le;

F
F

1
:

feed
fo

rw
a
rd

o
n

ly
in

o
n

e
d

irectio
n

(to
p

d
o
w

n
)

S
o
lu

tio
n

W
O

:
w

o
rk

ed
o
u

t
d

em
o
s

A
d

a
p

t.
Y

E
S

:
u

sers
m

a
y

a
d
a
p

t
th

e
ru

le
set;

N
O

:
u
sers

ca
n

n
o
t

a
d

a
p

t
th

e
ru

le
set

24

2.4 A comparison of tools for teaching logic

Logicweb3 is a tool for practicing resolution (and semantic trees), and strictly
spoken not a tool for rewriting a formula into normal form. However, to solve
an exercise, a student starts with rewriting the given formulae in clausal form
(conjunctive normal form), using standard equivalences. Logicweb is an example of
a tool where rewriting is performed automatically. At each step, the student selects
a formula and the tool offers a list of (some of the) applicable rules. The student
selects a rule, and the tool applies it. Thus a student can focus on the strategy
to solve an exercise. The only mistake a student can make is choosing a rule that
does not bring the student closer to a solution. Rules can only be applied in one
direction, hence the only possible ‘wrong’ rule is distribution of and over or, since
that rule can bring a student further from a clausal form. If a student chooses to
distribute and over or, the tool can tell the student that this is not the correct rule
to apply at this point in the exercise. The tool contains a fixed set of exercises, but
user-defined exercises are also possible. In the latter case the tool reports syntactic
errors.

2.4.2 Proving equivalences

SetSails4 (Zimmermann and Herding, 2010; Herding et al., 2010) offers two kinds
of exercises: prove that two set-algebra expressions denote the same set, or prove
that two propositional logic formulae are equivalent. We only look at the last kind
of exercises. SetSails contains a (small) set of predefined exercises, but a user can
also enter an exercise.

SetSails provides immediate feedback on the syntax of a formula and automati-
cally adds parentheses if a formula is ambiguous. In each step a student chooses a
rule, and the system suggests possible applications of this rule, from which the stu-
dent picks one. However, some of these alternatives are deliberately wrong: in some
cases another rule is applied, or the suggested formula contains a common mistake.
Choosing an alternative is thus a kind of multiple choice exercise. A student can
also enter a formula, in case it is missing in the list of suggested formulae. Further
feedback, such as corrections on the applied rules and hints, is given when a stu-
dent asks the system to check a proof, which can be done at each step. The system
recognises if a new formula is equivalent to the old one, but cannot be obtained by
rewriting with a particular rule, and also recognises when the rule name does not
correspond to the rule used. Although the alternative rewritings offered by the LE
seem to be generated by some buggy rules, these are not mentioned when a student
chooses a wrong alternative. The hints mention the rules possibly needed, but not
how to apply them, and the list of the rules needed is not complete. The system
does not provide next steps or complete solutions. After entering an exercise, a
user chooses rules from a predefined set or adds new rules that can be used in a

3http://ima.udg.edu/~humet/logicweb
4http://sail-m.de/

25

http://ima.udg.edu/~humet/logicweb
http://sail-m.de/

2 A Domain Reasoner for Propositional Logic

derivation. This makes it possible to adapt the rule set, or to use previous proofs
as lemmas in new proofs. However, the tool does not guarantee that an exercise
can be solved with the set of rules provided by a user. A user might have forgotten
to include some essential rules from the rule set. A student can work both forwards
and backwards, but the tool does not give advice about these directions.

Logic Cafe5 contains exercises covering most of the material of an introductory
logic course. The part on natural deduction contains some exercises in which a
student has to rewrite a formula by using standard equivalences. If a student
makes a mistake in a step, it is not accepted. In some cases Logic Cafe gives global
feedback about a reason, for example that a justification should start with the
number of the line on which the rule is applied, or that a justification contains an
incorrect rule name. When a student asks for a hint, she gets a list of rules she
has to apply. This kind of feed forward is only available for predefined exercises. A
student can enter her own exercise. The LE contains some small animations that
illustrate the construction of a proof, and some example derivations in which the
LE tells a student exactly what to do at each step.

In the FOL equivalence system (Grivokostopoulou et al., 2013), a student practi-
ces with proving the equivalence between formulae in first order logic. We describe
the tool here because it uses a standard set of rewriting rules for the propositional
part of the proof. A student selects an exercise from a predefined set of exercises.
To enter a step she first selects a rule, and then enters the formula obtained by
applying the rule. The system checks this step, and gives a series of messages in
case of a mistake. The first message signals a mistake. Successive messages are
more specific and give information about the mistake and how to correct it. As far
as we could determine, the system does not give a hint or a next step if a student
does not select a rule, and does not provide complete solutions. It is not clear
whether a student can work forwards, backwards, or both.

2.4.3 A comparison

We compare the above tools by means of the aspects described at the beginning of
this section.

The kind and content of the feedback varies a lot, partly depending on the way
a student works in the tool. Feedback on the rule-level consists of mentioning
that a rule name is incorrect, or that a mistake has been made. SetSails gives a
general form of the correct rule to be applied. FOL equivalence is the only tool
that gives error-specific feedback. None of the other tools report common mistakes
(KM). Logicweb gives feedback on the strategic level when a student uses a wrong
distribution rule, and FMA indicates where a student solution diverges from a
solution obtained from a predefined strategy.

5http://thelogiccafe.net/PLI/

26

http://thelogiccafe.net/PLI/

2.5 Feedback services

Feed forward varies a lot between the different tools too. There is some corre-
lation between the type of exercise and the kind of feed forward. For the ‘easy’
exercises (rewriting into normal form), tools do provide feed forward, such as com-
plete solutions to exercises as given by Organon. For the other tools, feed forward
is more restricted, and mainly consists of general observations about the rules you
might need to solve the problem.

SetSails and Logic Cafe offer the possibility to prove equivalences while working
in two directions. However, these tools do not offer hints on whether to perform a
forward or a backward step, and it is not possible to receive a next backward step.

In SetSails a user can define her own set of rules. However, it does not adapt the
feed forward to this user set.

In conclusion, there already are a number of useful LEs for propositional logic,
but there remains a wish-list of features that are not, or only partially, supported
in these LEs. The main feature missing in almost all tools is feed forward: only
the LEs for practicing normal forms offer next steps or complete solutions in any
situation. Tools on proving equivalences do not provide feed forward, or provide
feed forward only in a limited number of situations. This might be caused by the
fact that the decision procedures for solving these kinds of exercises are not very
efficient or smart. A good LE provides feed forward not only for a standard way
to solve an exercise, but also for alternative ways. It also supports a student that
uses both forward and backward steps in her proof.

The feedback provided in LEs for propositional logic is also rather limited. A
good LE should, for example, have the possibility to point out common mistakes
(KM).

We hypothesise that the number of tools for propositional logic is relatively high
because different teachers use different logical systems with different rule sets. An
LE that is easily adaptable, with respect to notation, rule sets, and possibly stra-
tegies for solving exercises, might fulfil the needs of more teachers.

2.5 Feedback services

The architecture of an intelligent tutoring system (ITS) is described by means of
four components (Nwana, 1990): the expert knowledge module, the student model
module, the tutoring module, and the user interface module. The expert know-
ledge module is responsible for ‘reasoning about the problem’, i.e., for managing
the domain knowledge and calculating feedback and feed forward. Typically, this
component also includes a collection of exercises, and knowledge about the class of
exercises that can be solved. Following Goguadze, we use the term domain reaso-
ner for this component (Goguadze, 2011). We discuss how to construct a domain
reasoner for propositional logic that has all characteristics introduced in Section 2.3.

A domain reasoner provides feedback services to an LE. We use a client-server
style in which an LE uses stateless feedback services of the domain reasoner by sen-

27

2 A Domain Reasoner for Propositional Logic

ding JSON or XML requests over HTTP (Heeren and Jeuring, 2014). We identify
three categories of feedback services: services for the outer loop, services for the
inner loop, and services that provide meta-information about the domain reasoner
or about a specific domain, such as the list of rules used in a domain. The feed-
back services are domain independent, and are used for many domains, including
rewriting to DNF or CNF and proving two formulae equivalent.

2.5.1 Services for the outer loop

The feedback services supporting the outer loop are:

– give a list of predefined examples of a certain difficulty
– generate a new (random) exercise of a specified difficulty
– create a new user-defined exercise

The domain reasonar has to specify the difficulty of the exercise or example. We
have defined a random formula generator that is used for the DNF and CNF exerci-
ses, but we do not generate random pairs for equivalence proofs (or consequences).
Since in this paper we do not investigate the effect of the difficulty of an exercise, we
use a rather pragmatic way to define this difficulty, namely by looking at the length
of a solution and the possible complexity caused by occurrences of the equivalence
connective.

2.5.2 Services for the inner loop

There are two fundamental feedback services for the inner loop. The diagnose
service generates feedback. It analyses a student step and detects various types of
mistakes, such as syntactical mistakes, common misconceptions, strategic errors,
etc. The allfirsts service calculates feed forward, in the form of a list of all possible
next steps based on a (possibly non-deterministic) strategy.

To provide feedback services for a class of exercises in a particular domain, we
need to specify Heeren and Jeuring (2014):

– The rules (laws) for rewriting and common misconceptions (buggy rules). In
Section 2.5.5 we present rules for propositional logic.

– A rewrite strategy that specifies how an exercise can be solved stepwise by
applying rules. Section 2.6 defines strategies for the logic domain.

– Two relations on terms: semantic equivalence of logical propositions compares
truth tables of formulae, whereas syntactic similarity compares the structure
of two formulae modulo associativity of conjunction and disjunction. These
relations are used for diagnosing intermediate solutions.

– Two predicates on terms. The predicate suitable identifies which terms can
be solved by the strategy of the exercise class. The predicate finished checks
if a term is in a solved form (accepted as a final solution): for instance, we

28

2.5 Feedback services

check that a proposition is in some normal form, or that an equivalence proof
is completed.

Explicitly representing rules and rewrite strategies improves adaptability and reuse
of these components. We come back to the issue of adaptability in Section 2.6.2.

2.5.3 Alternative approaches

There are different ways to specify feedback or feed forward for logic exercises.
Defining feedback separately for every exercise is very laborious, especially since
solutions are often not unique. In this approach it is hard to also provide feedback
or hints when a student deviates from the intended solution paths. One way to
overcome this is to use a database with example solutions (Aleven et al., 2009);
an implementation of this idea for a logic tutor is described by Stamper. In this
tutor, Deep Thought, complete solutions and intermediate steps are automatically
derived using data mining techniques based on Markov decision processes. These
solutions and steps are then hard coded. In this way, Deep Thought (Stamper
et al., 2011b) can provide a hint in 80% of the cases. Another advantage of using
example solutions over using solution strategies, is that it is not always clear how
to define such a strategy.

The use of example solutions also has some disadvantages. In our experience with
Deep Thought, if a solution diverges from a ‘standard’ solution, there are often no
hints available. Furthermore, the system can only solve exercises that are similar
to the exercises in the database.

2.5.4 The use of services in the LogEx learning environment

We have developed a domain reasoner for logic, which is used in the LogEx learning
environment6. In this section we describe how LogEx deals with the characteristics
given in Figure 2.2. LogEx presents exercises on rewriting a formula into normal
form and on proving equivalences. We use all three kinds of exercise creation: users
can enter their own exercises, LogEx generates random exercises for normal form
exercises, and LogEx contains a fixed set of exercises for proving equivalence.

A student enters formulae. When proving equivalences a student also has to
provide a rule name. In the exercises about rewriting to normal form this is optional.
Equivalence exercises can be solved by taking a step bottom-up or top-down.

Most of the feedback on syntax is of the KR type: only if parentheses are missing
LogEx gives KCR feedback. LogEx provides KM feedback on the level of rules.
It not only notes that a mistake is made, but also points out common mistakes, and
mentions mistakes in the use of a rule name. LogEx does not support strategic
feedback. LogEx accepts any correct application of a rule, even if the step is
not recognised by the corresponding strategy. In such a case the domain reasoner

6http://ideas.cs.uu.nl/logex/

29

http://ideas.cs.uu.nl/logex/

2 A Domain Reasoner for Propositional Logic

CommOr: φ ∨ ψ ⇔ ψ ∨ φ
CommAnd: φ ∧ ψ ⇔ ψ ∧ φ
DistrOr: φ ∨ (ψ ∧ χ) ⇔ (φ ∨ ψ) ∧ (φ ∨ χ)
DistrAnd: φ ∧ (ψ ∨ χ) ⇔ (φ ∧ ψ) ∨ (φ ∧ χ)

AbsorpOr: φ ∨ (φ ∧ ψ) ⇔ φ
AbsorpAnd: φ ∧ (φ ∨ ψ) ⇔ φ
IdempOr: φ ∨ φ⇔ φ
IdempAnd: φ ∧ φ⇔ φ

DefEquiv: φ↔ ψ ⇔ (φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)
DefImpl: φ→ ψ ⇔ ¬φ ∨ ψ

DeMorganOr: ¬(φ ∨ ψ) ⇔ ¬φ ∧ ¬ψ
DeMorganAnd: ¬(φ ∧ ψ) ⇔ ¬φ ∨ ¬ψ

ComplOr: φ ∨ ¬φ⇔ T
ComplAnd: φ ∧ ¬φ⇔ F
DoubleNeg: ¬¬φ⇔ φ
NotTrue: ¬T ⇔ F
NotFalse: ¬F ⇔ T

TrueOr: φ ∨ T ⇔ T
FalseOr: φ ∨ F ⇔ φ
TrueAnd: φ ∧ T ⇔ φ
FalseAnd: φ ∧ F ⇔ F

Figuur 2.3: Rules for propositional logic

restarts the strategy recogniser from the point the student has reached. Thus,
LogEx can give hints even if a student diverges from the strategy.
LogEx gives feed forward in the form of hints on different levels: which for-

mula has to be rewritten (in case of an equivalence proof), which rule should be
applied, and a complete next step. Feed forward is given for both forward and bac-
kward proving, and even recommends a direction. LogEx also provides complete
solutions.
LogEx does not offer the possibility to adapt the rule set. In Section 2.6.2 we

will sketch an approach to supporting adaptation.

2.5.5 Rules

All LEs for propositional logic use a particular set of logical rules to prove that two
formulae are equivalent, or to derive a normal form. There are small differences
between the sets used. The rule set we use is taken from the discrete math course
of the Open University of the Netherlands Vrie and Lodder et al. (2009) (Fig. 2.3).
Variants can be found in other textbooks. For example, Burris defines equivalence
in terms of implication Burris (1998), and Huth leaves out complement and true-
false rules Huth and Ryan (2004).

Sometimes derivations get long when strictly adhering to a particular rule set.
For this reason we implicitly allow associativity in our solution strategies, so that
associativity does not need to be mentioned when it is applied together with another
rule. This makes formulae easier to read, and reduces the possibility of syntax
errors. Commutativity has to be applied explicitly; but we offer all commutative
variants of the complement rules, the false and true rules, and absorption (Fig. 2.3).
For example, rewriting (q ∧ p) ∨ p into p is accepted as an application of AbsorpOr.

30

2.5 Feedback services

Also a variant of the distribution rule is accepted: students may rewrite (p ∧ q) ∨ r
in (p ∨ r) ∧ (q ∨ r) using DistrOr, and the same holds for DistrAnd.

In our services we use generalised variants of the above rules. For example,
generalised distribution distributes a subterm over a conjunct or disjunct of n
different subterms, and we recognise a rewrite of ¬(p ∨ q ∨ r ∨ s) into ¬p ∧ ¬(q ∨
r) ∧ ¬s as an application of a generalised DeMorgan rule. These generalised rules
are more or less implied by allowing implicit associativity.

Buggy rules describe common mistakes. An example of a buggy rule is given
in the introduction of this paper, where a student makes a mistake in applying
DeMorgan and rewrites ¬(p ∨ q) ∨ (¬¬p ∧ ¬q) ∨ ¬q into (¬p ∨ ¬q) ∨ (¬¬p ∧
¬q) ∨ ¬q . This step is explained by the buggy rule ¬(φ ∨ ψ) 6⇔ ¬φ ∨ ¬ψ; a
common mistake in applying DeMorgan. In case of a mistake, our diagnose service
tries to recognise if the step made by the student matches a buggy rule. The set of
(almost 100) buggy rules we use is based on the experience of teachers, and includes
rules obtained from analysing the log files of the diagnose service.

2.5.6 A strategy language

Although some textbooks give strict procedures for converting a formula into nor-
mal form (Huth and Ryan, 2004), most books only give a general description (Vrie
and Lodder et al., 2009; Burris, 1998), such as: first remove equivalences and im-
plications, then push negations inside the formula using DeMorgan and double ne-
gation, and finally distribute and over or (DNF), or or over and (CNF). In general,
textbooks do not describe procedures for proving equivalences, and these proce-
dures do not seem to belong to the learning goals. We hypothesise that the text
books present these exercises and examples to make a student practice with the use
of standard equivalences (Dalen, 2004; Ben-Ari, 2012). Since we want to provide
both feedback and feed forward, we need solution strategies for our exercises.

We use rewriting strategies to describe procedures for solving exercises in pro-
positional logic, to generate complete solutions and hints, and to give feedback.
To describe these rewriting strategies we use the strategy language developed by
Heeren et al. (Heeren et al., 2010). This language is used to describe strategies in a
broad range of domains. The meaning of the word ‘strategy’ here slightly deviates
from its usual meaning. A rewriting strategy is any combination of steps, which
could be used to solve a procedural problem, but which can also be a more or less
random combination of steps. We recapitulate the main components of this langu-
age, and extend it with a new operator. The logical rules (standard equivalences)
that a student can apply when rewriting a formula in normal form or proving the
equivalence of two formulae are described by means of rewriting rules. These rules
are the basic steps of a rewriting strategy, and in the (inductive) definition of the
language, they are considered rewriting strategies by themselves. We use combina-
tors to combine two rewriting strategies, so a rewriting strategy is a logical rule r ,
or, if s and t are rewriting strategies then:

31

2 A Domain Reasoner for Propositional Logic

– s <?> t is the rewriting strategy that consists of s followed by t
– s <|> t is the rewriting strategy that offers a choice between s and t
– s >|> t is the rewriting strategy that offers a choice, but prefers s
– s . t is a left-biased choice: t is only used if s is not applicable
– repeat s repeats the rewriting strategy s as long as it is applicable

We offer several choice operators. The preference operator is new, and has been
added because we want to give hints about the preferred next step, but allow a
student to take a step that is not the preferred step. For example, consider the
formula (p ∨ s) ∧ (q ∨ r) ∧ (u ∨ v). To bring this formula into DNF we
apply distribution. We can apply distribution top-down (to the first conjunct in
(p ∨ s) ∧ ((q ∨ r) ∧ (u ∨ v))) or bottom-up (to the second conjunct). A diagnosis
should accept both steps, but a hint should advise to apply distribution bottom-up,
because this leads to a shorter derivation. We implement this using the preference
operator.

2.6 Strategies for propositional logic exercises

This section gives rewriting strategies for rewriting a logic formula to normal form
and for proving the equivalence of two logical formulae. Furthermore, we show how
a rewriting strategy can be adapted in various ways.

2.6.1 A strategy for rewriting a formula to DNF

There are several strategies for rewriting a formula to DNF. A first strategy allows
students to apply any rule from a given set of rules to a formula, until it is in
DNF. Thus a student can take any step and find her own solution, but worked-out
solutions produced by this strategy may be unnecessarily long, and the hints it
provides will not be very useful. A second strategy requires a student to follow a
completely mechanic procedure, such as: first remove implications and equivalences,
then bring all negations in front of atomic formulae by applying the DeMorgan rules
and removing double negations, and conclude with the distribution of conjunctions
over disjunctions. This strategy teaches a student a method that always succeeds
in solving an exercise, but it does not help to get strategic insight. This strategy
also does not always produce a shortest solution. The problem of finding a shortest
derivation transforming a formula into DNF is decidable, and we could define a
third strategy that only accepts a shortest derivation of a formula in DNF. There
are several disadvantages to this approach. First, it requires a separate solution
strategy for every exercise. If a teacher can input an exercise, this implies that
we need to dynamically generate, store, and use a strategy in the back-end. This
might be computationally very expensive. Another disadvantage is that although
such a strategy produces a shortest derivation, it might confuse a student, since
the strategy might be too specialised for a particular case. For example, to rewrite

32

2.6 Strategies for propositional logic exercises

a formula into DNF, it is in general a good idea to remove implications and apply
DeMorgan before applying distribution. However, in the formula ¬(q ∨ (p → q)) ∧
(p → (p → q)) a derivation that postpones rewriting the implication p → q and
starts with applying DeMorgan and distribution takes fewer steps than a derivation
that starts with removing the three implications. If a strategy gives the hint to
apply DeMorgan, a student might not understand why this hint is given. We think
that a strategy does not always have to produce a shortest derivation. This implies
that there might be situations in which a student can construct a solution with
fewer steps than the strategy. As long as an LE accepts such a solution, this need
not be a problem.

We choose to develop a variant of the second strategy: a strategy based on a me-
chanical procedure that allows a student to deviate from the procedure, and which
uses heuristics to implement strategic insights. This strategy offers a student a basis
to start from when she works on an exercise, but also stimulates finding strategi-
cally useful steps that lead to shorter derivations. These steps include steps that at
first sight seem to complicate formulae, but offer possibilities for simplification later
on (Schoenfeld, 1987). Our strategy, based on the strategy described in the Open
University textbook (Vrie and Lodder et al., 2009), prescribes an order in which
substrategies are applied. For example, simplifying a formula has highest priority
while distributing and over or has lowest priority. However, when a formula is a
disjunct, both disjuncts can be rewritten separately, in any order. For example, a
student might solve the exercise (¬¬p ∧ (q ∨ r)) ∨ (p → ¬¬q) by first rewriting
the first disjunct, reducing it to DNF in two steps:

(¬¬p ∧ (q ∨ r)) ∨ (p → ¬¬q) ⇔
(p ∧ (q ∨ r)) ∨ (p → ¬¬q) ⇔
(p ∧ q) ∨ (p ∧ r) ∨ (p → ¬¬q)

If a strategy requires to remove double negations before applying distribution,
this last step is not allowed, because the right-hand disjunct should be rewritten
first. On the other hand, applying distribution before removing double negations
leads to duplicating the subformula ¬¬p. For such a situation we introduce the
combinator somewhereOr s: check whether a formula is a disjunction and apply s
to one of the disjuncts, otherwise apply s to the complete formula.

If a formula is a disjunction, we can rewrite it to DNF by rewriting the disjuncts
separately. However, sometimes it is possible to apply a simplification rule on
multiple disjuncts. For example,

(¬¬p ∧ (q ∨ r)) ∨ (p → ¬¬q) ∨ ¬(p → ¬¬q)

is best rewritten by using the complement rule on the last two disjuncts. For such
cases we introduce a set of disjunction simplification rules that we try to apply
at top-level: FalseOr, TrueOr, IdempOr, AbsorpOr, and ComplOr. The substrategy
orRulesS , the definition of which is omitted, applies one of these rules, if possible.

33

2 A Domain Reasoner for Propositional Logic

When applying the orRulesS substrategy is no longer possible, the rewriting stra-
tegy for DNF continues with rewriting a formula into negation normal form (NNF).
A formula in negation normal form does not contain implications or equivalences,
and all negations occur in front of an atom. To obtain an NNF we introduce three
substrategies:

– simplifyStep: simplify by applying orRulesS , or the dual strategy andRulesS ,
or one of the three rules DoubleNeg, NotFalse, or NotTrue

– eliminateImplEquivS : remove implications by applying DefImpl or equivalen-
ces by applying DefEquiv

– deMorganS : use DeMorganOr or DeMorganAnd to move negations down

The rewriting strategy nnfStep combines these three substrategies:

nnfStep = simplifystep . (eliminateImplEquivS >|> deMorganS)

The nnfStep strategy performs at most one step. We use the repeat combinator
to perform all steps necessary to obtain an NNF. The resulting rewriting strategy
always tries to simplify a formula first. After simplifying it removes implications
or equivalences, simplifying in between, and then applies DeMorgan.

After obtaining an NNF we distribute conjunctions over disjunctions to obtain a
DNF. This is achieved by the rewriting strategy distrAndS , which applies DistrAnd

or GeneralDistrAnd, preferring the second rule.
We now have all the ingredients of a rewriting strategy for rewriting to DNF:

dnfStrategy = repeat
(orRulesS <|> somewhereOr (nnfStep . distrAndS))

Using repeat at the beginning of the rewriting strategy ensures that at each step we
apply the complete rewriting strategy again, and hence simplify whenever possible.

In some cases dnfStrategy does not further simplify a formula. It simplifies p ∨
(q ∧ ¬q ∧ r), but not p ∨ (q ∧ r ∧ ¬q), because q and ¬q are not adjacent formulae
in the conjunct. We introduce a rewriting strategy groupLiterals, the definition of
which is omitted, that checks if rearranging conjuncts makes it possible to apply
a simplification. If this is the case, conjuncts are rearranged such that equal or
negated conjuncts appear next to each other. We also use this substrategy in our
rewriting strategy for proving the equivalence between two formulae later in this
section.

A second rewriting strategy that we add to our dnfStrategy is a specialization
of the distribution of disjunction over conjunction. In general, we do not allow
distribution of disjunction in our rewriting strategy. However, if the distribution
can be followed by a complement rule, it simplifies the formula. For example,
applying distribution to p ∨ (¬p ∧ q) leads to (p ∨ ¬p) ∧ (p ∨ q), which can be
simplified to p ∨ q . For the same reason, if a formula is of the form φ ∧ (¬φ ∨ ψ),
distributing and over or before a possible application of DeMorgan shortens the

34

2.6 Strategies for propositional logic exercises

derivation. We define a substrategy distrNot that is only used if after an application
of a distribution rule a complement rule is applicable.

A third rewriting strategy, deMorganNot , checks whether an application of De-
Morgan leads to the possibility to simplify.

The improved definition of nnfStep looks as follows:

nnfStep = simplifyStep
. (groupLiterals >|> distrNot >|> deMorganNot)
. (eliminateImplEquivS >|> deMorganS)

The rewriting strategy ends if there are no steps left that can be applied. Possibly
the rewriting strategy reaches a normal form before it ends. The finished service is
used to check whether a formula is indeed in normal form. We allow a student to
simplify a formula even if a normal form is reached.

2.6.2 Adapting a strategy

We hypothesise that one of the reasons for the many variants of LEs for logic is that
every teacher uses her own strategy or rule set. Our framework supports adapting
rewriting strategies or rule sets. Section 2.6.1 shows how to define variants of the
DNF strategy.

Another way in which a teacher can adapt feedback services is by changing the
rule set. Our DNF strategy is structured in a way that makes it easy to adapt
the rewriting strategy for users who apply more, fewer, or different rules. Our
basic strategy contains five substrategies that can be considered as sets of rules:
orRulesS , simplifyStep, eliminateImplEquivS , deMorganS and distrAndS . Note
that the first four substrategies turn a formula into NNF, and the last substrategy
turns a formula in NNF into DNF. To modify a rewriting strategy, a teacher can
change the content of any of these five sets. To guarantee that a modified strategy
still returns a normal form, the modification has to satisfy certain criteria, described
in (Lodder et al., 2015a).

2.6.3 A rewriting strategy for proving two formulae equivalent

This subsection discusses a rewriting strategy for proving two formulae equiva-
lent. This strategy builds upon the strategy for rewriting a formula into DNF. In
particular, we discuss the heuristics used in this rewriting strategy.

The basic idea behind our strategy for proving two formulae equivalent is simple:
rewrite both formulae into DNF and prove that the two resulting formulae are
equivalent by extending the normal forms Lodder and Heeren (2011). However,
without including heuristics in this strategy, students do not get the necessary
strategic insight for this kind of problems, and derivations may become rather
long.

35

2 A Domain Reasoner for Propositional Logic

The first heuristic we use in our rewriting strategy is a general principle that
divides a problem in smaller subproblems. In our case this means that if we for
example want to prove φ ⇔ ψ and φ and ψ are both conjunctions: φ = φ1 ∧ φ2,
ψ = ψ1 ∧ ψ2, we first check using truth-tables whether or not φ1 ⇔ ψ1 and φ2 ⇔ ψ2

hold, or φ1 ⇔ ψ2 and φ2 ⇔ ψ1. If so, the rewriting strategy splits the proof in two
subproofs, applying commutativity if necessary. The same steps are performed if φ
and ψ are both disjunctions, negations, implications or equivalences. For example,
a proof of

(p ∧ p)→ (q ∧ (r ∨ s))⇔ p → ((s ∨ r) ∧ q)

takes only three steps: two applications of commutativity and one of idempotency.
The rewriting strategy does not rewrite the implication, nor distributes and over or.
After φ and ψ have been rewritten into simplified DNF, the heuristic rearranges
conjuncts and disjuncts to try proving equivalence. Since normal forms are not
unique, we rewrite these normal forms into complete normal forms in some cases.
In a complete normal form, each conjunct contains all the occurring variables,
possibly negated. Complete normal forms are unique up to commutativity. Since
rewriting into complete normal forms may take quite a number of steps, and the
resulting formulae may get very long, we introduce two additional heuristics.

We use inverse distribution to factor out common literals in the disjuncts of φ
and ψ. When we rewrite a formula into complete normal form, we do not use distri-
bution anymore, and hence prevent a loop. We now have to prove the equivalence
of two simpler formulae, which might not make the proof shorter, but at least the
formulae are smaller.

A complete normal form is seldom necessary. We considerably shorten proofs by
using splitting rules of the first heuristic during normalization, together with appli-
cations of the absorption rule. The subformula we choose to extend to normal form
influences the length of the proof too. For example, we do not choose subformulae
that occur on both sides.

To evaluate our rewriting strategy we asked 4 human experts (theoretical com-
puter scientists and logicians) to solve a set of 6 ‘independent’ exercises7. The
expert solutions to two exercises were almost equal to the solutions of LogEx, up
to a few differences in the order of the applied rules. One expert found a quicker
solution to one exercise. In another exercise LogEx found a short cut which was
overlooked by the experts. The experts found shorter solutions to the other three
exercises. LogEx constructs a proof via a DNF while in some cases a proof via
CNF is shorter, and using inverse distribution more often than in our strategy also
helps. From the 187 steps taken by the experts in their solutions to the exercises
169 (= 90%) were recognised as part of the strategy by LogEx.

7https://en.wikibooks.org/wiki/Logic_for_Computer_Scientists/Propositional_Logic/

Equivalence_and_Normal_Forms#Problems

36

https://en.wikibooks.org/wiki/Logic_for_Computer_Scientists/Propositional_Logic/Equivalence_and_Normal_Forms#Problems
https://en.wikibooks.org/wiki/Logic_for_Computer_Scientists/Propositional_Logic/Equivalence_and_Normal_Forms#Problems

2.7 Experimental results

pre-test post-test
Completion 0,54 1,0
Mistakes 0,84 0,7

Figuur 2.4: Results pre- and post-test December 2015

2.7 Experimental results

Since the first version of LogEx we performed several small-scale experiments
with students (Lodder et al., 2008). In this section we describe the results of three
experiments carried out in December 2014, December 2015 and February 2016.

In December 2014 we organised a pilot study with the LogEx learning envi-
ronment (Lodder et al., 2015b). In this pilot study we used pre- and post-tests
together with an analysis of the log files to answer the question whether using
LogEx helps students to reach the following learning goals: after practicing with
the LE, a student can

– recognise applicable rules
– apply rules correctly
– rewrite a formula in normal form
– prove the equivalence of two formulae using standard equivalences
– demonstrate strategic insight in how to rewrite a formula in normal form or

prove an equivalence in an efficient way.

The number of the students participating in this experiment (5) was too low
to draw firm conclusions. However, the results of the study indicate that indeed
LogEx helps students to reach the learning goals, except for the last goal. We
hypothesise that the reason that students do not improve in efficiency is because
LogEx does not provide strategic feedback.

In December 2015 we repeated the pilot evaluation with a group of 8 students.
Again we used pre- and post-tests and analysed the loggings. We graded the tests
in two ways: we measured the completion (percentage of completed exercises) and
the number of mistakes per completed exercise. The results are given in Figure 2.4.
Although we constructed pre- and post-tests such that the difficulty of both tests is
comparable, we have no objective criterion to measure difference in difficulty. Still,
the results on the pre- and post-tests indicate that indeed students learn to apply
rules correctly, and to rewrite a formula in normal form or prove the equivalence
between two formulae. The analysis of the loggings also showed that while working
with LogEx, students become more skilled in applying the appropriate rules. In
contrast to the results of the 2014 test, here we find that students do learn to
work more efficiently. We measure efficiency by dividing the number of steps of a
completed exercise by the number of steps of the example solution generated by
LogEx.We only took exercises that were completed by at least half of the students

37

2 A Domain Reasoner for Propositional Logic

Figuur 2.5: Logging analysis for December 2015 (measuring efficiency)

into account. Figure 2.5 shows the results. The exercises are presented in the order
in which they were completed: students started with the first exercise on rewriting a
formula to DNF, and ended with the fifth exercise on proving an equivalence. Note
that the first exercise on deriving a CNF (cnf0) was solved much less efficiently
than the preceding DNF exercises: students had to find out how to adjust their
solution strategy. Exercise prf2 has a short solution. If a student does not find this
solution, the alternative is long, which explains the high value for this exercise.

In February 2016 we performed a small experiment with students from the Open
University of the Netherlands. Our main research question for this experiment was:

• to what extent do feedback and feed forward contribute to the learning of the
students?

The Open University is a university for distance education with students living
all over the Netherlands. Hence the experiment was performed in the context of
distance learning. After a short instruction via an on-line learning environment,
students worked on a 20-minute pen and paper pre-test. After sending in the
answers, they received access to LogEx, in which they practiced with DNF, CNF
and proof exercises. The experiment was concluded with a 20 minute pen and paper
post-test. 15 students participated, but only 12 handed in both pre- and post-test.
In our analysis we restrict ourselves to these 12 students. They were divided into
two groups of 6 students. One group (group A) could use the full functionality of
LogEx, the second group (group B) received no hints and next steps. Students in
the second group got only feedback after finishing their exercise. Students in both

38

2.8 Conclusions

Group A Group B
Completion pre-test 0,44 0,47
Completion post-test 0,60 0, 53

Mistakes pre-test 1,0 1,2
Mistakes post-test 1,1 1,5

Figuur 2.6: Results pre- and post-test, Open University 2016

groups could ask for a worked out solution, for example to compare it with their own
solution. Both pre- and post-test consisted of three exercises. As in the December
2015 experiment, we graded the tests in two ways: we measured the completion and
the number of mistakes per completed exercise. We have no objective criterion for
determining the difficulty of both tests, hence we cannot measure overall learning
effects, but we can compare the results of both groups. As shown in Figure 2.6,
both groups made the same amount of mistakes in the pre-test. In the post-test
both made more mistakes (maybe due to the difficulty of the post-test or tiredness),
but group A made fewer mistakes than group B. Completion of the pre-test was
higher in group B than in group A, in the post-test these results were reversed. The
results indicate that indeed the presence of immediate feedback and feed forward
do increase learning. We also analysed the loggings. This analysis shows that
students in group A spent more time working in LogEx than students in group B
(on average 57 min. versus 41 min.) The average number of exercises that students
worked on in LogEx is for both groups more or less the same: (8,3 versus 8,8), but
in group B the deviation was greater: one student worked on only four exercises,
another only five. If we omit the results of these two students from the pre- and
post-test, the results on completion for group B are somewhat better than those
of group A. This experiment suggests that the main reason for the difference in
performance between the two groups is a motivational one: students practice more
when they get feedback and feed forward, and hence their results are better. This
explanation is confirmed by the remark of a student in group B who complained
that she could not correct her mistakes and hence “did not learn anything”.

2.8 Conclusions

We have used a framework for describing rules and strategies to develop strategies
that support students solving exercises in propositional logic. The framework pro-
vides services for analysing student steps, and for giving feed forward such as hints,
next steps, examples, and complete solutions. Our approach guarantees that this
feedback and feed forward is available at any time when solving an exercise, also if
a student diverges from a preferred solution, or enters her own exercise.

We have shown how we can adapt our strategy with different rule sets. Since

39

2 A Domain Reasoner for Propositional Logic

feedback and feed forward are provided by services separate from a user-interface or
learning environment, it is easy to adapt the feedback and feed forward for different
languages or logical symbols.

We have performed small-scale experiments with a learning environment built
on top of the services described in this paper, and the results are promising. We
will perform more experiments in the academic year 2016-2017, in which we will
investigate whether our learning environment supports students in developing their
skills and understanding of propositional logic.

Acknowledgements

We thank our students for experimenting with the tools and giving feedback. Maar-
ten Hemker and Peter Dol developed the first version of a user interface for our
learning environment for proving equivalences, and René Dohmen and Renaud
Vande Langerijt extended this for exercises about rewriting to a normal form, and
made some further improvements. Marco Huijben en Wouter Tromp developed a
useful tool for analysing the loggings of LogEx. Expert solutions were provided
by Nikè van Vugt, Hans van Ditmarsch, Fer-Jan de Vries and José Mart́ın Castro-
Manzano. We thank our anonymous referees for their constructive comments.

40

3 A comparison of elaborated and
restricted feedback in LogEx, a
tool for teaching rewriting logical
formulae

3.1 Introduction

Students learning propositional logic practice by solving different kinds of exerci-
ses. Many of these exercises are solved stepwise. To support a student solving such
an exercise, an intelligent tutoring system can be very effective (VanLehn, 2011).
These systems offer several kinds of assistance, for example step by step feedback,
instructions to repair common errors, hints or next steps, or even complete soluti-
ons. The timing of this assistance varies: directly after the performance of a step
or only after the completion of an exercise. Based on a review of the literature,
Koedinger and Aleven (2007) state that offering assistance can make learning more
efficient, but misuse of help can cause shallow learning. On the other hand, wit-
hholding information forces students to construct their own solution, which may
benefit attention, but might waste time and result in confusion. Koedinger and
Aleven introduce the term ‘assistance dilemma’, and review several experiments
that compare different strategies for giving and withholding feedback. The conditi-
ons immediate versus delayed yes/no feedback were studied in an experiment with
a Lisp tutor (R. Anderson et al., 1995) and an Excel tutor (Mathan and Koedinger,
2005). The first study concludes that immediate feedback causes students to learn
faster and better than with feedback after completion of the exercise, but in the
experiment with an Excel tutor, where learning to detect and repair mistakes was
one of the goals, allowing initial errors resulted in better performance not only on
a post test, but also on long term retention and transfer. An experiment with the
Geometry Proof Tutor (Koedinger and Aleven, 2007) comparing explanatory feed-
back with yes/no feedback resulted in a significantly lower post-error rate in the
explanatory feedback condition. The question whether a hint containing conceptual
information is more effective than providing a next step is partially answered by a
study that compares explanatory error messages with correcting next steps, where
the former strategy turns out to be more effective. These experiments support
the approach of balancing giving and withholding information taken in cognitive

41

3 A comparison of elaborated and restricted feedback in LogEx

tutors. However, Koedinger and Aleven claim that the question of how to decide
which information should be given at what moment is a fundamental open problem.

Studies on the assistance dilemma often address a particular subproblem, such
as whether or not supplying worked examples results in more efficient learning.
The outcomes of studies related to worked examples vary. While a comparison
of untutored learning versus worked examples shows that worked examples are
superior (Sweller and Cooper, 1985), the results of comparing tutored learning with
worked examples are less clear, and may depend on the level of a student, exercise
difficulty, or content (procedural versus conceptual) (Shrestha et al., 2009; Razzaq
and Heffernan, 2009; Kim et al., 2009). Strategies where (untutored) problems are
alternated with worked examples are superior when a worked example is followed
by a problem instead of a problem followed by a worked example (van Gog et al.,
2011). Offering a worked solution can be seen as a special case of providing a
worked example. Compared to a situation where exercises are scaffolded by giving
students hints, good students perform better when receiving a worked solution, but
for average students this is the other way around (Razzaq et al., 2007). As far as we
know, the question whether adding the possibility to ask for hints and next steps
supports learning in a situation where a student can ask for a worked solution has
not yet been studied yet.

Several models try to explain the effects of different assistance strategies. Chi
(2009) introduces a framework to differentiate the terms ‘active, constructive, and
interactive’ in terms of observable activities and underlying cognitive processes.
She classifies physical activities as active, the production of output beyond the
presented information as constructive, and performing a dialogue taking the part-
ner’s contributions into account as interactive. The involved cognitive processes
are attending processes, creating processes and creating processes that incorporate
a partner’s contributions, respectively. She uses this classification to hypothesize
that constructive processes have better learning results than active processes, and
interactive processes have better results than constructive processes. Cognitive load
theory is also used to explain differences between assistance strategies. According
to Salden et al. (2010), worked examples reduce extraneous cognitive load and
save time. The Interactive Tutoring Feedback Model (Narciss, 2013) introduces a
framework that distinguishes an internal learner’s feedback loop and an external
feedback loop. The model suggests that learning not only depends on external
factors such as content and timing of feedback, but also on learner characteristics.
Narciss et al. (2014) study the influence of learner characteristics in an experiment
with sixth and seventh graders working on fractions. One of the outcomes is that
male students profit less from feedback than females.

A second subquestion of the assistance dilemma concerns the timing and amount
of feedback when a student makes an error. Based on a review of the literature,
Shute (2008) lists several guidelines to enhance formative feedback, but she does not
give definitive answers. According to these guidelines, immediate feedback should
be used for retention of procedural knowledge, and delayed feedback for transfer of

42

3.2 Evaluation results from other LEs

learning. The question remains which approach is best for a particular domain of
study.

In this paper we describe an experiment with LogEx1, a learning environ-
ment (LE) that supports students in rewriting propositional logical formulae using
standard equivalences. The learning goals addressed by LogEx are: after practi-
cing with LogEx a student can

• correctly apply rewriting rules for propositional logic

• prove the equivalence of two formulae using standard equivalences

• demonstrate strategic insight in how to efficiently prove an equivalence

Here, an efficient proof is a solution that uses a minimal number of steps.
The main research question we investigate in this paper is: do students reach

the above learning goals by practicing with LogEx? We also want to contribute
to the assistance dilemma by investigating whether or not hints and immediate
feedback have an effect on student learning. Do students who receive hints and
feedback while practicing perform better than students who practice with a version
of LogEx with just delayed feedback and worked solutions? We hypothesize that
students who receive immediate feedback and who can use hints make fewer errors
and can complete more exercises.

This paper is organized as follows. The next section reviews several evaluation
studies with other LEs for rewriting logical formulae or proving logical consequen-
ces. We continue with describing LogEx in more detail, together with a short
review of previous studies performed with LogEx. The experiment is described in
Section 3.4. Section 3.5 presents and discusses the results of the assessment tests
and loggings. Section 3.6 summarizes our conclusions and proposes future research.

3.2 Evaluation results from other LEs

This section discusses related work in educational experiments with logic tutors.
In a previous paper (Lodder et al., 2016) we reviewed six e-learning environments

comparable with LogEx. Only one of these environments has been used in an
experiment with students. In FOL (Grivokostopoulou et al., 2013), students rewrite
first-order logical formulae using standard equivalences. Feedback is presented in
stages: first a student chooses a rule that can be applied, and only after the system
approves, the student can continue with the rewriting step. The designers of FOL
compared a group of students who practice with the e-learning environment for one
week 20 minutes a day with a control group of students who solve homework using
pen and paper, discussed by the teacher afterwards. The results show a statistically
significant better performance on a post test by the group who practiced with FOL.

1http://ideas.cs.uu.nl/logex/

43

3 A comparison of elaborated and restricted feedback in LogEx

We have found a number of evaluation studies using LEs for teaching logic focu-
sing on different kinds of exercises.

Logic Tutor (Yacef, 2005) supports learning how to prove a consequence using
rewriting rules (such as DeMorgan) in combination with inference rules. It presents
proofs in a linear form, and only allows rewriting in one direction. It provides
feedback, for instance about a missing reference to a previous proof-line, at each
step, but offers no hints or next steps. Student interactions are logged and can be
analyzed by teachers, for example to improve their teaching. Several experiments
with the Logic Tutor were performed in 2000–2003. Answers to exam questions
show improvement from year to year, partly because of the use of the tutor by
students, but also because of teachers analyzing the loggings of the tool.

Deep Thought (Mostafavi and Barnes, 2017; Stamper et al., 2011b) offers exerci-
ses comparable to Logic Tutor, but presents proofs as trees, and allows students to
construct a proof by adding forward and backward steps. An evaluation study of
Deep Thought addressed the question of whether the use of data-driven methods in
problem selection and feedback in the development of Deep Thought influences stu-
dent drop out and the time needed to complete the exercises in the tutor (Mostafavi
and Barnes, 2017). A comparison of four versions of Deep Thought showed that in
each new version student drop out and time to complete the exercises in the tutor
decreased significantly. An experiment where students either solved a set of three
or four problems, or watched the worked solution of one or two of these problems
and solved another two, showed that worked examples reduced hint dependency for
high proficiency students. Students who received two worked solutions constructed
shorter solutions, but also made more mistakes. On the other hand, low proficiency
students in the worked example condition made more mistakes and produced longer
solutions than low proficiency students who did not receive worked examples (Liu
et al., 2016). An earlier paper showed that students who could ask for hints per-
formed significantly better than students who did not receive hints (Stamper et al.,
2011b).

Miwa et al. (2014) describe an intelligent tutor to help a student with solving
natural deduction problems. It contains a complete problem solver, which provides
various kinds of support, for example, which rule can be applied to which formula,
or which set of rules is applicable. An experiment with the LE showed that stu-
dents who used the LE performed significantly better on easy post test exercises
than a control group that received traditional classroom instruction. There was no
significant difference in performance on the more difficult exercises.

3.3 LogEx

LogEx is a learning environment in which a student practices rewriting propositio-
nal logical formulae. LogEx contains three kinds of exercises: rewriting a formula
in DNF, in CNF, and proving the equivalence of two formulae. A student enters

44

3.3 LogEx

Figuur 3.1: Screenshot of LogEx

her solution stepwise. To illustrate the functionality of the LE, we give an example
of how a student might solve an exercise in LogEx.

Suppose the student has to prove that:

p ∧ (q ∨ s)⇔ (q ∧ ¬s ∧ p) ∨ (p ∧ s)

In LogEx, the left-hand side of this equivalence is shown at the top of the screen
and the right-hand side at the bottom. A student might recognize that after swap-
ping p and q in the bottom line it is possible to take the variable p out of the con-
junctions by applying distribution in reverse. LogEx allows to rewrite the bottom
formula, and after applying commutativity and distribution, the partial proof is of
the form given in Fig. 3.1. The student can continue by rewriting the formula in the
edit field, using shortcuts or a small keyboard to enter the logical connectives, and
motivating the step by choosing the name of the rule applied from a drop-down list.
The student can also change the direction in which she is working at any moment.
For example, she could proceed by rewriting the line p ∧ (q ∨ s) at the top of the
proof into (q ∨ s) ∧ p.

In the complete version of LogEx, a student receives feedback after each step.
Feedback concerns syntax errors, such as missing parentheses, or rule feedback.
After a student enters a formula, LogEx tries to recognize the rule that is used.
If it detects a rule, it compares this rule with the rule specified by the student,
and gives an error message giving the correct rule name if the wrong rule name is
specified. LogEx uses a set of common mistakes, also called buggy rules, to try to
give informative feedback. For example, if a student rewrites ¬(p ∨ q) ∨ (¬¬p ∧

45

3 A comparison of elaborated and restricted feedback in LogEx

Figuur 3.2: The complete solution of the exercise in Figure 3.1, generated by
LogEx

¬q) ∨ ¬q into (¬p ∨ ¬q) ∨ (¬¬p ∧ ¬q) ∨ ¬q , then LogEx reports that this
step is incorrect, and mentions that when applying DeMorgan’s rule, a disjunction
is transformed into a conjunction. If no rule or buggy rule is detected, LogEx
checks whether or not the new and old formulae are semantically equivalent. If
they are not equivalent, LogEx mentions that an error is made, otherwise the
student receives a message that she either combined two or more steps in one, or
made a mistake. In the version of LogEx discussed in this paper, a student can
only proceed after correcting a mistake.

In LogEx, a student can ask for

• a hint, for example, in the situation of Fig. 3.1 LogEx first hints to rewrite
the boxed formula, continuing in the same direction of the proof, and then to
apply Distribution

• a next step, for example, LogEx rewrites p ∧ ((q ∧ ¬s) ∨ s) into p ∧ ((q ∨
s) ∧ (¬s ∨ s))

• or a complete worked solution as shown in Fig. 3.2

at any moment. The LE uses solution strategies to calculate this feed forward.
This strategy can be restarted after each rewriting, so that hints and next steps
can also be given when a student diverges from the solution of the problem that is
calculated by the LE. A student can choose between exercises of different difficulty
levels, or enter her own exercise. Feedback and feed forward are available for all

46

3.4 Method

exercises, including user defined problems. LogEx integrates improved versions of
earlier tools to rewrite formulas in disjunctive normal form (Lodder et al., 2006,
2008) and to prove equivalences (Lodder and Heeren, 2011).

3.3.1 Pilot studies

We have evaluated various aspects of LogEx in several pilot studies (Lodder et al.,
2015b, 2016, 2008). We have used these pilot studies to evaluate the usability of
LogEx, and to prepare for a large scale experiment (Shute and Regian, 1993). In
our first experiments, we compared the complete version of LogEx, in which hints
and next steps are available and a user gets feedback directly after performing a
step, with a version without hints or next steps and a user receives postponed feed-
back. The number of participating students was too low to draw firm conclusions,
but the loggings of the use of LogEx in these experiments indicated that (Lodder
et al., 2008):

• the possibility to ask for a next step is essential for weaker students, the
students who performed less well on the pretest. Students who used a version
of LogEx without the availability of next steps could not complete more
complicated exercises.

• the availability of next steps teaches students to use rules they overlook (for
example, false-true rules to simplify an expression).

• the requirement to perform one step at a time forces students to recognize
mistakes they would overlook otherwise. An example of such a mistake is
applying distributivity on equal connectives, which results in an equivalent
formula, but is not a correct application of distributivity.

• since learning an efficient strategy is implicit in LogEx, students who do
not use the hint and next step button can proceed with inefficient strategies
without receiving feedback on this aspect.

In a second experiment (Lodder et al., 2015b), analysis of the loggings showed that
during the experiment students gradually need less time to complete an exercise,
and feedback helps students to recognize and correct their mistakes.

3.4 Method

In September 2017 we performed an experiment with LogEx at a university of
applied sciences. The participants were second year computer science students
taking a course in discrete mathematics, which has propositional logic as one of
its topics. Students have to learn to simplify formulae using standard equivalences
and to prove the equivalence of formulae.

47

3 A comparison of elaborated and restricted feedback in LogEx

3.4.1 Pilot

To prepare for the experiment, we performed a pilot with 13 part-time students
in May 2017. This experiment took place directly after class-based instruction on
equivalences. The pilot consisted of:

• a short introduction about the purpose of the experiment and instruction on
how to use LogEx.

• a 20-minute pre test consisting of three exercises comparable to the LogEx
exercises.

• working with LogEx for 50 minutes.

• a 20-minute post test consisting of three exercises comparable to the pre test.

Students were divided into two groups. One group used the complete version of
LogEx, the other group could not use hints or next steps and only received check
marks for correct steps after completing an exercise. The latter group could also
ask for a worked solution, and compare it with their own solution. All students
could use a formula sheet so that they did not have to memorize the logic rules.

The main outcome of this experiment was that students scored very low on the
pre test. On average students completed only half of the first exercise, 5% of the
second, and nothing of the third. This implies that the pre test cannot be used to
differentiate between student levels.

Since these results are not very encouraging for students, and not very useful for
teachers and researchers, we changed our experiment in two ways. First, we planned
the experiment the week after class-based instruction of standard equivalences. This
way, students could review the topic before the experiment and already practice a
bit. Second, we replaced the first exercise of the pre test with an exercise that was
slightly easier.

3.4.2 Experiment

Three classes with a total of 74 students participated in the experiment. The parti-
cipants were males between 19 and 31 years. We compared two conditions: the use
of the complete version of LogEx with elaborated feedback (Narciss, 2008), versus
the version without hints and next steps, and with delayed checkmark feedback,
see Table 3.1.

To validate the pre test and post test, we divided both groups into two subgroups,
for which we used the two variants of the pre test and post test given in Table 3.2.
Both tests consist of three exercises. We used exercise 1 of the pre test to measure
the difference in rewriting skills between the groups before the start of the experi-
ment, and hence offered this exercise to both groups. The first exercise in the post

48

3.5 Results and discussion

functionality full LogEx restricted LogEx
hints X ×
next step X ×
complete solution X X
immediate feedback X ×
informed feedback X ×
delayed checkmark feedback × X

Tabel 3.1: Functionalities of the full and restricted versions of LogEx

test is a slightly more complicated variant of the first exercise in the pre test. Exer-
cises 2 and 3 of pre test version 1 are the same as exercises 2 and 3 in the post test
in version 2, and vice versa. We used these exercises to measure learning gains, as
described for example by Bartsch et al. (2008). We use the following abbreviations
for the subgroups of students:

• F1: students using the full version of LogEx and test 1

• F2: students using the full version of LogEx and test 2

• R1: students using the restricted version of LogEx and test 1

• R2: students using the restricted version of LogEx and test 2

• F: F1 + F2, all students using the full version of LogEx

• R: R1 + R2, all students using the restricted version of LogEx

• 1: F1 + R1, all students taking test 1

• 2: F2 + R2, all students taking test 2

Table 3.5 shows the number of students in each group.

The organization of the experiment was comparable to the pilot: a short intro-
duction, a 20-minute pre test, followed by 50 minutes practicing with LogEx, and,
after a short break, a 20-minute post test. Students were allowed to use a formula
sheet during pre test, practicing and post test. We logged the use of LogEx. The
list of twelve exercises used in LogEx can be found in the appendix. All raw data
is available via data.mendeley.com2.

49

3 A comparison of elaborated and restricted feedback in LogEx

Test 1
pre test
1. q → ¬(p ∨ q)⇔ ¬q
2. (p ∨ q ∨ r) ∧ (r ∨ ¬p)⇔ (q ∧ ¬p) ∨ r
3. ((¬p ∨ q) ∧ p) ∨ (¬(¬p ∨ q) ∧ ¬p)⇔ q ∧ p

post test
1. ((¬p ∨ q) ∧ ¬p)→ p ⇔ p
2. (p ∧ q)→ (q ∧ r)⇔ q → (p → r)
3. ((p ∧ q) ∨ (¬p ∧ ¬q))→ p ⇔ p ∨ q

Test 2
pre test
1. q → ¬(p ∨ q)⇔ ¬q
2. (p ∧ q)→ (q ∧ r)⇔ q → (p → r)
3. ((p ∧ q) ∨ (¬p ∧ ¬q))→ p ⇔ p ∨ q

post test
1. ((¬p ∨ q) ∧ ¬p)→ p ⇔ p
2. (p ∨ q ∨ r) ∧ (r ∨ ¬p)⇔ (q ∧ ¬p) ∨ r
3. ((¬p ∨ q) ∧ p) ∨ (¬(¬p ∨ q) ∧ ¬p)⇔ q ∧ p

Tabel 3.2: Pre test and post test

3.5 Results and discussion

3.5.1 Results of pre test and post test

The first exercise in the pre test, which was the same for all students, was used
to test whether the prior knowledge of all groups was comparable. We scored the
exercise in two ways. The first score is the completion rate of the exercise: the
number of completed steps divided by the total number of a completed version of
the student’s solution. The second score is the relative number of incorrect lines
(the number of incorrect steps divided by the total number of steps). The first score
is used to measure the learning goal ‘being able to prove equivalence’, the second
to measure the learning goal ‘applying the rules correctly’. Some students make a
mistake in the first or second line, but continue without mistakes, which may result
in a shorter solution. Since we do not know whether students are able to finish the
exercise had they not made the mistake, we grade these cases as follows: the grade
consists of the number of completed steps divided by the total number of steps in
the standard solution. The descriptive statistics of both measures are shown in
Table 3.3. The statistics indicate that differences between the four groups F1, F2,

2doi:10.17632/4wdj3b2t5g.1

50

3.5 Results and discussion

Completion group 1 group 2 total
mean std dev mean std dev mean std dev

Full LogEx 0.86 0.27 0.81 0.29 0.84 0.27
Restricted LogEx 0.83 0.30 0.82 0.18 0.83 0.26
Total 0.84 0.29 0.82 0.22 0.84 0.27

Relative number
of incorrect lines group 1 group 2 total

mean std dev mean std dev mean std dev
Full LogEx 0.12 0.21 0.15 0.34 0.13 0.25
Restricted LogEx 0.20 0.33 0.12 0.22 0.17 0.29
Total 0.17 0.28 0.13 0.26 0.15 0.27

Tabel 3.3: Descriptive statistics of completion and relative number of incorrect lines
in the first exercise of the pre test

R1, and R2 are small, although group R seems to make some more mistakes.

completion relative number of incorrect lines
chi square 1.7 1.1
df 3 3
p 0.65 0.79

Tabel 3.4: Results of the Kruskal Wallis test on differences between group F1, F2,
R1 and R2 in performance in completion of, and relative number of
incorrect lines in, pre test exercise 1

We use non-parametric tests to compare the distribution of the variables com-
pletion rate and relative number of incorrect lines in the four different groups F1,
F2, R1, and R2, since the Kolmogorov-Smirnov test on normality of the variables
completion rate and relative numbers of incorrect lines fails. The results can be
found in Table 3.4. The outcome of the Kruskal Wallis test indicates that there
is no difference in the distribution of these variables between the different groups.
A comparison of group F versus group R, and of group 1 versus group 2, also
shows no significant difference. We use a Mann Whitney U test with threshold p =
0.05 (Nachar, 2008; Hayes, 1988), and find significance levels of 0.58 for completion
and 0.50 for relative numbers of incorrect lines when we compare group F with
group R, and significance levels of 0.26 for completion and 0.48 for relative number
of incorrect lines when we compare group 1 with group 2. We conclude that prior
knowledge was evenly distributed between the four groups F1, F2, R1, and R2, and
that the difference in the number of mistakes between the groups F and R is not

51

3 A comparison of elaborated and restricted feedback in LogEx

Group Test 1 Test 2 Total
Full LogEx F F1 21 F2 9 30
Restricted LogEx R R1 29 R2 15 44
Total 50 24 74

Tabel 3.5: Number of students in different groups

Figuur 3.3: Pre and post test completion rates on exercise 2 and 3

significant. Since we only look at differences between pre and post test, a small
variation between the groups does not influence our conclusions.

Our first research question is: do students learn by using LogEx, or, more
precisely, do students learn to apply rules correctly, prove the equivalence of two
formulae using standard equivalences, and solve these exercises efficiently. We use
the second and third exercise of the pre and post test to answer the first and second
subquestion. To correct for a possible difference in the level of difficulty between
the exercises in the pre and post test, we divided the students into four groups F1,
F2, R1, and R2 as described in Table 3.5.

First we looked at the overall knowledge gain, independent of the version of
LogEx, which means that we take groups F1 and R1 (group 1) and F2 and R2
(group 2) together. For group 1 and 2 we compared completion of exercises 2 and
3 in the pre test with completion in the post test. Fig. 3.3 shows the results. The
graph indicates that pre test 1 (= post test 2) might be more difficult than pre
test 2 (= post test 1), but both groups complete more of the exercises in the post
test than in the pre test. This is confirmed by tests on effect size: Cohen’s d for
group 1 equals 0.72 (confidence interval [0.59, 0.82]), and for group 2 equals 0.42
([0.20, 0.58]), so despite the possibly more difficult post test in group 2 the effect

52

3.5 Results and discussion

Figuur 3.4: Relative numbers of incorrect lines in pre and post test exercise 2 and 3

can be classified as medium–high. The results for the relative number of incorrect
lines were less conclusive: students in group 1 made relatively fewer mistakes in the
post test than in the pre test (Cohen’s d = −0.54[−0.60,−0.44]), but in the second
group this was the other way around (Cohen’s d = 0.25[0.15, 0.36]), see Fig. 3.4.
Note that in this case a negative number means relatively fewer mistakes. Although
the second group made relatively more mistakes in the post test, the decrease in
mistakes in group 1 was larger than the increase in group 2.

To interpret the numbers on effect size, we compare them with Hattie’s list of
effects ranks. He mentions “Computer aided instruction” with an effect size of 0.37,
and an effect size of 0.6 is reached, for example, by teaching strategies or problem-
solving teaching (Hattie, 2012). Compared to other interventions, the effect of
practicing with LogEx on completion is indeed substantial. We conclude that
working with LogEx helps students to learn how to prove equivalence between
formulas. Although our measure for errors already takes into account the total
number of steps in a solution, the inconclusive results on errors might be explained
by the fact that since students complete more of the exercises, they will also have to
rewrite more complicated formulae. Since students could use a formula sheet, errors
are not caused by incorrectly remembered rules. There are several other sources
of errors, such as sloppiness, misunderstanding, overgeneralization, or just creative
rule interpretation to finish a proof. We looked more closely at the errors made,
but concluded that without asking students, it is hard to categorize the errors.
For example, a student who forgets to change a disjunction into a conjunction
while applying DeMorgan, may misunderstand the rule but may also be sloppy.
In the same way, distributing a conjunction over a conjunction may be caused
by sloppiness, but also by overgeneralization. We think that a large part of the
mistakes are slips, and that practicing with LogEx for 50 minutes is too short to

53

3 A comparison of elaborated and restricted feedback in LogEx

Group 1 norm. compl. gain relative error gain error gain

n median mean n median mean n median mean

Full LogEx 21 0.15 0.21 15 -0.21 -0.26 21 0 0.33
Restr. LogEx 29 0.11 0.13 16 -0.04 -0.07 29 0 0.38

Group 2 norm. compl. gain relative error gain error gain

n median mean n median mean n median mean

Full LogEx 9 0.07 0.17 8 0 0.03 9 0 0.33
Restr. LogEx 14 0.04 0.10 14 -0.02 0.03 15 1 0.33

Tabel 3.6: Descriptive statistics of normalized gain in completion exercise 2 and 3,
relative error gain and error gain

address this. Fatigue might also have influenced these results, as may have the fact
that the students knew they were not going to be graded based on their results.

To answer the question whether giving feedback and hints has an effect on student
learning, we compare the results of the group using the full version of LogEx with
the restricted version. We compare the normalized knowledge gain between group
F1 and R1 and between F2 and R2. Normalized knowledge gain is defined by:
normalized gain = (post − pre) / (100 − pre) where post en pre can reach values
between 0 and 100 (Hake, 1998).

We use the completion rates of exercises 2 and 3 as results of the pre and post
tests. Since the maximum score for the completion rate of the exercises is 2, we
use the following variant of normalized gain:

post2 + post3− pre2− pre3
2− pre2− pre3

.

We also compared the relative error gain:

relative error gain =
errorpost2 + errorpost3

#post2 + #post3
− errorpre2 + errorpre3

#pre2 + #pre3

where errorpre2 is the number of lines containing one or more errors in pre test
exercise 2, and #pre2 is the number of lines in the student submission of exercise
2 in the pre test. The definition of the other variables is similar. Since quite a
number of students did not fill out any line in exercise 2 or 3 in the pre test, we also
compared the absolute number of errors made in pre and post test. The results can
be found in Table 3.6.

We used a Mann Whitney U test to examine whether the users of the full version
of LogEx performed significantly better than the users of the restricted version.
According to the test, this result is not statistically significant, see Table 3.7.

There are several reasons why the differences between group F and group R are
small. Although group R could not use hints or next steps, they could ask for

54

3.5 Results and discussion

Group 1 normalized gain relative error gain absolute error gain
Mann-Whitney U 257.5 86 278
Z -0.93 -1.35 -0.55
p 0.18 0.092 0.298

Group 2 normalized gain relative error gain absolute error gain
Mann-Whitney U 54 53 64
Z -0.57 -0.21 -0.22
p 0.29 0.43 0.44

Tabel 3.7: Results of the Mann Whitney U test on differences between users of
the full version of LogEx versus the restricted version, for group 1 and
group 2

a complete solution, and use this as a worked example. Learning with worked
examples can be very effective (Sweller et al., 2011), and in paragraph 3.5.3 we
will show that group R indeed used the complete solution to get a hint. Where
most of the studies described by Koedinger and Aleven (2007) showed better re-
sults for immediate and informed feedback, in our experiments the effect on the
number of errors is not significantly different between the two groups. A possible
reason might be that our students could use a formula sheet, which makes informed
feedback partly superfluous. Since male students profit less from feedback than fe-
male students Narciss et al. (2014), our 100% male population might be another
explanation for the non significant effects. Students worked individually on the
pre and post test, but could help each other while working with LogEx, and we
actually observed this. As argued by Chi (2009), helping each other might make
more difference than the presence or absence of feedback. Another reason could be
that the experiment was too short to yield significantly different results between
both versions of LogEx. The opposite results for high and low proficient students
in the study by Liu et al. (2016) suggest that a separate analysis for these groups
might yield significant results. However, the number of students in our experiment
was too low to perform such an analysis.

We also wanted to find out whether students learn to solve exercises efficiently,
by which we mean that students construct short solutions. We measure efficiency
by dividing the total number of steps a student takes to solve an exercise by the
number of steps of a worked solution generated by LogEx. Hence, a low score
means an efficient solution. When a student finds a shorter solution than LogEx
this score is less than 1, which actually happened in a few cases (for three exercises,
with respectively two, five and one student). Efficiency is only measured when a
student finishes an exercise correctly. In the pre test and post test the number of
correct solutions for exercise 2 and 3 was too low to draw conclusions. Students

55

3 A comparison of elaborated and restricted feedback in LogEx

who finished the first exercise in the pre test found an efficient solution (efficiency
= 1 in group F and 1.2 in group R). The solutions of the slightly more difficult
exercise 1 in the post test were less efficient (1.6 for both groups). We conclude
that the pre and post test do not provide enough information to decide whether
students develop strategic insight.

3.5.2 Exam results

To measure the medium-term effect of the use of LogEx, we analyzed the results of
two exam questions. The exam took place five weeks after the experiment and con-
tained two questions on rewriting propositional formulae, besides other questions
in discrete mathematics. In the first question students had to simplify a propo-
sitional formula using rewrite rules, in the second question they had to prove an
equivalence. One hundred and eleven students took the exam, 43 of which did not
participate in the experiment. Of the remaining 68 students, 30 practiced with the
full version of LogEx and 38 with the restricted version. Most of the students who
did not participate in the experiment were taking a resit. The scores of this group
are much lower than those of the other students. In the following we denote these
students by group N. The maximum score for the exam was 100 points, 6 of which
could be earned by correct answers to the questions on rewriting logical formulae.
The results of the students on the questions on rewriting logical formulae can be
found in Table 3.8.

Group n logic exercise total
mean std dev mean std dev

Group N 43 2.5 2.5 46.5 15.8
Group F 30 4.1 2.1 50.8 17.2
Group R 38 3.5 2.4 55.8 19.5

Tabel 3.8: Exam results for the exercises on rewriting logical formulae and the total
exam score

On average, the students using the full version of LogEx performed better on
the rewriting logical formulae questions than the users of the restricted version.
They performed slightly worse on the overall results of the exam. The difference
in performance when working with LogEx was not statistically significant, see
Table 3.9.

Since we did not have results of a pre test of the students who did not participate
in the experiment, we cannot compare their results with the students who did
participate. However, since we have their exam results, we can use these as a
measure of the general level and compare the difference of this general level with
the results on the rewriting items. Therefore, we normalize the results by dividing

56

3.5 Results and discussion

logic exercises
Mann-Whitney U 502.5
Z -0.88
p 0.2

Tabel 3.9: Results of the Mann Whitney U test on differences in the results on the
logic exercises in the exam between users of the full version of LogEx
versus the restricted version

the total score by 10 and multiplying the score for the logic questions by 10/6,
and subsequently we look at the difference between these normalized scores. For
example, a student with 60 points in total (normalized 6) and 5 points for the logic
questions (normalized 8.3) scores 2.3 better on the logic question than expected.
This logic score versus total score is normally distributed, and hence we can use a
one way ANOVA test and post hoc tests to compare the differences. Again, group
F performs better than group R, and group R performs better than the students
who did not participate. Table 3.10 shows the descriptives.

Group n mean std dev 95% confidence interval
Group N 43 -0.54 3.53 [-1.63 , 0.54]
Group F 30 1.75 2.92 [0.66, 2.84]
Group R 38 0.29 3.37 [-0.81, 1,41]
Total 111 0.36 3.42 [-0.27, 1.01]

Tabel 3.10: Descriptive statistics of the difference between the results of the logic
exercises and overall exam performance

The effect of practicing with LogEx on the difference is significant, F(2, 108)
= 4.23, p = 0.017. Post hoc comparisons using the Tukey HSD test indicate that
group F performs significantly better than group N. The other comparisons do not
show a significant difference, see Table 3.11.

Groups mean difference std error sig
N versus F -2.30 0.79 0.012
N versus R -0.84 0.74 0.49
F versus R 1.46 0.81 0.18

Tabel 3.11: Post hoc comparison using Tukey HSD test of the difference of norma-
lized scores from the logic exercises and the exam results for the three
groups

57

3 A comparison of elaborated and restricted feedback in LogEx

This is an interesting result. It seems to indicate that in general students have
more problems with the logic questions than with the other questions of the exam,
but that after practicing with LogEx this is the other way around.

3.5.3 Results of the loggings

We analyzed the loggings of LogEx to answer the question whether students learn
while working with LogEx, and to detect possible differences between the groups
using the full and restricted version. The logging data consists of all the steps
students take, all the hints, next steps, or worked solutions they ask for, together
with time stamps. We analyze the loggings in various ways. We determine:

• the number of mistakes students make over time, and whether or not this
number decreases.

• what kind of mistakes students make.

• how many of the exercises students complete.

• the time students need to take a step, and whether or not this decreases the
longer they work in LogEx.

• how long student solutions are compared to the solutions generated by LogEx.

• at what point students in group F use hints and next steps.

In the rest of this section we describe each of these aspects in detail.
Students may show progress by making fewer mistakes after practicing with

LogEx for some time. However, this progress may not be present in the data,
since the first exercises in LogEx are rather simple while the last exercises are
more complicated and present a student with longer formulae. Fig. 3.5 shows the
number of erroneous steps per total number of steps for each exercise.

Both groups make many more mistakes in the second exercise than in the first.
Group F gradually makes fewer mistakes except for exercises 6, 9 and 10 (see the
appendix for the list of exercises). The last two exercises require more complicated
steps, which leads to more mistakes. In exercise 6, students tend to perform more
than one step at a time, which is not allowed. Group R does not make fewer
mistakes while working with LogEx.

Further inspection of the loggings shows that students in group R perform mul-
tiple steps at a time also in the other exercises, and they do this much more often
than the students in group F, probably because a student in group F cannot pro-
ceed with an exercise after performing several steps simultaneously. The difference
in the number of mistakes per step between the two groups is mainly due to these
multiple steps error, but when we correct for these errors, the number of errors
made by students in group R still does not decrease while working with LogEx.

58

3.5 Results and discussion

Figuur 3.5: Errors per step for each exercise

Since students in group F could not continue an exercise before correcting an error,
these students might have been more careful when taking steps after some practice
with LogEx.

We also examined the completion rate of exercises in our loggings. Here we
measure the percentage of students that complete an exercise from the number of
students that started the exercise and took at least one step. The results are shown
in Fig. 3.6. In general, students from group F complete more of the exercises than
students from group R, and this difference is larger in the more difficult exercises.
This is in line with our findings in the pilot studies: students need hints and next
steps to complete an exercise.

Another way to examine whether students learn to solve exercises while working
with LogEx is by measuring the time it takes to perform a step. Obviously,
practice makes perfect, and we expect that with practice, the time to perform a
step decreases. In the first exercises, students familiarize themselves with LogEx,
but we expect that while working with LogEx, they decide faster which rule to
apply. Fig. 3.7 shows the average step time per exercise. This varies per exercise
(with outliers for the more complicated exercises), but the trend line suggests that
students in both groups gradually solve exercises faster. Fig. 3.7 suggests that
after the first exercise, students have learned to use LogEx, and they complete the
rather easy second and third exercise much faster. They need more time to solve
the more complicated fourth exercise, after which the step time gradually decreases.
This is in line with our pilot experiments.

We compared the efficiency of working with LogEx for both groups. Fig. 3.8

59

3 A comparison of elaborated and restricted feedback in LogEx

Figuur 3.6: Completion per exercise

Figuur 3.7: Average step time per exercise

shows the efficiency per exercise. The linear regression trend line indicates that
over time group F learns to solve the exercises slightly more efficient. Since the
use of hints or worked solutions can influence the efficiency we also show the use of
hints and next steps for group F and worked solutions for group R in Fig. 3.9 and
Fig. 3.10. These figures suggest that the apparent progress in efficiency is in fact
a direct result of the increased use of hints or worked solutions. These results are
consistent with our findings in the pilot studies. We hypothesize that practicing
with LogEx for 50 minutes is too short to learn an efficient solving procedure,

60

3.5 Results and discussion

Figuur 3.8: Efficiency measured by the number of performed steps as a fraction of
the number of steps in a worked solution per exercise

in particular since LogEx does not provide explicit strategic information. We
expect that more and longer practice will help with the construction of efficient
solution strategies. This is in line with findings from other studies, see Section 3.2.
In the experiment with FOL, students practiced for one week, and the evaluation
studies of Logic Tutor and Deep Thought took several weeks. All these studies
found significant results. The experiment with the natural deduction LE took
only one session of 80 minutes, and only showed a significant difference on the easy
exercises (Miwa et al., 2014). Students in group R could ask for a complete solution
at any moment. By counting the number of times that a worked out solution was
directly followed by a student step we found that students use this solution as a
hint on how to proceed in about one third of the cases, see Fig. 3.10. Figure 3.9
shows that although students in group R often use the complete solution to obtain
a hint, they still ask much less help than the students in group F. Worked solutions
also contain more information than a hint or a next step. Not only does a student
receive all steps, but possibly also a clue about the usefulness of a next step. Further
research is necessary to determine whether a student can indeed extract this kind
of information from a solution. Further inspection of the loggings shows that some
students in group F use the possibility to ask for a next step to obtain a worked
solution. More than half of the next steps belong to sequences of next steps in
which part of a worked solution is constructed. Another possible explanation for
why students in group F ask for more help, is that they cannot proceed after a wrong
step and ask the system for help in these situations. Interviews with students could
show whether this is indeed the case, but the loggings already give an indication:
a hint is asked twice as much after an incorrect step than after a correct step.

61

3 A comparison of elaborated and restricted feedback in LogEx

Figuur 3.9: Use of hints and next steps in group F compared to the hint use of
worked examples in group R

Figuur 3.10: Use of worked examples in group R and F, group R divided in hint
use and solution use

62

3.6 Conclusion and future work

3.6 Conclusion and future work

We have performed an experiment in which we study the effect on student learning
of using LogEx, a learning environment for proving the equivalence between two
logical formulae using standard equivalences. Furthermore we compare different
ways to give support in LogEx. The experiment indicates that LogEx can be a
helpful LE for students who practice rewriting logical formulae. We conclude that
students do learn to prove the equivalence of two formulae. The number of mistakes
they make while working with LogEx decreases, but they do not exhibit improved
strategic insight. The exam results (4.1 points out of 6 on average for students
using the full LE and 3.5 out of 6 for students using the restricted version) provide
additional support for the conclusion that students reach the first two learning goals.
Further research is needed to find out whether practicing with LogEx for a longer
time improves strategic insight. Another way to improve strategic insight could
be to provide strategic feedback when a student solution is longer than necessary.
The loggings show that especially students who practice with the full LE hardly
use the possibility to ask for a worked solution. When students in this group finish
an exercise successfully, they do not compare their solution with a possibly shorter
example solution. Although in general students learn more when they have to ask
for help themselves (VanLehn, 2006), in this case it might be necessary to let the
system give help without being asked. Yet another way to improve LogEx could be
by providing explicit strategic hints. LogEx recognizes when a student solution
diverges from one of the possible paths determined by LogEx. In a next version,
we might give a warning in such a case. In this way LogEx would exploit the fact
that it generates proofs from a strategy, in contrast with data-driven or example-
based tutors such as Deep Thought (Stamper et al., 2011a; Mostafavi and Barnes,
2017).

The extra features of the full version of LogEx: providing hints, next steps, and
informative feedback after each step, do not have a significant effect on the exam
results of students. Students using the full version perform slightly better, and on
the exam this group performed significantly better than a control group of students
who did not practice with the tool. In a next experiment we could measure the
effects of informative timely feedback versus delayed feedback, and the effects of
providing hints and next steps versus worked solutions separately. Since in both
conditions in our experiment students could ask for a worked solution, they could
use this solution as a hint. Therefore, the distinction between the two groups was
less clear, with possibly negative effects on the significance of our results. The
number of students in our experiment was too small to analyze whether there was
a difference in effects on weak students or good students. This is also a question
we would like to address in a follow-up study.

63

3 A comparison of elaborated and restricted feedback in LogEx

3.A Appendix

List of the exercises used in the experiment:
1. ¬(p ∧ q) ∨ s ∨ ¬r ⇔ (p ∧ q)→ (r → s)
2. p ∧ q ⇔ ¬(p → ¬q)
3. (p ∧ q)→ p ⇔ >
4. ¬(p ∨ (¬p ∧ q))⇔ ¬(p ∨ q)
5. ¬(p ∧ (q ∨ r))⇔ ¬p ∨ (¬q ∧ ¬r)
6. (p → q) ∨ (q → p)⇔ >
7. ¬((p → q)→ (p ∧ q))⇔ (p → q) ∧ (¬p ∨ ¬q)
8. ¬(¬p ∧ ¬(q ∨ r))⇔ p ∨ q ∨ r
9. p ∧ (q ∨ s)⇔ (q ∧ ¬s ∧ p) ∨ (p ∧ s)

10. (p → q) ∧ (r → q)⇔ (p ∨ r)→ q
11. (p → ¬q)→ q ⇔ (s ∨ (s → (q ∨ p))) ∧ q
12. p → (q → r)⇔ (p → q)→ (p → r)

64

4 Generation and Use of Hints and
Feedback in a Hilbert-style
Axiomatic Proof Tutor

4.1 Introduction

The ACM 2013 computer science curriculum lists the ability to construct formal
proofs as one of the learning outcomes of a basic logic course (Association for
Computing Machinery (ACM) and IEEE Computer Society Joint Task Force on
Computing Curricula, 2013). The three main formal deductive systems are Hilbert
systems, sequent calculus, and natural deduction. Natural deduction is probably
the most popular system, but classical textbooks on mathematical logic usually also
discuss Hilbert systems (Kelly, 1997; Mendelson, 2015; Enderton, 2001). Hilbert
systems belong to the necessary foundation to the introduction of logics (temporary,
Hoare, unity, fixpoint, and description logic) used in teaching of various fields of
computer science (Varga and Várterész, 2006), and are treated in several textbooks
on logic for computer science (Ben-Ari, 2012; Nievergelt, 2002; Arun-Kumar, 2002;
Benthem et al., 2003). Hilbert systems are also taught in mathematics and logic
programs (Leary and Kristiansen, 2015; Goldrei, 2005).

Students have problems with constructing formal proofs. An analysis of the high
number of drop-outs in logic classes during a period of eight years shows that many
students give up when formal proofs are introduced (Galafassi et al., 2015; Galafassi,
2012). Our own experience also shows that students have difficulties with formal
proofs. We analyzed the homework handed in by 65 students who participated
in the course “Logic and Computer Science” during the academic years 2014-2015
and 2015-2016. From these students, 22 had to redo their homework exercise on
axiomatic proofs. This is significantly higher than, for example, the number of
students in the same group who had to redo the exercise on semantic tableaux: 5
out of 65.

A student practices axiomatic proofs by solving exercises. Since it is not al-
ways possible to have a human tutor available, an intelligent tutoring system (ITS)
might be of help. There are several ITSs supporting exercises on natural deduction
systems (Sieg, 2007; Perkins, 2007; Broda et al., 2006). In these ITSs, students
construct proofs and get hints and feedback. We found two e-learning tools that
can be used by a student to practice the construction of axiomatic proofs: Meta-

65

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

math Solitaire (Megill, 2007) and Gateway to logic (Gottschall, 2012). Both tools
are proof-editors: a student chooses an applicable rule and the system applies this
rule automatically. These systems provide no help on how to construct a proof.

In this paper we describe LogAx, a new tool that helps students in constructing
Hilbert-style axiomatic proofs. LogAx provides feedback, hints at different levels,
next steps, and complete solutions. LogAx is part of a suite of tools assisting
students in studying logic, such as a tool to practice rewriting formulae in dis-
junctive or conjunctive normal form, and to prove an equivalence using standard
equivalences (Lodder et al., 2016, 2019).

The main contributions of this paper are:

– an algorithm for generating axiomatic proofs and dynamically extending par-
tial proofs

– an extension of this algorithm to incorporate lemmas
– generating hints and feedback based on this algorithm
– the results of small-scale experiments with LogAx.

To determine the quality of LogAx, we compare the proofs generated by the tool
with expert proofs and student solutions. We use the set of homework exercises
mentioned above to collect common mistakes, which we have added as buggy rules
(rules to provide informative feedback) to LogAx.

This paper is organized as follows. Section 4.2 describes Hilbert’s axiom system
and the way it is introduced in textbooks and Section 4.3 explains the interface
of our e-learning tool LogAx. Section 4.4 introduces the algorithm to generate
proofs automatically. Section 4.5 explains how we linearize these generated proofs
and Section 4.6 how we add the possibility to use lemmas. Section 4.7 explains
how we use the generated proofs for providing hints. This section also describes
how we collect a set of buggy rules. Section 4.8 and Section 4.9 discuss the results
of several evaluations of our work. We relate our work to existing approaches of
generating solutions and hints in Section 5.3. Section 4.11 concludes and presents
ideas for future work.

4.2 Teaching Hilbert-style axiomatic proofs

We start with a short description of Hilbert-style axiomatic proofs and the way they
are introduced in different textbooks. Axiomatic proof systems come in several
variants. The most common axiom systems are

φ→ (ψ → φ) Axiom a
(φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ)) Axiom b
(¬φ→ ¬ψ)→ (ψ → φ) Axiom c

used for example in Ben-Ari (2012); Nievergelt (2002); Benthem et al. (2003); Gol-
drei (2005); Kelly (1997), and the system consisting of Axiom a and b, but Axiom

66

4.2 Teaching Hilbert-style axiomatic proofs

c’ instead of Axiom c:

(¬φ→ ¬ψ)→ ((¬φ→ ψ)→ φ) Axiom c’

used for example in Hirst and Hirst (2015); Arun-Kumar (2002); Wasilewska (2018);
Mendelson (2015). These axioms are schemas that can be instantiated by replacing
the metavariables φ, ψ and χ by concrete formulae. A proof consists of a list of
statements of the form Σ ` φ, where Σ is a set of formulae (assumptions) and φ
is the formula that is derived from Σ. In a ‘pure’ axiomatic proof, each line is
either an instantiation of an axiom, an assumption, or an application of the Modus
Ponens (MP) rule:

if Σ ` φ and ∆ ` φ→ ψ then Σ ∪∆ ` ψ

From these axioms and MP, the deduction theorem can be derived:

if Σ, φ ` ψ then Σ ` φ→ ψ

The Open University of the Netherlands teaches axiomatic proofs in a bachelor
course “Logic and computer science” and in a premaster program that prepares
for admission to a master in computer science. The learning objective related to
axiomatic proofs is:

– students are able to construct simple axiomatic proofs.

The course lectures start with recognizing instances of the axioms, and proceed
with simple proofs, providing strategies such as:

– can you derive the last line of the proof by an application of the deduction
theorem or Modus Ponens?

– how can you use the assumptions?

The textbooks we studied (Ben-Ari (2012); Nievergelt (2002); Benthem et al.
(2003); Goldrei (2005); Hirst and Hirst (2015); Arun-Kumar (2002); Wasilewska
(2018); Mendelson (2015)) do not give explicit learning goals, except for Kelly
(1997), which starts each chapter with chapter aims. The aims of the chapter on
axiomatic proofs are amongst others: “When you have completed your study of
this chapter you should

– have a clear understanding of the structure of formal axiomatic systems
– be able to construct formal proofs of theorems”.

From the other textbooks we can deduce learning goals from the examples and
exercises. The textbooks all start the chapter on axiomatic proofs with introducing
the axioms, followed by some examples and exercises in which a student has to
construct simple proofs or provide the motivation to given proof lines. Some of
these proofs use earlier results such as lemmas or derived rules. Some books start
with the first two axioms (Wasilewska, 2018; Nievergelt, 2002) and introduce the

67

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

negation axiom (Axiom c or c’) after the deduction theorem, others introduce the
deduction theorem after the three axioms. After the introduction of the deduction
theorem exercises using it are presented. The exercises in these textbooks suggest
that constructing proofs is a learning goal. The single exception is Wasilewska
(2018): here most exercises only ask to motivate steps in an already constructed
proof.

Hardly any textbook provides substantial information about how to construct a
proof, except from providing examples and showing the use of the deduction theo-
rem. Wasilewska (2018) explicitly states that constructing a proof may start with
searching for two statements such that the conclusion is an application of Modus
Ponens on these statements, and Kelly (1997) explains how to use the deduction
theorem and gives a heuristic to derive Σ ` ψ → φ from Σ ` φ. Constructing
proofs requires knowledge of the syntax of propositional logic, and competencies in
rewriting logical formulae. Therefore, most textbooks deal with rewriting formulas
using standard equivalences (Goldrei, 2005; Ben-Ari, 2012; Wasilewska, 2018; Arun-
Kumar, 2002) or semantic tableaux (Kelly, 1997; Benthem et al., 2003; Ben-Ari,
2012), before the introduction of axiomatic proofs.

4.3 An e-learning tool for Hilbert-style axiomatic
proofs

The e-learning tool that we developed, LogAx, uses the set of axioms a, b and c
described in Section 4.2 and Modus Ponens and the deduction theorem.

A proof in this system can be constructed in two directions. To take a step in a
proof, a student can ask two questions:

– How can I reach the conclusion?
– How can I use the assumptions?

An answer to the first question might be: use the deduction theorem to reach the
conclusion. This answer creates a new goal to be reached, and adds a backward step
to the proof. An answer to the second question might be: introduce an instance
of an axiom that can be used together with an assumption in an application of
Modus Ponens. This adds one or more forward steps. Fig. 4.1 shows an example
of a partial proof, constructed in our tool LogAx. A full proof that completes this
partial proof is:

1. p ` p Assumption
2. p → q ` p → q Assumption
3. p, p → q ` q Modus Ponens, 1, 2
4. q → r ` q → r Assumption
5. p, p → q , q → r ` r Modus Ponens, 3, 4
6. p → q , q → r ` p → r Deduction 5
7. q → r ` (p → q)→ (p → r) Deduction 6

68

4.3 An e-learning tool for Hilbert-style axiomatic proofs

Figuur 4.1: A partial proof of q → r ` (p → q) → (p → r) performed in LogAx.
On the right is the dialog box, in which a student can choose rules and
fill in step numbers and help buttons below this dialog box. On the left
is the proof as presented by LogAx.

Fig. 4.1 illustrates most of the functionality of our e-learning tool LogAx. A
student starts with choosing a new exercise from the list, or formulating her own
exercise. She continues working in the dialog box to add new proof lines. Here
she can first choose which rule to apply: an assumption, axiom, an application of
Modus Ponens or deduction theorem, or a new goal. In case of an assumption she
enters a formula, and in case of an axiom, LogAx asks for parameters to add the
instantiation of the axiom to the proof. Fig. 4.1 shows adding a Modus Ponens:
a student has to fill in at least two of the three line numbers. LogAx performs
a step automatically and adds a forward or backward step to the proof. In the
same way, a student provides a line number to perform a backward application of
the deduction theorem. If the deduction theorem is applied in a forward step, the
student also provides a formula φ. The new goal option can be used to formulate
a subgoal to be reached.

If a student makes a mistake, e.g. she writes a syntactical error in a formula,
or tries to perform an impossible application of Modus Ponens, the tool provides
immediate feedback. At any moment she can ask for a hint, next step, or a complete
proof. The high number labelling the target statement (1000) is chosen deliberately,
because at the start of the proof it is not yet clear how long the proof will be. After
finishing the proof a student can ask the tool to renumber the complete proof.

As described above, LogAx contains a dialog box to add new proof lines. The
idea behind this approach is that a student can concentrate on proof construc-
tion. The design choice to allow a student to choose a rule and let the software

69

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

1. p ` p As 2. p → q ` p → q As

3. p, p → q ` q MP 1 2 4. q → r ` q → r As

5. p, p → q , q → r ` r MP 3 4

6. p → q , q → r ` p → r Ded 5

7. ` (q → r)→ (p → (q → r)) Ax a

8. q → r ` p → (q → r) Ded 4 or MP 4 7

9. ` (p → (q → r))→ ((p → q)→ (p → r)) Ax b

10. q → r ` (p → q)→ (p → r) Ded 6 or MP 8 9

Figuur 4.2: A DAM for the proof of q → r ` (p → q)→ (p → r)

perform the rule has successfully been applied in several e-learning tools for logic
and mathematics (Mostafavi and Barnes, 2016; Beeson, 1998; Robson et al., 2012).
For instance, Robson et al. (2012) state that their interface “allows students to
concentrate on strategies while the software carries out procedures”. The use of
the dialog box also implies that students can make fewer mistakes. Since students
should know in principle how to write correct syntactical formulae, we hope that
by using the dialog box, students spend less time on correcting parentheses in long
formulae, such as for example instances of Axiom b. The only possible oversights
students still can make are syntax mistakes in smaller formulae that need to be en-
tered when adding for example an instance of an axiom to the proof. The evaluation
in Section 4.9 shows that students indeed make very few syntactical mistakes.

4.4 An algorithm for generating proof graphs

An ITS for axiomatic proofs provides hints and feedback. There are at least two
ways to construct hints and feedback for a proof. First, they can be obtained from
a complete proof. Such a proof can either be supplied by a teacher or an expert, or
deduced from a set of student solutions. An example of an ITS for natural deduction
proofs that uses student solutions has been developed by Mostafavi and Barnes
(2017). A drawback of this approach is that the tool only recognizes solutions that
are more or less equal to the stored proofs. The tool cannot provide hints when
a student solution diverges from these stored proofs. Also, this only works for a
fixed set of exercises. If a teacher wants to add a new exercise, she also has to
provide solutions, and the tool cannot give hints for exercises that are defined by a
student herself. The second way to provide the tool with solutions, which we use,

70

4.4 An algorithm for generating proof graphs

¬ elim
¬¬φ
φ

¬ intro

��ψ ��ψ
...

...
φ ¬φ
¬ψ → elim

φ→ ψ φ

ψ
→ intro

��φ
...
ψ

φ→ ψ

Figuur 4.3: Rules for natural deduction

is to create proofs automatically. At first sight this might only solve the second
problem: automatically providing hints for new exercises. Section 4.5 explains how
our approach makes it possible to provide hints also in case a student diverges from
a model solution.

We develop an algorithm that automatically generates proofs. This algorithm
should generate the kind of proofs we expect from our students. Existing algo-
rithms, such as the Kalmár constructive completeness proof (Kalmár, 1935), or
the algorithms used in automatic theorem proving (Harrison, 2009), are unsuit-
able for this purpose. Natural deduction tools such as ProofLab (Sieg, 2007) and
Pandora (Broda et al., 2006) also use algorithms to calculate solutions, and these
algorithms can provide useful hints and feedback. We adapt an existing algorithm
for natural deduction to create axiomatic proofs. Before we describe the algorithm,
we first explain how we represent proofs.

Fig. 4.1 shows a partial example proof of q → r ` (p → q)→ (p → r). There are
alternative ways to start this proof. A student may choose between various orders,
for example swap line number 1 and line number 2. Using one or more axiom in-
stances we may obtain entirely different proofs. Since we want to recognize different
proofs, we represent proofs as labeled directed acyclic multi graphs (DAM), where
the vertices are statements Σ ` φ and the edges connect dependent statements.
We annotate vertices with the applied rule: Assumption, Axiom, Modus Ponens
or Deduction. Note that a statement can be the result of different applications of
rules. An example of such a DAM is shown in Fig. 4.2. Vertices are numbered for
readability. A blue arrow means that the lower statement follows from the higher
by application of the deduction theorem. A pair of red arrows represents an ap-
plication of Modus Ponens. This DAM contains three essentially different proofs:
one that uses Axiom a and b, one that applies the deduction theorem and Axiom
a, and one that uses no axioms and applies the deduction theorem twice. This last
proof is a continuation of the proof provided in Fig. 4.1.

The basis for our algorithm for axiomatic proofs is Bolotov’s algorithm for natural
deduction proofs (Bolotov et al., 2005). The rules used in this system are presented
in Fig. 4.3, restricted to the connectives ¬ and→ since these are the only connectives
used in the Hilbert axiomatic system. Here we use the same notation as presented
in Benthem et al. (2003). A natural deduction proof is here presented as a tree-
like structure. The elimination rules (¬ elim and → elim) say that you can extend

71

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

a proof of ¬¬φ with φ and combine subproofs of φ → ψ and φ into a proof of
ψ. The introduction rules discard assumptions: subproofs of φ and ¬φ can be
combined in a proof of ¬ψ by an application of rule ¬ intro while discarding ψ.
The last rule, → intro, says that if you have a proof of ψ, you can add φ → ψ
and discard φ. The natural deduction rules for implication translate directly to
rules in the Hilbert system: → elim corresponds to Modus Ponens and → intro to
the deduction theorem. The rules for negation do not have direct counterparts
in the axiomatic system. Therefore, the first adaptation that we have to make
to Bolotov’s algorithm is the use of axiomatic subproofs that mimic the natural
deduction rules for negation. The ¬ elim rule is translated to a single subproof, and
we use seven different subproofs to translate the ¬ intro rule, mainly to cover the
possible different dependencies from φ and ¬φ on ψ.

The Bolotov algorithm is goal-driven, and uses a stack of goals. We build a DAM
using steps that are divided into five groups. The first group contains a single step
to initialize the algorithm. The steps in the second group check whether or not a
goal is reached. The steps in the third group extend the DAM. The steps in group
4 handle the goals and may add new formulae to the DAM. In this group, a goal F
can be added. The symbol F is not part of the language, but we use F as shorthand
for “prove a contradiction”. Finally, group 5 completes the algorithm, where we
omit certain details for the steps that are needed to prevent the algorithm from
looping.

1. We start the algorithm by adding the target statement (e.g. q → r ` (p →
q) → (p → r)) to our stack of goals, and the assumptions of this goal (q →
r ` q → r) to the DAM.

Until the stack of goals is empty, repeat:

2. a) If the top of the stack of goals (the top goal from now on) belongs to
the DAM, we remove this goal from the stack of goals.

Motivation: the goal is reached.

b) If the top goal is ∆ ` F and the DAM contains the statements ∆′ ` φ
and ∆′′ ` ¬φ such that ∆′ ∪ ∆′′ ⊆ ∆, we add a set of axioms to the
DAM that can be used to prove the goal below the top from these two
statements. We remove the goal ∆ ` F from the stack.

Motivation: we can use the contradiction to prove the goal below the top.
Apart from the instances of the axioms, this proof will use applications
of Modus Ponens. Hence, the goal below the top will be removed in a
later step.

3. a) If the DAM contains a formula ∆ ` ¬¬φ, we add an instance of Axiom
a (` ¬¬φ → (¬¬¬¬φ → ¬¬φ)) and two instances of Axiom c to the
DAM. The next step uses these axioms to deduce ∆ ` φ.

Motivation: use the doubly negated formula.

72

4.4 An algorithm for generating proof graphs

b) We close the DAM under applications of Modus Ponens.

Motivation: here we perform a broad search, and any derivable state-
ment will be added to the DAM.

c) If the DAM contains a formula ∆ ` ψ and the top goal is ∆\φ ` φ→ ψ,
we add ∆ \ φ ` φ→ ψ to the DAM.

Motivation: use the deduction theorem.

4. a) If the top goal is ∆ ` φ → ψ, we add φ ` φ to the DAM and the goal
∆, φ ` ψ to our stack of goals.

Motivation: prove ∆ ` φ→ ψ with the deduction theorem.

b) If the goal is ∆ ` ¬φ we add φ ` φ to the DAM and the goal ∆, φ ` F
to our stack of goals.

Motivation: prove ∆ ` ¬φ by contradiction.

c) If the goal is ∆ ` p, where p is an atomic formula, we add ¬p ` ¬p to
the DAM and the goal ∆,¬p ` F to our stack of goals.

Motivation: we cannot prove ∆ ` p directly, and hence we prove it by
contradiction.

5. a) If the top goal is ∆ ` F and ∆ ` φ → ψ belongs to the DAM, we add
∆ ` φ to our stack of goals.

Motivation: we cannot prove a contradiction with the steps performed
thus far. Hence, we exploit the statements we already have. Since our
goal is to prove ∆ ` F , any formula is provable from ∆.

b) If the top goal is ∆ ` F and ∆ ` ¬φ belongs to the DAM we add ∆ ` φ
to our stack of goals.

Motivation: use derived statements.

This algorithm constructs a basic DAM. Bolotov shows that his algorithm is sound
and complete. Our adaptations, as for instance the replacement of a negation intro-
duction rule by a set of instances of axioms, preserve soundness and completeness.
We omit a detailed description of our adaptations and a proof of the correctness.

The above algorithm only uses axioms in a proof of a contradiction, or in the
use of double negations. This means that without extra adaptations, Axiom b
will never be used in a generated proof. Since we want the constructed proofs to
resemble the proofs constructed by experts or students, and since LogAx should
teach our students to recognize the possibility to use axioms, we use extra heuristic
rules to add more instances of axioms to the DAM. With these heuristics we can
produce the example DAM in Fig. 4.2. The heuristics to produce the right branch
consisting of the nodes 4, 7, 8, 9 and 10 of the DAM are:

73

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

– If the top goal equals ∆ ` (φ → ψ) → (φ → χ) and ∆′ ` ψ → χ already
belongs to the DAM and ∆′ ⊆ ∆ , then add an instance (φ → (ψ → χ)) →
((φ→ ψ)→ (φ→ χ)) of Axiom b to the DAM.

– If the top goal equals ∆ ` φ and ∆′ ` (ψ → χ) → φ and ∆′′ ` χ belong to
the DAM with ∆′ ⊆ ∆ and ∆′′ ⊆ ∆, then add an instance χ → (ψ → χ) of
Axiom a to the DAM.

4.5 Distilling proofs for students

In the previous section we described the algorithm used to construct the DAM.
Such a DAM may contain different solutions. For example, Fig. 4.2 shows three
essentially different solutions for the proof of q → r ` (p → q) → (p → r). Since
we use this DAM to generate proofs for the purpose of giving hints to students or
providing sample solutions, we have to find a way to isolate single proofs. Moreover,
the proofs in the DAM are structured directed acyclic graphs, whereas an axiomatic
proof is a linear structure. Hence, we need a procedure to extract linear proofs from
a DAM. We will not only use this procedure to provide complete solutions, but also
to generate next steps and hints, which means that the procedure should meet the
following requirements:

– R1: generate a complete linear proof at once or stepwise
– R2: complete a partial proof, even if this proof diverges from the generated

linear proof or contains a user-defined goal
– R3: add steps to a proof in an order that corresponds to the way students or

experts add steps.

Requirement R1 is a direct consequence of our goal to use the DAM to provide
sample solutions, hints and next steps. Since a student solution may differ from
the sample solution constructed from the DAM, we need requirement R2 to ensure
that LogAx can always provide a hint or a next step, using the procedure to
complete a partial proof. There are two ways in which the order of the steps while
constructing a proof may vary. To illustrate the first way, we look at the example
proof in Section 4.3. We could construct this proof in a forward way, from top to
bottom, starting with line number 1 and finishing with line number 7. However,
most textbooks advise to apply the deduction theorem backwards. Hence we prefer
a solution that starts with line number 6 and 7. A second way in which the order
of the steps may vary is the order of the lines in the completed proof. Take for
example the proof in Section 4.3 again. This proof might also start with line
number 4. The reason behind the order chosen is that in general, assumptions are
introduced for use in an application of Modus Ponens, and in general students and
experts introduce assumptions and axioms only when they can be used directly.
If a student asks for a hint, we want LogAx to provide the step that would be
advised by an expert or a fellow student, hence R3 requires an order of the steps

74

4.5 Distilling proofs for students

corresponding to the way students or experts add steps. In the rest of this section
we will first explain how we extract linear proofs and motivate why this way of
extracting proofs matches the requirements later in this section.

The correctness of the algorithm defined in Section 4.4 ensures that the DAM
contains a complete proof. Extracting a single proof can be seen as searching
for a subtree. Linearization of this subtree requires topological sorting. Since
generating a stepwise solution is one of the requirements, we perform these two
tasks, extracting and linearization, simultaneously.

The procedure for proof extraction consists of four different kinds of steps, which
are repeated until the linearized proof is complete. In each step a new line is
added to the proof under construction, or an unmotivated line is motivated. In the
following list, the different steps are ordered according to the preference in which
a certain step is chosen:

– a close step: add a motivation to an unmotivated proof line
– a backward step: add a backward application of the deduction theorem to a

proof
– a forward step: add a forward application of deduction or modus ponens to

a proof
– an introduction step: add an assumption or axiom to a proof.

While performing these steps, the procedure keeps track of the partial linearized
proof, which consists of the grounded part (the already proven proof lines), and the
ungrounded part. The latter part consists of lines that are already in the linearized
proof, but are either unmotivated, or their motivation depends on unmotivated
proof lines. The unmotivated lines are part of a list of goals, which may also
contain a set of other subgoals to be reached.

If possible, the procedure performs a close step, since in general this step com-
pletes the proof. The next preferred step is a backward step since a backward
application of the deduction theorem replaces the goal to be reached by a simpler
goal. When applications of the deduction theorem are impossible, the procedure
tries to use already proven lines in an application of a forward step, and only if all
other three kinds of steps are impossible, the procedure introduces an assumption
or an axiom. Here we have to take care of the logical structure of the proof. We
illustrate this by means of the example in Fig. 4.2. Suppose that the partial proof
consists of nodes 6 and 10 in Fig. 4.2, which means that deduction was applied
to node 10. Continuing with node number 7 would add a superfluous line to the
proof. To prevent this, the procedure trims the DAM into a subDAM using the
first goal of the list of subgoals as a root. In our example, node number 6 becomes
the new root, and the leaves in this subDAM are the nodes 1, 2 or 4. Suppose
the procedure continues with node number 1. That leaves two possibilities for the
next step, namely node number 2 or 4. Because of the last requirement R3, node
number 2 is preferred, since in general students or experts choose an assumption
that can be used directly over an assumption that can only be used later. The

75

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

procedure realizes this preference by adding subgoals to the list of subgoals after
performing an introduction step. These subgoals consist of the nodes between the
introduced leaf and the node that corresponds to a subgoal already in the list of
subgoals. In our example, the line numbers 3 and 5 are added as subgoals, which
forces the procedure to look for a next leaf in the subtree rooted by line number 3
in the next step. As a consequence, line number 2 is indeed added in this step.

We claim that this procedure meets the three requirements given above. Re-
quirement R1, generating complete proofs, is guaranteed by the construction of
the DAM. To show that requirement R2 is met, we distinguish two situations. As
long as the steps in the student solution correspond to the steps generated by the
procedure described in this section, this proof can be completed directly. If the
student solution diverges from the generated solution, LogAx will use the student
solution as a starting point to build a new DAM. Motivated lines will be marked as
grounded lines and unmotivated lines will be part of the list of goals. This ensures
that the procedure indeed extends the partial proof into a complete proof.

From student solutions to exercises and the loggings of LogAx we know that
students can perform the steps of a proof in many different orders. However,
there are some heuristics in the construction of a proof, such as trying to use
assumptions, or simplifying the goal by applying the deduction theorem. The
preference on the order of the steps in our procedure ensures that the procedure
follows these heuristics (requirement R3). This implies that steps can be added
in two directions, forward and backward, and that a user can switch direction at
any moment. Moreover, the order of the steps should be such that we can always
motivate the next line: why do we perform a certain step at a certain moment.
To achieve this, we use a dynamic programming approach, where subproblems are
defined by the list of subgoals. The restriction to subDAMs as described above,
ensures that we complete the subproblem defined by the first node of this list before
we start a new subproblem. All steps can thus be motivated by a subgoal.

4.6 Lemmas

Reusing proven results is common practice in mathematics and logic. For example,
the proof of the fundamental theorem of arithmetic (every number larger than 1
can be written in a unique way as a product of primes) uses the lemma that a prime
divisor of a product a · b is also a divisor of a or b. In logic the use of proven results
is widespread too. Here, proven results are sometimes presented as derived rules,
such as for instance the rule Modes Tollens (¬φ can be derived from φ → ψ and
¬ψ) in Huth and Ryan’s textbook (Huth and Ryan, 2004). Axiomatic proofs often
build on each other: for example, a proof of ` ¬¬p → p can be used as a lemma in
another proof.

Lemmas appear in several ITSs that deal with constructing proofs. They serve

76

4.7 Hints and feedback

various purposes, such as a starting set to generate geometry problems (Alvin
et al., 2014), or just as a predefined set that can be used by the student to solve a
problem (Matsuda and VanLehn, 2005). Perhaps more interesting is the possibility
to allow the addition of lemmas by the user. In both the Jape natural deduction
proof assistant (Bornat, 2017) and the proof assistant described by Aguilera et al.
(2000), a student can save proven results and use these results as lemmas in a new
proof. The proof assistant Gateway to Logic for axiomatic proofs offers a user the
possibility to state and use lemmas too (Gottschall, 2012).

Lemmas in axiomatic proofs have various shapes. For example, we distinguish
tautologies (` φ) and valid sequents (φ1,φn ` ψ), but also schemas (for example
¬¬φ ` φ) and instantiations of schemas (¬¬p ` p). We include the use of lemmas in
LogAx. The main purpose of including lemmas is to support adding relatively easy
exercises. Without lemmas, many axiomatic proofs are too lengthy and complicated
to be used in education. With the possibility to use lemmas, a new class of relatively
easy exercises becomes available. The second goal is to give users the possibility
to use their own lemmas. LogAx can provide a student with an exercise together
with a lemma that may be used in the proof, and in a user-defined exercise the user
can use her own lemmas. We impose two restrictions: predefined exercises use only
instantiations of lemmas, and the interface only accepts user-defined lemmas that
are instantiations of a tautology. The latter is not a real restriction since a valid
sequent φ1,φn ` ψ can always be rewritten as a tautology ` (φ1 → (...→ (φn →
ψ))).

We adapt the algorithm to create a DAM to support the use of lemmas. In
predefined exercises, lemmas are added to the DAM at the start of the algorithm,
comparable to the addition of assumptions. The construction of the DAM and the
extraction of a linear proof work in the same way as described in Section 4.4 and 4.5.
Students who solve these predefined exercises receive the lemma as a first line of the
proof. To facilitate user-defined lemmas, a lemma rule is added to the set of rules.
In a user-defined exercise a student can introduce a lemma at any stage during the
proof. The algorithm constructs a DAM based on the partial proof including the
lemma and uses this DAM to provide hints and feedback.

Fig. 4.4 shows an example of an exercise with a lemma. Since a motivation
of line 999 as an application of Modus Ponens to the lemma in line 1 and line 4
completes the proof, the hint tells the student to add a motivation.

4.7 Hints and feedback

4.7.1 Hints

One of the reasons for the effectiveness of human tutors is that they provide feed-
back at the level of solution steps, and help a student to overcome impasses using
hints (Merrill et al., 1992). Hence, for ITSs to be as effective as human tutors,

77

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

Figuur 4.4: A partial proof with a lemma, performed in LogAx

they should give stepwise feedback and some form of help. In a first version of Lo-
gAx we implemented a hint sequence consisting of three hint types: the direction
of a next step (forward or backward), the axiom or rule to apply, and a bottom
out hint that shows how to perform a next step. Although these hints can help
students to complete a proof, they might not always help a student to understand
why a certain step is useful. A study with the Geometry Tutor (McKendree, 1990)
shows that students who receive informative feedback combined with information
about a subgoal are more effective in correcting mistakes than students who only
receive informative feedback. Several logic tutors offer hints containing subgoals.
An early attempt is the P-logic tutor (Lukins et al., 2002), in which students learn
to construct proofs using standard equivalences and inference rules. Since this tu-
tor cannot construct proofs, it uses heuristics to construct possible useful subgoals,
such as an atomic formula from which the truth can be deduced. A drawback of
this approach is that the tutor might suggest an unnecessary subgoal. The Deep
Thought Logic tutor (Eagle et al., 2012; Barnes and Stamper, 2008) uses datami-
ning to construct proofs and subgoal hints from student solutions. In a comparison
of the performance of students receiving next step hints with students receiving
hints about a subgoal to be reached in two or three steps, the latter group outper-
formed the former one in the more difficult exercises both with respect to the time
needed to take a step as well as accuracy (Cody et al., 2018).

In LogAx we keep track of a list of subgoals while constructing a proof. We
use this list to provide hints about a subgoal. We do not give a subgoal as hint if
a student can still apply deduction backwards, when a subgoal coincides with an
unmotivated line in the proof, or when a subgoal coincides with the next step. In
the other cases, we give a hint concerning a subgoal instead of a hint about the
direction of the proof. For instance, the hint for the unfinished proof in Fig. 4.5

78

4.7 Hints and feedback

Figuur 4.5: The start of a proof for q → r ` (p → q)→ (p → r)

will be: try to prove p, p → q ` q . An example where our algorithm deliberately
not gives a subgoal as hint can be found in the proof in Fig. 4.1. Here, he first hint
will be: perform a forward step, since in this case the subgoal p, q → q ` q , Modus
Ponens, is equal to the next step.

4.7.2 Feedback

In this subsection we first analyze student errors, and describe than how we use this
analysis to create feedback. Students make mistakes in axiomatic proofs. From the
homework of 40 students participating in our course we collected a set of mistakes,
and classified these mistakes in three categories:

– oversights (19),
– conceptual errors (11), and
– ‘creative’ rule adaptations (9).

Mistakes such as missing parentheses belong to the first category. This category
mainly consists of missing parentheses in Axiom b. A typical example of a mistake
in the second category is the following application of Modus Ponens:

1. ¬p,¬q ` ¬q Assumption
2. ¬q ` ¬p → ¬q Deduction 2
3. ` (¬p → ¬q)→ (q → p) Axiom c
4. ¬p → ¬q ` q → p Modus Ponens 2, 3

Here, the student has the (wrong) idea, that after an application of Modus Ponens
on ∆ ` φ and Σ ` φ→ ψ, the formula φ becomes the assumption of the conclusion.

79

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

Creative rule adaptations may take various forms. An example of such a rule
adaptation is:

1. ¬p → (q → ¬r) ` ¬p → (q → ¬r) Assumption
2. q ` q Assumption
3. ¬p → (q → ¬r), q ` ¬p → ¬r Modus Ponens 1, 2

In this example the ultimate goal is to prove that ¬p → (q → ¬r), q ` r → p. The
student tries to reach this via the subgoal ¬p → (q → ¬r), q ` ¬p → ¬r , but she
misses the possibility to reach this subgoal with an instantiation of Axiom b and
Axiom a. Instead, she creates her own variant of Modus Ponens in line 3 of the
proof.

Further analysis of the homework exercises suggests that students typically make
these mistakes when they do not know how to proceed. This is in line with the repair
theory, which describes the actions of students when they reach an impasse (Brown
and VanLehn, 1980).

The example of a conceptual error given above is impossible to construct in
LogAx, since LogAx fills in the assumptions automatically. In the evaluation
in Section 5.8 we analyze whether students recognize these kinds of conceptual
mistakes after practicing with LogAx. However, it is still possible that a student
tries to apply a rule incorrectly. For example, a student might apply Modus Ponens
on ∆ ` φ and Σ ` φ′ → ψ where φ and φ′ are equivalent but not equal. We used
homework solutions to define a set of buggy rules for mistakes that can be made in
LogAx. Most of these rules relate to Modus Ponens (8 buggy forward applications,
3 buggy backward applications and 2 closure rules), the other to Deduction (2 buggy
backward applications and 4 buggy closure rules). Using these rules, LogAx can
give informative feedback. Shute’s guidelines (Shute, 2008) state that feedback
should be elaborate, specific, clear, and as simple as possible. Our feedback not
only points out a mistake, but if possible also mentions exactly which formula,
subformula or set of formulae do not match with the rule chosen. For example, if
a student wants to complete a proof

1. ¬q ,¬p ` ¬q Assumption
2. ¬q ` ¬p → ¬q Deduction 1
3. ` (¬p → ¬q)→ (q → p) Axiom c
4. ¬p → ¬q ` q → p

by applying Modus Ponens to lines 2, 3 and 4, she gets a message that line 4
cannot be the result of an application of Modus Ponens on lines 2 and 3, since the
assumption of line 2 does not belong to the set of assumptions in line 4.

80

4.8 Evaluation of the generated proofs

Tabel 4.1: Exercises without lemmas in textbooks and lecture notes. The last co-
lumn compares thet LogAx proof with the expert proof

Exercise Textbook Equal
1. q, p → (q → r) ` p → r Kelly, LenI yes
2. p → q, q → r ` p → r Kelly, LenI yes
3. p → q ` p → (r → q) Kelly yes
4. p → q ` (r → p) → (r → q) LenI yes
5. ` ¬p → (¬¬p → p) LenI no
6. ` ((p → q) → (p → r)) → (p → (q → r)) LenI no
7. ` (p → q) → ((q → r) → (p → r)) Ben-Ari yes
8. ` (p → (q → r)) → (q → (p → r)) Ben-Ari yes
9. ` ¬p → (p → q) Ben-Ari, Goldrei yes

10. ` ¬¬p → p Ben-Ari yes

4.8 Evaluation of the generated proofs

We first evaluate the proofs generated by LogAx by comparing them with expert
proofs. In the next subsection we evaluate the recognition of student solutions by
LogAx. The next section describes a small-scale experiment with students using
LogAx.

4.8.1 Comparison of the generated proofs with expert proofs

We evaluate the proofs generated by LogAx in two ways. First, we compare the
generated proofs with expert proofs. Since example proofs and worked solutions in
textbooks often use earlier proofs as a lemma, the number of proofs that we can
compare with the LogAx proofs without lemmas is small. We found 10 examples
we could use for a comparison in the textbooks of Ben-Ari, Kelly, Goldrei and in the
lecture notes of a course on logic (LenI) (Lodder et al., 2018). The list of exercises
can be found in Table 4.1. Eight of the ten expert proofs are equal to the LogAx
proofs. In exercise 6, LogAx uses the deduction theorem instead of Axiom a. The
LogAx proof of ` ¬p → (¬¬p → p) (exercise 5) is longer than the expert proof,
since LogAx proves ` ¬¬p → p directly without making use of an assumption
¬p. We conclude that for most of the examples and exercises in textbooks, LogAx
generates a proof that is equal to the expert proof.

To evaluate the version of LogAx with lemmas, we have nine expert proofs
available. The course on logic contains five examples of exercises using lemmas,
together with example proofs of these exercises, see Table 4.2. In the first three
exercises only instantiated lemmas are given. The proofs generated by LogAx for
these exercises are equal to the solutions in the course notes. The fourth and fifth
exercise ask for a proof in predicate logic, but we can compare the propositional
part of these proofs. Both exercises present lemmas as schemas, and instantiations
of these schemas are used in the solution. We add these instantiations as lemmas
in LogAx. The solution to the fifth exercise is equal to the proof generated by
LogAx, except for the order of the proof lines. In the fourth exercise, LogAx

81

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

Tabel 4.2: Exercises in a logic course
Textbook Exercise Lemma Equal
LenI ` (p → q) → (¬q → ¬p) ` (p → q) → (¬¬p → ¬¬q) yes
LenI ¬¬p ` ¬p → ¬¬¬ p ¬¬p ` ¬¬¬¬ p → ¬¬p yes
LenI ` ¬¬p → p ¬¬p ` ¬p → ¬¬¬ p yes
LenI ` ¬(p → q) → (¬p → ¬q) ¬¬q ` q,p → q ` ¬¬(p → q) no
LenI p → (q → ¬p) ` p → ¬q ¬¬q ` q yes
Ben-Ari ` (p → q) → (¬q → ¬p) ¬¬p → p, ` ¬q → (q → ¬¬q) yes
Ben-Ari ` (¬p → q) → ((¬p → ¬q) → p) ` (¬p → p) → p yes
Kelly ` ¬(p → q) → ¬q ` (q → (p → q)) → (¬(p → q) → ¬q) yes
Kelly ` (p → q) → ((¬p → q) → q) ` (¬q → q) → q, ` (p → q) → (¬q → ¬p) yes

originally only used one of the two lemmas, and the proof by LogAx was longer
than the solution in the logic course notes. After some minor changes in the im-
plementation of the heuristics, LogAx uses no lemmas, but generates a shorter
proof. Both proofs are given in Appendix 4.A. Since exercises in textbooks also use
derived rules, we have only 4 extra exercises with lemmas in these books. All the
proofs of these exercises are equal to the LogAx proofs.

To evaluate more proofs we use the large collection of proofs on the Metamath
website.1 This website collects formal proofs, not only for logic statements, but
also for mathematical statements. The part on propositional logic contains proofs
of well-known theorems, for example from the Principia Mathematica by Russell
and Whitehead. In general, a Metamath theorem is presented as follows:

` φ1 and ` φ2 and ... and ` φn ⇒ ` ψ

So if φ1, ..., φn are provable, then ψ is provable. Since LogAx cannot deal with
general tautologies, we translate a Metamath theorem in a theorem with assumpti-
ons. Instead of ` φ1 and ` φ2 and ... and ` φn ⇒ ` ψ, we prove φ1, φ2, ..., φn ` ψ.
Since proofs in Metamath build on each other, these proofs seem to be natural
candidates to use in a comparison with LogAx with lemmas. However, the best
way to compare proofs is not immediately clear. To demonstrate this, we pre-
sent an example of a Metamath proof in Fig. 4.6. This example shows a proof
of φ → (ψ → (ψ → χ)) ` φ → (ψ → χ). The proof uses two previous the-
orems: id (` ψ → ψ) and mpdi (from ` φ → χ and ` φ → (ψ → (χ → θ))
follows ` φ → (ψ → θ)). The most direct way to translate this in a LogAx
proof with lemmas would be by rewriting mpdi in a theorem with assumptions
(φ → χ, φ → (ψ → (χ → θ)) ` φ → (ψ → θ)), and using instantiated versions of
these theorems as lemmas in the proof. However, to complete this proof, a forward
application of Deduction followed by an application of Modus Ponens by LogAx
suffices, which makes the comparison not very informative. A more interesting way
to compare proofs would be by letting LogAx find useful instantiations of lem-
mas, but so far, we have not implemented this functionality. In the comparison,

1http://us.metamath.org/mpegif/mmtheorems.html

82

http://us.metamath.org/mpegif/mmtheorems.html

4.8 Evaluation of the generated proofs

Figuur 4.6: An example of a Metamath proof

we therefore add just a single instantiated lemma to LogAx. We inline the other
lemmas in the Metamath proofs. Since Metamath proofs do not make use of the
deduction theorem, a last adaptation we have to make is to remove applications
of the deduction theorem in the LogAx proofs. We use the constructive proof
of the deduction theorem to remove occurrences of Deduction in LogAx proofs,
and compare these proofs with the Metamath proofs. The results are shown in
Appendix 4.B. The comparison consists of 24 theorems, 12 with and 12 without
negation. Nearly two thirds (15 out of 24) proofs are equal except for the order
of the lines. The LogAx proof is shorter than the Metamath proof in eight cases.
In seven of these cases LogAx does not use the lemmas. It is not surprising that
in these cases, inlined proofs in Metamath are longer: the Metamath proofs are
constructed by choosing suitable lemmas. Metamath does not inline proofs and
uses lemmas that are known theorems, or variants, for example originating from
the Principia Mathematica. Hence a Metamath proof is short when it uses a small
set of lemmas, without caring about the total length of the inlined proof.

In Lodder et al. (2017) we compared 30 Metamath proofs with proofs generated
by LogAx without lemmas. After inlining the used lemmas in Metamath and
removing applications of the deduction theorem in the LogAx proofs, we found
that 27 LogAx proofs were equally long as the Metamath proofs. In three cases
the LogAx proof was shorter than the Metamath proof. Although the comparison
of LogAx with Metamath can only be done indirectly, the results (from the proofs
with lemmas nearly two thirds of the LogAx proofs are equal to Metamath proofs,
and most of the LogAx proofs have equal length as these proofs) indicate that
LogAx indeed generates proofs that are comparable to expert proofs.

4.8.2 Recognition of student solutions

In a second evaluation we investigate whether or not correct student solutions can
be recognized by LogAx. Axiomatic proofs are part of a course on logic where
we treat also other topics, such as semantics of predicate logic, axiomatic proofs

83

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

in predicate logic, structural induction and Hoare calculus. Students may hand
in homework to earn a bonus point. The homework exercises contain one exercise
about propositional logic axiomatic proofs and one on predicate logic axiomatic
proofs. Furthermore, the exams usually have an exercise on axiomatic proofs.
We use solutions of two homework exercises, and one exam exercise, to determine
whether or not LogAx recognizes student proofs. In the exam exercise, students
have to prove that ¬¬p → ¬q , r → q ` r → ¬p. The correct student solutions to
this exercise can be divided into two groups, where each group contains solutions
that are equal up to the order of the proof lines. Solutions in the first group contain
an application of Axiom a, b and c, and no application of the deduction theorem.
Solutions in the second group contain an application of the deduction theorem, and
of Axiom c. From the 19 correct solutions, the majority (16) belongs to the second
group, and the remaining three solutions to the first group. The example solution
provided by LogAx also belongs to the second group. The solutions of the first
group do not (yet) appear in our initial DAM, but they do appear in the DAM
we dynamically obtain when a student introduces Axiom b, and we use this DAM
to provide feedback. In the future we might add an extra heuristic for the use of
Axiom b:

– If the top goal equals ∆ ` φ → χ, and ∆′ ` φ → ψ and ∆′′ ` ψ → χ both
appear in the DAM, where ∆′ ∪∆′′ ⊆ ∆, then add an instance (φ → (ψ →
χ))→ ((φ→ ψ)→ (φ→ χ)) of Axiom b to the DAM.

In the first homework exercise students have to prove that q ,¬p → (q → ¬r) ` r →
p. Here almost all student solutions (16) use Axiom a, b and c. Only one student
uses the deduction theorem instead of Axiom b. LogAx generates this last proof.
Solutions using the three axioms are not part of the DAM that is generated at
the start of the exercise, but can be recognized by a dynamically generated DAM.
The second homework exercise is an exercise in predicate logic, but it contains a
propositional part that amounts to a proof of (p → q) → ¬p ` q → ¬p. Again,
there were two groups of solutions: 13 students use Axiom a and the deduction
theorem, and 2 students use an extra application of the deduction theorem instead
of Axiom a. In this case the solution generated by LogAx is the solution that
does not use Axiom a, but the DAM also contains a solution with Axiom a. We
summarize the results in Table 4.3. The first column (preferred) shows the number
of solutions that corresponds to the preferred solution of LogAx, the second the
number that corresponds to a non-preferred solution, and solutions in the third
column can be recognized by a dynamically generated DAM. The conclusion of this
evaluation is that with the use of dynamically generated DAMs, we can recognize all
student solutions, and also give hints. Still, we might optimize LogAx by adding
more heuristics, e.g. such that the solution generated by LogAx for homework
exercise 2 equals the student solutions. In the current implementation, heuristics
for the use of Axiom b and the deduction theorem interfere: extra heuristics for
Axiom b can broaden the DAM, but the algorithm for the distillation of a linear

84

4.9 Small-scale experiments with students

Tabel 4.3: Recognized solutions

Exercise preferred non-pref. dynamic total
Exam 16 3 19
Homework 1 1 16 17
Homework 2 2 13 15

proof prefers applications of the deduction theorem, a local decision. We would
have to extend this algorithm with global heuristics to ensure that the extracted
proof contains instances of axioms when applicable.

4.9 Small-scale experiments with students

We have performed several small-scale experiments with LogAx. The main results
in this section are obtained from an experiment with LogAx without lemmas,
performed in May 2018. The 18 participants in this experiment were preparing for
admission to a master program Computer Science at the Open University of the
Netherlands. A course on logic is part of the premaster program. Most students
combine their study with a job, hence the online lessons are during the evening.
We required participants to submit a solution to the first homework exercise, see
Section 4.8.1, before participating in the experiment. Thus, we guaranteed that
participants had studied the subject before the experiment. We used their solutions
to the exercise as an indication of their prior knowledge. The experiment consisted
of a 20-minute (online) instruction, after which students practiced with the tool for
75 minutes. The experiment concluded with a 20-minute posttest. All interactions
of the students with LogAx were logged. The 10 exercises in the tool and the
questions in the posttest can be found in Appendix 4.C.

We use the results of this experiment

– to evaluate the hints and feedback given by LogAx,
– to analyze the way students use LogAx, and
– to evaluate the effect of using LogAx on students’ performance.

4.9.1 Evaluation of hints and feedback

We start with evaluating hints and feedback by answering the following questions:

– does LogAx recognize common mistakes?
– is the feedback sufficient to repair mistakes?
– do hints on subgoals help students to reach these subgoals?

To answer these questions we analyze the loggings of the experiments. Apart
from 5 syntax errors, the loggings contain 179 incorrect steps of a total of 1480

85

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

Figuur 4.7: A common error: interchanging line 1 and 2 in the dialog box

steps performed by the students. The syntax errors were performed by 5 different
students who could repair this error in the next step without asking for extra
help. We conclude that the dialog box indeed prevents students from spending
time repairing syntax errors. In 24% (43/179) of these steps, a student tries to
apply Modus Ponens, but interchanges the first and second line in the dialog box,
as shown in Fig. 4.7. This typically occurs when the implication (φ → ψ) has
a smaller line number than the antecedent of this implication (φ). During the
experiment we did not have a buggy rule implemented for this situation, and hence
students received the feedback ‘φ is not an implication’, or ‘Modus Ponens is not
applicable’. In 34 out of the 43 occurrences of this kind of mistake, this feedback
was sufficient for the student to fill in the dialog box correctly. In the other cases
students asked for a hint or next step, or continued with another rule. One student
did not realize that the implication may precede the antecedent, and consequently
constructed the proofs in such a way that implications always have a higher line
number than the antecedents.

A second category of mistakes also seems to have its origin in an incorrect use
of the dialog box. Examples are backward applications of Modus Ponens where
the last line is already motivated. Some buggy applications of Modus Ponens were
only recognized when students completed the dialog box ‘correctly’ (entering the
implication in the second field). For instance, an erroneous application of Modus
Ponens on formulae Σ ` φ → ψ and ∆ ` ψ is not recognized if the student enters
the line number of the first line in the uppermost (antecedent) field, and the second
in the middle (implication) field. Some misreading of parentheses is recognized
by LogAx, but, for example, the misreading of parentheses in an application of
Modus Ponens on Σ ` p → (q → r) and ∆ ` (p → q) → (r → (p → q)) is not
recognized as a common mistake. Also mistakes in the introduction of an axiom or
assumption in the dialog box, such as interchanging p and q with a faulty Modus
Ponens application on Σ ` ¬p → ¬q and ` (¬q → ¬p) → (p → q) as a result, is
not recognized. The remaining errors that are not recognized cannot be classified

86

4.9 Small-scale experiments with students

Figuur 4.8: The effectivity of subgoal hints

as buggy rules, since we cannot find a pattern in, or a misconception as a cause
of, these errors. We further analyzed the loggings to see whether in the cases that
a common error is detected (86 errors), the error message is sufficient to help a
student in making progress. In 60% (52/86) of these cases, a student can proceed
without help of the system, in over 8% (7/86) a student gives up on the exercise
directly after this mistake, and in 3% (3/86) after one or more erroneous steps, and
in the other cases a student can proceed with a hint or next step. If a student needs
more help, this does not necessarily mean that the error message is not clear: the
loggings suggest that often a student recognizes the mistake (in 60% of the cases a
student does not make the same error again during the session), but does not know
how to proceed. We conclude that we can improve error messages by recognizing
the cases where a student interchanges the lines in the dialog box. In the 43 cases
where interchanging the lines was the only mistake, students will receive a message
about how to fill in the dialog box correctly. In 15 other cases, where students
now get a default message or a message that probably does not refers to the actual
mistake, we will also improve the feedback. An example of this situation is the
application of Modus Ponens on ∆ ` p → q and ∆′ ` q (entered in this order). At
this moment, students receive the error message that q is not an implication, but
after recognizing this mistake as a combination of a common error and a swapping
of the lines in the dialog box, the error message will be that the formula in the
second line should be equal to the left hand side of the implication instead of the
right hand side. With these improvements we would have provided specific feedback
in 80% ((86 + 43 + 15) / 179) of the mistakes made by students.

Since the possibility to give a hint about a subgoal was new in the LogAx
version that we used in this experiment, we evaluate the effect of this type of hints.
A student receives a hint that indicates a subgoal to be reached if it takes more than
one step to reach this subgoal, and if the subgoal is not already present in the proof

87

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

as an unmotivated line. LogAx gives a hint about a subgoal in 75 of its 192 hints,
and 40 of these subgoals were reached by the students without further assistance of
LogAx. In the other cases, the students used next hints which told them the rule
to proceed or a next step. This number might seem somewhat disappointing, but
a more detailed analysis shows that in general only students who ask a lot of help
do not reach the subgoal without extra help. Fig. 4.8 presents a scatter plot with
the total number of different subgoal hints given to the student on the x-axis, and
the number of reached subgoals after the hint, without further help on the y-axis.
The figure shows that students who use fewer than eight different subgoal hints
(hints in different exercises or in different stages of their proof), in general reach
the subgoal themselves.

4.9.2 Use of LogAx

A second topic in this evaluation is the question: how do students use LogAx. Do
students misuse the system by asking too much help, or by randomly filling in the
dialog boxes, or do they struggle without using the help offered by LogAx? The
results of our experiment show that the use of LogAx is related to performance
in the homework exercise, which we use as a pretest. From the 12 students who
score at least 0.8 (out of 1) in the pretest, eight students can complete the exercises
without using much help or making many mistakes. One student reported that
he completed the exercises with pen and paper and used LogAx mainly to check
his answers. Two students use quite a lot of hints, also to complete the exercises,
and one student seems to misuse the system by performing lots of actions (338
interactions versus an average of 173). From the students who score lower than
0.8 on the pretest, only one student completes all the exercises without much help.
In this group help seeking strategies differ considerably: two students hardly ask
any help, one student performs 65 help seeking actions. We conclude that in this
experiment, in general, good students use LogAx as intended, and can complete
exercises without a lot of help. Since only six weaker students participated, we
cannot draw hard conclusions, but the loggings seem to indicate that these students
either tend to overuse or underuse help. Another observation is that most of the
weaker students can complete the first four or five easier exercises, but the last
exercises seem to be too difficult for this group.

4.9.3 Evaluation of learning effects

The last question we want to answer is whether LogAx supports students with
learning axiomatic proofs. Most of the participants in the experiment were good
students, who performed already well on the pretest: the average score on the pre-
test was 0.84, where the maximum possible score was 1. This might have influenced
learning effects negatively. The posttest consisted of two parts. In the first part,
students had to point out possible errors in five small proofs. Four of the five proofs

88

4.9 Small-scale experiments with students

Tabel 4.4: Results of the posttest

Exercise 1a 1b 1c 1d 1e 2
Average score 0.78 0.39 0.72 0.34 0.83 0.61

were incorrect. The incorrect proofs contained common errors collected from the
homework exercises, see Section 4.7.1. We deliberately added errors that are pos-
sible to make in LogAx and errors that are prevented by the interface, since we
wanted to know whether the last type would occur more often in the posttest. In
the second part, students had to provide a proof. The scores of the posttest can
be found in Table 4.4. The low scores on exercise 1b and 1d are remarkable. The
score on exercise 1b was more or less expected, because the exercise contains an
error in the set of assumptions after applying Modus Ponens. Since LogAx au-
tomatically determines this set, students do not practice in correctly determining
this set. Exercise 1a also contained an error that is not possible in LogAx (mixing
an application of Modus Ponens with Axiom b), but this error was recognized by
students. Exercise 1d applies deduction in ‘the wrong direction’, a common mistake
made by students, which is apparently not sufficiently corrected while practicing
with LogAx (the loggings contain only 3 occurrences of this error). The misrea-
ding of parentheses in exercise 1e (a possible error in LogAx) is recognized by
most students. Students scored lower on exercise 2, an exercise in which a student
has to construct a proof, than in the pretest. We hypothesize that this is caused
by fatigue (since most of our students combine study with a job, the experiment
took place on an evening and the posttest started at 21:15), and the fact that we
asked students not to spend more than 20 minutes on the posttest, while they
could spend as much time as they needed for the pretest, since this was part of the
homework assignment. We also looked at the results on the exam. Students who
participated in the experiment receive on average the same score for the exercise
on axiomatic proofs as they got for the pretest. Since most students participated
in the experiment, we cannot compare their results with students who did not par-
ticipate. The results of an earlier experiment (January 2018) with 9 students were
more or less comparable. The average score on the pretest of this group is a little
lower (0.8) and also the score on the posttest proof, exercise 2, is lower (0.52). The
results on the exam are a bit higher (0.89), but the exercise was slightly different
and the time between the experiment and the exam was considerably shorter: 13
days instead of 40 for the last experiment. We conclude that at this moment we
do not have enough data to evaluate learning effects. However, experiments with
other tools (Lodder et al., 2019) show that this kind of tutoring systems can be
effective.

89

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

4.10 Related work

As mentioned in the introduction, there are two e-learning tools that can be used
to practice the construction of Hilbert-style axiomatic proofs in propositional logic:
Metamath Solitaire (Megill, 2007) and Gateway to logic (Gottschall, 2012). Both
tools are proof-editors: a student chooses an applicable rule and the system applies
this rule automatically. These systems provide no help on how to construct a proof.
There are quite a lot of systems that help students with other kinds of exercises in
logic, and many more in other subjects.

In the AProS project, Sieg and collegues have developed Proof Tutor, a tutor
that teaches students natural deduction (Sieg, 2007; Perkins, 2007). They have de-
veloped an automated proof search method, which differs from the Bolotov method
in the use of normal proofs. Their algorithm uses a set of tactics that are explicitly
used as hints for students. Perkins (2007) describes how they provide help such
as hints or next steps in the case that the partial solution of a student diverges
from a generated model solution. First, they check if the subgoals of the partial
solution are indeed derivable from the assumptions (we do not need this check since
a situation in which a subgoal is not derivable is not possible in LogAx). Second,
they check whether the partial solution can be completed by the Proof Tutor; if
this is not the case, they let the student erase the lines of the part that does not
belong to a generated proof. In LogAx we do not let students erase lines. The
consequence is that a final proof may contain unnecessary lines, but also that we
will not erase a useful part that is not recognized as useful by LogAx.

We use a strategy language to generate both the solutions and the feedback (Hee-
ren et al., 2010). The use of such a language is related to the use of production rules
as for example in Anderson et al. (1995) and Corbett et al. (1997), and the way in
which we recognize student solutions is akin to their model-tracing approach. The
Geometry Tutor makes use of contextualized rules, which means that a rule will
only fire in a specific context. The different axioms that we add in step 2(b) of
our version of the algorithm depend on assumptions in the statements ∆′ ` φ and
∆′′ ` ¬φ, and these rules could also be perceived as contextualized rules. When
more than one rule can be applied in the same situation, tools based on production
systems may add preferences to specific rules (Anderson et al., 1995; Jaques et al.,
2013). We use the strategy language to specify a preference in the application of
the rules.

Ahmed et al. (2013) use a different approach to generate and solve natural de-
duction exercises. Their main idea is to use truth tables, representing an equiva-
lence class of logical formulae. The representations of these formulae are used in a
proof graph of predefined size. Proof generation consists of finding a truth-table-
representative of the assumptions and conclusion, searching for a proof using these
representatives, and adding rewrite steps (as for example replacing subformulae of
the form ¬¬φ by φ or vice versa) to this proof. In this way they can generate
exercises and solutions typically used in education. However, in their approach it

90

4.11 Conclusion and future work

is essential that rewrite steps on subformulae are allowed, which is not the case in
Hilbert axiomatic systems, and also often not in natural deduction systems.

Answer set programming, as used for example by O’Rourke et al. (2019), is rela-
ted to the production systems used by Anderson et al. (1995). Their program finds
all different solutions of an algebra exercise, using deductive rules and integrity
constraints that forbid certain solutions. Also explanations and a subset of mis-
conceptions can be generated automatically. To restrict the search space to a finite
space (which is necessary in their program), the number of terms in an equation
and the solution length is maximized. In LogAx we do not need to maximize the
length of formulae; formula length is not a good measure for the expected proof
length. For technical reasons, we maximize calculation time, but thus far LogAx
has been able to solve all problems within this limit.

For some domains it is possible to use existing tools to generate solutions or
correct student solutions. An example of this approach is Sadigh et al. (2012):
to solve state machine problems such as finding a trace for a given model that
violates or satisfies a certain property, they use existing model checking tools. This
approach can be very useful to produce solutions or grade exercises, but is in general
less suitable for giving hints, since steps performed by a tool not always correspond
to human steps.

4.11 Conclusion and future work

By using an existing algorithm for natural deduction, we developed a sound and
complete algorithm to generate Hilbert-style axiomatic proofs, and introduced a
representation of these proofs as a directed acyclic multi graph (DAM). We use
these DAMs in a new interactive tutoring tool LogAx to give hints and next steps
to students, and to extract model solutions. Comparing the generated proofs with
expert solutions shows that the quality of the proofs is comparable to that of expert
proofs. The tool recognizes most of the steps in a set of student solutions, and in
case a step diverges from the generated proof, LogAx can still provide hints and
next steps. This holds both for the original version of LogAx as well as for the
extension with lemmas. We derived buggy rules from a set of student solutions,
and added these to LogAx. Evaluating with a test set showed that this set covers
the majority of student errors. In an experiment with students we discovered that
we overlooked a source of errors originating in the user interface (errors made while
filling in the dialog box for Modus Ponens). We expect that after adding buggy
rules for this kind of errors, LogAx will recognize about 80% of the errors.

We performed several pilot evaluations with LogAx. Since the number of par-
ticipating students was low, and students performed already well on the pretest,
we cannot derive conclusions about the learning effect of LogAx. However, we
conclude that well-prepared students use the system as intended, and can complete
most of the exercises without using much help or making a lot of mistakes. Stu-

91

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

dents who do not ask more hints than average, reach the subgoal given in a hint
without extra help. Future evaluations can investigate whether students indeed
learn by using LogAx. It might be necessary to add more easy exercises for wea-
ker students, since the results of the evaluation indicate that the difficulty level of
the exercises rises too quickly for this category of students. Also mechanisms to
diminish excessive hint use, or stimulate hint use in case of minimal use might help
the weaker students to benefit from the use of LogAx.

We developed algorithms for generating DAMs and distilling proofs from this
DAM for the domain of Hilbert-style axiomatic proofs. The strategy language
used to formulate these algorithms is much broader applicable, and we expect that
also some of the ideas used in our algorithms can be applied to other problem
domains. For example, the dynamic extension of partial student proofs, or the
use of the strategy language to order the introduction of the proof steps in a way
that corresponds to an expert’s pen-and-paper proof, could be based on techniques
similar to LogAx.

Acknowledgments

We thank Marianne Berkhof and Daan de Wit for their work on the student in-
terface, and our students from the course ‘Logic and Computer Science’ for their
permission to use their solutions in our research, and participation in the experi-
ment.

92

4.A Exercise 11.1.5

Tabel 4.5: Solution of exercise 11.1.5 in the logic course:

1. ` q → (p → q) Axiom a
2. ¬¬q ` q Lemma
3. ¬¬q ` p → q Modus Ponens 1 2
4. p → q ` ¬¬(p → q) Lemma
5. ` (p → q)→ ¬¬(p → q) Deduction 4
6. ¬¬q ` ¬¬(p → q) Modus Ponens 3 5
7. ` ¬¬q → ¬¬(p → q) Deduction 6
8. ` (¬¬q → ¬¬(p → q))→ (¬(p → q)→ ¬q) Axiom c
9. ` ¬(p → q)→ ¬q Modus Ponens 7 8

10. ¬(p → q) ` ¬(p → q) Assumption
11. ¬(p → q) ` ¬q Modus Ponens 9 10
12. ` ¬q → (¬p → ¬q) Axiom a
13. ¬(p → q) ` ¬p → ¬q Modus Ponens 11 12
14. ` ¬(p → q)→ (¬p → ¬q) Deduction 13

4.A Exercise 11.1.5

In Table 4.5 and Table 4.6 we compare the solution of the logic course exercise
11.1.5 by the solution generated by LogAx. Note that the second solution does
not use the lemmas and hence is in fact shorter than the solution in the course.

4.B Metamath theorems compared with LogAx with
lemmas

Table 4.7 compares a set of proofs in Metamath with generated proofs by LogAx
using lemmas. The first column gives the name of the theorem in Metamath, the
second column the theorem and the third the lemma that is used. The last two
columns show the number of steps. Proofs with the same number of steps are equal
except for any differences in the order of the steps.

4.C Exercises used in the experiment and the posttest

The exercises presented by LogAx in the experiment are listed in Table 4.8, while
the questions of the posttest are presented below:

Exercise 1
Check whether these proofs are correct. In case of an incorrect proof, indicate the
incorrect step, and explain why this step is not correct.

93

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

Tabel 4.6: Solution of exercise 11.1.5 generated by LogAx:

1. ¬¬q ` q Lemma
2. p → q ` ¬¬(p → q) Lemma
3. ¬p ` ¬p Assumption
4. ` ¬p → (¬q → ¬p) Axiom a
5. ¬p ` ¬q → ¬p Modus Ponens 3 4
6. ` (¬q → ¬p)→ (p → q) Axiom c
7. ¬p ` p → q Modus Ponens 5 6
8. ¬(p → q) ` ¬(p → q) Assumption
9. ¬(p → q) ` ¬¬q → ¬(p → q) Deduction 8

10. ` (¬¬q → ¬(p → q))→ ((p → q)→ ¬q) Axiom c
11. ¬(p → q) ` (p → q)→ ¬q Modus Ponens 9 10
12. ¬(p → q),¬p ` ¬q Modus Ponens 7 11
13. ¬(p → q) ` ¬p → ¬q Deduction 12
14. ` ¬(p → q)→ (¬p → ¬q) Deduction 13

a

1. p → (p → ¬q) ` (p → p)→ (p → ¬q) Axiom b
2. p → p ` p → p Assumption
3. p → (p → ¬q) ` p → ¬q Modus Ponens 1, 2

b

1. p ` p Assumption
2. p → (q → r) ` p → (q → r) Assumption
3. p, p → (q → r) ` q → r Modus Ponens 1, 2
4. q ` q Assumption
5. q → r , q ` r Modus Ponens 3, 4

c

1. p ` p Assumption
2. ` p → p Deduction 1
3. ` (p → p)→ (p → (p → p)) Axiom a
4. ` p → (p → p) Modus Ponens 2, 3

d

1. p → q ` p → q Assumption
2. p → q , p ` q Deduction 1

94

4.C Exercises used in the experiment and the posttest

T
a
b

el
4
.7

:
C

o
m

p
a
ri

so
n

o
f

M
et

a
m

a
th

p
ro

o
fs

w
it

h
L
o
g
A
x

w
it

h
le

m
m

a
s

n
a
m
e

th
e
o
re
m

u
se
d

le
m
m
a

st
e
p
s

M
M

st
e
p
s

L
o
-

g
A
x

id
d

`
p
→

(q
→

q
)

`
q
→

q
3

3
p
m
2
.2
7

`
p
→

((
p
→

q
)
→

q
)

`
(p

→
q
)
→

(p
→

q
)

9
9

p
m
2
.4
3
d

p
→

(q
→

(q
→

r
))

`
p
→

(q
→

r
)

`
q
→

q
1
3

1
3

p
m
2
.4
3

`
(p

→
(p

→
q
))

→
(p

→
q
)

`
p
→

((
p
→

q
)
→

q
)

3
1
2

sy
ld
d

p
→

(q
→

(r
→

s
))
,
p
→

(q
→

(s
→

t)
)
`

p
→

(q
→

(r
→

t)
)

`
(s

→
t)

→
((
r
→

s
)
→

(r
→

t)
)

2
1

2
1

im
im

1
d

p
→

(q
→

r
)
`

p
→

((
r
→

s
)
→

(q
→

s
))

`
p
→

(s
→

s
)

3
9

2
2

im
im

1
`

(p
→

q
)
→

((
q
→

r
)
→

(p
→

r
))

`
(p

→
q
)
→

(p
→

q
)

3
3

1
6

p
m
2
.8
3

`
(s

→
(p

→
q
))

→
((
s
→

(q
→

r
))

→
(s

→
(p

→
r
))
)

`
(p

→
q
)
→

((
q
→

r
)
→

(p
→

r
))

1
1

1
1

c
o
m
2
3

p
→

(q
→

(r
→

s
))

`
p
→

(r
→

(q
→

s
))

`
r
→

((
r
→

s
)
→

s
)

2
9

2
6

p
m
2
.0
4

`
(p

→
(q

→
r
))

→
(q

→
(p

→
r
))

`
(p

→
(q

→
r
))

→
(p

→
(q

→
r
))

2
3

2
0

c
o
m
3
4

s
→

(t
→

(p
→

(q
→

r
))
)
`

s
→

(t
→

(q
→

(p
→

r
))
)

`
(p

→
(q

→
r
))

→
(q

→
(p

→
r
))
)

1
1

1
1

lo
o
w
o
z

`
((
p
→

q
)
→

(p
→

r
))

→
((
q
→

p
)
→

(q
→

r
))

`
((
p
→

q
)
→

(p
→

r
))

→
(q

→
(p

→
r
))

7
7

p
m
2
.2
1

`
¬
p
→

(p
→

q
)

`
¬
p
→

¬
p

7
8

p
m
2
.2
4

`
p
→

(¬
p
→

q
)

`
¬
p
→

(p
→

q
)

9
9

p
m
2
.2
8

`
(¬

p
→

p
)
→

p
`

¬
p
→

(p
→

¬
(¬

p
→

p
))

1
7

1
7

p
m
2
.1
8
d

p
→

(¬
q
→

q
)
`

p
→

q
`

(¬
q
→

q
)
→

q
7

7
n
o
tn

o
t2

`
¬
¬
p
→

p
`

¬
¬
p
→

(¬
p
→

p
)

2
9

2
2

n
o
tn

o
tr
d

p
→

¬
¬
q
`

p
→

q
`

¬
¬
q
→

q
7

7
n
o
tn

o
tr
i

¬
¬
p
`

p
`

¬
¬
p
→

p
3

3
c
o
n
2
d

p
→

(q
→

¬
r
)
]
`

p
→

(r
→

¬
q
)

`
¬
¬
q
→

q
2
9

2
5

p
m
3
.2
im

`
p
→

(q
→

¬
(p

→
¬
q
))

`
p
→

((
p
→

¬
q
)
→

¬
q
))

4
9

3
6

jc
p
→

q
,
p
→

r
`

p
→

¬
(q

→
¬
r
)

`
q
→

(r
→

¬
(q

→
¬
r
))

3
7

1
1

e
x
p
i

¬
(p

→
¬
q
)
→

r
`

p
→

(q
→

r
)

`
p
→

(q
→

¬
(p

→
¬
q
))

1
1

1
1

p
m
2
.2
5
1

`
¬
(p

→
q
)
→

(q
→

p
)

`
¬
(p

→
q
)
→

p
)

7
7

95

4 Generation and Use of Hints and Feedback in an Axiomatic Proof Tutor

e

1. p → (q → r), p, p → q ` p → (q → r) Assumption
2. p → (q → r), p, p → q ` p → q Assumption
3. p → (q → r), p, p → q ` r Modus Ponens

1, 2

Exercise 2
Prove axiomatic: (p → q)→ r ` q → r

Tabel 4.8: Exercises in LogAx.

1. ¬q → ¬p ` p → q
2. p, p → q , q → r ` r
3. p → (q → r) ` (p → q)→ (p → r)
4. ` p → ((p → q)→ q)
5. p, p → q ` r → q
6. p → q ` (r → p)→ (r → q)
7. p,¬p ` q
8. q , (p → q)→ r ` r
9. p → ¬q ` p → (q → r)

10. q ,¬(p → q) ` r

96

5 Providing Hints, Next Steps and
Feedback in a Tutoring System for
Structural Induction

5.1 Introduction

Discrete structures play an important role in many domains, and are foundational
for mathematics, logic, and computer science. Examples of such structures are
natural numbers, data structures such as lists and trees, but also complex structures
such as programming languages. Structural induction is a proof technique that
is widely used to prove statements about inductively defined, discrete structures.
Mathematical induction can be viewed as a special kind of structural induction,
using the inductive definition of the natural numbers as the underlying structure.

Because discrete structures and structural induction are foundational for mathe-
matics and computer science, they form an integral part of educational programs.
For example, proof techniques are part of the ACM Computer Science curriculum.1

Courses that address proof techniques often require students not only to learn how
to prove consequences in a formal system, but also to reason about formal systems,
and to independently construct a proof for a statement. A typical example of an
exercise that occurs in many textbooks on logic and proof techniques is the follo-
wing: prove that the number of left parentheses in a logical formula is equal to the
number of right parentheses. Such a property can be proved by structural induction,
where the structure of the proof follows the structure of the inductive definition
of the logical language. Students have to learn this proof technique to construct
more fundamental proofs, such as the soundness of a proof system. Textbooks and
teachers typically instruct students on how to do this, provide some examples, and
then let students practice with constructing proofs themselves. As with learning
any subject, students need feedback when they are learning how to construct their
own proofs (Hattie and Timperley, 2007). Such feedback can take several forms: it
may be about the progress of a student, about recommending a next task to solve,
or about the difference between the proof constructed by a student and an expected
proof. In this paper we focus on the latter kind of feedback.

This paper discusses the design of a tutoring system for practicing proving sta-
tements about inductively defined, discrete structures. Some core features of the

1https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

97

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

5 Hints, Next Steps and Feedback in a Tutoring System for Structural Induction

system are that it gives feedback on the steps a student takes towards a solution,
and hints about which step to take next. We use the knowledge about misconcepti-
ons students have to determine what feedback to give. Students have some freedom
in setting up their proof, and the system helps in reaching the learning goal of in-
dependently constructing a proof for statements about inductively defined discrete
structures. Two advantages of our system are that it gives immediate feedback,
and that it is scalable because feedback is calculated automatically.

This paper is organized as follows. After introducing our terminology in Sec-
tion 5.2, we discuss related work in Section 5.3. Our research is partly motivated
by students’ problems with induction, discussed in Section 5.4. Section 5.5 descri-
bes the interface and functionality of LogInd, and in Section 5.6 we show how this
functionality is realized. A pilot experiment is discussed in Section 5.8, and we
conclude in Section 5.9 with conclusions and ideas for future work.

5.2 Terminology

We use an example exercise to illustrate the terminology concerning inductive proofs
that we use in this paper. The text of the exercise is:

“The propositional language L has atoms p, q , r , ... and connectives ¬, ∧ and
→. We define two functions on this language: a function prop counting all occur-
rences of propositional letters, and a function bin counting the number of binary
connectives. These functions are inductively defined by:

prop (p) = 1
prop (¬φ) = prop (φ)
prop (φ � ψ) = prop (φ) + prop (ψ)

bin (p) = 0
bin (¬φ) = bin (φ)
bin (φ � ψ) = bin (φ) + bin (ψ) + 1

where p is an atom, and � is ∧ or →. Prove with induction that prop (φ) =
bin (φ) + 1 for any formula φ in the language L.”

The statement prop (φ) = bin (φ) + 1 in the last sentence is the theorem or
property that has to be proven. The structure of an inductive proof for this theorem
can be deduced from the inductive definition of the language L. The base case
consists of a proof of the theorem for atomic formulae. There is an inductive case
for each of the connectives in the language. For instance, a proof of the conjunction
case is a proof that from the assumption that if the theorem holds for φ and ψ
(i.e. prop (φ) = bin (φ) + 1 and prop (ψ) = bin (ψ) + 1) it follows that the theorem
also holds for φ ∧ ψ (i.e. prop (φ ∧ ψ) = bin (φ ∧ ψ) + 1). The assumption that
the theorem holds for some arbitrary formulae φ and ψ is the induction hypothesis.
A subproof is a part of the complete inductive proof where a base case or inductive
case is proven.

98

5.3 Related work

5.3 Related work

Tools that assist a user in constructing structural induction proofs may have dif-
ferent functionalities or purposes. In this section we describe four different kinds
of tools: automated theorem provers, proof assistants with didactic functionality,
e-learning tools for mathematical induction, and e-learning tools for structural in-
duction.

Bundy (2001) states that Gödel’s incompleteness theorem implies that it is im-
possible to construct a completely automatic inductive theorem prover, and that
Kreisel’s result on cut-elimination (Kreisel, 1965) implies that inductive proofs in
general will need intermediate lemmas. Hence, automated theorem provers for
induction are proof assistants that use several heuristics to try to automatically
prove theorems as much as possible. The classical literature on automated theorem
proving, for example the handbook of Boyer-Moore (Boyer and Moore, 1998), de-
scribes strategies to find structural induction proofs. This includes different ways
of using the induction hypothesis (weak and strong fertilization), selection of the
induction variable, and the recognition of the need for extra lemmas. More recent
research adds the use of rippling as an important technique (Bundy, 2005). To
use an automated theorem prover a user should have a thorough understanding of
inductive proofs. Because the concept of induction is the learning goal in courses
on proof techniques, using such provers in education is in general not very helpful.

Proof assistants such as Tutch (Abel et al., 2001) and Minifn (Osera and Zdan-
cewic, 2013) have been developed for educational purposes. Tutch is based on
a high-level proving language, which allows step sizes resembling the steps in a
pen-and-paper proof. Minifn tries to integrate functional programming with ma-
thematical induction in a way that students can quickly learn how to use the proof
assistant. Although these proof assistants are much easier to use than regular the-
orem provers, they remain assistants. They do not offer exercises, nor do they
provide feedback or hints.

A couple of e-learning tools support learning mathematical induction. In EAsy,
an e-assessment system, a student practices with different kinds of proof exercises,
using rules and proof strategies from a drop-down menu (Gruttmann et al., 2008).
For a problem requiring a proof by induction, the system pre-structures the proof
in a base case and an inductive case, and it provides the induction hypothesis. The
system performs a selected rule, which ensures that a student cannot make a mistake
in applying a rule. Since there are quite a lot of rules and the exercises are non-
trivial, a student easily can get lost: in an evaluation 41% of the students mentions
having problems in selecting the right rule from the extensive ruleset. Completed
proofs are graded automatically, but incomplete proofs have to be graded by hand.
EAsy shows a student that she completed a proof or subproof successfully, but does
not provide any other feedback.

In the Intelligent Book, a student practices exercises on mathematical induc-
tion (Billingsley and Robinson, 2007). This e-learning system uses MathTiles, pre-

99

5 Hints, Next Steps and Feedback in a Tutoring System for Structural Induction

defined templates, which have to be completed by the student. An automated
theorem prover, Isabelle, is used in the backend to check correctness and provide
simplifications. As in EAsy, the system automatically generates the goals for the
different cases. The authors state that this is necessary since Isabelle only accepts
these goals when they are exactly equal to the goals in the prover. Simplification
can be performed automatically, but when, for example, an application of the in-
duction hypothesis is needed, simplification is not accepted. The tool provides hints
in some cases, based on teacher scripts.

ComIn-M contains electronic exercise sheets (Rebholz and Zimmermann, 2013).
The system is developed as part of the SAiL-M project, and extends an earlier
e-assessment tool (Müller and Hiob-Viertler, 2010). These sheets also contain pre-
structured mathematical induction exercises, and combine multiple choice exercises
about stating the induction hypothesis with open exercises to prove a base case and
an inductive case. Students have to state the inductive case before proving it. A
nice feature of ComIn-M is the possibility to work in two directions. Feedback and
hints are provided automatically.

The website2 accompanying the textbook Discrete Mathematics: Mathematical
Reasoning and Proof with Puzzles, Patterns and Games by Ensley and Wins-
ton Crawley (2006) contains a set of interactive exercises in which given a property
P , a student first has to deduce P (n + 1) from P (n) for concrete values, and
then for an arbitrary value n. In this way, a student gets some intuition behind
induction before she proves the inductive case.

We found only two systems addressing structural induction. The most exten-
sive system is Polycarpou’s e-book, which is a complete educational environment
for learning structural induction. She emphasizes foundational concepts, such as
structures, sets and closed sets. A separate chapter introduces inductive definiti-
ons. Animations show how these definitions generate inductive sets. Interactivity
is restricted to multiple choice, drag and drop, and fill in the blank exercises, which
implies that a student does not independently complete an inductive proof.

Stanford’s online Introduction to Logic course3 does offer the possibility to con-
struct complete structural induction proofs in its open online logic course. However,
in the course material induction is combined with natural deduction, causing long
and abstract proofs. It is possible to ask for a complete solution to an exercise, but
the system does not give feedback on mistakes, nor hints on how to proceed. The
site also offers a proof assistant that combines structural induction with Hilbert-
style proofs.

2http://higheredbcs.wiley.com/legacy/college/ensley/0471476021/anim_flash/index.

html
3http://intrologic.stanford.edu/public/index.php

100

http://higheredbcs.wiley.com/legacy/college/ensley/0471476021/anim_flash/index.html
http://higheredbcs.wiley.com/legacy/college/ensley/0471476021/anim_flash/index.html
http://intrologic.stanford.edu/public/index.php

5.4 Students’ problems with structural induction

5.4 Students’ problems with structural induction

Students have problems with constructing inductive proofs. Several studies iden-
tify misconceptions students have with mathematical induction, such as not re-
cognizing the difference between base cases and inductive cases, and analyze the
underlying reasons for these misconceptions (Avital and Libeskind, 1978; Dubinsky,
1986; Ernest, 1984; Harel, 2001; Palla et al., 2012; Pavlekovic̀, 1998). In her the-
sis, Polycarpou studies possible causes of problems students have with structural
induction (Polycarpou, 2008). Her hypothesis is that a lack of understanding of
set theoretical concepts is one of the main causes of these problems. To investigate
this hypothesis, she performed an experiment in which students have to answer six
questions about a fancy inductively defined language IPO (a fictive programming
language). The base elements of this language are lower case characters. There are
two inductive rules to construct new words: by concatenating two IPO words by
an underscore, and by putting quotes around an IPO word. The first four questi-
ons test whether a student understands this definition: the student has to indicate
which words are IPO words in a given set of words, give the minimal length of
an IPO word, determine whether or not IPO words have a maximum length, and
construct an IPO word of length greater than 6. The fifth question prepares for the
last question by asking if it is possible to construct a word of length 8. Finally, in
the last question students have to tell whether an IPO word can have even length,
and in case the answer is no, prove that all IPO words have odd length. Students
participating in this experiment are enrolled in a course ‘Logic for Computer Sci-
ence’ and they have practiced with mathematical induction in an earlier course on
discrete mathematics. As a pre test, students have to answer these exercises two
months before the lessons on induction. After these (traditional classroom) lessons
a comparable set of exercises is given as a post test.

In the pre test, students particularly experience problems with the exercise on
identifying IPO words, the problem about a word with length 8, and the inductive
proof. The results on these questions are much better in the post test, but still the
inductive proof is too hard for 44% of the students. The author claims that there
is a correlation between performance on the first five questions and performance on
the inductive proof, but this correlation is not statistically motivated. Instead, she
calculates the ratio between students who perform well on both the inductive set
exercises and the inductive proof exercise (71%), and the ratio between students
who do not perform well on both (83%). She notes that some students find an
(incorrect) IPO word with length 8, but manage to prove that all IPO words have
odd lengths. Another observation is that some students seem to copy an example
treated in the course without the necessary adaptations. These students define
inductive cases for negation and conjunction, instead of for the IPO constructors.
The conclusion of Polycarpou is that lack of understanding of an inductive definition
is indeed a main cause of problems with induction, and that the traditional way
of teaching results in procedural knowledge without conceptual understanding for

101

5 Hints, Next Steps and Feedback in a Tutoring System for Structural Induction

some students.
To investigate whether students entering the master Computer Science at the

Open University of the Netherlands, a distance learning university, experience si-
milar problems, we analyze the solutions to a homework assignment of 20 of these
students. Before being admitted to the Computer Science master program, stu-
dents have to take a course in logic. Structural induction is one of the topics in this
course. Unlike the students participating in Polycarpou’s experiment, almost none
of these students has experience with mathematical induction. Furthermore, their
background in mathematics is usually weaker than that of bachelor students at a
regular university. The homework assignment is optional, but gives extra credits
at the exam.

In the first part of the homework assignment (Exercise 1), students have to give
an inductive definition of a function len, which returns the length of a propositional
formula. The next question (Exercise 2) asks to give an inductive definition of a
postfix function ∗ that rewrites all conjunctive subformulae φ ∧ ψ of a formula into
the equivalent subformula ¬(¬φ ∨ ¬ψ). The last question (Exercise 3) asks for an
inductive proof of the following property: len (φ∗) 6 3 len (φ)− 2 for all formulae
φ. This assignment differs from Polycarpou’s: it does not test the understanding of
inductively defined sets, but instead tests the understanding of inductively defined
functions (in exercises 1 and 2).

As Polycarpou, we expect correlations between performance on the first two
exercises and the last exercise. Since the number of participating students is too
low for a statistic test, we perform a similar calculation as Polycarpou. Students
who do not receive full points for the first two exercises (11 students), are almost all
(10) unable to complete the third exercise. However, from the students who receive
full points (9) only 2 manage to complete the inductive proof. We conclude that for
these students Exercise 3 is too difficult to complete without help, but most students
have fewer problems with the inductive function definitions. Table 5.1 shows the
results on the first two exercises. Most students provide a correct definition, but
some students add an induction hypothesis to this definition. Since students can
make several mistakes, for example, ‘no correct cases’ and ‘an incorrectly added
induction hypothesis’, the sum of the percentages in Table 5.1 (and also Table 5.3)
is more than 100%.

We looked further into mistakes students made in the proof exercise. As shown
in Table 5.3, the inductive part of the proof most often goes wrong, and the most
common error is assigning a fixed length to a compound formula (for example,
len (φ ∧ ψ) = 3). The inductive definition does not seem the bottleneck, since
70% of the students (see the columns ‘correct’ + ‘correct use of IH, but incomplete’
+ ‘correct ind def, no use of IH’ in Table 5.3) apply these definitions in their
proof. The assumption φ∗ = φ made by some students could be a symptom of
conceptual misunderstanding of an inductive definition, but could also be used
because a student does not know how to apply the induction hypothesis. We
conclude that although problems with inductive definitions may certainly play a role

102

5.5 LogInd, a tool for teaching structural induction

Tabel 5.1: Results for exercises 1 and 2 of the homework assignment

(a) Exercise 1

solution (N = 20)
correct base and ind. cases 80%
only correct base case 5%
one missing case 5%
no correct cases 10%
incorrectly added IH 15%

(b) Exercise 2

solution (N = 20)
correct 60%
no base case 30%
incorrect 10%

Tabel 5.3: Results and mistakes for Exercise 3 of the homework assignment (N =
20)

solution base IH induction
correct 75% 50% 15%
IH only for one formula φ – 20% –
assumption φ and ψ atomic – – 35%
assumption φ∗ = φ – – 15%
correct use of IH, but incomplete – – 10%
correct ind def, no use of IH – – 45%
IH as goal – – 10%
verbal intuitive argument – – 5%

in the results in the inductive proofs, the understanding of the role of the induction
hypothesis and the way this hypothesis can be used is perhaps a more important
cause of problems. We think that the remedy of Polycarpou (an intelligent tutoring
system that mainly focuses on theoretical foundations) probably will not be the
best solution for our students, since the concept of inductive sets does not seem
to be their main problem, and her approach might be too theoretical. Instead we
concentrate on an e-learning tool that guides students interactively through the
construction of an inductive proof.

5.5 LogInd, a tool for teaching structural induction

This section describes LogInd, a tool that supports students with constructing in-
ductive proofs. Experience with other intelligent tutoring systems for logic (LogEx
for rewriting propositional formulae (Lodder et al., 2019), and LogAx for Hilbert-
style axiomatic proofs (Lodder et al., 2017)) shows that students benefit from a
system where they can enter solutions stepwise, get feedback after each step, and
can ask for a hint or next step at any moment, or receive a worked-out solution.

103

5 Hints, Next Steps and Feedback in a Tutoring System for Structural Induction

Figuur 5.1: Starting the first exercise in LogInd

The possibility to add proof steps both backwards and forwards in these systems
resembles the way an exercise is solved with pen and paper. We use the same
approach in LogInd. Since some students have hardly any idea how to start an
inductive proof, LogInd offers guidance in structuring the proof. We also want
students to be aware of the kind of steps they perform in the proof, for example,
applying the induction hypothesis or an inductive definition of a given function.
Hence, LogInd asks for a justification at each step. Students do not have to jus-
tify simple calculation steps, such as distributing a multiplication over an addition,
and we allow calculation steps at different levels of granularity. Therefore, LogInd
checks calculations by normalizing the submitted expression.

LogInd guides a student through a proof by structuring the proof in three parts:
a proof of the base case, stating the induction hypotheses, and a proof of the
inductive cases. After presenting the exercise, LogInd asks the student first to
state what is to be proven in the base case, see Figure 5.1. If this is correct the
student is asked to complete the proof of the base case, and to continue with stating
the induction hypotheses, see Figure 5.2. For the inductive cases, LogInd again
first asks what the different cases are, and what has to be proven in these cases. A
complete proof is shown in Figure 5.3.

104

5.5 LogInd, a tool for teaching structural induction

Figuur 5.2: Guidance after the base case is finished

LogInd uses a domain reasoner to provide hints, next steps, feedback, and com-
plete solutions. A domain reasoner is an expert module that performs all reasoning
about the domain (Goguadze, 2010). Thus far, LogInd only offers exercises about
properties of a propositional language. We introduce the term ‘counting function’
to describe the set of exercises that can be used in LogInd.

A counting function count is an inductively defined function such that

count (pi) = ci, ci ∈ N,
count (¬φ) = a + b · count (φ), a, b,∈ N
count (φ � ψ) = a� + b� · count (φ) + c� · count (ψ), a�, b�, c� ∈ N

where pi is a propositional letter, and � a binary connective.

The properties that have to be proven take the following form: P1 (φ) comp
P2 (φ), where comp is a comparator (=, <,6, >,>) and Pi (φ), i = 1, 2 is either a
truth value, number or formula:

– if Pi (φ) is a truth value, it is an expression V (g (φ)) or a constant where V
is a valuation and g an inductive function from the language L to L;

– if Pi (φ) is a natural number, the right-hand side is a linear combination
of expressions f (g (φ)) where f is a counting function and g an inductively
defined function from L to L, the left-hand side is a single expression f (g (φ));

– if Pi (φ) is a a formula, it is equal to an expression g (φ) where g is an
inductively defined function from L to L;

105

5 Hints, Next Steps and Feedback in a Tutoring System for Structural Induction

Figuur 5.3: The solution of the exercise of Figure 5.1 in LogInd

– valuations V may have predefined properties such as V (p) = 1, but if the
comparator in the theorem is an equality, these properties may also only
make use of equalities (since in our proof system it is not possible to prove
an equality from inequalities).

The restriction in the second option that the left-hand side is a single term f (g (φ))
while the right-hand side may contain a linear combination of terms is not a real
restriction, since a statement where both the left- and right-hand side contain linear
expressions can always be rewritten into this form. The restriction will enable us
to treat the induction hypothesis as a rewrite rule. Examples of exercises in this
format are:

– Let L be a propositional language with connectives ∧ and ∨. Let ValA and
ValB be two valuations such that ValA (p) 6 ValB (p) for any atomic formula
p. Then ValA (φ) 6 ValB (φ) for any formula φ in the language L.

– Let L be a propositional language with connectives ∧ and ∨, and L′ the
extension of L with negation ¬. The function star from L to L′ replaces

106

5.6 Generation of solutions, hints and next steps

every atom by its negation, conjunctions by disjunctions and disjunctions
by conjunctions. The function length returns the length of a formula. The
following holds: length(star (φ)) 6 2· length(φ)

– Let L be a propositional language with connectives ¬, ∧, ∨ and →. Function
f replaces every conjunctive subformula φ ∧ ψ by ¬(¬φ ∨ ¬ψ), and function
g replaces every implicative subformula φ→ ψ by ¬φ ∨ ψ. Then f (g (φ)) =
g (f (φ)) (where ‘=’ means syntactically equal) for any formula φ.

This class of problems offers sufficient possibilities for relatively simple exercises,
where students can get acquainted with inductive proofs. In the next section we
show that for this class we can generate solutions, hints and next steps, without
the need for advanced techniques as used by automatic theorem provers.

5.6 Generation of solutions, hints and next steps

In general, automatic proof generation for induction problems is undecidable (Au-
bin, 1979; Bundy, 2001). Problems that might seem easy, such as the proof for
associativity of list concatenation for a single list ((l :: l) :: l = l :: (l :: l)), already
need advanced methods to be proven automatically (in this case generalization
of the first occurrence of l) (Bundy, 2001). Automatic theorem provers use so-
phisticated techniques such as rippling and lemma generation to solve inductive
problems (Bundy, 2005, 2001). It is not our goal to teach students these techni-
ques, and by restricting ourselves to the class of problems described in the previous
section, we only need a straightforward strategy to solve such exercises.

The problem-solving strategy we use is part of our domain reasoner. The strategy
first uses the definition of the language to decide what has to be proven in the
base cases, and which inductive cases have to be treated. We only allow a single
formula variable in a property, so we do not have to ask which variable will be
used for induction. Inductive functions are represented as rewrite rules, just as
the induction hypothesis. Apart from some technical details, the strategy first
applies the inductive definitions of the functions occurring in the statement. The
strategy rewrites both the right-hand and left-hand side of the statement. Hence,
the strategy supports the possibility to complete a subproof by working in two
directions. In case the inductive function has natural numbers as the codomain,
the next step (if necessary) is a distribution of the multiplication such that the left-
hand side and right-hand side become linear combinations of terms that occur in the
induction hypothesis. Now we can apply the induction hypothesis to occurrences of
the left-hand side of this hypothesis in the left-hand side formula in the proof. After
this application only some normalizing elementary calculations might be needed to
complete the proof. For our restricted class of problems this strategy always finds
a solution. We provide a sketch of a proof of this statement in Appendix 5.A.
Students will not always follow this strategy. For example, they might apply the
induction hypothesis before rewriting the right-hand side of a statement applying

107

5 Hints, Next Steps and Feedback in a Tutoring System for Structural Induction

the inductive definitions, or vary in the calculations. Also in these cases, LogInd
continues with applying the strategy. Hence, a next step can be provided as long as
the strategy’s rules are applicable. After application of these rules, normalization
is sufficient to complete the proof. We expect that almost all student steps will
be such that LogInd can indeed provide a hint or next step based on the student
solution. The evaluation described in Section 5.8 gives evidence for this claim.

Our strategy differs from the method advocated by Bundy (2001). The difference
is in the way we use the induction hypothesis. Bundy recommends strong fertiliza-
tion: the isolation of the induction hypothesis in an inductive case and replacement
of this hypothesis by True. Our strategy uses weak fertilization: substituting the
left-hand side of the induction hypothesis by the right-hand side. Bundy advises
the use of strong fertilization since the use of weak fertilization generally results in
longer and more complicated proofs. For our restricted class of problems, this is
not the case. Since most pen-and-paper proofs use weak fertilization, we also use
weak fertilization in our strategy.

5.7 Constraints and feedback

From the analysis of the homework assignment, we expect our students to make
various kinds of mistakes while practicing with LogInd. Examples of potential
mistakes are:

– treating metavariables φ and ψ as atoms, for example, resulting in the rewri-
ting of length(φ ∧ ψ) into 3 in the proof of an inductive case;

– omission of a case, for example negation;
– use of only = and 6 when a statement P1 (φ)< P2 (φ) has to be proven;
– forgetting to state the induction hypothesis before using it.

In our other tutoring systems for logic we use buggy rules to generate feedback
in case a student makes a mistake. Buggy rules typically relate to mistakes on
the level of single steps. An example of such a buggy rule is forgetting to change
a disjunction in a conjunction in an application of DeMorgan while rewriting a
formula into normal form. Mistakes in an inductive proof can be on the level of a
step, for instance rewriting length(φ ∧ ψ) to 3, but also on the level of a subproof.
An example of an error in a subproof is using 6 between each of the steps when the
goal is to prove an equality. In this case, each of the steps is correct, but the overall
relation between the first and last line of the proof is 6 instead of =. An example
of an error on the level of the whole inductive proof is the omission of a case.
These mistakes are easily formulated as constraint violations. For example, the
composition of the relations between the lines in a proof should imply the relation
between left-hand side and right-hand side in the theorem that is proven. We think
that constraints can be put to good use for this domain.

Ohlsson (1994) first described the role of constraints in learning. Mitrovic used

108

5.7 Constraints and feedback

the concept in the development of an SQL tutor (Mitrovic, 2012) and many other
tutors. Constraints characterize correct solutions by providing a relevance condition
and a satisfaction condition: if the relevance condition holds, the solution should
satisfy the satisfaction condition. Some important reasons for using constraints in
the development of tutoring systems are that constraints partially play the role of
buggy rules, the construction of which is very time consuming, and that constraints
can also be used to give feedback if student solutions diverge from model solutions
or are partial (Mitrovic, 2012; Mitrovic et al., 2007).
LogInd uses constraints to provide feedback and guidance. Heeren and Jeuring

(2014) describe the diagnose service used by a domain reasoner to provide feedback.
Figure 5.4 is based on this description, and shows how we incorporate constraints
in the diagnosis. Our diagnose service receives a (partial) student solution and
checks whether or not this submission violates a set of constraints. We divide the
constraints in constraints on the level of steps, on the level of subproofs, and on
the level of proofs.

– Constraints on the level of steps check:

– if the rewriting of a line (for example the application of an inductive
definition) is correct;

– if the induction hypothesis is applied correctly;
– if comparators (=, < ..) are used correctly in a single step;
– if the justification is correct.

– Constraints on the level of subproofs check:

– if the first and last line of each subproof are instances of the left-hand
side respectively right-hand side of the theorem;

– if these instantiations are valid cases (atomic base cases, inductive cases
only for connectives in the language);

– if the induction hypothesis (when present) is correctly formulated;
– if comparators (=, <, ..) are used correctly at the level of subproofs

(i.e. if the composition of the comparators in the subproof equals the
comparator in the theorem).

– Constraints on the level of complete proofs check:

– if all inductive cases correspond to connectives in the language;
– if the induction hypothesis is stated before use, with the same metava-

riables;
– if an inductive case or special base case is missing.

To check a proof at the level of a step, the domain reasoner compares the stu-
dent submissions with the result of the application of possible rules, and accepts
the student submission if it is similar to one of these results. Here, a simple norma-
lizing calculation transforms the submission and the generated result into the same
expression. For example, application of the induction hypotheses in the example of

109

5 Hints, Next Steps and Feedback in a Tutoring System for Structural Induction

Figure 5.3 results in bin (φ)+1+bin (ψ)+1, but a submission bin (φ)+bin (ψ)+2
is also accepted.

If no constraint is violated, the domain reasoner compares the new submission
with the previous (last correct) submission, and determines if these are similar. If
these submissions are similar, the domain reasoner gives feedback about this. A
submission that is not similar may follow the implemented strategy, which is dia-
gnosed as ‘expected’. When the step does not follow the strategy, but is recognized
by the domain reasoner, the diagnosis is a ‘detour’. This happens, for example,
when a student starts with completing the inductive case for implication before
negation. The interface will tell the student that this step is correct, and the stu-
dent can continue with the exercise. Since there are no violations, every step in
the submission is already recognized, which means that the last option (no rule
detected) only happens when the student submission contains more than one new
line. Again, the interface will provide a message ‘this is correct’.

Our experience is that the diagnosis ‘failure’ of a constraint is not enough to pro-
vide informative feedback. For example, a constraint on the exercise in Figure 5.1
could be that the first line of an inductive case should be an instantiation of the
left-hand side of the theorem prop (φ) = bin (φ) + 1, with φ substituted by ¬α,
α ∧ β or α→ β, where α 6= β and α, β ∈ {φ, ψ}. Now a student can violate this
constraint in different ways, for example by

– using a connective that is not in the language;
– instantiating with an atomic formula;
– instantiating with a metavariable that is not used in the induction hypothesis;
– introducing an expression that is not an instantiation at all.

Each of these violations stem from a different misconception, and we want to give
different feedback messages in each case. We solve this by specifying failure mes-
sages for different constraints, and call this use of constraints ‘buggy constraints’
as proposed by Kodaganallur et al. (2005). One of the problems of the use of
constraints as mentioned by Kodaganallur et al. (2005) and Mitrovic (2012) is the
violation of two or more constraints at the same time. We solve this by ordering
the constraints: for example, constraints about instantiations get a higher priority
than constraints about the application of a rule.

Apart from ‘strong’ constraints that may not be violated, we also use soft con-
straints to guide a student through a proof. These constraints check for each of
the subproofs if they are introduced and if they are finished. After a diagnosis, the
user interface can call the feedback service ‘constraints’, which reports the status
of each of the subproofs. The result can be used to provide a message such as: ‘the
base case is finished, continue with the formulation of the induction hypothesis’.

The way we use constraints in LogInd differs in some aspects from the original
use. One difference is the fact that LogInd has a strategy which produces solutions,
and while checking the next step of a student, LogInd first tries to recognize this
step. LogInd can hence be conceived as a constraint-based solver as described

110

5.8 Evaluation

violation
constraint?

buggy
constraint?

similar?
expected by

strategy?
discover

rule?

Unknown mistake

Common mistake

Small rewrite step,
not recognized

Rewrite step follows
expert strategy

Multiple steps

Correct step, but
detour from strategy

yes no

no no no

yes

yesyes yes

no

diagnose
feedback service

Figuur 5.4: Structure of the diagnose feedback service: the incorporation of cons-
traints is new

in Kodaganallur et al. (2005). Moreover, we use constraints not only to provide
feedback on errors, but also to guide a student.

5.8 Evaluation

In April 2019 we performed a small pilot experiment with a group of 15 students
taking an online logic course in preparation of admission to the master in Com-
puter Science at the Open University of the Netherlands. Before the experiment,
these students handed in the homework assignment described in Section 5.4. The
experiment consisted of an online instruction about the use of LogInd, followed
by the possibility to practice. During the experiment students could ask questions
by using the chat functionality of the learning environment. The questions that we
would like to answer with this experiment are:

1. does LogInd behave as expected, i.e., provide hints and next steps, and give
a correct diagnosis?

2. what kind of problems do students have while working with LogInd?

3. how do students use LogInd?

4. can we see effects of the use of LogInd in the way students perform pen-and-
paper exercises?

111

5 Hints, Next Steps and Feedback in a Tutoring System for Structural Induction

In Section 5.6 we claim that we can provide a hint or next step at any moment,
also if a student does not follow the preferred strategy by LogInd. We analyze the
loggings to check this claim. From the 1612 calls obtained from student interactions
(a diagnosis, a hint, a next step, or a full solution), 398 calls ask for a hint or a
next step. In 25 cases (6%) LogInd cannot provide such a step. Further analysis
shows that since students repeat their call several times, this only happens in five
different cases (1%). In all of these cases LogInd could not provide a hint or next
step because it diagnoses the exercise as ‘ready’. This was a bug, resulting from
a use of LogInd that we had not anticipated: some students did not start a base
case with the statement that they have to prove, but they submit the first two lines
of a proof of the base case, for example the subproof:

prop (p)
= (definition prop)
1

In such a case LogInd decided that this step was correct and that this subproof
was finished since all steps are motivated, without checking whether indeed the base
case has been proven. When a student asked for a hint after the other subproofs
were (correctly) finished, LogInd could not provide such a hint. We repaired this
bug, and since this was the only reason that no hint or next step was available, we
expect that LogInd now indeed provides this kind of feed forward (i.e. hints and
next steps) in all circumstances.

We use the remarks made by students in the chat during the experiment and
the loggings to answer the second question. From these remarks and the loggings
we learned that students had quite a lot of problems with the interface. Students
should start an exercise with a response to the question ‘what do you have to
prove in the base case?’. They should fill in their answer in a template as shown
in Figure 5.5. For the first exercise, the exercise of the example in Section 5.2,
this means that on the first line, a student should enter prop (p), then choose the
equality sign (=) from the drop-down list and enter the right-hand side bin (p) + 1
in the bottom line. In their first attempt, none of the participating students entered
this first step correctly. Ten students did not realize that they first had to answer
this question before completing the proof or did not know what to prove. They
provided answers such as for example prop (p) = 1 or prop (φ) = bin (φ)+1. Three
students entered the whole statement prop (p) = bin (p) + 1 on the first line, one
student added a wrong justification (definition of the inductively defined function
prop), and one student replaced the ? by an empty string, which at that time was
not accepted by LogInd.

A second source of problems was the use of the send button. A student only gets
feedback after clicking this button. If a student enters several lines before clicking
this button, it was hard to find the place where the feedback referred to, especially
since at the time of the experiment we were still developing the constraints. So a

112

5.8 Evaluation

Figuur 5.5: Template for starting a base case

student might receive the message ‘this step is not correct’ without a clue which
step should be repaired. Also, when a student asked for a hint after receiving an
error message, this hint was based on the latest correct submission. Hence, this
hint might relate to the application of a rule in (for example) a base case, while the
student was working on an inductive case.

To answer the third question, how do students use LogInd, we also looked at
the loggings. The problems described in the previous section combined with the
conceptual and technical problems students have with induction caused a high hint
and next step use (25% of the student interactions in the loggings). However,
students did enter steps themselves and asked for a diagnosis (1078 requests, 67%),
where 619 steps were diagnosed as correct. Half of the participating students were
able to construct (parts of) a subproof, some of them using hints or next steps
in between, but the other students had too many problems with the interface.
Students who solved the homework assignment before the experiment, could use
LogInd without too many problems.

To answer the last question, we analyzed resubmissions of students’ homework.
Students whose homework assignment was not correct had to submit the assignment
again. We hoped to use these improved assignments as a kind of post test. However,
three students submitted their corrections before the experiment, and one student
did not submit a new version. The results of the remaining seven students can be
found in Table 5.4. We use the same characterizations of solutions as in Table 5.3,
except for the solution label ‘incorrect use of IH’, which did not occur in the first
submissions. The first column shows the results on the first submissions of the
homework assignment by the group of students who practiced with LogInd and
submitted a new version after the experiment. The results of this second submission
is shown in the second column. The last two columns show the same data for the
group of students who did not practice with LogInd. The second submission is
in both groups better than the first attempt. The number of students is too low
to conclude if practicing with LogInd has more effect than the comments by the
teacher on the first attempt.

113

5 Hints, Next Steps and Feedback in a Tutoring System for Structural Induction

Solution LogInd (N = 7) No LogInd (N = 4)
1st 2nd 1st 2nd

Correct – 2 – –
Assumption φ and ψ atomic 3 1 4 1
Assumption φ∗ = φ 1 3 0 1
Correct use of IH but incomplete 1 – – –
Incorrect use of IH – 1 – –
Correct ind def, no use of IH 3 5 4 2

Tabel 5.4: Results and mistakes in the first submission of homework assignment 3
and in the improved second submission (number of students)

5.9 Conclusion and future work

We have discussed the design of a tutoring system for learning how to prove sta-
tements about inductively defined discrete structures. As far as we know, LogInd
is the first such tutoring system. A student constructs her proof stepwise, and
LogInd provides help (hints, next steps, and elaborate feedback on errors) at each
step. A pilot evaluation showed that LogInd indeed can provide help in almost all
situations. Half of the students in the experiment could construct (parts of) a proof
by themselves, but the other half had too many problems with the interface and
the exercises. The number of students who participated in the experiment was too
low to decide whether students indeed learn by using LogInd. We noticed that
homework submissions by students who had practiced with LogInd were more
clearly structured, and contained more justifications of different steps.

In a next experiment we will evaluate the constraints: is the information in a
feedback message correct, and do these messages help students to correct their
submission? We will test an alternative interface, where students can enter their
steps in a text field, and we will also compare a guided version with a non-guided
version. In the future we might also incorporate exercises about induction in other
domains, such as for example lists or functional programs.

Acknowledgments

We thank Aad van Lieburg and Anja Paalvast for their work on the student inter-
face, and our students for their permission to use their solutions in our research,
and their participation in the experiment.

114

5.A Sketch of a completeness proof for the strategy used by LogInd

5.A Sketch of a completeness proof for the strategy
used by LogInd

We give a sketch of the completeness proof for the strategy used by LogInd. First
we specify the class of functions that are used in in our exercises for transforming a
formula in another formula. We call these inductively defined functions acceptable.

Definition 1. An inductively defined function g from the propositional language L
to L is acceptable if the inductive definition can be written in the following form:

– g (pi) = φi for atomic formula pi
– g (¬φ) = [g (φ) / s] ψ
– g (φ1 � φ2) = [g (φ1) / s1, g (φ2) / s2] ψ�

The definition states that the inductive cases are obtained by substituting a
variable s by g (φ) in a formula ψ, or the variables s1 and s2 by g (φ1) and g (φ2)
in a formula ψ�. All inductive definitions of functions from L to L can be written
this way. For example, the function star in the second example in Section 5.5 can
be defined by:

g (pi) = ¬ pi
g (¬φ) = [g (φ) / s] (¬s)
g (φ1 ∧ φ2) = [g (φ1) / s1, g (φ2) / s2] (s1 ∨ s2)
g (φ1 ∨ φ2) = [g (φ1) / s1, g (φ2) / s2] (s1 ∧ s2)

In our proof we need the following lemma:

Lemma 1. For any counting function f and formulae φ and ψ, f ([φ / p] ψ) is a
linear expression in f (φ).

Bewijs. Proof with induction on ψ:
Since f is a counting function, there exists constants ci, a, b, a�, b1�, and b2� such
that

f (pi) = ci,
f (¬φ) = a + b · f (φ),
f (φ1 � φ2) = a� + b1� · f (φ1) + b2� · f (φ2)

For atomic formulae ψ, f ([φ/p] ψ) is either f (pi) (a constant) or f (φ) and hence
linear in f (φ).
For the inductive cases we assume that f ([φ / p] ψ1) = c1 + d1 · f (φ) and f ([φ /
p] ψ2) = c2 + d2 · f (φ).
Then:

f ([φ / p] (¬ψ1))
= f (¬[φ / p] ψ1)

115

5 Hints, Next Steps and Feedback in a Tutoring System for Structural Induction

= a + b · f ([φ / p] ψ1)
= a + b · (c1 + d1 · f (φ))
= a + b · c1 + b · d1 · f (φ)

And:

f ([φ / p] (ψ1 � ψ2))
= f ([φ / p] ψ1 � [φ / p] ψ2)
= a� + b1� · f ([φ / p] ψ1) + b2� · f ([φ / p] ψ2)
= a� + b1� · (c1 + d1 · f (φ)) + b2� · (c2 + d2 · f (φ))
= a� + b1� · c1 + b2� · c2 + (b1� · d1 + b2� · d2) · f (φ)

In the same way we can prove that for any counting function f and formulae φ1,
φ2 and ψ, f ([φ1 / s1, φ2 / s2] ψ) is a linear expression in f (φ1) and f (φ2). We
omit the proof. Using Lemma 1 we can prove the next lemma:

Lemma 2. For any counting function f and acceptable inductively defined function
g, after applying g

– f (g (pi)) is a constant for atomic formulae pi
– f (g (¬φ)) is a linear expression in f (g (φ))
– f (g (φ1 � φ2)) is a linear expression in f (g (φ1)) and f (g (φ2))

Bewijs. For atomic formulae, g (pi) is a propositional formula, and hence, f (g (pi))
is a constant.
Since g is acceptable, there exists a formula ψ and variable s such that f (g (¬φ)) =
f ([g (φ) / s] ψ), which is linear in f (g (φ)) according to Lemma 1.
In the same way: there exists a formula ψ� and variables s1 and s2 such that
f (g (φ1 � φ2)) = f ([g (φ1) / s1, g (φ2) / s2] ψ�), which is linear in f (g (φ1)) and
f (g (φ2)) by the generalization of Lemma 1.

Theorem 1. The strategy used by LogInd can generate an inductive proof for
any correct statement of the form P1 (φ) comp P2 (φ), where comp is a comparator
(=, <,6, >,>), P2 (φ) is a linear combination of expressions fi (gi (φ)), and P1 (φ)
is a single expression f (g (φ)), for which f and fi are counting functions, and g
and gi are inductively defined functions from L to L.

Bewijs. The strategy starts with the application of the inductively defined functi-
ons. We first consider the base case. After the application of inductively defined
functions, the left-hand side of the equation is a constant and the right-hand side
a linear combination of constants, which is rewritten into a single constant using
arithmetic, by Lemma 2. A number comparison suffices to check if the base case
holds. In the inductive cases, the application of the inductively defined function
in the left-hand side results in a linear expression in f (g (φ)) (case negation) or

116

5.A Sketch of a completeness proof for the strategy used by LogInd

f (g (φ1)) and f (g (φ2)) (case binary connective). The right-hand side is a linear
combination of linear expressions in fi (gi (φ)) or in fi (gi (φ1)) and fi (gi (φ2)).
The next step in the algorithm is the application of the induction hypothesis. Re-
placing occurrences of f (g (φ)) or f (g (φ1)) and f (g (φ2)) by the right-hand side
of the induction hypothesis results in another linear combination of fi (gi (φ)) or
fi (gi (φ1)) and fi (gi (φ2)). Normalizing both left-hand side and right-hand side
now suffices to prove the inductive cases.

117

6 Epilogue

6.1 Conclusion

In this thesis we developed ITSs for various topics in logic: rewriting propositional
formulae in normal form and proving equivalence using rewriting, Hilbert-style axi-
omatic proofs, and structural induction. We tried to answer the following research
questions about ITSs for these topics:

R1 How can we describe the expert knowledge of these topics in a domain rea-
soner?

R2 How can we generate feedback and feed forward?

R3 What is the effect of the use of the designed tools in logic education?

Here we summarize the results.
To answer the first question (R1) we used of the Ideas framework in which rules

and solution strategies can be represented. We perceive the exercises in our ITSs
as rewriting problems. Here, the term ‘rewriting’ can be used for the rewriting of
a single formula, but also for the rewriting of a partial proof. Our description uses
all the five knowledge components from (Heeren and Jeuring, 2020):

– rules, a collection of allowed rewriting steps
– problem-solving procedures or strategies
– normal forms, to decide whether different formulae are equivalent, for example

associative variants such as (p ∧ q) ∧ r and p ∧ (q ∧ r)
– buggy rules, a collection of common mistakes
– constraints, for checking properties

Most of the ITSs built on top of Ideas rewrite relatively small steps, as for
example a rewriting in LogEx by an application of DeMorgan. In such ITSs,
the backend only has to keep the last rewriting of a formula or pair of formulae.
LogAx and LogInd differ from these ITSs since in LogAx and LogInd the
rewriting steps are defined on the complete partial solution instead of the last
entered formula. To represent axiomatic proofs we use DAMs, and inductive proofs
are hierarchically structured. To describe solution procedures, we make use of the
strategy language of Heeren et al. (2010), which we extended with amongst others a
preference operator and the possibility to generate solutions dynamically. Whereas
the generation of normal forms, equivalence proofs and inductive proofs is rather

119

6 Epilogue

straightforward, the generation of axiomatic proofs is a two-step process, consisting
of the construction of the DAM and the distillation of a linear proof from this DAM.

We use the solution strategy to provide feed forward (R2). In this way, we can
produce a hint about the next step to perform, perform a next step, or provide
a complete solution directly. For the axiomatic exercises in LogAx, we provide
also a subgoal as a reaction to a hint request. To generate these, we keep track
of a stack of subgoals during the distillation of a linear proof. We defined buggy
rules to provide feedback about common mistakes in LogEx and LogAx. This is
feedback at the step level. Since the representation in LogEx only consists of the
last rewritings, we cannot provide feedback concerning a whole or partial solution.
For example, we cannot detect that a solution contains a cycle. We use constraints
to provide feedback on the level of subproofs or proofs level in LogInd, and use
these constraints also to guide the student with unsolicited feed forward about the
structure of an inductive proof.

To evaluate the use of our logic tools (R3), we performed several pilot experi-
ments with the three ITSs and one larger scale experiment with LogEx. In this
last experiment we did not find statistically significant differences between students
who worked with a version with full functionality and with restricted functionality,
but the first group performed significantly better on the exam than students who
did not participate. Analysis of the loggings provided insight in the way students
use the tool. Probably an experiment where students get more time to practice
with our tools is needed to measure differences in learning effects.

6.2 Future work

In the previous chapters we already mentioned several directions for future work
directly related to the subject of the chapter. We will not repeat these here, but
give some ideas for other directions of future research.

Extensions to predicate logic
LogEx and LogAx are restricted to propositional logic. Students using these tools
express an interest in extended versions covering also predicate logic. A natural
extension of LogEx would be the rewriting of predicate logic formulae in prenex
normal form (a form with all quantifiers in front of the formula). We expect that it
will be possible to define rewriting rules and buggy rules more or less in the same
way as for the rewriting of propositional formulae, where special care will be needed
to formulate conditions in, for example, the rewriting of ∀x φ ∨ ψ in ∀x (φ ∨ ψ).
Recognizing whether a next step is equivalent to a previous one, in case a student
combines several steps, will be harder, but may be possible in a decidable fragment
of predicate logic.

Bolotov extends his algorithm for generating natural deduction proofs to predi-
cate logic (Bolotov et al., 2005). With an adaptation of this part of the algorithm,

120

6.2 Future work

an extension of LogAx to predicate logic should be possible.

Other topics in logic
Other directions of future research are different topics in logic. An extension of
LogEx for predicate logic could serve as a basis for general resolution; skolemiza-
tion can be defined as a rewrite rule and, for example, the algorithm of Martelli-
Montanari can be implemented for unification (Martelli and Montanari, 1982). It
would also be interesting to develop ITSs for modal logic or Hoare calculus.

Other ways to support students
Thus far, we have not made use of student models. Adding a student model will
extend the possibilities for providing personalized feedback, for example if a student
makes the same mistake more often, or systematically uses a non-efficient strategy
to solve an exercise. With a student model, it will also be possible to offer exercises
tailored to the student such as exercises that need a certain rule when a student
has difficulty with this rule, or more or less difficult exercises. This would also
involve classifying exercises. Another possibility will be to personalize the amount
and type of feedback, or to allow advanced students to perform more steps at once.

121

Samenvatting

Is de volgende redenering correct?

Sommige medewerkers van de Open Universiteit houden niet van computers.

Alle docenten bij de vakgroep Informatica van de Open Universiteit zijn ook
medewerker bij de Open Universiteit.

Dus sommige docenten bij de vakgroep Informatica van de Open Universiteit
houden niet van computers.

Veel mensen blijken moeite te hebben met het bepalen van de juistheid van
dergelijke redeneringen. Logica biedt methodes om redeneringen te formaliseren en
vervolgens met formele methodes te onderzoeken of de redenering al dan niet klopt.

Logica is onderdeel van het curriculum van onder andere informatica, filosofie en
wiskunde. Studenten ontwikkelen hun vaardigheden in logica door veel te oefenen.
Een deel van de oefenopgaven zijn opgaven die de student stapsgewijs op moet
lossen, en waarbij er bovendien verschillende manieren zijn om de opgave op te
lossen. Een student die dit soort opgaven lastig vindt, zal hierbij hulp kunnen
gebruiken. Hulp kan bestaan uit een aanwijzing hoe verder te gaan, als de student
vastloopt, maar ook uit het constateren van fouten en eventuele misconcepties
achter de fouten. Docenten kunnen deze hulp bieden, maar er zal niet altijd een
docent beschikbaar zijn. In dergelijke gevallen kunnen Intelligente Tutor Systemen
(ITS) deze rol vervullen. Een ITS is een systeem dat opgaven aanbiedt en de student
feedback geeft. Als een opgave verschillende mogelijke oplossingen heeft (misschien
zelfs oneindig veel), en studenten allerlei fouten kunnen maken, is het ondoenlijk
om voor elke opgave afzonderlijk de aanwijzingen en feedback uit te schrijven. In
het IDEAS1 onderzoeksproject wordt gewerkt aan methoden om op een efficiënte
manier kwalitatief goede ondersteuning te bieden bij dit type opgaven, voor allerlei
soorten vakgebieden. In dit proefschrift richten we ons op tutor systemen voor
logica. Daarbij willen we de volgende vragen beantwoorden:

Hoe kunnen we de benodigde kennis om logica opgaven op te lossen represen-
teren?

Hoe kunnen we aanwijzingen en feedback automatisch genereren?

1IDEAS staat voor ‘Interactive Domain-specific Exercise Assistants’, een samenwerkingsproject
tussen de Universiteit Utrecht en de Open Universiteit

123

Samenvatting

Wat is het effect van het gebruik van de ontwikkelde ITS in logica onderwijs?

In ons onderzoek hebben we ons bij het beantwoorden van deze vragen beperkt
tot drie deelgebieden van de logica: het herschrijven van formules, axiomatische
bewijzen en bewijzen met inductie.

Het eerste deelgebied, het herschrijven van formules, maakt gebruik van stan-
daardequivalenties: uitspraken die op grond van hun structuur altijd equivalent
zijn. Een voorbeeld hiervan zijn de uitspraken “het is niet zo dat ik geen kaas
eet” en “ik eet wel kaas”. Deze twee uitspraken zijn equivalent omdat de negatie
van de negatie van een uitspraak equivalent is met diezelfde uitspraak zonder nega-
ties. Herschrijven van formules kan nuttig zijn om deze te vereenvoudigen, om ze
in een gewenste standaardvorm te brengen, of om te laten zien dat twee formules
equivalent zijn. In onze ITS LogEx kunnen studenten oefenen met deze opgaven.
Lesboeken geven vaak een ‘recept’ waarmee je een formule om kunt zetten naar een
standaardvorm. Het komt echter regelmatig voor dat er een snellere en mooiere
manier is om tot zo’n standaardvorm te komen. Omdat we willen dat studenten
niet blindelings een recept volgen maar dat ze blijven nadenken over wat ze aan
het doen zijn, hebben we voor een aantal gevallen heuristieken ontwikkeld waarmee
zulke snellere oplossingen te vinden zijn. Als een student op papier moet laten zien
dat twee formules equivalent zijn, dan zal ze vaak eerst wat aan de eerste formule
rekenen, dan overgaan naar de tweede, en vervolgens misschien weer doorgaan met
de eerste. Deze mogelijkheid om te switchen van oplossingsrichting hebben we in
LogEx ingebouwd.

We hebben LogEx uitgeprobeerd, onder andere in een experiment met informa-
tica studenten van een hogeschool. In dit experiment gebruikten we twee versies
van LogEx: één waarin studenten op elk moment om een aanwijzing konden vra-
gen en na iedere stap feedback op hun uitwerking kregen en één waarin studenten
geen hint, maar wel een volledige oplossing konden krijgen en waarin ze pas na
het voltooien van de opgave feedback ontvingen. De leereffecten maten we door
van te voren een pretest en na afloop een posttest af te nemen. Het verschil in
leereffect tussen de twee groepen was niet significant, maar de eerste groep scoorde
wel significant beter op tentamenopgaven over het zelfde onderwerp dan studenten
die niet deel hadden genomen aan het experiment. Het experiment leverde ook een
flinke hoeveelheid gegevens over de manier waarop studenten met LogEx werken,
doordat alle interactie tussen de student en het systeem werd gelogd. Uit deze data
blijkt bijvoorbeeld dat tijdens het werken met LogEx studenten steeds minder
fouten gaan maken.

Het tweede deelgebied gaat over axiomatisch bewijzen. In LogAx leert een stu-
dent hoe je kunt bewijzen dat een bepaalde uitspraak volgt uit een reeks gegevens.
De student mag hierbij gebruik maken van een klasse uitspraken die altijd waar zijn,
de axioma’s, en van twee afleidingsregels, Modus Ponens en de deductiestelling. De
eerste afleidingsregel is een formalisatie van redeneringen zoals: ‘als het regent dan
worden de straten nat’, ‘het regent’, conclusie: ‘de straten worden nat’. De tweede

124

afleidingsregel is hiervan min of meer het omgekeerde: hoe bewijs je de implicatie:
‘als het regent dan worden de straten nat’? Dat kun je doen door aan te nemen dat
het regent, wat je een extra gegeven oplevert, en te laten zien dat hieruit volgt dat
de straten nat worden. Om studenten aanwijzingen te kunnen geven bij deze op-
gaves, moesten we om te beginnen een manier vinden om verschillende oplossingen
te representeren. Vaak kan dat met behulp van boom-structuren. In dit geval zou
dan hetgeen je wilt bewijzen in de wortel staan, de bladeren van de boom bevatten
axioma’s en aannames, en knooppunten tussen takken verbinden tussenresultaten.
Maar omdat in dit axiomatische systeem er twee verschillende afleidingsregels zijn,
is deze representatie niet voldoende omdat er verschillende verbindingen tussen de-
zelfde tussenresultaten kunnen zijn. De structuur die we daarom nodig hebben,
heet een DAM (directed acyclic multigraph). In ons onderzoek hebben we onder-
zocht hoe we een bestaand algoritme voor een ander bewijssysteem aan kunnen
passen om zo’n DAM te maken en hoe vervolgens uit de DAM een lineair bewijs is
te halen. Het aantal bewijzen in een bepaalde DAM is eindig, terwijl er in principe
oneindig veel manieren kunnen zijn om een bewijs te leveren. We hebben daarom
ons algoritme dynamisch gemaakt, zodat deze bij een afwijkend gedeeltelijk bewijs
van een student toch een vervolgstap kan vinden.

Het laatste deelgebied gaat over inductie. Het idee achter inductieve bewijzen is
uit te leggen aan de hand van het volgende voorbeeld. Hoe bewijs je dat alle hazen
lange oren hebben? Het bewijs begint met één of meer basisgevallen, in dit geval
het bewijs dat de Adam- en Eva-haas lange oren hadden. Vervolgens laat je zien
dat het hebben van lange oren erfelijk is. Daarvoor neem je een willekeurig paar
ouder-hazen, waarvan je aanneemt dat ze lange oren hebben, en tenslotte toon je
aan dat uit deze aanname, de zogenaamde inductiehypothese, volgt dat de kinderen
de eigenschap ook hebben. Een eerste stap bij het geven van dit soort bewijzen
bestaat uit een analyse van wat er precies te bewijzen is in de basisgevallen en in
de inductieve gevallen (waarin je bewijst dat kinderen de eigenschap erven). Om
studenten hiermee op weg te helpen zijn we begonnen met een begeleide versie van
ons systeem LogInd waarin we studenten eerst vragen wat ze in elk van de gevallen
moeten bewijzen, of wat de inductiehypothese in dit specifieke geval is. Pas als het
deelbewijs op deze manier correct is opgezet, vraagt het systeem de student om het
deelbewijs te voltooien. Studenten die wat verder zijn kunnen oefenen in een versie
zonder begeleiding, waarin ze vrijer zijn in de volgorde van het opzetten van het
bewijs.

In de eerste twee deelgebieden gebruiken we ‘buggy’ regels, om veel gemaakte
fouten te kunnen herkennen, en te voorzien van feedback. Om dit te illustreren
geven we eerst een voorbeeld van een correcte herschrijving en laten dan zien wat
studenten hierin vaak fout doen. De uitspraak “het is niet zo dat ik soep en pudding
eet” is te herschrijven in de equivalente uitspraak “ik eet geen soep of ik eet geen
pudding”. Een veel gemaakte fout is de herschrijving naar “ik eet geen soep en ik
eet geen pudding”. Hier is de student vergeten om het voegwoord ‘en’ uit de eerste
uitspraak te vervangen door het voegwoord ‘of’. De buggy regel herkent deze fout

125

Samenvatting

en genereert een boodschap om de student hier op te wijzen.
Bij een inductief bewijs kunnen er fouten op veel verschillende niveaus optreden:

een student kan op regelniveau een fout maken, maar ook op het niveau van de
verschillende deelbewijzen. Mogelijk ontbreekt een deelbewijs, of wordt er juist op
basisniveau te veel bewezen. Om dergelijke fouten te herkennen maken we gebruik
van constraints, voorwaarden waar het bewijs aan moet voldoen, die een boodschap
opleveren zodra een student een constraint overtreedt.

In dit proefschrift hebben we laten zien dat het zeer goed mogelijk is om in
complexe domeinen zoals het leveren van axiomatische of inductieve bewijzen au-
tomatisch aanwijzingen en feedback te genereren. De gegenereerde aanwijzingen en
feedback helpen studenten bij het construeren van oplossingen op een manier zoals
experts ze ook construeren, en lijken in kleinschalige experimenten studenten goed
te helpen.

126

Dankwoord

Ooit, in een ver verleden ben ik begonnen aan een proefschrift dat ik, om redenen
die er nu niet toe doen, nooit heb voltooid. Dat er nu, tegen het einde van mijn
wetenschappelijke carrière toch een proefschrift ligt, is mede te danken aan velerlei
bijdragen.

Om te beginnen bedank ik mijn promotoren, die mij door commentaar en discus-
sies hielpen bij opzet, uitvoering en verwerking van het onderzoek. Bastiaan, jij ook
vooral bedankt voor het wegwijs maken in Haskell, voor de vele uren die we samen
achter de computer doorbrachten waarin we via pair programming aan de tutoren
werkten, en voor alle hulp bij LaTeX problemen. Johan, hartelijk dank voor je
kritische bijdragen aan onze artikelen, en je onverminderde aandacht voor struc-
tuur en zorgvuldig formuleren. Zonder Harrie Passier’s enthousiaste uitnodiging
om mee te denken over een logicatutor was ik nooit aan dit onderzoek begonnen.
Eerst vanuit Utrecht, later op afstand, was Alex Gerdes altijd bereid om te helpen
met computerproblemen.

Ook studenten waren onmisbaar voor de totstandkoming van dit proefschrift.
Dank voor jullie bijdrage in verschillende fasen van je studie: deelnemend of on-
dersteunend aan het onderzoek (de persoonlijke bedankjes hiervoor staan bij de
desbetreffende artikelen), als ‘proefpersoon’ in een van de experimenten of door het
beschikbaar stellen van uitwerkingen van huiswerk voor onderzoek. Op deze plaats
ook mijn dank aan Hieke Keuning die het mogelijk maakte om een tutorsysteem
uit te proberen met de studenten van haar hogeschool.

Inspiratie voor dit onderzoek ontleende ik aan de conferenties gewijd aan Tools
for Teaching Logic. Deze boden me een podium voor mijn werk en de gelegenheid
om collega-onderzoekers te ontmoeten.

Dank ook aan mijn leidinggevenden bij de Open Universiteit Nederland, die me de
gelegenheid gaven om dit proefschrift af te ronden in een tempo dat rekening hield
met een parttime aanstelling waarbinnen beperkt tijd was voor het promotietraject.

Tenslotte, dank aan familie en vrienden. Omdat ik dit traject gestart ben met
open verwachtingen over het hoe en wanneer van een eindresultaat, heb ik er alleen
in kleine kring over verteld. Toch wil ik jullie allen bedanken voor het ‘er zijn’.
Jammer genoeg maakt mijn vader de promotie niet meer mee, hij was trots op de
(bijna) afronding en had zich verheugd op het bijwonen van de promotieplechtig-
heid.

127

Curriculum vitae

Josje Lodder
10 september 1956 geboren in Den Haag

1968 – 1974 Gymnasium β, Rijksscholengemeenschap Erasmus, Almelo

1974 – 1978 Doctoraal wiskunde, Rijksuniversiteit Utrecht

1978 – 1981 Wetenschappelijk medewerker, Rijksuniversiteit Utrecht

1981 – 1987 Diverse aanstellingen als docent wiskunde middelbare school
en lerarenopleiding

1983 – 1987 Conservatorium piano, DM, Conservatorium Maastricht

1988 – 1991 Conservatorium piano, UM, Conservatorium Maastricht

1987 – heden Docent bij de vakgroep Informatica aan de Open Universiteit

129

Bibliography

Abel, A., Chang, B.-Y. E., and Pfenning, F. (2001). Human-readable machine-
verifiable proofs for teaching constructive logic. In Egly, U., Fiedler, A., Horack,
H., and Schmitt, S., editors, Proceedings of the Workshop on Proof Transforma-
tions, Proof Presentations, and Complexity of Proofs, Siena 2001, pages 37–50.

Aguilera, G., de Guzmán, I. P., Ojeda, M., and Valverde, A. (2000). Master theses
for providing feedback to the logic classroom. In Manzano, M., editor, Proceedings
of the First International Congress on Tools for Teaching Logic, pages 169–173.

Ahmed, U., Gulwani, S., and Karkare, A. (2013). Automatically generating prob-
lems and solutions for natural deduction. IJCAI International Joint Conference
on Artificial Intelligence, pages 1968–1975.

Aleven, V., McLaren, B., Roll, I., and Koedinger, K. (2004). Toward tutoring help
seeking. In Lester, J. C., Vicari, R. M., and Paraguaçu, F., editors, Intelligent
Tutoring Systems, pages 227–239, Berlin, Heidelberg. Springer Berlin Heidelberg.

Aleven, V., Mclaren, B. M., Sewall, J., and Koedinger, K. R. (2009). A new
paradigm for intelligent tutoring systems: Example-tracing tutors. International
Journal on Artificial Intelligence in Education, 19(2):105–154.

Alvin, C., Gulwani, S., Majumdar, R., and Mukhopadhyay, S. (2014). Synthesis of
geometry proof problems. In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, pages 245–252. Association for the Advancement of
Artificial Intelligence (AAAI).

Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995). Cogni-
tive tutors: lessons learned. The Journal of the Learning Sciences, 4(2):167–207.

Arun-Kumar (2002). Introduction to logic for computer science. Retrieved from
http://www.cse.iitd.ernet.in/~sak/courses/ilcs/logic.pdf.

Association for Computing Machinery (ACM) and IEEE Computer Society Joint
Task Force on Computing Curricula (2013). Computer science curricula 2013:
Curriculum guidelines for undergraduate degree programs in computer science.
Retrieved from http://www.acm.org/education/CS2013-final-report.pdf.

Aubin, R. (1979). Mechanizing structural induction part i: Formal system. Theo-
retical Computer Science, 9(3):329 – 345.

131

http://www.cse.iitd.ernet.in/~sak/courses/ilcs/logic.pdf
http://www.acm.org/education/CS2013-final-report.pdf

Bibliography

Avital, S. and Libeskind, S. (1978). Mathematical induction in the classroom:
Didactical and mathematical issues. Educational Studies in Mathematics, pages
429–438.

Barnes, T. and Stamper, J. (2008). Toward automatic hint generation for logic proof
tutoring using historical student data. In Woolf, B. P., Aı̈meur, E., Nkambou,
R., and Lajoie, S., editors, Intelligent Tutoring Systems, pages 373–382, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Bartsch, R. A., Bittner, W. M. E., and Jr., J. E. M. (2008). A design to im-
prove internal validity of assessments of teaching demonstrations. Teaching of
Psychology, 35(4):357–359.

Beeson, M. J. (1998). Design principles of MathPert: Software to support education
in algebra and calculus. In Kajler, N., editor, Computer-Human Interaction in
Symbolic Computation, pages 89–115. Springer-Verlag.

Ben-Ari, M. (2012). Mathematical Logic for Computer Science, 3rd edition.
Springer.

Benthem, J. v., Ditmarsch, H. v., Ketting, J., Lodder, J., and Meyer-Viol, W.
(2003). Logica voor informatica, derde editie. Pearson Education.

Billingsley, W. and Robinson, P. (2007). Student proof exercises using math-
stiles and isabelle/hol in an intelligent book. Journal of Automated Reasoning,
39(2):181–218.

Black, P. and Wiliam, D. (1998). Assessment and classroom learning. Assessment
in Education: Principles, Policy & Practice, 5(1):7–74.

Bolotov, A., Bocharov, A., Gorchakov, A., and Shangin, V. (2005). Automated first
order natural deduction. In Proceedings IICAI’05: the 2nd Indian International
Conference on Artificial Intelligence, pages 1292–1311.

Bornat, R. (2017). Jape. Retrieved from https://www.cs.ox.ac.uk/people/

bernard.sufrin/personal/jape.org/MANUALS/natural_deduction_manual.

pdf.

Boud, D. and Molloy, E. (2013). Feedback in higher and professional education:
Understanding it and doing it well. Routledge, United Kingdom.

Boyer, R. and Moore, J. (1998). A Computational Logic Handbook. Academic Press
International series in Formal Methods. Academic Press.

Broda, K., Ma, J., Sinnadurai, G., and Summers, A. (2006). Friendly e-tutor for
natural deduction. In Proceedings TFM’06: the Conference on Teaching Formal
Methods: Practice and Experience.

132

https://www.cs.ox.ac.uk/people/bernard.sufrin/personal/jape.org/MANUALS/natural_deduction_manual.pdf
https://www.cs.ox.ac.uk/people/bernard.sufrin/personal/jape.org/MANUALS/natural_deduction_manual.pdf
https://www.cs.ox.ac.uk/people/bernard.sufrin/personal/jape.org/MANUALS/natural_deduction_manual.pdf

Bibliography

Brown, J. S. and VanLehn, K. (1980). Repair theory: A generative theory of bugs
in procedural skills. Cognitive Science, 4(4):379–426.

Bundy, A. (2001). The automation of proof by mathematical induction. In Hand-
book of Automated Reasoning (in 2 volumes), pages 845–911.

Bundy, A. (2005). Rippling: Meta-Level Guidance for Mathematical Reasoning.
Cambridge Tracts in Theoretica. Cambridge University Press.

Burris, S. (1998). Logic for mathematics and computer science. Prentice Hall.

Castro, L. and Toro, M. A. (2004). The evolution of culture: from primate social
learning to human culture. In Proceedings of the National Academy of Sciences
of the United States of America, volume 101(27), page 10235–10240.

Chi, M. (2009). Active-constructive-interactive: A conceptual framework for dif-
ferentiating learning activities. Topics in Cognitive Science, 1(1):73–105.

Cody, C., Mostafavi, B., and Barnes, T. (2018). Investigation of the influence of hint
type on problem solving behavior in a logic proof tutor. In Artificial Intelligence
in Education 19th International Conference, AIED 2018, pages 58–62. Springer.

Corbett, A. T., Koedinger, K. R., and Anderson, J. R. (1997). Intelligent tutoring
systems. In Helander, M., Landauer, T. K., and Prahu, P., editors, Handbook of
Human-Computer Interaction, Second Edition, pages 849–874. Elsevier Science.

Crooks, T. J. (1988). The impact of classroom evaluation practices on students.
Review of Educational Research, 58(4):438–481.

Dalen, D. (2004). Logic and Structure. Universitext (1979). Springer.

Dostálová, L. and Lang, J. (2007). Organon — the web tutor for basic logic courses.
Logic Journal of IGPL.

Dostálová, L. and Lang, J. (2011). Organon: Learning management system for
basic logic courses. In Blackburn, P., Ditmarsch, H., Manzano, M., and Soler-
Toscano, F., editors, Tools for Teaching Logic, volume 6680 of Lecture Notes in
Computer Science, pages 46–53. Springer Berlin Heidelberg.

Dubinsky, E. (1986). Teaching mathematical induction 1. The journal of mathe-
matical behavior, pages 305–317.

Eagle, M., Johnson, M. W., and Barnes, T. (2012). Interaction networks: Gener-
ating high level hints based on network community clusterings. In EDM, pages
164–167.

Enderton, H. (2001). A Mathematical Introduction to Logic. Elsevier Science.

133

Bibliography

Ensley, D. E. and Winston Crawley, J. (2006). Discrete Mathematics with Student
Solutions Manual Set. Wiley.

Ernest, P. (1984). Mathematical induction: A pedagogical discussion. Educational
Studies in Mathematics, 15(2):173–189.

Evans, C. (2013). Making sense of assessment feedback in higher education. Review
of Educational Research, 83(1):70–120.

Galafassi, F. F. P. (2012). Agente pedagógico para mediação do processo de ensino-
aprendizagem da dedução natural na lógica;. PhD thesis, Universidade do Vale
do Rio dos Sinos.

Galafassi, F. F. P., Santos, A. V., Peres, R. K., Vicari, R. M., and Gluz, J. C. (2015).
Multi-plataform interface to an its of proposicional logic teaching. In Bajo, J.,
Hallenborg, K., Pawlewski, P., Botti, V., Sánchez-Pi, N., Duque Méndez, D. N.,
Lopes, F., and Julian, V., editors, Highlights of Practical Applications of Agents,
Multi-Agent Systems, and Sustainability - The PAAMS Collection: International
Workshops of PAAMS 2015, Salamanca, Spain, June 3-4, 2015. Proceedings,
pages 309–319. Springer International Publishing.

Goguadze, G. (2010). ActiveMath - generation and reuse of interactive exercises
using domain reasoners and automated tutorial strategies. PhD thesis.

Goguadze, G. (May 2011). ActiveMath - Generation and Reuse of Interactive Ex-
ercises using Domain Reasoners and Automated Tutorial Strategies. PhD thesis,
Universität des Saarlandes, Germany.

Goldin, I. and Carlson, R. (2013). Learner differences and hint content. In Lane,
H. C., Yacef, K., Mostow, J., and Pavlik, P., editors, Artificial Intelligence in
Education, volume 7926, pages 522–531. Springer Berlin Heidelberg.

Goldin, I., Koedinger, K., and Aleven, V. (2012). Learner differences in hint pro-
cessing. In Proceedings of the 5th International Conference on Educational Data
Mining.

Goldrei, D. (2005). Propositional and Predicate Calculus, A Model of Argument.
Springer.

Goldson, D., Reeves, S., and Bornat, R. (1993). A Review of Several Programs for
the Teaching of Logic. The Computer Journal, 36:373–386.

Gottschall, C. (2012). The gateway to logic. Retrieved from https://logik.phl.

univie.ac.at/~chris/gateway/formular-uk.html.

Grivokostopoulou, F., Perikos, I., and Hatzilygeroudis, I. (2013). An intelligent
tutoring system for teaching fol equivalence. In AIED Workshops.

134

https://logik.phl.univie.ac.at/~chris/gateway/formular-uk.html
https://logik.phl.univie.ac.at/~chris/gateway/formular-uk.html

Bibliography

Gruttmann, S., Böhm, D., and Kuchen, H. (2008). E-assessment of mathemat-
ical proofs — chances and challenges for students and tutors. In Proceedings
of the 2008 International Conference on Information Technology in Education,
Wuhan,China.

Hake, R. (1998). Interactive-engagement versus traditional methods: A six-
thousand-student survey of mechanics test data for introductory physics courses.
Am. J. Phys., 66(1):64–74.

Harel, G. (2001). The development of mathematical induction as a proof scheme:
A model for dnr-based instruction. In S. Campbell, R. Z., editor, Learning and
teaching number theory, pages 185–212. Kluwer Academic.

Harrison, J. (2009). Handbook of Practical Logic and Automated Reasoning. Cam-
bridge University Press, New York, NY, USA, 1st edition.

Hattie, J. (2012). Visible Learning for Teachers: Maximizing Impact on Learning.
Education (Routledge). Routledge.

Hattie, J. and Timperley, H. (2007). The power of feedback. Review of Educational
Research, 77(1):81–112.

Hayes, W. L. (1988). Statistics, 4th edition. Holt, Rinehart and Winston, Inc.

Heeren, B. and Jeuring, J. (2014). Feedback services for stepwise exercises. Science
of Computer Programming, Special Issue on Software Development Concerns in
the e-Learning Domain, 88:110–129.

Heeren, B. and Jeuring, J. (2020). Automated feedback for mathematical learning
environments. In ICTMT, pages 17–25.

Heeren, B., Jeuring, J., and Gerdes, A. (2010). Specifying rewrite strategies for
interactive exercises. Mathematics in Computer Science, 3(3):349–370.

Herding, D. (2013). The tutor-in-the-loop model for formative assessment. PhD
thesis, RWTH Aachen University.

Herding, D., Zimmermann, M., Bescherer, C., Schroeder, U., and Ludwigsburg,
P. (2010). Entwicklung eines frameworks für semi-automatisches feedback zur
unterstützung bei lernprozessen. In DeLFI, pages 145–156.

Hirst, H. P. and Hirst, J. L. (2015). A Primer for Logic and Proof (2015 edition).
Retrieved from http://www.appstate.edu/~hirstjl/primer/hirst.pdf.

Huertas, A. (2011). Ten years of computer-based tutors for teaching logic 2000-2010:
Lessons learned. In Proceedings of the Third International Congress Conference
on Tools for Teaching Logic, TICTTL’11, pages 131–140, Berlin, Heidelberg.
Springer-Verlag.

135

http://www.appstate.edu/~hirstjl/primer/hirst.pdf

Bibliography

Hurley, P. (2008). A Concise Introduction to Logic. Cengage Learning.

Huth, M. and Ryan, M. (2004). Logic in Computer Science: Modelling and Rea-
soning about Systems. Cambridge University Press.

Jaehnig, W. and Miller, M. (2007). Feedback types in programmed instruction: A
systematic review. The Psychological Record, 57.

Jaques, P., Seffrin, H., Rubi, G., de Morais, F., Ghilardi, C., Bittencourt, I., and
Isotani, S. (2013). Rule-based expert systems to support step-by-step guidance
in algebraic problem solving: The case of the tutor pat2math. Expert Systems
with Applications, 40:5456–5465.

Kalmár, L. (1935). Über die axiomatisierbarkeit des aussagenkalküls. Acta scien-
tiarum mathematicarum, 7:222–243.

Kelly, J. (1997). The essence of logic. The essence of computing series. Prentice
Hall.

Kim, R., Weitz, R., Heffernan, N., Krach, N., and Edu, N. (2009). Tutored problem
solving vs.“pure” worked examples. In Proceedings of the 31st Annual Conference
of the Cognitive Science Society, pages 3121–3126.

Kodaganallur, V., Weitz, R. R., and Rosenthal, D. (2005). A comparison of model-
tracing and constraint-based intelligent tutoring paradigms. Int. J. Artif. Intell.
Ed., 15(2):117–144.

Koedinger, K. R. and Aleven, V. (2007). Exploring the assistance dilemma in
experiments with cognitive tutors. Educational Psychology Rev., 19(3):239–264.

Kreisel, G. (1965). Mathematical logic. In Saaty, T., editor, Lectures on mod-
ern mathematics, volume 3, pages 95–195. John Wiley & Sons, Inc., New York,
London, and Sydney.

Leary, C. and Kristiansen, L. (2015). A Friendly Introduction to Mathematical
Logic. SUNY Geneseo.

Liu, Z., Mostafavi, B., and Barnes, T. (2016). Combining worked examples and
problem solving in a data-driven logic tutor. In Proceedings of the 13th Inter-
national Conference on Intelligent Tutoring Systems - Volume 9684, ITS 2016,
pages 347–353, New York, NY, USA. Springer-Verlag New York, Inc.

Lodder, J. and Heeren, B. (2011). A teaching tool for proving equivalences between
logical formulae. In Blackburn, P., Ditmarsch, H., Manzano, M., and Soler-
Toscano, F., editors, Tools for Teaching Logic, volume 6680 of Lecture Notes in
Computer Science, pages 154–161. Springer-Verlag.

136

Bibliography

Lodder, J., Heeren, B., and Jeuring, J. (2015a). A domain reasoner for proposi-
tional logic. Technical Report UU-CS-2015-021, Department of Information and
Computing Sciences, Utrecht University.

Lodder, J., Heeren, B., and Jeuring, J. (2015b). A pilot study of the use of logex,
lessons learned. CoRR, abs/1507.03671. Proceedings of the Fourth International
Conference on Tools for Teaching Logic (TTL2015).

Lodder, J., Heeren, B., and Jeuring, J. (2016). A domain reasoner for propositional
logic. Journal of Universal Computer Science, 22(8):1097–1122.

Lodder, J., Heeren, B., and Jeuring, J. (2017). Generating Hints and Feedback for
Hilbert-style Axiomatic Proofs. In Caspersen, M. E., Edwards, S. H., Barnes,
T., and Garcia, D. D., editors, Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, Seattle, WA, USA, March 8-11,
2017, pages 387–392. ACM.

Lodder, J., Heeren, B., and Jeuring, J. (2019). A comparison of elaborated and re-
stricted feedback in LogEx, a tool for teaching rewriting logical formulae. Journal
of Computer Assisted Learning, 35(5):620–632.

Lodder, J., Heeren, B., and Jeuring, J. (2020). Providing Hints, Next Steps and
Feedback in a Tutoring System for Structural Induction. Electronic Proceedings
in Theoretical Computer Science, 313:17–34.

Lodder, J., Jeuring, J., and Passier, H. (2006). An interactive tool for manipulat-
ing logical formulae. In Manzano, M., Pérez Lancho, B., and Gil, A., editors,
Proceedings of the Second International Congress on Tools for Teaching Logic.

Lodder, J., Passier, H., and Stuurman, S. (2008). Using ideas in teaching logic,
lessons learned. Computer Science and Software Engineering, International Con-
ference on, 5:553–556.

Lodder et al., J. (2018). Logica en informatica; Lecture notes (in Dutch). Open
Universiteit Nederland.

Lukins, S., Levicki, A., and Burg, J. (2002). A tutorial program for propositional
logic with human/computer interactive learning. In SIGCSE 2002, pages 381–
385.

Martelli, A. and Montanari, U. (1982). An efficient unification algorithm. ACM
Trans. Program. Lang. Syst., 4(2):258–282.

Mathan, S. A. and Koedinger, K. R. (2005). Fostering the intelligent novice: Learn-
ing from errors with metacognitive tutoring. Educational Psychologist, 40(4):257–
265.

137

Bibliography

Matsuda, N. and VanLehn, K. (2005). Advanced geometry tutor: An intelligent
tutor that teaches proof-writing with construction. In Proceedings of the 2005
Conference on Artificial Intelligence in Education: Supporting Learning Through
Intelligent and Socially Informed Technology, pages 443–450, Amsterdam, The
Netherlands, The Netherlands. IOS Press.

McKendree, J. (1990). Effective feedback content for tutoring complex skills.
Human-computer Interaction, 5:381–413.

Megill, N. D. (2007). Metamath: A Computer Language for Pure Mathematics.
Lulu Press, Morrisville, North Carolina.

Mendelson, E. (2015). Introduction to Mathematical Logic. Discrete Mathematics
and Its Applications. CRC Press, sixth edition.

Merrill, D. C., Reiser, B. J., Ranney, M., and Trafton, J. G. (1992). Effective tutor-
ing techniques: A comparison of human tutors and intelligent tutoring systems.
Journal of the Learning Sciences, 2(3):277–305.

Minica, S. (2015). RAESON: A tool for reasoning tasks driven by interactive
visualization of logical structure. CoRR, abs/1507.03677.

Mitrovic, A. (2012). Fifteen years of constraint-based tutors: what we have achieved
and where we are going. User Modeling and User-Adapted Interaction, 22(1):39–
72.

Mitrovic, A., Martin, B., and Suraweera, P. (2007). Intelligent tutors for all: The
constraint-based approach. Intelligent Systems, IEEE, 22:38–45.

Miwa, K., Terai, H., Kanzaki, N., and Nakaike, R. (2014). An intelligent tutoring
system with variable levels of instructional support for instructing natural deduc-
tion. Transactions of the Japanese Society for Artificial Intelligence, 29(1):148–
156.

Morgan, T., Uomini, N., and Rendell, L. e. a. (2015). Experimental evidence for
the co-evolution of hominin tool-making teaching and language. Nature Commu-
nications, 6.

Morrison, D. M. and Miller, K. B. (2017). Teaching and learning in the pleis-
tocene: A biocultural account of human pedagogy and its implications for aied.
International Journal of Artificial Intelligence in Education, 28:439–469.

Mostafavi, B. and Barnes, T. (2016). Evolution of an intelligent deductive logic
tutor using data-driven elements. International Journal of Artificial Intelligence
in Education, pages 1–32.

138

Bibliography

Mostafavi, B. and Barnes, T. (2017). Evolution of an intelligent deductive logic
tutor using data-driven elements. International Journal of Artificial Intelligence
in Education, 27(1):5–36.

Müller, W. and Hiob-Viertler, M. (2010). Intelligent assessment in math edu-
cation for complete induction problems. In Zhang, X., Zhong, S., Pan, Z.,
Wong, K., and Yun, R., editors, Entertainment for Education. Digital Tech-
niques and Systems: 5th International Conference on E-learning and Games,
Edutainment 2010, Changchun, China, August 16-18, 2010. Proceedings, pages
317–325, Berlin, Heidelberg. Springer Berlin Heidelberg.

Nachar, N. (2008). The Mann-Whitney U: A Test for Assessing Whether Two In-
dependent Samples Come from the Same Distribution. Tutorials in Quantitative
Methods for Psychology, 4:13–20.

Nakevska, M., van der Sanden, A., Funk, M., Hu, J., and Rauterberg, M. (2014).
Interactive Storytelling in a Mixed Reality Environment: The Effects of Interac-
tivity on User Experiences, pages 52–59.

Narciss, S. (2008). Feedback strategies for interactive learning tasks. In Spector, J.,
Merrill, M., van Merriënboer, J., and Driscoll, M., editors, Handbook of Research
on Educational Communications and Technology. Mahaw, NJ: Lawrence Erlbaum
Associates.

Narciss, S. (2013). Designing and evaluating tutoring feedback strategies for digital
learning environments on the basis of the interactive tutoring feedback model.
Digital Education Review, 23:7–26.

Narciss, S., Sosnovsky, S. A., Schnaubert, L., Andres, E., Eichelmann, A.,
Goguadze, G., and Melis, E. (2014). Exploring feedback and student charac-
teristics relevant for personalizing feedback strategies. Computers & Education,
71:56–76.

Natriello, G. (1987). Evaluation processes in schools and classrooms. Technical
Report 12, Johns Hopkins Univ., Baltimore, MD. Center for Social Organization
of Schools.

Nievergelt, Y. (2002). Foundations of Logic and Mathematics: Applications to
Computer Science and Cryptography. Birkhäuser Boston.

Nwana, H. S. (1990). Intelligent tutoring systems: an overview. Artificial Intelli-
gence Review, 4(4):251–277.

Ohlsson, S. (1994). Constraint-based student modeling. In Greer, J. E. and Mc-
Calla, G. I., editors, Student Modelling: The Key to Individualized Knowledge-
Based Instruction, pages 167–189, Berlin, Heidelberg. Springer Berlin Heidelberg.

139

Bibliography

Øhrstrøm, P., Sandborg-Petersen, U., Thorvaldsen, S., and Ploug, T. (2013). Clas-
sical syllogisms in logic teaching. In Lecture Notes in Computer Science, volume
7735, pages 31–43.

O’Rourke, E., Butler, E., Tolentino, A. D., and Popović, Z. (2019). Automatic
generation of problems and explanations for an intelligent algebra tutor. In
AIED.

Osera, P.-M. and Zdancewic, S. (2013). Teaching induction with functional pro-
gramming and a proof assistant. In SPLASH Educators Symposium (SPLASH-
E), 2013.

Palla, M., Potari, D., and Spyrou, P. (2012). Secondary school students’ under-
standing of mathematical induction: structural characteristics and the process of
proof construction. International Journal of Science and Mathematics Education,
10(5):1023–1045.

Pavlekovic̀, M. (1998). An approach to mathematical induction - starting from
the early stages of teaching mathematics. Mathematical communcations, pages
135–142.

Perkins, D. (2007). Strategic proof tutoring in logic. Master’s thesis, Carnegie
Mellon. Retrieved from http://archive.org/details/thesis_201502.

Perrenet, J. and Groen, W. (1993). A hint is not always a help. Educational Studies
in Mathematics, 25(4):307–329.

Polycarpou, I. (2008). An Innovative Approach to Teaching Structural Induction
for Computer Science. PhD thesis, Florida International University.

Prank, R. (2014). A tool for evaluating solution economy of algebraic transforma-
tions. Journal of Symbolic Computation, 61:100–115.

R. Anderson, J., T. Corbett, A., Koedinger, K., and Pelletier, R. (1995). Cognitive
tutors: Lessons learned. Journal of the Learning Sciences, 4:167–207.

Race, P. (2005). Making learning happen – A guide for post-compulsory education.
Sage.

Razzaq, L. and Heffernan, N. (2009). To tutor or not to tutor: That is the question.
In Proceedings of the 14th International Conference on Artificial Intelligence in
Education, AIED 2009, pages 457 – 464.

Razzaq, L., Heffernan, N. T., and Lindeman, R. W. (2007). What level of tutor
interaction is best? In Proceedings of the 2007 Conference on Artificial Intel-
ligence in Education: Building Technology Rich Learning Contexts That Work,
pages 222–229, Amsterdam, The Netherlands, The Netherlands. IOS Press.

140

http://archive.org/details/thesis_201502

Bibliography

Rebholz, S. and Zimmermann, M. (2013). Applying computer-aided intelligent as-
sessment in the context of mathematical induction. In Pan, Z., Cheok, A. D.,
Müller, W., Iurgel, I., Petta, P., and Urban, B., editors, Transactions on Edu-
tainment X, volume 7775 of Lecture Notes in Computer Science, pages 191–201.
Springer Berlin Heidelberg.

Robson, D., Abell, W., and Boustead, T. (2012). Encouraging students to think
strategically when learning to solve linear equations. International Journal for
Mathematics Teaching and Learning. Retrieved from http://www.cimt.org.

uk/journal/robson.pdf.

Rodŕıguez-Gómez, G. and Ibarra-Sáiz, M. (2015). Assessment as Learning and
Empowerment: Towards Sustainable Learning in Higher Education, pages 1–20.

Sadigh, D., Seshia, S. A., and Gupta, M. (2012). Automating exercise generation: A
step towards meeting the MOOC challenge for embedded systems. In Proceedings
of the Workshop on Embedded and Cyber-Physical Systems Education, WESE ’12,
New York, NY, USA. Association for Computing Machinery.

Salden, R. J., Koedinger, K., Renkl, A., Aleven, V., and McLaren, B. (2010).
Accounting for beneficial effects of worked examples in tutored problem solving.
Educational Psychology Review, 22(4):379–392.

Schoenfeld, A. (1987). Cognitive science and mathematics education: An overview.
In Schoenfeld, A., editor, Cognitive Science and Mathematics Education, chap-
ter 1, pages 1–32. Lawrence Erlbaum Associates.

Shrestha, P., Maharjan, A., Wei, X., Razzaq, L., Heffernan, N. T., and Heffernan,
C. (2009). Are worked examples an effective feedback mechanism during problem
solving? In Proceedings of the Annual Meeting of the Cognitive Science Society,
pages 1876–1881.

Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research,
78(1):153–189.

Shute, V. J. and Regian, J. W. (1993). Principles for evaluating intelligent tutoring
systems. Journal of Artificial Intelligence in Education, 4(2-3):245–271.

Sieg, W. (2007). The AProS project: Strategic thinking & computational logic.
Logic Journal of the IGPL, 15(4):359–368.

Stamper, J. C., Barnes, T., and Croy, M. (2011a). Enhancing the automatic gen-
eration of hints with expert seeding. Int. J. Artif. Intell. Ed., 21(1-2):153–167.

Stamper, J. C., Eagle, M., Barnes, T., and Croy, M. (2011b). Experimental eval-
uation of automatic hint generation for a logic tutor. In Proceedings of the 15th
International Conference on Artificial Intelligence in Education, AIED’11, pages
345–352, Berlin, Heidelberg. Springer-Verlag.

141

http://www.cimt.org.uk/journal/robson.pdf
http://www.cimt.org.uk/journal/robson.pdf

Bibliography

Suppes, P. (1971). Computer-assisted instruction at Stanford. Technical Report
174, Stanford, institute for mathematical studies in the sociai sciences.

Sweller, J., Ayres, P., and Kalyuga, S. (2011). The Worked Example and Problem
Completion Effects, pages 99–109. Springer New York, New York, NY.

Sweller, J. and Cooper, G. (1985). The use of worked examples as a substitute for
problem solving in learning algebra. Cognition and Instruction, 2:59–89.

Van Ditmarsch, H. (1998). User interfaces in natural deduction programs. In
Informal proceedings of the Workshop on User Interfaces for Theorem Provers
Eindhoven University of Technology, pages 87–95.

van Gog, T., Kester, L., and Paas, F. (2011). Effects of worked examples, example-
problem, and problem-example pairs on novices’ learning. Contemporary Educa-
tional Psychology, 36(3):212 – 218.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of
Artificial Intelligence in Education, 16(3):227–265.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tu-
toring systems, and other tutoring systems. Educational Psychologist, 46(4):197–
221.

Varga, K. P. and Várterész, M. (2006). Computer science, logic, informatics edu-
cation. Journal of Universal Computer Science, 12(9):1405–1410.

Vrie, E. M. v. d. and Lodder et al., J. S. (2009). Discrete wiskunde A, Lecture notes
(in Dutch). Open Universiteit Nederland.

Wasilewska, A. (2018). Logics for computer science. Springer.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and
Cognitive Approaches to the Communication of Knowledge. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Yacef, K. (2005). The logic-ita in the classroom: A medium scale experiment. Int.
J. Artif. Intell. Ed., 15(1):41–62.

Zimmermann, M. and Herding, D. (2010). Entwicklung einer computergestützten
lernumgebung für bidirektionale umformungen in der mengenalgebra. Beiträge
zum Mathematikunterricht 2010.

142

	Promotiecover Josje Lodder DIGITAAL 1
	thesis
	Introduction
	Logic Tutoring
	Feedback and feed forward
	Research questions
	Content of this thesis

	A Domain Reasoner for Propositional Logic
	Introduction
	Example interactions in an LE for propositional logic
	Characteristics of tutoring systems
	Tasks
	Interactions in the inner loop
	Feedback
	Feed forward
	Solutions
	Adaptability

	A comparison of tools for teaching logic
	Rewriting a formula in normal form
	Proving equivalences
	A comparison

	Feedback services
	Services for the outer loop
	Services for the inner loop
	Alternative approaches
	The use of services in the LogEx learning environment
	Rules
	A strategy language

	Strategies for propositional logic exercises
	A strategy for rewriting a formula to DNF
	Adapting a strategy
	A rewriting strategy for proving two formulae equivalent

	Experimental results
	Conclusions

	A comparison of elaborated and restricted feedback in LogEx, a tool for teaching rewriting logical formulae
	Introduction
	Evaluation results from other LEs
	LogEx
	Pilot studies

	Method
	Pilot
	Experiment

	Results and discussion
	Results of pre test and post test
	Exam results
	Results of the loggings

	Conclusion and future work
	Appendix

	Generation and Use of Hints and Feedback in a Hilbert-style Axiomatic Proof Tutor
	Introduction
	Teaching Hilbert-style axiomatic proofs
	An e-learning tool for Hilbert-style axiomatic proofs
	An algorithm for generating proof graphs
	Distilling proofs for students
	Lemmas
	Hints and feedback
	Hints
	Feedback

	Evaluation of the generated proofs
	Comparison of the generated proofs with expert proofs
	Recognition of student solutions

	Small-scale experiments with students
	Evaluation of hints and feedback
	Use of LogAx
	Evaluation of learning effects

	Related work
	Conclusion and future work
	Appendices
	Exercise 11.1.5
	Metamath theorems compared with LogAx with lemmas
	Exercises used in the experiment and the posttest

	Providing Hints, Next Steps and Feedback in a Tutoring System for Structural Induction
	Introduction
	Terminology
	Related work
	Students' problems with structural induction
	LogInd, a tool for teaching structural induction
	Generation of solutions, hints and next steps
	Constraints and feedback
	Evaluation
	Conclusion and future work
	Appendices
	Sketch of a completeness proof for the strategy used by LogInd

	Epilogue
	Conclusion
	Future work

	Samenvatting
	Dankwoord
	Curriculum vitae
	Bibliography

	Promotiecover Josje Lodder DIGITAAL 2
	Lege pagina
	Lege pagina

