Testing without Scripts:
An Approach to Smart GUI Exploration

Olivia Rodriguez Valdés

INSTIT,,
,
-

-
Ay
(—

4

m

>

W

s

Open Universiteit 8

The work in this thesis has been carried out at the Open Universiteit, under
the auspices of the research school IPA (Institute for Programming research
and Algorithmics). Parts of the research were conducted within the European
research project IVVES (Industrial-grade Verification and Validation of Evolving
Systems, project number 18022).

s
2
S

ISBN: 978-94-6522-322-3

Typeset using IKTEX
Printing: Ridderprint | www.ridderprint.nl

Copyright © O. Rodriguez Valdés 2025

Testing without Scripts:
An Approach to Smart GUI
Exploration

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Open Universiteit
op gezag van de rector magnificus
prof. dr. Th.J. Bastiaens
ten overstaan van een door het
College voor promoties ingestelde commissie
in het openbaar te verdedigen

op donderdag 19 juni 2025 te Heerlen
om 16.00 uur precies

door
Olivia Rodriguez Valdés
geboren op 12 november 1994 te Havana, Cuba

Promotores:
Prof. dr. T.E.J. Vos
Dr. B. Marin

Leden beoordelingscommissie:

Prof. dr. M.F. Genero
Prof. dr. O. Pastor
Prof. dr. N. Alechina
Prof. dr. S. Bromuri

Open Universiteit
Technical University of Valencia

Universidad de Castilla-La Mancha
Universitat Politéecnica de Valéncia
Open Universiteit
Open Universiteit

Abstract

Software testing through graphical user interfaces (GUIs) remains a critical chal-
lenge in quality assurance, particularly as software systems grow in complexity
and evolve rapidly. Traditional script-based testing approaches, which rely on
predefined test cases, are widely used in industry but often struggle with high
maintenance costs, limited adaptability to GUI changes, and restricted coverage
of unforeseen user behaviours.

Scriptless GUI testing has emerged as a powerful alternative, dynamically
exploring applications without the need for predefined test scripts. This ap-
proach introduces randomness, allowing the execution of unexpected sequences
of actions and the discovery of faults that scripted tests often miss. This thesis
investigates the effectiveness of scriptless testing, examining how its exploratory
nature complements existing testing practices and reduces manual efforts.

To establish a strong foundation, this research first analyses thirty years
of GUI testing literature, tracing the evolution of the field. The findings reveal a
growing transition from manual and script-based testing to scriptless approaches.
With this motivation, this thesis investigates the effectiveness of scriptless GUI
testing through the lens of TESTAR, an open-source tool that serves as this study's

primary research vehicle. A generalisation study of the tool allowed the intro-

i

duction of an architectural analogy for scriptless testing deployment, built upon
the existing industrial case studies with TESTAR.

This thesis examines the role of state models in guiding scriptless testing by
evaluating how different levels of state abstraction can influence model inference
and test coverage. The results provide guidelines for balancing model complexity
with exploration effectiveness. Additionally, this thesis explores the impact of
reinforcement learning-driven reward mechanisms in balancing pure randomness
with targeted exploration to enhance test effectiveness.

The thesis further evaluates the industrial applicability of scriptless testing
through empirical studies in collaboration with companies participating in the
European IVVES project (Industrial-grade Verification and Validation of Evolving
Systems). The research aims to bridge the gap between traditional testing ade-
quacy criteria and quality-oriented metrics by investigating whether code smell
could serve as a complementary adequacy criterion when evaluating scriptless
testing effectiveness. Findings reveal that while increasing traditional code cov-
erage leads to broader exploration, it does not necessarily translate into covering
code with deeper structural or maintainability issues.

This research extends TESTAR's scriptless testing into the mobile domain, adapt-
ing it for mobile platforms and introducing MINTestar, a specialised Android test-
ing tool. Developed as part of the industry collaboration within the IVVES project,
these efforts explore the feasibility of scriptless testing in real-world mobile envi-
ronments, and the integration of mobile-specific oracles and probabilistic explo-
ration strategies. The results highlight the adaptability of scriptless approaches
across platforms and their potential for adoption in industrial mobile testing work-
flows.

This thesis integrates insights from literature reviews, empirical evaluations,
and industrial case studies to provide both theoretical and practical contribu-
tions to the field of scriptless GUI testing. By improving state models, leveraging
reward-based exploration, refining test adequacy metrics, and extending automa-
tion to mobile platforms, this thesis lays the foundation for future advancements

in smart testing, domain-specific oracles, and distributed testing architectures.

Abstract in het Nederlands

Software testen via grafische gebruikersinterfaces (GUIs) blijft een kritische uitdag-
ing in kwaliteitshorging, vooral omdat softwaresystemen steeds complexer wor-
den en zich snel ontwikkelen. Traditionele scriptgebaseerde testmethode, die
afhankelijk zijn van vooraf gedefinieerde testgevallen, worden veel gebruikt in
de industrie, maar hebben vaak te maken met hoge onderhoudskosten, beperkte
aanpasbaarheid aan GUI-wijzigingen en beperkte dekking van onvoorziene ge-
bruikersgedragingen.

Scriptloos GUI-testen is een krachtig alternatief, waarbij applicaties dynamisch
worden verkend zonder vooraf gedefinieerde testscripts. Deze aanpak intro-
duceert willekeur, waardoor onverwachte sequenties van acties kunnen worden
uitgevoerd en fouten kunnen worden ontdekt die gescripte tests vaak missen.
Deze thesis onderzoekt de effectiviteit van scriptloos testen en bestudeert hoe de
verkennende aard ervan bestaande testmethoden aanvult en handmatige inspan-
ningen vermindert.

Om een stevige basis te leggen, analyseert dit onderzoek eerst dertig jaar aan
literatuur over GUI-testen en volgt de evolutie van het vakgebied. De bevindin-
gen tonen een groeiende verschuiving van handmatig en scriptgebaseerd testen

naar scriptloze benaderingen. Met deze motivatie onderzoekt deze thesis de ef-

it

v

fectiviteit van scriptloos GUI-testen door middel van TESTAR, een open-source tool
die als een primair onderzoeksinstrument in deze studie dient. Een generalisati-
estudie van de tool heeft geleid tot de introductie van een architecturale analogie
voor de implementatie van scriptloos testen, gebaseerd op bestaande industriéle

casestudies met TESTAR.

Deze thesis onderzoekt de rol van toestandsmodellen bij het sturen van script-
loos testen door te evalueren hoe verschillende niveaus van toestandsabstractie
de modelinferentie en testdekking kunnen beinvloeden. De resultaten bieden
richtlijnen voor het balanceren van modelcomplexiteit met de effectiviteit van ex-
ploratie. Daarnaast verkent deze thesis de invloed van beloningsmechanismen op
basis van reinforcement learning om pure willekeur te balanceren met gerichte
exploratie, met als doel de testeffectiviteit te verbeteren.

Verder beoordeelt deze thesis de industriéle toepasbaarheid van scriptloos
testen via empirische studies in samenwerking met bedrijven binnen het Europese
IVWES-project (Industrial-grade Verification and Validation of Evolving Systems).
Het onderzoek richt zich op het overbruggen van de kloof tussen traditionele
testadequaatheidscriteria en kwaliteitsgerichte metrieken, door te onderzoeken
of code smells als een aanvullende adequaatheidsmaatstaf kunnen dienen bij de
evaluatie van scriptloos testen. De bevindingen tonen aan dat een hogere tradi-
tionele code coverage weliswaar leidt tot een bredere exploratie, maar niet per
se resulteert in het dekken van code met diepere structurele of onderhoudsprob-

lemen.

Dit onderzoek breidt het scriptloze testen met TESTAR uit naar het mobiele
domein, door de tool aan te passen voor mobiele platforms en MINTestar te in-
troduceren, een gespecialiseerde Android-testtool. Ontwikkeld als onderdeel van
de industriéle samenwerking binnen het IVVES-project, verkennen deze inspan-
ningen de haalbaarheid van scriptloos testen in realistische mobiele omgevingen,
evenals de integratie van mobiele-specifieke orakels en probabilistische explo-
ratiestrategieén. De resultaten benadrukken de aanpasbhaarheid van scriptloze
benaderingen over verschillende platformen en hun potentieel voor adoptie in

industriéle mobiele testworkflows.

Deze thesis combineert inzichten uit literatuurstudies, empirische evaluaties

en industriéle casestudies om zowel theoretische als praktische bijdragen te lev-
eren aan het vakgebied van scriptloos GUI-testen. Door verbeteringen aan toe-
standsmodellen, het benutten van beloningsgestuurde exploratie, het verfijnen
van testadequaatheidscriteria en het uitbreiden van automatisering naar mobiele
platforms, legt deze thesis de basis voor toekomstige ontwikkelingen op het ge-
bied van slim testen, domeinspecifieke orakels en gedistribueerde testarchitec-

turen.

vi

Acknowledgments

This thesis was developed at the Open Universiteit of the Netherlands and funded
by the European research project ITEA3 Industrial-grade Verification and Valida-
tion of Evolving Systems (IVVES 18022). This thesis has also been supported by
research carried out within the European research projects TESTOMAT (16032),
H2020 Intelligent Verification/Validation for Extended Reality Based Systems
(IVAXR 856716), and the NWO OTP project Automated Unobtrusive Techniques
for LINKing requirements and testing in agile software development (AUTOLINK
19521).

I would like to express my gratitude to my supervisors, prof. dr. Tanja Vos
and prof. dr. Beatriz Marin, for their patience and support throughout this long
journey. Tanja, thank you for changing my life. Bea, thank you for your warmth,
even when | least deserved it. | would also like to thank Dr. Pekka Aho for his
guidance in the early stages of this work. My gratitude also goes to the TESTAR
team for their support and dedication at every stage of this research. In particular,
| want to thank Ramon de Vries, who has been a support since literally day one
after | moved to the Netherlands; Fernando Pastor Ricos and Lianne Hufkens,

who are also my paranymphs; and Niels Doorn, for his kindness and support.

vil

viil

My sincere thanks go to the co-authors of my publications for their invaluable
help and contributions, and those who actively participated in the research behind
these publications, even if their names are not listed in the authorship. | would
also like to thank the master’'s and bachelor’s students whose work contributed
directly to this thesis.

| am also grateful to my former professors and mentors, Fernando Rodriguez
Flores and Oscar Luis Vera Pérez, from the University of Havana, for laying the
first stone on this long path.

I would like to thank my parents, family and friends. To my mother, who has
been a steady light at the harbour while | sail through this journey. To my cousin
Ivonne, who has supported me in every stage of my life. To Mick, who has been
by my side every day, sharing every challenge. | also extend my sincere thanks
to the Verhagen-Geelen family for welcoming me so warmly. To the friends who
have walked this road by my side in the Netherlands, making the process lighter
with their presence, and to my old Cuban friends, now scattered around the world
but as close as ever.

A special thanks to the Open Universiteit for giving me a home as a researcher,

and for the patience and continuous support, which made this journey possible.

Contents

Abstract t
Abstract in het Nederlands iii
Acknowledgments vil
1 Introduction 1
1.1 Motivation and problem statement 3

12 GUIl Testing: State of the Art 5
121 Script-based GUI Testing 5

122 Model-based GUI Testing 7

123 Scriptless GUl Testing 8

1.3 Context and goal of the thesis: the IVVES project 10
1371 Marvig ... 11

132 ING ..o 12

133 TESTAR . . . 13

14 The research methodology and questions 14

15 Publications 19

[

3

1.6 Supervision, academic service, and professional engagement
17 Thesis Structure

Thirthy years of automated GUI testing

21 Scope: automated GUl testing

22 Methodology
2271 Dataretrieval.
222 Pre-processing
223 Analysis and Visualization L

23 Results
231 Size of the area and growth
232 Types of publications and their ranking.
233 Citations and Reference Publication Year Spectroscopy . . .
234 Most influential authorso
235 Productivity and funding
236 Collaboration
237 Trendsin keywords
238 Discussion.

24 Threats to Validity
2471 Internal Validity
242 External Validity
243 Construct Validity o
244 Conclusion Validity

25 Conclusions

TESTAR

31 Obtaining the GUI State.
32 Derivingasetofactions. oL
3.3 Select and execute one of these actions
34 Representation of States and Actions
35 Evaluate the new states to find failures (oracles)

3.6 Runtime execution and modes
37 Test Results

21
24

25
27
28
28
30
31
32
32
34

4
42
43
44
50
50
50
51
51
52
52

3.8 Advanced Derive Actlions

3.9

Filter Actions
391 Comparison of Scriptless GUI Testing Tools

310 Industrial case studies involving TESTAR

311 Conclusions

Inferring state models with TESTAR

41
4.2
43

4.4

45

4.6

Related work on Model-based GUI testing
State model inference for TESTAR
Experimental Design
431 Subject SUTs
432 Independent and Dependent Variables
4321 ROQTStudy
4322 RO2Study
Results
441 RQ1: Impact of abstraction on GUI exploration
442 RQ2: Defining a suitable level of abstraction
4421 Single Attribute Analysis
4422 Multi-Attribute Analysis
4423 Including the predecessor state.
Discussion
451 State abstraction
452 Applying the inferred models in testing.

Conclusions

Adding intelligence

5.1
52
53

5.4

Q-Learning
Related Work
Smart Scriptless Testing. L
531 Rewarding test behaviours oL
532 RLFramework
Experiment Design
541 Objects: Selection of SUTs

Xt

71
72
74
76
88

89
91
92
97
97
98
98
100
101
101
103
104
104
108
109
110
112
113

Xit

542 Independent and Dependent Variables 128
543 Experimental Process 130
55 Results 132
551 RQ1: Exploration Effectiveness 132
552 RQ2: JBS Problem 137
56 Discussion 140
57 Threats to Validity 141
571 Internal Validity 41
572 External Validity 41
573 Construct Validity 142
574 Conclusion Validity 142
58 Conclusions 143
Applying it at a company: Marviq 145
6.1 Related Work 147
011 Random Scriptless GUl testing 148
6.1.2 Test adequacy metrics 148
013 Code Smells 150
6.2 Industrial case 151
6.3 Experiment Design 155
0.3.1 Independent and Dependent Variables 156
032 Experimental Setting oL 157
6.33 Experimental Procedure 159
6.4 Results 162
041 RQ71: Number and length of test sequences 162
6.42 RQ2: Relationship between code coverage metrics 166
043 RQ3: Comparison of random with manual testing 167
6.5 Discussion 170
6.6 Threats to Validity 171
061 Internal Validity oo 171
0.6.2 External Validity 172

6.6.3 Construct Validity 172

6.6.4 Conclusion Validity 172
6.7 Conclusions 173
Going mobile: the Android plugin 175
71 Scriptless Android GUl testing L. 176
7.2 Extending TESTAR to support mobile testing 178
7.3 MINTestar: scriptless and seamless. 181
731 Core Architecture 182
732 TestEngine 183
733 Customizable Rules 185
734 State Collector 190
735 Composable oracles 191
736 Interaction Engine o 193
737 Reporting theresults 194
738 Seamless integration L 195
74 Preliminary evaluation Lo 197
741 Independent and Dependent Variables 197
742 Results. 198
743 Discussion. 200
75 Conclusions 201
Conclusions and future work 203
8.1 Answers to the Research Questions 203
8.1.1 Evolution of Automated GUI Testing 204
8.1.2 Industrial Insights on Using TESTAR for GUI Testing 205
813 Impact of State Abstraction on State Model Inference 206

8.1.4 Reward Mechanisms for Exploratory Testing with Rein-
forcement Learning 208
815 Scriptless GUI Testing and Code Smell Coverage 210
8.1.6 Adapting Scriptless GUI Testing for Mobile Applications . . 211
8.2 Future Research Directions 213

XLV

List of Figures

1.1 The 'Happy Path’ vs. the ‘Unexpected Path". 2
12 Overview of scriptless GUl testing 9
13 IVVES: 26 partners from 5 countries 10
1.4 Simplified architectural analogy 15
15 Reinforcement learning, a natural fit for scriptless testing 17
21 Boolean search query for systematic review 29
2.2 Evolution of the number of publications 33
23 Types of publications 35
24 Leimkhuler models. 37
25 Reference Publication Year Spectroscopy 40
2.6 Most contributing countries 43
2.7 Collaboration network of authors 43
2.8 Authorship evolution 44
29 Cumulative frequency of keywords 48
210 Keywords trends 49

XV

XVi

31
32
33
34
35
36
3.7
3.8
39
310
3.1

41
4.2
43
44
45
4.6
47
438
49
410

5.1
5.2
53
54
55

0.1
6.2
6.3
6.4

LIST OF FIGURES

TESTAR testing cycle 54
TESTAR modular architecture 55
The state of a GUl as a widget tree., 56
Taggable classes 58
Deriving actions from actionable widgets. 61
Layers of the different TESTAR protocols 68
Extending TESTAR with different ASMs. 69
Output Structure for Test Results 70
Architectural Analogy 83
Generic Process for setting up TESTAR 85
lterative use of TESTAR in an industrial testing workflow. 86
TESTAR testing cycle including model inference 93
Layered design of the state model 94
Visualization of an example model inferred by TESTAR 95
Extending TESTAR with ASM_statemodel 96
Experimental design for Chapter 4 97
Code coverage per abstraction level 102
State Model coverage per abstraction level 102
Experiment setup for RQ2's attribute-combination 104
Notepad examples of non-determinism 107
Abstract State explosion L 110
RL Framework 125
Exploration performance of Shopizer 134
Exploration performance of Craigslist. 135
Exploration performance of Bol.com 136
JBS distribution 138
Excerpt of Yoho SUT. 152
Experimental design for Chapter 6 161
Distribution of coverage metrics. L 163

Distribution of code smell coverage 163

LIST OF FIGURES Xvit

6.5
0.6
6.7

71
7.2
7.3
7.4
75
7.6

8.1
8.2
8.3
8.4
85

Distribution of code smells occurrences. 164
Distribution of code smell coverage 168
Coverage of Code Smell types, 170
TESTAR testing cycle with mobile capabilities. 179
Layers of the different TESTAR protocols 180
MINTestar Architecture Overview 183
MINTestar Testing Process 184
Excerpt of a MINTestar report 195
Sample of accessibility issues detected by MINTestar 199
Evolution of GUI Testing Techniques 204
Simplified architectural analogy 206
Effect of state abstraction in TESTAR. 207
Spearman’s Correlation for Code Smell Coverage 211

Future Research Directions in Scriptless GUI Testing. 214

xvitt LIST OF FIGURES

2.1
2.2
2.3
2.4
25
2.6
2.7
2.8
29
210

31
3.2
33
34

41
4.2

List of Tables

Family of words for the search string.
Publications by Yearo
Top 11 contributing Journals
Bradford's Law zones for journal articles.
Bradford's Law zones for conference publications
Top 10 of most influential Conferences
Top 10 papers with most cites in Scopus
Ranking of authors by number of publications
Distributions of number of authors per number of publications . . .

Grouping the keywords L

Examples of widgets of which a GUI can be composed..
TESTAR comparison with other tools
Metrics used in the TESTAR studies
TESTAR Case Studies

Overview of Rachota

Java Access Bridge properties and their impact

XX

XX

43
4.4

5.1
5.2
53
54
55
5.6

6.1
6.2
6.3
6.4
6.5
6.6

71
7.2
7.3
7.4
75

8.1
8.2

LIST OF TABLES

Number of generated test steps for non-determinism 105
Selection of attributes for state abstraction 106
Related work with state-based rewards 121
DBSCAN parameters configuration for each SUT. 131
Average values of dependent variables for every SUT 132
Statistical results for exploration effectiveness 133
State exploration after 10000 actions 136
Statistical results for JBS problem 139
Overview of the size of Yoho 153
Code Smell Classification and Severity 159
Test Process Configurations 160
Statistical Analysis of Code Coverage Metrics 165
Correlation between code smell coverage and traditional metrics . 166
Manual Testing Coverage Results 109
Summary of scriptless Android GUI testing tools. 177
Generic rules provided by MINTestar. 187
Specific rules provided by MINTestar 188
Implemented Oracles Provided by MINT 192
Comparison of Testing Tools on Various APKs 199
Comparison of Reward Mechanisms 209

Comparison of TESTAR (with Appium) and MINTestar for Mobile
Testing 212

Introduction

‘Still round the corner there may wait,

A new road or a secret gate”

J.RR. Tolkien, The Road Goes Ever On

In The Lord of the Rings [1], by J.RR. Tolkien, the land of Mordor is guarded by
the formidable Black Gate, a symbol of impenetrable defence. Tall walls, count-
less sentinels, and Sauron's ever-watchful eye ensured that no army could pass
undetected. The Dark Lord’s resources were concentrated there, confident that
no intruder would attempt to cross this main entry point. Yet, in an unexpected
twist, two humble hobbits, Frodo and Sam, completely bypassed this seemingly
insuperable barrier.

Instead, they ventured through Cirith Ungol, a risky and neglected mountain
pass. This unexpected path, both unlikely and poorly defended, became the route
through which the One Ring was destroyed, leading to Sauron’s downfall. Despite
his exhaustive preparations, Sauron’s obsession with securing the most obvious
threat led him to ignore the unconventional approach that ultimately caused his
defeat.

2 CHAPTER 1. INTRODUCTION

-‘J‘@
l ¥
I&

Figure 1.1: The 'Happy Path" vs. the "Unexpected Path’

This story illustrates a timeless lesson beyond fantasy: even the most robust

preparations can crumble when the unexpected is overlooked.

Beyond the Happy Path: Lessons for Software Testing

Much like Sauron's focus on the Black Gate (as illustrated in Figure 1.1),
software testing often prioritises the main flows: the "happy paths’ that users
are expected to follow. These flows (e.g, logging in, adding products to a cart,
or completing a purchase) receive detailed attention during testing. Test scripts
are developed to ensure these paths are error-free, with significant resources
dedicated to validating their functionality.

However, just like the overlooked mountain pass that led to the collapse of
Mordor's defences, neglecting less-travelled paths in software testing can leave
critical flaws undiscovered and exposed. For Frodo and Sam, the unexpected
route led to a happy ending; for software, it could uncover catastrophic failures.
Uncommon user interactions, unexpected sequences, or rare edge cases can reveal
flaws that traditional approaches fail to detect.

This thesis's work on scriptless testing draws inspiration from these ne-

1.1. MOTIVATION AND PROBLEM STATEMENT 3

glected routes, advocating for broader exploration through graphical user inter-
faces (GUIs) beyond the expected.

1.1 Motivation and problem statement

Software systems have seamlessly become integral to our daily lives, supporting
activities across personal, professional, and industrial domains. From the apps on
our smartphones to the enterprise systems running businesses, their reliability
and quality directly impact productivity, safety, and user satisfaction across all
sectors of society. However, as these systems grow in complexity and scale,
ensuring their reliability and functionality becomes more critical than ever.

Significant real-world incidents illustrate the consequences of insufficient or
ineffective testing. In 2018, a flawed interface at the Hawaii Emergency Man-
agement Agency allowed an employee to send a false ballistic missile alert [2],
causing widespread public panic and disruptions across the state. Investigations
revealed that the drop-down menu for sending a real alert was nearly indistin-
guishable from the rehearsal option, and no secondary confirmation step existed.
This same year, a disastrous core banking system migration resulted in the loss of
internet and mobile banking services for TSB Bank customers for at least a week.
Thousands of customers found themselves locked out, seeing incorrect balances
or detailed account information of other customers [3] The fiasco reportedly cost
millions of pounds in remediation expenses, fines, and compensations, and the
brand suffered a significant blow in customer confidence. In 2022, Southwest
Airlines cancelled thousands of flights over the holiday season, attributing much
of the disruption to outdated mobile scheduling software [4] Southwest received
the largest fine in history for consumer protection violations, reporting losses of
over $1 billion as a result of the events.

More recently, in 2024, a flawed content update in CrowdStrike's Falcon threat
detection software caused catastrophic disruptions, leading to system crashes
and blue screens of death on millions of devices worldwide. The root cause was
traced back to a bug that the company’s testing process failed to identify. The

resulting outage impacted critical infrastructure, including airlines and emergency

4 CHAPTER 1. INTRODUCTION

operators, with estimated damages exceeding $5 billion. Experts highlighted the
industry-wide underappreciation of the importance of testing [5]. That same year,
a customer of ING Bank unexpectedly gained access to a stranger's account after
logging into the mobile app via facial recognition, raising serious concerns about

the robustness of the bank's system safeguards [6].

These examples demonstrate that testing inadequacies, whether due to over-
looked edge cases, outdated processes, or insufficient validation, can have dev-
astating consequences. They underscore the need for robust, holistic testing
approaches that address the growing complexities of modern systems to avoid

similar failures in the future.

Yet, software testing remains one of the most demanding and resource-intensive
aspects. Designing and executing comprehensive test suites requires significant
expertise, creativity, and effort, often with time constraints and limited resources.
Testers must balance the trade-off between coverage, efficiency, and cost. The
challenge is compounded by rapid development cycles, diverse user behaviours,
and the need to test across multiple platforms and configurations. For end-users,
effective testing is the invisible assurance that software will meet their expecta-

tions and avoid disruptive faults.

The advent of Graphical User Interfaces (GUIs) in the early 1970s revolu-
tionised software interaction, replacing complex command-line interfaces with
intuitive visual elements. GUIs allowed users to interact with systems through
buttons, menus, and icons, significantly enhancing accessibility and usability.
However, this evolution introduced new challenges in software testing as GUIs
frequently change throughout a system’s lifecycle. The repetitive task of manually

executing tests necessitates automation to ensure efficiency and reliability.

This thesis explores the challenges of automating test execution at the GUI
level of software systems, commonly referred to as GUI testing. To set the stage,
the following section first provides an overview of this field's current state of the

art.

1.2, GUI TESTING: STATE OF THE ART 5

1.2 GUI Testing: State of the Art

Since the introduction of GUIs, testing at the interface level has become a cru-
cial aspect of software quality assurance. As desktop applications transitioned
to web and mobile platforms, testing faced a continuously evolving landscape of
distributed systems, smaller screens, and increasingly complex interactions. Au-
tomating the execution of GUI tests, with the earliest papers dating back to the
late 1980s [7], helps manage these challenges by improving efficiency and re-
peatability. However, frequent GUI modifications and intricate user interactions
continue to pose significant hurdles, as automated tests often require maintenance
and may struggle to replicate actual user behaviour fully.

Furthermore, regression testing, which involves re-executing existing test cases
to ensure that recent changes or updates have not introduced new defects, plays a
vital role in software maintenance. Because GUIs are frequently modified, regres-
sion testing must be performed repeatedly, making manual execution impractical.
Automation is essential to efficiently conduct regression tests, ensuring software
stability, reliability, and consistency across different versions and platforms.

GUI testing has been classified in various ways. In [8] a classification is
defined based on how the test automation tool interacts with the System Under
Test (SUT). This results in a classification of three generations: the first is based
on the mouse coordinates, the second is based on technical APls, and the third
is based on image recognition.

A subsequent classification was described on [9] that extends these three
generations with another axis addressing the level of automation. This section
will follow the classification from [9] because it was also used in one of the key

papers [10] on scriptless testing.

1.2.1 Script-based GUI Testing

Within automated approaches, traditional scripted methods coexist with emerging
scriptless techniques, each addressing unique aspects of software assurance.
Traditional scripted testing relies on manually crafted test cases following

predefined application paths. Once written, these scripts can be executed re-

6 CHAPTER 1. INTRODUCTION

peatedly to confirm whether the application continues to respond correctly to
the same set of inputs across different builds or releases. Over time, multiple
sub-approaches to script-based GUI testing have emerged, each offering distinct
levels of flexibility, maintainability, and reliance on tooling or coding expertise.

One of the earliest and most common methods is capture-and-replay (C&R).
The testing tool records’ interactions as the tester manually navigates through
the GUI. The tool then generates scripts that can be ‘replayed” automatically to
repeat the exact steps. Memon et al. [11] described this technique as a straightfor-
ward entry point for test automation due to its easy initial setup, minimal coding
required, and fast test creation. However, C&R suffers high sensitivity to minor
GUI changes, often breaking recorded scripts and limiting the adaptability when
the GUI evolves.

An alternative to C&R is scripting through frameworks like Selenium' or Cy-
press’, where testers manually code interactions. However, programming skills
are required, and maintainability remains an issue.

While each approach differs in how scripts are created and managed, all share
certain challenges. Frequent GUI changes can break test sequences, leading to
high maintenance costs [12]. Research has long noted that script maintenance
can overshadow original creation effort [13] Complicated workflows may require
detailed scripting to cover different branches or states. Tests can also easily break
if they depend on precise timing or exact element positioning. Furthermore, both
approaches typically focus on “happy paths” at the expense of unconventional
or edge-case scenarios. Consequently, significant risks remain when unexpected
user behaviour triggers untested application states.

Several academic approaches are proposed to mitigate the high maintenance
overhead. One technique consists of heuristic locator strategies [14] by generat-
ing more stable element locators in web applications. Another approach is auto-
mated script repair mechanisms that adapt test scripts when interface elements
change [15-18]. Yet, despite promising results in controlled studies, full adoption

remains challenging due to tool integration complexities, variability of real-world

1SeleniumHQ Browser Automation, https://www.selenium.dev/
2Cypress.io: JavaScript End to End Testing Framework, https://www.cypress.io/

https://www.selenium.dev/
https://www.cypress.io/

1.2, GUI TESTING: STATE OF THE ART 7

GUls, and the need for ongoing maintenance of the repair heuristics. Another
research direction [19-21] has explored Visual GUI Testing (VGT) techniques with
image recognition to automate user interactions with the GUI, providing a robust
alternative to traditional locator-based approaches. These tools mitigate main-
tenance challenges by focusing on the GUI's appearance rather than its internal
structure, although they remain sensitive to visual inconsistencies and changes.

Ultimately, script-based methods remain a foundational element of many QA
strategies, particularly where critical user paths are well-defined and must be re-
peatedly validated. However, these methods can become less effective in environ-
ments with rapidly changing interfaces or unpredictable user behaviour, leading
to interest in more flexible testing methods, such as scriptless and model-based
approaches.

1.2.2 Model-based GUI Testing

Model-based GUI testing (MBGT) addresses some limitations of script-based ap-
proaches by representing the application’s states and transitions as a model, often
a state machine or a graph [22-26]. Systematically, test sequences are generated
based on these models. In MBGT, testers specify or infer the application’s possi-
ble states and transitions. Automated tools then produce test cases that explore
these states, aiming for more systematic coverage. This structured approach can
reduce duplicated effort, ensure broad exploration, and provide better traceability.

Several approaches to MBGT exist, each with distinct advantages and chal-
lenges. Static Analysis techniques [27,28] infer GUI models by analysing source
code but often overlook runtime behaviour. On the other hand, Dynamic Analy-
sis approaches [29-32] observe the GUI while the SUT is running, enabling the
capture of runtime interactions. Hybrid approaches [33-35] combine static and
dynamic methods, striving to balance the strength of both.

However, the effectiveness of MBGT is highly dependent on the quality and
completeness of its underlying model. Constructing and maintaining an accurate
model requires formal expertise and can be labour-intensive. Any divergence
from the actual GUI may lead to undetected defects or irrelevant test cases [36].

Automated model inference methods, including GUI ripping [37] and reverse engi-

8 CHAPTER 1. INTRODUCTION

neering [38], offer automation of the modelling process. However, these methods
face challenges, such as selecting an appropriate level of abstraction to ensure
model usefulness [31,34].

Furthermore, frequent GUI updates can quickly render existing models obso-
lete, mirroring the maintenance challenges seen in script-based testing methods.
Despite these difficulties, model-based approaches remain an important stepping

stone toward more adaptive and intelligent testing strategies.

1.2.3 Scriptless GUI Testing

Scriptless GUI testing aims to overcome some long-standing problems of rigid
scripts and extensive modelling by dynamically exploring the application without
a fixed pre-written set of instructions. This dynamic exploration can lead to
broader coverage, as the exploration is not strictly limited to known scenarios.
Like Frodo and Sam’s journey through their unexpected path, scriptless testing
navigates beyond the "happy paths" traditionally prioritised in software testing.
Instead of executing only predefined steps, scriptless testing tools generate test
sequences in real time, opening up the possibility of uncovering neglected and
unexpected interaction paths and increasing the likelihood of exposing critical
flaws that rigid scripts or model-based approaches might miss.

Scriptless GUI testing is based on agents implementing various action selec-
tion mechanisms and test oracles. The underlying principles are simple: generate
test sequences of (state, action)-pairs by starting up the SUT in its initial state
and continuously selecting an action to bring the SUT into another state. The
action selection characterises the fundamental challenge of intelligent systems:
what to do next. The difficult part is optimising the action selection [39] to find
faults and recognising a faulty state when it is found [40-42] Faulty states are
not restricted to errors in functionality; violations of other quality characteristics,
like accessibility or security, can also be detected by inspecting the state. This
approach shifts the paradigm of GUI testing: from developing scripts to developing
intelligent Al-enabled agents.

Figure 1.2 presents an overview of the continuous cycle of the three core
components of scriptless GUI testing:

1.2, GUI TESTING: STATE OF THE ART 9

e Interaction (Obtain the state and derive actions): The testing tool analyses
how to interact with the SUT and obtains a representation of the current
state of the GUI. This step involves gathering information about the interface,
such as available widgets and interactions, and deriving a set of possible

(inter)actions that can be done in the observed state.

e Exploration (Select and execute an action): From the derived set of actions,
the tool selects an action based on some predefined exploration strateqy

(e.g. random) and executes it on the GUI.

e Test oracles: After executing an action, the tool uses predefined test oracles
to validate the resulting application state or behaviour, revealing potential

faults.

This loop iteratively continues until some defined stopping condition is met, such

as achieving sufficient coverage or reaching a certain test length.

Interaction

(Obtain state and
actions)

Exploration

Test Oracles

(Select and
execute action)

R

Figure 1.2: Overview of scriptless GUI testing

(Validate state)

The most simple Action Selection Mechanism (ASM) for exploration consists
of randomly selecting actions and navigating the interface. This approach has
shown to be surprisingly effective [43, 44], reducing maintenance overhead, as
testers do not need to update scripts or models continually. Nonetheless, random

10 CHAPTER 1. INTRODUCTION

I+l Canada = Spain
* Centre de recherche informatique de Montréal * Keyland Sistemas de Gestion
* RHEA Technologies Lab * NETCheck

e SII Concatel

+=Finland

¢ F-Secure = Sweden

* Futurice * ABB

¢ HeadAI ¢ Addiva

e Philips * Bombardier

¢ Solita ¢ Ekkono Solutions

Techila Technologies Prover Technology (former)

University of Helsinki RISE - Research institute of Sweden

VTT Technical Research Centre of Finland

== Netherlands

- |

* ING

InnSpire

Marviq '
Open University ' '
Philips '
Praegus

Sogeti '

Figure 1.3: IVWES: 26 partners from 5 countries

testing requires a lot of execution time, and challenges arise in choosing the right
exploration strategies, ensuring comprehensive coverage, and formulating effective
oracles—mechanisms to decide whether a detected application state is correct
or erroneous.

1.3 Context and goal of the thesis: the IVVES project

This thesis is embedded in the scope of the European IVWES? project [45], funded
by the ITEA Framework (Project Number 18022), running 3 years during 2019-
2022. IVVES is a project with 26 partners from 5 countries (see Figure 1.3). Its
goal is to address the challenges of quality assurance posed by modern, complex,
and evolving systems, which are increasingly being used in Banking & Finance,

Healthcare, and Cybersecurity, among others. These systems require robust and

3Industrial-Grade Verification and Validation of Evolving Systems, https://ivves.eu/

https://ivves.eu/

1.3. CONTEXT AND GOAL OF THE THESIS: THE IVVES PROJECT 11

innovative verification and validation methodologies to ensure trustworthiness,
safety, and compliance in mission-critical applications.

One of the primary objectives of IVVES is to advance software testing au-
tomation through intelligent methods. As a project partner, the Open University
focused on researching how to achieve this using scriptless testing, giving rise
to the general research goal of this thesis: to advance the effectiveness and
efficiency of scriptless GUI testing. Additionally, industrial partners played a
key role by identifying challenges in their existing testing practices and defining
their specific needs for scriptless testing solutions.

Two IVVES partners, Marviq and ING, outlined specific requirements for inte-
grating scriptless testing into their workflows, which directly contributed to the
formulation of two of the six research questions explored in this thesis. Section 1.4
will discuss these research questions. First, however, we introduce the two com-
panies and provide an overview of the baseline scriptless testing tool TESTAR [10]
used in this study.

1.3.1 Marviq

Marviq® is a software development company specialised in Team as a Service,
Software Development as a Service, and loT development. It operates with 35
professionals managing eight concurrent agile development projects while serv-
ing 25 clients. Given the tailored nature of these projects, Marviq follows a
customised Quality Assurance (QA) process, including business alignment work-
shops, Minimum Viable Product (MVP) development, agile-based implementation
using SCRUM [406], and ongoing client support. However, as a small company,
Marviq faces several QA challenges [47,48], such as unclear requirements, proto-
type misconceptions, business process mismatches, and limited testing time.
The SUT Marviq proposes for IVVES studies is Yoho, a digital platform devel-
oped by Marviq to improve operations and communication in industrial environ-
ments. Yoho provides functionalities such as alert and notification management,

task handling, work instructions, and communication tools.

10fficial website: https://marviq.com/
°Yoho showcase: https://marviq.com/our-showcases/yoho-factory-management-platform/

https://marviq.com/
https://marviq.com/our-showcases/yoho-factory-management-platform/

12 CHAPTER 1. INTRODUCTION

Initially, Yoho started as an MVP but underwent continuous scope changes
due to shifting market demands, making it more of a prototype than a functional
product. Marviq took over development to transform it into a market-ready plat-
form, stabilising its focus as the first customers emerged. The platform features
high customizability and role-based access, meaning test execution for a specific
role or customer may result in low code coverage, as not all functionalities are
accessible to every user.

Yoho presents key testing challenges, particularly in dealing with the dynamic
nature of modern web applications, such as GUI elements with dynamic identifiers.
These characteristics make Yoho an ideal candidate for evaluating scriptless GUI

testing techniques.

1.3.2 ING

In today’s digital economy, banks are no longer just financial institutions; they are
software-driven companies that specialise in money management. As a leading
financial institution, ING® has embraced this transformation, developing cutting-
edge digital banking solutions that serve a diverse customer base, including in-
dividuals, small businesses, and large corporations. ING's mission is to empower
customers to achieve their goals, whether launching a new business, buying a
home, or managing daily transactions. However, seamless and reliable digital
services are critical to fulfilling this mission. Customers do not think about bank-
ing itself. Instead, they expect it to work effortlessly in the background.

As ING increasingly relies on mobile and online banking platforms, software
reliability has become a key differentiator. The bank is committed to deliver-
ing full-time availability, ensuring customers can access their accounts, make
payments, and manage their finances instantly, securely, and without disruption.
ING's strategy focuses on providing an easy, personal, and relevant experience at
every customer touchpoint. However, the complexity of modern financial systems
and strict regulatory requirements (e.g., the Dutch National Bank's (DNB) 99.88%

uptime mandate for payment infrastructure) sets a high bar for quality assurance

OOfficial website: www.ing.nl

www.ing.nl

1.3. CONTEXT AND GOAL OF THE THESIS: THE IVVES PROJECT 13

and software testing.

Despite best efforts, technical failures and disruptions can have severe conse-
quences, as seen in past incidents of transaction failures [49], service outages [50],
and even security vulnerabilities [51], ING recognises that every disruption is
costly, not just in financial terms but in trust and reputation. The bank con-
tinuously invests in robust software testing, automation, and exploratory testing
strategies to prevent issues before they impact customers. As part of the IVVES
project, ING is actively exploring scriptless testing approaches for mobile bank-
ing applications, aiming to improve test automation, exploration strategies, and
mobile-specific testing oracles. By strengthening its quality assurance processes,
ING is not just keeping up with the demands of modern banking: it is setting a

new standard for software-driven financial reliability.

1.3.3 TESTAR

The research described in this thesis was conducted using TesTAR’ [10] as the
primary vehicle for advancing scriptless GUI testing. TESTAR is an open-source
tool that has been co-developed by the Open Universiteit (OU) and the Tech-
nical University of Valencia (UPV) for over a decade, offering the flexibility and
extensibility necessary for this study.

While TESTAR was chosen due to its long-standing academic development and
our familiarity with the tool, it was not the only available tool. Several academic
tools exist for scriptless testing (described in detail in Chapter 3). However,
compared to these alternatives, TESTAR still emerged as the most suitable choice
for the research objectives.

One of TESTAR's key strengths is its ability to interact with a diverse range
of SUTs, including Windows, Web, and Java applications. Additionally, it seam-
lessly integrates with widely used GUI libraries such as UlAutomation [52], Web-
Driver [53] and Java Access Bridge [54], making it particularly well-suited for
testing complex systems. Furthermore, TESTAR's active development community

and its proven deployment in industrial settings reinforce its reliability and prac-

’Official website: www.testar. org

www.testar.org

14 CHAPTER 1. INTRODUCTION

tical relevance. With more than 10 peer-reviewed and published industrial case
studies [55-64], TESTAR has demonstrated its effectiveness in real-world applica-
tions. These factors further justify its selection as an optimal tool for advancing

research in GUI testing.

1.4 The research methodology and questions

This thesis was conducted in three distinct phases. Given that most IVVES project
partners were unfamiliar with scriptless testing and TESTAR, the initial phase fo-
cused on investigating the state of the art in scriptless testing while also conduct-
ing a meta-analysis of industrial case studies specifically involving TESTAR. This
dual approach ensured a broad understanding of scriptless testing methodologies
in general and a deeper insight into TESTAR's practical applications in specific.

To build a strong foundation, a systematic bibliometric study [65] was first
conducted to gain a comprehensive understanding of the research landscape in
GUI testing. A bibliometric analysis provides a macro-level quantitative view
of a research domain. Given the large volume of publications in this field, this
approach was chosen over a systematic literature review to explore the evolution
of automated GUI testing efficiently. The visualisations and quantitative insights
from bibliometric analysis serve as a foundation for identifying promising research
directions. This study addressed the first research question:

RQ1: How has automated GUI testing evolved over time regarding size,

research trends, collaboration, authors and publication patterns?

Subsequently, a generalisation study grounded in architectural analogy, as
described by Wieringa et al. [66] was conducted. This study involved a com-
prehensive analysis of all TEsTAR-related case studies performed over the years,
aiming to identify recurring components and key insights into its application in
various industrial contexts. This study directly addressed the second research

question:

14 THE RESEARCH METHODOLOGY AND QUESTIONS 15

RQ2: What general insights do industrial case studies provide about using
TESTAR for GUI testing in industry?

This initial phase resulted in a comprehensive overview of the GUI testing field
(RQ1, Chapter 2), which informed the creation of an architectural analogy [66] de-
rived from meta-analysing all the existing case studies on TESTAR (RQ2, Chapter
3). This analogy captures the core components, interactions, and dependencies
that define scriptless GUI testing with TESTAR, facilitating a more systematic un-
derstanding of its applicability and potential future research directions. Although
the analogy is described in detail in Chapter 3, a simplified version is repeated
here in Figure 1.4 to position the second phase of the research, whose goal was

to improve some of the components of TESTAR.

Clients Developers Testers
<<Person>> <<Person>> <<Person>>
Busine: akeholders, Implement and maintain |4 Manage the existing test IETEI
End Users, Customers the SUT environment

Report, Implement /
Maintain !

TESTAR

<<Software System>>

Test Environment
<<Software System>>

SUT

<<Software System>>

Bug Tracking System

<<Software System>>

Manages test executions
and test strategies

Interaction, Exploration,
and Test Oracles

System Under Test Manages bug reports

Figure 1.4: Simplified architectural analogy showing the most important components

At the core of the architecture is the SUT as it is the primary focus, represent-
ing the software being tested. Testing the SUT is influenced by multiple actors:
the work of Developers, the needs of the Clients and the Testers. The scriptless
testing tool TESTAR contains three parts (as described in Section (1.2.3)) needed

to create test sequences to test the SUT:

1. through interaction, it engages with the user interface elements, such as

16 CHAPTER 1. INTRODUCTION

buttons, menus, and dialogues, without requiring predefined scripts and
automatically exploring the SUT.

2. exploration is performed using an ASM, enabling TESTAR to navigate through

different application states and uncover unexpected behaviours.

3. The key component consists of the oracles, which validates whether the

observed software behaviour aligns with expected outcomes.

Setting up TESTAR requires an initial configuration process to ensure the tool
is correctly adapted to the Test Environment. Testing the SUT generates test
results that are evaluated using various metrics. Bugs that are found are added
and managed in the Bug Tracking System.

The architectural analogy laid the groundwork to describe the second phase of
this research, in which specific components of TESTAR were aimed to be enhanced.
Two principal research objectives were defined, both focusing on improving the
exploration part of the TEsTAR-component. The first objective focused on the abh-
straction of the states in the models that can be learned during the on-the-fly
exploration. State space explosion is still an open challenge for learning state-
based models through a GUI. Most SUTs with a GUI exhibit an enormous number
of possible states, necessitating some degree of state abstraction to ensure that
the resulting models remain tractable. The key challenge lies in determining
an appropriate level of abstraction that balances expressiveness and computa-
tional complexity. If the level of abstraction is too low, the resulting state model
may become overly detailed, leading to an impractically large number of states.
Conversely, if the level of abstraction is too high, the model may become overgen-
eralised and non-deterministic, making it unreliable. Understanding this trade-off
is essential for improving model accuracy and usability in scriptless testing, lead-

ing to the following research question:

RQ3: How does state abstraction in TESTAR influence the inference of state

models during on-the-fly exploration with scriptless testing?

14 THE RESEARCH METHODOLOGY AND QUESTIONS 17

SUT SuUT

action state action reward

Test
est...

Figure 1.5: Reinforcement learning, a natural fit for scriptless testing

The second objective of the second phase also focused on enhancing the explo-
ration component of TESTAR, specifically in relation to its action selection mecha-
nism. As previously discussed, action selection plays a crucial role in determining
how the system is explored, directly influencing the quality and effectiveness of
the generated tests. Reinforcement learning (RL) [67] aligns naturally with the
scriptless testing loop, as it follows the iterative process of retrieving the state,
selecting an action, and executing it, as illustrated in Figure 1.5. At its most
basic level, reinforcement learning requires defining a reward function for each
state-action pair, guiding the learning process toward more effective exploratory

testing. This led to the formulation of the fourth research question:

RQ4: Which reward mechanism is most effective for exploratory testing

with reinforcement learning in TESTAR?

The project’s third phase consisted of industrial collaboration with the two
identified industrial partners of IVWES: Marvig and ING. This process aligns with
the design science research methodology [68], where real-world challenges drive

the development and evaluation of practical solutions.

18 CHAPTER 1. INTRODUCTION

As part of the IVVES project, Marviq actively explored the integration of code
smell detection with SonarQube [69] to enhance the quality and effectiveness of
its software testing processes. Code smells [70] refer to structural weaknesses
in software that, while not necessarily defects, indicate potential design flaws
that can compromise maintainability and increase the risk of hidden defects if
left unaddressed. Despite their recognised importance in software engineering,
traditional test adequacy metrics such as line, branch, and complexity coverage
often fail to account for these. To bridge this gap, Marviq desired to investigate
whether code smell coverage could serve as a complementary adequacy criterion
for evaluating the scriptless testing effectiveness of their industrial web applica-
tion, Yoho. If successful, this approach could enhance the industrial applicability
of scriptless testing by incorporating maintainability-focused test evaluation cri-
teria, potentially improving defect detection and maintainability assessment. The

research question for this research reads as follows:

RQ5: To what extent can scriptless GUI testing with TESTAR provide mean-
ingful coverage of code smells, and how does this relate to traditional test

adequacy metrics?

As a financial institution, ING Bank increasingly relies on mobile applications
to provide essential services such as account management, payments, and in-
vestment tools. However, mobile application testing presents unique challenges,
including a highly diverse device ecosystem, rapid update cycles, and stringent
platform-specific guidelines. Ensuring high-quality, reliable mobile applications
requires robust testing strategies that can adapt to these dynamic conditions.
Consequently, within the IVVES project, ING proposed adopting a scriptless test-
ing approach for mobile Android platforms to explore how automated exploratory
testing can be enhanced for mobile environments. In addition to automating test
execution, ING identified several key features and improvements necessary for
effective scriptless testing in mobile applications, including: (1) @ more advanced
exploration strategies to guide the automated navigation of the SUT; (2) enhanced

mobile-specific testing oracles to improve failure detection and validation accu-

1.5. PUBLICATIONS

racy. These needs led to the formulation of the following research question:

19

oracles?

RQ6: How can scriptless GUI testing be adapted for mobile applications

by improving exploration strategies and integrating mobile-specific testing

1.5 Publications

The findings of this thesis are underpinned by a series of peer-reviewed research

papers developed through engagement in academic projects and industry col-

laborations. Each article targets one or more of the research questions defined

previously. This section details my contributions to these works and the projects

| participated in during the research period.

e Rodriguez-Valdés, O, Vos, T. E. J, Aho, P, & Marin, B. (2021). 30 years

of automated GUI testing: a bibliometric analysis. published in the pro-

ceedings of the International Conference on the Quality of Information and

Communications Technology (QUATIC). As the first author, | took primary re-

sponsibility for conducting the bibliometric study, including data collection,

analysis, and visualisation. While all authors collaborated on identifying

aspects such as keywords or other elements requiring general agreement to

minimise threats to validity, the study’s execution was my primary responsi-

bility. This article targets research question RQ1 of this thesis, presenting

a quantitative evaluation of key themes and collaborations in automated

GUI testing over three decades. The paper is contained in Chapter 2.

e \os, T. E. J, Aho, P, Pastor Ricos, F., Rodriguez-Valdes, O, & Mulders, A.
(2021). TESTAR-scriptless testing through graphical user interface. pub-

lished in Software Testing, Verification, and Reliability. This publication is

the most updated key paper of TESTAR, describing its advances from 2010

till 2021 and paving the way for an international research agenda in GUI

testing that can be built upon stable and open-source infrastructure. My

contribution to this paper is the following:

CHAPTER 1. INTRODUCTION

— conducting the comparative study of TESTAR with existing academic
scriptless tools (mentioned in Section 1.3.3)

— conducting the generalisation study grounded in architectural analogy

to target research question RQ2 of this thesis.
These contributions and a description of TESTAR are contained in Chapter 3.

o Mulders, A, Rodriguez-Valdes, O, Ricés, F. P, Aho, P, Marin, B, & Vos,
T E. J (2022). State model inference through the GUI using runtime test
generation presented at the International Conference on Research Chal-
lenges in Information Science (RCIS). My contributions to this research
were critical in empirically validating the proposed state model inference
mechanisms. | was responsible for running the experiments and analysing
the results, ensuring the findings were backed by rigorous empirical eval-
uation. The experiments systematically assessed the impact of different
abstraction techniques on the inferred state model. The results provided
insights into the trade-offs associated with different levels of abstraction,
contributing to a better understanding of how scriptless GUI testing can
effectively infer state models while maintaining scalability and practical
applicability in industrial contexts. This article targets research question

RQ3 of this thesis regarding state abstraction and is contained in Chapter
4.

e Rodriguez-Valdés, O, Vos, T. E. |, Marin, B, & Aho, P. (2023). Reinforcement
learning for scriptless testing: An empirical investigation of reward func-
tions presented at the International Conference on Research Challenges
in Information Science (RCIS). As the first author, | was responsible for the
overall coordination of the research, including designing experiments, imple-
menting reinforcement learning frameworks, conducting statistical analysis
and discussing the results. This article targets research question RQ4 of

this thesis and is contained in Chapter 5.

e Rodriguez-Valdés, O, Amalfitano, D, Sybrandi, O, Marin, B, Vos, T E. J.
(2025). The Scent of Test Effectiveness: Can Scriptless Testing Reveal Code

1.6. SUPERVISION, ACADEMIC SERVICE, AND PROFESSIONAL ENGAGEMENT21

Smells? presented at the International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE). | adapted TESTAR to the com-
pany's SUT, maintained continuous feedback with industry practitioners to
identify their needs, and discussed the benefits of using TESTAR in their
software development lifecycle. | also implemented and executed the ex-
periments and statistical analyses, and discussed the results, highlighting
the practical applicability of the proposed solutions. This article targets
the use of quality-oriented metrics as an indicator of test effectiveness, ad-
dressing question RQ5 of this thesis. The paper is contained in Chapter
0.

e Rodriguez-Valdés, O, van der Vlist K, van Dalen, R, Marin, B, & Vos, T.
E. J. (2024). Scriptless and Seamless: Leveraging Probabilistic Models for
Enhanced GUI Testing in Native Android Applications, presented at the
International Conference on Research Challenges in Information Science
(RCIS). As the first author, | led the integration of the framework developed in
collaboration with ING into TESTAR, performed a state-of-the-art review, and
conducted the experiments. This article examines the use of a probabilistic
heuristic in scriptless exploration for mobile testing, addressing question

RQ6 of this thesis. The paper is contained in Chapter 7.

1.6 Supervision, academic service, and professional

engagement

During this period, | was actively engaged in various academic conferences, sym-

posia, and workshops to disseminate my research and the TESTAR approach:

e Published the short paper Finding the shortest path to reproduce a failure
found by TESTAR [71] at the 2019 ESEC/FSE (European Software Engi-
neering Conference and Symposium on the Foundations of Software Engi-
neering). This work served as the basis for my initial learning about the

scriptless GUI testing approach.

CHAPTER 1. INTRODUCTION

Prepared and presented a poster at the 2020 SEN Symposium® (National
Symposium Software Engineering) titled ITEA3 IVVES project: Industrial-
grade verification and validation of evolving systems (In Finance).

Published the Doctoral Symposium paper Towards a testing tool that learns
to test [72] at the 2021 ICSE (International Conference on Software Engi-
neering) Companion Proceedings, and later presented this paper again at
an OUrsi (Open Universiteit Research Seminar Informatica) event for further

peer engagement and collaborative refinement.

Co-authored and disseminated a poster on the IVVES project [73] at RCIS
Workshops in 2022, bridging theoretical advances with industry needs

Delivered the tutorial Getting started with scriptless test automation through
the graphical user interface, a hands-on tutorial [74], at RCIS 2023. The tu-
torial covered key topics such as GUI testing fundamentals, the scriptless
approach, and practical exercises to analyse test results. This engage-
ment strengthened academic and industry connections by disseminating
knowledge on scriptless GUI testing and fostering potential collaborations

in research and industry.

e Organised and presented the workshop Inspiratie sessie: TESTAR at Top-
icus in Deventer, The Netherlands, to give practitioners hands-on exposure
to the scriptless GUI testing tool TESTAR. The session focused on demon-
strating how TESTAR can streamline testing processes and improve software
quality in real-world projects. By bridging academia and industry, this
session helped participants understand the immediate practical impact of
automated GUI testing while fostering a local community for collaboration

and shared learning.

e Presented Empowering Students with Modern Skills and Connections Through
Open Source GUI Testing with TESTAR, at 10th ACM Celebration of Women

in Computing: womENcourage 2023. The conference context highlighted

8National Symposium Software Engineering, https://www.sen-symposium.nl/

https://www.sen-symposium.nl/

1.6. SUPERVISION, ACADEMIC SERVICE, AND PROFESSIONAL ENGAGEMENT23

how inclusive communities and open-source collaboration can help women
in technology overcome challenges and gain international visibility. By
demonstrating effective strategies for integrating TESTAR into student projects,
the workshop also illustrated how students from diverse backgrounds can
develop essential skills, access broader professional networks, and prepare

for successful careers in computer science.

e Provided a hands-on session at the Universitat Politecnica de Valéncia
(UPV) Master Class: TESTAR — An Open Source Tool for Scriptless Testing
Through Graphical User Interface (GUI), thereby bridging research insights

with practical student engagement.

e Presented the work Reinforcement Learning for Scriptless Testing at the
2023 PROMIS-ES symposium organised by the Faculty of Science of the

Open University, where ongoing PhD research was showcased.

In parallel, | supervised and advised various Bachelor and Master theses,

including:

e Supervising the Bachelor's thesis of Mark Dourlein at the Open Universiteit:
"TESTAR and reinforcement learning” (2020).

e Advising the Master’s final project of Borja Davo Celardo at Universitat
Politecnica de Valéncia: "Improving action selection in TESTAR with artificial
intelligence techniques” (2020-2021).

e Supervising the Master's project of Sven Ordelman at the Open Universiteit:
"‘Q-learning for action selection’ (June 2022).

e Supervising the Master’s final project of Moujib Chorfi at Universitat Politeéc-
nica de Valéencia: ‘An empirical investigation comparing different GUI testing
tools for Android" (2022-2023).

Additionally, serving as Web Chair for the 2022 International Conference on
Software Testing (ICST), widely recognised as one of the most important confer-
ences in the field, enabled me to establish important connections with interna-

tional experts, helping to refine the direction of this research. Participation in

24 CHAPTER 1. INTRODUCTION

IPA events®, and TestDag'?, further expanded my professional network, provided

new practical insights, and influenced the overall scope of this work.

1.7 Thesis Structure

The thesis contains seven chapters in addition to this introduction. Chapter 2 to
Chapter 7 correspond to research questions RQ1 till RQ6 respectively. Chapter
8 concludes with the answers to the research questions and offers a synthesis of
key findings, implications for the field, and directions for future research.

9nstitute for Programming research and Algorithmics (IPA), https://ipa.win.tue.nl/
10Dutch Testing Day (Nederlandse Testdag), https://www.testdag.nl/

https://ipa.win.tue.nl/
https://www.testdag.nl/

Thirthy years of automated GUI testing

‘We can only see a short distance ahead, but we can see

plenty there that needs to be done”

Alan Turing, Computing Machinery and Intelligence

A bibliometric study is presented in this chapter to gain insight into the com-
munity, publication patterns, and trends in automated GUI testing. A bibliometric
analysis enables visualisation of the main topics in the literature, their evolu-
tion, and their interrelationships. Furthermore, this analysis helps to objectively

identify the most impactful works based on the number of citations received [75].

To provide an overview of the state of the art of GUI testing, Bao et al. [70]
conducted a mapping study spanning the years 1991 to 2011, which included
136 publications. Since then, the field of GUI testing has experienced significant

growth, with the number of papers on the topic reaching 52 in 2020 alone.

The rising interest in GUI testing has led to specialised workshops focused
on this topic. In 2009, the first edition of the International Workshop on TESTing
Techniques & Experimentation Benchmarks for Event-Driven Software (TESTBEDS)
was held, co-located with IEEE’s International Conference on Software Testing,
Verification, and Validation (ICST). This event was followed by the first edition of

25

26 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

INTUITEST (International Workshop on User Interface Test Automation) in 2015,
co-located with STV and UCAAT. In 2018, these two workshops merged to form
INTUITESTBEDS', focusing on user interface test automation and testing tech-
niques for event-based software.

To the extent of available knowledge, this is the first bibliometric analysis of
automated GUI testing over the past 30 years. The main contributions are to:

1. Provide facts about the size and growth of the field.

2. Indicate the type of publications and their rankings, including most cited

papers, prolific authors, and influential journals and conferences.

3. Show the distribution of the publications among the available sources and
over the years using the Referenced Publication Year Spectroscopy.

4. Present and discuss the productivity and the level of collaboration among
researchers in the literature.

5. Use the bibliometric laws of Bradford [77] to know the most influencing
journals, and of Lotka [78] to evaluate scientific productivity of authors.

6. Show the evolution of the major research topics in the field by analysing
the keywords used by the authors.

The chapter is structured as follows. Section 2.1 presents the scope of au-
tomated GUI testing, establishing the criteria and definitions used to select rel-
evant studies for the bibliometric analysis. Section 2.2 details the methodology
employed in this study, including data retrieval, pre-processing steps and the
techniques applied to interpret the data. Section 2.3 presents the analysis re-
sults, encompassing the growth and size of the field, influential authors, relevant
publications and keyword trends. Section 2.4 addresses potential threats to the
study’s validity. Finally, Section 2.5 concludes the chapter by summarising the
key insights derived from the bibliometric analysis.

Tnternational Workshop on User Interface Test Automation and Testing Techniques for Event Based
Software, https://www.intuitestbeds.org/

https://www.intuitestbeds.org/

21. SCOPE: AUTOMATED GUI TESTING 27

2.1 Scope: automated GUI testing

This section outlines the definition of automated GUI testing used to determine
which papers should be included in the bibliometric analysis. As explained in
Chapter 1, GUI testing involves executing sequences of events on the GUI widgets
of a System Under Test (SUT) and checking test oracles, intending to identify
failures, reduce risks, and improve the quality of the SUT.

It is possible to automate the execution of these test sequences, known as
automated GUI testing. However, other activities related to GUI testing can also
be automated. Therefore, the definition of automated GUI testing was refined to
encompass these additional activities. Thus, automated GUI testing in the context
of this study includes the automated generation of test cases, test oracles, and test
execution, as well as other related activities such as test selection, prioritisation,

and debugging.

Automating the creation of test sequences: Test sequences in GUI testing con-
sist of sequences of GUI actions/events on widgets together with input val-
ues. Test sequences are made to cover some test goal of the SUT (eg,
checking some specific functionality or finding a failure). Test sequence
defines which path through the SUT should be taken (which states should

be visited), i.e, what actions will be executed, and in which order.

Automating the definition or checking of the oracles: Oracles [40]are procedures
that distinguish between the correct and incorrect behaviour of the SUT.
Since test cases in GUI testing are sequential, oracles can be checked after
each action (test step) during execution (online oracle), just once at the end
of each sequence, or analyse the results after the execution (offline oracle).
Test oracle automation is essential for removing the current bottleneck that
inhibits greater overall test automation [40]. Without test oracle automation,

a human has to determine whether the observed behaviour is correct.

Automating the analysis of test results: This consists of analysing, for example,
the failures that were found in a specific SUT or evaluating the quality of

the test cases that were executed, using a set of defined metrics.

28 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

If any of these activities are automated, the study will consider it "automated
GUI testing” (even if the test execution is conducted manually), and the papers

related to such automation will be included in this bibliometric analysis.

2.2 Methodology

This study adopts the workflow for bibliometric analysis defined in [79], which
consists of the following steps: data retrieval, pre-processing, analysis, and visu-

alisation.

2.2.1 Data retrieval

Scopus was used for the search process as it is the largest abstract and cita-
tion database of peer-reviewed literature, providing broader coverage compared
to other scientific repositories such as WoS [80] Scopus gives a comprehensive
overview of research output across various fields, including science and technol-
ogy, and also includes valuable tools for research analysis and visualisation. To
ensure no relevant papers were missed, the initial search term "Automated GUI
testing” was expanded by generating a set of related terms for each keyword
(refer to Table 2.1).

Term Family

automated automated, automatic, automatlca[lg, automation, automating, au-
tomate, generation, generate, generating, generator

GUI GUI, Ul, “graphical user interface’
testing testing, test, tested

Table 2.1: Family of words for the search string

Figure 2.1 presents the complete search query. To ensure the relevance of
the results, the search terms had to appear in the article’s title, abstract, or
keywords, which was achieved using the Scopus operator TITLE-ABS-KEY (refer to

lines 1-3). To further refine the search results, a minimum distance between terms

22 METHODOLOGY 29

was established using the w/ operator. After several tests, the minimum distance
was set to 5. In Figure 2.1, each family of words is represented by its primary
term, and the search query was adjusted to include the entire family of words
using the OR operator, allowing for the appearance of at least one term within
each family. At this stage, the search query was designed to return all indexed
papers that contained at least one term from each family in the title, abstract,
or keywords (TITLE-ABS-KEY), with at least one pair of terms from different families
within the minimum distance.

TITLE-ABS-KEY ((Automated W/5 Testing) AND GUI)
OR TITLE-ABS-KEY((Automated W/5 GUI) AND Testing)
OR TITLE-ABS-KEY((GUI W/5 Testing) AND Automated)

AND LIMIT-TO(LANGUAGE, "English")
AND PUBYEAR>1989 AND PUBYEAR<2021

AND (LIMIT-TO(DOCTYPE, "cp") OR LIMIT-TO(DOCTYPE, "ar")
10 OR LIMIT-TO(DOCTYPE, "ch") OR LIMIT-TO(DOCTYPE, "Undefined"))

1> AND (LIMIT-TO(SUBJAREA, "COMP")
13 OR LIMIT-TO(SUBJAREA, "ENGI")
1 OR LIMIT-TO(SUBJAREA, "MATH"))

Figure 2.1: Boolean search query for systematic review

Using the Scopus facilities, papers were also excluded according to their type,

language and publication date, excluding works that:

exC1: are not written in English (on line 5, using the Scopus Document field
code: LANGUAGE and limiting it to “English’)

exC2: are published before the year 1990 and after 2020 (on line 7 using the

Scopus Publication field code: PUBYEAR)

exC3: are not conference, workshop, journal publications or book chapters (in
lines 9 and 10) using the Scopus Document field code: poctyPE and limiting
it to types Conference Paper-"cp’, Article-"ar’, Book Chapter-"ch” and "Un-

defined"). The last one was included because some documents have been

30 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

accepted for publication but have not yet been assigned to a journal or

conference, so they are temporarily indexed as “Undefined".

exC4: do not belong computer science area (in lines 12-14) using the Scopus
subject areas: COMP 2 ENGI 3 and MATH?.

The search was performed in January 2021. The total amount of papers re-
trieved was 2240.

2.2.2 Pre-processing

Pre-processing the data retrieved is necessary since references may be dupli-
cated, the authors' names may appear in different formats, and papers that contain
the terms can be unrelated to automated GUI testing, among others.

Initially, papers from unrelated fields in Scopus were manually excluded, re-
ducing the total number of papers to 1233. This step was necessary because
some papers may be classified under multiple fields, such as Computer Science
and Social Science, if they describe a social science study using a computational
system. As a result, such papers are retrieved by the search query even if they do
not belong to the Computer Science, Engineering, or Mathematics (COMP, ENG
or MATH) fields. Any papers that were unrelated to the topic of automated GUI
testing were manually excluded from the study.

In addition to the goal of conducting a bibliometric analysis on automated

GUI testing, this study aimed to establish a repository of GUI testing research.

2classifying: Computer Science(miscellaneous), Artificial Intelligence, Computational Theory and
Mathematics, Computer Graphics and Computer-Aided Design, Computer Networks and Communi-
cations, Computer Science Applications, Computer Vision and Pattern Recognition, Hardware and
Architecture, Human Computer Interaction, Information Systems, Signal Processing, Software

3classifying: Engineering(miscellaneous), Aerospace Engineering, Automotive Engineering,
Biomedical Engineering, Civil and Structural Engineering, Computational Mechanics, Control and
Systems Engineering, Electrical and Electronic Engineering, Industrial and Manufacturing Engineer-
ing, Mechanical Engineering, Mechanics of Materials, Ocean Engineering, Safety, Risk, Reliability,
and Quality, Media Technology, Building and Construction, Architecture

classifying: Mathematics (miscellaneous), Algebra and Number Theory, Analysis, Applied Math-
ematics, Computational Mathematics, Control and Optimisation, Discrete Mathematics and Combina-
torics, Geometry and Topology, Logic, Mathematical Physics, Modelling and Simulation, Numerical
Analysis, Statistics and Probability, Theoretical Computer Science

22 METHODOLOGY 31

A simple and flexible environment was sought to support the work and enable
future interactions with the extracted papers. Consequently, BUHOS [81], an
open-source, weh-based paper management system, was used. The 1233 papers
were uploaded to BUHOS, and additional exclusion criteria (exC5 and exC6) were
defined and manually applied by carefully reviewing the title and abstract of each
paper.

exCh: clearly off-topic, i.e. not at all related to the scope (Section 2.1)
exC6: not a primary study

The papers were uploaded to BUHOS in BibTeX format, including all available
information, such as authors, citation counts, and venue. Any missing information
not present in the BibTeX file was automatically extracted from Crossref>.

The 1233 papers were divided among the authors, who, after reading the title
and abstract, marked them as included, excluded or undecided. Next, a collective
analysis was carried out involving all authors to make a final decision on the
undecided papers, resulting 720 papers.

Additionally, BUHOS provides a backward snowballing [82] feature that scans
the references of each paper and includes any papers referenced by a minimum
number of papers already included in the initial pool. This feature was used to
identify interesting works that Scopus did not initially retrieve. This added 24
papers, resulting in the total of 744 included publications.

2.2.3 Analysis and Visualization

CRExplorer [83] and Biblioshiny [84] were used to analyse and visualise the data.
Both tools were chosen for their specific capabilities in generating bibliometric
maps. Moreover, Biblioshiny® is a free tool that provides a broader range of
analysis possibilities compared to other bibliometric tools [85]. In addition, Scopus
analysis functionalities were used in conjunction with Microsoft Excel to generate
charts.

5Crossref is a digital citation and linking service that provides metadata for scholarly content,
https://www.crossref.org
O0fficial website: https://www.bibliometrix.org/home/index.php/layout/biblioshiny

https://www.crossref.org
https://www.bibliometrix.org/home/index.php/layout/biblioshiny

32 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

To ensure data consistency, normalisation was applied to the keywords using
a thesaurus of synonyms’, and on the author names by taking accent marks and
different formatting into account. For the conference information, the description
was split to accurately extract the name of the conference separately from the

publisher and year of publication.

2.3 Results

This section presents the results of this study and a brief discussion related to the
size and growth of the area. It also classifies the type of publication (journals,
conferences, or workshops), the most influential journals and conferences, the

most influential papers, and the most influential authors.

2.3.1 Size of the area and growth

The number of publications in a field over time is a central piece of information

for investigating its growth and development.

Table 2.2 presents, on a year-to-year basis, the total amount of publications
(column ##), the percentage of the cumulative amount by each year (column %),
and the growth of the number of publications against the previous year (column

/). Figure 2.2 depicts the evolution of the growth per year along with the trend.

The first decade covered by this study only included 18 papers related to the
fleld. Two years (1992 and 1993) passed without papers. In the second decade,
this number increased to 170 works. Finally, in the third decade, 556 works were
found. Given that 41.4% of all documents have been published in the last five
years, it is likely that the automated GUI testing field will continue to grow at a

similar pace to the last decade.

7Available at: https://gui-testing-repository.testar.org/keywords

https://gui-testing-repository.testar.org/keywords

23 RESULTS

80

60

40

20

Number of papers

Trendline R?2 = 0.823

5883498993888 ¢2¢8¢888¢85¢.¢488883¢84¢8
Figure 2.2: Evolution of the number of publications
Year # % Growth () Year # % Growth ()
1991 2 0.27% - 2000 14 1.88% 7.69%
1992 0 0.00% - 2007 18 242% 28.57%
1993 0 0.00% - 2008 26 3.49% 44.44%
1994 1 0.13% - 2009 39 524% 50.00%
1995 1 0.13% 0.00% 2010 36 4.84% -7.69%
1996 3 0.40% 200.00% 2011 50 6.72% 38.89%
1997 3 0.40% 0.00% 2012 45 6.05% -10.00%
1998 4 054% 33.33% 2013 47 632% 4.44%
1999 1 0.13% -75.00% 2014 61 820% 29.79%
2000 3 0.40% 200.00% 2015 45 6.05% -26.23%
2001 5 0.67% 66.67% 2016 64 8.60% 42.22%
2002 3 0.40% -40.00% 2017 56 7.53% -1250%
2003 10 1.34% 233.33% 2018 68 9.14% 21.43%
2004 6 081% -40.00% 2019 68 9.14% 0.00%
2005 13 1.75% 116.67% 2020 52 6.99% -2353%

Table 2.2: Publications by Year: Number (#), Percentage (%), and Growth ().

33

34 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

Between 2009 and 2013, the number of papers increased, deviating from the
overall trend. There could be various reasons for this. The first ICST conference,
held in 2008, was the first international conference entirely dedicated to software
testing. Moreover, the first TESTBEDS workshop was celebrated at ICST in 2009.
There was also an increase in papers related to web testing. This can be related
to the fact that in 2009, it was decided to merge Selenium RC and Webdriver
and called the new project Selenium WebDriver [53], or Selenium 2.0. A third
reason might be that Sikuli started in 2009 [86]. Sikuli is a visual approach to
searching GUIs using screenshots, allowing users to take a screenshot of a GUI
element (such as a toolbar button, icon, or dialogue box) and query a help system
using the screenshot instead of the element’s name. Finally, in 2009, there was
an increase in papers related to mobile testing. This is probably related to the
fact that Apple’'s App Store went live in July 2008, and the Android Market went
live in August.

During 2020, a decrease in the number of publications was observed, which
could be attributed to the Covid-19 pandemic. This situation likely impacted re-
search outcomes due to the cancellation of several conferences, reduced mobility,
and other disruptions [87].

2.3.2 Types of publications and their ranking

Publications were found across various types, including journals, conferences,
workshops, and book chapters. Figure 2.3 shows the number of papers of each
kind.

The majority of papers have been published in conference proceedings. This
makes sense since conferences provide feedback to researchers more quickly than
journals. Moreover, in many cases, papers describing part of a more extensive
solution are presented at conferences to obtain feedback and validate each piece
of work. Later, the entire proposal is presented in a journal. This is also the
behaviour in the whole Computer Science field [88].

Table 2.3 shows journals with the highest number of publications in the field,
highlighting IEEE Transactions on Software Engineering (TSE) as the top journal
with 12 published articles. Even though the automated GUI testing field has been

23 RESULTS 35

= Workshops Conference Papers ®m Book Chapters ® Articles

60 ‘

50 |

40 ‘

30

20

. . A NANRNIEaan
- WO O NN 0O OO T ANMT W OO0 O~ AN M T W O N0 O
DO DO OO OO OO 0O 0O 0O 000 «“ ™ ™ ™ ™ ™ v v v «
D O OO0 O00 OO O O O O O O O O O OO 0O OO oo o o o
T~ T T v v v - NN AN AN AN AN AN AN NN ANANANANNNANNANNN

Figure 2.3: Number of papers published in (journals + books) vs (conferences + work-
shops)

steadily growing during the last 3 decades, STVR is the first journal to launch a
special issue entirely dedicated to this field in only 2020. Papers included in that
special issue were not counted for this study because they were not published
yet.

By examining the data in Table 2.3, Bradford's Law [/7] can be applied. Brad-
ford's law is related to the distribution of papers among journals of a specific
discipline. This law establishes that the total number of journals in a research
fleld can be divided into three categories or zones, each containing approximately
one-third of the total number of papers in the field. The first zone includes a small
number of highly influential journals that publish a disproportionately large num-
ber of papers in the field. These journals are considered the core of the field. The
second zone corresponds to the journals with an average number of papers. The
last zone corresponds to several journals that publish fewer papers.

The zones are characterised by a growth factor n, which describes how the
number of journals increases between the zones. This progression leads to a
characteristic ratio of journals across the zones: 1:n:n?, with the Second Zone

containing n times as many journals as the Core Zone and the Third Zone con-

36 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

Journal Name Publications Proportion Impact Factor
(SIR)
Transactions On Software Engineering (TSE) 12 9.83% 119
Information And Software Technology (IST) 8 6.55% 0.78
Software Quality Journal (SQJ) 7 5.73% 0.36
IEEE Software 6 4.92% 0.81
Transactions On Software Engineering And 5 4.10% 0.76
Methodology (TOSEM)
Software Testing Verification And Reliability 5 410% 0.31
(STVR)
Empirical Software Engineering (ESE) 4 3.28% 1.08
Information Technology Journal 4 3.28% 0.11
ACM SIGPLAN Notices 3 2.46% 490
IEEE Access 3 2.46% 3.90
Innovations In Systems And Software Engi- 3 2.46% 1.90
neering
Remaining 54 from the total of 65 journals 62 50.82% -
Total number of papers 122 100% -

Table 2.3: Top 11 contributing Journals

taining n’ times as many journals as the Core Zone. The Leimkuhler model [89]
provides a mathematical formalization of Bradford's Law, employing a logarithmic
function to define the cumulative number of articles as a function of journal rank.
This model enables precise computation of rank boundaries for the zones, offering

a quantitative approach to analyse journal productivity.

From Table 2.3, the Leimkuhler model was used to compute the rank bound-
aries for the zones. The top 5 journals are the core journals since they correspond
to 38 articles, which is 31.1% of all 122 journal papers. The next group is found in
the following 15 journals (39 articles or 32%). In order to represent the last arti-
cles, the 45 remaining journals are necessary. The Bradford relation for journals
is 1:3:3%, reflecting the characteristic progression described by Bradford's Law,

and the details per zone can be found in Table 2.4.

23 RESULTS

Zones Journals Publications Bradford multiplier
Core 5 1

Zone 1 15 3

Zone 2 45 9

Total 65

Table 2.4: Bradford's Law zones for journal articles

Zones Conferences Publications Bradford multiplier
Core 8 1

Zone 1 38 475

Zone 2 179 22.38

Total 225

Table 2.5: Bradford's Law zones for conference publications

= Cumulated Frequency = = Leimkuhler Model

= Cumulated Frequency = = Leimkuhler Model

37

1 5 10

(a) Applied to journals.

50

5 10 50 100

(b) Applied to conferences.

Figure 2.4: Leimkhuler models.

The same model was applied to the conferences among the papers published

in conference editions, obtaining a Bradford relation for conferences of approx-

imately 1:5:5% for which the details per zone can be found in Table 25. Given

that Leimkuhler's model describes properly both journals and conferences distri-

butions, as shown in Figures 24a and 2.4b respectively, Bradford's law fits this

data set very well.

The 87 workshop papers were presented at 56 workshops, of which 37.50% was
co-located at a CORE A* conference, 2857% at a CORE A conference, 3.57% at a

38 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

CORE B conference and 12.50% at a CORE C conference, 5.36% at conferences with
no CORE ranking, and 5.36% at workshops not co-located with any conference.
The remaining 7.15% workshops were in years when no CORE ranking was given
(yet).

The 528 papers were presented at 386 conference proceedings, of which 4.15%
has CORE ranking A*, 16.32% CORE A, 10.84% CORE B, 10.36% CORE C and
37.31% has no CORE ranking. The remaining 14.51% conferences were in years
when no CORE ranking was given (yet).

Conference name Publications Proportion
International Conference on Software Engineering 37 7,01%
(ICSE)

International Conference on Software Testing, Verifi- 36 6,81%
cation and Validation (ICST)

International Conference on Automated Software En- 27 511%
gineering (ASE)

International Symposium on Software Testing and 26 4,92%
Analysis (ISSTA)

Joint Meeting European Software Engineering Confer- 22 417%

ence and Symposium on the Foundations of Software
Engineering (ESEC/FSE)

IEEE International Symposium on Software Reliability 15 2,84%
Engineering (ISSRE)

International Conference on Software Maintenance 14 2,65%
(ICSM)

International Computer Software and Applications 11 2,08%
Conference (COMPSAC)

International Conference on Software Engineering and 9 1,70%
Knowledge Engineering (SEKE)

International Conference on Software Quality, Relia- 9 1.70%
bility and Security (QRS)

Remaining 215 conferences from the total of 225 con- 322 60,98%
ferences

Total number of papers 528 100%

Table 2.6: Top 10 of most influential Conferences

23 RESULTS 39

Table 2.6 shows the number of papers published in the most contributing
conferences. ICSE and ICST are nearly equal at the top, although by 2020, ICSE
had celebrated 42 editions, compared to ICST's 13 editions.

2.3.3 Citations and Reference Publication Year Spectroscopy

Table 2.7 presents the top 10 papers with the highest number of citations in
Scopus, along with the year of publication, the complete reference, the number of
citations retrieved by Scopus (Sc), and the number retrieved by Google Scholar
(GS). The cites from Scopus and Scholar differ because Scholar has a much higher

count. According to [90], Scholar citation data is essentially a superset of Scopus,

offering substantially broader coverage.

Ref Title Author(s) Year Sc GS

1) Dynodroid: An input generation system for Machiry, A, Tahiliani, R, 2013 397 672
android apps Naik, M.

02 Using GUI ripping for automated testing of an- Amalfitano, D, Fasolino, 2012 343 563
droid applications A, Tramontana, P, De

Carmine, S., Memon, A.

3 Automated test input generation for android: Choudhary S.R, Gorla A, 2016 245 401
Are we there yet? Orso A.

01 Automated concolic testing of smartphone Anand, S. Naik, M, Har- 2012 231 428
apps rold, M., Yang, H.

os] Testing Web applications by modeling with Andrews AA, Offutt J, 2005 227 477
FSMs Alexander RT.

96] Sikuli: Using GUI screenshots for search and Yeh T, Chang T-H, 2009 217 400
automation Miller R.C.

71 Sapienz: Multi-objective automated testing Mao K, Harman M, Jia Y. 2016 207 336
for android applications

98] RERAN: Timing- and touch-sensitive record Gomez L, Neamtiu [, 2013 202 341
and replay for Android Azim T, Millstein T. To-

tal

o) An event-flow model of GUI-based applica- Memon AM. 2007 193 364
tions for testing

noo) PUMA: Programmable Ul-automation for Hao S, Liu B, Nath S, 2014 192 321

large-scale dynamic analysis of mobile apps

Halfond W.G.J,, Govindan
R.

Table 2.7: Top 10 papers with most cites in Scopus (includes cites in Google Scholar)

Most of the top 10 most cited papers focus on Android testing, with 7 out of 10

dedicated to this area. The remaining three frequently cited papers are related

40 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

to models (event-flow or state models) and widget detection (Sikuli).

The technique of Reference Publication Year Spectroscopy (RPYS) [101] is a
quantitative method to identify the historical origins or turning points of research
flelds. This method analyses the publication years of the references cited by all
the papers in a specific field. A Reference Publication Year (RPY) is reflected
in the spectrogram as a pronounced peak, usually corresponding to a frequently
referenced publication. These publications are of significant importance, as they
may represent the origins of the research field in question.

An RPYS chart was obtained using CRExplorer and is shown in Figure 2.5,
from 1960, although there are references up to 1901. The most influential year
seems to be 2001 when Atif M. Memon finished his PhD entitled A comprehensive
framework for testing graphical user interfaces [102] He gave a big impulse to

the field, as demonstrated by the RPYS.

1250 — — Number of cited references ® Median -5 years

1000 /A
750 ~y \
N
500 IN NN \
\/ oV

250 ~ / \

-250
1960 1970 1980 1990 2000 2010

Figure 2.5: Reference Publication Year Spectroscopy

In that year, Memon published two final papers for his thesis. The first pa-
per [103] presents a new test case generation technique based on Artificial In-
telligence Planning and using a model based on a GUI structure. Artificial In-
telligence and Model-based Testing are trends that will guide the research field
in the posterior years to this publication, as it will be explained later in Section
2.37. In the second paper, Memon et al. [104] introduce different coverage criteria
for GUI testing and evaluate them through a case study for the first time.

In addition, the years 2012 and 2013 appear as peaks in the Spectroscopy
chart. Five publications [91, 105-108] appear among the most cited within the

23 RESULTS 4

field. All of them have one common topic: Android testing.

2.3.4 Most influential authors

The 744 documents that integrate this study have been written by a total of 1488
authors. Table 2.8 shows the 11 most prolific authors, among them contributing
203 publications (27.28 %). For this ranking, all authors of each paper are counted,
not just the first author.

Name Total Journals Conferences Workshops Book Year of first
Chapters publication
Memon, AM. 53 18 29 5 1 1999
Paiva, ACR. 31 6 20 5 0 2005
Alégroth, E. 17 3 8 5 1 2013
Vos, TEJ. 10 2 11 3 0 2012
Xie, Q. 15 4 10 1 0 2004
Fasolino, AR, 13 4 5 4 0 2010
Zeller, A. 13 1 10 2 0 2012
Aho, P. 12 0 7 4 1 2011
Amalfitano, D. 11 3 4 4 0 2010
Coppola, R. 11 4 3 4 0 2016
Ramler, R. 11 1 8 2 0 2008

Table 2.8: Ranking of authors by number of publications

There is a remarkable difference between the 1st and 2nd position, as well
as between the 2nd and the rest, from which a smooth distribution among the
authors is observed. One notable fact is that 7 of the 11 authors published their
first paper in the field since 2010, and only one published before 2000.

The distribution of the number of publications among authors is presented in
Table 2.9. The largest group comprises authors who published a single paper,
representing 75.81%. As shown in the table, the number of authors tends to
decrease as the number of publications increases. Lotka's law describes this
behaviour and states that the number of authors y publishing a certain amount

C

of papers x is inversely proportional to x, as y = =5, where n and ¢ are two

XN’

constants to be estimated for every data set. The software Lotka [109] was used to

42 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

apply the Maximal Likelihood method and estimate the parameters for this study,
resulting in n =~ 2.59 and ¢ = 0.77, Le, this data set follows Lotka's general law
as y = %. The Kolmogorov-Smirnov statistical test was applied to assess the
fitness between this hypothesised Lotka model and the actual distribution of the
data. Even for a significance level of 0.2, the results support the hypothesis: the

calculated Lotka model fits the observed distribution.

Publications 1 2 3 4 5 6 7891011 12131516 17 31 53
Authors 11281986036 21148336 3 1 2 1T 1 1 11

Table 2.9: Distributions of number of authors per number of publications

2.3.5 Productivity and funding

Figure 2.6 shows the distribution of publications per country of origin. There is
a large gap between the most contributing country, the United States, and the
rest. China published its first papers in 2006 and has contributed 108 publications
since then, keeping a rate of 7.2 publications per year, similar to that of the United
States, with 7.5 annual papers since 1991.

Although China and the US are the main contributors to the field, the Euro-
pean region has had a boost in the last decade and has occupied first place with
308 publications since 2015. The Asian continent has contributed 242 publica-
tions, closely followed by North America, with 245 publications so far.

A 21% of the papers included funding information. Of all the mentions, 9,7%
came from private funding by big companies, such as Google, Microsoft, Amazon
Web Services, and Boeing. Asia is the continent that provides the most funding
resources for the majority of sponsored works (33,7%), followed by Europe (28,6%)
and North America (27,1%).

The leading funding agency in Asia is the National Natural Science Foun-
dation of China. Likewise, the leading funding agencies in Europe and North
America are the European Commission and the National Science Foundation, re-
spectively. It is worth mentioning that the only South American country that has

funding is Brazil.

23 RESULTS 43

250
200
150
100

50

Figure 2.6: Most contributing countries

2.3.6 Collaboration

Figure 2.7 depicts the collaboration between the most prolific authors in the field
from Table 2.8. Six authors have co-authored with Atif M. Memon, who can also
be related to another two authors through those six. Only 2 of the 11 authors do

not have co-authorship with any of the most contributing authors.

Figure 2.7: Collaboration network of authors

44 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

Regarding the co-authorship between the authors, Figure 2.8 shows the evo-
lution of the author's collaboration over 30 years. Single-author publications have
historically remained low, while publications of more than 4 authors have been
increasing. However, only 18.95% of the papers have resulted from a collaboration

among affiliations from different countries.

s 1 author * 2 authors = 3 authors ¢ 4 authors e 5 or more authors

> 25
£
£
o) 20
o
&
pt 15
c
(o]
L 10
7]
S
= 5
©
g .
Q 1=
=1 0
o 1995 2000 2005 2010 2015 2020

Figure 2.8: Authorship evolution

2.3.7 Trends in keywords

By analysing the keywords provided by the authors, the goal is to reveal the
significant research topics within the domain and their introduction to the field.
This is not as easy as counting the most used keywords [110,111]. Many keywords
do not give specific information on the details of the field because they are
inherent to it (e.g, software testing, GUI testing, tools, regression testing, oracle,
coverage, test case). In addition, different terms are often used to describe the
same concept, requiring them to be grouped.

Plural forms were standardised into their singular form using NLTK [112]. The
available keywords were analysed to group the keywords, and the authors per-
formed individual classifications, as detailed in [113]. Two brainstorming sessions
were organised to develop the following classification, which represents relevant

research themes in the domain under study:

23 RESULTS 45

mobile, web, model-based testing (MBT), search-based testing (SBT), visual-
based testing (VBT), Artificial Intelligence and Machine Learning (AI&ML),
Capture and Replay (C&R) and Automated Exploration

The objective is to study: mobile and web to distil the trend in the types of
SUTs that are tested; MBT, SBT, VBT, AI&ML to visualise the timeline of the
pick-up of different technologies into automated GUI testing; C&R to investigate
the evolution of the trend where the focus was on these tools; and Automated
Exploration for the shift from scripted to scriptless testing using random testing,
traversal techniques and crawling. Table 2.10 shows the specific classification of

each group of keywords.

Group Keywords

mobile mobile-device, mobile-application, smartphone-application, smartphone,
android, android-testing, google-android, android-application, android-
phone, mobile-testing, mobile-application-testing, mobile-application-gui-
testing, mobile-application-gui-testing, smartphone-application-testing,
mobile-application-test-case-generation, mobile-development, mobile-
application-development, mobile-cross-platform-development, mobile-
software-development, ~ android-testing, android-application-testing,
android-gui-testing, android-ui-testing, android-compatibility-testing,
android-test, android-testing-automation, automated-android-testing,
automated-mobile-application-testing, android-security, android-
malware-detection, android-security, android-permission, secure-virtual-
mobile-platform, ios, ios-application, ios-testing, ios-ui-testing, android-
crawler, android-system-webview, android-gui-model, android-mobile-
accessibility, mobile-communication, mobile-crawler, mobile-environment,
mobile-interaction, web-based-android-emulator, mobile-browser-
security, mobile-computing, mobiguitar, droidbot, humanoid-robot,
espresso, robotium, selendroid, tema-tool, appitum
web web-application, webbased, web-user-interface, dynamic-web-page, web-
testing, web-application-testing, testing-of-web-application, testing-web-
application, web-application-test, web-interface-testing, web-system-

testing, dom-based-testing, cross-browser-compatibility, cross-browser-

46

CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

Group

Keywords

web (cont.)

SBT

VBT

C&aR

exploration

Al&EML

testing, web-element-locator, web-object-identification, xpath, xpath-
locator, dom, dom-selector, web-of-data, web-scraping, web-usability-
evaluation, web-page-visual-representation, web-requirement, semantics-
web-service-test-generation, web-accessibility, web-automation, sele-
ntum, selentum-webdriver, selenium-web-driver, webhdriver, selenium-ide,
selenium-testing-tool, ajax, ajax-application, asp-net, web-cat, webalii, xml-
injection, rich-internet-application-testing

genetic-programming, genetic-combination, evolutionary-testing,
evolutionary-algorithm, genetic-algorithm, search-based, search-based-
software-engineering, search-based-testing, —ant-colony-optimisation,
particle-swarm-optimisation, ant-colony-optimisation-(aco), multi-
objective-optimisation, multi-objective-pso, metaheuristics, traversal-
algorithm, best-first-search, depth-first-search, depth-first-traversal
image-recognition, sikuli, image-analysis, image-processing, image-
recognition-testing, image-search, image-similarity, image-storage,
opency, visual-gui-testing, visual-testing, object-detection, visual-gui-
testing, visual-testing, jautomate, eyeautomate, pixel-comparator, ocr,
element-recognition

capturefreplay, record-and-replay, capture-and-replay-tool, test-
recording-and-playback, gui-capture/replay, record-and-playback-
problem, record/replay, test-recording, capture-replay, capture-replay-
testing, capture/playback, gui-regression-testing, visual-regression-
testing, selentum, selenium-webdriver, selenium-web-driver, webdriver,
selenium-ide, selenium-testing-tool, testcomplete, record
Sgstematic—exploration, automatic-exploration, random—testmg, monkeg—
testing, monkey, monkey-test, testar, automated-traversal-tool, gui-
exploration, gui-traversal, systematic-gui-exploration, automated-gui-
exploration, crawling-efficiency

ai-algorithm, ai-planning, machine-intelligence-quotient, intelligent-
planning, computer-vision, automation-computer-vision-gui, active-
learning, active-learning-testing, machine-learning, learning,
reinforcement-learning, g-learning, deep-reinforcement-learning, deep-g-

network, multi-armed-bandit-problem, neural-network, deep-learning,

23 RESULTS

47

Group

Keywords

Al&GML (cont.)

MBT

deep-neural-network, convolutional-neural-network, computational-
intelligence, unsupervised-learning, support-vector-machine, natural-
language-processing, clustering, cluster-algorithm, cluster-analysts,

multi-agent-collaboration, agent-based-testing, teaching-learning-based-

optimization
model-based-gui-testing, mbt, mbgt, modelbased-gui-testing,
modelbased-gui-testing, model-based-testing-mbt, model-testing,

model-based, model-based-test-generation, model-based-testing-uml,
multi-model-testing, test-model, test-model-development, model-based-
input-generation, model-based-test-input-generation, model-generation,
automatic-model-generation, automatic-gui-map-generator, automatic-
gui-model-generation, gui-model-gen-eration, generative-model, gui-
model-gen-eration, automatic-gui-model-generation, gui-modeling,
gui-modelling, gui-model, visual-gui-modelling, gui-map, ui-model,
user-interface-model, visual-gui-modelling, user-interface-model,
gui-state-model, modeling, graphical-modeling-dsl, model-extraction,
model-inference, model-analysis, model-mining, model-transformation,
model-validation-and-analysis, directed-graph-model, software-modeling,
dynamic-modeling, dynamic-gui-model, event-flow, event-interactive-
graph, event-pattern, event-sequence, event-flow-graph, event-flow-model,
context-event, event, event-sequence-graph, gui-event, model-based-
exploration, activity-diagram, activity-flow-graph, uml-activity-diagram,
gui-specification, user-interface-specification, spec-explorer, guitar-
testing-system, guitar, mobiguitar, domain-specific-language, fsm, finite-
state-machine, finite-state-machine-testing-framework, state-machine,
finite-state-automaton, specification-based-testing, test-specification-
language, ontology, ontological-modeling, gui-ripping, sequence-based-
specification, uml, uml-profile, concur-task-tree, concurtasktrees, gui-
call-graph, gui-control-flow-graph, gui-controls-graph, augmented-model,
component-tree-graph, dsl, knowledge-graph, labeled-transition-system,
petri-net

Table 2.10: Grouping the keywords

48 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

Figure 2.9 shows the cumulative frequency values per each group of keywords
annually. MBT and C&R made their first appearance in 1998. Since then, MBT
has been the main topic of the field until Mobile reached a greater number of
papers in 2019. Since 2007, in just 13 years, Mobile has become the most frequent

keyword.

® Web « Mobile » MBT 4 SBT x Exploration ® C&R ~ VGT = AI&ML

100

50

10

1] &—a - -

2000 2005 2010 2015
Figure 2.9: Cumulative frequency of keywords

As of 2010, two topics were introduced: SBT, which includes genetic algo-
rithms and swarm intelligence, and Automated Exploration, with algorithms for
traversing or randomly exploring the GUI. Exploration has grown in recent years,
as seen in Figure 2.9. Al&ML is the technology that has had the greatest increase
in the last 5 years, only being surpassed by MBT towards the conclusion of this
study.

The evolution of the eight groups of keywords was analysed using the in-
formation presented in Figure 2.10, generated with Biblioshiny. The size of the
points classifies each keyword according to the number of papers in which it has
been used (ie, its frequency), while the position of the points indicates the year in
which each keyword has reached 50% of its frequency. The horizontal lines begin

and end in the year in which a keyword reaches 25% and 75% of publications,

23 RESULTS 49

Term frequency @ 50 @ 100 @ 150

Web @

Mobile 1 e
MBT)

SBT; o
Exploration 1 @
C&R)
VGTH e
AI&ML - @
2010 2012 2014 2016 2018

Figure 2.10: Keywords trends

respectively. All keywords reached 25% of their frequency in the last decade, ie,
75% of the papers that mention these keywords were published in the last 10

years.

Publications mentioning Web-based SUT have remained constant. Remark-
ably, 50% of MBT papers have been published as of 2014, given that MBT is one
of the first topics in the field. This coincides with the increase in Exploration

techniques. Conversely, SBT techniques have a lower frequency.

C&R has decreased in frequency, coinciding with the considerable increase
in VBT. This might indicate that CR is being replaced by Image Recognition or

Image Comparison techniques.

AIGML has appeared in 50 papers: by 2013, it had appeared in 48 papers
(26.79%), and it took 5 years to reach 50% of its total frequency. However, just
one year was needed for AIGML to reach 75%. In the last two years, AIGML
appeared in as many papers as in the entire previous history of the field.

Considering their frequency and accelerated growth in recent years, Mobile-
based SUT and AIML are the trending topics in the field. In addition, exploration
techniques have accelerated in the last five years, although they have not yet

reached a large number of papers.

50 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

2.3.8 Discussion

This bibliometric analysis of 30 years of automated GUI testing provides valu-
able insights into the evolution and dynamics of this research field. The study
highlights significant publication growth, with the field gaining traction in the
last decade due to technological advancements and the increasing complexity
of software systems. The introduction of specialised workshops and the steady
rise of contributions from mobile and web testing contexts underscore the field's
responsiveness to industrial and technological shifts. Notably, the emergence of
mobile testing and Artificial Intelligence techniques in the past decade indicates
a transition toward more sophisticated and adaptive testing methodologies.

The keyword analysis reveals shifts in research focus over time, with model-
based testing maintaining a consistent presence while mobile testing and Al-
based approaches have surged in popularity. Traditional capture-and-replay
methods have declined, potentially supplanted by visual-based testing methods
leveraging image recognition. The rapid adoption of Al and novel exploration
strategies signals a fundamental shift in testing approaches, highlighting the
growing demand for more adaptable, efficient, and intelligent quality assurance
methods. These findings not only chart the historical trajectory of automated GUI

testing but also provide a roadmap for future research directions.

2.4 Threats to Validity

This section discusses the potential threats to the validity of the bibliometric

analysis conducted in this study, following the guidelines proposed by [114].

2.41 Internal Validity

Scopus, the largest database of peer-reviewed scientific literature, was used to
mitigate internal validity threats. A search string was defined to retrieve relevant
publications, and the results were validated with a small set of known relevant

works to ensure accuracy. However, some relevant studies might not have been

24. THREATS TO VALIDITY 51

captured due to potential misclassification within the database or inherent limi-
tations of the search string.

Additionally, the keyword extraction process threatens internal validity, as
keyword grouping and classification inaccuracies could skew trend analyses. To
mitigate this, keyword grouping was conducted collaboratively by multiple au-
thors to enhance objectivity and consistency.

2.4.2 External Validity

This study focuses exclusively on automated GUI testing within the Scopus-
indexed literature, predominantly in English. Consequently, publications in other
languages or those indexed in different databases may not be represented, poten-
tially limiting the applicability of the findings to the global research landscape.
Future studies could incorporate additional databases and languages to provide
a more comprehensive view of the field.

Regarding the replicability of the study, a protocol has been clearly defined,
and the entire process has been documented to mitigate this threat. The metadata
of the works was used to perform this analysis, mitigating the threat that results
may be biased by researchers’ judgment. To gain a deeper understanding of
the techniques used for automated GUI testing, this work proposes conducting a
mapping review to establish trends in the area.

2.4.3 Construct Validity

This analysis used a combination of established bibliometric tools, CRExplorer
and Biblioshiny, to analyse and visualise the data. These tools are widely recog-
nised and validated within the bibliometrics community, ensuring that the mea-
sured constructs (e.g., publication trends, author influence) are accurately cap-
tured.

52 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

2.4.4 Conclusion Validity

Using validated bibliometric tools strengthens the confidence in the study's find-
ings. Ensuring transparent documentation of the methodology and analysis pro-

cesses reinforces the validity of this study's conclusion.

2.5 Conclusions

The bibliometric study of automated GUI testing over the past 30 years reveals
a dynamic and evolving field that has grown significantly in response to the in-
creasing complexity and variety of software systems. Publications have increased
continuously, with exponential growth observed in the last decade, suggesting
that this trend is likely to continue.

The analysis exposes the transformation in automated GUI testing method-
ologies. The decline in capture-and-replay techniques has paralleled the rise of
more sophisticated approaches using visual recognition, exploration, and Al capa-
bilities. This evolution reflects broader technological shifts, particularly evident in
the expanding focus on mobile and web testing domains. These changes demon-
strate how testing strategies have adapted to meet modern software development
needs.

Collaborative efforts, particularly in Europe, and funding from prominent agen-
cies such as the European Commission and the National Natural Science Foun-
dation of China have driven much of the recent progress. However, limited cross-
border collaboration and a concentration of highly productive authors suggest
opportunities to broaden engagement within the global research community.

Finally, a repository® was developed, listing all the 744 referenced papers
and further bibliometric results. This repository provides access to the curated
dataset, further enhancing the study’s replicability. This study demonstrates the
evolution of automated GUI testing over three decades, revealing key research

trends and highlighting promising directions for Al integration in future work.

8Available at: https://gui-testing-repository.testar.org

https://gui-testing-repository.testar.org

TESTAR

‘Beware of bugs in the above code; | have only proved it

correct, not tried it."

Donald E. Knuth, Correspondence to Dr. P. van Emde Boas

TESTAR! is an open-source tool that carries out automated testing without
the need for scripts, falling into the scriptless GUI testing tools category. It
implements a scriptless approach, meaning the test cases do not have to be
defined prior to test execution. Instead, each test step is generated during the
test execution based on the actions available at that specific time and state of
the GUI.

The underlying principle of TESTAR is straightforward: generate test sequences
of (state, action)-pairs by starting up the SUT in its initial state and continuously
selecting an action to bring the SUT to another state. The action selection
characterises the most fundamental problem of intelligent systems: what to do
next. The challenging parts are optimising the action selection to find faults and
recognising a faulty state when it is encountered with an oracle.

A testing session with TESTAR is illustrated in Figure 3.1. After starting up the

TOfficial website: https://testar.org/

53

https://testar.org/

54 CHAPTER 3. TESTAR

SUT, the tool goes into the loop of continuously selecting and executing an action
to bring the SUT from one state to another state until some stopping criterion
has been met, after which the SUT is closed. In the following sections, each of
the basic steps of the approach will be described:

e Obtaining the GUI state (Section 3.1).

Deriving the set of actions that a potential user can execute in that specific
state (Section 3.2).

e Selecting and executing one of these actions (Section 3.3).

Evaluating the new state to find failures (oracles) (Section 3.5).

Start SUT it Gl Derive Actions Select Action
State
No Yes
Evaluate
Oracles

Figure 3.1: TESTAR testing cycle

More

Actions? Execute Action

These steps are implemented with a modular design, as depicted in Figure
3.2, allowing testers to enhance and customise them as needed. This design offers
several advantages, such as scalability, ease of maintenance, and more flexibility.

Section 3.4 introduces the representation of states and actions, explaining how
concrete and abstract identifiers are constructed to identify GUI states and actions
effectively. Subsequently, Section 3.6 describes the runtime execution of TESTAR
and the execution of the test sequence loop (as shown in Figure 3.1). This Section
also explains how new Action Selection Mechanisms (ASMs) can be added to
enhance the exploration process by prioritising or selecting actions strategically.
Section 3.7 discusses a test run’s outputs, including logs, screenshots, and HTML
reports that support fault analysis and reproducibility.

3.1. OBTAINING THE GUI STATE 55

2]

SUT
Integration

jl“

State @ TESTAR @ Action and
Evaluator Protocol State Storage

jl,

Action
Selector

Figure 3.2: TESTAR modular architecture

The chapter further elaborates on advanced functionalities. Section 3.9 ex-
plores action filtering techniques, such as regular expressions, click-based filter-
ing, and programmatic customisation, to optimise the testing process. The chapter
concludes with Section 3.10, where industrial case studies demonstrate the prac-
tical application and effectiveness of TESTAR, outlining the phases for setting up

TESTAR for a SUT, providing a structured, systematic approach to deployment.

3.1 Obtaining the GUI State

A GUI can consist of a wide range of widgets. Examples of these are in Table 3.1.
These widgets are structured in a hierarchy called the widget tree. Figure 3.3
displays an example of a widget tree. Each node corresponds to a visible widget
and contains widget properties like its type, position, size, title, and whether it
is enabled.

These trees and properties can be defined as plugins for the interaction with

the SUT as shown in Figure 3.2, in various ways:

56 CHAPTER 3. TESTAR

Windows Menus Controls

e Main window e Menu bars e Buttons

e Child windows e Dropdown menu e Textboxes

e Popup windows e Context-aware menu e Links

e Dialog windows e Radio buttons

e Checkboxes

e Dropdown select boxes
e Sliders

e Tabs

e Scrollbars

Table 3.1: Examples of widgets of which a GUI can be composed.

& VLC media loyer & x|
Matis | Plaiack | Adio Vieto Subitle Tobls Vi Hep | Process
Window

Renderer »

i 13
o {MenuBarJ [Pane J ﬁ"lenultenﬂMenuItem}E\denultenﬂ{ J
JumptoSpecif@Tme CuleT l
> Py
© [} { Button H J Role Menultem
Title Chapter
Enabled False

g Rec [x:523.0 y: 250.0 w:230.0
| [toc]m s LIEETe - al Next "Programme" menu item

Figure 3.3: The state of a GUI as a widget tree.

e accessibility APIs, which allow computer usage for people with disabilities
at the Operating System level (L.e. UIA Automation for Windows, ATK/SPI
for Linux, NSAccesibilty for MacOS). These accessibility APIs allow us to
gather information about the visible widgets of an application and give
TESTAR the means to query their property values.

e programmatic APls, or automation frameworks, like the Selenium Web-
driver [53] at the browser level, or Appium [115] for i0S, Android, and Win-
dows.

e language specific APIs like the Java Access Bridge for existing Java objects
at the Java Virtual Machine level.

e SUT specific APIs are an option: a first experience with it has been done
by testing a smart home through a RESTful APl with TESTAR [116].

3.1. OBTAINING THE GUI STATE 57

e Image recognition [117] can be used as a platform-independent way to ob-
tain the state of the GUI from the screenshots. However, image recognition
algorithms are less accurate and give less information than the technical
APls.

In the current’ implementation of TESTAR there are plugins for detecting the
state using the UIA Automation for Windows, Selenium Webdriver for web appli-
cations and Appium for Android. For example, the UIA API gives access to around
170 attributes or properties [52] enabling the retrieval of detailed information

such as:
e The role of a widget: whether it is a button, checkbox, dropdown, etc.

e The path that the widget has in the stack of widgets on the screen, ie. the
widget tree.

e The size which describes a widget's rectangle (necessary for clicks and

other interactions).

e Whether a widget is enabled, as interacting with disabled widgets may not

be meaningful.

e Whether a widget is focused (has keyboard focus) so that the tool knows
when to type into text fields.

e Attributes such as title, help and other descriptive attributes are essential

to distinguish widgets from each other and give them an identituy.

All these properties and their values are stored in the widget tree. In this
way, these trees capture the current state s of the GUI like the example from
Figure 3.3.

Consider a widget tree that represents a specific state s. The nodes of this
widget tree are the widgets visible on the GUI in that particular state s. This
set of nodes is denoted as W(s) = {wy, wa, ..., wi}, where each w; represents

a widget such as a button, slider, text field, or menu. The edges of the tree are

2Plugins for Linux using ATK/SPI, and for macOS using NSAccesibilty exist in older versions.

58 CHAPTER 3. TESTAR
defined by the parent-child relationships: each child widget is displayed within
the screen area occupied by its parent widget. The set of edges is denoted by
E(s). A directed edge (w;, wj) € E(s) exists when w; € W(s) is the parent widget
of w; € W(s) in state s.

The state is further defined by the values of all properties associated with
the widgets. For a widget w € W(s), P(w, s) denotes the set of all properties
{w.p1,w.pa, ..

All the properties P(w,s) obtained by TESTAR in state s for the widgets in

., w.pn} (e.g. role, title, position, enabled)

W(s) through a plugin for interacting with the SUT are associated with the TESTAR
representation of States, Widgets and Actions. This is done through Tags and is
depicted in Figure 3.4.

[]

TESTAR CORE

«interface»
Taggable

A

«interface»
Tag

«interface»

«interface»

«interface»
State

Widget ’

Action

1]

1]

1]

1]

1]

Accessibility
APIs

Automation
Frameworks

Language
Specific APIs

SUT Specific
APIs

Image

Recognition

Figure 3.4: Taggable classes: State, Widget and Action.

Taggable classes implement the Taggable interface, which means that Tags
can be added to their instances. In TESTAR, the interfaces State, Widget and Ac-
tlon are taggable, and the Tags are pairs of: (property name, value). Properties
that are common to all widgets are defined in a final class Tags. The proper-
ties specific to an implemented API technology or automation framework (such

3.1. OBTAINING THE GUI STATE 59

as Windows UlAutomation, Selenium Webdriver, ATK/SPI) are defined in specific
API-Taggable final classes (UlATags, WebTags, AtSpiTags). We can use the get
method to read the properties of taggable objects (i.e. an instance of the classes

State, Widget and Action) as follows:
taggableObjectName.get (Tags.PropertyName)
In Example 3.1 there is an if-statement in line 1 whose guard checks whether

some action's role tag equals LeftClick. Similarly, in line 3, the href tag is

checked for some example-text that we want to act upon in the if-statement.

if (action.get(Tags.Role).equals("LeftClick"))

2 {..... }
if (widget.get(WebTags.Href).contains("example-text"))
{..... }

Example 3.1: Obtaining property values

Obtaining the state, i.e. extracting the properties of the widgets and building
the widget tree, is done automatically after each executed action. For Windows
desktop applications, TESTAR monitors the CPU usage of the SUT process to figure
out when the SUT has finished executing a GUI action. However, the widget tree
is sometimes extracted before the GUI has finished updating, resulting in a partial
widget tree. If the partial tree contains interactive widgets, actions are derived
for them. If not, a default action (such as executing an NOP action or pressing the
ESC key) will be executed, and testing will continue by deriving the state again.
TESTAR can be configured to change the waiting time between the executed action
and the next widget tree construction.

For Web applications and the Selenium Webdriver framework, TESTAR offers
the possibility to use a JavaScript command document.readyState to wait until
the web page has been loaded. However, this has the disadvantage of waiting for
web pages to load their ads. Moreover, collaboration with partners has revealed
that this functionality is insufficient in some cases, as the web document may

indicate it is ready while the internal server is still processing data.

60 CHAPTER 3. TESTAR

3.2 Deriving a set of actions

Once the GUI's current state s is obtained, a set of available actions that a user
can choose from in that specific state can be derived, which is suitable for most
applications. To achieve this, a set of actionable widgets is first identified (see
Figure 3.5). Actionable widgets are defined as widgets on which actions can be

performed because they:

e are enabled
e are unblocked
e are not blocklisted or filtered by a tester (see Section 3.9)
e expect user interaction, te.:
— widgets that are clickable (left or right mouse button);
— widgets that are typable;
— widgets that are draggable or slidable.

For example, considering a scenario in which state s includes a clickable
button widget b € W(s) that is enabled and unblocked®: if a tester did not
blocklist or filter this widget, then this means there exists a possible action that
can click on that button (click(b)). Likewise, for an actionable typeable text field
widget t € W(s), it means there exists a possible action that can click to focus
and type into that text-field (type_into(t)).

To derive the actions that can be executed in a certain state s, TESTAR loops
through the widget tree and collects those actionable widgets. To create ex-
ecutable actions from these actionable widgets, TESTAR converts them into im-
plementations of the Action interface (see Figure 3.4). An execution scheme for
button b € W(s) from above is:

1. Determine the position on the screen that falls inside the widget;
2. Move the mouse cursor to that point;
3. Press the mouse down;

4. Release the mouse.

The movement of the cursor and pressing and releasing the mouse button

each have their own implementation of Action, called MouseMove, MouseDown

3More specifically: b. (Tags.Enabled) == true and b.(Tags.Blocked) == false

32. DERIVING A SET OF ACTIONS 61

No

Widget
Blocklisted?

Widget
Enabled?

Widget
Blocked?

Derive
Actions

Y V VY

Ignore
Widget

A A

Widget
Typable?

Widget
Clickable?

Widget
Filtered?

Widget
Draggable?

Actionable i :
Widget]—>[Derived Actions J

Figure 3.5: Deriving actions from actionable widgets.

and MouseUp, respectively. A fourth implementation of Action is introduced in the
form of the CompoundAction class. This class aggregates sequences of actions

into an Action. Example 3.2 shows how to create an action to click a button.

public Action leftClickAt(Position position) {
return new CompoundAction.Builder ()
.add(new MouseMove(position), 1) // Move mouse to position

.add (MouseDown, 0) // Press mouse button
5 .add (MouseUp, 0) // Release mouse button
6 .build();

Example 3.2: Create action for button b € W(s)

When the current state is obtained using the Selenium WebDriver imple-
mentation, in addition to interacting with the browser through the actions de-

scribed above, a set of actions representing JavaScript commands executable

62 CHAPTER 3. TESTAR

through the Selenium WebDriver interface can also be derived (ie. calling Web-
Driver.executeScript (JScommand)).

These JavaScript commands allow us to interact with the web elements that
exist in the current web document using DOM AP| web methods and existing ele-
ment attributes to find them or interact with the browser window tabs themselves.
TESTAR predefines a couple of JavaScript commands to define useful actions during
testing. These are defined internally as calls to WebDriver.executeScript:

e WdCloseTabAction to close a tab.

e WdHistoryBackAction to simulate a click on the history back button in a

browser

e WdSubmitAction to simulate a click on a submit button in a detected web-

form

e WdAttributeAction to find a web element by its unique identifier and

write a value in the desired attribute using a pair (key, value).

It is possible to change or add new actions on the tester’s need. As an example,
consider WdAttributeAction. A web element can be searched and retrieved
within a web document using one of its web attributes. With the focus on the
desired web element, certain DOM API web methods enable reading or writing
a value to one of the multiple attributes of the web element. This is defined in
WdAttributeAction as follows:

public WdAttributeAction(String elementlId, String key, String value) {
2 WebDriver.executeScript (
String.format (
"document.getElementById(’%s’) .setAttribute(’%s’,”%s’);",
elementId, key, value));

}

Example 3.3: Create a custom WebDriver action using a JavaScript command and

the executeScript interface

33 SELECT AND EXECUTE ONE OF THESE ACTIONS 63

Another type of action being derived includes bringing the SUT to the fore-
ground or terminating undesired processes. To achieve the first objective, native
calls invoke the main window to the foreground. If this is not possible for any
reason, keyboard commands such as A1t + Tab are utilised. To terminate unde-
sired processes, the existing processes in the SUT's environment are constantly
monitored after each action. Moreover, for web applications, it is necessary to
ensure not only that the desktop browser remains in the foreground but also that
the URL domain of the SUT being tested retains focus, preventing the exploration
of undesired web pages.

The set of actions derived in state s is denoted as A(s).

3.3 Select and execute one of these actions

In state s, a set of actions A(s) is derived and made available for execution. One
action, denoted as a, is then selected and executed. In TESTAR'S default mode,
this selection is performed randomly. Upon executing the action a, the system
transitions to a new state s’. In this manner, test sequences are generated as

follows:
S—y8 =g s — .

until some stopping condition holds. Such stopping conditions can be, for example,
when a failure was found or when a configured number of actions have been
selected and the test sequence has reached its predefined length. To achieve this,
the number of sequences to generate (number of sequences) and the number of
actions to select for creating each sequence (number of actions) can be defined

during the startup of TESTAR.

3.4 Representation of States and Actions

A unique and stable identifier must be assigned to each state and action to

facilitate their recognition and comparison. This can be achieved by using the

64 CHAPTER 3. TESTAR

attribute or property values associated with each widget in the widget tree of
a specific state s. A concrete identifier is obtained if all properties are used.
However, it is not necessary to use all properties; instead, a subset can be
selected to create abstract identifiers.

A concrete state encompasses all widgets and their properties, capturing the
precise status of the SUT. In contrast, an abstract state refers to a high-level
representation that simplifies this information by focusing on a relevant subset of
properties.

To illustrate this concept of abstraction, consider that concrete actions can
be Press key 'q" or Press key 'w’ while both actions are represented abstractly
as Press key. Hence, certain actions may be considered equivalent and can be
executed interchangeably. In the case of pressing a key, the specific key that is
pressed may not be important at a high level of abstraction. Similarly, an abstract
state depends on the attributes selected from each widget.

When selecting properties for the identifier, it is important to ensure they are
relatively stable. For example, a window's title is quite often not a stable value
(opening new documents in a text editor will change the title of the main window),
whereas its help text is less likely to change. However, the role is a more stable
property.

To identify a GUI state s, all widgets w € W(s) are considered, and a subset
ABS_pProp of stable properties is selected from the complete set of properties of
all widgets on the screen. This subset ABS_prop defines what is referred to as
an abstraction function PaAgs prop(w, s) € P(w, s), such that:

PABS prop(W.s) = {w.p | w & W(s) A p € ABS_pror}

The abstraction function is configurable in the test settings of TESTAR. By default,
ABS_pror is defined as role, title, position, enabled.

A hash value generated from these properties is stored instead to manage
the potentially large number of property values. TESTAR recursively calculates
a unique hash for each widget based on the concatenation of the mentioned
attributes. It then combines the hashes for the widgets and uses them to calculate

the unique hash for the state. Of course, this could lead to collisions. However,

35, EVALUATE THE NEW STATES TO FIND FAILURES (ORACLES) 65

for the sake of simplicity, it is assumed that this scenario is unlikely and does
not significantly impact the optimisation process.

The same approach can be applied to represent actions. However, each action
type may have parameters. For example, a click action has two parameters:
the button (e.g, left or right) and the clicking position (x and y coordinates).
Action identifiers need to also take these parameters into account. The method
of calculation is as follows: for an action identifier, for an action identifier, TESTAR
uses the identifier of the current state and concatenates it with a hash generated
from the details of the action. These details include the mouse cursor position,
the key typed, and other relevant information. A unique hash is then computed
based on this concatenation.

For example, to create a unique identifier for a button click, a combination of
the button's property values can be used, such as its role, title, help text, or its
path within the widget hierarchy. To create a unique identifier for a text field, if
the action identifier incorporates the entered text, the action that types the text

foo will have a different identifier from the action that types boo.

3.5 Evaluate the new states to find failures (oracles)

A test oracle is a mechanism that distinguishes between a passed or failed test
case. As explained in the previous section, scriptless testing generates the test
sequence one step at a time during execution. The test oracles verify each state
visited. This means that TESTAR oracles assign verdicts to states, referred to as
online or on-the-fly state oracles. Without specifying anything, TESTAR can detect
the violation of general-purpose system requirements or implicit oracles, like
those stating that the system should not:

e crash, i.e. an unexpected close,

e freeze, Le. get in an unresponsive state,

e contain any suspicious titles in any of the GUI widgets. *
Suspicious titles can be easily specified using regular expressions, as shown in

Example 3.4.

4In newer versions, these are referred to as "suspicious tags

06 CHAPTER 3. TESTAR

SuspiciousTitles = .*[eE]lrror.*
| .*x[eE]xception.*

Example 3.4: Regular expression for suspicious titles

When this oracle is active, each state s visited during the generation of the test
sequence is checked to determine whether the patterns defined by the regular
expression of the suspicious titles appear in the widgets composing W(s). A good
example from web testing could be defining the HTML error codes in suspicious

titles to detect dead links that throw 404 Not Found error.

TESTAR also allows the user to define more sophisticated application-specific
test oracles programmatically in the SUT-specific TESTAR protocol in Java code.
Considering an example that checks for a security vulnerability, the OWASP?>
lists a vulnerability for Information exposure through query strings in url. When
sensitive data is passed to parameters in the URL, attackers can easily obtain
sensitive information such as usernames, passwords, tokens (authX), database
details, and other confidential data. This vulnerability cannot be resolved simply
by using HTTPS; instead, sensitive data should be prevented from appearing in

the URL. Example 3.5 shows an oracle capable of detecting these vulnerabilities.

In line 1, a variable inputTextData is defined to store all text entered into
text fields during executing actions (lines 3-6) to create test sequences. The
oracle (lines 10-14) checks in each state whether elements from inputTextData
are exposed in the current URL of the SUT.

Besides the online state oracles, TESTAR can also interact with the process of
desktop applications, listening to the buffers of its process in the System output
and Error output of the operating system. This enables the tester also to define
buffer oracles enable to find suspicious output coming from the processes, similar
in the way that it checks suspicious titles. Moreover, the output of the processes

is stored in logs for subsequent offline manual inspection to identify anomalies.

50pen Web Application Security Project, https://www.owasp.org

https://www.owasp.org

3.6. RUNTIME EXECUTION AND MODES 67

Set<String> inputTextData = new HashSet<>();

method executeAction(Action action){
if (action.get(Tags.Role).equals("clickTypeInto")){
// Save the inputted texzt into the set inputTeztData
6 inputTextData.add(action.get(Tags.Desc));

0 method getVerdict(State state){
| for(String dataText : inputTextData){
if (state.get (WebTags.Href) .contains(dataText)){
return new Verdict(Verdict.SEVERITY_WARNING,
"Be careful with sensitive information and HTTP GET method");

Example 3.5: Programmatic Java oracle

3.6 Runtime execution and modes

The entry point of the TESTAR Java runtime process is the Main class. This class
has access to the test.settings configurations file, defined by the tester. Be-
sides settings like number of sequences, number of actions and Suspicious
Titles, the testers can define their own specific TESTAR protocol class that needs
to be used for testing. This can be specific for a SUT, a kind of test or just for the
tester.

A TESTAR protocol is a Java class that is responsible for executing the different
parts of the test sequence loop as depicted in Figure 3.1. The code in the protocol
class gets compiled at runtime. The SUT-, test- or tester- specific TESTAR protocols
are at the bottom of an inheritance tree as shown in Figure 3.6.

The Desktop and the WebdriverProtocol add a default implementation for
specific platforms. Action filtering as it will be explained in Section 3.9 is done

68 CHAPTER 3. TESTAR

. Defines the Testar testing cycle \\\

1

1 1

' (AbstractProtocol) X ~ -

! + getState(): State H— Platform Specific Protocols

! + deriveActions(State): Action[] :

' + selectAction(State, Action[]): Action B WebdriverProtocol

1 + executeAction(State, Action): Boolean 1

1 + getVerdict(State): Verdict :

' \ DesktopProtocol

: :

: [RuntimeControlsProtocol L? : T

\ 1

N L (SUT-, Test- or Tester- Specific Protocols h
sTTTTo T o mmmmmsmsmsmssss oo SUT1

)/ Platform Independent Protocols

! SuUT2

: | DefaultProtocol TEST1

]

! TEST2

' | ClickFilterLayoutProtocol

]

\

Figure 3.6: Layers of the different TESTAR protocols

by the The ClickFilterLayerProtocol class.

The DefaultProtocol class is the class that contains all the code that actually
executes the test sequences. It implements the interface as defined in the Ab-
stractProtocol class that contains methods for executing the different parts of the
test sequence loop (conform Figure 3.1 and the previous four sections):

e getState() (from Section 3.1),

e deriveActions() (from Section 3.2),

e selectAction() and executeAction() (from Section 3.3),
e getVerdict() (from Section 3.5).

Finally, the RuntimeControlsProtocol class offers controls that allow for the
manipulation of TESTAR's runtime modes during execution. There are currently

four modes of runtime execution:

e The spy mode can be used to inspect the widgets of the SUT and see all

37. TEST RESULTS 69

the information that TESTAR can extract. In this mode, actions can be filtered

(see Section 3.9).
e In GENERATE mode the test cycle depicted in Figure 3.1 is executed.

e The RECORD mode can be used to manually interact with the SUT and store

the actions into test sequences.

e The REPLAY mode permits replaying an existing test sequence.

This flexible architecture allows the addition of new Action Selection Mecha-
nisms (ASM) by implementing the ActionSelector interface (see Figure 3.7). The
most used ASM is Random (RND) [118,119]: arbitrarily selecting one action out
of all possible actions in the current state. Another known ASM is Least executed
actions (LEA) [120], or the frequency-based algorithm [121] using Q-learning, se-

lecting the least explored actions from the current state.

U: .
Testar Protocol =/ «interface»
ActionSelector
+ getState(): State + selectAction: Action

+ deriveActions(State): Action[]

+ selectAction(State, Action[]): Action Extends Extends
+ executeAction(State, Action): Boolean
+ getVerdict(State): Verdict Random LEA

Figure 3.7: Extending TESTAR with different ASMs.

3.7 Test Results

As explained in previous sections, a TESTAR run results in a specified number of
test sequences with a specified number of actions that have been executed. For
each of the resulting sequences, the following information is saved in a directory
with a name composed of a timestamp and the name of the SUT:
e Logs that include all the executed actions, the target widget and the dif-
ferent states of the test sequence, as well as a timestamp that can help

synchronise results with other applications.

70 CHAPTER 3. TESTAR

e Screenshot images that capture the GUI state after each action in a se-
quence. For this, the coordinates of the states and widgets obtained through
the APl are used.

e HTML reports to help users follow the flow of executed actions. They
combine the API textual information and the visual screenshots to display
the different sequences.

e Sequences replayable by TESTAR in REPLAY mode (.testar format). These
sequences are classified in directories according to the final verdict ob-
tained from the defined oracles (L.e. unexpected close, unresponsive, sus-
picious titles). These sequences consist of a Java object stream that saves
the object information of states, actions and widgets.

All the results of a TESTAR run are saved in a directory with a name composed
of a timestamp and the name of the SUT. An index log is created during the
first TESTAR run and is updated with each sequence execution. This index is
particularly useful for supporting the integration and synchronisation of TESTAR
with other applications. Timestamps can be used to locate all TESTAR sequences
by navigating to the directory with the corresponding timestamp (see Figure 3.8).

Index.log Sequence Results
Timestamp + sequence + results Logs + Screenshots + HTML report + Sequences.testar

2 5 4)
Index {t,s,r} ---}----tp Timestamp run + Sequence { D

Index {t,s,r} ---{-----tp Timestamp run + Sequence { D @
------- ----F\--------------b 000 J
4 N
Index {t,s,r} ---|---1_|p Timestamp run + Sequence { D @
Index {t,s,r} ---1---4-1p Timestamp run + Sequence { D @
------- == --------------->b 000 J
Index {t,s, 1} ----}--- 5[000]

Figure 3.8: Output Structure for Test Results

38 ADVANCED DERIVE ACTIONS 71
3.8 Advanced Derive Actions

As explained in Section 3.2, after obtaining the GUI's current state, a set of actions
can be derived, from which one will be selected. It is important to note that the
larger the set of available actions, the greater the sequence space, which can

increase the time required to search for crashes.

Ideally, the selection should be limited to a small set of actions most likely to
expose faults. Therefore, the challenge is to keep the search space as small as

possible while ensuring it is sufficiently large to find faults.

Deriving sensible actions: This strategy involves generating a set of sensible
actions, ensuring that the actions are appropriate for the widgets on which they
are executed: buttons should be clicked, scrollbars should be dragged and text
boxes should be filled with text. Furthermore, the focus is on exercising only
those widgets that are enabled and not blocked. For example, in a window that is
blocked by a message box, it would not make sense to click on any widget behind
the message box. Since the box blocks the input, it is unlikely that any event
handling code (with potential faults) will be invoked. Putting more intelligence
into action derivation will reduce the likelthood of selecting uninteresting actions

during the action selection process.

Deriving top-level actions: Widgets at the top of the layout hierarchy are
more likely to lead to actions that trigger state transitions. Elements such as
menus or emerging windows within the SUT typically contain and are designed
to facilitate the functional flow of the application. To favour top actions, TESTAR
implements a prioritisation approach based on an internally defined property
called z-index. The z-index of widgets presents their position in the stack of
windows. The window with the highest z-index is on top. This gives the possibility

of deriving actions from top-level widgets.

Deriving new actions: Another prioritisation approach for faster GUI explo-
ration is comparing the available actions in the current state and the previous
state to detect which are new. Suppose an action requires multiple steps, such as
opening the File menu and selecting a menu item. In that case, this prioritisation

increases the likelihood of triggering new actions after opening the File menu.

72 CHAPTER 3. TESTAR

3.9 Filter Actions

Besides telling TESTAR the actions it can do, it is also important to tell what
it should not do. Action filters can be defined for this purpose. Letting TESTAR
randomly interact with widgets on a GUI could trigger hazardous operations like
deleting or overwriting files, possibly damaging the operating system. A way
to safequard this is simply running test monkeys in a safe environment, like a
virtual machine that can be easily recovered or a sandbox. Filtering actionable
widgets remains helpful to ensure the focus is on actions contributing to testing
the SUT. For example, actions that minimise/maximise a window, close the SUT
or open a Help menu that goes to a website outside the SUT are not interesting
for testing. Filtering those will reduce the search space and save time during the
test execution.

Action filters can also define specific areas for scriptless testing, such as
filtering different menu options or directing the tool to test a particular area of
the SUT. Action filtering with TESTAR can be performed in three different ways,
each of which will be discussed next.

Filtering with reqgular expressions. Similarly to using regular expressions for
defining oracles to detect suspicious titles (see Example 3.4), regular expressions
can also be used to filter widgets whose titles match a specified pattern. For

example:

WidgetTitleFilter = .*[cC]lose.x*
.*[mM]inimi[zs]e.*

.*[sS]ave.*

.*[pP]rint.*

Example 3.6: Regular expression to filter widgets

When this filter is active, in each state s visited while generating the test se-
quence, the title property w.title of all widgets w € W/(s) are matched against
the regular expression. Actions on that widget will not be considered in case of a

match. The WidgetTitleFilter mentioned above serves as a general-purpose

39 FILTER ACTIONS 73

filter pattern that applies to almost all SUTs. It prevents actions such as closing
or minimising the application under test, saving files that could lead to hazardous

outcomes, and accessing the system'’s print menu for printing documents.

Using the click-filter. TEsSTAR click-filter functionality allows testers to filter
widgets just by clicking on them through the GUI of the SUT during spy-mode.
The filtered widgets are stored in a blocklist, rendering them non-actionable,
meaning no actions will be derived for them. Filtering of widgets can be undone
in the same manner, even if the filtering was performed using a regular expression

match.

Accurate filtering relies on the uniqueness of the abstract identifiers, as de-
tailed in Section 3.2. Selecting the right level of abstraction and precision is
important to guarantee uniqueness. For example, consider an OK button: if the
role (Le. button) and title (Le. OK) properties are used for the abstract identi-
fier, it would result in filtering all OK buttons across all the states of the SUT.
Including the path property would make the filtering more precise, and the path
of the button in the widget tree will most likely differ across different states.

Programmatic filtering. The third and most flexible way to filter actions
is by programming the desired behaviour in the SUT-, test- or tester- specific
TESTAR Java protocol. In some SUTs, the configured set of properties may not be
sufficient for proper filtering of the existing widgets, for example, because they
use a different set of accessibility properties. Then, programmatic filtering is the
best option.

TESTAR allows customising all methods within its execution flow, enabling users

to define specific action filtering based on the appropriate properties.

For example, in web applications, specific properties, such as href, helpText,
or class, can be particularly useful for filtering widgets. In the deriveActions()
function of a specific TESTAR protocol, actions can be filtered based on custom
conditions. For instance, as demonstrated in Example 3.7, widgets with undesired

URLs in their href tag property can be excluded from action generation.

74 CHAPTER 3. TESTAR

for (widget: state)
2 if (widget.get(WebTags.Href).contains("Undesired-URL"))
continue; // skip this widget
else

// derive actions as defined

Example 3.7: Filtering widgets programmatically

3.9.1 Comparison of Scriptless GUI Testing Tools

This section provides a comparison between existing scriptless GUI testing tools,
highlighting the main differences. The tools included in the comparison were
selected based on the following criterion: they must be scriptless testing tools
using dynamic analysis during automated GUI exploration.

Table 3.2 presents a detailed comparison of scriptless testing tools, summaris-
ing key aspects such as the implementation language, license, types of SUTs that
can be tested with the tools, methods of ASMs during test sequence generation,
models used or inferred during testing, oracles employed for fault detection, and
actions considered as components for the sequences.

Most of the compared tools are implemented in Java. This predominance
might be due to the well-established Java libraries for GUI handling and their
ability to run across multiple platforms. Similarly, the majority of the tools are
currently open source. The tools differ substantially in the types of SUT they
target. Murphy, for instance, is specific to Windows applications, whereas GUI
Driver and Augusto focus primarily on Java-based GUIs. By comparison, TESTAR
provide broader support (Windows, Web and Java) with respect to the other tools.
This flexibility better accommodates organisations and researchers working with
heterogeneous technology stacks, as it removes the need to switch tools when

testing different types of software.

75

39 FILTER ACTIONS

Xnury
.m>>0_ur:.>>
1IN
SUO1JR)0IA UO01}ISSSe sontadoid suonoe xa)dwod ‘(buimg (10359 Ved)
‘suonydadxe jybneoun 19bpm 'ydeib ‘nduy 1x9) 19poW WMUL)eg 19359 IMS jeuonpung N 1sappelg
‘sbuey ‘saysel) MO]} JUdAD |ND ‘SY21)2 asno|y 91L)S T ‘Wopuey jeuodund NG| [MY) eaef Wgl) SO ‘ene(-ony
sonadoid suoie xedwiod (bumg (19359]
syney buiysein-uou 19bpm ‘ydeib ndun 1xo) pasec-japouu 19)59] IMS 1euonduny loz1]
'S91PL.I0 1eU0NIUN MO} JUIAD |ND) 'SYP12 asnojy pue jsiy-tpdea jeuonduNy NGl IMY) eref Wl SO eae[orsnbny
(0
Ayneissenoy uadQ)
m_ﬂmu_.ﬁ_cr:w‘_ﬁuo‘_ﬁ_ SJUoA9 ONN .‘,®>_.‘_Qﬁ_m>> ONN ,n_®>>
BEINIEYCIEIS ydeib Aaeagqn-|dy s1ebbiuy 9)qeinbyuod ‘Amaisseddy I MS eaef l67]
‘sat|se) MO} JUIAD |ND) IND 9joAu| ‘paseq-japouw ydeary eaef ‘)4[eaef SO eAel ¥VLIND
a1qewwesboud suondo
‘s10419 Sf/d11H uonpelsqe 93eys sonsunay Indu ysed
‘sayseld ‘sadualalip 9)dinw ‘uojewoine X9} 'buntanoy Js91oys sensyh [cz1]
19SMO.(-550.17) 91e)s a4 'SYPND asnojy ‘1epowr ajes buriiajul 19O [CCIYR SIS VN 91ewqap
uoyng-3oeq
JUAISISUOOUN
'salqeP [vei]
peap 'siolie sa1e1s NO(d Auo wypiobje VSNLY
ap1s-1ontasfiuan) jo ydelb mojj-9ie1g suone Y1) syped jsoyioys EEINITGEIY oM SO eaef /xefimes)
suosues) 19pou
sindno wayshs w1 eyep ‘uondedysqe ojun painyded suooe (bumg lez1]
U1 s1019 ‘suondadxe 9)e)s auyap suonoe ndu 3xa3 19sn ‘paseq-japowl fAueaqn IMS EEVNITq]
'S97991} 'sat|sel) 'sydelb arerg 'SYP12 asnojy 91e)s ‘Wopuey eaef Awwaf ‘| ANY) eaef vN eaef no
s1abbiy
S91L)S Wo.ly a)qewwesboud uomubodal
91qewwesboud pajoelisge sanjea ndu 3xa3 ‘paseq-1apouw abeun [zz1]
'S9Z991} 'saysel) elep ‘sydelb aye1g ‘SY21)2 asno|y 91e)s ‘wopuey ‘uonewoiny|n SMOPUIA SO uoyihg hydinpy
SJUoA9
a)qewwesboud pleoqhay buuiea)-0) (X4 ‘buimg
‘so1uadoud sontadoid ‘doap-pue-belp ‘paseq-1apouw abpug ssaooy IMS LMY
1obpm snomidsns 3obpim a)qeinbyuod ‘ndun 1x9) ‘9)qewwelbold eAe[USALIC|GIAN eAe[‘I
'S9Z991} 'saysel) 'sydesb aje)g ‘SY21)2 asnoy ‘wopuey ‘uonewoiny|n 'SMOPUIAN SO ere[¥YVIS3IL
sapeIQ 20UdIBJU| 19PON suondy |ND U01)29)9G U0NIY saueaqry |ND sadh] NS asuao] dwy 100]

51003 1230 YyNM uostiedwod dvisal g’ dqe]

76 CHAPTER 3. TESTAR

Random exploration constitutes a baseline method, augmented in various tools
by state-based models (GUI Driver, Murphy, Crawljax) and advanced algorithms
(K shortest path in Crawljax and Dijkstra’s in Webmate). TESTAR and Murphy fur-
ther support programmable triggers for higher customizability. Moreover, TESTAR
and AutoBlackTest use Reinforcement Learning for action selection, with a reward
function designed to encourage exploration of less-frequent actions. In practice,
this means each action gains a higher reward the less often it has been executed,
aiming to steer the exploration towards rarely visited states.

While all tools include basic mouse clicks and text input capabilities, there
is a variation in the complexity of supported actions. TESTAR, Murphy and Au-
toBlackTest incorporate dragging, dropping or keyboard events in addition to
standard interactions. Furthermore, most tools construct some representation of
the state, typically in the form of a state or event-flow graph. These represen-
tations capture transitions triggered by GUI events. While abstraction methods
differ (for instance, Murphy and GUI Driver encode data values or abstract prop-
erties, whereas Webmate and TEsSTAR offer multiple levels of state abstraction), the
consensus is clear: some form of model inference is incorporated to the scriptless
GUI testing approach.

Finally, the oracle mechanisms (to detect faults) consistently check for crit-
ical issues such as crashes, exceptions and freezes. TESTAR also allow for pro-
grammable extensions, enabling verification of specific domain properties or sus-
picious GUI elements. Although every solution supports fundamental crash/error
detection, the exact scope and sophistication of these oracles vary, leaving room
for further research into more comprehensive, automated, or domain-tailored cor-

rectness checks.

3.10 Industrial case studies involving TESTAR

The successful transfer of academic results into industry is important. On the one
hand, academic research activities should be guided more towards the challenges
of industry and solutions to their immediate problems. On the other hand, industry

practitioners should help academics validate their research results within a real

3.10. INDUSTRIAL CASE STUDIES INVOLVING TESTAR 77

industrial context. Technology transfer has always been on the top priority list
of the TESTAR project and remains to be. This section summarises collaboration

projects that have been successfully executed over the years.

All studies are case-driven and executed following the Methodological Frame-
work for Evaluating Testing Techniques and Tools (MFEST?) described in [128].
The need for this framework emerged during the execution of the EU-funded
project EvoTest (IST-33472, 2007-2009, [129)) and continued emerging during the
EU-funded project FITTEST (ICT-257574, 2010-2013, [130)). The framework con-
forms to the well-known and general guidelines and checklist from case study
research [131-134], but has been made specific for evaluating software testing

treatments.

MFEST? outlines different scenarios for conducting and evaluating studies,
with increasing dependence on the available information for comparison. Sce-
nario 1 consists of only a qualitative assessment, with insufficient information
for direct comparison. In this scenario, the number of faults is unknown, error
injection is not feasible, and no documentation exists to compare it with other
testing techniques or establish a company baseline. Despite these limitations,
measurements of effectiveness, efficiency, and subjective satisfaction are collected
through semi-structured interviews. Scenario 2 builds on Scenario 1 by incor-
porating some quantitative analysis, made possible through the availability of a
company baseline for comparison. Scenario 3 extends Scenario 1 or 2 by in-
cluding a quantitative analysis of the Fault Detection Rate (FDR), leveraging
access to a known set of faults, whether injected or naturally occurring. Scenario
4 includes the elements of Scenario 1 or 2 and adds a quantitative comparison
between the test cases generated by the evaluated approach and those in an
existing test suite. Scenario 5 builds on Scenario 4 by incorporating the FDR
of the different test suites. Two additional scenarios are described in [128], but
these types of studies have not yet been conducted with TESTAR.

In [128], numerous metrics are defined to address research questions related to
test effectiveness, efficiency, and subjective satisfaction. The metrics employed in
TESTAR studies are listed and numbered in Table 3.3, facilitating cross-referencing

with Table 3.4, which provides a summary of the executed case studies.

78 CHAPTER 3. TESTAR

Table 3.3: Metrics from [128] used in the TESTAR studies.

Effectiveness Efficiency Subjective Satisfaction
1. Number of failures 1. Time needed to design the test suites. 1. Reaction cards

2. Code coverage 2. Time needed to run 2. Informal interview

3. Functional test coverage 3. Lines Of Code (LOC) for setup 3. Face questionnaires
4. Number of false positives 4. Time needed for post analysis

5. Reproducibility

6. Impact or severity of faults

In Table 3.4, the GUI testing-column describes how GUI testing was done
before the case started (M meaning manual, and CR meaning using Capture &
Replay). The scenario-column refers to the scenarios from MFEST? described
above. The context/subject-column mentions the project in which the study was
carried out and indicates how many academics (aca) and how many industrialists
(ind) participated. The numbers in the "effectiveness, efficiency, and subjective
satisfaction”- columns correspond to those in Table 3.3. These industrial case
studies covered different contexts, providing a comprehensive understanding of
TESTAR's capabilities.

TESTAR's learnability varied depending on the context and prior expertise of
the testers. Across studies, the early stages of using TESTAR, such as configuring
its basic settings and employing predefined oracles (e.g., regular expressions for
fault detection), were straightforward. However, challenges emerged when testers
attempted to delve deeper into TESTAR's advanced functionalities. For instance, in
the SOFTEAM study [55], testers required significant training to configure more
sophisticated oracles and effective setup action sets.

Interestingly, the enthusiasm for learning TESTAR seemed to grow as testers
gained more confidence in its capabilities. During the SOFTEAM study, testers
reported a deeper understanding of TESTAR's potential after one month of hands-on
training. However, they emphasised the need for more detailed manuals tailored
to industrial testers without advanced programming skills. Similarly, the itera-
tive development process in the Clave study [57] allowed testers to progressively
improve their understanding of TESTAR's customisation options, creating more pow-

erful and context-specific oracles.

79

‘abe
-19A02 159} bunnoadun apym s)s0d dduUeULIIIRW
9onpaJ pue Hunsey ssapdins ajenjers 0y sem
jeob ay| ‘sebed jeuteixe buipone 'sTyn pue
suewop pajysianym o3 buisay pulsal 03 pue
's40d Se Yons 'sadinosal jo SUoIsualxe apn
-X9 0] PapuaIXe sem 1030301d J19ALIPGIAN SVLISIL

, ,
| |
[(pur
e ee 7))
| IVWOLS3L |

L

(eb1e)

dueg AN
Jhaany

‘91q1npoud
-a. Jou sem ainyiey auQ hnuanas ybiy pajels e
10119 U01JLIIPOW JUSLINDUOD pue ‘Jnej jeuon
-ouny ,:DZQ@UX& ‘,mvuf:.On_ Nnnu “papnpu sadnpe4
‘9beian0d Jeuopuny %08 Ynm ‘bunse) jenueuw
fAq pajejepun sainney bupuy ‘(suonoe |g0'ge
pue sedouanbas z@|) Sinoy |/ 10} uel wvis3L

| |
| |
| |
| |
| |
I (pur ¢ "ede

1L AdN NO |

S

(ebae7)
Netoiq pue
(obae) 1
-wan de)

‘umoujun Aysnowalid syney jenid
0l po1elep dviSIL 'SI0id Jo uoisusayaidwiod
pue uononpoudas ‘uonpadsin ho) jenuew oy
papaau sayNIW OO YNM ‘sinoy| gz 300} dnjag

| |
| |
1 (pw1z e

1) dIHS |

L

(aws)
19A81)

'syney om) Aq pasned seduanbas
ainey |z buioajep ‘(suonde ooz jo seduanbas
0€ Jo uoneinbyuod e pue jod030.4d UO1}I9IAS WOP
-ued r_t>>' spnnqg Iﬁr_@_: { 19A0 sunoy 7| Joj uel
AvLsaL syuaunsnlpe pannbai | ojun uonesbaju|

| |
| (pun

| € el)

L

(3ws)
dojanap-o.y

‘awny bunysay jenuew buaes ‘uodalap
}ney pue abelanod 19139q dAIYOR PIN0d UVISIL
panaraq syalgns ‘sajoelo pue uo13291as uode jo
UONRZIWOISND YNAA 'SIS9} Jenuew ynm oaazad
-Wod a1om ¥vLsiL hq pajelsuab s)se) pajewoiny

I LVYWOLS3L |
| |
| |
| |
| (pu1 7 'ede |

112 1S3LL4

S

(eb1e)
weanjog

oo

A

D
@
o

S
ya(/%
oV

o

ol

N
IS
@

INDUSTRIAL CASE STUDIES INVOLVING TESTAR

SIHEEN

Apmg uonenjeay

3.10.

S9IPNIG 9se)) AVISIL :f°E dqe|

CHAPTER 3. TESTAR

80

T T T T T T
"9pod [[[[! !
jeuomppe buitanod pue sydins bunsixe bunuaw | | | | | | (so
-91dwod ‘uonewolne 3s9) paidids paydjew pue | | | (pur ¢ ‘ede | | | 'Proipuy)
abe1ar0d U1 5100} ssaidins Jayjo pautiopading I I ezl ol 1 b)) SAAAIL ¥ N | - aNqolN DNI
'syi0dau 3593 bunenjess ur auny alow h h h h h h
Spaau ¥VISIL pue sased }s9) buneald 1oy awny | | | | | |
910W SPadU WMULYRG 'SNe} ssadoid uy wmu | | | | | |
-9)9G pue ‘9beianod JuaAd by pae uondalep | | | | | |
nney |ND W bujedxe wvisaL ypm ‘Aiejuswerd | | | (pur g ‘ede | | |
-Wo0d a1em $100} Lpog ‘saypeoidde bunysey (wmu | | 9 12 SAMI | (9L9)
-910G) padhios pue (uvisat) ssenchos paseduwo) [I A () HUXPM | cIpeaymqrosene(| qop | soweuhg-3
t t t t t
"u01a3ap J)ney bunoud | | | | | |
-un Joy seo1poedd Jualind naiyy 0} Auejusweidwod | | | | | |
se ¥visaL mes huedwod ay| payads hyjeuory | | | | | |
-dUNJ JoU Sem UD1ym 1011pa tew ayy buiziwnuw | | | (pnz 'ede | | Glove) | dopiseq
uaym suondedxe Jajuiod))NU pajeassl w¥VISIL 7 ' L (2ol (1) 1S3l Ll ¥ eaef | smopuip | (JINS) INBY
t t t t t t
"U015595 159) UNoy-auo e huwunp sanss) | | | | | |
OM) P9)2919p ¥VISIL 'SPIOM PIsNeI0] pajuem | | | (pur | | |
-un Jo 1s1) 9y} ynm uoissaddxs dejnbal e jsnl ing | | [Loeae) | |
'9pod jo saun) Aue aannbau jou pip sepel 'sain | | ECEINERN | | (3NS)
-l (| pue apod jo saul G¢ pannbai dneg 1 €T L o] dIHS | | W | - qaM eAouapu|
‘uonewoine 3s9) _Um«ﬁ_tum pue mcﬂmmu NS | h h A_ur:. h h h
jenuew hq passiw syney bupuy ‘sppng Apybiu | | | € el) 1 (NL<) | smopuia (obue)
jsuebe s)s9) buuund 1) oy pajelbajun wvisIL Z - 91| [09] | LYNOLSTL | L N | €A | PEpPPequ3 asstod
wéo& O/.yy& ua,v& //%v OB REIS @%) O o(oou
~o% W I\) 2 A Y @@) %o,, o
QO™ © wumw(/ QO /94®/ OF & AP \
&2 ~
S)NSaYy SO _wd_ujum uonenjeay x_rDm

3.10. INDUSTRIAL CASE STUDIES INVOLVING TESTAR 81

Regarding effectiveness, TESTAR consistently demonstrated its ability to ex-
plore diverse GUI paths and detect unique and valuable faults that other ap-
proaches, including manual testing and script testing tools like Selenium, did not
detect. For example, in the E-Dynamics study [63], TESTAR uncovered issues that
stemmed from unexpected application states and that were often less visible in
traditional testing scenarios. These faults reflected the tool's strength in explor-
ing paths that were less explored and identifying areas of the application that

may not receive sufficient attention during manual or scripted tests.

Furthermore, TESTAR's complementary nature to other techniques was empha-
sised. While scripted approaches (e.g. Selenium or Espresso tests) excelled in
verifying common use cases and process flows, TESTAR's exploratory nature en-
abled it to cover broader, less predictable aspects of the SUT. This complemen-
tarity underscores TESTAR's value in enhancing overall testing effectiveness when

integrated into a diverse test suite.

The efficiency of TESTAR is closely tied to its ability to automate test execution
with minimal manual intervention over time. In several studies, the initial setup
and configuration required significant manual effort, particularly in defining ora-
cles and refining action definitions. The Clave study [57] showed that this effort
was comparable to the time required for crafting manual test cases. Importantly,
once configured, TESTAR required minimal manual intervention during execution,
making it particularly resource-efficient in identifying critical issues with minimal

human effort.

The autonomous nature of TESTAR of executing tests unattended for extended
periods of time makes it especially suitable for integration into continuous in-
tegration pipelines, where it can complement other testing tools and methods.
These findings suggest that while the setup phase is labour-intensive, the long-
term benefits of TESTAR outweigh the initial costs, especially in environments with
frequent updates or large-scale GUIs.

Another insight of TESTAR's impact was its subjective satisfaction among testers.
Tester feedback across studies revealed mixed but generally positive perceptions
of TESTAR. Participants in the studies generally appreciated TESTAR's flexibility,

with many recognising its potential to uncover faults that traditional methods

82 CHAPTER 3. TESTAR

might overlook. However, concerns about its user-friendliness were recurrent,
particularly regarding the complexity of its configuration process and the techni-
cal expertise required to utilise its advanced features fully. Feedback suggested
that while TESTAR's exploratory approach was refreshing and effective, enhance-
ments in its reporting mechanisms and usability could significantly improve tester
satisfaction.

The industrial case studies collectively underscore the importance of itera-
tive learning in adopting scriptless GUI testing tools like TESTAR. The studies
also highlight the complementary role of TESTAR in augmenting traditional test-
ing practices, particularly in autonomously detecting state failures and exploring
untested paths without further manual intervention once finished the configura-
tion phase.

To try to generalise the results of these case-based studies, an architectural
analogy [66] can be used. This requires describing the architecture of the cases,
i.e. components with interactions, such as the systems, the people and their roles.
The architectural model for TESTAR (depicted in Figure 3.9) was developed based
on the insights gained from the industrial case studies, ensuring that it reflects

the practical realities of integrating TESTAR into diverse testing environments.

At the highest level, the testing environment with TESTAR can be viewed as an
interconnected system of actors and components. The system context shows four
key actors: Clients, Developers, and Testers. In some case studies, researchers
can also fill the tester role.

Clients interact directly with the SUT by using it or providing requirements
and feedback. If they encounter issues, they can report them to be processed by
the Bug Tracking System. Developers implement and maintain the SUT, relying
on bug reports from the Bug Tracking System to identify and address defects.
Testers manage the Test Environment by planning, executing, and evaluating
tests. They also configure and provide domain knowledge to TESTAR, interpret
outputs, and report any defects discovered to the Bug Tracking System. This
high-level view illustrates how TESTAR integrates into existing testing workflows,
particularly the need for collaboration among these actors to continuously im-
prove the SUT.

3.10. INDUSTRIAL CASE STUDIES INVOLVING TESTAR 83

Testers
<<Person>>

Clients
<<Person>>

Developers
<<Person>>

Implement and maintain
the SUT

Implement / | Bugs | Report:
Maintain 1 tofix s bugs |
'

Manage |} Test Set up

Interaction

Bug Tracking System Test Execution <<Container>>

<<Software System>> <<Container>>

Manages bug reports Schedules and runs tests Performs test actions on
' Action
Exploration

SuT Test Strategy e m—

<<Software System>> <<Container>>

Decides navigation and

- System Under Test Stores test strategies .
actions

1 Checks

Test Environment correctness
v

[Container]

,,,,,,,,,,,,,,,,,,,,, / Oracles '
<< iner>>
---------------------------------- Container: Stores State |
and Action !
Checks faults o !
:Stores H
Reports test results Test Results | faults i
and metrics <<Container>> '
'
'
Generates Testar Test P '
| Reports, calculates metrics !
1
| Testar |
(Cc
Executes tests ‘\[fjf"f[777777777777777777777777777 J

Figure 3.9: Similar components and interactions of the cases for generalisation through
architectural analogy

Examining the architecture at a more detailed level reveals the specific con-
tatners comprising the Test Environment and TESTAR. The existing Test Environ-
ment is composed of two main containers that structure how tests are defined
and executed. Test Strategy defines testing methodologies and strategies, guid-
ing manual and automated tests. Test Execution schedules and runs tests.

Within TESTAR, four main containers handle different aspects of testing. The
Interaction container manages how TESTAR performs test actions on the SUT. The
Exploration container decides the navigation paths and actions taken during test-
ing. The Oracles evaluates the SUT's state against fault-detection rules, helping
identify unexpected behaviour. The Test Results container compiles reports and

84 CHAPTER 3. TESTAR

calculates metrics. These findings are shared with the testers, who will inform the
Bug Tracker System if any new bug is encountered. Testers might also use the
test results to optimise TESTAR in future iterations, ensuring continuous improve-
ment. These components enabled TESTAR to detect faults related to unexpected
application states. This container view shows how the test artefacts flow be-
tween components and how TESTAR's automated testing capabilities complement
the existing test infrastructure.

These industrial case studies highlight the practical applicability and effec-
tiveness of TESTAR in diverse real-world settings. However, a crucial aspect of
these studies was the process of setting up TEsTAR for the SUT. Establishing
this process in a structured and systematic manner ensures that the tool can be

effectively integrated into existing testing workflows while minimising overhead.

Figure 3.10 captures TESTAR's iterative learning process by breaking it down
into four key phases: Planning, Implementation, Testing, and Evaluation. These
phases provide a generic framework that can be tailored to suit the unique re-
quirements of each industrial case study. This iterative approach underscores the
gradual learning curve where testers require ongoing refinement and feedback
to achieve optimal results. The connection between TESTAR's test artefacts and
the test environment, as shown in the container diagram, supports the iterative
learning process, allowing testers to integrate lessons learned into future test

sessions.

Planning Phase. The first phase involves setting up the technical environment,
including the installation and configuration of TEsTAR and the necessary compo-
nents to interact with the SUT. Key configurations included defining the SUT by
specifying the execution method (e.g., a URL for web applications or an executable
path for desktop applications), setting up any login or initialisation procedures,
and configuring the environment such as browser settings or operating system
details (e.g., Windows). Additionally, during this phase, the tester must anticipate
and define potential faults that the system might encounter.

Implementation Phase. In the second phase, the focus shifts towards implement-
ing the configurations and customisations necessary for TESTAR to carry out the

tests effectively.

3.10. INDUSTRIAL CASE STUDIES INVOLVING TESTAR 85

Implementation Phase

1
| [
Setup technical Define potential| | Oracle Action Stopping Small-scale
() : >1 " environment faults] i Definition | criteria Tests
Start TESTAR Setup | |

verification of
small tests

77, Tests did not pass

Evaluation Phase

More Tests?
Identify and
Reproduce Analyse Test
Reports
Faults

Refine Test

Testing Phase

Run TESTAR :

End Testing Test Reports

Setup?, Yes ~
\X(O
oA

)

Figure 3.10: Generic Process for setting up TESTAR for automated scriptless testing.

First, Oracle Implementation is performed to ensure TESTAR can detect the
errors defined in the planning phase. This involves setting up oracles that monitor
the application’s behaviour and identify when a failure occurs. For example, TESTAR
can be configured to check for faults in the browser’s console log or to monitor
the response time of the web pages.

Next, the Action Definition Implementation involves refining the actions that
TESTAR could execute. Defining these actions helps TESTAR explore the application
and simulate user behaviour during testing. Additionally, the Stopping Crite-
ria are set to manage the limit of each test run, like the maximum number of
interactions.

Finally, the Testing Configuration Sub-phase is performed. Before proceeding
to full test execution, small-scale tests should be run to validate that the config-
urations made during the implementation phase behave as expected. These tests
ensure that the oracles, actions, and stopping criteria are functioning correctly.

The tester can ensure the basic setup is correct by running these small tests
before proceeding to a more comprehensive test run. If any configuration is-
sues are detected, they can be resolved during this sub-phase, saving time and

reducing the risk of faulty test executions during the full-scale run.

86 CHAPTER 3. TESTAR

Client Developer Tester

Bug Tracking Test

. TESTAR
Environment

System

e

1 Ll
1 1 L}
L L] ! I]
Ear/]] [!] 1
T '
par (loop) / ' 1 ' H
T f ' ! ' '
1 ! !] '
! 1
Uses ' : '
' ' . il 1
H '
Reports bugs j : 1
' ' ! ' '
Ll 1 ' [} 1
v 1 preneeemn ey '
' : i 1
1
: Implements / 1 : : 1
! Maintains | h ! !
' ' ' '
. \ Bugs to fix ! ' '
[T L R I !
' ' 1 i | '
1 1 1 Ll i
' ' ' ' !
'] ' 1 Manages '
1 1 ! [1
1 Ll . 1 1
! ! . : :
1 1 ' ' 1
' ' ' ' '
1 1 ! ! 1 1
' ' ' ! v ' '

1 1 1] N
' ' ' ' .
1 1 ' ! Sets up technical Planning
. H ' ' environment Phase
1 1 1]
! ' , . Defines potential
: : ' 1 faults
1 1 1 L] 1 1 |
l 1 1
. H loop ! ar \ A | ot
: : : 1 Configures K ' mplementatiort
[1 ! ! Interaction ! ! Phase
' e O ity T R, P
1 1 1 ! 1
'
: : : ' Defines Exploration 1
! ! . . Strategy !
1 1 1 [L
' ' ' ' .
1 ' ' : Implements Oracles
' B '
! ! . -
1 1 ' 1
. H . | Executes Tests Testing
! ! . , Phase
: : 1 1 Generates
. ! . , Test Reports
' f I I and Metrics
: : : : Evaluation
: : : T Reports test results PZ REl
1 1 ' ! and metrics 2
' : ' i
1 1 1 1
1 Ll 1 1
1 1 1 1
' i
T T

X X X X X

Figure 3.11: Iterative use of TESTAR in an industrial testing workflow.

3.10. INDUSTRIAL CASE STUDIES INVOLVING TESTAR 87

Testing Phase. With the configurations complete, the third phase runs the test
process. In this phase, TESTAR autonomously executes the defined actions and
monitors the web application for faults. This phase may be repeated several
times with different configurations to cover various test cases.

Evaluation Phase. After executing the test process, the Evaluation phase focuses
on analysing TESTAR's reports. These reports provide a detailed breakdown of the
actions performed, the system’s responses, and any detected faults.

The tester then investigates the most severe issues, reproduces problematic
sequences, and refines the test configuration based on the findings. This iter-
ative process ensures the test environment evolves with each run, improving its
coverage and fault detection capabilities in subsequent iterations.

The sequence diagram (Figure 3.11) provides a structured, time-ordered view
of how TESTAR integrates into typical industrial workflows, encapsulating its in-
teraction with the SUT, the Bug Tracking System, and the Test Environment. This
representation builds on the architectural analogy and the generic process for
setting up TESTAR. All these systems interact in parallel and over repeated cycles
as part of modern development practices.

Several key insights from the industrial case studies are highlighted in the
sequence diagram. It emphasises the iterative learning process where TESTAR
undergoes continuous refinement with each execution cycle. These industrial
studies demonstrated how repeated iterations improved oracles and exploratory
behaviour, making TESTAR progressively more effective.

The diagram also showcases how TESTAR automatically executes tests by con-
tinuously interacting with the SUT, allowing bug tracking and software improve-
ments to occur in parallel. This aligns with modern software development method-
ologies, particularly in continuous integration environments where automated
testing runs alongside development activities.

These industrial case studies collectively illustrate the potential of TESTAR as
a scriptless GUI testing tool capable of enhancing traditional testing approaches.
While initial setup and configuration require some effort, the tool's ability to au-
tonomously explore diverse application states, detect critical faults, and comple-

ment scripted testing approaches demonstrates its long-term value. The insights

88 CHAPTER 3. TESTAR

gained from these studies highlight not only the challenges of adopting TESTAR
but also its strengths in scalability, fault detection, and integration into iterative

and continuous testing workflows.

3.11 Conclusions

This chapter provides a comprehensive overview of TESTAR, an automated script-
less testing tool designed to explore the graphical user interface (GUI) of a system
under test (SUT). The tool's key components and workflow were described, in-
cluding state identification, action derivation, action selection, and the application
of oracles for fault detection. With its modular architecture and flexible configu-
ration, TESTAR delivers an effective solution for GUI-based software testing across
diverse environments.

The practical relevance of TESTAR was demonstrated through industrial case
studies, highlighting its ability to complement existing testing practices and un-
cover edge failures. Additionally, the structured setup process presented in Sec-
tion 3.10 emphasises how TESTAR can be systematically integrated into various
testing workflows, making it suitable for continuous integration and regression
testing scenarios.

However, the industrial case studies also reveal challenges associated with
adopting TESTAR. These challenges served as motivation for creating the archi-
tectural analogy and the iterative process for setting up TESTAR, ensuring that the

tool can be more effectively deployed in different industrial contexts.

Inferring state models with TESTAR

"The purpose of abstraction is not to be vague, but to
create a new semantic level in which one can be

absolutely precise.”

Edsger W. Dijkstra, "The Humble Programmer’

This chapter presents an extension to TESTAR that enables state model infer-
ence during GUI exploration. This feature allows the creation of a map of the
SUT navigation and actions during testing. Initial steps toward this functionality
were described in previous work [10, 135] where models were used for offline
oracles (i.e, after testing) that consisted of querying the model for accessibility
information. However, the current work expands these capabilities for multiple

purposes:

e Enhancing TESTAR's Action Selection Mechanisms (ASMs) during and after

the model inference

e Defining offline oracles to compare models between different releases or

versions of a SUT

e Providing visual reference models for testers and users

89

90 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

e Supporting model-based GUI testing (MBGT) tools [136].

The integration of model inference capabilities is particularly valuable for
MBGT, which has seen limited adoption due to the expertise and effort required
for model creation [137] If even initial models can be inferred, these problems
may be (partially) solved.

While several approaches exist for inferring models during automated GUI
exploration (described in Section 4.1), most are academic prototypes or abandoned
open-source projects. State space explosion is still an open challenge for the
inference of state-based models through GUI. Most programs with a GUI have a
large number of possible states, and to make the size of the models manageable,
some information has to be abstracted away. It is challenging to define a suitable
level of abstraction and find an equilibrium between the necessary expressiveness
of the extracted models and the computational complexity [138].

Abstracting away too much information might make a model unsuitable for its
purpose (e.g., ASM, MBCT, oracles) and lose opportunities to discover faults and
changes between versions. Abstracting away too little information might result
in state space explosion, making the model less suitable for its purpose. Most of
the existing related work does not explain in sufficient detail how they deal with
the abstraction, raising questions about whether their solutions are generally
applicable or simply tailored for the applications used in validation.

The main contributions of the research that is contained in this chapter are:

e A description of the model inference functionality implemented into TESTAR.
e A novel algorithm for ASM based on the inferred model.

e An initial validation of the test effectiveness of the new ASM regarding code
coverage and reached states.

e An initial validation of the approach by experimenting with how various

abstraction mechanisms affect the inferred models.

The rest of the chapter is organised as follows. Section 4.1 presents related
work. Section 4.2 presents the approach used to infer state models, and their

4.1. RELATED WORK ON MODEL-BASED GUI TESTING 91

application for action selection and experiments on the test effectiveness of the
implemented ASM. Section 4.4.2 describes the experimentation to find out how
various abstraction mechanisms affect the inferred models. Section 4.5 analyses

the findings and challenges. Finally, Section 4.6 presents the main conclusions.

4.1 Related work on Model-based GUI testing

As mentioned in Chapter 1, Model-based GUI testing (MBGT) [136,139,140] gen-
erates test cases from a model. MBGT approaches require modelling the GUI and
its expected behaviour on a higher level of abstraction than the GUI itself. The
modelling language should be understandable by a tool that uses it to generate
tests automatically.

An advantage of this type of testing is that it is possible to precisely specify
the exact test specifications that a GUI should conform to. Another advantage is
that when the GUI changes, the test scripts do not have to be manually updated.
Instead, the model is updated, and the scripts/tests are generated again.

However, the main disadvantages are that MBGT approaches require a deep
knowledge of the application domain and expert knowledge of formal modelling
methods and languages to manually create a model of the GUI. Modelling also
requires quite a lot of time and effort.

To address these limitations, several approaches for automated GUI model
inference, also referred to as GUI ripping [37] or GUI reverse engineering [38],

have emerged. These can be categorised into three main types:

1. Static Analysis uses the program’s source code to infer a model of the
GUI'[27,28]. Static techniques concentrate only on the structure of the GUI,

not taking the runtime behaviour of the GUI into consideration in the model.

2. Dynamic Analysis approaches analyse the GUI while the system is running
[31]. APIs or libraries are used to automatically explore the GUI and get
access to all the GUI elements in a specific state of the application. To
create a model, these tools can recognise whether the application is in a

state that the tool has already visited before or whether the state is being

92 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

visited for the first time. Examples of tools using model inference through
dynamic analysis are GUITAR [29], GUI Driver [30], Crawljax [32], Extended
Ripper [141], GuiTam [142] and Murphy Tools [31].

3. Hybrid Approaches combines static and dynamic techniques [33-35], lever-
aging benefits of both techniques.

A critical challenge across all approaches is determining a suitable level of
abstraction for the model inference that ensures that the model is useful for its
purpose (e.g., ASMs, offline oracles, or visualisation of testing). Most related
work does not sufficiently explain how they deal with abstraction. This chapter
presents the first attempt to research how the abstraction level affects the results
when using the models.

4.2 State model inference for TESTAR

TESTAR's operational flow was described in Chapter 3. When the SUT has started,
TESTAR captures the current state of the GUI using APls like Windows Automation
APl (WUIA) (for desktop), Selenium Web Driver (for web), or the Java access bridge
(for Swing). This (concrete) state consists of all the properties (that are available
through the API) of all the widgets that are part of the GUI.

Subsequently, to derive the actions that it is able to perform in that state, it
cycles through all the widgets and adds all possible actions associated with the
widgets to a pool. Sometimes, if the SUT includes custom widgets and the API
does not detect all the widget attributes, the user must provide TESTAR with some
extra configuration to correctly detect all the available actions.

From this action pool, one is selected by the ASM of TESTAR. After the action
has been executed and the GUI has reached a new state, TESTAR will again
capture the new state and derive, select, and execute an action. This process
repeats until the specified stop criterion is reached (e.g., the test sequence length
or the occurrence of an error condition).

State abstraction’ is an important facet of scriptless GUI testing. TESTAR has

T"Abstraction is the elimination of the irrelevant and the amplification of the essential." by Robert

42 STATE MODEL INFERENCE FOR TESTAR 93

an implementation to calculate state identifiers based on hashes over a selected
set of widget attributes. This selected set defines the abstraction level, which de-
termines the number of different states TESTAR will distinguish. This can evidently
influence test effectiveness and is related to the equilibrium explained previously.
Experiments were conducted to gather evidence about the suitable set of widget
attributes for state abstraction as described in Section 4.4.2.

TESTAR uses dynamic analysis techniques to infer a model. The flow for cap-
turing the state model is depicted in Figure 4.1, which extends Figure 3.1 from the
previous chapter. The state of the SUT is constantly saved in the OrientDB graph
database, together with available actions and the executed action. As explained
later in this section, the state model can be queried by an ASM, but also by a
human, an offline oracle, or other MBGT approaches.

] Save sate

 —— .
. and actions
Start SUT laizlin G Derive Actions| [T
’ ‘ State :
A H

A

i

Select Action ---

No Yes

f5)
C
o)
2
o)
Hos)
U Q
(R
0

Execute | :
Action Save

T
%
®
a
C
=4
@
2
©
2
o
=l

More
Actions?

Evaluate
Oracles

Save verdicts

\. J

Figure 4.1: TESTAR testing cycle including model inference

As indicated, the model will be built incrementally with subsequent TESTAR
runs. All states (concrete and abstract) visited during a run are stored in the
database. For analysis and reporting, the structure of the inferred model is
divided into three layers, as shown in Figure 4.2.

The top layer is an abstract state model. It allows ASMs to use the model

C. Martin (Agile Principles, Patterns, and Practices in C#)

94 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

AbstractAction A

ConcreteAction A

: bottom layer

1
. [Test Sequence]—)[Sequence Node
1
\

Figure 4.2: Layered design of the state model

for action selection or end users to analyse the behaviour of the SUT. Creating
the abstract model requires identifying unique states at a suitable abstraction
level. As indicated, this means trying to avoid state space explosion while, simul-
taneously, not losing the purposefulness of the model. Overly abstract states can
introduce non-determinism in the inferred model.

The mid layer is the concrete state model. This model contains all the in-
formation that can be extracted through the APIs used by TESTAR. The concrete
state model will contain too many states to drive the execution of TESTAR or serve
as a visual model for humans. It will serve as information storage, e.g., when a
specific part of the abstract model requires deeper analysis. Each concrete state
of this layer will be linked to an abstract one in the top layer, and each action
will be linked to an abstract transition.

The bottom layer is the management layer, whose purpose will be to record
meta-information about the executed test sequences. Where the abstract and
concrete layers describe the SUT, the management layer represents the execution
of the tests in TESTAR. The individual test sequences will be linked to the concrete
states and actions of the middle layer.

Figure 4.3 shows an example of the layered model, where the SUT was ex-

tremely simple (only three abstract and three concrete states). The management

42 STATE MODEL INFERENCE FOR TESTAR 95

Layout: [Cola v Show abstract layer Legend: - Abstract state - First Sequence Node Nr of abstract states: 3

Show labels Show concrete layer concrtesare [wiceet Nr of abstract actions: 11

— — A — T
Show inter-layer edges Nr of concrete actions: 11

Figure 4.3: Visualization of an example model inferred by TESTAR

layer has information about the exact sequence generated by TESTAR. During the
model inference, when TESTAR arrives at a new state and discovers actions that
have not been executed before, ‘BlackHole" state is used as their destination to
mark unvisited actions. When a previously unvisited action is visited and TESTAR
observes the SUT behaviour, the destination of the executed abstract action is
updated with the observed abstract state.

TESTAR was extended with a new ASM (ASM_statemodel). The algorithm
prioritises actions that have not yet been visited and can be found in Algorithm 1.
The goal is to select a new action when in state s. It uses the State_Model and
maintains a path of actions that leads to a specific unvisited action it wants to
prioritise. If a path has been previously identified (ie, path is not empty line 1),
then the ASM selects the next action on that path. If the path is empty?, the ASM
will try to find an unvisited action. It does so by searching (in BFS? order) for
unvisitedActions (line 8) from all the states that are reachable from s in the state

model (line 4). Since s is reachable from s in O steps, s itself is the first state

’Because TESTAR has initialised the algorithm or the previous path was already completed.
3Breadth-First Search (BFS) explores all neighbours of a node before proceeding to the next level

96 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

Algorithm 1 ASM_statemodel: Select an Unvisited Action

Input: s > Current state of the SUT
Input: State_Model > The inferred state model
Input: path > Path to an unvisited action (if any)

1. if path + @ then > Follow the existing path
2| a« path.pop() > Next action in the path

3 else > Create a new path to an unvisited action
4 reachableStates « getReachableStatesWithBFS(s, State_Model)

5 unvisitedActions «

6 while unvisitedActions = @ and reachableStates + @ do

7 s’ « reachableStates.pop()

8 L unvisitedActions « getActions(State_Model, s’, unvisited)

9 if unvisitedActions + @ then > Found unvisited actions with BFS
10 | ua « selectRandom(unvisitedActions) > Select a random unvisited action
il path « pathToAction(ua) > Determine path from s to ua
12 | a <« path.pop() > Next action in s towards ua
13 else > No unvisited actions found
14 availableActions « getActions(State_Model, s, all) > All available actions in s
15: [L a « selectRandom(availableActions)

10 return a

checked for unvisited actions (line 7). If unvisited actions are found, it randomly
selects one (ua, line 10) and updates the path to the state where that action can
be found (line 11). Then, it selects the first action that leads towards that action
(line 12). If no unvisited actions are found, the ASM just randomly selects an

action from those available in state s (line 15).

To integrate this new ASM, TEsTAR's flexible architecture (Figure 3.7) discussed
in Section 3.6 was extended by implementing the ActionSelector interface, as
depicted in Figure 4.4.

«interface»
ActionSelector
+ selectAction: Action

TESTAR Protocol

+ getState(): State
+ deriveActions(State): Action[]

+ selectAction(State, Action[]): Action Extends Extends Extends

+ executeAction(State, Action): Boolean | I RS ,

+ getVerdict(State): Verdict Random LEA ' IASM_statemodels g ' StateModel
....... >

Figure 4.4: Extending TESTAR with ASM_statemodel

43 EXPERIMENTAL DESIGN 97

4.3 Experimental Design

Building on the discussed challenges of state model abstraction, two key aspects
of automated model inference are researched:

RQ1: How do different levels of abstraction affect automated GUI exploration of
ASM_statemodel compared to random selection?

This question examines the practical impact of model abstraction on testing
effectiveness.

RQ2: Which widget attributes contribute to generating deterministic models in
state abstraction?

This question addresses the fundamental challenge of creating reliable models
through automated inference.

The experimental design encompasses two distinct studies aligned with the
research questions. Each study uses a different subject system to investigate
specific aspects of model inference and the effectiveness of GUI testing. Figure
4.5 presents an overview of the experimental design.

RQ1 Study RQ2 Study
Abstrac?ion Code an J Widget f\tlrihute TestRun 1 kq -
State Combination N o > data and number,
Abstract Coverage 1-attribute comb. Of N actions of states
Intermediate 2-attribute comb.
Dynamic Test Run 2 @aimans) 3-attribute comb. 4T95' Run2 N i
Customised N\ S00jact | @ State 5-attribute comb. of N actions. —> data and number
) —) overage of states
D C
X g
AsSM AsSM
Test Run 30 Code and st Run X N i
Random 300 actions State ASM_statemodel £N acti data and number|
Coverage Ot actions of states
ASM_statemodel) C
=
4 Abstraction Mechanisms x 2 ASMs x 30 test runs: Number of test runs and actions
240 test runs differs across combinations

Figure 4.5: Overall experimental design showing separate studies for RQ1 and RQ2

4.3.1 Subject SUTs

Rachota and Windows Notepad were selected as the subject systems, each serv-

ing different experimental purposes. Rachota, an open-source Java Swing time-

98 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

tracking application, provides an ideal platform for evaluating testing effective-
ness due to its accessible source code and measurable coverage metrics. Table

4.1 presents an overview of Rachota’s characteristics.

Metrics Rachota
Java Classes 52
Methods 934
LLOC 2722

Classes incl. Inner classes 327

Table 4.1: Overview of Rachota

For the second study, Windows Notepad (version 1909, OS Build 18363.535)
was explicitly selected due to its rich set of widget attributes accessible through
the Windows Automation API, providing over 140 attributes to choose from. That
offers more choice compared to the six attributes of the Java Bridge from Table
4.2. Notepad presents common GUI patterns, including menus, dialogues, and
text input areas, while offering both static and dynamic interface elements. This
combination makes it particularly suitable for investigating model determinism

and attribute selection impacts.

4.3.2 Independent and Dependent Variables

The independent and dependent variables were defined as follows to address

each research question.

4.3.21 RQ1 Study

The first study examines how different abstraction levels affect GUI exploration
effectiveness. The variables used in this study are summarised below.

The Independent Variables are defined as follows:

e Abstraction Level for State Identification: Different abstraction levels are
defined by selecting attributes from those available in the Java Access

Bridge API (see Table 4.2). Four abstraction levels were investigated:

43 EXPERIMENTAL DESIGN

1. Abstract: ControlType (cf. was defined in [135))

2. Intermediate: ControlType, Path

99

3. Dynamic: ControlType, Path, Title (including the dynamic attribute

Title)

4. Customised Abstraction: ControlType, Path, HelpText, IsEnabled

(this one was customised for Rachota following the impacts described
in Table 4.2)

e Action Selection Method: The new ASM_statemodel algorithm is com-

pared to the baseline ASM_random approach.

e Jest Run Parameters: Each test run contains one sequence of 300 actions,

which is enough [143] to show the differences between ASMs. Each test

run was repeated 30 times to account for randomness [144]

Attribute API Impact on Abstract Representation

Title name Visual name of the widget. In Rachota, this is
dynamic because widgets update the current
time.

HelpText description Tooltip or help text of the widget. Static at-
tribute in Rachota.

ControlType role Role of the widget. It may fail to distinguish
elements, causing non-determinism.

IsEnabled states Indicates whether the widget is enabled or
disabled.

Boundary rect Pixel coordinates of the widget's position.
Too concrete; one-pixel changes result in a
new state.

Path childrenCount Position in the widget tree. Useful for dis-

+ tinguishing states by widget tree structure.
parentIndex

Table 4.2: Java Access Bridge properties and their impact on state abstraction in Rachota.

The Dependent Variables are defined as follows:

e Code Coverage: Measured as both instruction and branch coverage using

Jacoco [149].

100 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

e Abstract State Coverage: The number of abstract states visited in the state

model during testing.

e Concrete State Coverage: The number of concrete states visited in the state

model during testing.

Code coverage and state discovery metrics are collected after each executed
action. The open-source application Rachota [146] is used as the SUT to measure
these metrics effectively for the experiments.

4.3.2.2 RQ2 Study

This study aims to select a suitable subset of widget attributes for state abstrac-
tion that generates deterministic models without causing state explosion. The
following independent and dependent variables were defined.

The Independent Variables are defined as follows:

o Widget Attribute Combination: The primary independent variable is the
combination of widget attributes used for state abstraction. A systematic
evaluation is conducted on single-attribute configurations from the available
Windows Automation APl properties, followed by two-attribute combina-
tlons, three-attribute combinations using the top performers, five-attribute

combinations, and extended pattern combinations.

o Action Selection Mechanism: The ASM_statemodel algorithm (from Algo-

rithm 1).

e Jest Sequence Length: Different test sequence lengths were employed to
evaluate model behaviour across different temporal scales. These configu-
rations comprised two lengths (50 and 100 per test sequence). To analyse
the effect of abstraction levels on the number of states created, longer test

runs of 5000 actions are also performed.

The Dependent Variables are defined as follows:

44 RESULTS 101

e Steps Before Non-Determinism; Number of actions executed before encoun-

tering the first non-deterministic state.

e Model Characteristics: Includes the count of abstract states and concrete
states generated during testing.

e Sources of Non-Determinism: Analyses dynamic content changes and history-

dependent behaviours contributing to non-determinism.

4.4 Results

This section presents the results of the experimental evaluation of TESTAR's state
model inference capabilities. The results encompass quantitative metrics, includ-
ing code coverage and state counts, and qualitative analysis of model character-

istics and non-determinism sources.

441 RQ1: Impact of abstraction on GUI exploration

Figure 4.6 shows the results of the code coverage measurements across different
abstraction levels. The ASM_statemodel consistently outperformed ASM_random,
even with a less suitable abstraction. This means that model-based ASMs are a
promising way to improve the effectiveness of scriptless testing.

The coverage data shows that the level of abstraction affects the GUI explo-
ration performance of the ASM_statemodel. Having too high or too low level of
abstraction negatively impacts the performance. The customised abstraction level
(ControlType, Path, HelpText, IsEnabled) achieved the highest code coverage, fol-
lowed by the intermediate configuration. However, the best random sequences
can achieve coverage similar to the average coverage provided by abstract, dy-
namic, and intermediate abstract mechanisms. This highlights the significance of
customising a suitable abstraction level to enhance effective exploration compared
to random but also underscores the inherent capabilities of random exploration
itself.

102 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

- Random ' Abstract - Dynamic - i -

60% -
50% -
ASM_random ASM_statemodel
40% p R
cmefNeel e e
30% -
\. . ‘, S
20% A TTNeTTT O TmTmmmmees yTTTTTT
ASM_random ASM_statemodel
Branch Coverage Code Coverage

Figure 4.6: The code coverage that was reached when comparing ASM_random with 4
different abstraction levels of the ASM_statemodel

- Abstract - Dynamic - Customised - Intermediate

7501
° L]
5001
250
* °
Abstract St,ates in the Concrete S'tates in the
top layer according to mid layer using all
the abstraction level available attributes

Figure 4.7: The number of abstract states (top layer) and concrete states (mid layer)

44 RESULTS 103

The results to analyse state discovery are shown as a box plot in Figure
4.7. Results show that too concrete level of abstraction creates almost as many
abstract states as concrete states. As expected, the customised level creates more
abstract states in comparison with abstract and intermediate configurations, but
significantly less than the dynamic one. The customised level finds more concrete
states, which indicates slightly better GUI exploration capability and matches the
code coverage results.

The dynamic mechanism includes the dynamic widget title as part of the
abstraction level, and as a consequence, new abstract states are constantly being
discovered. However, this similar number of abstract and concrete states hinders
exploration effectiveness, as the abstract mechanism fails to adequately track

which states are newly discovered or were already visited during exploration.

RQ1 answer: Different abstraction levels significantly affect GUI explo-
ration effectiveness. A customised abstraction level, tailored to the appli-
cation’s characteristics, provided the best balance between state abstrac-
tion and exploration effectiveness. An ASM based on the state model con-

sistently outperformed random selection regardless of abstraction level.

4.4.2 RQ2: Defining a suitable level of abstraction

As observed in the previous section (and results from Figure 4.7), widget attributes
used for abstraction should not be dynamic because they lead to state space
explosion. Dynamic attributes are not stable because they can change their
value during or in between runs without a detectable reason. Potentially stable

attributes selected for the experiment are in the first column of Table 4.3.

Various attribute combinations were systematically evaluated to examine which
widget attributes contribute to the generation of deterministic models. As illus-
trated in Figure 4.8, each combination (from single-attribute to multi-attribute
sets) was applied to the subject SUT, and the impact on model determinism and

state abstraction was measured.

104 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

1-attribute 2-attribute 3-attribute 5-attribute
combination combination combination combination
4 Test Sequences 4 Test Sequences 4 Test Sequences 4 Test Sequences
50 actions each 100 actions each 100 actions each 100 actions each
12 times 16 times 16 times 8 times
L J € J € J L J
Lg R i Lg
19 combinations: 171 combinations: Combination of three best 120 combinations:
228 test runs 2736 test runs attributes from 1- and 2- 960 test runs
attribute combinations: 16
test runs

Figure 4.8: Overview of RQ2's attribute-combination experiment setup

4.4.2.1 Single Attribute Analysis

First, an experiment was conducted with only one attribute in the state ab-
straction. A test run consisted of four sequences, with a maximum of 50 ac-
tions per sequence. After some initial tests, these values were enough to detect
non-determinism. Twelve consecutive test runs were executed for each widget
attribute using the 12 available Virtual Machines (VMs).

Table 4.3 shows the results. Displayed are the widget attributes used, the
average number of generated test steps executed in the test for each attribute,
and the total number of steps taken in each test run before non-determinism was
encountered. The results are ordered by the total number of steps executed over
all 12 tests, starting with the widget attributes that “lasted the longest” before the
model became non-deterministic. Although none of the generated models were
deterministic, the WidgetTitle, WidgetBoundary, and WidgetHasKeyboardFocus
attributes noticeably stand out from the others regarding the average number of

steps executed.

4.4.2.2 Multi-Attribute Analysis

A second experiment was conducted with two attributes in the state abstrac-
tion. Combining two widget attributes gives 171 possibilities. Instead of four

test sequences with 50 steps each, the number of actions per sequence was

44 RESULTS 105

Table 4.3: Number of generated test steps before the model became non-deterministic
using a single widget attribute for state abstraction.

Attribute Mean Total
WidgetTitle 955 14,74,74,79,79,92,92,93,108,136,145,160
WidgetBoundary 90.6 5,61,64,77,79,83,84,103,105,115,155,156

WidgetHasKeyboardFocus 821 38,55,67,68,70,72,78,87,100,105,118,128
WidgetlsKeyboardFocusable 21.6 9,12,14,16,17,17,19,20,26,28,28,53

WidgetSetPosition 20.4 10,11,12,12,13,16,18,21,21,22,26,63
WidgetlsContentElement 20.3 7.914,15,1717,18,21,24,27,35,39
WidgetlsOffscreen 19.7 6,9,11,14,14,15,15,18,19,27,29,59
WidgetGroupLevel 191 7.10,11,11,12,13,15,18,22,29,33,48
WidgetClassName 19.0 11,11,15,16,17,19,19,19,21,22,26,32
WidgetlsControlElement 16.9 8,11,11,12,13,13,16,16,20,24,28,31
WidgetlsEnabled 16.8 7,8,14,15,15,16,16,19,19,20,25,28
WidgetControlType 16.3 8,13,13,13,13,13,17,17,18,19,25,27
WidgetOrientationld 16.2 8,9,12,13,16,16,17,19,19,21,21,23
WidgetlsPassword 15.8 6,10,10,12,14,14,17,17,19,20,22,28
WidgetZIndex 15.6 9,11,12,12,13,14,15,16,16,19,22,28
WidgetlsPeripheral 15.4 7,89,13,14,14,16,19,20,21,22,22
WidgetSetSize 15.0 7.910,12,1415,16,17,17,18,21,24
WidgetFrameworkld 15.0 8,11,12,13,13,14,15,16,17,18,21,22
WidgetRotation 14.7 8,9,12,12,13,14,16,16,16,20,20,20

upgraded to 100. This upgrade was based on the hypothesis that these combi-
nations should last longer before the state model inference module encounters
non-determinism. Each combination is tested 16 times, making for a total of
2736 test runs. In summary, none of the 171 combinations was able to produce
a deterministic model. Moreover, after the 48 best-performing combinations, the
average number of steps executed per test run declines quickly. Within these
48 combinations, three attributes occur 17 times, whereas the next best attribute
occurs only 3 times. Again, the three best-performing attributes are WidgetTitle,
WidgetBoundary, and WidgetHasKeyboardFocus.

A combination of these three attributes was employed and executed 16 times
for the next experiment. Table 4.4 shows the results. Unfortunately, none of
the test runs reached the complete 400 possible steps. Moreover, the average

106 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

and median are lower than the highest results from the 2-attribute combinations.
However, the highest number of steps reached during a test run was 293, where

this was 229 for the two-attribute combinations.

Table 4.4: Selection of attributes for state abstraction

Attributes Total Mean Median
WidgetTitle, WidgetBoundary, WidgetHasKeyBoardFocus 1781 1113 925

In the next experiment, combinations of five attributes were evaluated by se-
lecting the three highest-scoring attributes from the two-attribute experiment and
combining them with all the possible pairs of two additional widget attributes
from the remaining 16 attributes. This resulted in 120 combinations, each exe-
cuted eight times. Once again, no combination resulted in a deterministic model.
Surprisingly, the more concrete abstraction using five attributes resulted in non-
determinism faster than the three attributes in the previous experiment. This is
probably due to the dynamic nature of some of the attributes.

As using five attributes for abstraction also resulted in non-determinism, the
model was made even more concrete by incorporating all 32 control pattern
properties into the tests. To make some headway, the three high-scoring general
properties (WidgetTitle, WidgetHasKeyBoardFocus, and WidgetBoundary) were
once again added and combined with all the combinations of two control patterns.
This results in 492 possible combinations, and running each one eight times makes
a total of 3936 test runs.

Several widget combinations reached the limit of 400 sequence actions with-
out encountering non-determinism in the model, and all of these combinations
included the "Value' control pattern. Even though some combinations made it to
400 sequence steps 3 or 4 times out of the 8 test runs, they also encountered
certain actions that led to non-determinism in the model. "Value' pattern is a
very ‘concrete’ attribute: 1) Using the 'Value' pattern can lead to models of infi-
nite size, in the case that the application accepts text input that is not bounded.
Hence, ideally, this attribute would be excluded from the abstraction mechanism.
2) While using this very concrete widget attribute, plenty of non-determinism in
the state models was still encountered.

44 RESULTS 107

Replace *
Find what: |this text will not be found | E Find Next i
Replace with: | | Replace
Replace Al
Cancel
] Match case
[1Wrap around

(a) Notepad 'Replace’ dialogue

MNotepad e

o Cannot find "this text will not be found”

(b) Notepad ‘Cannot find" popup

Figure 4.9: Notepad examples of non-determinism

Analysing the reasons for non-determinism, it was observed that certain ac-
tions lead to different states depending on the history of actions and states tra-
versed before. For example, if the ‘Replace’ option in the 'Edit" menu is clicked
in Notepad, the ‘Replace’ dialogue is opened (see Figure 4.9a). If the text written
in the ‘Find what' field is not found in the Notepad document, clicking the ‘Find
Next" or '‘Replace’ buttons will result in the same popup dialogue (see Figure
4.9b), having only an ‘'OK" button. Clicking that button will lead back to the 'Re-
place’ dialogue. Still, the focus remains on the button that was pressed before,
and if WidgetHasKeyBoardFocus was used in the state abstraction, clicking the
‘OK’ button leads to two different states based on the action that was taken in
the previous state. In this case, altering the abstraction level by adding more
widget attributes would not remove the non-determinism because the concrete
states for the two visitations of the popup screen are also the same.

108 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

4.4.2.3 Including the predecessor state

Another solution is incorporating the state’s incoming action into the state identi-
fier [31]. In some situations, the state could depend on the previous state, requiring
taking the previous state into account in the state identification algorithm. Con-
sequently, the predecessor state and the incoming action were included in the
state abstraction.

The first experiments run with all the combinations of widget attributes used
in the experiments from Section 4.4.2 including the previous state identifier. The
results showed that including the previous state in the abstraction resulted in
a lower best performance and higher worst performance compared to using the
same attribute combinations without the previous state. The average performance
over all the combinations and test runs is comparable. The top-performing widget
attributes are almost the same in both cases. Non-determinism related to viewing
the status bar was still happening.

Subsequently, the incoming action was included in addition to the previous
state in the abstraction identifier. Using the same attributes as the experiments in
Section 4.4.2 allowed for comparison of the results. The average number of steps
executed before encountering non-determinism significantly increased when us-
ing 1 or 2 widget attributes and including the incoming action. However, the re-
sults seemed to get worse with more widget attributes, probably because, in those
experiments, the widget attributes were selected for their good performance with-
out incoming action. With incoming action, the best-performing widget attributes
were different. When executing the experiments including pattern attributes with
incoming action, the ValuePattern and the ‘incoming action’ combination seems
very successful. The following three combinations did not encounter any non-

determinism during their 8 test runs of 400 actions:
1. Boundary, HasKeyboardFocus, LegacylAccessiblePattern, Title, ValuePattern.
2. Boundary, DropTargetPattern, HasKeyboardFocus, Title, ValuePattern.

3. Boundary, ExpandCollapsePattern, HasKeyboardFocus, Title, ValuePattern.

As some of the detected cases of non-determinism were due to various lengths

of text inputs, an additional experiment was executed, disabling input actions and

45. DISCUSSION 109

only allowing left-click actions. Results showed an increased average number of
executed steps before encountering non-determinism. However, the model may
be partial, and some functionality of the SUT may be excluded from the model.
After conducting additional experiments to produce a deterministic model, it was
concluded that this is not a trivial task.

Another aspect that might be important when using the inferred models, but
has not been monitored so far in these experiments, is the size of the inferred
abstract state model. For using the model programmatically, the size of the model
probably affects the computation, but if the model is analysed by a human, the
size restrictions have to be more strict. To have a first estimation of the model size,
a selected set of different abstraction configurations was explored, measuring the
number of abstract states in the model after a long execution of 50 000 actions.

The quest for inferring a deterministic model by making the abstraction more
concrete resulted in a huge increase in the number of abstract states, as de-
picted in Figure 4.10. The implications of possible future research directions are
discussed in Section 4.5. The results demonstrate the inherent tension between
model determinism and usability. More concrete models achieve better deter-
minism but face state explosion, while more abstract models remain manageable

but encounter non-determinism more frequently.

RQ2 answer: While no single or simple combination of widget attributes
consistently produces deterministic models, including action history and
carefully selected attribute combinations can significantly reduce non-
deterministic behaviour. However, achieving determinism requires in-
creasingly complex state representations, leading to potential state ex-
plosion and reduced model usability.

4.5 Discussion

This section presents findings highlighting key challenges encountered during the

state model inference process and the application of inferred models in testing.

110 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

Ab1: Current+previous+incoming action; all; Boundary, IsControlElement, IsKeyboardFocusable
Ab2: Current; all; Title

Ab3: Current; all ; Boundary, HasKeyboardFocus, Title

Ab4: Current+previous; all; Boundary, HasKeyboardFocus, Title

Ab5: Current+previous+incoming action; all actions; Boundary, HasKeyboardFocus, Title

AbbG: Current; left click only; Boundary, HasKeyboardFocus, ScrollltemPattern, Title, ValuePattern
Ab7: Current; all; Boundary, HasKeyboardFocus, ScrollitemPattern, Title, ValuePattern

Ab8: Curr+prev+incom; all; Boundary, HasKeyboardFocus, ScrollltemPattern, Title, ValuePattern

30000

20000

10000

Average number of abstract states after 50.000 steps

Ab1 Ab2 Ab3 Ab4 Ab5 Ab6 Ab7 Ab8

Figure 4.10: Average number of abstract states after 50000 actions for abstractions Ab;:
state; actions; attributes for i € 1,...,8

These challenges and lessons learned offer insights into the complexities of cre-
ating effective and usable state models for automated GUI testing. Additionally,
potential directions for addressing these challenges and improving the utility of
inferred models in testing are discussed.

451 State abstraction

The first finding is that tuning the abstraction level for model inference seems
highly dependent on the specific SUT. While tuning the abstraction level, the

45. DISCUSSION 111

following SUT-specific characteristics should be taken into account:

e Dynamic increment of widgets: Some applications, for example, Rachota,
contain dynamic lists of elements where new items can be continuously
added. This constantly creates new widgets and states in the model, caus-

ing a state and action space explosion.

e High number of combinatorial elements: Some applications, such as Notepad,
include multiple scroll lists with a large number of different elements, and
from a functional point of view, it is not important to cover all of these

options (e.g., Notepad font selection).

e Slide actions: In some applications where scrolling actions are required,
the exact scrolling coordinates from start to end can cause a change in the
number of widgets visible in the state. Depending on the state abstraction
and how the widget tree is obtained, this can create new states and cause

a high number of combinatorial possibilities.

e Popup information: In some applications, like Rachota, a descriptive popup
message may appear for a few seconds in the GUI when the mouse hovers
over some of the widgets. This could result in a new state for the model,
and it might cause non-determinism if hovering over a widget was not an

intentional action that was executed on purpose.

A second finding is that trying to produce a deterministic state model is far
from a trivial effort. There are various options to address the challenges of non-
determinism in the inferred models.

1. Let the models have non-determinism and deal with it when using them.
Action selection requires detecting when the modelled behaviour deviates
from the observed behaviour and temporarily adjusting the action selection
to avoid getting stuck during GUI exploration. Another solution, and an
interesting future research topic, could be using the concrete state model
to navigate through states that have non-determinism in the abstract state
model.

112 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

2. Try to infer a deterministic model. This would require more SUT-specific
ways to dynamically adjust the abstraction, for example, based on the wid-
get type or even a specific widget in a particular state. TESTAR currently
supports triggered behaviour that overrides normal action selection. Simi-
larly, a mechanism is planned to trigger changes in the calculation of state
identifiers, such as ignoring a specific widget during state abstraction. An
example of a widget that can be ignored from the state model is a dynam-

ically changing advertisement on a website.

3. Correct non-deterministic models after runtime. However, this technique

has not yet been observed in existing model-based testing tools.

45.2 Applying the inferred models in testing

One of the core objectives for this chapter was to use the inferred models for a new
action selection mechanism (ASM) for TESTAR. The new ASM was presented in
Algorithm 1, and initial experiments show that it is better than random. Although
this is a good result, it is also a step towards implementing more advanced
ASMs. For example, ASMs-based artificial intelligence (Al) needs some model
for learning, and the inferred model can serve that purpose.

Another advantage of the inferred state models is that human testers can use
them during testing. For instance, it is interesting to have an overall view of an
application’s execution flow: to see the details about a certain state or executed
action, to identify the path to a state where an application failed, and to obtain
various metrics about the state model. Although some of this information can be
obtained by querying the OrientDB database and outputting it as textual data,
e.g, in tabular format, it is argued that the data would be best presented through
visualisation, making it more intuitively understandable for humans.

Abstract state models can also allow performing conformance testing, which
determines how a system under test conforms to meet the individual require-
ments of a particular standard. Before using inferred abstract models, the do-
main experts must validate them to use the automatically generated test cases

for conformance testing. This also requires suitable visualisation.

46. CONCLUSIONS 113

4.6 Conclusions

This chapter describes the state model inference extension for TESTAR and reports
experiments on the impact of various state abstraction mechanisms for the purpose
of producing a deterministic model and on the evaluation of the performance of
an action selection algorithm using the inferred models.

The experiments on using various state abstraction mechanisms show that
inferring a deterministic abstract state model is difficult, especially when trying
to prevent the state space explosion. Based on these experiences and the fact
that, in the literature, many approaches using inferred models for GUI exploration
or testing do not explain the details about state abstraction, more research and
new, more flexible abstraction mechanisms are needed. Also, dealing with non-
determinism in the inferred models is an important direction for future research.

Based on the experiments on the impact of various levels of state abstraction
on the performance of an ASM using the inferred models, it can be concluded
that an appropriate level of abstraction enhances the performance of GUI explo-
ration, as measured by code coverage. Having a too-abstract or too-concrete
model has a negative impact on performance. However, in the experiments, the
ASM_statemodel performed better than the ASM_random with all tested ab-

stractions.

114 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

Adding intelligence

You will have to lose hundreds of games before becoming

a good player.”

José Raul Capablanca, A Primer of Chess

This chapter examines the use of Reinforcement Learning (RL) [147] to im-
plement more sophisticated ways to select actions. RL is a branch of machine
learning that is directly applicable to scriptless testing. It is trained using re-
wards after every interaction with an environment. As observed in Chapter 2, a
growth of papers applying Artificial Intelligence techniques has been observed in
GUI testing during the last decade, mainly for mobile Android applications. RL
uses reward functions to guide the selection of actions and explore the search
space of the system being tested. These rewards are usually based on the dif-
ference between consecutive states, with high rewards given to actions that lead
to very different states.

Using rewards based on the difference between consecutive states can lead to
unwanted behaviour such as Jumping Between States (JBS) instead of exploring
other areas. Pan et al. [148] describe the problem: if a large reward is obtained

as the result of moving between two very different states, the RL agent will

115

116 CHAPTER 5. ADDING INTELLIGENCE

frequently jump between these states instead of exploring other areas of the
SUT. A solution to the JBS problem was proposed based on neural networks to
extract main features from the states to detect if two states are different and save
them as a vector in a memory buffer to avoid repeating states. However, neural
networks require much data and time to work well. Additionally, the inability to
debug and explain the reasoning and evolution of a neural network over time is a
disadvantage of this technique. Instead, the approach proposed in this study uses
state abstraction to compare states and includes memory, based on the frequency
of executed actions, to the reward itself.

Testing Web applications has more diverse and complex states than mobile
or desktop applications due to their frequent dynamic content updates and elab-
orate workflows. More effective exploration is required to test Web applications,
considering their huge search space and interactive nature. Therefore, this chap-
ter focuses on testing Web applications in addition to proposing an alternative
solution to the JBS problem. The contributions of this chapter are:

e an implementation of an RL framework that can be used to compare different
rewards used during scriptless testing of Web applications;
e an empirical evaluation showing the reduction of the JBS problem for rewards

containing memory based on the frequency of executed actions

e a comparison of the exploration effectiveness of the different rewards looking

at URL coverage and state exploration.

The rest of the chapter is organised as follows: Section 5.1 presents background
about Q-Learning, and Section 5.2 offers relevant related work. Section 53
presents the proposed approach for smart exploration, Section 5.4 presents the
empirical evaluation, and Section 5.5 presents the results. Section 5.8 concludes
the chapter.

5.1 (Q-Learning

Reinforcement Learning (RL) [147,149] is a machine learning technique that con-

sists of an agent that learns to behave in an interactive environment. The agent

51 Q-LEARNING 117

works as an independent entity that executes actions within the environment and
obtains information through trial-and-error interactions. RL algorithms contain

four basic elements:

e The state describes the situation of the environment at every step.
e An action is a possible move from one specific state to another.

e The policy defines the strategy used to select an action in a given state

and the learning approach of the algorithm.

e The reward defines the goal to achieve.

The environment can be formalised with a Markov Decision Process (MDP),
defined as a 4-tuple M = (S, A, T, R), where S is the set of states, A is the set of
actions. At each time step t, the agent executes an action a; € A and will receive
a reward ry € R. The transition probability function T describes the probability
P(s¢1]se, a¢) of transitioning into state sqy1 from state s, after executing action
ds. The goal of RL is to maximise the rewards obtained over time, formalised as

expected return and defined as:

oo
E > re|lso=-s
t=0

This value represents the expected sum of rewards starting from an initial state
so = s. This formulation assumes that all future rewards contribute equally to the
return. However, in many real-world scenarios, sooner rewards are often more
valuable than those received later. To incorporate this preference, the concept of
a discounted return is introduced.

The discounted return modifies the expected return by multiplying future re-
wards by a discount factor y € [0, 1], used to define the balance between long-

term and immediate rewards. The discounted return is defined as:

o

R = Z Rigk+1 Vk

k=0

118 CHAPTER 5. ADDING INTELLIGENCE

When vy is close to 1, the agent values long-term rewards almost as much
as immediate rewards. When y is close to O, the agent focuses primarily on
immediate rewards.

To make this practical, the expected return is associated with an action-value
function Q(s, a), which estimates the expected return after taking an action @ in

a state s and following a specific policy 7. Formally:

Q"(s,a)=E(R|st=s,a;=aq)

The policy st defines the agent’s action-selection strategy. It can be deter-
ministic, where 7 : S — A, mapping each state s to a specific action @, or
probabilistic, where 7 : S x A — [0, 1], assigning a probability distribution over
actions for each state.

Q-learning [150] is a model-free RL approach to learn the value of an action
in a particular state and, hence, find an optimal action-selection policy 7. An
action-value function estimates the expected return Q7(s;, a;) after executing an
action a; in state s; following policy ;. The action-value function can be defined

in terms of its successor state-action pair as:

O(s,a) = Q(s, a) + ax[reward + y * max (s, a) — Q(s', d')] (5.1)

The Q-function refers to the maximum Q expected for a given (state, action)
pair over all possible policies. Furthermore, Q can also be interpreted as the
optimal strategy at each step, maximising the sum of the immediate reward r
of the current step and the Q-value Q(s’, ¢’) of the next step. The parameter
a (step size) defines the learning rate of the algorithm. A higher learning rate
(closer to 1) makes the algorithm adapt more quickly to recent experiences but
may lead to instability, as it can overwrite previous information too aggressively.
Conversely, a lower learning rate (closer to 0) makes the algorithm update more
conservatively, allowing it to retain more of its past knowledge but potentially
slowing down learning.

The idea behind using Q-learning for GUI testing is to reward each selection
of possible actions over the SUT (see Algorithm 2). Choosing an action (line 5)

51 Q-LEARNING 119

and executing it (line 0) moves the agent from the current state s to a new state s/
(line 7). The agent is rewarded with a reward upon executing the action a (line
8). This reward is calculated by the reward function R. The main objective of Q-
learning is to learn how to act in an optimal way that maximises the cumulative
reward (line 9). An approximation for the optimal Q-function that simplifies the
problem and enables early convergence is shown in algorithm 5.1, where learn

is defined as the action-value in equation 5.1.

Algorithm 2 Q-Learning

Input: y, > discount factor, learning rate
1 initialiseQValues()
2. s« getStartingState()

repeat

| availableActions « deriveActions(s)

5 a « selectAction(availableActions) > Select an action
6 executeAction(a)

7 s’ « getReachedState()

8 reward <« R(s, a,s’) > Reward the action
9 learn(s,s’, a, reward, vy, a) > Learn from the experience
10 s« s

11: until s" is the last state of the sequence

In this context, online Q-learning is employed, where the Q-values are up-
dated incrementally after each action and reward observed during interaction with
the environment. Due to its dynamic and exploratory nature, online Q-learning
is particularly well-suited for scriptless GUI testing. Unlike offline Q-learning,
which relies on pre-collected datasets, online Q-learning allows the testing tool
to continuously adapt its knowledge of the SUT's state space as new states and
transitions are encountered.

A critical aspect of online Q-learning is balancing exploitation (choosing the
action with the highest known Q-value to maximise immediate rewards) and
exploration (selecting less-frequented actions to discover potentially better re-
wards). This trade-off is usually managed using an e-greedy strategy, where the
agent selects the best-known action with probability 1—e and explores a random
action with probability e. This approach ensures the agent avoids getting stuck

120 CHAPTER 5. ADDING INTELLIGENCE

in suboptimal strategies while still improving its policy.

The following section reviews the related work to contextualise this method
within the field of scriptless GUI testing. The related work focuses on exist-
ing reinforcement learning techniques applied to software testing and scriptless

methods.

5.2 Related Work

RL has been used for GUI testing in different ways. Offline Q-learning, uses only
previously collected offline data in [151,152] These works learn from existing
SUTs about actions that are useful to reach a particular objective and then apply
it to new SUTs. Online Q-learning is applied independently for every SUT with
state-based rewards and the approaches are summarized in Table 5.1. Since this
chapter focuses on online learning, each of these aspects is discussed next.

TESTAR, as described in Chapter 3, has implemented Q-learning with a frequency-
based reward function for Java desktop applications [121]. This reward aims to
encourage the selection of the least executed actions, thus guiding exploration
towards unvisited areas of the application. Also applying Q-Learning, Adamo
et al. [153] use the same frequency-based reward but in the scope of Android
applications.

AutoBlackTest [154] also uses Q-Learning to test Java desktop applications.
Their reward function favours actions that increase the difference between two
consecutive states, measured by comparing their respective widget trees. Simi-
larly, a combination of frequency and widget tree rewards can be found in [155].

AimDroid [156] uses RL to guide the exploration of Android applications. A
positive reward is obtained if a new activity or crash is observed. More recently,
ARES [157] uses a similar reward to AimDroid (larger values) but with Deep
Neural Network as a technique to learn the best exploration strategy. In the
scope of Deep Reinforcement Learning, Collins et al. [158] use a reward based on

the code coverage obtained during the execution.

121

52 RELATED WORK

"9SIMIBLI0 ()

bundweg uosdwoy | 'sojels [091] npueq [6G1]
proapuy Apeain-3 aARNdasU0d uUsam}aq sabueyd ooepol po| pauLe-1:nw 1oba(]
(3HomiaN jelnaN buisn)
proapuy 70 =23 ‘hipaain-2 S9)P}S 9A1INDASUOD UdaMIaq hpuenung buutea]-0) [ap1] ued
-abueyp jou saop aje)s)i piemal ewsg
‘puno} s1 hypayoe wypiob [8G1]
proapuy - Mau 0 saseanun abelanod apod j piemad abie] -le Ty daa(su1710)
"9SIMIBLI0 () plemal Jjewg
‘1NS Jo N0 s1 hnanoe p(oQL) plemad abue swyn.obje
Gp=2410g0=2 ‘punoy sty dea(pue [/G1]
proapuy Apaain-3 Apanoe mau 1o ysed i (gooL) plemad ab.ey Auap buiuiea]-) eueypuioy
"9SIMIBY30 (O] -) plemal mo) huap
‘LNS }o 10 s1 Anagoe p (1-) plemal moT
proapuy Apaain-3 ‘punoj s1 Ainoe mau Jo yseid i (1) plemal jewg VSHVS [0G1] 0eD)
G0 03 dn 60=4~
pasea.nap hyenpein splemal paseq-houanba.y pue sajels aann | =0 [cal]
ploipuy (] = PM13) Apaan-3 -D9SU0D U9IMIa(9DURISIP JUIAD JO UO1IRLIGWIOD) buuiea]-0) buonp
(ener) s9jels 2
SMOPUIA 9’0 =9 ‘hpeain-2 aA1INDASUOD USIMID(DDUSIIP 99l 19DPIAA buutea]-0) eI
A aweuhp
| =0 [cG1]
proapuy hpaaun paseq-houanba. buiutea]-0) owepy
oM A 91dimnw
‘dopysap | =0
SMOPUIA Apaain paseq-houanbal4 buuiea-0 [01] SoA
sadhy | NS honoy piemay wyndobly Ty uoneaqng

Splemal paseq-aie)s UM 3Iom paje)ay :|°G d)qe|

122 CHAPTER 5. ADDING INTELLIGENCE

Similar to AutoBlackTest, Pan et al. [148] give a large reward when a very
different state is reached. They described the JBS problem that arises with this
reward: if two states are too different, the agent will continuously receive high
rewards, and consequently, the testing tool might frequently jump between them.
As mentioned in the introduction, to address this problem, Pan et al. used a
neural network to compare the reached state with the previously visited states.

Degott et al. [159] build a general model with the goal of sharing models
between different apps. Their reward is either 1 or 0, according to visual changes.

A different and more straightforward solution to the JBS problem is proposed
in this study by incorporating memory, based on the frequency of executed actions,
into the reward. To achieve this, the visited states and executed actions are
tracked. An additional novelty of this proposal is using RL to explore web-based
applications. Little work has been done on RL-based web exploratory testing
without prior knowledge, with most studies focusing on Android or Windows

applications.

5.3 Smart Scriptless Testing

This section outlines the method for integrating Q-Learning into TESTAR. The SUT
is the environment, and states are determined by TESTAR along with all available
actions that can be executed. Initially, TESTAR has no knowledge of the SUT, but
as the tool learns to select the most optimal action at each step, it updates its
knowledge to find the best policy. These actions generate test sequences. For
the 4-tuple MDP M = (S, A, T, R):

e astate s € S is represented as the set (w, ..., w,,) of widgets that together
constitute the widget tree.

e an action a € A is represented as a 2-dimensional: (action type, widget).

e the execution of the SUT causes the transition T: TESTAR executes an action

and observes the new state.

53 SMART SCRIPTLESS TESTING 123

e cach time TESTAR executes an action ¢ in state s that results in state s/, a

reward R(s, a,s’) is calculated.

5.3.1 Rewarding test behaviours

To apply RL to automated GUI testing using TESTAR and define smart exploration
strategies, rewards must be tailored towards improved testing. The following
defines four types of state-based rewards: frequency, state-change, state, and
combined.

Frequency-based Rewards: This reward is based on the previous work described
by Vos et al. [10], where actions with low execution count are favoured (see 5.2).
The reward function is inversely proportional to the number of times ec(a, s) the
action a has been executed in state s. The Ry,qx parameter determines the initial
reward assigned to unexplored actions. High values of Ryqx might bias the search

towards executing new actions.

Rnax, 1f ec(a,s)=0
Rfrequency(s, a, S/) = 1”10)(othervise (52)

ec(a,s)

Rewarding State Changes: By simply observing the interface of the state, it
is possible to observe the changes, similar to how the user will experience the
exploration of the SUT. Two screenshots corresponding to the previous and the
current state are obtained and scanned pixel by pixel to compare their RGB value.
The reward consists of calculating the ratio between the total number of different
pixels dp(s,s’) and the total of pixels tp. If all pixels are equal, no observable
state change is detected; hence, the reward is 0. Otherwise, the maximum reward
value of 1 is returned if all pixels differ.
/
Rsmtefc/mnge(sr a, 5/) = M, (53)
tp

Rewarding Reached State: While tuning the RL parameters, a problem described
by Pan et al. was encountered [148]. An agent is rewarded with large values after
finding very different states, which might result in constantly jumping between

them. The problem persists even when State Changes rewards are combined

124 CHAPTER 5. ADDING INTELLIGENCE

with frequency-based rewards, as the initial situation reemerges once most states
and actions have been visited or executed multiple times. To solve this problem,
in [148], @ memory buffer was proposed, where the reached state is compared with
a set of previously visited states instead of with only the immediately previous
state. This research uses TESTAR's state model to keep a memory of which actions
have been executed on every abstract state.

Initially, a single reward is calculated according to the level of exploration of
the reached state, as shown in 5.4. The value is 1 (maximum possible) if none
of the available actions has been executed, i.e. the state has not been explored
yet. On the other hand, as the actions are executed, the reward decreases until
it reaches the minimum value of 0. The main advantage of this reward is that
it is independent of the previously visited states, acting as a pure measure of
how useful the current state is. This research hypothesises that this reward will
exhibit a lower incidence of the JBS problem.

ZCI/GA(S/)[QC(O/) = 0]
A

Rsmte(S, a, 5/) = (54)

Combining Rewards: A final reward is proposed, combining all previous rewards
to address the JBS problem and provide the agent with enhanced information
for effectively exploring the state space of the SUT. However, the weights of this
reward may need to be adjusted for each specific SUT. For the sake of simplicity,

the reward function weights were assigned equal values.

/
RCDI77bi/7€‘d(5r a,s) = Wq * Rf/’equencg + wWp * Rstatefc/mnge + W3 *x Rstate (55)

5.3.2 RL Framework

The interface-based architecture (from Section 3.0) results in a modular and main-
tainable framework since the RL functionality is independent of the rest of the
tool. The framework consists of an implementation of the ActionSelector interface
called QLearningActionSelector as depicted in Figure 5.1. This class implements

selectAction and is responsible for selecting the following action using Q-

53 SMART SCRIPTLESS TESTING

125

Learning. The QLearningActionSelector class uses three main interfaces:

e RewardFunction is an abstraction for reward functions. In Figure 5.1, the

four implementations of the reward functions from Section 5.3.1 are shown.

e Policy is an abstraction for possible policies. For this study, e-Greedy was

implemented: a strategy that defines a probability e for exploration.

e QFunction represents the action-value function, implemented by Qlearn-

ingFunction to calculate Formula 5.1.

«interface»
ActionSelector
+ selectAction: Action

se.

«interface»
RewardFunction
+ getReward

Extend

Use

L

«interface»
Policy
+ getQValue

«interface»
ActionSelector
+ selectAction: Action

Classes implementing the reward funclions/
P
' FrequencyReward ' StateReward 1
Extend [FT=7 77777 o ===y p====mmmmmmmms
< 1 LN} 1
fToTT e T T p!TT o Tt oo T T]
;_ StateChangeReward 1! CombinedReward
_____________) POSezmevovevEeErh e
1 LN} 1
mmmmmmmmmmmm-
Extend! QLearningFunction 1y Use
1 1
______________ R S
| StateModel 1

Figure 5.1: QLearningActionSelector implements selectAction with Q-Learning.

Algorithm 3 implements selectAction using the interfaces described earlier.

Lines 1 and 2 in Algorithm 3 correspond to lines 8 and 9 in Algorithm 5.1, respec-

tively. Once the Q value is computed, it is stored in the TESTAR State Model (see

Section 4.2) as a property of the action, since every action is represented as an

outgoing transition of a state. Therefore, the Q-values are associated with both

the abstract representation of the state and the action. Finally, the QLearningAc-

tionSelector uses the policy to select the next action.

Configuration of a specific Q-Learning set-up is done through TESTAR's con-

figuration file (test.settings). This is used to configure the reward function,

policy and Q-function that the ASM will use and to define the parameters such

as € for the policy and 0 and «a for the Q-learning algorithm (see Algorithm 2).

126 CHAPTER 5. ADDING INTELLIGENCE

Algorithm 3 selectAction in class QlLearningLActionSelector

Input: RewardFunction

Input: OFunction
Input: Policy

Input: s,a,s > Previous State, Executed Action, Current State
reward < RewardFunction.getReward(s, a,s’)

2. q < QFunction.getQValue(s, a, reward)

3 updateQValue(s, a, q)

I a < Policy.applyPolicy(s’)

5 return a

Factory method patterns' are used to select and initialise the applicable im-
plementation class. During the initialisation of the applicable classes, the config-
ured parameters are set. It is possible to generalise this implementation, as it is
independent of the internal implementation of TESTAR and could be applied to any
other tool capable of abstracting states from a SUT. However, an adapter class
was implemented to integrate it with the TESTAR implementation. This adapter
class could be easily modified or replaced to integrate the implementation with
a different tool.

5.4 Experiment Design

This study investigates the effectiveness of the different rewards and their influ-
ence on the JBS problem. To achieve this, the following research questions were

formulated:

RQ1 Which reward-based ASM most effectively explores the SUTs?

RQ2 Does Rstate—change result in a higher occurrence of the /BS problem com-

IJC’FE‘C/ to Rfrequencgr Rstate or Rcombined7

'A design pattern that handles object creation by delegating the instantiation decision to spe-
cialised classes.

54. EXPERIMENT DESIGN 127

Our experiment, based on guidelines presented in [114,144], aims to answer
the research questions by analysing the exploration effectiveness of four different
rewards compared to random action selection. Additionally, the effectiveness of
frequency-based and state-based rewards as memory-based solutions for the
JBS problem is evaluated. Null hypotheses are formulated to facilitate statistical

analysis of the experiment.

HO' : The exploration performance of the ASMs, as measured by state, action,

and URL coverage, is statistically equivalent across all evaluated ASMs.

HO? : The occurrence of states associated with the JBS problem is statistically

eCIUl\/alent for Rsmte—chungeu Rsmter Rcomblned and RffeC/LleﬂCLj~

5.4.1 Objects: Selection of SUTs

The SUTs selected for the experiment should comply with the following: 1) The
SUTs have a GUI; 2) TESTAR can detect the widgets on the GUI of the SUTs;
3) The SUT contains a high difference between consecutive states to increase
the probability of encounter loops. Since the focus was on web exploration, the
following three SUTs were selected.

Shopizer is an e-commerce sales management software that allows the cre-
ation of online stores, marketplaces or product listings. The home page comprises
a search form, an item menu and a banner. Shopizer is an open-source website
containing 126 Java packages for a total of 410 Java classes and 23330 lines of
code. Shopizer was selected as a demo application for the initial experiments
of this work. To increase the search space, 10000 fake products were added
to 6 categories and 60 subcategories. Complex actions such as pagination and
searching are required to access the products.

Craigslist is a classified advertisement website with more than 80 million new
classifieds each month. Similar to Shopizer, Craigslist divides the products into
multiple categories and subcategories. However, the product listing view is more
complex: each category has specific search options for refining the displayed
product list. During the execution of the experiments, a total of 105 search options

were observed among all the categories.

128 CHAPTER 5. ADDING INTELLIGENCE

Bol.com is a large webshop with many different products. It was selected due
to its similarity with both Shopizer and Craigslist. Nevertheless, Bol.com provides
a more complex interface: extensive sequences of complex actions are required to
unblock certain areas of the application. Moreover, small images of the products
are always displayed, making the comparison based on screenshots between
states more sensitive. Furthermore, the home page consists of the more recent
products visited by the user, adding extra dynamism to the website. Finally, as

with Craigslist, specific search options are provided for every category.

5.4.2 Independent and Dependent Variables

The ASMs based on the different rewards from Section 5.3.1 are compared with the
random ASM. This means the factors are the rewards, and all other independent
variables are kept constant.

Independent Variables: The independent variables in this study are the param-
eters manipulated to observe their impact on exploration effectiveness. These

variables include:

e State abstraction: The abstract state representation affects how TESTAR
detects widgets. In this work ABSprop = {WidgetID, WidgetTextContext} . This
abstraction was selected after several trials.

e Action derivation: The widget associated with the action is always part
of the action’s abstract representation. To differentiate actions originating
from the same widget, the role of the action (e.g, click or type) is added to

its representation.

e Filters: Different parts of the web applications were filtered out for ev-
ery SUT, such as payment checkouts or registration, because they require

specific sensitive information to work correctly.
Other independent variables for the experiment are constant values:

e Execution time: Each action has an execution time of 1 second

54. EXPERIMENT DESIGN 129

e Time between actions: a minimum waiting time of 1 second between
executed actions.

e Length and number of test sequences: A test run consists of 300 se-
quences of 100 actions each.

e Exploration policy: An e-Greedy policy was selected as the policy prob-
ability of exploration, with @ = 1, y = 0.7 as the Q-learning parameters
(based on the related work).

Dependent Variables: The dependent variables represent the outcomes mea-
sured to assess exploration effectiveness and the presence of the JBS problem.

To answer RQ1, it is necessary to measure the exploration performance of
each ASM. While the SUT is explored, new states and actions will be discovered
and/or visited by the RL agent. To measure the exploration performance of each
RL algorithm in terms of state and action space size, the available information is
extracted from TESTAR's state model. Although code coverage is a good indicator of
the exploration effectiveness of a testing tool, in the case of real web applications,
this is not always available. Alternatively, the number of unique URLs visited on
each website was counted.

The JBS problem occurs when two states are significantly different. This
problem arises because the agent receives high rewards for transitioning between
such states. As a result, the agent may frequently ‘jump’ between these states,
limiting the exploration of other areas. States that frequently appear in short
sequences are often very different from their consecutive reachable states. It is
possible to obtain a path S1,5;, ..., S, from every test sequence, where S; is the
abstract state visited after executing action a;—1. A loop in a path means that
certain abstract state was revisited. A jumping state can be defined as a state that
appears excessively in multiple loops, which intuitively indicates the presence of
the JBS problem. When a test execution is finished, every loop in every path is
extracted. If a state s is the initial and final state of the loop, the length [; of the
loop is associated with that state. Thus, a tuple (s, ;) is obtained for every loop
in the test sequence.

The Dependent Variables measured to answer the RQs are:

130 CHAPTER 5. ADDING INTELLIGENCE

e Number of different abstract states visited

Number of different abstract actions executed

Number of different abstract actions discovered

Average number of distinct URLs visited

Number of state-loop pairs (S;, (;) identified per test sequence.

The number of (S;, [;) pairs represents the loops detected during a test se-
quence. Here, S; is the state that starts and ends the loop, while [; is the loop's
length. By analysing these pairs, ‘jumping states’ (i.e. states that frequently ap-
pear in loops) can be identified, serving as a key indicator of the JBS problem.
For instance, if a specific state S; is involved in multiple loops with short lengths,
it suggests that the agent often returns to this state without exploring new areas,
highlighting the presence of the JBS problem.

The goal for identifying such states is to detect outliers, i.e., states exhibiting
extreme looping patterns, such as high loop frequency and short loop length.
By analysing the proportion of outliers across different rewards and SUTs, the
influence of each reward on mitigating (or failing to mitigate) the JBS problem

can be evaluated.

5.4.3 Experimental Process

In this experiment, the general design principle of blocking was used. This means
fault-detection mechanisms are disabled to ensure that errors and exceptions do
not interrupt the test runs, as the primary focus is exploration rather than fault
detection. As a result, oracles (that define the errors and exceptions that TESTAR
will check) will not be used during this experiment because finding an error or
exception will interrupt the test sequence, and the goal of this experiment is
exploration.

To address the randomness of TESTAR ASMs, all test runs of the experiment

will be repeated 20 times using concurrent Virtual Machines (VMSs) to execute

54. EXPERIMENT DESIGN 131

the tests. Each virtual Windows machine is configured with a 45 GHz CPU and
16 GB RAM.

To analyse the data and evaluate the hypotheses, the Mann-Whitney-U test
was used for pairwise comparisons between ASMs due to the non-normal dis-
tribution of data. The effect size of significant differences was calculated using

Cliff's Delta, with thresholds for large, medium, and small effects.

States exhibiting unusual loop behaviour are identified using DBSCAN, a
density-based clustering algorithm. DBSCAN explicitly labels points that do not
belong to any cluster as noise and does not require predefining the number of

clusters, making it ideal for unknown state-loop distributions [161].

DBSCAN requires three parameters: the neighbourhood radius (e-DBSCAN),
the minimum number of points (minPoints) required to form a dense region and
the features used for clustering. To determine the optimal radius, the k-Nearest
Neighbors (kNN) distance plot is often used [162] In statistics, the kNN distance
plot is a reliable method for determining density thresholds, as it objectively
identifies the transition between high-density clusters and sparse regions.

To configure kNN to predict the optimal neighbourhood radius, the parameters
k (for KNN) and minPoints (for DBSCAN) are both set to the same value: /n,
where n represents the total number of loop states. This approach aligns with
standard practices in kNN classification, where k is often chosen as the square
root of the total number of data points [163]. Table 5.2 shows the parameter
configuration per SUT. Moreover, loop frequency and average loop length per

loop state were used as the features for clustering with DBSCAN.

SUT k e-DBSCAN
Craigslist 33 0.75
Bol.com 23 0.45
Shopizer 23 0.75

Table 5.2: DBSCAN parameters configuration for each SUT.

132 CHAPTER 5. ADDING INTELLIGENCE

5.5 Results

This section presents the findings of the experiments, addressing the formulated
research questions through statistical analyses. The exploration effectiveness of
the evaluated ASMs is compared, and the incidence of the JBS problem across

the different rewards is analysed.

55.1 RQ1: Exploration Effectiveness

The ability of the different ASMs to explore a web application was tested by
montitoring the URLs visited during execution. Additionally, TESTAR's state model
provides information about states and actions that have been discovered or visited.

The number of distinct abstract states visited, different actions executed, and
unvisited actions were counted for each application. An action is considered
unvisited when derived by TESTAR but has yet to be visited. Table 5.3 shows the
average values per SUT and ASM, while Figures 5.2, 5.3 and 5.4 show the results

for URL performance and space-related variables.

Table 5.3: Average values of dependent variables for every SUT

ASM Rcombmed Random Rf//equen(g Rsrme Rsmre—c/mnge
Shopizer

Abstract States (mean) 291.50 296.00 31250 32195 290.33

Abstract Actions (mean) 1097.85 110920 114617 1177.65 1065.67

Unvisited Actions (mean) 513565 468485 555156 5687.40 5180.39

URL (mean) 115.80 115.05 122.67 125.40 11456
Craigslist

Abstract States (mean) 101030 1022.05 991.14 959.20 1003.26

Abstract Actions (mean) 223465 246425 222600 222970 222311

Unvisited Actions (mean) 3562515 25781.40 37752.00 38824.10 36861.42

URL (mean) 102855 1031.70 963.10 946.50 1049.63
Bol.com

Abstract States (mean) 813.10 701.60 803.63 73370 722.40

Abstract Actions (mean) 1544.47 136580 1546.42 1443.80 142270

Unvisited Actions (mean) 1744526 1440220 1745595 15686.30 14748.50
URL (mean) 21753 22210 22742 224.85 199.75

55 RESULTS 133

Pairwise comparisons between each ASM were conducted following estab-
lished guidelines [144], and the effect size was measured in each case. Table 5.4
summarises the findings after applying the Mann-Whitney-U test to compare the
exploration of abstract states. The statistical results shown in Table 5.4 confirm

that Rs¢qre obtained the best performance. Also Ryrequency outperforms Reompined-

Table 5.4: The p-values calculated pairwise for Abstract States. When p < 0.05, the effect
size is calculated with Cliff's delta.

ASM R(ombme(/ Random Rfre[/uencg Rsrme Rsmre—c/mnge
Shopizer
Random 0.61 - - - -
Rirequency <001 () 007 : _ .
Ritate <001 () 001() 043 . .
Rstate—change 0.60 0.94 <001 (1) <0.01 (1) -
Craigslist
Random 0.72 - - - _ ,
Rirequency 033 002 (m) - ; i}
/_?smte 018 003 (l) 039 - -
Rstate—change 055 0.53 0.35 0.22 -
Bol.com
Random 0.01 (1) - - - _
/?//‘oquon(g 0.20 0.18 - - _
Rstate 0.03 (m) 0.21 0.49 - -
/_?statefdmhgg 0.01 (L) 052 036 054 -

Figure 5.2 shows high variability for Random across all dependent variables
in Shopizer, with some executions achieving excellent results while others exhibit
the worst performance. Shopizer always lists the same products in the same
order, making it challenging to browse different items. The pagination is based
on a 'load more button’. Consequently, new actions only appear if that button
is clicked. On the contrary, RL ASMs had less variability and obtained better
results. Especially, Rstqre visited a larger amount of new abstract actions while

also discovering more unvisited actions than any other ASM.

134 CHAPTER 5. ADDING INTELLIGENCE

i .
1404
o 3401
Q —
3
)
z - 7 -
3] n o -
g a 1204
2 300+ 3 . .
© - o
O g
[) 5 —
> J
£ T
5 e 100 A 1
2604 .
80
Random Rcompined Rfrequency ~ Rstate Rstate-change Random Rcompined Rfrequency ~ Rstate Rstate-change
-1 14004 .
T '
6000 -
%)
S
Kl @© 12004
° d - .
< 5000 §
o . — =
2 . — L 3
2 ©
2 g -
S 4000 1 T |
] c 10004
=)
3000 A
Random Rgompined Rirequency Rstate Rstate-change Random Rcompined Rirequency Rstate Rstate-change

Figure 5.2: Exploration performance of Shopizer

Figure 5.3 shows that Random ASM visits more unique abstract actions and
executes more unique actions for Craigslist. Table 5.4 indicates that there is a
significant statistical difference between Random and Rsigre OF Rirequency With
regards to Abstract State exploration. This may be due to Craigslist's multiple
search options available in most states, resulting in a vast set of possible actions
to execute. Conversely, RL ASMs repeat many actions already executed to learn

55 RESULTS

135

from the experience. Further research is needed to improve abstraction to handle

multiple search options or increase the testing time to train the RL agent.

Unique abstract states

Unvisited Actions

1100 o T
L
n
1000 4 . -
n
900 _|_
8004
Random Rcombined Rirequency Rstate Rstate-change
40000 4
(]
s »
]
30000
u
20000 4

T T T
Random Reompined Rirequency

T T
Retate Rstate-change

Unique URLs

Unique abstract actions

1200

1100

1000 4

900 1

800 4

7004

T

Random

Roombined Rirequency Ristate

Rstate-change

2700

25001

23004

21004

19001

Random

T
Roombined Rirequency Rstate

Figure 5.3: Exploration performance of Craigslist

Rstate-change

To verify if this is also the case for Craigslist, a single run of 100 test sequences,

each consisting of 100 actions, was executed using Random and Reompined- 1able

5.5 shows the results for state exploration. Both ASMs reached a similar number

of abstract states, while Reompined Visited considerably fewer concrete states than

130 CHAPTER 5. ADDING INTELLIGENCE
Random as a sign of better exploration. The model generated can be used in
future test sessions or in different versions of the same SUT. Theoretically, the

RL agents will need less execution time to reach the same exploration level.

Table 5.5: State exploration after 10000 actions

ASM Abstract States Concrete States URL coverage
Random 3274 6479 1136
Reombined 3166 4576 1301
3504
1000 1
- !
2 300
ol
@]
° w . 4
£ 750 2 —]—
= . . . © 250
- 2 = -
g . 5 "
g
f= e w
g 200
5004
150 1 —|—
Random Rcombines Rirequency Rstate Rstate-change Random Rcombined Rirequency Rstate Rstate-change
200004 17509 1
w - 2
2 2
5 15000 : g 150091 ——
‘G -
< AL]
hel -
Q L 173
= Q 4
@ 10000 ® 1250 - H
> ()
c ! =1
5 : z
[= .
= 10001
5000
L]
T T T T T 7501 T T T T T
Random Rcombined Rirequency Rstate Rstate-change Random Rcombined Rirequency Rstate Rstate-change

Figure 5.4: Exploration performance of Bol.com

55 RESULTS 137

For Bol.com, Figure 5.4 indicates that the RL approaches generally outper-
formed Random. In particular, Reompined outperformed Rsiare and Rstgte—change
in terms of search space exploration. Table 5.4 shows that there is a statistical
difference at a significant level for the exploration of new abstract states.

However, there are no significant differences in terms of URL coverage. An
analysis of the extracted URLs during the executions revealed that most URLs
include multiple search parameters. Since this is an e-commerce site, new URLs
are obtained after accessing a product view or refining the product search on the
listing views. This highlights the importance of domain-specific preprocessing,
such as URL normalisation, to distinguish meaningful navigational actions from

parameter variations.

RQ1 answer: State-based reward (Rsiqte) generally exhibited superior
performance in exploring diverse areas of the SUTs, as indicated by metrics
like abstract state discovery and action coverage. However, the frequency-
based reward (Rfrequency) proved to be effective in promoting balanced

exploration across more complex and interconnected state spaces.

5.5.2 RQ2:]BS Problem

Intuitively, jumping between states happens when states appear multiple times
with short sequences of actions between each occurrence. However, the length
and frequency required to classify a state as a jumping state are hard to predict
for every SUTs. Loops were extracted to analyse the distribution of jumping states,
with a focus on the initial state and loop length. Figure 55 shows the relation
between the number of times a state starts a loop and the average size of those
loops. The pattern is consistent across ASMs. The interesting sections rely on
the bottom right of every chart: states (represented as red dots) with many loops
of small size. DBSCAN's outlier detection was applied for all rewards across the
three SUTs. Each point in the data represents a state-loop pair, characterised by

the average loop length and the number of loops.

138 CHAPTER 5. ADDING INTELLIGENCE

Reombined | | Rirequency | | Ritate-change | | Rgtate |

Average length of loops

5 10 15 5 10 15 5 10 15 5 10 15
Number of loops

(a) Craigslist

Reombined | | Rirequency | | Ritate-change | | Rgtate
100

H
3
i

Average length of loops

veree +

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Number of loops

(b) Bol.com
Reombined | | erequency | | Rstate—change | | Ratate

20
7]
Q
(9] .
2 .
5 151+
£ | . .
(=) N .
c . . .
L] .
o 10
=] +
@ . s
) +
> +
< 5 +

]

1 10 100 1 10 100 1 10 100 1 10 100
Number of loops

(c) Shopizer
Figure 5.5: Distribution of states starting loops and their mean loop length

55 RESULTS 139

Figure 55a presents the clustering for Craigslist. Rstate—change and Reombined
seem to have a higher accumulation of points in this area, while Rsqte contains

no problematic states.

In Figure 5.5b, Bol.com’s clustering results reveal fewer outliers overall despite
its complex navigation requirements. Similar to Craigslist, R equency tends to have
fewer loops per test sequence in Bol.com, with the states being visited fewer
times. Rstgte—change @gain shows a higher number of potential jumping states,
while Rstgte and Reombined @ppear to balance exploration and revisitation, leading
to a moderate number of outliers. Additionally, the graphs show fewer loops for
Bol.com. This could be an important factor in explaining the better performance
of the rewards in this web application.

Figure 5.5¢c shows the clustering results for Shopizer, which contains a more
significant presence of jumping states, and in general, all the loops are of small
size. There is no noticeable difference between the rewards. This can be ex-
plained by the nature of Shopizer, which has smaller state space and simple
navigability to access the main parts of the SUT. This result is expected: Rstqte 1S
a reward based solely on the reached state, not depending on any characteristic
of the consecutive states.

To further evaluate the incidence of the JBS problem in each ASM, the num-
ber of jumping states was statistically analysed using the Mann-Whitney U test.
The goal is to measure if there is any statistical difference between the re-
ward Rstate—change and the other three rewards, respectively. Table 56 sum-
marises the p-values calculated for this comparison for Craigslist and Bol.com.
Rstate—change is significantly different from Rstate and Rirequency (p — value <
0.05). Rstate—change tends to visit the same states more frequently with fewer
actions in between. The hypothesis for Rcombined in Craigslist could not be
rejected. The weight parameter could give too much influence to the state-change
reward within the combined reward.

Table 5.6: p-values calculated between every reward and Rsgte—change

chmbinoc/ R/roquon(y Rsmlo
Craigslist 0.48 p < 0.001 p < 0.001

Bol.com 0.03 p < 0.001 0.03

140 CHAPTER 5. ADDING INTELLIGENCE

RQ2 answer: The frequency-based reward (Rsrequency) was most effective
in mitigating the JBS problem, reducing the prevalence of states involved in
short, repetitive loops. The reward based on state-change (Rstate—change)
exacerbated the issue by rewarding transitions between a limited set
of states. In contrast, the state-based reward (Rstate) showed resilience

against this problem in most cases.

5.6 Discussion

The analysis demonstrated that the state-based reward tends to excel in envi-
ronments where exploration breadth is critical, as it prioritises the discovery of
new states. Conversely, the frequency-based reward promotes a more uniform
exploration. In contexts where navigation complexity is high, such as e-commerce
platforms, a frequency-based reward provides a balance between revisiting key

states and discovering new regions.

The JBS problem arises when rewards incentivise behaviour that limits the
exploration potential, leading to frequent transitions between a small subset of
states. Frequency-based strategies discourage such behaviour by penalising re-
visitation patterns, enabling more balanced exploration. In contrast, rewards
based on state differences, if not calibrated, risk reinforcing the problem, even in

large state spaces.

Several factors might affect the incidence of the JBS problem. Web applica-
tions with a high probability of accessing previously visited states can present
this problem regardless of the selected reward. This can be observed, for exam-
ple, when the state space is small, when there is a bottleneck to access other
unvisited parts of the SUT or when there is high interconnectivity between the
main states. This is the case with Shopizer, where new pages are only accessible

through a button that is not always visible, and the state space is small.

5.7. THREATS TO VALIDITY 41

5.7 Threats to Validity

In this study, several threats to validity were identified and addressed to ensure
the reliability and applicability of the results. These threats are categorised into
four main types, following the guidelines proposed by [114].

5.7.1 Internal Validity

Although multiple runs (20 repetitions) were conducted to mitigate randomness,
the selection of specific web applications might inherently favour certain explo-
ration strategies over others. Three web applications with varying complexities
and navigation structures were chosen to reduce this threat.

Furthermore, the choice of RL parameters can significantly influence the
agent's performance. While default values were selected based on related work,
different configurations might yield different results. Future studies could explore
the sensitivity of the outcomes to these parameters.

Regarding TESTAR's configuration, the state and action abstraction method
plays a crucial role in how states (and actions) are represented and differentiated.
An inappropriate abstraction could lead to misleading state representation, as ob-
served in Chapter 4, affecting the learning process. Although this abstraction was
selected after several trials during the Implementation Phase (see Figure 3.10),

alternative abstraction methods might produce different exploration behaviours.

5.7.2 External Validity

Only three web applications were evaluated, each with its unique characteris-
tics. While they represent a range of complexity, the results may not generalise
to all types of web applications, especially those with highly dynamic content.
Future research could include a broader spectrum of applications to enhance
generalizability.

Moreover, the integration of Q-Learning with TESTAR is tailored to its architec-
ture and state modelling capabilities. Ensuring modularity in the implementation

allows for easier adaptation and testing across different tools.

142 CHAPTER 5. ADDING INTELLIGENCE

5.7.3 Construct Validity

The study used metrics such as the number of abstract states visited, actions
executed, and URL coverage as proxies for exploration effectiveness. While these
metrics provide valuable insights, they might not fully capture the qualitative

aspects of exploration, such as the relevance of the visited states.

The methodology for detecting the JBS problem relied on loop detection and
clustering using DBSCAN. The choice of parameters and features might influence
the identification of outliers. Alternative clustering techniques or parameter set-
tings could yield different interpretations of what constitutes a jumping state. To
mitigate this threat, parameter tuning was performed on the kNN distance plot
to objectively identify optimal clustering thresholds.

5.7.4 Conclusion Validity

Each ASM was executed 20 times to account for randomness. While this number
provides a reasonable balance between computational feasibility and statistical
power, larger sample sizes might offer more robust estimates and detect smaller
effect sizes. Future experiments could increase the number of repetitions to en-

hance statistical reliability.

The implementation details of the Q-Learning algorithm, including the calcu-
lation of the rewards and the application of the policy, could introduce inconsis-
tencies. Ensuring that the algorithm is correctly implemented and that all ASMs
are evaluated under identical conditions is crucial for drawing valid conclusions.
Rigorous testing and validation of the implementation were performed to minimise

this threat.

The rewards were tailored based on existing state models. The ASMs may
have performed well on the selected SUTs but might not generalise to unseen
applications or different testing scenarios. The study acknowledges this and
recommends validating the approach across additional and more diverse SUTs in

future research.

58 CONCLUSIONS 143

5.8 Conclusions

A Q-learning approach for automated GUI testing was presented, utilising re-
wards based on the state model of web applications. This is an understudied yet
valuable area for understanding an agent’s behaviour when executing actions to
attain rewards. This approach offers a unique advantage in this domain.

An experiment was conducted on three complex web applications to evaluate
the performance of four rewards, using Random as a baseline for comparison.
The results showed that frequency, state, and combined rewards had the best
performance for state exploration. The state-change reward, however, was out-
performed by or did not improve upon the results of the other rewards. Addition-
ally, a solution to the Jumping Between States (JBS) problem was proposed by
incorporating memory information into the reward. The results demonstrated that
rewards based solely on the reached state effectively circumvent the JBS problem.
However, in domains with high connectivity between states, where most pages
are accessible within a few clicks, the JBS problem is more prevalent, regardless
of the reward. Nevertheless, state or frequency rewards performed better in web

applications with complex navigability.

144 CHAPTER 5. ADDING INTELLIGENCE

Applying it at a company: Marviq

‘Software never was perfect and won't get perfect. (..) The

missing ingredient is our reluctance to quantify quality.”

Boris Beizer, Software testing techniques

The increasing reliance on complex web applications demands robust soft-
ware testing practices to prevent bugs that could cause user dissatisfaction, data
breaches, and reputational harm [63]. For companies, testing at the GUI level is
essential, as it provides insights into the customer experience. However, man-
ually executing GUI tests is resource-intensive and error-prone, particularly in
regression testing, prompting a shift toward automation.

The industry case-based studies discussed in Chapter 3 have demonstrated
that scriptless GUI testing complements traditional scripted testing techniques.
Despite these advantages, industrial adoption remains limited.

In collaboration with the private company Marviq ' and under the European
IVVES (Industrial-grade Verification and Validation of Evolving Systems) project ?,
several critical needs were identified influencing the adoption of scriptless testing

1Official website: https://marviq.com/
20fficial website: https://www.ivves.eu

145

https://marviq.com/
https://www.ivves.eu

146 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

in industrial settings:

1. the optimisation of test session length to balance coverage and time effi-

citency.

2. the evaluation of random GUI testing as a complement to existing manual
testing processes.

3. the introduction of code smell coverage to address maintainability and tech-

nical debt.

4. the assessment of correlations between code smell coverage and traditional

coverage metrics to identify testing gaps.

To address these needs, it is essential to consider the breadth of code exer-
cised during testing and the underlying quality of the code being tested. Tradi-
tional metrics, such as line, branch, and complexity coverage, have been widely
used to measure how much of the code is covered during testing. While these
metrics offer valuable insights, they have long been debated for their limitations
in fully capturing the quality of testing [164,165]. High code coverage can be de-
ceptive, as it does not guarantee thorough testing or the detection of more subtle
defects, leaving critical areas of software quality unaddressed.

This chapter will explore the use of code smells as a metric for evaluating
traditional coverage metrics within the context of an industrial web application.
Code smells indicate potential issues that may lead to maintainability problems
and hidden bugs [166]. Covering these smells during testing can reflect the ability
of the testing tool to detect deeper quality issues. While static analysis identifies
potential smells, dynamic testing ensures these smells are encountered during
real application use, increasing confidence in addressing areas that may con-
tribute to defects and boosting confidence in overall software quality.

This study uses SonarQube [167] for code smell detection to assess the impact
of test sequence length on coverage and investigates correlations between code
smells and traditional coverage metrics. Additionally, this work compares the
complementarity of scriptless testing with Marvig's existing manual testing pro-

cess. This collaboration brings significant relevance to this research, as it adds

6.1. RELATED WORK 147

a real-world and practical component and another industrial validation of script-
less GUI testing needed for case study generalisation through the architectural
analogy presented in Chapter 3. The contribution of this chapter is threefold:

1. An empirical study to analyse the influence of test sequence length on

traditional coverage metrics.

2. The use of known code smells in an industrial application for evaluating

the effectiveness of traditional coverage metrics in exploring a system.

3. A comparison of random scriptless testing with Marviq's manual testing
process to demonstrate their complementarity and the potential of scriptless

testing.

This study offers insights for software testing professionals and researchers
interested in expanding traditional coverage metrics to include aspects of code
maintainability. By integrating code smell detection, this work contributes to the
ongoing development of testing techniques that address both functionality and
software quality. Moreover, new research directions could emerge in software
testing, code quality, and the relationship between GUI testing and code smells.

The chapter is structured as follows. Section 6.1 presents the state of the
art in random scriptless GUI testing, adequacy metrics and code smell analysis.
Section 0.2 describes the industrial context of this study. Section 0.3 describes the
experiments with random testing. Section 6.4 shows the results and answers to
the research questions. Section 6.5 discusses Marviq's perspective of the findings,
while Section 6.6 presents the validity threats and mitigation actions. Finally,

Section 6.7 concludes the work.

6.1 Related Work

This section presents relevant studies that provide insights into random scriptless
GUI testing, test adequacy metrics, and the relationship between testing and code

smells.

148 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

6.1.1 Random Scriptless GUI testing

Although random scriptless GUI testing has been shown to effectively identify
a range of faults, its success largely depends on how the randomisation pa-
rameters are configured. Recent studies demonstrate that test outcomes can be
significantly influenced by settings such as the length of the test sequences, the
state abstraction (as observed in Chapter 4), and the stopping criterion [168,169].

However, improving the effectiveness of random GUI testing requires careful
adaptation of the random strategy to overcome specific challenges presented
by GUI components, such as blocking GUI (i.e, GUIs that need specific user
interactions to be unlocked). To address this, recent work has explored the use
of novel techniques to enhance the ability of random agents to navigate and test
sophisticated interfaces, improving overall testing adequacy [170].

Furthermore, a body of research compares random testing with manual test-
ing approaches. These studies highlight that random and manual techniques
are complementary: while manual testing is capable of covering parts of the
code that random testing might miss, random approaches can explore unexpected
interactions and pathways that manual testers may overlook. This complemen-
tarity suggests that a hybrid testing strategy, leveraging both methods, can offer

improved coverage and fault detection capabilities [64,171].

6.1.2 Test adequacy metrics

Code coverage has been widely used in the literature to evaluate the quality of
testing by relating coverage to the test effectiveness [172] [173], [174], [175].

The most commonly used coverage criteria for GUI testing include:

e [ine of Executable Code Coverage (LC): percentage of executable lines of
code covered by an execution of random scriptless GUI testing session. An
executable line of code is considered covered when it is executed by the
random scriptless GUI testing session.

e Statement Coverage (SC): percentage of executable statements that have

been executed, focusing on individual operations regardless of how they are

6.1. RELATED WORK 149

arranged on lines of code. Multiple statements can be on a single line, or
one statement can span multiple lines.

e Instruction Coverage (IC): percentage of bytecode instructions that have

been executed during testing.

e Branch Coverage (BC): percentage of branches in the code that were exe-
cuted at least once during testing. A branch is a decision point in the code

where the program can take different paths based on a condition.

e Complexity Coverage (CoC): percentage of the code’s cyclomatic complexity
that has been tested. Cyclomatic complexity measures the complexity of a
program'’s control flow by counting the number of independent paths through
the code.

e Method Coverage (MC): percentage of methods (or functions) in the code-

base that have been executed at least once during testing.

e (lass Coverage (ClLC): percentage of classes in the codebase that have been

instantiated or had their static members accessed during testing.

e State Space Exploration (SSE): number of distinct states explored during

testing.

e Action Space Exploration (ASE): number of distinct actions executed during

testing.

Choudhary et al. [176] conducted a comprehensive comparison of Android GUI
testing tools, including Monkey, using line of executable code coverage. Similarly,
Wang et al. [177] compared various automated Android testing tools, focusing on
method coverage, activity coverage and fault detection. Branch coverage was used
as a primary metric when comparing random testing with a search-based test
data generation study for web applications in [178]. Van den Brugge et al. [179]
assessed effectiveness using instruction, branch, and accumulated instruction and
branch coverage in Java applications. Likewise, in [180], line and statement cov-

erage were used to propose a framework to evaluate the effectiveness of different

150 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

Android GUI testing tools. Recently, Collins et al. [181] examined the effectiveness
of a reinforcement learning testing approach for Android using instruction, branch,
line and method coverage. Additionally, in [182], an image-based GUI testing ap-
proach was empirically evaluated in Android and Web applications using line
coverage and branch coverage.

Thus, coverage metrics act as surrogate measures of the thoroughness of
testing efforts. Nevertheless, there is also evidence in the literature arguing that
coverage criteria alone are not a sufficient indicator of test quality [183], and that
new solutions should be explored to improve test quality by looking beyond just
code coverage [184].

Memon in [185] recognises that code coverage metrics do not address prob-
lematic interactions between the GUI user events and the application and argues
that coverage criteria for GUI testing require new perspectives. Subsequently,
in [1806], an empirical evaluation to analyse the impact of the test suite size on the
capability to detect faults is presented, showing that larger test suites identify
more faults previously seeded in toy projects. This conclusion is straightforward
since high coverage means that the system has been explored more deeply, and
then the quality of the test process should improve to detect faults. However,
this conclusion raises the question of which of the traditional coverage metrics is

more likely to be a good indicator of test quality in real projects.

6.1.3 Code Smells

Code smells [70] refer to indicators of design flaws or issues in source code
that can lead to future problems. Consequently, finding these smells during
testing can reflect the ability of the testing tool to cover code with deeper quality
issues, such as code smells. Most of the existing research on code smells focuses
on prioritisation [187-189], filtration [190], and the code smells-faults correlation
[191-193]

Spadini et al. [194] examined how the presence of code smells affects the
coverage of test suites, revealing that classes with code smells tend to have
lower test coverage. Bavota et al. [195] studied the relations between quality
metrics, or the presence of code smells, and refactoring activities performed by

6.2, INDUSTRIAL CASE 151

developers. Results highlighted that only 7% of the refactorings performed on
classes affected by smells actually removed those smells. These findings indicate
that developers focus on mitigating the problem without necessarily removing
completely the code smell.

While these studies have made important steps in linking code smells to test
quality, a gap remains in assessing how the different traditional coverage metrics
relate to code smells.

Based on existing research, this study is the first to assess the power of
traditional coverage metrics to predict testing quality by using known code smells
in an industrial application. This approach offers a new perspective on GUI testing
effectiveness, bridging the gap between testing and code quality assessment.

By applying TESTAR, this work builds on scriptless testing theory using the
architectural analogy and strategies from [196] This work provides a deeper
explanation of the testing effectiveness of the industrial application of scriptless
testing presented in [197], contributing this way to the generalisation of the find-
ings.

6.2 Industrial case

Marviq is a software development company offering Team as a Service, Software
Development as a Service and loT development, with a focus on integrating skilled
professionals into client teams and managing entire development projects. Mar-
vig is a small company with 35 professionals who work with agile practices on
typically eight concurrent development projects while serving 25 clients.

As these projects are tailored to the client's needs, Marviq applies a tailor-
made Quality Assurance (QA) process consisting of the following steps: (1) con-
duct a workshop with the client for business alignment and scoping; (2) develop
the MVP (Minimum Viable Product) as a prototype of the project; (3) develop
the product and environment following agile practices based on SCRUM [46]; (4)
and provide support channels to the client when the project is released. It is
important to mention that QA for small companies like Marviq faces several chal-
lenges [47], [48], such as unclear requirements, the illusion that the prototype is

152 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

the final product, mapping existing software to new business process mismatch
or running out of time for testing.

The selected SUT is Yoho 2, a digital solution developed by Marviq to en-
hance operations and communications within industrial environments. Yoho offers
functionalities such as alert and notification management, task handling, work in-
structions and enhanced communication tools (see Figure 6.1). Yoho is a software

as a service (SaaS) platform with the typical web application functionality.

OYd-D Tasks 0] I\-:;I Testuser v

25

Replace shaft of packing arm Pk Feikc SR =

B e e : - & 4 28

Figure 6.1: Excerpt of Yoho SUT.

The Yoho Software as a Service (SaaS) platform initially began as a well-
defined minimum viable product. However, market circumstances caused the
product scope to rapidly change with each potential customer, resulting in a
system more akin to a prototype than a functional product. At this stage, Marvig
was brought in to adopt the project and transform it into a market-ready product.
With the first customers in sight, the product focus became clear, and develop-
ment resumed a straightforward path towards a production-ready state, resulting

in the product as it stands today.

3Yoho showcase: https://marviq.com/our-showcases/yoho-factory-management-platform/

https://marviq.com/our-showcases/yoho-factory-management-platform/

6.2, INDUSTRIAL CASE 153

At its core, Yoho has been designed with highly configurable options and
a role-based access mechanism to support future requirements and customer-
specific demands. The design includes interaction units tailored by roles, which
provokes that while executing tests a specific role and customer would result in
a relatively low percentage of code coverage as not all functionality would be
revealed for this user.

Table 0.1 presents an overview of the size of Yoho. As can be observed, the
metrics presented are representative of a real-world application. Additionally,
this SUT exposes relevant challenges, such as the dynamism of modern web

applications (i.e., dynamic identifiers for the GUI widgets).

Metrics Yoho

Java Classes 569 (709 incl. interfaces)
Methods 3033

SLOC 25099

LLOC 9059

Branches 1622

Instructions 37180

Cyclomatic Complexity 3856

Table 6.1: Overview of the size of Yoho

Marviq uses SonarQube to identify code smells in the Yoho application. This
information provides a rich basis for evaluating the performance of different cov-
erage metrics to test the parts of the code that may be causing problems. Nev-
ertheless, Marviq faces several challenges in ensuring effective software testing
while managing limited resources. To address these challenges, the company
identified the need to explore random testing, manual testing, and new coverage
metrics to enhance testing efficiency and code quality. Below are the specific

needs that motivated the studuy.

(@) The Need to Conduct Random Testing with Different Session Lengths: The
company needs to optimise testing resources to ensure the process is effective
and efficient. Since testing resources are limited, finding the optimal session

length that balances coverage and time is important. Testing sessions that are

154 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

too short may miss critical issues, while longer sessions may be inefficient. By
experimenting with different session lengths, the company aims to identify the
best trade-off between test coverage and resource expenditure. This is especially
important in environments with rapid development cycles like Agile, where the

ability to quickly adapt testing to available time windows is critical.

(b) The Need for a New Coverage Metric: Code Smell Coverage: The company
aims to ensure not only functional correctness but also long-term high code
quality and maintainability. Traditional metrics like code or method coverage
focus on functionality but do not fully capture the maintainability and readability
aspects of the codebase. Introducing code smell coverage addresses the need to
track potential technical debt that could accumulate unnoticed. This metric helps
the company ensure that, while functional coverage may be high, the code remains
maintainable and scalable, reducing the risk of future issues as the software

evolves.

(c) The Need to Assess Correlations between Code Smell Coverage and Tradi-
tional Metrics: The company seeks to understand whether traditional metrics like
code and method coverage correlate with overall code quality, as high coverage
does not guarantee well-structured or maintainable code. By exploring the rela-
tionship between code smell coverage and traditional metrics, the company aims
to identify gaps in its testing process. Low correlation would suggest traditional
testing may not fully address long-term maintainability concerns. This insight
can help the company develop a more holistic testing approach, including both

functional correctness and code quality to ensure robust, maintainable software.

(d) The Need to Compare Random Testing with Manual Testing: Given the limited
resources for manual testing, there is a need to evaluate whether random testing
can complement the existing manual testing processes. Manual testing is labour-
intensive and expensive, so the company seeks a solution that can reduce the time
and cost associated with it. By comparing the two approaches, the company aims
to determine if random testing can identify different types of issues that manual
testers may miss. The ultimate goal is to enhance test coverage while reducing

the burden on manual testers, allowing them to focus on more critical scenarios.

6.3 EXPERIMENT DESIGN 155

6.3 Experiment Design

An experiment to explore the application of random testing on an industrial web
application was conducted, addressing the industrial needs discussed in Section
0.2. Specifically, the study focuses on optimising testing resources, assessing
random testing's complementarity to manual testing, and introducing innovative
metrics like ‘code smell coverage” to monitor code quality and maintainability. The
following three research questions were formulated along with their rationales

to achieve this goal.

RQ1: How do the number and length of random scriptless GUI testing sequences

impact the coverage of testing adequacy metrics?

This question investigates Need 1. The company aims to determine how
the number and length of random scriptless GUI testing sequences influence
testing adequacy metrics. Understanding this relationship will help optimise
the testing process by bhalancing thoroughness with resource limitations in Agile

environments with tight testing cycles.

RQ2: How do traditional coverage metrics (e.g., code and method coverage) relate

to code smell coverage?

This question addresses Need 2 and Need 3. The company seeks to examine
the relationship between traditional coverage metrics and new metrics, like code

smell coverage, to determine how well they align in assessing overall code quality.

RQ3: How can random testing complement or reduce the reliance on manual

approaches?

This question tackles Need 4. The company aims to assess whether random

testing can supplement or reduce the need for manual testing.

The experiment was designed following the guidelines proposed by Wohlin
[114]. Moreover, this study follows a methodological framework [198] specifically
designed to evaluate testing tools in order to encourage future secondary studies.

The experiment is described in the following subsections.

156 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

6.3.1 Independent and Dependent Variables

The independent and dependent variables were defined as follows to address the
research questions.
Independent Variables: The independent variables refer to the parameters used

to configure the random scriptless GUI testing tool. These variables include:

o Number of random testing sequences: the total number of random test

sequences executed.

e Number of GUI actions per sequence: the number of actions executed within
each test sequence.

e Time delay between actions: the time interval (in seconds) between two

consecutive random actions.
e Action duration: the time (in seconds) taken for each GUI action to complete.

e State abstraction: defined by the properties of the widgets used to repre-
sent the state of the system under test (SUT).

e [nitial sequence needed: for example, to pass a login screen.
e form filling enabled.: to fill detected forms with meaningful data.

Additionally, the parameters used for detecting code smells are treated as
independent variables.
Dependent Variables: To answer the research questions, several traditional cov-
erage metrics were measured, including Line Coverage (LC), Instruction Coverage
(IC), Branch Coverage (BC), Complexity Coverage (CoC), Method Coverage (MC),
and Class Coverage (CLC). In addition, the following variables were defined to

analyse coverage within the state models and to quantify code smells:

o Abstract State Coverage (AbSC): The number of abstract states covered in

the state model during testing.

e Abstract Transition Coverage (AbTC): The number of transitions covered in

the abstract state model.

6.3 EXPERIMENT DESIGN 157

e Concrete State Coverage (CoSC): The number of concrete states covered in

the concrete state model.

e (Concrete Transition Coverage (CoTC): The number of transitions covered in
the concrete state model.

o Code Smell Coverage (CSC): The number of unique code smells encountered.
A code smell is considered "covered” when the Java method containing it is

executed at least once during testing.

e Code Smell Occurrences (CSO): The total number of code smell instances
triggered during testing, including multiple occurrences of the same code
smell.

6.3.2 Experimental Setting

To carry out the experiment, both the TESTAR testing tool and the SonarQube
static analysis platform were configured to suit the needs of this study, ensuring
an effective evaluation of test coverage and code quality metrics.

TESTAR Configuration: For testing the Yoho application using TESTAR, several
key configurations were implemented to optimise the testing process. First, the
SUT was specified by defining Yoho's URL and establishing the necessary login
procedures. This ensured that TESTAR could consistently access and interact with
the application. The blocking principle [114] was applied to focus on exploring
the SUT, turning off TESTAR's oracles to prevent test interruptions.

For widget identification, TESTAR was configured to consider attributes such as
name, ID, control type, and text content. In cases where clickable elements were
defined by CSS classes instead of standard attributes, clickability was manually
configured to ensure accurate testing. State abstraction (SA) consisted of the
WebWidgetld, WebWidgetName, WebWidgetTextContent, and WidgetControlType
properties. The action abstraction strategy followed TESTAR's default configuration.
Additionally, certain actions, such as logging out or file uploads, were excluded
to avoid interactions outside the test scope.

158 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

A mandatory login sequence was defined to execute at the start of each test
run, using consistent credentials across all tests to ensure a uniform starting
point. Based on preliminary trials, time parameters were optimised, with the

action duration set to 0.5 seconds and the delay between actions to 0.8 seconds.

Additionally, a BTrace* server was integrated alongside TESTAR BTrace al-
lows real-time instrumentation of Java methods without modifying the source code
or interrupting the normal execution of the application. BTrace intercepted and
logged method calls triggered by GUI actions while operating in a separate envi-
ronment. Each traced method (along with its class name, timestamp, and relevant
parameters) was stored in a database. This information was cross-referenced
with known code smells, enabling us to track and measure variables such as CSC

and CSO, as described in Section 6.3.1.

SonarQube Configuration: SonarQube [69] was used to perform static analysis
of the Yoho codebase, identifying code smells and other violations. SonarQube
classifies violations by severity: Blocker, Critical, Major, Minor, or Info. In Yoho's
analysis, SonarQube detected a total of 173 code smell instances, categorised as
shown in Table 6.2 using both Fowler’s [70] original classification of code smells

and a more recent classification system [199].

Most detected code smells were categorised as Object-Orientation Abusers.
Conditional Complexity was the most frequent, suggesting a need for better ad-
herence to object-oriented design patterns in the Yoho codebase. Although only
one security-related issue was found, it was classified as Critical. This analysis
provided valuable insights, allowing us to assess both the prevalence and sever-
ity of code smells in relation to the executed test sequences. Furthermore, code
smells in comments and dead code were excluded from the study, as they are not
executable, to ensure accurate coverage analysis and responses to the research

questions.

4Source code available at: https://github.com/btraceio/btrace

https://github.com/btraceio/btrace

6.3 EXPERIMENT DESIGN 159

Table 6.2: Code Smell Classification and Severity

Code Smell Type Critical Major Minor
Bloaters (26) Data Clumps 1 0 0
Long Parameter List 0 11 0
Primitive Obsession 1 11 2
Couplers (11) Indecent Exposure 0 11 0
Dispensables (29) Comments 12 3 0
Dead Code 0 8 0
Lazy Class 0 0 1
Speculative Generality 0 4 1
Lexical Abusers (3) Inconsistent Naming 0 0 3
Obfuscators (8) Clever Code 0 1 3
Inconsistent Style 0 0 4
Abusers (95) Conditional Complexity 0 70 0
Refused Bequest 0 3 20
Switch Statements 0 0 1
Temporary Field 0 1 0
Security (1) Vulnerability 1 0 0
Total (173) 15 123 35
Total excluding comments and dead code (150) 3 112 35

6.3.3 Experimental Procedure

The experiment was designed with three different configurations of test processes
consisting of 10, 000 actions, i.e. TP100, TP500 and TP1000. Table 6.3 shows the
details of these configurations. Moreover, the best configuration was selected
(that turned out to be TP500 for the answer to RQ1 in Section 6.4.1) to run it with
the advanced form-filling feature of TESTAR, to conduct the comparison with manual
testing for RQ3. Table 0.3 also shows the details for this enhanced configuration
(TP500Forms).

TESTAR's form-filling feature automatically populates forms with data. As the
scriptless tool randomly navigates through the different states of the SUT, it au-
tomatically detects forms. Once a form is identified, TESTAR generates an XML
file with each key representing an editable widget within the form, and the cor-
responding value is an automatically generated input.

The generated input data type depends on the widget type (e.qg., random text

160 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

Table 6.3: Test Process Configurations

Variable TP100 TP500 TP1000 TP500Forms
Test sequences 100 20 10 20

Actions per sequence 100 500 1000 500

Time delay (s) 0.8 0.8 0.8 0.8

Action duration (s) 05 05 05 05

State abstraction SA SA SA SA

Login sequence yes yes yes yes
Form-filling no no no yes

for text fields or a valid email address for email fields). The XML file can contain

multiple input sets for the same form, each with an associated weight indicating

the likelthood of selection. These XML files can be manually edited to replace or

add specific values and weights, enabling the form to be tested with varied data

combinations based on assigned probabilities.

Example 0.1 illustrates an automatically generated XML, representing a sim-

ple form containing two fields: a description and an email. The XML file contains

two input sets with different values for the form fields, and equal weight values.

Example 6.1: Example of XML form

<form>
<data>
<description>RandomText1</description>
<email>first.email@example.com</email>
<weight>50</weight>
</data>
<data>
<description>RandomText2</description>
<email>second.email®@example.com</email>
<weight>50</weight>
</data>
</form>

During the configuration of TESTAR, 23 forms were automatically identified

6.3 EXPERIMENT DESIGN 161

within the SUT, ranging from one to six fields in complexity. Two distinct in-
put profiles were created for each form to thoroughly test these forms: one with
baseline values across fields and another with varied, alternative values to cover
broader data cases. The edition and small-scale testing (during the Implemen-
tation Phase, as described in Chapter 3) of the 23 respective XML files took one
working day (8 hours). With this functionality added to TP500Forms, if TESTAR
detects a form during testing, a form-filling action will be added to the list of
available actions in this state. If selected randomly, one of the input profiles

defined in the XML file will be chosen based on its weight.

Code, State
100 Test Sequences and Code
100 actions each Smell [T
30 Coverage
times H
Code, State Y
20 Test Sequences and Code | |, RQ1
500 actions each Smell RQ2
30 Coverage
times :
Code, State
10 Test Sequences andCode | i
1000 actions each Smell
30 Coverage
times
20 Test Sequences (Saets, SlED
: and Code
500 actions each Smell | TR
Form-filling enabled c e :
30 overage
times RQ3
Code, State A
) and Code :
Manual Testing Smell
1 test Coverage
session

Figure 6.2: Overall experimental design architecture.

Figure 6.2 presents an overview of the experimental design. Each configura-

162 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

tion was repeated 30 times to deal with randomness. TESTAR was configured to
restore the initial state of the SUT after each sequence. This setup was used to
evaluate the influence of sequence length on coverage metrics and the relation-
ship of code smells to traditional coverage metrics. Manual testing was performed
by an experienced tester with prior knowledge of the Yoho application. The tester
explored the application thoroughly during a manual test session that lasted one
working day.

6.4 Results

This section presents the results obtained to understand the influence of sequence
length on traditional test adequacy metrics, the relationship between code smells
and traditional coverage metrics, and the comparison of random with manual

testing.

6.4.1 RQ1: Number and length of test sequences

Figure 6.3a presents the box plot graphs comparing the different traditional cov-
erage metrics across the three test runs. The box plots reveal a consistent trend
across all metrics, with coverage generally increasing from TP100 to TP1000,
though the magnitude of the increase varies by metric. Instruction Coverage (IC)
and Branch Coverage (BC) show relatively lower percentages with minimal vari-
ation across test processes. Line Coverage (LC) and Complexity Coverage (CoC)
show moderate coverage with slightly more variability. In contrast, Method Cov-
erage (MC) and Class Coverage (CLC) show the highest coverage levels and the
most noticeable differences across configurations. Notably, TP1000 consistently
achieves higher median coverage and often larger variability, particularly for MC
and CLC. Several metrics, especially CIC, show outliers, indicating instances of
exceptionally high or low coverage in some test runs.

For the state coverage metrics, Figure 6.3b illustrates how test runs with
longer sequences lead to significantly better coverage of both abstract and con-

crete states and transitions.

6.4 RESULTS 163
) ; 10000
Configuration Configuration e
35| = TP100 1 TP100 i
=1 TP500 9000 mmm TP500 s
B TP1000 = TP1000 .
30 8000 EFE
- . 7000 %E * -
8% L %
> e) .
% . . " © 6000
220 - ;é. . B g
> 1 o o
15 o8 : - . -
B 4000 []
L
10 o © 3000
T~ E
s . 2000
IC BC LC CoC MC CIC AbSC AbTC CoSC CoTC
Metric Metric

(a) Code Coverage

(b) State Model Coverage

Figure 6.3: Distribution of coverage metrics.

Figure 6.4 shows the distribution of unique code smells covered by each con-

figuration. Similarly, the data suggest a trend towards higher code smell coverage

with test processes featuring longer sequences.

Unique Code Smells
N w w w w w H
0 o N » &) o0 o

N
=

TP100 TP500

Test Process

TP1000

Figure 6.4: Distribution of code smell coverage

164 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

A detailed analysis revealed that 40 code smells were covered by at least one
run in each test process. Although TP1000 covered more code smells on average,
three smells were never covered by this test process. TP100 and TP500 uniquely
covered a smell related to the Delete Post functionality, while TP500 uniquely
covered two smells associated with Delete User. The three aforementioned code
smells are classified as Major severity and fall under the Conditionals Complexity
subcategory.

Figure 6.5 shows the distribution and density of code smell occurrences across
test processes. Occurrences refer to the total number of times code with existing
code smells is executed during testing. TP100 shows the lowest total of occur-
rences, with a relatively narrow distribution centred around 7500 occurrences per
run. In contrast, TP500 and TP1000 configurations present broader distributions
with longer upper tails, suggesting these configurations occasionally produce

runs with a higher number of interactions with smelly code.

25000

22500

N
o
o
o
o

17500

15000

Total Occurrences

12500

10000

7500 ’

5000

TP100 TP500 TP1000
Test Process

Figure 6.5: Distribution of code smells occurrences.

Statistical analysis was done to test whether the observed differences in
metrics across the test configurations (TP100, TP500, and TP1000) are meaningful
or likely due to random variation, as shown in Table 6.4. Kruskal-Wallis test was
used to determine whether there was at least one significant difference among

6.4 RESULTS 165

Table 6.4: Statistical Analysis of Code Coverage Metrics

Metric KW@ Mann-Whitney U (Effect Size) Significant Pairs
p-value TP1000 vs TP500 TP1000 vs TP100 TP500 vs TP100 (M-W U / Dunn’s test)
CSC 0.28 0.71 (0.05) 013 (0.22) 0.22 (0.18) -
CSO 0.001 0.08 (0.27) 0.001 (1) 0.001 (1) TP1000 vs TP100:<,
TP500 vs TP100b:
LC 0.049 0.77 (0.04) 0.04 (0.31) 0.03 (0.33) TP1000 vs TP100°,
TP500 vs TP100?
IC 013 0.89 (0.02) 0.09 (0.26) 0.08 (0.27) -
BC 0.09 0.71 (0.06) 0.051 (0.29) 0.07 (0.27) -
CoC 0.02 0.65 (0.07) 0.02 (0.36) 0.01 (0.38) TP1000 vs TP100°:,
TP500 vs TP100°
MC 0.01 0.70 (0.06) 0.01 (0.37) 0.01 (0.38) TP1000 vs TP100:€,
TP500 vs TP100%¢
Clc 0.03 0.65 (0.07) 0.02 (0.35) 0.03 (0.34) TP1000 vs TP100:,
TP500 vs TP100?
AbSC 0.001 0.001 (0.74) 0.001 (0.99) 0.001 (0.78) all pairs?:©
CoSC 0.001 0.28 (0.16) 0.001 (0.88) 0.001 (0.89) TP1000 vs TP100":C,
TP500 vs TP100%¢
AbTC 0.001 0.001 (0.64) 0.001 (0.94) 0.001 (0.45) all pairs?:©
CoTC 0.001 0.25 (0.18) 0.001 (0.68) 0.04 (0.31) TP1000 vs TP100°,

TP500 vs TP100%¢

2 KW: Kruskal-Wallis test

b Significant according to Mann-Whitney U test (p < 0.05)

¢ Significant according to Dunn'’s test with Bonferront correction (p < 0.05)
Note: Bold values indicate statistical significance (p < 0.05). Effect sizes (Cliff's delta) are shown in
parentheses.

the test configurations for each metric without assuming normal distributions.
Mann-Whitney U tests followed up for pairwise comparisons, while Dunn’s test
further confirmed significance across multiple comparisons.

Code coverage metrics across the three configurations revealed significant
differences in several metrics. TP100 showed significantly lower coverage across
all metrics (except IC and BC) when compared to both TP1000 and TP500, with
moderate effect sizes (0.31 to 0.38), indicating practically meaningful differences.
No significant differences were found between TP1000 and TP500 for traditional
metrics.

Regarding state metrics, Kruskal-Wallis tests indicated significant differences
across all metrics (p < 0.001). Post-hoc analysis revealed that TP100 resulted in

166 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

significantly lower coverage than TP500 and TP1000 for both AbSC and AbTC,
with large effect sizes highlighting the substantial impacts of shorter sequences
on coverage levels.

Kruskal-Wallis and Dunn’s tests confirm significant differences in code smell
occurrences among the configurations, with large effect sizes in comparisons be-
tween TP100 and the other test processes.

In summary, these results show that longer test sequences lead to significantly
higher values in traditional coverage metrics and an increase in code smell oc-
currences. Additionally, the distribution pattern suggests that longer sequences

lead to better code smell coverage.

RQ1 answer: longer random test sequences improve traditional coverage

metrics and code smell coverage metrics.

6.4.2 RQ2: Relationship between code coverage metrics

To investigate the relationship between different coverage measures, Spearman’s
rank correlation coefficients were calculated between code smell coverage and
each traditional adequacy metric for each configuration. Spearman’s correla-
tion was selected because the data is not normally distributed. The results are

presented in Table 06.5.

Table 6.5: Spearman’s Correlation: Code Smell Coverage vs Traditional Metrics

Code Coverage Metrics State Model Coverage
Test Process IC BC LC CoC MC CIC AbSC AbTC CoSC CoTC
TP100 459" 393" 508 611" 664" 578 -049 043 -050 -.048
TP1000 597 6277 597" 586" 585" 500™** 078 -097 -256 -224
TP500 401" 536™ 433" 451" 435" 4557 150 212 302 243

*p <0057 p<001, ™ p <0001

All correlation coefficients between code smell coverage and traditional code
metrics are statistically significant. Results mostly show a moderate correlation

between code coverage metrics and code smell coverage. The correlation with

6.4 RESULTS 167

state metrics is generally weak and not statistically significant.

This finding suggests that relying solely on traditional coverage metrics might
not fully represent a test suite's effectiveness at uncovering deeper issues like code
smells. This highlights the need for complementary metrics or deeper analysis
beyond basic coverage percentages.

Testers should consider these correlations when designing test suites and pos-
sibly combine traditional metrics with newer, more code-quality-focused metrics.
Among traditional metrics, Method and Complexity Coverage show the highest
correlations with Code Smell Coverage across all test processes, suggesting these
metrics are more reliable indicators for exposing quality issues like code smells.
However, widely used metrics like Instruction and Branch Coverage appear less

reliable as standalone indicators of test quality.

RQ2 answer: traditional metrics are useful, but not sufficient alone at
reflecting the ability of the test suite to detect deeper quality issues, such
as code smells. Code Smell Coverage can be a valuable metric to be
considered along with the traditional coverage metrics to obtain a more

holistic view of software quality and test effectiveness

6.4.3 RQ3: Comparison of random with manual testing

Following the analysis of RQ1 (see Section 6.4.1), TP500 covered all code smells
reached by TP1000, and additional ones, while achieving similar levels of code
smell coverage in most test runs and using fewer resources than TP1000. For
that reason, TP500 was enhanced with the form-filling feature to conduct the
comparison with manual testing.

Figure 0.6 presents a comparison between the scriptless testing processes,
including the enhanced test process (TP500Forms), and the manual testing results,
in terms of Code Smell Coverage. TP500Forms significantly outperformed the
original TP500 test process, closing the gap with the 88 code smells detected by
manual testing. Some runs of TP500Forms even detected up to 99 unique code

smells, surpassing the manual testing results.

168 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

——=- Manual Test

(0]
o

ul o)) ~
o o o

Unique Code Smells

N
o

= | |

R E—

w
o

TP100 TP500 TP1000 TP500 Forms
Test Process

Figure 6.6: Distribution of code smell coverage

The coverage metrics in Table 6.6 provide further insight. While manual testing
achieved slightly higher or similar code coverage, TP500Forms exhibited broader
class exploration. Furthermore, TP500Forms discovered more unique code smells
(101) than manual testing (88), suggesting that the enhanced approach can match
the thoroughness of manual testing in terms of traditional adequacy metrics and

surpass it for code smell coverage.

Figure 6.7 depicts a detailed analysis of the type of code smells covered (or
not) by random or manual testing. This analysis revealed that all scriptless ap-
proaches (TP100, TP500, TP1000, and TP500Forms) covered 12 code smells that
were not reached during manual testing. Two code smells were of Minor sever-
ity, categorised as Clever Code and Inconsistent Style, while the remaining ten
were classified as Conditional Complexity with Major severity. These code smells

6.4 RESULTS 169

Table 6.6: Manual Testing Coverage Results
TP500Forms
Mean Max

Metric Manual Testing

IC 43.03% 43.21% 54.50%
BC 20.53% 17.42% 21.95%
LC 49.48% 47.76% 60.01%
cC 42.09% 39.20% 49.22%
MC 51.47% 48.00% 60.27%
ClC 57.47% 72.28% 82.95%
Ccsc 88 705 99

were associated with two specific functionalities of the application (deleting feed
and task commenting), whose corresponding user stories were not covered by the

manual testing process.

Despite not consistently outperforming manual testing in individual runs, the
TP500Forms configuration, when considered in aggregate across all runs, covered
three additional code smells that were not reached during manual testing or by
the other random test processes. Two of these code smells were classified as

Major. Furthermore, these code smells were triggered in multiple runs.

One of the new covered smells was reached as a consequence of a random
input combination of a filtering functionality within the SUT. This was the only
newly reached code smell that did not result from the predefined form field values.
Notably, every code smell triggered by manual testing was also triggered by at
least one test run of TP500Forms. Notably, every code smell covered by manual
testing was also covered by at least one test run of TP500Forms.

In summary, random testing identified code smells missed by manual testing,
demonstrating (again [10,64]) its potential as a complementary approach. How-
ever, random testing struggled with forms requiring specific inputs, which manual
testing handled better. The enhanced form-based approach demonstrated com-
parable and even surpassed manual testing by covering all manually reached

smells and additional ones.

170 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

o
[$)]
=
o

15 20 25 30 35 40 45 50

Data Clump

Long Parameter List
Primitive Obsession
Indecent Exposure
Lazy Class
Speculative Generality
Inconsistent Naming
Clever Code
Inconsistent Style
Conditional Complexity
Refused Bequest
Switch Statements

Temporary Field

Vulnerability

ETP100, TP500, TP1000 W TP500Forms M Manual Testing B Uncovered

Figure 6.7: Coverage of Code Smell types

RQ3 answer: findings suggest that random testing offers promising com-
plementary effectiveness in test coverage and identifies unique smells that

manual testing might overlook.

6.5 Discussion

To understand the impact of adopting random testing and introducing the new
code smell coverage metric on Marvig's QA process, two one-hour focus groups
were conducted with three of their test engineers. Marviq shared that these ad-
ditions significantly enhanced their workflow. While manual testing leverages
testers’ domain expertise, random testing complements it by uncovering unex-
pected navigation paths, providing a balanced approach that strengthens Marvig's

quality control.

6.6. THREATS TO VALIDITY 171

The team further emphasised the value of scriptless testing as a complemen-
tary tool within their established QA practices. Running these scriptless tests
overnight and integrating them into the CI/CD pipeline enables a continuous and
efficient testing cycle. This enhances software robustness and supports the move
toward continuous delivery, reducing the need for separate acceptance testing
phases and optimising both time and effort per release.

Marviq also observed that, once configured for a specific project as demon-
strated with the Yoho project (Section 0.3.2), the testing setup can be easily
adapted for other projects using similar technologies, making it a scalable and
reusable solution.

Finally, Marvig noted that monitoring coverage metrics closely linked to code
smells acts as an effective early warning system. This proactive insight into
potential code issues enables the team to address quality concerns early in the

development lifecycle, ultimately supporting the delivery of more robust software.

6.6 Threats to Validity

Potential threats to the validity of the study and the mitigation actions taken
to address them within the available means are discussed. They are classified
into four categories following [114]: internal, external, construct, and conclusion

validity.

6.6.1 Internal Validity

Internal validity refers to factors that may introduce bias in this experiment. One
possible threat is the random nature of the scriptless GUI testing process. Since
this study relies on a random testing algorithm, the specific sequence of actions
generated during the testing process may influence the coverage of code smells.
Different executions could lead to different levels of coverage, which may not fully
represent the testing tool's effectiveness. To mitigate this threat, multiple testing
sessions with varied configurations were executed to observe trends and reduce

the impact of randomness.

172 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

6.6.2 External Validity

External validity concerns the generalizability of the findings to other contexts.
This study focused on a specific industrial web application, selected for its role
as a core system for the company with functionalities commonly used in web
applications. While we advocate that the selected SUT is representative of other
industrial web applications, the results might not be directly applicable to dif-
ferent types of applications, such as mobile or desktop software. Additionally,
the reliance on the SonarQube tool for detecting code smells and the TESTAR tool
for GUI testing could Llimit the generalisation of the findings. Other tools may
produce different results regarding code smell detection and coverage. Future
research should replicate this approach with various applications, frameworks,

and testing tools to validate the general applicability of the findings.

6.6.3 Construct Validity

Construct validity refers to how well this experimental setup measures its in-
tended outcomes. This study used code smells as a proxy for software quality
and testing effectiveness. While code smells are widely recognised as indica-
tors of potential maintainability and quality issues, they may not always directly
correlate with defects in the system. Additionally, code smell detection from
SonarQube was relied upon, which may not capture all relevant issues. To ad-
dress this, efforts were made to ensure that detected smells were representative

of common issues, but the limitations of the tools should still be acknowledged.

6.6.4 Conclusion Validity

Conclusion validity relates to the reliability of the relationship between the treat-
ments and the observed outcomes. One potential threat is the sample size of the
testing actions and configurations. Although 10,000 actions were executed, this
may still be insufficient to generalise the findings across all possible scenarios
in the application. Moreover, the impact of different configuration settings on

code smell coverage should be interpreted carefully, as certain configurations

6.7. CONCLUSIONS 173

may favour specific types of code smells over others. This risk was minimised by
conducting experiments with varied configurations; however, future work should

explore a broader range of parameters to draw more robust conclusions.

6.7 Conclusions

This study explored the potential of random scriptless GUI testing as a com-
plementary approach to traditional testing in an industrial setting, focusing on
Marviq's Yoho web application. The results indicate that increasing the length of
random test sequences significantly enhances both traditional coverage metrics
and code smell coverage, suggesting that longer test sequences can lead to more
thorough and effective testing even within resource constraints.

The findings further suggest that while traditional coverage metrics offer valu-
able insights into testing adequacy, they are insufficient to capture the full scope
of quality issues, particularly regarding code maintainability. Integrating code
smell detection with traditional coverage metrics provides a more comprehensive
perspective on software quality, addressing areas of technical debt and maintain-
ability that may be overlooked with conventional coverage alone.

Moreover, random GUI testing also demonstrated a unique strength in identi-
fying code smells missed by manual testing, including some critical ones. While
manual testing benefits from the tester's domain knowledge, random testing of-
fers the potential of unexpected navigation paths. Therefore, the study highlights
the complementary role of random testing alongside manual testing, as random
testing effectively identifies unique code smells that manual efforts might miss.
This synergy between testing methods enhances overall test coverage, poten-
tially reducing reliance on manual testing and enabling a more resource-efficient
approach to quality assurance in software development.

In conclusion, combining coverage metrics with maintainability-focused anal-
yses, such as code smell detection, provides a robust and efficient testing frame-
work that better aligns with industrial needs. This integrated approach offers
a deeper and more accurate assessment of software quality, covering aspects of

both functionality and maintainability.

174 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

Going mobile: the Android plugin

"There are two ways to write error-free programs;

only the third one works"

Alan J. Perlis, Epigrams on Programming

Existing scriptless tools for Android lack efficient prioritisation and advanced
oracles to detect problems in the SUT. They also require significant manual input
for specific SUT information. This chapter presents MINTestar: an implementation
of the TESTAR scriptless testing approach [197] for Android that solves some of
these drawbacks. The implementation encompasses: (1) customisable rules, (2)
probabilistic exploration to improve coverage, (3) composable oracles, (4) effortless
integration, and (5) improved reporting. Furthermore, we conducted a preliminary
empirical comparison with two relevant scriptless testing tools applied to one
mobile application. The selected testing tools are TESTAR [197] and DroidBot [200].

The contribution of this chapter is:

e a novel scriptless testing tool for Android that uses a probabilistic model
and composable oracles for the selection of actions;

e a preliminary comparison with TEsTAR and DroidBot regarding effectiveness

175

176 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

and efficiency.

The rest of the chapter is structured as follows. Section 7.1 presents a brief
discussion of tools for Android testing. Section 7.3 introduces MINTestar along
with its key features and contributions. Section 7.4 presents preliminary results

from the initial comparative experiment. Section 7.5 concludes the chapter.

7.1 Scriptless Android GUI testing

This section presents a detailed overview of the existing scriptless testing tools
for Android. The literature review phase used Google Scholar as the primary
digital platform. The search process leveraged keyword-based queries focusing
on: android testing, GUI testing, and scriptless testing.

After a review of paper titles and abstracts, 12 tools in the field of scriptless
Android GUI testing were identified. Each paper was evaluated based on criteria
including novelty, presence in previous experiments, and alignment with current
study metrics. Table 7.1 presents key information about each tool, analysing
fundamental aspects, such as testing techniques, oracles, state representation,
available actions, and whether or not the tool is publicly available and actively
maintained.

The review of scriptless testing tools for Android apps showed diverse ap-
proaches. Tools like Dynodroid [201] and DroidBot [200] use random action se-
lection, with DroidBot adding a model-based approach for state recognition.
Similarly, Stoat [202] and APE [203] employ a model-based strategy to guide the

exploration towards areas of the application that have to be explored yet.

177

SCRIPTLESS ANDROID GUI TESTING

7.1

onduw (9943 19bpIM) Sap 1er0}eLIqWo)) oN SoA prolCoquio)
nondu) (99143 39bpm) sap buuiea juawadiojnay| dea(] oN SOA SV
(wynaobye
nondu) (9913 19bpIM) SeA YSYVYS) buluses juswedliojay OoN SOA proiquny
uoneto)dxa uaaup-hpsorind
nonduj (9913 19bpM) seA ynm buiuies] JusWLDI0jLIDY OoN SOA bunse| O
(suoisian om) usamiaq
nondu) (9913 19bpM) sen sanoeyaq buredwod) 1enualaf(] SOA SOA proabay
sejoelo 01129195 U01}IP 9)(RSIWLOISND YNM
a)qewwielbo. SoA bunise) uonelodxa a)qewwelboly oN SoA VIANNd
- (9943 19bpIM) sap so1bajel)s paseq-japolu ‘wopuey oN SoA 7eIeAPI0I(]
(s1shieue
yonduw 21)P3S U0 paseq) Sap paseq 19pou 213seypolIg oN SoA 100)g
(suonoedan
uewny buisn buuiea) pasiniadns
- oN ynm) buuiesy desp pasiniadnsun oN SoA plouewny
(bunsey uonelo)dxa
- (9943 39bpIAp) SOA paseq-1apouw) wopuey dnewaishg SOA SOA Jogproa(]
('swyniobje onauab ypm
bunsel paseq-yoleas aARalqo
nonduw) (39s 19bpm) sap -1mnw) yoleag newayshg oN ON zuardeg
‘(sebajenis uooaas
nondu) (9943 19bpIM) SN JUSAD JUBIBP 99} UIM) Wwopuey oN saA prolpouh(
pawmeinew ajqepeae
u0132933p Jne4 9je)s jo ydaouo) anbway bunsa) Ajaanoy Apngng 100|

s1003 busal | prolpuy ssedids jo huewwng :1°/ ajqe|

178 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

Some existing tools use more advanced techniques to improve their ASM.
Sapienz [204] uses fuzzing and search-based methods with evolutionary algo-
rithms. Humanoid [205] applies deep-learning to mimic human interactions, while
ARES [206] uses deep-learning for better exploration strategies. QTesting [207]
and AimDroid [208] use reinforcement learning, the former for prioritising unfa-
miliar states and the latter for predicting events likely to trigger new activities or
crashes. ComboDroid [208] uses combinatorial exploration for identifying unvis-
ited states, and RegDroid [209] focuses on finding functional bugs via differential
regression testing.

Although the landscape of scriptless GUI testing tools for Android is diverse,
these tools often have limitations. Random testing tools lack efficient prioritisa-
tion, while tools with more advanced ASM such as RL require more extensive
training periods. Generally, these tools rely on implicit oracles, detecting ap-
plication crashes or exceptions during the execution of tests. Additionally, most
of these testing tools are not actively maintained, which may result in compat-
ibility issues with the evolving Android ecosystem. Furthermore, outdated tools
will likely lack crucial updates addressing security vulnerabilities and adapting

to new testing requirements.

7.2 Extending TESTAR to support mobile testing

To support mobile application testing, TESTAR has been extended to handle both
Android and iOS platforms. This section describes how the mobile testing capa-
bilities were integrated into TESTAR's architecture.

TESTAR's modular architecture 3.6 allows the integration of new platforms while
maintaining a unified testing approach. To minimise maintenance costs, Appium
was chosen to be integrated into TESTAR as the bridge between TESTAR'S core
architecture and both mobile platforms. This choice was driven by Appium'’s
implementation of the WebDriver API for mobile apps, which aligns well with
TESTAR's existing web testing capabilities. Additionally, Appium provides a unified
interface for both Android and tOS, abstracting many platform-specific details.

Figure 7.1 depicts the adapted TESTAR loop for mobile testing, extending the

7.2, EXTENDING TESTAR TO SUPPORT MOBILE TESTING 179

generic scriptless testing loop discussed in Section 4.2. TESTAR uses the Appium
automation driver to initialise the SUT and to capture the current application state
as an XML document containing the complete widget tree with its attributes. After
some ASM selects the next action, TESTAR instructs the Appium driver to execute
it on the SUT.

. 5 : 1 o
Start SUT Claim Gl Derive Actions| [T : ; [
State : H ! H

Select Action [---

android

A appium
Execute : Ui
Action : ’
>l
i0S

More
Actions?

Evaluate
Oracles pTtTT

L J

Figure 7.1: TESTAR testing cycle with mobile capabilities.

While Appium claims to abstract away Operating System differences, sepa-
rate handlers were necessary in practice due to fundamental differences in how
each platform exposes Ul information. For example, the attributes available for
certain widgets were different across platforms. As depicted in Figure 7.2, these
differences result in the creation of two specific protocols for Android and iOS:
AndroidProtocol and 10SProtocol, respectively, which complement the already
existing DesktopProtocol and WebProtocol (as explained in Section 3.6).

Platform-specific protocols parse and normalise the data obtained from the
Appium-specific drivers for Android and iOS before integrating it into TESTAR's
state model. This normalisation process ensures that despite the underlying
platform differences, TESTAR's core testing algorithms can work with a consistent
state representation.

Consequently, the action derivation was also implemented separately for both
Android and i0S, as it depends on the widgets and their attributes. For instance,
Android relies on explicit properties such as a clickable boolean, while iOS might

180 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

" Defines the Testar testing cycle- - Platform Specific Protocols)
AbstractProtocol WebdriverProtocol
frgetState(): State
t+deriveActions(State): Action[] DesktopProtocol

Uses

on(State, :
t+ getVerdict(State): Verdict

AndroidProtocol /AndroidAppiumFramework

. iOSAppiumFramework

\ SUT-, Test- or Tester- Specific Protocols |
H SUT1
H SUT2

\
'
'
'
1

tselectAction(State, Action[]):Action '
'
'
1
H 10SProtocol
'

-

TEST1
TEST2

Figure 7.2: Layers of the different TESTAR protocols

determine action availability through widget class types like XCUIElementType-
Button. For Android, support was implemented for clicking, long clicking, scrolling,
typing, back navigation, and system actions. For iOS, support focuses on clicking,
scrolling, and typing, as iOS does not support certain Android-specific actions
like long-clicks or back navigation.

Finally, TEsTAR's ASM and oracles work for both Android and iOS, as they
are platform-independent. Once an action is selected, the automation driver
configured for Appium will connect and interact with the mobile environment.
This cross-platform approach through Appium provides significant advantages
for organisations testing applications across multiple platforms. However, the
additional abstraction layer can introduce performance overhead, which is par-
ticularly noticeable in scenarios requiring rapid state inspection or action exe-
cution. As an alternative, complementary approaches were explored to leverage
platform-specific capabilities while the core principles of scriptless testing were

maintained.

In the following section, MINTestar is introduced, through which it is demon-
strated how TESTAR's scriptless testing philosophy can be adapted for specialised

Android testing needs.

73. MINTESTAR: SCRIPTLESS AND SEAMLESS 181

7.3 MlINTestar: scriptless and seamless

While TESTAR provides a comprehensive mobile testing solution through Appium
integration, the mobile testing ecosystem offers opportunities for more specialised
approaches. MINTestar' was developed as a dedicated Android testing tool,
through which TESTAR's core principles of scriptless testing are preserved. The
same fundamental testing loop is followed, yet rather than Appium being utilised
as an intermediary layer, direct interfaces with Android's native testing frame-
works are established. Through this direct integration, the testing process is
streamlined and natural alignment with existing Android development workflows
is achieved.

MINTestar's ASM is built upon a probabilistic exploration approach aug-
mented by customisable rules to identify and (de) prioritise GUI interactions
during action selection. Once configured, MINTestar autonomously explores na-
tive Android applications, obviating the need for manual script development and
maintenance. Unlike scripts, which require detailed programming to define every
test case, MINTestar's rules allow testers to specify testing criteria and prior-
ittes more abstractly and intuitively, facilitating rapid adaptation to application
changes.

MINTestar relies on the Espresso API to locate and interact with Ul elements.
Espresso is an Android testing framework specifically designed for writing Ul
tests to automate the testing through the GUI of Android apps. Espresso uses
matches to detect View elements, representing any visible or interactive element
that users can see and interact with on the GUI.

The SUT's intended behaviour is verified through oracles, as is done with TEs-
TAR, producing verdicts that record specific aspects of the SUT, which facilitates
a comprehensive evaluation of the SUT. The oracles are composable, providing
a continuous and multidimensional assessment of the SUT. Additionally, an in-
teractive reporting tool accompanies MINTestar, providing detailed analysis of
system interactions and insights into the SUT's behaviour, crucial for enhancing

the quality and Customer Experience (CX).

TAvailable at: https://github.com/ing-bank/mint

https://github.com/ing-bank/mint

182 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

MINTestar starts by accessing the top-level View container, encompassing
all GUI elements, and recursively traverses the GUI hierarchy, aggregating View
elements to form a concrete state representation saved as an XML document.
Figure 7.1 illustrates the XML state representation with one container layout

and three actionable widgets.

Example 7.1: XML State representation

<View class="Layout" ...>
<View class="Checkbox" id="1like" .../>
<View class="TextField" id="comment" .../>
<View class="Button" id="done" .../>
</View>

MINTestar is conceived to seamlessly integrate as a plugin into a testing
pipeline. Therefore, MINTestar tests can be executed as a task similar to unit
or integration testing tasks. Consequently, Android app developers can effort-
lessly and expeditiously incorporate an exploratory GUI testing solution into their
testing processes. MINTestar introduces three key features: customisable rules,

probabilistic exploration, and composable oracles.

7.3.1 Core Architecture

Figure 7.3 depicts the high-level architecture of MINTestar, divided into two main
parts: the MINTestar Core and the Android Environment.

The Core of MINTestar is built from several core components, each with a
specific testing function: the Test Engine manages test execution, the Rules
Engine controls test behaviour, the Oracle Manager monitors application state,
the Interaction Engine handles GUI actions, the State Collector captures the
SUT's state, and the Report Generator creates test results.

73. MINTESTAR: SCRIPTLESS AND SEAMLESS 183

MINTestar Core

Test Engine

| |

] [State CoIIector] [Rules Engine] [Oracle Manager] [

Report

Interaction
Generator

Engine

Android Environment

Android Emulator/
Virtual Device

Android Debug

: Bridge

: Espresso
Framework

SUT

Figure 7.3: MINTestar Architecture Overview

The Android Environment involves the components that allow MINTestar to
interact with the Android testing infrastructure through two main paths:

e Android Debug Bridge (ADB), which communicates with the Android Em-
ulator/Virtual Device where the SUT runs.

e Espresso Framework, which provides direct Ul testing capabilities for in-
teracting with the SUT.

This dual-path approach allows MINTestar to both control the Android envi-
ronment through ADB and perform precise Ul interactions through Espresso. The
SUT runs within an Android Virtual Device, which can be either an emulator or
a physical device.

7.3.2 Test Engine

The Test Engine acts as MINTestar's central orchestrator of the entire testing
process. This component coordinates the test execution flow, ensuring that each
test sequence is properly initialised, executed, and completed. It maintains state

184 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

information throughout the testing process, enabling the framework to make in-
formed decisions about test progression and to adapt its behaviour based on the
application’s current state.

The sequence diagram in Figure 7.4 illustrates MINTestar's testing process,
summarising how a tester can utilise this system and understand the sequence

of operations that occur during testing.

i Test Interaction Android State Rules Oracle Report
Engine Engine Environment Collector Engine Manager Generator
Tester : ; :
Start Testing | Initialize device

connection

Setup Android
Environment

Ul State

Ul State

Collect State (Ul State)

Current State DataH

ﬂ/ Regquest Action Selection

Selected Action

le-
Execute Selected

Action [Perform Action
(via Espresso)

Ul State Ul State

Collect State (Ul State)

Current State Data ﬂ

Evaluate State

H
Oracle Results U

Generate Report

Final Report

XA

X X X
Figure 7.4: MINTestar Testing Process

The process begins with the initial setup of a MINTestar test run. The Test
Engine begins its initialisation sequence. The diagram shows that the Test Engine
first establishes the device connection and sets up the Android Environment.
This initialisation phase is crucial as it prepares the testing environment and
establishes proper communication channels between MINTestar and the SUT.

Following initialisation, the sequence moves into state management. The
Interaction Engine obtains the application’s initial GUI state, which is then passed
to the State Collector for analysis. This state collection process provides the

73. MINTESTAR: SCRIPTLESS AND SEAMLESS 185

foundation for understanding the application’s current condition and determining
possible actions.

The main testing loop (inspired by the scriptless generic testing cycle from
Figure 3.1), which forms the core of MINTestar's testing process, begins its exe-
cution. The Test Engine requests action selection from the Rules Engine. Upon
receiving the selected action, the Test Engine coordinates with the Interaction
Engine to execute it through Espresso. After each action, the Oracle Manager
collects and evaluates a new GUI state, ensuring the application behaves as
expected.

This testing loop continues until predetermined conditions, such as time lim-
its, are met. Upon completing the testing loop, the Report Generator creates a

comprehensive final report.

7.3.3 Customizable Rules

MINTestar's functionality revolves around the adherence to predefined rules.
MINTestar’s Rule Engine governs how the framework interacts with SUTs through
a system of hierarchical rules. These rules define the interactions with the SUT,
such as clicks or text inputs. Every rule is assigned a relative importance, collec-
tively forming a model that intelligently guides MINTestar's exploration through
various SUT states without prior knowledge.

A rule is a tuple denoted by R = (P, A,). The predicate function P : S —
{0,1} serves the fundamental role of mapping the state s € S to a binary set
{0,1}, such as P(s) =1 if and only if the rule is applicable under the conditions
represented by state s. The finite set A represents all possible actions that can
be executed. Lastly, priority ;7 € R quantifies the importance and precedence of
the rule relative to other rules. This numerical priority plays an important role in
decision-making processes, influencing the order in which rules are considered
and executed.

A rule also encompasses attributes such as name, description, and modifier.
The modifier characterises the adjustment applied to a rule's priority, offering
fine-tuning for its significance in decision-making. For example, if a rule with an

original priority t = 0.5 has a multiplicative modifier with a factor 2, the modified

186 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

priority becomes 7 = 1.0, increasing its importance by the multiplicative value.

Rules can be categorised into three types:

e Generic rules: applicable to all SUT (e.g, interacting with clickable ele-

ments).

e Specific rules: tailored for particular application types, addressing unique

scenarios such as inputting email addresses in relevant email input fields.

e Domain-Specific rules: designed for internal use with specific account num-

bers or identifiers.

Tables 7.3 and 7.2 show all existing rules provided by MINTestar. These
include navigation rules such as scrolling to and clicking any yet hidden widget, or
de-prioritising previously executed actions. Every de-prioritising rule contains a
multiplicative modifier to reduce the priority of the rules. MINTestar also features
input rules, facilitating the generation of various input types (e.g,, emails, names,
dates, postal codes) as needed for different testing scenarios. For instance, the

generic rule simpleClickableRule, defined as:

Example 7.2: Simple Click defined as a rule

GenericRule(action = Action.CLICK,
pred = xpred(".[@isClickable = ’true’
and @isDisplayed = ’true’]"),
prio = 0.5)

uses Espresso to evaluate whether an element is clickable and visible and applies
the action of clicking with a given priority. The rules can be defined using regular
expressions, such as emails or numbers, to generate specific input types. The
library JavaFaker was used to generate fake, realistic, and non-sensitive data,
like phone numbers or postal codes.

Once all rules have been assigned individual priorities, the Rule Engine pro-

ceeds to generate a model containing the final set of available actions and their

73. MINTESTAR: SCRIPTLESS AND SEAMLESS 187

Table 7.2: Generic rules provided by MINTestar

Rule Name

Description

simpleClickableRule
scrollingClickableRule

clickableRuleForltemWithTag

clickableRuleBasedOnPosition-
InViewHierarchy

clickableRuleBasedOnPosition-
InViewHierarchyForPopupltem

deprioritizeClickingOnPopupltem-
OnCurrentRoot
deviceRotationRule

deviceThemeRule

clickableRuleForAdapterViewltems
clickableRuleForSpinnerltems
spinnerSimpleClickDeprioritizRule
adapterViewClickDeprioritizeRule
scrollingPagerRightRule

scrollingPagerLeftRule

timePickerInputRule

datePickerlnputRule
clickableRuleBasedOnPosition-
InViewHierarchyForBottomSheet

defaultPreviousActionDeprioritize-
Rule

Click on any widget that has 'isClickable’ as true
and is displayed.

Scroll to and click any widget that is clickable, not
yet displayed, and can be scrolled to.

Click on any displayed, clickable widget that has a
specific tag.

Click on any displayed, clickable widget.

Click on any displayed, clickable widget in a pop-up
window.

Deprioritize clicking on widgets in pop-up windows.

Change the device's rotation to check the respon-
siveness of the Ul

Change the device's theme to check the responsive-
ness of the UL

Click on an item in a list backed by an adapter.
Click on an item in a spinner list.

Deprioritize clicking of a Spinner.

Deprioritize clicking of an AdapterView.

Select scrolling to the right within pagers for hori-
zontal navigation.

Select scrolling to the left within pagers for horizon-
tal navigation.

Generate time input for TimePickers.
Generate date input for DatePickers.

Click on any displayed, clickable widget that has a
bottom sheet as an ancestor.

De-prioritized actions that were already taken his-
torically.

188 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

Table 7.3: Specific rules provided by MINTestar

Rule Name

Description

defaultUTF8InputRule

defaultTextlnputRule
defaultMultilineTextInputRule

defaultEmailAddressinputRule
defaultNumberlnputRule
defaultDecimalNumberlnputRule
defaultSignedNumberlnputRule
defaultPersonNamelnputRule
defaultUriRule
defaultPhoneNumberlnputRule
defaultPostalAddressInputRule
defaultDatelnputRule
defaultTimelnputRule

defaultGenericTextInputRule

defaultUneditable TextClick-
DeprioritizeRule

defaultTextClickDeprioritizeRule
defaultTextClickAtPosition-
DeprioritizeRule

Generate UTF8 text streams for anything accepting
text.

Generate generic text for anything accepting text.
Generate generic text for anything accepting text.

Generate text in email address format for widgets
accepting email addresses.

Generate number input for widgets accepting input
of numbers type.

Generate decimal number input for widgets accept-
ing input of decimal number type.

Generate signed number input for widgets accepting
input of signed number type.

Generate text for widgets accepting person name
input.

Generate text for widgets accepting input of URI
type.

Generate phone number for widgets accepting text
in phone format.

Generate postal address input for widgets accepting
a postal address as input.

Generate date input for widgets accepting date as
input.

Generate time input for widgets accepting time as
tnput.

Generate generic text for anything accepting any
input.

De-prioritize the input of text in uneditable text
fields.

De-prioritize the clicking of text elements.

De-prioritize the clicking of text elements based on
position.

73. MINTESTAR: SCRIPTLESS AND SEAMLESS 189

relative importance with the goal of selecting the next action. The ASM explained
in Algorithm 4 works in two phases: priority computation and probabilistic se-

lection.

Algorithm 4 ASM: Select an Action

Input: actionRules > Set of available action rules
10 pairs <] > List of (action, priority) pairs
2: prioritySum « 0 > Total sum of priorities
3 for all rule in actionRules do
4 if rule has modifier attribute then
5 | modPriority « ModifyPriority(rule) > Adjust priority if modified
6 else
7 | modPriority « rule.Priority > Use default priority
8 pairs « pairs + (rule.action, modPriority)

9. | prioritySum « prioritySum + modPriority

10: accumPriority < 0
11: dice <~ RandomF loat() * prioritySum > Random threshold for selection
12: for all (action, modPriority) in pairs do

13 accumPriority < accumPriority + modPriority

14 if accumPriority > dice then > Select the action when threshold is met
150 L [return action

Initially (lines 1-9), the algorithm iterates through all applicable action rules
to compute their effective priorities (modPriority). Each rule initially has an
associated priority, which may be modified based on certain conditions (lines 4-
7). If a rule has a modifier attribute, its priority is adjusted; otherwise, the default
priority is used. As each rule is processed, a pair consisting of the action and
its resulting modified (or not) priority is stored, and the total sum of all priorities
(prioritySum) is updated (lines 8 and 9). This results in a set of (action, modified
priority) pairs, where actions with higher priority will have a greater influence

in the selection process.

In the second phase (lines 10-15), the probabilistic action selection takes
place. A random value (dice) is generated within the range [0, prioritySum] (line
11). The next action to be executed is selected (lines 12-15) by choosing the first
action that surpasses this random value. Actions with higher priorities are more
likely to be selected while still allowing some degree of randomness in the action

selection mechanism.

190 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

7.3.4 State Collector

MINTestar's state management system forms a critical component of its testing
intelligence. The system creates detailed representations of each unique state
encountered during testing, capturing not only the visible Ul elements but also

their properties, relationships, and interactive capabilities.

MINTestar builds a comprehensive model of the application’s behaviour and
structure. This model enables the framework to make informed decisions about
test progression, identifying unexplored states and potential paths through the
application. The state management system also detects state changes resulting
from user interactions, system events, or background processes, ensuring thorough
testing coverage.

The representation of the state is extended by MINTestar through incorporat-
ing actions to its nodes. As shown in Algorithm 5, the process starts by iterating
over all available action rules (actionRules) (line 1). Each rule contains a predi-
cate function, which determines whether the rule is applicable to a specific state
node. For each action rule, a nested loop is used to recursively traverse all
widget nodes within the state structure (line 2). At each node, if the rule's pred-
icate is satisfied (equivalent to P(s) = 1), the rule’s action is associated with the
node (line 4). This step ensures that each widget is correctly associated with
applicable actions.

Algorithm 5 Annotate State With Rules

Input: state > The current state representation
Input: actionRules > A set of rules to be applied
1: for all rule in actionRules do > [terate through all action rules
2 for all node recursively in state do > Traverse all nodes in the state
3 if rule.predicate(node) then > Check if rule applies to the node
| L | node.append(rule) > Associate rule’s action with node

Following the Example 7.1, an XML hierarchy with annotated actions and
their corresponding priorities is shown in Example 7.3. Note that the Button has

an associated multiplicative action, which will modify its final priority.

73. MINTESTAR: SCRIPTLESS AND SEAMLESS 191

Example 7.3: Annotated state representation

<View class="Layout" ...>
<View class="Checkbox" id="like" ...>
<action type="click" prio="1.0" .../>
</View>
<View class="TextField" id="comment" ...>
<action type="text" prio="2.0" value="text" .../>
<action type="text" prio="1.0" value="1282" .../>
</View>
<View class="Button" id="done" ...>
<action type="click" prio="2.0" .../>
<action type="multiplicative" prio="3.0" .../>
</View>
</View>

7.3.5 Composable oracles

MINTestar implements a module for oracles designed to evaluate different aspects
of the SUT. This module classifies oracles into distinct categories, each addressing
specific testing objectives. These categories include Accessibility, International-
isation, Performance, Stability, Aesthetics and Miscellaneous. The structure of
an oracle is defined by an interface that incorporates key information such as
the category, probe, and evaluation function. Probes serve as a data source for
oracles, enabling them to form judgments about the SUT. For instance, oracle An-
droidLogOracle creates a probe with the information extracted from the system
logs to assess the presence of faults.

A significant subset of implemented oracles is dedicated to accessibility checks.
These oracles scrutinise the SUT for adherence to standard accessibility guide-

lines [210] They assess factors like text readability or image contrast to ensure

192 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

a positive CX. Currently available oracles (Table 7.4) also include CrashOracle,

which detects a crash of the SUT, and AndroidDeviceOracle, to montitor the CPU

and memory usage. Oracles to check internationalisation and stability are yet to

be added.
Table 7.4: Implemented Oracles Provided by MINT
Category Oracle Name Description
Stability, AndroidDeviceOracle Monitors the Android device for system met-

Performance
AndroidLogOracle

CrashOracle

rics.

Checks the Android system log for relevant
events.

Detects application crashes during execution.

Accessibility ClassNameCheckOracle
ClickableSpanCheckOracle

DuplicateClickableBoundsCheckOracle

DuplicateSpeakableTextCheckOracle
EditableContentDescCheckOracle
ImageContrastCheckOracle
LinkPurposeUnclearCheckOracle
RedundantDescriptionCheckOracle
SpeakableTextPresentCheckOracle
TextContrastCheckOracle
TextSizeCheckOracle
TouchTargetSizeCheckOracle
TraversalOrderCheckOracle

UnexposedTextCheckOracle

Verifies if the class name is appropriate for
accessibility.

Ensures that ClickableSpan is not misused
within a TextView.

Detects cases where a clickable container
overlaps entirely with a child view, leading
to unexpected interactions.

Checks if two views in the hierarchy have the
same speakable text.

Ensures that an editable TextView is not la-
belled with a content description.

Validates that images have sufficient
foreground-background contrast for visibility.
Warns about links whose purpose is unclear
to assistive technologies.

Identifies cases where speakable text may
contain redundant or irrelevant information.
Ensures that elements requiring speakable
text have appropriate descriptions.

Ensures text has sufficient contrast against its
background for readability.

Detects text scaling issues that may affect vis-
ibility.

Ensures that touch targets meet the minimum
recommended size (e.g., 48x48dp).

Identifies problems in the accessibility traver-
sal order defined by developers.

Detects texts that might be blocked from OCR
(Optical Character Recognition) and unread-
able by accessibility services.

MINTestar's oracle framework emphasises extensibility, allowing developers

to compose sets of oracles or add custom oracles. Testers can create compre-

73. MINTESTAR: SCRIPTLESS AND SEAMLESS 193

hensive test suites by combining oracles from different categories, providing a
versatile and adaptable testing environment. For instance, the following code
shows the definition of a rule, accompanied by the oracle step of checking errors
in the system logs without monitoring the memory usage. MINTestar also offers
the inclusion (withAllOracles) or exclusion (withoutAllOracles) of all oracles, in

combination with specific ones.

Example 7.4: Rule definition, with explicit oracle inclusion/exclusion

Mint .Rule (DefaultBuilder.withOracle (AndroidLogOracle)
.withoutOracle (AndroidDeviceOracle)
.build))

7.3.6 Interaction Engine

MINTestar's interactions with the GUI involve two main components: Android
Debug Bridge (ADB) and Espresso. By integrating with the ADB, MINTestar
establishes reliable communication with the test device or emulator, ensuring
consistent and accurate testing. This communication layer manages all aspects of
device interaction, from application installation and launch to command execution
and state monitoring. The system implements robust error handling and recovery
mechanisms, ensuring stable testing sessions even in the presence of device-level
issues or communication interruptions.

The device communication system supports both physical Android devices
and emulators, automatically adapting its behaviour to accommodate the specific
characteristics of each target environment. It manages device-specific features
and limitations, ensuring consistent test execution across different device types
and Android versions.

Additionally, MINTestar leverages Espresso’s precise view matching and inter-
action capabilities to execute actions on the GUI. The engine translates MINTes-
tar's high-level testing directives into specific Ul interactions, automatically han-

dling complexities such as view synchronisation and wait conditions.

194 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

The framework allows testers to define specific sequences of actions using
Espresso’s familiar syntax. These predefined steps serve multiple purposes, from
setting up specific application states to validating critical user flows. Testers can
create precise sequences of actions when needed, such as logging into an appli-
cation or navigating to a specific screen, before allowing MINTestar's automated
exploration to take over.

Test creation in MINTestar follows a straightforward pattern, allowing testers
to define test scenarios through a combination of automated exploration and,

when needed, specific scripted steps. Basic exploration can be started with:

Example 7.5: Basic test instruction

Mint.explore()

For more controlled testing, it is possible to combine scripted steps with

scriptless exploration:

Example 7.6: Exploration with predefined steps

Mint.step {
onView(withId(R.id.button)).perform(click())
onView(withId(R.id.input)) .check(matches(isDisplayed()))
}.explore()

7.3.7 Reporting the results

MINTestar saves the testing process information in XML format. The previously
described plugin provides a reporting task that parses the XML data and gen-
erates an overview HTML page with all the oracle outputs, individual pages for
each test sequence, and screenshots associated with the test sequences. Each
report (see Figure 7.5) contains a chronological record of actions taken, states

encountered, and any issues detected by the various oracles.

73. MINTESTAR: SCRIPTLESS AND SEAMLESS 195

The report also allows the search of elements of the application through their
XPath and highlights their location within the screenshots, making it easier for
testers and developers to understand and reproduce any identified issues. This
reporting structure enhances the comprehensibility of test results by organising
them into structured HTML pages, significantly improving the clarity and analysis

of test results.

xpan [EEIETY gnigntmatcnes (1) @D S

QWERTYU "0 P

ASDFGHJKL
+zxcveENM@

PCompatimageBution

Figure 7.5: Excerpt of a MINTestar report

7.3.8 Seamless integration

MINTestar provides a plugin that serves as a gateway for the integration of
MINTestar-based tests into the Android testing process. This integration aims
to align with the execution patterns of classical integration and unit tests in An-
droid, following established testing practices [211], promoting a consistent and
familiar testing experience for developers and testers without requiring substan-
tial changes to existing testing practices.

The plugin enables the incorporation of specific Gradle tasks, such as data
collection and report generation, into the standard Android testing framework.
Cradle is the default automation tool used by Android Studio, the official IDE

for Android development. Hence, developers can effortlessly incorporate MINTes-

196 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

tar into their existing Gradle-based projects by simply adding the plugin to the
Gradle configuration file:

Example 7.7: Integration with Gradle

apply plugin: ’mint-tooling’

Thus, any MINTestar test run can be defined and executed similarly to existing
unit and integration tests, as demonstrated in the simplified example code below.

Example 7.8: Integration with Android testing

Q@org.junit.Test
fun MintExploratoryTestRun() {
Mint.explore()

The practical implementation of MINTestar in a testing environment involves
several carefully structured steps, each designed to ensure proper setup and
effective test execution. The implementation process begins with the integration of

MINTestar into the project’s build system, typically through Gradle configuration.

The framework's API provides easy-to-use methods for defining test behaviour,
setting test conditions, and specifying validation criteria. MINTestar provides

flexible configuration options through its builder pattern:

74. PRELIMINARY EVALUATION 197

Example 7.9: Rule configuration

var mint = MintRule(
Mint.DefaultBuilder

.withRule (customRule) // Add custom rules
.withSequences(5) // Set sequence count
.withStepsPerSequence (30) // Set steps per sequence
.build { e -> fail(e) } // Configure failure

handling
)

7.4 Preliminary evaluation

A preliminary evaluation was done to compare MINTestar with actively main-
tained random testing tools reported in Section 7.1. This evaluation aims to
assess the effectiveness of MINTestar compared to existing random testing tools.
Specifically, the following research questions are addressed:
RQ1: How does MINTestar compare to existing scriptless Android testing tools
in terms of fault detection capabilities?
RQ2: What is the code coverage effectiveness of MINTestar compared to existing
tools?

To answer these research questions, a comparative study was conducted.
First, variables were defined to ensure a controlled comparison, followed by a

detailed description of the tools and applications used in the evaluation.

7.41 Independent and Dependent Variables

The Independent Variables refer to the configuration of the test processes and

the selection of the testing tools:

e Testing tools used: DroidBot, TEsTAR, MINTestar. Each tool was configured

with its default settings.

198 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

e Subject applications: Two open-source applications were selected based
on their different functionalities and active maintenance status.

e Test sequence length: Fixed 300 actions per run to ensure comparable
execution time across tools.

o Number of test runs: 10 runs per tool-application combination to account

for the random nature of testing.

To answer these research questions, DroidBot and TESTAR (with Random as
the ASM for baseline) were selected as the testing tools. For their selection, tools
not actively maintained or not publicly available were excluded.

The SUTs were selected randomly from F-Droid, a platform for distributing
free and open-source Android apps. The first SUT, Amaze File Manager, is an ad-
vanced file explorer that allows different operations over the Android file system.
Next, Arity is a scientific calculator with function graphing. Both applications
were instrumented with Jacoco for code coverage measurement.

To ensure consistency and reliability, a standardised testing protocol was
established. The evaluation protocol consisted of executing 300 test actions per
run, with 10 test runs conducted for each tool.

To evaluate fault detection capabilities (RQ1) and code coverage effectiveness
(RQ2) of the tools, the following Dependent Variables were defined:

e Fault Detection: Recorded through Android Log Oracle for runtime excep-

tions and derived oracles included by default (or not) by each tool.

e Code Coverage: Measured using Jacoco, capturing instruction code cover-
age (ICC).

After each test run, the final code coverage was measured, and all issues
detected were recorded for subsequent analysis.

7.4.2 Results

The experimental results reveal distinct differences between MINTestar and exist-

ing tools for both bug detection and coverage metrics. The findings are presented

74. PRELIMINARY EVALUATION 199

according to the research question.
The comparative analysis (see Table 7.5) of the testing tools showed a nuanced
distinction in their bug detection capabilities. MINTestar uniquely excelled in

identifying specific types of accessibility issues.

Table 7.5: Comparison of Testing Tools on Various APKs

AUT LOC Metric Droidbot TESTAR (Random) MINTestar
. i ICC 15.6% 23.7% 225
Amaze File Manager 84247 Faults 0 0 46
. ICC 26.0% 66.6% 40.7%
Arity o197 Faults 0 0 5

MINTestar found two different types of accessibility problems on multiple
widgets: not speakable text and touch target size not large enough, detected by
oracles SpeakableTextPresentCheckOracle and TouchTargetSizeCheckOracle re-
spectively. Figure 7.6 depicts a sample of states where such accessibility issues
were found. A total of 13 different widgets did not have a speakable text. Addi-
tionally, 10 widgets did not meet the minimum size suggested by the accessibility
guidelines. For both problems, widgets with the same functionality were counted
as one, such as Three dots menu items that indicate 'advanced options".

Figure 7.6: Sample of accessibility issues detected by MINTestar

Orange: The touch widget size is not large enough. Blue: Widget without speakable text.

Moreover, multiple exceptions obtained through the Android Log Oracle were

200 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

discarded as false positive bugs, except for one identified in Arity. Neither Droid-
Bot nor TESTAR detected any faults during their test runs.

RQ1 answer: MINTestar shows superior fault detection capabilities
specifically for accessibility issues. However, all tools performed simi-

larly for runtime exception detection.

Moreover, analysis of code coverage metrics (see Table 7.5) shows that MINTes-
tar's effectiveness presents mixed results when compared to existing tools. For
the Amaze File Manager application, MINTestar achieved higher instruction cov-
erage than Droidbot but slightly lower than TESTAR. However, when testing the
Arity application, MINTestar notably outperformed Droidbot's coverage, though
still falling short of TESTAR's results.

MINTestar's lower coverage can be explained by its requirement for a manual
fine-tuning of the rules, as it is designed for use by testers of the SUT itself,
leveraging their knowledge of its specific nature. This contrasts with the plug-

and-play approach of the existing tools, which require minimal setup.

RQ2 answer: code coverage effectiveness exhibits mixed results, sug-
gesting that MINTestar's specialised ASM can achieve competitive but
not superior coverage compared to random exploration approaches.

7.4.3 Discussion

The experimental evaluation reveals important insights about the trade-offs be-
tween code coverage and specialised fault detection. While MINTestar showed
lower coverage, it excelled in identifying specific types of accessibility issues that
went undetected by other tools. This reflects the understanding in software test-
ing that code coverage is a helpful but not definitive indicator of test quality [212].

Furthermore, MINTestar's specialised focus on certain failure categories, like
accessibility, adds a valuable dimension to the testing landscape that the existing

tools have not addressed (see Section 7.1).

75. CONCLUSIONS 201

TESTAR'S ASM could be augmented with a configurable rule system similar to
MINTestar's, through which more sophisticated testing strategies could be im-
plemented while maintaining TESTAR's platform independence. Such rules could
be defined at an abstract level that would work across platforms. Furthermore,
platform-specific oracles could be implemented within TESTAR's architecture, al-
lowing specialised checks when testing mobile applications while maintaining

compatibility with existing cross-platform oracles.

7.5 Conclusions

This chapter presents MINTestar, a scriptless Android application testing tool
that uses probabilistic rule-based exploration. Preliminary results show that
MINTestar fills a critical gap in detecting faults like accessibility issues, which
are increasingly important in creating inclusive and user-friendly applications.
Therefore, rather than viewing MINTestar's performance in isolation, it should be
considered part of a diverse toolkit, hence its seamless design for easy integration
with standard Android testing frameworks.

MINTestar's approach to Android application testing offers several signifi-
cant advantages over traditional testing methodologies. The framework’s ability
to combine automated exploration with scripted testing provides unprecedented
flexibility in test creation and execution. This hybrid approach allows teams
to leverage the benefits of both testing styles - the thoroughness of automated
exploration and the precision of scripted tests.

The framework’s state management and oracle systems provide comprehensive
coverage and validation capabilities, helping teams identify issues that conven-
tional testing approaches might miss. The integration with Espresso enhances
these capabilities further, providing reliable interaction with GUI elements while
maintaining the benefits of scriptless testing.

202 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

Conclusions and future work

' may not have gone where | intended to go, but | think |

have ended up where | needed to be."

Douglas Adams, The Long Dark Tea-Time of the Soul

This chapter synthesises the findings of this thesis by addressing the research
questions posed in the Introduction Chapter and providing a perspective on the
contributions. The chapter is organised into two main sections. The first section
presents a detailed discussion of the research questions and their corresponding
answers, while the second section proposes future research directions that build

upon the work presented herein.

8.1 Answers to the Research Questions

This section thoroughly examines the six primary research questions, each con-
tributing to a comprehensive understanding and practical application of scriptless

GUI testing across diverse software environments.

203

204 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1.1 Evolution of Automated GUI Testing

RQ1: How has automated GUI testing evolved over time regarding size,

research trends, collaboration, authors and publication patterns?

The bibliometric analysis conducted by this thesis (see Chapter 2: Thirthy
years of automated GUI testing) has provided a broad historical overview of
automated GUI testing, identifying key trends, research patterns, and shifts in
testing methodologies. Over the years, GUI testing has transitioned from early
manual scripting to scriptless methodologies enhanced by artificial intelligence.
This evolution reflects the increasing complexity of software applications and the
need for more efficient testing solutions. The field has also shown significant
growth, with 41.4% of all papers being published in the last five years.

Figure 8.1 shows how GUI testing techniques have evolved. The timeline
marks important milestones, like the shift from manual testing to script-based
and model-based approaches and eventually to scriptless and Al-driven methods.
Although each approach offers advantages, recent trends favour exploration-based
and Al-driven techniques. Additionally, there has been a marked increase in
research targeting mobile-based SUTs, demonstrating the growing demand for
mobile testing strategies.

Rapid advancements in hardware and software platforms, coupled with the
rising complexity of systems, have prompted researchers and practitioners to
seek more adaptive, efficient, and intelligent testing solutions. This trajectory un-
derscores the importance of specialised methods for state abstraction and action
selection, which this thesis investigates in detail.

Test cases are generated Automates test execution

from models of the without needing pre-
system'’s behavior. written scripts or models.

Manual Visual GUI Scriptless Al-driven
Testing Testing GUI Testing Testing

Uses image recognition Continued integration of
and pixel-based AI/ML for smarter test
comparisons. automation.

Low automation, high
human effort.

Tools record interactions
and replay them later.

Figure 8.1: The Evolution of GUI Testing Techniques: A timeline depicting the transition
from manual to Al-driven GUI testing.

8.1. ANSWERS TO THE RESEARCH QUESTIONS 205

8.1.2 Industrial Insights on Using TESTAR for GUI Testing

RQ2: What general insights do industrial case studies provide about using
TESTAR for GUI testing in industry?

The industrial studies (as observed in Chapter 3: TESTAR demonstrate that
TESTAR, as a vehicle to explore scriptless GUI testing, is a valuable addition to the
testing process, particularly for identifying faults in less probable sequences of
actions. Its exploratory nature complements traditionally used testing approaches,
such as Capture and Replay, enhancing overall testing coverage and effectiveness.
While its efficiency improves over time, as setups are refined and reused, the
initial learning curve and configuration effort can be challenging. Subjective
satisfaction among testers was generally positive, but improvements in usability

and reporting could further enhance its adoption and impact.

A significant takeaway from the case studies is that the setup process is cru-
cial: the case studies underscored the importance of a structured and systematic
process for setting up TESTAR. The generic process developed from these industrial
studies (see Figure 3.10) provides a structured framework for deploying TESTAR
with minimal overhead. This iterative approach ensures that the test environment
evolves with each run, improving its coverage and fault detection capabilities over
time.

The architectural analogy (see the simplified version in Figure 8.2) for TESTAR'S
integration, derived from the industrial case studies, illustrates how the tool fits
into diverse testing environments. This architectural analogy emphasises the sep-
aration of concerns between different actors (i.e, clients, developers, and testers)
and illustrates the tool's complementary role in enhancing testing effectiveness.

The findings from those case studies collectively support the conclusion that
TESTAR is an effective and resource-efficient exploratory testing tool in industrial
contexts. While initial setup and usability challenges persist, its iterative refine-
ment process and ability to reduce manual effort make it a compelling addition to
GUI testing strategies. This architectural analogy synthesises the findings from

various case studies and provides a scalable blueprint for companies looking to

206 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Clients Developers Testers
<<Person>> <<Person>> <<Person>>
Business Stakeholders, Implement and maintain
End Users, Customers the SUT

Report| Implement li
Maintain !

Test Environment TESTAR

<<Software System>> <<Software System>>

SUT Bug Tracking System

<<Software System>> <<Software System>>

Manages test executions Interaction, Exploration,
d test strategies and Test Oracles

System Under Test Manages bug reports

Figure 8.2: Simplified architectural analogy showing the most important components

adopt scriptless testing solutions. It emphasises the collaborative and iterative
nature of the testing process, where the complementarity between automated
scriptless testing and traditional scripted approaches can lead to more compre-

hensive software validation with reduced manual effort over time.

8.1.3 Impact of State Abstraction on State Model Inference

RQ3: How does state abstraction in TESTAR influence the inference of state

models during on-the-fly exploration with scriptless testing?

The choice of state abstraction in scriptless GUI testing plays a crucial role in
the effectiveness of inferred state models, as observed in Chapter 4: Inferring state
models with TESTAR. Figure 8.1 illustrates the impact of state abstraction. An
overly fine-grained abstraction (i.e., using many dynamic attributes), where every
minor GUI change results in a distinct state, generates a state explosion, making
the inferred model very large and expensive to maintain and interpret. Conversely,
if the abstraction is too coarse (e.g., ignoring important widget properties), the
model becomes overly abstract and can introduce non-deterministic transitions,

reducing its ability to guide test exploration effectively.

8.1. ANSWERS TO THE RESEARCH QUESTIONS 207

Figure 8.3: Effect of state abstraction in TESTAR.

Striking the right balance, where each state is meaningful but not excessively
detailed, improves test coverage (e.g., code coverage, state coverage) and reduces
model complexity. The experiments show that an appropriately chosen set of
stable widget attributes (sometimes augmented by action-history information)
can substantially improve coverage and detect more states than overly abstract
or concrete configurations. Different state abstraction mechanisms can either
empower or hinder scriptless GUI testing. A thoughtful, SUT-specific abstraction
(one that filters out noise yet preserves functionality-relevant properties) yields
the most compelling exploration and best coverage results in automated GUI

testing.

Additionally, using a model-based Action Selection Mechanism (ASM) that

208 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

prioritises unvisited actions/states (rather than purely random action selection)
further boosts effectiveness, regardless of the specific abstraction level.

8.1.4 Reward Mechanisms for Exploratory Testing with Rein-
forcement Learning

RQ4: Which reward mechanism is most effective for exploratory testing

with reinforcement learning in TESTAR?

Random exploration can become inefficient in scriptless testing tools by re-
peatedly visiting states or actions that do not lead to improved coverage. Intelli-
gent or probabilistic approaches address this limitation through adaptive policies
that focus on uncovered or critical areas of the GUI. Reinforcement Learning (RL)
is one such approach: it rewards transitions leading to previously unexplored
states, gradually refining its exploration strategy to balance exploration (of new
states) and exploitation (of known high-impact actions).

This thesis investigated several reward mechanisms to enhance exploratory
testing using reinforcement learning (see Chapter 5: Adding intelligence). Each
approach directs the testing process by assigning higher values to certain ac-
tions or transitions, encouraging the test generator to select those actions more
frequently. Four different rewards were evaluated: State Difference Reward, Ac-
tion Frequency Reward, State Reward, and a Combined Reward combining these
strategies. Table 8.1 presents a summary of these rewards = mechanisms.

The State Difference Reward is designed to encourage exploration by assign-
ing higher rewards to actions that lead to significantly different states. While this
promotes novelty, it introduces the Jumping Between States (JBS) problem, where
the agent oscillates between highly different states without exploring new states.
To address this, rewards based on action frequency memory were introduced.

The Action Frequency Reward tracks action repetition and discourages the
agent from over-relying on a particular action, ensuring that different interactions
are explored over time. While this approach helps prevent excessive reliance on

specific actions, it can also discourage the agent from repeating actions that might

8.1. ANSWERS TO THE RESEARCH QUESTIONS 209

Table 8.1: Comparison of Reward Mechanisms

Reward Description Key Advantage Key Limitation
Mechanism
State Difference Rewards actions that Encourages exploration Causes |BS (agent jumps

Reward lead to significantly of new states between distinct states)
different states
State Reward Rewards states with Best for discovering new May not ensure broad
many unexplored actions interactions coverage in complex
SUTs
Action Discourages the repeti- Promotes balanced ex- Can discourage repeat-
Frequency tion of frequently used ploration across inter- ing actions necessary for
Reward actions connected states reaching unexplored ar-
eas
Combined Combines the reward Achieves a trade-off be- More complex to imple-
Reward strategies tween exploration and ment and tune

JBS mitigation

lead to states with many unexplored interactions. This limitation can result in
suboptimal exploration when certain actions must be executed multiple times to
reach deeper or more complex areas of the application.

The State Reward, in contrast, evaluates the level of exploration of the reached
states by the number of available unexplored actions. This encourages deeper
exploration of individual states while still allowing necessary repetitions when
beneficial.

Empirical results indicate that the State Reward was the best at maximizing
exploration regarding abstract state discovery and action coverage, as it en-
abled the RL agent to systematically discover unexplored actions. The Action
Frequency Reward was more effective in mitigating repetitive loops between
previously explored paths, and achieved better exploration across interconnected
state spaces. The Combined Reward, which combines aspects of both, achieved a
well-balanced trade-off, optimizing exploration while mitigating JBS, but it may
be more complex to implement and tune.

In general, compared to purely random methods, reward-based exploration
guides scriptless testing toward a more thorough exploration of the state space
by adapting over time. As some areas of the GUI are covered, the approach
naturally shifts attention to the less-explored regions, maximising the overall

testing efficiency and effectiveness.

210 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1.5 Scriptless GUI Testing and Code Smell Coverage

RQ5: To what extent can scriptless GUI testing with TESTAR provide mean-
ingful coverage of code smells, and how does this relate to traditional test

adequacy metrics?

Traditional coverage criteria (e.g. line, branch and state coverage) have long
been used to measure the thoroughness of testing activities. While these metrics
provide valuable insights into how extensively a software application is exercised
during testing, they may fail to capture deeper structural or maintainability prob-
lems. Quality-oriented metrics, by contrast, directly measure the extent to which
tests exercise areas of the software known to have maintainability issues.

The collaboration with Marviq (see Chapter 6: Applying it at a company: Mar-
vig) investigates the extent to which scriptless GUI testing with TESTAR provides
meaningful coverage of code smells and its relation to traditional test adequacy
metrics.

TESTAR effectively exercises code containing detected code smells, but its abil-
ity to cover unique smells varies with testing configurations. Longer test se-
quences result in more executed smelly code, but the number of unique code
smells covered plateaus. The introduction of meaningful form inputs leads to im-
proved exploration, increasing the likelihood of exposing code smells that depend
on realistic user input. However, on average, TESTAR covered fewer unique code
smells per test sequence when compared to manual testing. Despite this, across
all test sequences, TESTAR covered code smells that were not encountered during
manual testing.

To understand whether traditional test adequacy metrics can serve as indi-
cators for code smell coverage, Spearman correlation analysis was conducted as
show in Figure 8.4. The study revealed that high coverage alone does not nec-
essarily translate into coverage of subtler quality issues. Correlations between
code smell coverage and traditional metrics were moderate to weak, suggesting
that higher code coverage does not automatically translate into covering code
with deeper structural or maintainability issues. The findings suggest that incor-

8.1. ANSWERS TO THE RESEARCH QUESTIONS 211

porating quality-oriented metrics like code smell coverage can serve as a helpful
indicator of test effectiveness.

1.0

]
o - 0.46 0.39 0.51 0.61 0.58 -0.05 0.04 -0.05 -0.05
[0.7
S
E-OAO 0.54 0.43 0.45 0.43 0.46 0.15 0.21 0.30 0.24 -0.0
'_
= -0.7
S -/0.60 0.63 0.60 0.59 0.58 0.59 0.08 -0.10 -0.26 -0.22
&

i -1.0

1 1 1 1 1 1 1 1 1

IC BC LC CoC MC CIC AbSC AbTC CoSC CoTC
Figure 8.4: Spearman’s Correlation: Code Smell Coverage vs Traditional Metrics' for
different test lengths?

While traditional coverage metrics remain valuable for measuring how exten-
sively the code is exercised, code smell coverage highlights parts of the code prone
to design flaws. Consequently, using code smell detection alongside traditional

coverage metrics results in a more holistic view of test quality.

8.1.6 Adapting Scriptless GUI Testing for Mobile Applications

RQ6: How can scriptless GUI testing be adapted for mobile applications
by improving exploration strategies and integrating mobile-specific testing
oracles?

Mobile application testing introduces unique challenges due to platform-

specific behaviours, diverse hardware configurations, and touch-based interac-

TMetrics: IC = Instruction Coverage, BC = Branch Coverage, LC = Line Coverage, CoC = Com-
plexity Coverage, MC = Method Coverage, CIC = Class Coverage, AbSC = Abstract State Coverage,
AbTC = Abstract Transition Coverage, CoSC = Concrete State Coverage, CoTC = Concrete Transition
Coverage,

2Test process: TP100 = 100 actions, TP500 = 500 actions, TP1000 = 1000 actions.

212 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

tions. This research investigated improvements to TESTAR's exploration strategies
for mobile SUTs (see Chapter 7: Going mobile: the Android plugin).

Two complementary solutions were developed to adapt scriptless GUI testing
for mobile applications. Table 8.2 summarises the differences between these two
approaches. The first involved extending TESTAR to provide cross-platform mo-
bile testing, ensuring a seamless integration with the existing TESTAR framework.
This approach allows TESTAR to test Android and iOS applications while main-
tatning platform independence. This is particularly beneficial for organisations
that develop applications for multiple platforms, as it reduces maintenance effort
and ensures consistency in testing results. However, this approach introduces
some performance overhead due to the additional abstraction layer that Appium
provides.

The second solution, MINTestar, was explicitly designed as a lightweight
Android-focused tool fully integrated into the Android testing ecosystem. MINTes-
tar enables seamless execution within Android environments, offering direct in-
teractions with native frameworks. This allows for faster execution, deeper inte-
gration into development pipelines, and a more seamless experience for testers

and developers working within Android environments.

Table 8.2: Comparison of TEsTAR (with Appium) and MINTestar for Mobile Testing

Feature TESTAR + Appium MINTestar

Platform Support Android and i0S Android

Integration WebDriver-based (Appium) Direct Android APIs (Espresso, ADB)

Exploration Strategy All ASMs available with TESTAR Probabilistic rule-based exploration

Oracles Generic cross-platform oracles Mobile-specific oracles (e.g., accessibility)

Ease of Use Ceneric TESTAR setup process Seamless integration into Android work-
flows

This extension to mobile has introduced adaptations that enhance scriptless
testing capabilities for Android applications. These enhancements include mobile-
specific oracles, gesture-based interactions, and rule-based probabilistic explo-
ration strategies to improve test execution in mobile environments.

The mobile-specific oracles aim to detect Ul inconsistencies and accessibility

issues. Domain specificity becomes critical in contexts such as mobile platforms,

82 FUTURE RESEARCH DIRECTIONS 213

where the literature review indicated limited exploration of accessibility-related
problems. Incorporating oracles tailored to mobile accessibility, for instance, has
the potential to identify subtle or device-specific issues that remain invisible to
general-purpose oracles. Addressing such gaps in oracle design can encourage
the adoption of scriptless testing tools in industrial environments specialised in
mobile applications. Preliminary experiments suggest that these adaptations
improve coverage and enhance the detection of subtle, mobile-specific defects,

thereby making TESTAR a versatile tool for desktop, web and mobile environments.

8.2 Future Research Directions

Building upon the findings from this research, some areas for future exploration
emerge, each offering potential advancements in scriptless GUI testing method-
ologies. The proposed future directions provide a clear roadmap for ongoing
research, enabling both academic and industrial communities to further enhance
and adopt scriptless GUI testing methodologies. Figure 8.5 presents an overview
of the key research directions categorised into four main areas: Interaction, Ex-
ploration, Oracles, and Test Results and Evaluation.

e Expanding to Emerging Interfaces: Emerging technologies such as aug-
mented reality (AR), virtual reality (VR), and voice-controlled applica-
tions present new challenges for GUI testing. Traditional scriptless testing
methodologies may not directly translate to these interfaces, necessitating
novel research directions to adapt and expand automated testing capabili-
ties.

e Adaptive State Abstraction Techniques: State Abstraction is a crucial fac-
tor in determining the effectiveness of GUI testing. A promising future re-
search direction includes developing dynamic state abstraction methods
that adjust based on real-time feedback during testing execution, poten-
tially incorporating computer vision for analysing the screenshots in ad-

dition to the attributes of the widget tree, and/or visualising the results of

214

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Interaction] Emerging Interfaces]

Adaptive State Abstraction Techniques
ploratio 3:»3 Distributed State Model

Exploration Strategies

Automated Failure Reproduction

Oracle Software Version Changes

Domain-Specific Oracles

Visualization and Test Reporting

@ Test Adequacy Criteria

Expanding MFEST

Figure 8.5: Future Research Directions in Scriptless GUI Testing.

state abstraction for the user and learning from the user input to find a
suitable level of abstraction.

A novel approach could involve an Al-based system that continuously re-
fines abstraction levels during test execution, adjusting dynamically based
on the complexity of the GUI. Researchers can improve test efficiency while
maintaining model interpretability by developing an adaptive mechanism
that iteratively refines the abstraction strategy. Such an approach could

benefit large-scale or continuously evolving software environments.

Distributed State Model: Beyond abstraction, improving the scalability of
GUI testing remains a challenge. Even when the execution is automated,
GUI testing is significantly slower than lower-level tests, such as unit test-
ing, due to the need for GUI updates after each action. Future research
should explore parallelising scriptless GUI testing to speed up execution.

For instance, running multiple TESTAR instances in parallel could improve

82 FUTURE RESEARCH DIRECTIONS 215

effictency, but this requires a robust method for synchronising state models
across distributed test executions. Recent research [213] has demonstrated
the feasibility of inferring a model with a distributed approach, thus reduc-

ing the time required to infer a similar-size state model.

e Exploration Strategies: Reinforcement learning has already demonstrated
its potential in guiding GUI testing, but there is room for improvement.
One primary challenge this research identified is the trade-off between ex-
haustive exploration and efficient test execution. Future work could investi-
gate the integration of advanced Al-driven adaptive exploration strategies,
where reinforcement learning (RL) and deep learning models dynamically

adjust exploration policies based on real-time feedback.

Future research should also explore adaptive reward mechanisms that
evolve dynamically based on real-time testing goals, such as deeper GUI
coverage or exploring areas with known technical debt. Code smells could
be exploited as part of these reward mechanisms to guide the exploration
process toward more critical software weaknesses.

Recent research [214] has studied the potential of evolutionary-based ap-
proaches in test case generation, allowing structured and adaptable explo-
ration strategies. Future work should investigate how evolutionary algo-
rithms can be integrated into GUI testing to dynamically refine exploration

policies.

The explosion of Large Language Models (LLMSs) offers a new paradigm for
intelligent action selection in scriptless testing. Future work could explore
how LLMs can assist in dynamically generating GUI interactions by under-
standing application context and user behaviour patterns. Research should
assess the feasibility of fine-tuning LLMs to predict meaningful and diverse
GUI actions that maximize coverage while reducing redundant interactions.
Furthermore, LLMs could be leveraged for adaptive exploration, where they
guide test execution toward complex or undertested GUI components based

on real-time feedback.

An additional research direction involves integrating LLMs with reinforce-

216

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

ment learning (RL) to balance between random exploration and goal-directed
testing. LLMs could provide semantic reasoning capabilities, ensuring that
generated actions align with realistic user behaviours while reinforcement

learning fine-tunes the testing policy over time.

Implementing a Domain-Specific Language (DSL) can enhance the usabil-
ity of scriptless GUI testing by providing a human-readable mechanism for
defining test strategies. A DSL could allow users to specify action deriva-
tion rules, state abstraction configurations, and oracle definitions in an
intuitive and structured format. Future work should focus on designing a
flexible and extensible DSL that enables testers to fine-tune test behaviour
without requiring deep programming expertise. Incorporating Al-driven ab-
straction refinements within the DSL could enable self-adaptive scriptless
testing, where the exploration model evolves based on application changes

and user feedback.

Another area for improvement is human-in-the-loop techniques, which ex-
plore reinforcement learning strategies where testers or users can guide
the training process. This would allow a balance between full automation
and human expertise. By leveraging imitation learning, these agents could
learn from seasoned testers and gradually develop sophisticated testing
strategies. Explainable Al techniques could ensure these agents’ decisions
remain transparent and interpretable.

Beyond action selection, further research is needed to explore methods for
generating more effective actions. For instance, improving input generation
is a crucial area for future research, aiming to produce meaningful values

for text fields automatically.

Automated Failure Reproduction: Debugging remains one of the most
time-consuming aspects of software development. Future research should
push the boundaries of automated fault reproduction by leveraging inferred
state models to trace the shortest paths to faults. This requires recognising
whether a failure is unique or duplicates a previously encountered issue.

Advanced anomaly detection and clustering techniques could be used to

82 FUTURE RESEARCH DIRECTIONS 217

automate failure classification and reproduction, reducing debugging effort
significantly.

A key challenge in failure reproduction is determining whether an observed
failure is truly reproducible or influenced by non-determinism. Since GUI
testing often encounters dynamic behaviours, failures may not always occur
in the same sequence of actions. Future work could explore probabilistic
models that assess failure recurrence likelihood, helping testers prioritise
debugging efforts based on statistical confidence in the reproducibility of

an issue.

e Software version changes: The inferred models can aid regression test-
ing by automating change detection between consequent versions of the
same SUT. Similar approaches have been explored in the Murphy tools [31],
and future research could further refine these methodologies by integrat-
ing automated GUI comparison techniques. This would allow GUI testing
frameworks to efficiently identify regressions and determine the potential
impact of software updates. This aligns with ongoing research [215] on
automatic inference and recognition of GUI changes between versions for
delta testing.

e Domain-specific Oracles: The test oracle problem remains one of the
biggest challenges in automated GUI testing. While existing oracles primar-
ily focus on detecting crashes or functional misbehaviour, future research
should explore domain-specific oracles tailored for different testing goals,

such as accessibility, usability and security.

Accessibility and usability remain underexplored in automated GUI testing.
Future work could investigate new accessibility oracles, heuristic evalua-
tions, and user behaviour simulations. By simulating diverse interaction
patterns (e.g., using screen readers or navigating with a keyboard), script-

less testing tools could proactively detect usability issues.

Security testing is another underexplored area in scriptless GUI testing.
Future research should investigate security-specific oracles capable of de-

tecting authentication weaknesses, insecure data handling, and potential

218

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

injection vulnerabilities. Automating security validation through exploratory

testing could significantly improve software robustness.

Another relevant research direction is improving internationalisation test-
ing through automated layout validation. Many localisation issues arise
when translated text does not fit within designated Ul elements, causing
layout distortions. Future work could explore image recognition and text
extraction techniques to compare rendered Ul elements against expected
translations.

Test Adequacy Criteria: Traditional coverage metrics, such as code cover-
age and state coverage, provide valuable insights into test thoroughness but
fail to capture broader aspects of software quality, such as maintainability,
performance, and usability. Future research should explore expanding test
effectiveness metrics to include additional quality indicators, enabling a

more comprehensive evaluation of GUI testing.

By integrating dynamic performance monitoring into GUI testing frame-
works, testers could identify laggy Ul interactions and inefficient rendering
processes, ensuring a smooth user experience. Additionally, quality-driven
metrics could help identify parts of the application that require further test-
ing attention.

Another crucial research area is defining effective stopping criteria for GUI
testing. One potential criterion is the saturation effect [210], where test
execution is halted once no new states, transitions, or faults are discovered
over a certain number of iterations. Research could explore the automated
detection of test saturation by analysing coverage trends and fault detection
rates over time.

Future work should explore alternative stopping heuristics, such as mutation-
based coverage, state-model-based saturation, or diversity-based explo-
ration metrics. These approaches could help define when enough test-
ing has been performed, particularly in complex and dynamically changing
GUIs. One possible direction for future research is switching to a differ-

ent action selection algorithm after reaching saturation. This could involve

82 FUTURE RESEARCH DIRECTIONS 219

transitioning from GUI exploration to combinatorial testing, aiming to dis-
cover new state transitions by varying the order of actions within a specific

state or the sequence of state transitions.

e Visualization and Test Reporting: While TESTAR has proven effective in
exploratory testing, its adoption in industrial settings could be further im-
proved by enhancing its reporting and result interpretation mechanisms.
One promising direction is the development of interactive dashboards that
automatically analyse, categorise, and visualise test results. Such dash-

boards could integrate:

— NLP-based log analysis to summarise execution traces and highlight

potential issues.

— Visual heatmaps of explored states to show areas of high interaction

density.

— Automated clustering of failure cases to detect patterns and minimise

duplicate issue reporting.

Future research can enhance test reporting, visualisation, and failure anal-
ysis mechanisms to ensure that scriptless GUI testing frameworks provide
clear, interpretable, and actionable insights, making them more practical for

industrial adoption.

e Expanding MFEST with Architectural Components: The architectural anal-
ogy from industrial studies highlights key actors and systems in the test
automation process. These components interact structurally, influencing
the effectiveness, efficiency, and usability of test automation strategies. Fu-
ture research should extend MFEST (explained in Chapter 3) by explicitly

integrating these components into the evaluation methodology.

While subjective satisfaction is already assessed, further evaluation could
focus on how well the testing tool integrates into the existing testing
pipeline. The Test Environment, comprising Test Strategy and Test Exe-

cution, defines how automated testing tools operate. Future work should

220

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

assess whether the tool aligns with predefined test strategies and inte-
grates effectively into execution pipelines. The Bug Tracking System is
another crucial element, serving as the primary feedback loop for detected
faults. Research should determine how seamlessly the tool communicates
findings to the bug tracking system and whether reported faults facilitate
debugging for developers.

Fault Detection Rate (FDR) analysis could be enhanced by breaking it down
across different layers of the SUT. Research should explore how many faults
are detected in GUI components versus business logic layers to identify
strengths and weaknesses depending on the software architecture. Evalu-
ating FDR across architectural levels will provide a deeper understanding of
coverage and refine testing approaches to better target critical fault-prone

areas.

Beyond raw FDR, analyzing the nature and impact of detected faults is
essential. Future research should examine a new scenario for fault clas-
sification and prioritisation, comparing scriptless testing results with the
existing manual or scripted approaches. Measuring how often detected
faults are marked as critical in the Bug Tracking Systems and how fre-
quently they lead to actual fixes can provide insight into their relevance.
Additionally, studies should explore whether detected faults contribute to
long-term software improvements, in order to understand the broader im-
pact of scriptless testing beyond detection rates.

The future directions outlined above highlight key opportunities to enhance

the capabilities and impact of scriptless GUI testing. By integrating Al-driven

adaptive strategies, expanding testing to new domains such as accessibility or

security, and improving result interpretation mechanisms, the research community

can further advance automated testing methodologies. These directions will play

a crucial role in ensuring that scriptless testing remains a viable, scalable, and

industry-adopted solution, addressing the challenges posed by emerging tech-

nologies, evolving software architectures, and increasing demands for automation.

This thesis has embraced the philosophy of exploring beyond the happy path,

82 FUTURE RESEARCH DIRECTIONS 221

advocating for scriptless approaches that push boundaries. While this work rep-
resents a step forward, the journey does not end here. Future research can
further refine these techniques, integrating more intelligent deciston-making and
domain-specific knowledge. As software systems evolve, so too must the ap-
proaches used to test them, ensuring that even the less-travelled paths are not
overlooked. As Frodo and Sam demonstrated, sometimes the unexpected route is
the one that changes everything.

222 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] J. R R Tolkien. The Two Towers. George Allen & Unwin, London, 1954. Part
of The Lord of the Rings. (Cited on page 1)

[2] What went wrong with hawaii's false emergency alert. Cable News Network
(CNN), 2018. [Online; accessed: December 22, 2024} (Cited on page 3)

[3] Tsb chief paul pester steps down after it meltdown. The Guardian, 2018.

[Online; accessed: December 22, 2024]. (Cited on page 3)

[4] Southwest's $140m penalty ‘should put all airlines on notice’ after travel
debacle. Politico, 2023. [Accessed: December 22, 2024]. (Cited on page 3)

[5] LeadDev Staff. Crowdstrike disaster: A lesson about testing. LeadDev, 2024.
[Online; accessed: 2025-01-10]. (Cited on page 4)

[6] Ing customer suddenly had access to a complete stranger's account. Ned-
erlandse Omroep Stichting (NOS), 2024. [Online; accessed: 2025-01-10].

(Cited on page 4)

[7] MA Johnson. Automated testing of user interfaces. In Pacific North West
Software Quality conference, pages 285-293, 1987. (Cited on page 5)

223

224 BIBLIOGRAPHY

[8] Emil Alégroth and Robert Feldt. Industrial Application of Visual GUI Testing:
Lessons Learned, pages 127-140. Springer International Publishing, Cham,
2014. (Cited on page 5)

[9

Pekka Aho, Emil Alégroth, Rafael A. P Oliveira, and Tanja E. J. Vos. Evolution
of automated regression testing of software systems through the graphical
user interface. In The First International Conference on Advances in Com-
putation, Communications and Services (ACCSE 2016), pages 16-21, May
2016. (Cited on page 5)

[10] Tanja E. J. Vos, Pekka Aho, Fernando Pastor Ricos, Olivia Rodriguez-Valdes,
and Ad Mulders. TESTAR — scriptless testing through graphical user inter-
face. STVR, 31(3), 2021. (Cited on pages 5, 11, 13, 89, 121, 123, and 169)

[11] Atif M Memon and Mary Lou Soffa. Regression testing of guis. ACM SIG-
SOFT software engineering notes, 28(5):118-127, 2003. (Cited on page 0)

[12] Emil Alégroth, Robert Feldt, and Pirjo Kolstrom. Maintenance of automated
test suites in industry: An empirical study on visual gui testing. Information
and Software Technology, 73:06-80, 2016. (Cited on page 0)

[13] S. Berner, R. Weber, and R. K. Keller. Observations and lessons learned
from automated testing. In Proceedings. 27th International Conference on
Software Engineering, 2005. ICSE 2005., pages 571-579, 2005. (Cited on
page 6)

[14] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Robula+:
an algorithm for generating robust xpath locators for web testing. Journal
of Software: Evolution and Process, 28(3):177-204, 2016. (Cited on page 6)

[15] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. Visual web test
repair. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2018, pages 503-514, New York, NY, USA,
2018. ACM. (Cited on page 0)

BIBLIOGRAPHY 225

[10]

(7]

18]

[19]

[20]

[21]

[22]

23]

Shauvik Roy Choudhary, Dan Zhao, Husayn Versee, and Alessandro Orso.
Water: Web application test repair. In Proceedings of the First International
Workshop on End-to-End Test Script Engineering, ETSE "11, page 24-29,
New York, NY, USA, 2011. Association for Computing Machinery. (Cited on
page 0)

Z.Gao, Z. Chen, Y. Zou, and Atif M. Memon. Sitar: Gui test script repair. [EEE
Transactions on Software Engineering, 42(2):170-186, Feb 2016. (Cited on
page 6)

Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, and Xuandong
Li. Gui-guided repair of mobile test scripts. In 2019 IEEEJACM 41st In-
ternational Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 326-327. IEEE, 2019. (Cited on page 0)

E. Alegroth, M. Nass, and H.H. Olsson. Jautomate: A tool for system- and
acceptance-test automation. In Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, pages 439-446, March
2013. (Cited on page 7)

Sikulix. http://sikulix.com/. [Online; accessed 20-12-2019] (Cited on
page 7)

Eyeautomate. https://eyeautomate.com/. [Online; accessed 20-12-2019].
(Cited on page 7)

José L. Silva, José Campos, and Ana Paiva. Model-based user interface test-
ing with spec explorer and concurtasktrees. Electronic Notes in Theoretical
Computer Science, 208:77 — 93, 2008. Proceedings of the 2nd International
Workshop on Formal Methods for Interactive Systems (FMIS 2007). (Cited

on page /)

Vivien Chinnapongse, Insup Lee, Oleg Sokolsky, Shaohut Wang, and Paul
Jones. Model-based testing of gui-driven applications. In Sunggu Lee and

http://sikulix.com/
https://eyeautomate.com/

226

[24]

[25]

[26]

[27]

28]

[29]

30]

BIBLIOGRAPHY

Priya Narasimhan, editors, Software Technologies for Embedded and Ubig-
uitous Systems, pages 203-214, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg. (Cited on page 7)

Rodrigo M. L. M. Moreira, Ana Paiva, Miguel Nabuco, and Atif M. Memon.
Pattern-based qui testing: Bridging the gap between design and quality
assurance. Software Testing, Verification and Reliability, 27(3):e1629, 2017.
€1629 stvr.1629. (Cited on page 7)

Anneliese A. Andrews, Jeff Offutt, and Roger T. Alexander. Testing web ap-
plications by modeling with fsms. Software & Systems Modeling, 4:326-345,
2005. (Cited on page 7)

Tommi Takala, Mika Katara, and Julian Harty. Experiences of system-level
model-based gui testing of an android application. In Proceedings of the
2011 Fourth IEEE International Conference on Software Testing, Verification
and Validation, 1CST, pages 377-86. IEEE Computer Society, 2011. (Cited
on page 7)

Jodo Carlos Silva, Carlos Silva, Rut D. Goncalo, Jodo Saraiva, and José Creis-
sac Campos. The GUISurfer tool: Towards a language independent approach
to reverse engineering GUI code. In Proceedings of the Znd ACM SIGCH|
Symposium on Engineering Interactive Computing Systems, page 181-186.
ACM, 2010. (Cited on pages 7 and 91)

Rui Couto, Anténio Nestor Ribeiro, and José Creissac Campos. A patterns
based reverse engineering approach for java source code. In 35th IEEE
Software Engineering Workshop, pages 140-147, 2012. (Cited on pages /
and 91)

Bao N Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. GUITAR:
an innovative tool for automated testing of GUI-driven software. Automated

software engineering, 21(1):65-105, 2014. (Cited on pages 7, 75, and 92)

Pekka Aho, Tomi Raty, and Nadja Menz. Dynamic reverse engineering of GUI
models for testing. In 2073 International Conference on Control, Decision and

BIBLIOGRAPHY 227

[31]

32]

[33]

[34]

[35]

[36]

[37]

38

Information Technologies (CoDIT), pages 441-447, 2013. (Cited on pages 7/
and 92)

Pekka Aho, M. Suarez, T. Kanstren, and Atif M. Memon. Murphy tools:
Utilizing extracted gui models for industrial software testing. In Software
Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh
International Conference on, pages 343-348, March 2014. (Cited on pages 7,
8, 91, 92, 108, and 217)

Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling ajax-based
web applications through dynamic analysis of user interface state changes.
ACM Trans. Web, 6(1), March 2012. (Cited on pages 7 and 92)

Andres Kull. Automatic GUI model generation: State of the art. In 20712
IEEE 23rd ISSRE Workshops, pages 207-212. IEEE, 2012. (Cited on pages /
and 92)

Pekka Aho, Teemu Kanstrén, Tomi Raty, and Juha Roéning. Automated ex-
traction of GUI models for testing. volume 95 of Advances in Computers,
pages 49-112. Elsevier, 2014. (Cited on pages 7, 8, and 92)

A. Marchetto, P. Tonella, and F. Ricca. State-based testing of ajax web
applications. In 2008 1st International Conference on Software Testing,

Verification, and Validation, pages 121-130, 2008. (Cited on pages 7 and 92)

Antonia Bertolino, Andrea Polini, Paola Inverardi, and Henry Muccini. To-
wards anti-model-based testing. In In Proc. DSN 2004 (Ext. abstract, pages
124-125, 2004. (Cited on page 7)

Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. Gui ripping: re-
verse engineering of graphical user interfaces for testing. In 70th Working
Conference on Reverse Engineering, 2003. WCRE 2003. Proceedings., pages
260-269, Nov 2003. (Cited on pages 7 and 91)

André MP Grilo, Ana CR Paiva, and Jodo Pascoal Faria. Reverse engineering
of GUI models for testing. In 5th ICIST, pages 1-6. IEEE, 2010. (Cited on
pages 8 and 91)

228

[39]

[40]

[41]

[42]

[43]

[44]

[49]

BIBLIOGRAPHY

Tanja E. J. Vos and Pekka Aho. Searching for the best testx. In 2017
IEEEIACM 10th International Workshop on Search-Based Software Test-
ing (SBST), pages 3-4, May 2017. (Cited on page 8)

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin
Yoo. The oracle problem in software testing: A survey. I[EEE Transactions
on Software Engineering, 41(5):507-525, 2015. (Cited on pages 8 and 27)

Gunel Jahangirova. Oracle problem in software testing. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2017, pages 444-447, New York, NY, USA, 2017. ACM. (Cited
on page 8)

Rafael A.P. Oliveira, Upulee Kanewala, and Paulo A. Nardi. Automated test
oracles: State of the art, taxonomies, and trends. Advances in Computers,
95:113 — 199, 2014. (Cited on page 8)

Marcel Bohme and Soumya Paul. A probabilistic analysis of the efficiency
of automated software testing. IEEE Transactions on Software Engineering,
42(4):345-360, 2015. (Cited on page 9)

Pekka Aho and Tanja E. J. Vos. Challenges in automated testing through
graphical user interface. In 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pages 118-121, Los
Alamitos, CA, USA, Apr 2018. IEEE Computer Society. (Cited on page 9)

Pekka Aho, Tanja E. J. Vos, Otto Sybrandi, Sorin Patrasoiu, Joona Oikarinen,
Olivia Rodriguez Valdes, and Lianne V. Hufkens. IVVES (industrial-grade
verification and validation of evolving systems). In Jodo Araujo, Jose Luis
de la Vara, Isabel Sofia Brito, Nelly Condori-Ferndndez, Leticia Duboc, Gio-
vannt Giachetti, Beatriz Mar(n, Estefanta Serral, Alessandra Bagnato, and
Lidia Lépez, editors, Joint Proceedings of RCIS 2022 Workshops and Re-
search Projects Track co-located with the 16th International Conference on
Research Challenges in Information Science (RCIS 2022), Barcelona, Spain,
May 17-20, 2022, volume 3144 of CEUR Workshop Proceedings. CEUR-
WS.org, 2022. (Cited on page 10)

BIBLIOGRAPHY 229

[46] Manuela Andreea Petrescu and Simona Motogna. A perspective from large
vs small companies adoption of agile methodologies. In ENASE, pages 265—
272, 2023. (Cited on pages 11 and 151)

[47] M Hossain. Challenges of software quality assurance and testing. Interna-
tional Journal of Software Engineering and Computer Systems, 4(1):133-144,
2018. (Cited on pages 11 and 151)

[48] Nelson Vargas, Beatriz Marin, and Giovanni Giachetti. A list of risks and
mitigation strategies in agile projects. In 2027 40th International Conference
of the Chilean Computer Science Society (SCCC), pages 1-8. IEEE, 2021.
(Cited on pages 11 and 151)

[49] Ing erkent technische storing na problemen met overboekingen. Tweakers,
2023. [Online; accessed 30-January-2025]. (Cited on page 13)

[50] Vijftien uur niet online bankieren bij ing: ‘we zijn het niet meer gewend.
Nederlandse Omroep Stichting (NOS), 2023. [Online; accessed 30-January-
2025]. (Cited on page 13)

[51] Ing-klant had plots toegang tot de rekening van een wildvreemde. Neder-
landse Omroep Stichting (NOS), 2023. [Online; accessed 30-January-2025].
(Cited on page 13)

[52] Uia windows. https://docs.microsoft.com/en-us/windows/win32/
winauto/uiauto-entry-propids. [Online; accessed 25-12-2019] (Cited
on pages 13 and 57)

[53] Selenium. https://selenium.dev/. [Online; accessed 20-12-2019]. (Cited
on pages 13, 34, and 50)

[54] Java Access Bridge. https://docs.oracle.com/javase/8/docs/
technotes/guides/access/, 2025. [Online; accessed 30-January-2025).
(Cited on page 13)

[55] Sebastian Bauersfeld, Tanja E. J. Vos, Nelly Condori-Fernandez, Alessandra
Bagnato, and Etienne Brosse. Evaluating the TESTAR tool in an industrial

https://docs.microsoft.com/en-us/windows/win32/winauto/uiauto-entry-propids
https://docs.microsoft.com/en-us/windows/win32/winauto/uiauto-entry-propids
https://selenium.dev/
https://docs.oracle.com/javase/8/docs/technotes/guides/access/
https://docs.oracle.com/javase/8/docs/technotes/guides/access/

230

[56]

[57]

58]

[59]

[60]

BIBLIOGRAPHY

case study. In 2074 ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM 14, Torino, Italy, September
18-19, 2014, page 4, 2014. (Cited on pages 14, 78, and 79)

Fernando Pastor Ricds, Pekka Aho, Tanja Vos, Ismael Torres Boigues,
Ernesto Calds Blasco, and Héctor Martinez Martinez. Deploying testar
to enable remote testing in an industrial ci pipeline: A case-based evalua-
tion. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applica-
tions of Formal Methods, Verification and Validation: Verification Principles,
pages 543-557, Cham, 2020. Springer International Publishing. (Cited on
pages 14 and 79)

Sebastian Bauersfeld, A de Rojas, and Tanja E. J. Vos. Evaluating rogue
user testing in industry: An experience report. In Research Challenges in
Information Science (RCIS), 2014 IEEE Eighth International Conference on,
pages 1-10, May 2014. (Cited on pages 14, 78, 79, and 81)

Hatim Chahim, Mehmet Duran, Tanja E. J. Vos, Pekka Aho, and Nelly Con-
dori Fernandez. Scriptless testing at the gui level in an industrial setting.
In Fabiano Dalpiaz, Jelena Zdravkovic, and Pericles Loucopoulos, editors,
Research Challenges in Information Science, pages 267-284, Cham, 2020.
Springer International Publishing. (Cited on pages 14 and 79)

P. Aho, G. Buijs, A. Akin, S. Senturk, F. Pastor Ricos, S. de Gouw, and T. Vos.
Applying Scriptless Test Automation on Web Applications from the Financial
Sector. In S. Abrahao, editor, Actas de las XXV Jornadas de Ingenieria del
Software y Bases de Datos (JISBD 2021). Sistedes, 2021. (Cited on pages 14
and 79)

Pekka Aho, Tanja E. J. Vos, Sami Ahonen, Tomi Piirainen, Perttu Moilanen,
and Fernando Pastor Ricos. Continuous piloting of an open source test
automation tool in an industrial environment. In Jornadas de Ingenieria del
Software y Bases de Datos (JISBD), pages 1-4. Sistedes, 2019. (Cited on
pages 14 and 80)

BIBLIOGRAPHY 231

[61]

[62]

[63]

[64]

(6]

[66]

[67]

[68]

Mireilla Martinez, Anna |. Esparcia, Urko Rueda, Tanja E. J. Vos, and Carlos
Ortega. Automated localisation testing in industry with testar. In Franz
Wotawa, Mihai Nica, and Natalia Kushik, editors, Testing Software and
Systems, pages 241-248, Cham, 2016. Springer International Publishing.
(Cited on pages 14 and 80)

Tanja E. J. Vos, Peter M. Kruse, Nelly Condori-Ferndndez, Sebastian Bauers-
feld, and Joachim Wegener. TESTAR: Tool support for test automation at the
user interface level. Int. J. Inf. Syst. Model. Des., 6(3):46-83, July 2015. (Cited
on pages 14 and 80)

Axel Bons, Beatriz Marin, Pekka Aho, and Tanja EJ Vos. Scripted and script-
less qui testing for web applications: An industrial case. [nformation and
Software Technology, 158:107172, 2023. (Cited on pages 14, 80, 81, and 145)

Thorn Jansen, Fernando Pastor Ricds, Yaping Luo, Kevin Van Der Vlist,
Robbert Van Dalen, Pekka Aho, and Tanja EJ Vos. Scriptless gui testing
on mobile applications. In 2022 IEEE 22nd International Conference on
Software Quality, Reliability and Security (QRS), pages 1103-1112. IEEE,
2022. (Cited on pages 14, 80, 148, and 169)

Rafael Ball. An introduction to bibliometrics . new developments and trends.
Chandos Information Professional Series. Chandos Publishing, Cambridge,
Massachusetts, 2018 - 2018. (Cited on page 14)

Roel Wieringa and Maya Daneva. Six strategies for generalizing software
engineering theories. Science of Computer Programming, 101:136 — 152,
2015. Towards general theories of software engineering. (Cited on pages 14,
15, and 82)

Richard S Sutton. Reinforcement learning: An introduction. A Bradford
Book, 2018. (Cited on page 17)

Claes Wohlin and Per Runeson. Guiding the selection of research methodol-
ogy in industry—academia collaboration in software engineering. Information
and software technology, 140:106678, 2021. (Cited on page 17)

232 BIBLIOGRAPHY

[69] G Ann Campbell and Patroklos P Papapetrou. SonarQube in action. Man-
ning Publications Co., 2013. (Cited on pages 18 and 158)

[70] Martin Fowler. Refactoring: improving the design of existing code. Addison-
Wesley Professional, 2018. (Cited on pages 18, 150, and 158)

[71] Olivia Rodriguez Valdes. Finding the shortest path to reproduce a failure
found by testar. In Proceedings of the 2019 27th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations

of Software Engineering, pages 1223-1225, 2019. (Cited on page 21)

[72] Olivia Rodriguez-Valdes. Towards a testing tool that learns to test. In 2027
IEEEJACM 43rd International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), pages 278-280. IEEE, 2021. (Cited
on page 22)

[73] Pekka Aho, Tanja EJ Vos, Otto Sybrandi, Sorin Patrasoiu, Joona Oikarinen,
Olivia Rodriguez Valdes, and Lianne V Hufkens. Iwes (industrial-grade
verification and validation of evolving systems). In RCIS Workshops, 2022.
(Cited on page 22)

[74] Selmin Nurcan, Andreas L Opdahl, Haralambos Mouratidis, and Aggeliki
Tsohou. Research challenges in information science: Information science
and the connected world: 17th international conference, rcis 2023, corfu,
greece, may 23-26, 2023, proceedings. 2023. (Cited on page 22)

[75] Henry Small. Visualizing science by citation mapping. Journal of the Ameri-
can Society for Information Science, 50(9):799-813, 1999. (Cited on page 25)

[76] Ishan Banerjee, Bao Nguyen, Vahid Garousi, and Atif Memon. Graph-
ical user interface testing: Systematic mapping and repository. /ST,
55(10):1679-1694, October 2013. (Cited on page 25)

[77] Brian C Vickery. Bradford's law of scattering. Journal of documentation,
4(3):198-203, 1948. (Cited on pages 26 and 35)

BIBLIOGRAPHY 233

[78] Alfred] Lotka. The frequency distribution of scientific productivity. Journal
of the Washington academy of sciences, 16(12):317-323, 1926. (Cited on
page 20)

[79] M. Cobo, A.G. Lépez-Herrera, E. Herrera-Viedma, and F. Herrera. Science
mapping software tools: Review, analysis, and cooperative study among
tools. Journal of the American Society for Information Science and Technol-
ogy, 62(7):1382-1402, 2011. (Cited on page 28)

[80] Elizabeth S. Vieira and José A. N. F. Gomes. A comparison of Scopus and
Web of Science for a typical university. Scientometrics, 81(2):587-600, 2009.
(Cited on page 28)

[81] Claudio Bustos, Maria Malverde, Pedro L, and Alejandro Diaz-Mujica.
Buhos: A web-based systematic literature review management software.
7,11 2018. (Cited on page 31)

[82] Claes Wohlin. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th inter-
national conference on evaluation and assessment in software engineering,
pages 1-10, 2014. (Cited on page 31)

[83] Andreas Thor, Werner Marx, Loet Leydesdorff, and Lutz Bornmann. Introduc-
ing citedreferencesexplorer (crexplorer): A program for reference publication
year spectroscopy with cited references standardization. Journal of Infor-
metrics, 10(2):503-515, 2016. (Cited on page 31)

[84] Massimo Aria and Corrado Cuccurullo. bibliometrix: An r-tool for compre-
hensive science mapping analysis. Journal of informetrics, 11(4):959-975,
2017. (Cited on page 31)

[85] José A Moral-Mufioz, Enrique Herrera-Viedma, Antonio Santisteban-Espejo,
Manuel J Cobo, et al. Software tools for conducting bibliometric analysis in
science: An up-to-date review. 2020. (Cited on page 31)

234

[80]

[87]

88

[89]

[90]

[91]

92]

93]

BIBLIOGRAPHY

Eric Paulos. The rise of the expert amateur: Diy culture and citizen sci-
ence. In Proceedings of the 22nd annual ACM symposium on User interface
software and technology, pages 181-182, 2009. (Cited on page 34)

Shir Aviv-Reuven and Ariel Rosenfeld. Publication patterns’ changes due to
the covid-19 pandemic: a longitudinal and short-term scientometric analy-
sis. Scientometrics, 126(8):6761-6784, 2021. (Cited on page 34)

Massimo Franceschet. The role of conference publications in cs. Communi-
cations of the ACM, 53(12):129-132, 2010. (Cited on page 34)

Ferdinand Leimkuhler. An exact formulation of bradford's law. J. of Docu-

mentation, 1980. (Cited on page 30)

Alberto Martin-Martin, Enrique Orduna-Malea, Mike Thelwall, and Emilio
Delgado Lépez-Cézar. Google scholar, web of science, and scopus: A sys-
tematic comparison of citations in 252 subject categories. Journal of Infor-
metrics, 12(4):1160-1177, 2018. (Cited on page 39)

Aravind MacHiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input
generation system for android apps. pages 224-234, Saint Petersburg, 2013.
cited By 397; Conference of 2013 9th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE 2013 ; Conference Date:
18 August 2013 Through 26 August 2013; Conference Code:99148. (Cited on
pages 39 and 40)

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
de Carmine, and Atif M. Memon. Using gui ripping for automated testing of
android applications. pages 258-261, Essen, 2012. cited By 343; Conference
of 2012 27th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2012 ; Conference Date: 3 September 2012 Through 7
September 2012; Conference Code:92925. (Cited on page 39)

Shauvik Roy Choudhary, Alessandra Corla, and Alessandro Orso. Auto-

mated test input generation for android: Are we there yet? pages 429-440.

BIBLIOGRAPHY 235

[94]

[99]

[96]

97]

98]

Institute of Electrical and Electronics Engineers Inc, 2016. cited By 245;
Conference of 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2015 ; Conference Date: 9 November 2015 Through
13 November 2015; Conference Code:118982. (Cited on page 39)

Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Au-
tomated concolic testing of smartphone apps. Cary, NC, 2012. cited By
231; Conference of 20th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, FSE 2012 ; Conference Date: 11
November 2012 Through 16 November 2012; Conference Code:94505. (Cited
on page 39)

Anneliese Amschler Andrews, Jeff Offutt, and Roger T. Alexander. Testing
web applications by modeling with fsms. Software and Systems Modeling,
4(3):326-345, 2005. cited By 227. (Cited on page 39)

Tom Yeh, Tsunghsiang Chang, and Robert C. Miller. Sikult: Using gui screen-
shots for search and automation. pages 183-192, Victoria, BC, 2009. cited
By 217; Conference of 22nd Annual ACM Symposium on User Interface
Software and Technology, UIST 2009 ; Conference Date: 4 October 2009
Through 7 October 2009; Conference Code:78541. (Cited on page 39)

Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated
testing for android applications. pages 94-105. Association for Computing
Machinery, Inc, 2016. cited By 208; Conference of 25th International Sym-
posium on Software Testing and Analysis, ISSTA 2016 ; Conference Date:
18 July 2016 Through 20 July 2016; Conference Code:122744. (Cited on
page 39)

Lorenzo Gomez, lulian Neamtiu, Tanzirul Azim, and Todd D. Millstein. Reran:
Timing- and touch-sensitive record and replay for android. pages 72-81, San
Francisco, CA, 2013. cited By 202; Conference of 2013 35th International
Conference on Software Engineering, ICSE 2013 ; Conference Date: 18 May
2013 Through 26 May 2013; Conference Code:100317. (Cited on page 39)

236

[99]

[100]

[01]

[102]

(103

[104]

105

BIBLIOGRAPHY

Atif M. Memon. An event-flow model of gui-based applications for testing.
Software Testing Verification and Reliability, 17(3):137-157, 2007. cited By
193. (Cited on page 39)

Shuat Hao, Bin Liu, Suman Kumar Nath, William G.J. Halfond, and Ramesh
Govindan. Puma: Programmable ui-automation for large-scale dynamic
analysis of mobile apps. pages 204-217, Bretton Woods, NH, 2014. Asso-
ciation for Computing Machinery. cited By 192; Conference of 12th Annual
International Conference on Mobile Systems, Applications, and Services,
MobiSys 2014 ; Conference Date: 16 June 2014 Through 19 June 2014;
Conference Code:105809. (Cited on page 39)

Werner Marx, Lutz Bornmann, Andreas Barth, and Loet Leydesdorff. De-
tecting the historical roots of research fields by reference publication year
spectroscopy (rpys). Journal of the Association for Information Science and
Technology, 65(4):751-764, 2014. (Cited on page 40)

Atif M. Memon. A comprehensive framework for testing graphical user in-
terfaces. 2001. Advisors: Mary Lou Soffa and Martha Pollack; Committee
members: Prof. Rajiv Gupta (University of Arizona), Prof. Adele E. Howe (Col-
orado State University), Prof. Lori Pollock (University of Delaware). (Cited
on page 40)

Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Hierarchical gui test
case generation using automated planning. IEEE Transactions on Software
Engineering, 27(2):144-155, 2001. cited By 187. (Cited on page 40)

Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Coverage criteria
for gui testing. pages 256-267, Vienna, 2001. Association for Computing
Machinery (ACM). cited By 1606; Conference of 8th Eiropean Engineering
Conference (ESEC) and 9th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE-9) ; Conference Date: 10 September 2001
Through 14 September 2001; Conference Code:60512. (Cited on page 40)

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
de Carmine, and Gennaro Imparato. A toolset for gui testing of android ap-

BIBLIOGRAPHY 237

[106]

107

108

[109]

plications. pages 650-653, Riva del Garda,Trento, 2012. cited By 38; Con-
ference of 28th International Conference on Software Maintenance, ICSM
2012 ; Conference Date: 23 September 2012 Through 28 September 2012;
Conference Code:95267. (Cited on page 40)

Wontae Choi, George C. Necula, and Koushik Sen. Guided gui testing of an-
droid apps with minimal restart and approximate learning. pages 623-639,
Indianapolis, IN, 2013. cited By 129; Conference of 2013 28th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2013 ; Conference Date: 29 October 2013 Through 31
October 2013; Conference Code:100913. (Cited on page 40)

Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box approach for automated
gui-model generation of mobile applications. International Conference on
Fundamental Approaches to Software Engineering, FASE, 7793 LNCS:250-
265, 2013. cited By 185; Conference of 16th International Conference on
Fundamental Approaches to Software Engineering, FASE 2013, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013 ; Conference Date: 16 March 2013 Through 24 March 2013;
Conference Code:95779. (Cited on page 40)

Tanzirul Azim and lulian Neamtiu. Targeted and depth-first exploration
for systematic testing of android apps. pages 641-600, Indianapolis, IN,
2013. cited By 158; Conference of 2013 28th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2013 ; Conference Date: 29 October 2013 Through 31 October
2013; Conference Code:100913. (Cited on page 40)

Brendan Rousseau and Ronald Rousseau. Lotka: A program to fit a power
law distribution to observed frequency data. Cybermetrics: International
Journal of Scientometrics, Informetrics and Bibliometrics, (4):4, 2000. (Cited
on page 41)

238 BIBLIOGRAPHY

[110] Guo Chen and Lu Xiao. Selecting publication keywords for domain analysis
in bibliometrics: A comparison of three methods. J. of Informetrics, 10:212—
223, 02 2016. (Cited on page 44)

[111] Hsin-Ning Su and Pei-Chun Lee. Mapping knowledge structure by key-
word co-occurrence: a first look at journal papers in Technology Foresight.
Scientometrics, 85(1):65-79, October 2010. (Cited on page 44)

[112] Edward Loper and Steven Bird. Nltk: The natural language toolkit. arXiv
0205028, 2002. (Cited on page 44)

[113] Olivia Rodriguez, Tanja EJ Vos, Pekka Aho, and Beatriz Marin. 30 years of
automated gut testing: a bibliometric analysis. In QUATIC, pages 473-488.
Springer, 2021. (Cited on page 44)

[114] Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell,
and Anders Wesslén. Experimentation in software engineering. Springer
Science & Business Media, 2012. (Cited on pages 50, 127, 141, 155, 157,
and 171)

[115] Appium. http://appium.io/. [Online; accessed 25-12-2019] (Cited on
page 50)

[116] Mirella Martinez, Anna |. Esparcia-Alcézar, Tanja E. J. Vos, Pekka Aho, and
Joan Fons i Cors. Towards automated testing of the internet of things:
Results obtained with the testar tool. In Tiziana Margaria and Bernhard
Steffen, editors, Leveraging Applications of Formal Methods, Verification
and Validation. Distributed Systems, pages 375-385, Cham, 2018. Springer
International Publishing. (Cited on page 56)

[117] Pekka Aho, M. Suarez, T. Kanstrén, and Atif M. Memon. Murphy tools:
Utilizing extracted gut models for industrial software testing. In 2074 IEEE
Seventh International Conference on Software Testing, Verification and Val-
idation Workshops, pages 343-348, March 2014. (Cited on page 57)

http://appium.io/

BIBLIOGRAPHY 239

(118

[119]

[120]

[121]

[122)

23]

[124]

Noel Nyman. Using monkey test tools - how to find bugs cost-
effectively through random testing. Software Testing & Quality Engineering,
Jan/Feb:18-21, 2000. (Cited on page 69)

Priyam Patel, Gokul Srinivasan, Sydur Rahaman, and lulian Neamtiu. On
the effectiveness of random testing for android. In A-TEST, 2018. (Cited on
page 069)

Nataniel Borges, Jenny Hotzkow, and Andreas Zeller. Droidmate-2: a plat-
form for android test generation. In 33rd ACMJIEEE ASE, pages 916-919,
2018. (Cited on page 69)

Anna | Esparcia-Alcazar, Francisco Almenar, Mirella Martinez, Urko Rueda,
and Tanja EJ Vos. Q-learning strategies for action selection in the testar
automated testing tool. 6th International Conferenrence on Metaheuristics
and nature inspired computing (META 2016), pages 130-137, 2016. (Cited
on pages 09 and 120)

Pekka Aho, Matias Suarez, Teemu Kanstrén, and Atif M. Memon. Indus-
trial adoption of automatically extracted gui models for testing. volume
1078, pages 49-54. CEUR-WS, 2013. cited By 6; Conference of 3rd Interna-
tional Workshop on Experiences and Empirical Studies in Software Mod-
eling, EESSMod 2013 - Co-located with 16th International Conference on
Model Driven Engineering Languages and Systems, MoDELS 2013 ; Con-
ference Date: 1 October 2013; Conference Code:111113. (Cited on page 75)

Pekka Aho, Nadja Menz, Tomi D. Raty, and Ina Schieferdecker. Automated
java gui modeling for model-based testing purposes. pages 268-273. IEEE
Computer Society, 2011. cited By 21. (Cited on page 75)

Ali Mesbah, Engin Bozdag, and Arie Van Van Deursen. Crawling ajax by
inferring user interface state changes. pages 122-134, Yorktown Heights,
NY, 2008. cited By 133; Conference of 8th International Conference on Web
Engineering, ICWE 2008 ; Conference Date: 14 July 2008 Through 18 July
2008; Conference Code:73518. (Cited on page 75)

240 BIBLIOGRAPHY

[125] Valentin Dallmeier, Martin Burger, Tobias Orth, and Andreas Zeller. Web-
mate: a tool for testing web 2.0 applications. In Proceedings of the Workshop
on JavaScript Tools, pages 11-15, 2012. (Cited on page 75)

[126] Leonardo Mariani, Mauro Pezzé, and Daniele Zuddas. Augusto: Exploiting
popular functionalities for the generation of semantic gui tests with ora-
cles. volume 2018-January, pages 280-290. IEEE Computer Society, 2018.
cited By 14; Conference of 40th International Conference on Software Engi-
neering, ICSE 2018 ; Conference Date: 27 May 2018 Through 3 June 2018;
Conference Code:137142. (Cited on page 75)

[127] Leonardo Mariani, Mauro Pezze, Oliviero Riganell, and Mauro Santoro.
Autoblacktest: Automatic black-box testing of interactive applications. In
2012 IEEE fifth international conference on software testing, verification
and validation, pages 81-90. IEEE, 2012. (Cited on page 75)

[128] Tanja E. J. Vos, Beatriz Marin, Maria José Escalona, and Alessandro
Marchetto. A methodological framework for evaluating software testing
techniques and tools. In 72th International Conference on Quality Soft-
ware, Xi'an, China, August 27-29, pages 230-239, 2012. (Cited on pages 77
and /8)

[129] Tanja E. J. Vos. Evolutionary testing for complex systems. ERCIM News,
2009(78), 2009. (Cited on page 77)

[130] Tanja E. J. Vos. Continuous evolutionary automated testing for the future
internet. ERCIM News, 2010(82):50-51, 2010. (Cited on page 77)

[131] B. Kitchenham, L. M. Pickard, and S. L. Pfleeger. Case studies for method
and tool evaluation. Software, IEEE, 12(4):52 62, July 1995. (Cited on
page 77)

[132] Per Runeson and Martin Host. Guidelines for conducting and reporting case
study research in software eng. Empirical Softw. Engg., 14(2):131-164, 2009.
(Cited on page 77)

BIBLIOGRAPHY 241

(133

[134]

135

[136]

[137]

[138]

[139]

140

Martin Host and Per Runeson. Checklists for software engineering case
study research. In Proceedings of the First International Symposium on
Empirical Software Engineering and Measurement, ESEM '07, pages 479-
481, Washington, DC, USA, 2007. IEEE Computer Society. (Cited on page 77)

B. Kitchenham, S. Linkman, and D. Law. Desmet: a methodology for evaluat-

ing software engineering methods and tools. Computing Control Engineering
Journal, 8(3):120 =126, June 1997. (Cited on page 77)

Floren de Gier, Davy Kager, Stijn de Gouw, and E.J. Tanja Vos. Offline
oracles for accessibility evaluation with the TESTAR tool. In 73th RCIS,
pages 1-12, 2019. (Cited on pages 89 and 99)

Pekka Aho, Emil Alégroth, Rafael AP Oliveira, and Tanja EJ Vos. Evolution
of automated regression testing of software systems through the graphical
user interface. In Tst Int. Conf. on Advances in Computation, Communications
and Services, pages 16-21, 2016. (Cited on pages 90 and 91)

Pekka Aho, Matias Suarez, Atif Memon, and Teemu Kanstrén. Making GUI
testing practical: Bridging the gaps. In 2015 12th International Conference
on Information Technology-New Generations, pages 439-444. IEEE, 2015.
(Cited on page 90)

Karl Meinke and Neil Walkinshaw. Model-based testing and model in-
ference. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation. Technologies
for Mastering Change, pages 440-443, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. (Cited on page 90)

Alexandre Canny, Philippe Palanque, and David Navarre. Model-based
testing of gui applications featuring dynamic instanciation of widgets. In
2020 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 95-104, 2020. (Cited on page 91)

Anttt Kervinen, Mika Maunumaa, Tuula Padkkonen, and Mika Katara.

Model-based testing through a gui. In Wolfgang Grieskamp and Carsten

242 BIBLIOGRAPHY

Weise, editors, Formal Approaches to Software Testing, pages 1631, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. (Cited on page 91)

[141] Domenico Amalfitano, Anna R. Fasolino, Porfirio Tramontana, and Nicola
Amatucci. Considering context events in event-based testing of mobile ap-
plications. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops, pages 126-133, March 2013. (Cited
on page 92)

[142] Y. Miao and X. Yang. An fsm based gui test automation model. In 2070 11th
International Conference on Control Automation Robotics Vision, pages 120—
126, Dec 2010. (Cited on page 92)

[143] Aaron van der Brugge, Fernando Pastor Ricos, Pekka Aho, Beatriz Marin,
and Tanja EJ. Vos. Evaluating TESTAR's effectiveness through code cover-
age. In S. Abrahédo Gonzales, editor, XXV JISBD. SISTEDES, 2021. (Cited
on page 99)

[144] Andrea Arcurt and Lionel Briand. A practical guide for using statistical tests
to assess randomized algorithms in software engineering. In 33rd ICSE, page
1-10. ACM, 2011. (Cited on pages 99, 127, and 133)

[145] Jacoco coverage tool. https://www.jacoco.org/jacoco/. last accessed
17 Jan 2022. (Cited on page 99)

[146] Rachota timetracker. http://rachota.sourceforge.net. Last accessed:
17 Jan 2022. (Cited on page 100)

[147] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998. (Cited on
pages 115 and 110)

[148] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. Re-
inforcement learning based curiosity-driven testing of android applications.
In 29th SIGSOFT. ASM, 2020. (Cited on pages 115, 121, 122, 123, and 124)

https://www.jacoco.org/jacoco/
http://rachota.sourceforge.net

BIBLIOGRAPHY 243

149

150

[151]

(152

[153]

[154]

[155]

156

Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adap-
tation, learning, and optimization, 12(3):729, 2012. (Cited on page 116)

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3):279-292, 1992. (Cited on page 118)

Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi, and Y. Don-
mez. Qbe: Qlearning-based exploration of android applications. In 2018
IEEE 11th International Conference on Software Testing, Verification and
Validation (ICST), pages 105-115, Los Alamitos, CA, USA, apr 2018. IEEE
Computer Society. (Cited on page 120)

Reyhaneh Jabbarvand, Jun-Wet Lin, and Sam Malek. Search-based energy
testing of android. In IEEEJACM 41st International Conference on Software
Engineering (ICSE). (Cited on page 120)

David Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée Bryce. Re-
inforcement learning for android gui testing. In Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design, Se-
lection, and Evaluation, A-TEST 2018, pages 2-8, New York, NY, USA, 2018.
ACM. (Cited on pages 120 and 121)

Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro Santoro.
Autoblacktest: Automatic black-box testing of interactive applications. In
2012 IEEE Fifth International Conference on Software Testing, Verification
and Validation, pages 81-90, 2012. (Cited on pages 120 and 121)

Thi Vuong and Shingo Takada. A reinforcement learning based approach to
automated testing of android applications. In 9th ACM A-TEST Workshop,
2018. (Cited on pages 120 and 121)

T. Gu, C. Cao, T. Liu, C. Sun, J. Deng, X. Ma, and J. Li. Aimdroid: Activity-
insulated multi-level automated testing for android applications. In /[CSME.
(Cited on pages 120 and 121)

244

[157]

[158]

[159]

[160]

[161]

162

[163]

[164]

[165]

BIBLIOGRAPHY

Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella.
Deep reinforcement learning for black-box testing of android apps. arXiv
preprint arXiv.2101.02636, 2021. (Cited on pages 120 and 121)

Eliane Collins, Arilo Neto, Auri Vincenzi, and José Maldonado. Deep rein-
forcement learning based android application gui testing. In SBES. ACM,
2021. (Cited on pages 120 and 121)

Christian Degott, Borges Jr, Nataniel P, and Andreas Zeller. Learning
user interface element interactions. In Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis, ISSTA
2019, pages 296-306, New York, NY, USA, 2019. ACM. (Cited on pages 121
and 122)

Herbert Robbins. Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58(5):527-535, 1952. (Cited
on page 121)

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In kdd, volume 96, pages 226-231, 1996. (Cited on page 131)

Youguang Chen, William Ruys, and George Biros. Knn-dbscan: a dbscan in
high dimensions. ACM Transactions on Parallel Computing, 2020. (Cited on
page 131)

Marcel Jirina. Using singularity exponent in distance based classifier. In
2010 10th international conference on intelligent systems design and ap-
plications, pages 220-224. IEEE, 2010. (Cited on page 131)

Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated
with test suite effectiveness. In Proceedings of the 36th international con-

ference on software engineering, pages 435-445, 2014. (Cited on page 140)

Lech Madeyski. The impact of test-first programming on branch coverage
and mutation score indicator of unit tests: An experiment. Information and
Software Technology, 52(2):169-184, 2010. (Cited on page 140)

BIBLIOGRAPHY 245

166)

167]

168

[169]

170

[171]

[172]

[173)

José Pereira dos Reis, Fernando Brito e Abreu, Glauco
de Figueiredo Carneiro, and Craig Anslow. Code smells detection
and visualization: a systematic literature review. Archives of Computational
Methods in Engineering, 29(1):47-94, 2022. (Cited on page 1406)

Sonarcube. https://www.sonarsource.com/products/sonarqube/.

(Cited on page 146)

Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, Atif Memon,
and Anna Rita Fasolino. Developing and evaluating objective termination
criteria for random testing. ACM Trans. Softw. Eng. Methodol,, 28(3), July
2019. (Cited on page 148)

Domenico Amalfitano, Nicola Amatucci, Atif M. Memon, Porfirio Tramontana,
and Anna Rita Fasolino. A general framework for comparing automatic
testing techniques of android mobile apps. Journal of Systems and Software,
125:322-343, 2017. (Cited on page 148)

Domenico Amalfitano, Vincenzo Riccio, Nicola Amatucci, Vincenzo De Si-
mone, and Anna Rita Fasolino. Combining automated gui exploration of
android apps with capture and replay through machine learning. Informa-
tion and Software Technology, 105:95-116, 2019. (Cited on page 148)

Sergio Di Martino, Anna Rita Fasolino, Luigi Libero Lucio Starace, and
Porfirio Tramontana. GUI testing of android applications: Investigating the
impact of the number of testers on different exploratory testing strategies.
J. Softw. Evol. Process., 36(7), 2024. (Cited on page 148)

Hadi Hemmati. How effective are code coverage criteria? In 2075 IEEE In-
ternational Conference on Software Quality, Reliability and Security, pages
151-156. IEEE, 2015. (Cited on page 148)

Pavneet Singh Kochhar, Ferdian Thung, and David Lo. Code coverage and
test suite effectiveness: Empirical study with real bugs in large systems.
In 2015 IEEE 22nd international conference on software analysis, evolution,
and reengineering (SANER), pages 560-564. IEEE, 2015. (Cited on page 148)

https://www.sonarsource.com/products/sonarqube/

246

[174]

[175)

[176)

(177

(178

(179

[180]

BIBLIOGRAPHY

Milos Cligoric, Alex Groce, Chaogiang Zhang, Rohan Sharma, Moham-
mad Amin Alipour, and Darko Marinov. Comparing non-adequate test suites
using coverage criteria. In Proceedings of the 2013 International Sympo-
sium on Software Testing and Analysis, pages 302-313, 2013. (Cited on
page 148)

Sonali Pradhan, Mitrabinda Ray, and Srikanta Patnaik. Coverage criteria
for state-based testing: A systematic review. International Journal of Infor-
mation Technology Project Management (IJITPM), 10(1):1-20, 2019. (Cited
on page 148)

S. R Choudhary, A. Gorla, and A. Orso. Automated test input generation for
android: Are we there yet? pages 429-440, 2015. (Cited on page 149)

Wenyu Wang, Dengfeng Li, Wei Yang, Yurut Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. An empirical study of android test generation tools in
industrial cases. In Proceedings of the 33rd ACM|IEEE International Con-
ference on Automated Software Engineering, pages 738-748, 2018. (Cited
on page 149)

Nadia Alshahwan and Mark Harman. Automated web application testing
using search based software engineering. In 2077 26th IEEEJACM Interna-
tional Conference on Automated Software Engineering (ASE 2011), pages
3-12. IEEE, 2011. (Cited on page 149)

Aaron van der Brugge, Fernando Pastor-Ricds, Pekka Aho, Beatriz Marin,
and Tanja Ernestina Vos. Evaluating testar's effectiveness through code
coverage. Actas de las XXV Jornadas de Ingenieria del Software y Bases
de Datos (JISBD 2021), pages 1-14, 2021. (Cited on page 149)

Domenico Amalfitano, Nicola Amatucci, Atif M Memon, Porfirio Tramontana,
and Anna Rita Fasolino. A general framework for comparing automatic
testing techniques of android mobile apps. Journal of Systems and Software,
125:322-343, 2017. (Cited on page 149)

BIBLIOGRAPHY 247

[181]

182]

[183]

[184]

185)

186]

[187]

188

Eliane Collins, Arilo Neto, Auri Vincenzi, and José Maldonado. Deep rein-
forcement learning based android application gui testing. In Proceedings of
the XXXV Brazilian Symposium on Software Engineering, pages 186—194,
2021. (Cited on page 150)

Shengcheng Yu, Chunrong Fang, Xin Li, Yuchen Ling, Zhenyu Chen, and
Zhendong Su. Effective, platform-independent gui testing via image embed-
ding and reinforcement learning. ACM Transactions on Software Engineer-
ing and Methodology, 33(7), 2024. (Cited on page 150)

Matt Staats, Gregory Gay, Michael Whalen, and Mats Heimdahl. On the
danger of coverage directed test case generation. In Fundamental Ap-
proaches to Software Engineering: 15th International Conference, FASE
2012, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2012, Tallinn, Estonia, March 24-April 1, 2012.
Proceedings 15, pages 409-424. Springer, 2012. (Cited on page 150)

Déavid Tengeri, Arpadd Beszédes, Tamds Gergely, Laszl6 Vidacs, Dévid Havas,
and Tibor Gyimdthy. Beyond code coverage—an approach for test suite
assessment and improvement. In 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pages
1-7. IEEE, 2015. (Cited on page 150)

Atif M Memon. Gui testing: Pitfalls and process. Computer, 35(08):87-88,
2002. (Cited on page 150)

Atif M Memon and Qing Xie. Studying the fault-detection effectiveness of
gui test cases for rapidly evolving software. IEEE transactions on software
engineering, 31(10):884-896, 2005. (Cited on page 150)

Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki. Context-based
approach to prioritize code smells for prefactoring. Journal of Software:
Evolution and Process, 30(6):e1886, 2018. (Cited on page 150)

Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and Riccardo

Roveda. Towards a prioritization of code debt: A code smell intensity in-

248 BIBLIOGRAPHY

dex. In 2015 IEEE 7th International Workshop on Managing Technical Debt
(MTD), pages 16-24. IEEE, 2015. (Cited on page 150)

[189] Zadia Codabux and Byron J Williams. Technical debt prioritization using
predictive analytics. In Proceedings of the 36th International Conference on
Software Engineering Companion, pages 704-706, 2016. (Cited on page 150)

[190] Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and Aiko Ya-
mashita. Automatic metric thresholds derivation for code smell detection. In
2015 IEEEIACM 6th International Workshop on Emerging Trends in Soft-
ware Metrics, pages 44-53. IEEE, 2015. (Cited on page 150)

[191] Md Masudur Rahman, Toukir Ahammed, Md Mahbubul Alam Joarder, and
Kazi Sakib. Does code smell frequency have a relationship with fault-
proneness? In Proceedings of the 27th International Conference on Evalua-
tion and Assessment in Software Engineering, pages 261-262, 2023. (Cited
on page 150)

[192] Steffen M Olbrich, Daniela S Cruzes, and Dag IK Sjgberg. Are all code
smells harmful? a study of god classes and brain classes in the evolution
of three open source systems. In 2070 IEEE international conference on
software maintenance, pages 1-10. IEEE, 2010. (Cited on page 150)

[193] lker Gondra. Applying machine learning to software fault-proneness pre-
diction. Journal of Systems and Software, 81(2):186-195, 2008. (Cited on
page 150)

[194] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Al-
berto Bacchelli. On the relation of test smells to software code quality. In
2018 IEEE international conference on software maintenance and evolution
(ICSME), pages 1-12. IEEE, 2018. (Cited on page 150)

[195] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto,
and Fabio Palomba. An experimental investigation on the innate relationship
between quality and refactoring. Journal of Systems and Software, 107:1-14,
2015. (Cited on page 150)

BIBLIOGRAPHY 249

196

[197]

198

[199]

200

201]

202]

203]

204]

Roel Wieringa and Maya Daneva. Six strategies for generalizing software
engineering theories. Science of computer programming, 101:136-152, 2015.
(Cited on page 151)

Tanja EJ Vos, Pekka Aho, Fernando Pastor Ricos, Olivia Rodriguez-Valdes,
and Ad Mulders. TESTAR-scriptless testing through graphical user inter-
face. Software Testing, Verification and Reliability, 31(3):e1771, 2021. (Cited
on pages 151 and 175)

Tanja EJ Vos, Beatriz Marin, Maria Jose Escalona, and Alessandro
Marchetto. A methodological framework for evaluating software testing tech-
niques and tools. In 20712 12th international conference on quality software,
pages 230-239. IEEE, 2012. (Cited on page 155)

Marcel Jerzyk and Lech Madeyski. Code smells: A comprehensive online
catalog and taxonomy. In Developments in Information and Knowledge
Management Systems for Business Applications: Volume 7, pages 543-576.
Springer, 2023. (Cited on page 158)

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: a
lightweight ui-qguided test input generator for android. In IEEEJACM ICSE-
C IEEE, 2017. (Cited on pages 175 and 176)

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input
generation system for android apps. Proc. de ESECIFSE '13, 2013. (Cited
on page 170)

Ting Su. Fsmdroid: Guided gui testing of android apps. In IEEE/ACM
ICSE-C, 2016. (Cited on page 176)

Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qtrun Zhang, Jian Lu, and Zhendong Su. Practical gui testing of android
applications via model abstraction and refinement. In IEEEJACM 41st ICSE,
pages 269-280, 2019. (Cited on page 176)

Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated
testing for android applications. ISSTA'16, 2016. (Cited on page 178)

250

205

206]

207

208]

209

210]

211]

212]

213

BIBLIOGRAPHY

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Humanoid: A deep
learning-based approach to automated black-box android app testing. 2079
34th IEEEJACM International Conference on Automated Software Engineer-
ing (ASE), 2019. (Cited on page 178)

Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella.
Deep reinforcement learning for black-box testing of android apps. ACM
TOSEM, 2022. (Cited on page 178)

Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. Rein-
forcement learning based curiosity-driven testing of android applications.
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2020. (Cited on page 178)

Tianxiao Gu, Chun Cao, Tianchi Liu, Chengnian Sun, Jing Deng, Xiaoxing
Ma, and Jian Lu. Aimdroid: Activity-insulated multi-level automated testing
for android applications. Int. Conf on Software Maintenance and Evolution,
2017. (Cited on page 178)

Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen,
Geguang Pu, Jifeng He, and Zhendong Su. An empirical study of functional
bugs in android apps. In ACM SIGSOFT, 2023. (Cited on page 178)

Android. Android accessibility overview. (accessed: 26.11.2023). https:
//developer.android.com/guide/topics/ui/accessibility. (Cited on
page 191)

Android Developers. Fundamentals of Testing Android Apps. Google, 2024.
Accessed: 2024-11-25. (Cited on page 195)

Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The
art of software testing, volume 2. Wiley Online Library, 2004. (Cited on
page 200)

Fernando Pastor Ricds, Arend Slomp, Beatriz Marin, Pekka Aho, and
Tanja EJ Vos. Distributed state model inference for scriptless gui testing.
Journal of Systems and Software, 200:111645, 2023. (Cited on page 215)

https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility

BIBLIOGRAPHY 251

[214] Lianne V Hufkens, Tanja EJ Vos, and Beatriz Mar{n. Novelty-driven evolu-
tionary scriptless testing. In International Conference on Research Chal-
lenges in Information Science, pages 100-108. Springer, 2024. (Cited on

page 215)

[215] Fernando Pastor Ricés, Beatriz Marin, Tanja EJ Vos, Rick Neeft, and Pekka
Aho. Delta gui change detection using inferred models. Computer Standards
& Interfaces, page 103925, 2024. (Cited on page 217)

[216] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, Atif Memon,
and Anna Rita Fasolino. Developing and evaluating objective termination
criteria for random testing. ACM Trans. Softw. Eng. Methodol., 28(3), July
2019. (Cited on page 218)

	Title and turning aproved v2.pdf
	Thesis without cover_v6.pdf
	Abstract
	Abstract in het Nederlands
	Acknowledgments
	Introduction
	Motivation and problem statement
	GUI Testing: State of the Art
	Script-based GUI Testing
	Model-based GUI Testing
	Scriptless GUI Testing

	Context and goal of the thesis: the IVVES project
	Marviq
	ING
	TESTAR

	The research methodology and questions
	Publications
	Supervision, academic service, and professional engagement
	Thesis Structure

	Thirthy years of automated GUI testing
	Scope: automated GUI testing
	Methodology
	Data retrieval
	Pre-processing
	Analysis and Visualization

	Results
	Size of the area and growth
	Types of publications and their ranking
	Citations and Reference Publication Year Spectroscopy
	Most influential authors
	Productivity and funding
	Collaboration
	Trends in keywords
	Discussion

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusions

	TESTAR
	Obtaining the GUI State
	Deriving a set of actions
	Select and execute one of these actions
	Representation of States and Actions
	Evaluate the new states to find failures (oracles)
	Runtime execution and modes
	Test Results
	Advanced Derive Actions
	Filter Actions
	Comparison of Scriptless GUI Testing Tools

	Industrial case studies involving TESTAR
	Conclusions

	Inferring state models with TESTAR
	Related work on Model-based GUI testing
	State model inference for TESTAR
	Experimental Design
	Subject SUTs
	Independent and Dependent Variables
	RQ1 Study
	RQ2 Study

	Results
	RQ1: Impact of abstraction on GUI exploration
	RQ2: Defining a suitable level of abstraction
	Single Attribute Analysis
	Multi-Attribute Analysis
	Including the predecessor state

	Discussion
	State abstraction
	Applying the inferred models in testing

	Conclusions

	Adding intelligence
	Q-Learning
	Related Work
	Smart Scriptless Testing
	Rewarding test behaviours
	RL Framework

	Experiment Design
	Objects: Selection of SUTs
	Independent and Dependent Variables
	Experimental Process

	Results
	RQ1: Exploration Effectiveness
	RQ2: JBS Problem

	Discussion
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusions

	Applying it at a company: Marviq
	Related Work
	Random Scriptless GUI testing
	Test adequacy metrics
	Code Smells

	Industrial case
	Experiment Design
	Independent and Dependent Variables
	Experimental Setting
	Experimental Procedure

	Results
	RQ1: Number and length of test sequences
	RQ2: Relationship between code coverage metrics
	RQ3: Comparison of random with manual testing

	Discussion
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusions

	Going mobile: the Android plugin
	Scriptless Android GUI testing
	Extending TESTAR to support mobile testing
	MINTestar: scriptless and seamless
	Core Architecture
	Test Engine
	Customizable Rules
	State Collector
	Composable oracles
	Interaction Engine
	Reporting the results
	Seamless integration

	Preliminary evaluation
	Independent and Dependent Variables
	Results
	Discussion

	Conclusions

	Conclusions and future work
	Answers to the Research Questions
	Evolution of Automated GUI Testing
	Industrial Insights on Using TESTAR for GUI Testing
	Impact of State Abstraction on State Model Inference
	Reward Mechanisms for Exploratory Testing with Reinforcement Learning
	Scriptless GUI Testing and Code Smell Coverage
	Adapting Scriptless GUI Testing for Mobile Applications

	Future Research Directions

