
Testing without Scripts:
An Approach to Smart GUI Exploration

Olivia Rodríguez Valdés

The work in this thesis has been carried out at the Open Universiteit, under
the auspices of the research school IPA (Institute for Programming research
and Algorithmics). Parts of the research were conducted within the European
research project IVVES (Industrial-grade Verification and Validation of Evolving
Systems, project number 18022).

ISBN: 978-94-6522-322-3

Typeset using LATEX
Printing: Ridderprint | www.ridderprint.nl

Copyright © O. Rodríguez Valdés 2025

Testing without Scripts:
An Approach to Smart GUI

Exploration

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Open Universiteit

op gezag van de rector magnificus
prof. dr. Th.J. Bastiaens

ten overstaan van een door het
College voor promoties ingestelde commissie

in het openbaar te verdedigen

op donderdag 19 juni 2025 te Heerlen
om 16.00 uur precies

door
Olivia Rodríguez Valdés

geboren op 12 november 1994 te Havana, Cuba

Promotores:
Prof. dr. T.E.J. Vos Open Universiteit
Dr. B. Marín Technical University of Valencia

Leden beoordelingscommissie:
Prof. dr. M.F. Genero Universidad de Castilla-La Mancha
Prof. dr. O. Pastor Universitat Politècnica de València
Prof. dr. N. Alechina Open Universiteit
Prof. dr. S. Bromuri Open Universiteit

Abstract

Software testing through graphical user interfaces (GUIs) remains a critical chal-lenge in quality assurance, particularly as software systems grow in complexityand evolve rapidly. Traditional script-based testing approaches, which rely onpredefined test cases, are widely used in industry but often struggle with highmaintenance costs, limited adaptability to GUI changes, and restricted coverageof unforeseen user behaviours.Scriptless GUI testing has emerged as a powerful alternative, dynamicallyexploring applications without the need for predefined test scripts. This ap-proach introduces randomness, allowing the execution of unexpected sequencesof actions and the discovery of faults that scripted tests often miss. This thesisinvestigates the effectiveness of scriptless testing, examining how its exploratorynature complements existing testing practices and reduces manual efforts.To establish a strong foundation, this research first analyses thirty yearsof GUI testing literature, tracing the evolution of the field. The findings reveal agrowing transition from manual and script-based testing to scriptless approaches.With this motivation, this thesis investigates the effectiveness of scriptless GUItesting through the lens of testar, an open-source tool that serves as this study’sprimary research vehicle. A generalisation study of the tool allowed the intro-
i

ii
duction of an architectural analogy for scriptless testing deployment, built uponthe existing industrial case studies with testar.This thesis examines the role of state models in guiding scriptless testing byevaluating how different levels of state abstraction can influence model inferenceand test coverage. The results provide guidelines for balancing model complexitywith exploration effectiveness. Additionally, this thesis explores the impact ofreinforcement learning-driven reward mechanisms in balancing pure randomnesswith targeted exploration to enhance test effectiveness.The thesis further evaluates the industrial applicability of scriptless testingthrough empirical studies in collaboration with companies participating in theEuropean IVVES project (Industrial-grade Verification and Validation of EvolvingSystems). The research aims to bridge the gap between traditional testing ade-quacy criteria and quality-oriented metrics by investigating whether code smellcould serve as a complementary adequacy criterion when evaluating scriptlesstesting effectiveness. Findings reveal that while increasing traditional code cov-erage leads to broader exploration, it does not necessarily translate into coveringcode with deeper structural or maintainability issues.This research extends testar’s scriptless testing into the mobile domain, adapt-ing it for mobile platforms and introducing MINTestar, a specialised Android test-ing tool. Developed as part of the industry collaboration within the IVVES project,these efforts explore the feasibility of scriptless testing in real-world mobile envi-ronments, and the integration of mobile-specific oracles and probabilistic explo-ration strategies. The results highlight the adaptability of scriptless approachesacross platforms and their potential for adoption in industrial mobile testing work-flows.This thesis integrates insights from literature reviews, empirical evaluations,and industrial case studies to provide both theoretical and practical contribu-tions to the field of scriptless GUI testing. By improving state models, leveragingreward-based exploration, refining test adequacy metrics, and extending automa-tion to mobile platforms, this thesis lays the foundation for future advancementsin smart testing, domain-specific oracles, and distributed testing architectures.

Abstract in het Nederlands

Software testen via grafische gebruikersinterfaces (GUIs) blijft een kritische uitdag-ing in kwaliteitsborging, vooral omdat softwaresystemen steeds complexer wor-den en zich snel ontwikkelen. Traditionele scriptgebaseerde testmethode, dieafhankelijk zijn van vooraf gedefinieerde testgevallen, worden veel gebruikt inde industrie, maar hebben vaak te maken met hoge onderhoudskosten, beperkteaanpasbaarheid aan GUI-wijzigingen en beperkte dekking van onvoorziene ge-bruikersgedragingen.Scriptloos GUI-testen is een krachtig alternatief, waarbij applicaties dynamischworden verkend zonder vooraf gedefinieerde testscripts. Deze aanpak intro-duceert willekeur, waardoor onverwachte sequenties van acties kunnen wordenuitgevoerd en fouten kunnen worden ontdekt die gescripte tests vaak missen.Deze thesis onderzoekt de effectiviteit van scriptloos testen en bestudeert hoe deverkennende aard ervan bestaande testmethoden aanvult en handmatige inspan-ningen vermindert.Om een stevige basis te leggen, analyseert dit onderzoek eerst dertig jaar aanliteratuur over GUI-testen en volgt de evolutie van het vakgebied. De bevindin-gen tonen een groeiende verschuiving van handmatig en scriptgebaseerd testennaar scriptloze benaderingen. Met deze motivatie onderzoekt deze thesis de ef-
iii

iv
fectiviteit van scriptloos GUI-testen door middel van testar, een open-source tooldie als een primair onderzoeksinstrument in deze studie dient. Een generalisati-estudie van de tool heeft geleid tot de introductie van een architecturale analogievoor de implementatie van scriptloos testen, gebaseerd op bestaande industriëlecasestudies met testar.Deze thesis onderzoekt de rol van toestandsmodellen bij het sturen van script-loos testen door te evalueren hoe verschillende niveaus van toestandsabstractiede modelinferentie en testdekking kunnen beïnvloeden. De resultaten biedenrichtlijnen voor het balanceren van modelcomplexiteit met de effectiviteit van ex-ploratie. Daarnaast verkent deze thesis de invloed van beloningsmechanismen opbasis van reinforcement learning om pure willekeur te balanceren met gerichteexploratie, met als doel de testeffectiviteit te verbeteren.Verder beoordeelt deze thesis de industriële toepasbaarheid van scriptloostesten via empirische studies in samenwerking met bedrijven binnen het EuropeseIVVES-project (Industrial-grade Verification and Validation of Evolving Systems).Het onderzoek richt zich op het overbruggen van de kloof tussen traditioneletestadequaatheidscriteria en kwaliteitsgerichte metrieken, door te onderzoekenof code smells als een aanvullende adequaatheidsmaatstaf kunnen dienen bij deevaluatie van scriptloos testen. De bevindingen tonen aan dat een hogere tradi-tionele code coverage weliswaar leidt tot een bredere exploratie, maar niet perse resulteert in het dekken van code met diepere structurele of onderhoudsprob-lemen.Dit onderzoek breidt het scriptloze testen met testar uit naar het mobieledomein, door de tool aan te passen voor mobiele platforms en MINTestar te in-troduceren, een gespecialiseerde Android-testtool. Ontwikkeld als onderdeel vande industriële samenwerking binnen het IVVES-project, verkennen deze inspan-ningen de haalbaarheid van scriptloos testen in realistische mobiele omgevingen,evenals de integratie van mobiele-specifieke orakels en probabilistische explo-ratiestrategieën. De resultaten benadrukken de aanpasbaarheid van scriptlozebenaderingen over verschillende platformen en hun potentieel voor adoptie inindustriële mobiele testworkflows.Deze thesis combineert inzichten uit literatuurstudies, empirische evaluaties

v
en industriële casestudies om zowel theoretische als praktische bijdragen te lev-eren aan het vakgebied van scriptloos GUI-testen. Door verbeteringen aan toe-standsmodellen, het benutten van beloningsgestuurde exploratie, het verfijnenvan testadequaatheidscriteria en het uitbreiden van automatisering naar mobieleplatforms, legt deze thesis de basis voor toekomstige ontwikkelingen op het ge-bied van slim testen, domeinspecifieke orakels en gedistribueerde testarchitec-turen.

vi

Acknowledgments

This thesis was developed at the Open Universiteit of the Netherlands and fundedby the European research project ITEA3 Industrial-grade Verification and Valida-tion of Evolving Systems (IVVES 18022). This thesis has also been supported byresearch carried out within the European research projects TESTOMAT (16032),H2020 Intelligent Verification/Validation for Extended Reality Based Systems(IV4XR 856716), and the NWO OTP project Automated Unobtrusive Techniquesfor LINKing requirements and testing in agile software development (AUTOLINK19521).I would like to express my gratitude to my supervisors, prof. dr. Tanja Vosand prof. dr. Beatriz Marín, for their patience and support throughout this longjourney. Tanja, thank you for changing my life. Bea, thank you for your warmth,even when I least deserved it. I would also like to thank Dr. Pekka Aho for hisguidance in the early stages of this work. My gratitude also goes to the testarteam for their support and dedication at every stage of this research. In particular,I want to thank Ramon de Vries, who has been a support since literally day oneafter I moved to the Netherlands; Fernando Pastor Ricos and Lianne Hufkens,who are also my paranymphs; and Niels Doorn, for his kindness and support.
vii

viii
My sincere thanks go to the co-authors of my publications for their invaluablehelp and contributions, and those who actively participated in the research behindthese publications, even if their names are not listed in the authorship. I wouldalso like to thank the master’s and bachelor’s students whose work contributeddirectly to this thesis.I am also grateful to my former professors and mentors, Fernando RodríguezFlores and Oscar Luis Vera Pérez, from the University of Havana, for laying thefirst stone on this long path.I would like to thank my parents, family and friends. To my mother, who hasbeen a steady light at the harbour while I sail through this journey. To my cousinIvonne, who has supported me in every stage of my life. To Mick, who has beenby my side every day, sharing every challenge. I also extend my sincere thanksto the Verhagen-Geelen family for welcoming me so warmly. To the friends whohave walked this road by my side in the Netherlands, making the process lighterwith their presence, and to my old Cuban friends, now scattered around the worldbut as close as ever.A special thanks to the Open Universiteit for giving me a home as a researcher,and for the patience and continuous support, which made this journey possible.

Contents

Abstract i

Abstract in het Nederlands iii

Acknowledgments vii

1 Introduction 11.1 Motivation and problem statement . 31.2 GUI Testing: State of the Art . 51.2.1 Script-based GUI Testing . 51.2.2 Model-based GUI Testing . 71.2.3 Scriptless GUI Testing . 81.3 Context and goal of the thesis: the IVVES project 101.3.1 Marviq . 111.3.2 ING . 121.3.3 TESTAR . 131.4 The research methodology and questions 141.5 Publications . 19
ix

x
1.6 Supervision, academic service, and professional engagement 211.7 Thesis Structure . 24

2 Thirthy years of automated GUI testing 252.1 Scope: automated GUI testing . 272.2 Methodology . 282.2.1 Data retrieval . 282.2.2 Pre-processing . 302.2.3 Analysis and Visualization . 312.3 Results . 322.3.1 Size of the area and growth . 322.3.2 Types of publications and their ranking 342.3.3 Citations and Reference Publication Year Spectroscopy . . . 392.3.4 Most influential authors . 412.3.5 Productivity and funding . 422.3.6 Collaboration . 432.3.7 Trends in keywords . 442.3.8 Discussion . 502.4 Threats to Validity . 502.4.1 Internal Validity . 502.4.2 External Validity . 512.4.3 Construct Validity . 512.4.4 Conclusion Validity . 522.5 Conclusions . 52
3 TESTAR 533.1 Obtaining the GUI State . 553.2 Deriving a set of actions . 603.3 Select and execute one of these actions 633.4 Representation of States and Actions 633.5 Evaluate the new states to find failures (oracles) 653.6 Runtime execution and modes . 673.7 Test Results . 69

xi
3.8 Advanced Derive Actions . 713.9 Filter Actions . 723.9.1 Comparison of Scriptless GUI Testing Tools 743.10 Industrial case studies involving TESTAR 763.11 Conclusions . 88

4 Inferring state models with TESTAR 894.1 Related work on Model-based GUI testing 914.2 State model inference for TESTAR . 924.3 Experimental Design . 974.3.1 Subject SUTs . 974.3.2 Independent and Dependent Variables 984.3.2.1 RQ1 Study . 984.3.2.2 RQ2 Study . 1004.4 Results . 1014.4.1 RQ1: Impact of abstraction on GUI exploration 1014.4.2 RQ2: Defining a suitable level of abstraction 1034.4.2.1 Single Attribute Analysis 1044.4.2.2 Multi-Attribute Analysis 1044.4.2.3 Including the predecessor state 1084.5 Discussion . 1094.5.1 State abstraction . 1104.5.2 Applying the inferred models in testing 1124.6 Conclusions . 113
5 Adding intelligence 1155.1 Q-Learning . 1165.2 Related Work . 1205.3 Smart Scriptless Testing . 1225.3.1 Rewarding test behaviours . 1235.3.2 RL Framework . 1245.4 Experiment Design . 1265.4.1 Objects: Selection of SUTs . 127

xii
5.4.2 Independent and Dependent Variables 1285.4.3 Experimental Process . 1305.5 Results . 1325.5.1 RQ1: Exploration Effectiveness 1325.5.2 RQ2: JBS Problem . 1375.6 Discussion . 1405.7 Threats to Validity . 1415.7.1 Internal Validity . 1415.7.2 External Validity . 1415.7.3 Construct Validity . 1425.7.4 Conclusion Validity . 1425.8 Conclusions . 143

6 Applying it at a company: Marviq 1456.1 Related Work . 1476.1.1 Random Scriptless GUI testing 1486.1.2 Test adequacy metrics . 1486.1.3 Code Smells . 1506.2 Industrial case . 1516.3 Experiment Design . 1556.3.1 Independent and Dependent Variables 1566.3.2 Experimental Setting . 1576.3.3 Experimental Procedure . 1596.4 Results . 1626.4.1 RQ1: Number and length of test sequences 1626.4.2 RQ2: Relationship between code coverage metrics 1666.4.3 RQ3: Comparison of random with manual testing 1676.5 Discussion . 1706.6 Threats to Validity . 1716.6.1 Internal Validity . 1716.6.2 External Validity . 1726.6.3 Construct Validity . 172

xiii
6.6.4 Conclusion Validity . 1726.7 Conclusions . 173

7 Going mobile: the Android plugin 1757.1 Scriptless Android GUI testing . 1767.2 Extending TESTAR to support mobile testing 1787.3 MINTestar: scriptless and seamless . 1817.3.1 Core Architecture . 1827.3.2 Test Engine . 1837.3.3 Customizable Rules . 1857.3.4 State Collector . 1907.3.5 Composable oracles . 1917.3.6 Interaction Engine . 1937.3.7 Reporting the results . 1947.3.8 Seamless integration . 1957.4 Preliminary evaluation . 1977.4.1 Independent and Dependent Variables 1977.4.2 Results . 1987.4.3 Discussion . 2007.5 Conclusions . 201
8 Conclusions and future work 2038.1 Answers to the Research Questions 2038.1.1 Evolution of Automated GUI Testing 2048.1.2 Industrial Insights on Using TESTAR for GUI Testing 2058.1.3 Impact of State Abstraction on State Model Inference 2068.1.4 Reward Mechanisms for Exploratory Testing with Rein-forcement Learning . 2088.1.5 Scriptless GUI Testing and Code Smell Coverage 2108.1.6 Adapting Scriptless GUI Testing for Mobile Applications . . 2118.2 Future Research Directions . 213

xiv

List of Figures

1.1 The "Happy Path" vs. the "Unexpected Path" 21.2 Overview of scriptless GUI testing . 91.3 IVVES: 26 partners from 5 countries 101.4 Simplified architectural analogy . 151.5 Reinforcement learning, a natural fit for scriptless testing 17
2.1 Boolean search query for systematic review 292.2 Evolution of the number of publications 332.3 Types of publications . 352.4 Leimkhuler models. 372.5 Reference Publication Year Spectroscopy 402.6 Most contributing countries . 432.7 Collaboration network of authors . 432.8 Authorship evolution . 442.9 Cumulative frequency of keywords . 482.10 Keywords trends . 49

xv

xvi LIST OF FIGURES

3.1 testar testing cycle . 543.2 testar modular architecture . 553.3 The state of a GUI as a widget tree. 563.4 Taggable classes . 583.5 Deriving actions from actionable widgets. 613.6 Layers of the different testar protocols 683.7 Extending testar with different ASMs. 693.8 Output Structure for Test Results . 703.9 Architectural Analogy . 833.10 Generic Process for setting up testar 853.11 Iterative use of testar in an industrial testing workflow. 86
4.1 testar testing cycle including model inference 934.2 Layered design of the state model . 944.3 Visualization of an example model inferred by testar 954.4 Extending testar with ASM_statemodel 964.5 Experimental design for Chapter 4 . 974.6 Code coverage per abstraction level 1024.7 State Model coverage per abstraction level 1024.8 Experiment setup for RQ2’s attribute-combination 1044.9 Notepad examples of non-determinism 1074.10 Abstract State explosion . 110
5.1 RL Framework . 1255.2 Exploration performance of Shopizer 1345.3 Exploration performance of Craigslist 1355.4 Exploration performance of Bol.com . 1365.5 JBS distribution . 138
6.1 Excerpt of Yoho SUT. 1526.2 Experimental design for Chapter 6 . 1616.3 Distribution of coverage metrics. 1636.4 Distribution of code smell coverage . 163

LIST OF FIGURES xvii
6.5 Distribution of code smells occurrences. 1646.6 Distribution of code smell coverage . 1686.7 Coverage of Code Smell types . 170
7.1 testar testing cycle with mobile capabilities. 1797.2 Layers of the different testar protocols 1807.3 MINTestar Architecture Overview . 1837.4 MINTestar Testing Process . 1847.5 Excerpt of a MINTestar report . 1957.6 Sample of accessibility issues detected by MINTestar 199
8.1 Evolution of GUI Testing Techniques 2048.2 Simplified architectural analogy . 2068.3 Effect of state abstraction in testar. 2078.4 Spearman’s Correlation for Code Smell Coverage 2118.5 Future Research Directions in Scriptless GUI Testing. 214

xviii LIST OF FIGURES

List of Tables

2.1 Family of words for the search string 282.2 Publications by Year . 332.3 Top 11 contributing Journals . 362.4 Bradford’s Law zones for journal articles 372.5 Bradford’s Law zones for conference publications 372.6 Top 10 of most influential Conferences 382.7 Top 10 papers with most cites in Scopus 392.8 Ranking of authors by number of publications 412.9 Distributions of number of authors per number of publications . . . 422.10 Grouping the keywords . 47
3.1 Examples of widgets of which a GUI can be composed. 563.2 testar comparison with other tools 753.3 Metrics used in the testar studies . 783.4 testar Case Studies . 79
4.1 Overview of Rachota . 984.2 Java Access Bridge properties and their impact 99

xix

xx LIST OF TABLES

4.3 Number of generated test steps for non-determinism 1054.4 Selection of attributes for state abstraction 106
5.1 Related work with state-based rewards 1215.2 DBSCAN parameters configuration for each SUT. 1315.3 Average values of dependent variables for every SUT 1325.4 Statistical results for exploration effectiveness 1335.5 State exploration after 10000 actions 1365.6 Statistical results for JBS problem . 139
6.1 Overview of the size of Yoho . 1536.2 Code Smell Classification and Severity 1596.3 Test Process Configurations . 1606.4 Statistical Analysis of Code Coverage Metrics 1656.5 Correlation between code smell coverage and traditional metrics . 1666.6 Manual Testing Coverage Results . 169
7.1 Summary of scriptless Android GUI testing tools 1777.2 Generic rules provided by MINTestar 1877.3 Specific rules provided by MINTestar 1887.4 Implemented Oracles Provided by MINT 1927.5 Comparison of Testing Tools on Various APKs 199
8.1 Comparison of Reward Mechanisms 2098.2 Comparison of testar (with Appium) and MINTestar for MobileTesting . 212

1
Introduction

"Still round the corner there may wait,
A new road or a secret gate"

J.R.R. Tolkien, The Road Goes Ever On
In The Lord of the Rings [1], by J.R.R. Tolkien, the land of Mordor is guarded bythe formidable Black Gate, a symbol of impenetrable defence. Tall walls, count-less sentinels, and Sauron’s ever-watchful eye ensured that no army could passundetected. The Dark Lord’s resources were concentrated there, confident thatno intruder would attempt to cross this main entry point. Yet, in an unexpectedtwist, two humble hobbits, Frodo and Sam, completely bypassed this seeminglyinsuperable barrier.
Instead, they ventured through Cirith Ungol, a risky and neglected mountainpass. This unexpected path, both unlikely and poorly defended, became the routethrough which the One Ring was destroyed, leading to Sauron’s downfall. Despitehis exhaustive preparations, Sauron’s obsession with securing the most obviousthreat led him to ignore the unconventional approach that ultimately caused hisdefeat.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The "Happy Path" vs. the "Unexpected Path"
This story illustrates a timeless lesson beyond fantasy: even the most robustpreparations can crumble when the unexpected is overlooked.

Beyond the Happy Path: Lessons for Software TestingMuch like Sauron’s focus on the Black Gate (as illustrated in Figure 1.1),software testing often prioritises the main flows: the "happy paths" that usersare expected to follow. These flows (e.g., logging in, adding products to a cart,or completing a purchase) receive detailed attention during testing. Test scriptsare developed to ensure these paths are error-free, with significant resourcesdedicated to validating their functionality.However, just like the overlooked mountain pass that led to the collapse ofMordor’s defences, neglecting less-travelled paths in software testing can leavecritical flaws undiscovered and exposed. For Frodo and Sam, the unexpectedroute led to a happy ending; for software, it could uncover catastrophic failures.Uncommon user interactions, unexpected sequences, or rare edge cases can revealflaws that traditional approaches fail to detect.This thesis’s work on scriptless testing draws inspiration from these ne-

1.1. MOTIVATION AND PROBLEM STATEMENT 3
glected routes, advocating for broader exploration through graphical user inter-faces (GUIs) beyond the expected.
1.1 Motivation and problem statement

Software systems have seamlessly become integral to our daily lives, supportingactivities across personal, professional, and industrial domains. From the apps onour smartphones to the enterprise systems running businesses, their reliabilityand quality directly impact productivity, safety, and user satisfaction across allsectors of society. However, as these systems grow in complexity and scale,ensuring their reliability and functionality becomes more critical than ever.Significant real-world incidents illustrate the consequences of insufficient orineffective testing. In 2018, a flawed interface at the Hawaii Emergency Man-agement Agency allowed an employee to send a false ballistic missile alert [2],causing widespread public panic and disruptions across the state. Investigationsrevealed that the drop-down menu for sending a real alert was nearly indistin-guishable from the rehearsal option, and no secondary confirmation step existed.This same year, a disastrous core banking system migration resulted in the loss ofinternet and mobile banking services for TSB Bank customers for at least a week.Thousands of customers found themselves locked out, seeing incorrect balancesor detailed account information of other customers [3]. The fiasco reportedly costmillions of pounds in remediation expenses, fines, and compensations, and thebrand suffered a significant blow in customer confidence. In 2022, SouthwestAirlines cancelled thousands of flights over the holiday season, attributing muchof the disruption to outdated mobile scheduling software [4]. Southwest receivedthe largest fine in history for consumer protection violations, reporting losses ofover $1 billion as a result of the events.More recently, in 2024, a flawed content update in CrowdStrike’s Falcon threatdetection software caused catastrophic disruptions, leading to system crashesand blue screens of death on millions of devices worldwide. The root cause wastraced back to a bug that the company’s testing process failed to identify. Theresulting outage impacted critical infrastructure, including airlines and emergency

4 CHAPTER 1. INTRODUCTION

operators, with estimated damages exceeding $5 billion. Experts highlighted theindustry-wide underappreciation of the importance of testing [5]. That same year,a customer of ING Bank unexpectedly gained access to a stranger’s account afterlogging into the mobile app via facial recognition, raising serious concerns aboutthe robustness of the bank’s system safeguards [6].
These examples demonstrate that testing inadequacies, whether due to over-looked edge cases, outdated processes, or insufficient validation, can have dev-astating consequences. They underscore the need for robust, holistic testingapproaches that address the growing complexities of modern systems to avoidsimilar failures in the future.
Yet, software testing remains one of the most demanding and resource-intensiveaspects. Designing and executing comprehensive test suites requires significantexpertise, creativity, and effort, often with time constraints and limited resources.Testers must balance the trade-off between coverage, efficiency, and cost. Thechallenge is compounded by rapid development cycles, diverse user behaviours,and the need to test across multiple platforms and configurations. For end-users,effective testing is the invisible assurance that software will meet their expecta-tions and avoid disruptive faults.
The advent of Graphical User Interfaces (GUIs) in the early 1970s revolu-tionised software interaction, replacing complex command-line interfaces withintuitive visual elements. GUIs allowed users to interact with systems throughbuttons, menus, and icons, significantly enhancing accessibility and usability.However, this evolution introduced new challenges in software testing as GUIsfrequently change throughout a system’s lifecycle. The repetitive task of manuallyexecuting tests necessitates automation to ensure efficiency and reliability.
This thesis explores the challenges of automating test execution at the GUIlevel of software systems, commonly referred to as GUI testing. To set the stage,the following section first provides an overview of this field’s current state of theart.

1.2. GUI TESTING: STATE OF THE ART 5
1.2 GUI Testing: State of the Art

Since the introduction of GUIs, testing at the interface level has become a cru-cial aspect of software quality assurance. As desktop applications transitionedto web and mobile platforms, testing faced a continuously evolving landscape ofdistributed systems, smaller screens, and increasingly complex interactions. Au-tomating the execution of GUI tests, with the earliest papers dating back to thelate 1980s [7], helps manage these challenges by improving efficiency and re-peatability. However, frequent GUI modifications and intricate user interactionscontinue to pose significant hurdles, as automated tests often require maintenanceand may struggle to replicate actual user behaviour fully.Furthermore, regression testing, which involves re-executing existing test casesto ensure that recent changes or updates have not introduced new defects, plays avital role in software maintenance. Because GUIs are frequently modified, regres-sion testing must be performed repeatedly, making manual execution impractical.Automation is essential to efficiently conduct regression tests, ensuring softwarestability, reliability, and consistency across different versions and platforms.GUI testing has been classified in various ways. In [8], a classification isdefined based on how the test automation tool interacts with the System UnderTest (SUT). This results in a classification of three generations: the first is basedon the mouse coordinates, the second is based on technical APIs, and the thirdis based on image recognition.A subsequent classification was described on [9] that extends these threegenerations with another axis addressing the level of automation. This sectionwill follow the classification from [9] because it was also used in one of the keypapers [10] on scriptless testing.
1.2.1 Script-based GUI Testing

Within automated approaches, traditional scripted methods coexist with emergingscriptless techniques, each addressing unique aspects of software assurance.Traditional scripted testing relies on manually crafted test cases followingpredefined application paths. Once written, these scripts can be executed re-

6 CHAPTER 1. INTRODUCTION

peatedly to confirm whether the application continues to respond correctly tothe same set of inputs across different builds or releases. Over time, multiplesub-approaches to script-based GUI testing have emerged, each offering distinctlevels of flexibility, maintainability, and reliance on tooling or coding expertise.One of the earliest and most common methods is capture-and-replay (C&R).The testing tool "records" interactions as the tester manually navigates throughthe GUI. The tool then generates scripts that can be "replayed" automatically torepeat the exact steps. Memon et al. [11] described this technique as a straightfor-ward entry point for test automation due to its easy initial setup, minimal codingrequired, and fast test creation. However, C&R suffers high sensitivity to minorGUI changes, often breaking recorded scripts and limiting the adaptability whenthe GUI evolves.An alternative to C&R is scripting through frameworks like Selenium1 or Cy-press2, where testers manually code interactions. However, programming skillsare required, and maintainability remains an issue.While each approach differs in how scripts are created and managed, all sharecertain challenges. Frequent GUI changes can break test sequences, leading tohigh maintenance costs [12]. Research has long noted that script maintenancecan overshadow original creation effort [13]. Complicated workflows may requiredetailed scripting to cover different branches or states. Tests can also easily breakif they depend on precise timing or exact element positioning. Furthermore, bothapproaches typically focus on “happy paths” at the expense of unconventionalor edge-case scenarios. Consequently, significant risks remain when unexpecteduser behaviour triggers untested application states.Several academic approaches are proposed to mitigate the high maintenanceoverhead. One technique consists of heuristic locator strategies [14] by generat-ing more stable element locators in web applications. Another approach is auto-mated script repair mechanisms that adapt test scripts when interface elementschange [15–18]. Yet, despite promising results in controlled studies, full adoptionremains challenging due to tool integration complexities, variability of real-world
1SeleniumHQ Browser Automation, https://www.selenium.dev/2Cypress.io: JavaScript End to End Testing Framework, https://www.cypress.io/

https://www.selenium.dev/
https://www.cypress.io/

1.2. GUI TESTING: STATE OF THE ART 7
GUIs, and the need for ongoing maintenance of the repair heuristics. Anotherresearch direction [19–21] has explored Visual GUI Testing (VGT) techniques withimage recognition to automate user interactions with the GUI, providing a robustalternative to traditional locator-based approaches. These tools mitigate main-tenance challenges by focusing on the GUI’s appearance rather than its internalstructure, although they remain sensitive to visual inconsistencies and changes.Ultimately, script-based methods remain a foundational element of many QAstrategies, particularly where critical user paths are well-defined and must be re-peatedly validated. However, these methods can become less effective in environ-ments with rapidly changing interfaces or unpredictable user behaviour, leadingto interest in more flexible testing methods, such as scriptless and model-basedapproaches.
1.2.2 Model-based GUI Testing

Model-based GUI testing (MBGT) addresses some limitations of script-based ap-proaches by representing the application’s states and transitions as a model, oftena state machine or a graph [22–26]. Systematically, test sequences are generatedbased on these models. In MBGT, testers specify or infer the application’s possi-ble states and transitions. Automated tools then produce test cases that explorethese states, aiming for more systematic coverage. This structured approach canreduce duplicated effort, ensure broad exploration, and provide better traceability.Several approaches to MBGT exist, each with distinct advantages and chal-lenges. Static Analysis techniques [27, 28] infer GUI models by analysing sourcecode but often overlook runtime behaviour. On the other hand, Dynamic Analy-
sis approaches [29–32] observe the GUI while the SUT is running, enabling thecapture of runtime interactions. Hybrid approaches [33–35] combine static anddynamic methods, striving to balance the strength of both.However, the effectiveness of MBGT is highly dependent on the quality andcompleteness of its underlying model. Constructing and maintaining an accuratemodel requires formal expertise and can be labour-intensive. Any divergencefrom the actual GUI may lead to undetected defects or irrelevant test cases [36].Automated model inference methods, including GUI ripping [37] and reverse engi-

8 CHAPTER 1. INTRODUCTION

neering [38], offer automation of the modelling process. However, these methodsface challenges, such as selecting an appropriate level of abstraction to ensuremodel usefulness [31, 34].Furthermore, frequent GUI updates can quickly render existing models obso-lete, mirroring the maintenance challenges seen in script-based testing methods.Despite these difficulties, model-based approaches remain an important steppingstone toward more adaptive and intelligent testing strategies.
1.2.3 Scriptless GUI Testing

Scriptless GUI testing aims to overcome some long-standing problems of rigidscripts and extensive modelling by dynamically exploring the application withouta fixed pre-written set of instructions. This dynamic exploration can lead tobroader coverage, as the exploration is not strictly limited to known scenarios.Like Frodo and Sam’s journey through their unexpected path, scriptless testingnavigates beyond the "happy paths" traditionally prioritised in software testing.Instead of executing only predefined steps, scriptless testing tools generate testsequences in real time, opening up the possibility of uncovering neglected andunexpected interaction paths and increasing the likelihood of exposing criticalflaws that rigid scripts or model-based approaches might miss.Scriptless GUI testing is based on agents implementing various action selec-tion mechanisms and test oracles. The underlying principles are simple: generatetest sequences of (state, action)-pairs by starting up the SUT in its initial stateand continuously selecting an action to bring the SUT into another state. Theaction selection characterises the fundamental challenge of intelligent systems:what to do next. The difficult part is optimising the action selection [39] to findfaults and recognising a faulty state when it is found [40–42]. Faulty states arenot restricted to errors in functionality; violations of other quality characteristics,like accessibility or security, can also be detected by inspecting the state. Thisapproach shifts the paradigm of GUI testing: from developing scripts to developingintelligent AI-enabled agents.Figure 1.2 presents an overview of the continuous cycle of the three corecomponents of scriptless GUI testing:

1.2. GUI TESTING: STATE OF THE ART 9
• Interaction (Obtain the state and derive actions): The testing tool analyseshow to interact with the SUT and obtains a representation of the currentstate of the GUI. This step involves gathering information about the interface,such as available widgets and interactions, and deriving a set of possible(inter)actions that can be done in the observed state.
• Exploration (Select and execute an action): From the derived set of actions,the tool selects an action based on some predefined exploration strategy(e.g. random) and executes it on the GUI.
• Test oracles: After executing an action, the tool uses predefined test oraclesto validate the resulting application state or behaviour, revealing potentialfaults.

This loop iteratively continues until some defined stopping condition is met, suchas achieving sufficient coverage or reaching a certain test length.
Interaction

(Obtain state and
actions)

Exploration
(Select and

execute action)

Test Oracles
(Validate state)

Figure 1.2: Overview of scriptless GUI testing
The most simple Action Selection Mechanism (ASM) for exploration consistsof randomly selecting actions and navigating the interface. This approach hasshown to be surprisingly effective [43, 44], reducing maintenance overhead, astesters do not need to update scripts or models continually. Nonetheless, random

10 CHAPTER 1. INTRODUCTION

Figure 1.3: IVVES: 26 partners from 5 countries
testing requires a lot of execution time, and challenges arise in choosing the rightexploration strategies, ensuring comprehensive coverage, and formulating effectiveoracles—mechanisms to decide whether a detected application state is corrector erroneous.
1.3 Context and goal of the thesis: the IVVES project

This thesis is embedded in the scope of the European IVVES3 project [45], fundedby the ITEA Framework (Project Number 18022), running 3 years during 2019-2022. IVVES is a project with 26 partners from 5 countries (see Figure 1.3). Itsgoal is to address the challenges of quality assurance posed by modern, complex,and evolving systems, which are increasingly being used in Banking & Finance,Healthcare, and Cybersecurity, among others. These systems require robust and
3Industrial-Grade Verification and Validation of Evolving Systems, https://ivves.eu/

https://ivves.eu/

1.3. CONTEXT AND GOAL OF THE THESIS: THE IVVES PROJECT 11
innovative verification and validation methodologies to ensure trustworthiness,safety, and compliance in mission-critical applications.One of the primary objectives of IVVES is to advance software testing au-tomation through intelligent methods. As a project partner, the Open Universityfocused on researching how to achieve this using scriptless testing, giving riseto the general research goal of this thesis: to advance the effectiveness and
efficiency of scriptless GUI testing. Additionally, industrial partners played akey role by identifying challenges in their existing testing practices and definingtheir specific needs for scriptless testing solutions.Two IVVES partners, Marviq and ING, outlined specific requirements for inte-grating scriptless testing into their workflows, which directly contributed to theformulation of two of the six research questions explored in this thesis. Section 1.4will discuss these research questions. First, however, we introduce the two com-panies and provide an overview of the baseline scriptless testing tool testar [10]used in this study.
1.3.1 Marviq

Marviq4 is a software development company specialised in Team as a Service,Software Development as a Service, and IoT development. It operates with 35professionals managing eight concurrent agile development projects while serv-ing 25 clients. Given the tailored nature of these projects, Marviq follows acustomised Quality Assurance (QA) process, including business alignment work-shops, Minimum Viable Product (MVP) development, agile-based implementationusing SCRUM [46], and ongoing client support. However, as a small company,Marviq faces several QA challenges [47,48], such as unclear requirements, proto-type misconceptions, business process mismatches, and limited testing time.The SUT Marviq proposes for IVVES studies is Yoho5, a digital platform devel-oped by Marviq to improve operations and communication in industrial environ-ments. Yoho provides functionalities such as alert and notification management,task handling, work instructions, and communication tools.
4Official website: https://marviq.com/5Yoho showcase: https://marviq.com/our-showcases/yoho-factory-management-platform/

https://marviq.com/
https://marviq.com/our-showcases/yoho-factory-management-platform/

12 CHAPTER 1. INTRODUCTION

Initially, Yoho started as an MVP but underwent continuous scope changesdue to shifting market demands, making it more of a prototype than a functionalproduct. Marviq took over development to transform it into a market-ready plat-form, stabilising its focus as the first customers emerged. The platform featureshigh customizability and role-based access, meaning test execution for a specificrole or customer may result in low code coverage, as not all functionalities areaccessible to every user.Yoho presents key testing challenges, particularly in dealing with the dynamicnature of modern web applications, such as GUI elements with dynamic identifiers.These characteristics make Yoho an ideal candidate for evaluating scriptless GUItesting techniques.
1.3.2 ING

In today’s digital economy, banks are no longer just financial institutions; they aresoftware-driven companies that specialise in money management. As a leadingfinancial institution, ING6 has embraced this transformation, developing cutting-edge digital banking solutions that serve a diverse customer base, including in-dividuals, small businesses, and large corporations. ING’s mission is to empowercustomers to achieve their goals, whether launching a new business, buying ahome, or managing daily transactions. However, seamless and reliable digitalservices are critical to fulfilling this mission. Customers do not think about bank-ing itself. Instead, they expect it to work effortlessly in the background.As ING increasingly relies on mobile and online banking platforms, softwarereliability has become a key differentiator. The bank is committed to deliver-ing full-time availability, ensuring customers can access their accounts, makepayments, and manage their finances instantly, securely, and without disruption.ING’s strategy focuses on providing an easy, personal, and relevant experience atevery customer touchpoint. However, the complexity of modern financial systemsand strict regulatory requirements (e.g., the Dutch National Bank’s (DNB) 99.88%uptime mandate for payment infrastructure) sets a high bar for quality assurance
6Official website: www.ing.nl

www.ing.nl

1.3. CONTEXT AND GOAL OF THE THESIS: THE IVVES PROJECT 13
and software testing.Despite best efforts, technical failures and disruptions can have severe conse-quences, as seen in past incidents of transaction failures [49], service outages [50],and even security vulnerabilities [51], ING recognises that every disruption iscostly, not just in financial terms but in trust and reputation. The bank con-tinuously invests in robust software testing, automation, and exploratory testingstrategies to prevent issues before they impact customers. As part of the IVVESproject, ING is actively exploring scriptless testing approaches for mobile bank-ing applications, aiming to improve test automation, exploration strategies, andmobile-specific testing oracles. By strengthening its quality assurance processes,ING is not just keeping up with the demands of modern banking: it is setting anew standard for software-driven financial reliability.
1.3.3 TESTAR

The research described in this thesis was conducted using testar7 [10] as theprimary vehicle for advancing scriptless GUI testing. testar is an open-sourcetool that has been co-developed by the Open Universiteit (OU) and the Tech-nical University of Valencia (UPV) for over a decade, offering the flexibility andextensibility necessary for this study.While testar was chosen due to its long-standing academic development andour familiarity with the tool, it was not the only available tool. Several academictools exist for scriptless testing (described in detail in Chapter 3). However,compared to these alternatives, testar still emerged as the most suitable choicefor the research objectives.One of testar’s key strengths is its ability to interact with a diverse rangeof SUTs, including Windows, Web, and Java applications. Additionally, it seam-lessly integrates with widely used GUI libraries such as UIAutomation [52], Web-Driver [53], and Java Access Bridge [54], making it particularly well-suited fortesting complex systems. Furthermore, testar’s active development communityand its proven deployment in industrial settings reinforce its reliability and prac-
7Official website: www.testar.org

www.testar.org

14 CHAPTER 1. INTRODUCTION

tical relevance. With more than 10 peer-reviewed and published industrial casestudies [55–64], testar has demonstrated its effectiveness in real-world applica-tions. These factors further justify its selection as an optimal tool for advancingresearch in GUI testing.
1.4 The research methodology and questions

This thesis was conducted in three distinct phases. Given that most IVVES projectpartners were unfamiliar with scriptless testing and testar, the initial phase fo-cused on investigating the state of the art in scriptless testing while also conduct-ing a meta-analysis of industrial case studies specifically involving testar. Thisdual approach ensured a broad understanding of scriptless testing methodologiesin general and a deeper insight into testar’s practical applications in specific.To build a strong foundation, a systematic bibliometric study [65] was firstconducted to gain a comprehensive understanding of the research landscape inGUI testing. A bibliometric analysis provides a macro-level quantitative viewof a research domain. Given the large volume of publications in this field, thisapproach was chosen over a systematic literature review to explore the evolutionof automated GUI testing efficiently. The visualisations and quantitative insightsfrom bibliometric analysis serve as a foundation for identifying promising researchdirections. This study addressed the first research question:
RQ1: How has automated GUI testing evolved over time regarding size,research trends, collaboration, authors and publication patterns?
Subsequently, a generalisation study grounded in architectural analogy, asdescribed by Wieringa et al. [66], was conducted. This study involved a com-prehensive analysis of all testar-related case studies performed over the years,aiming to identify recurring components and key insights into its application invarious industrial contexts. This study directly addressed the second researchquestion:

1.4. THE RESEARCH METHODOLOGY AND QUESTIONS 15
RQ2: What general insights do industrial case studies provide about usingtestar for GUI testing in industry?
This initial phase resulted in a comprehensive overview of the GUI testing field(RQ1, Chapter 2), which informed the creation of an architectural analogy [66] de-rived from meta-analysing all the existing case studies on testar (RQ2, Chapter3). This analogy captures the core components, interactions, and dependenciesthat define scriptless GUI testing with testar, facilitating a more systematic un-derstanding of its applicability and potential future research directions. Althoughthe analogy is described in detail in Chapter 3, a simplified version is repeatedhere in Figure 1.4 to position the second phase of the research, whose goal wasto improve some of the components of testar.

Implement /
Maintain

Manage

Set up

Reports test results
and metrics

Bugs
to fix

Executes tests

Clients
<<Person>>

Business Stakeholders,
End Users, Customers

SUT
<<Software System>>

System Under Test

Developers
<<Person>>

Implement and maintain
the SUT

Testers
<<Person>>

Manage the existing test
environment

Test Environment
<<Software System>>

Manages test executions
and test strategies

TESTAR
<<Software System>>

Interaction, Exploration,
and Test Oracles

Use

Bug Tracking System
<<Software System>>

Manages bug reports

Report
bugs

Report
bugs Test

Figure 1.4: Simplified architectural analogy showing the most important components
At the core of the architecture is the SUT as it is the primary focus, represent-ing the software being tested. Testing the SUT is influenced by multiple actors:the work of Developers, the needs of the Clients and the Testers. The scriptlesstesting tool TESTAR contains three parts (as described in Section (1.2.3)) neededto create test sequences to test the SUT:
1. through interaction, it engages with the user interface elements, such as

16 CHAPTER 1. INTRODUCTION

buttons, menus, and dialogues, without requiring predefined scripts andautomatically exploring the SUT.
2. exploration is performed using an ASM, enabling testar to navigate throughdifferent application states and uncover unexpected behaviours.
3. The key component consists of the oracles, which validates whether theobserved software behaviour aligns with expected outcomes.
Setting up testar requires an initial configuration process to ensure the toolis correctly adapted to the Test Environment. Testing the SUT generates testresults that are evaluated using various metrics. Bugs that are found are addedand managed in the Bug Tracking System.The architectural analogy laid the groundwork to describe the second phase ofthis research, in which specific components of testar were aimed to be enhanced.Two principal research objectives were defined, both focusing on improving the

exploration part of the testar-component. The first objective focused on the ab-straction of the states in the models that can be learned during the on-the-flyexploration. State space explosion is still an open challenge for learning state-based models through a GUI. Most SUTs with a GUI exhibit an enormous numberof possible states, necessitating some degree of state abstraction to ensure thatthe resulting models remain tractable. The key challenge lies in determiningan appropriate level of abstraction that balances expressiveness and computa-tional complexity. If the level of abstraction is too low, the resulting state modelmay become overly detailed, leading to an impractically large number of states.Conversely, if the level of abstraction is too high, the model may become overgen-eralised and non-deterministic, making it unreliable. Understanding this trade-offis essential for improving model accuracy and usability in scriptless testing, lead-ing to the following research question:
RQ3: How does state abstraction in testar influence the inference of statemodels during on-the-fly exploration with scriptless testing?

1.4. THE RESEARCH METHODOLOGY AND QUESTIONS 17

Figure 1.5: Reinforcement learning, a natural fit for scriptless testing
The second objective of the second phase also focused on enhancing the explo-

ration component of testar, specifically in relation to its action selection mecha-nism. As previously discussed, action selection plays a crucial role in determininghow the system is explored, directly influencing the quality and effectiveness ofthe generated tests. Reinforcement learning (RL) [67] aligns naturally with thescriptless testing loop, as it follows the iterative process of retrieving the state,selecting an action, and executing it, as illustrated in Figure 1.5. At its mostbasic level, reinforcement learning requires defining a reward function for eachstate-action pair, guiding the learning process toward more effective exploratorytesting. This led to the formulation of the fourth research question:
RQ4: Which reward mechanism is most effective for exploratory testingwith reinforcement learning in testar?
The project’s third phase consisted of industrial collaboration with the twoidentified industrial partners of IVVES: Marviq and ING. This process aligns withthe design science research methodology [68], where real-world challenges drivethe development and evaluation of practical solutions.

18 CHAPTER 1. INTRODUCTION

As part of the IVVES project, Marviq actively explored the integration of codesmell detection with SonarQube [69] to enhance the quality and effectiveness ofits software testing processes. Code smells [70] refer to structural weaknessesin software that, while not necessarily defects, indicate potential design flawsthat can compromise maintainability and increase the risk of hidden defects ifleft unaddressed. Despite their recognised importance in software engineering,traditional test adequacy metrics such as line, branch, and complexity coverageoften fail to account for these. To bridge this gap, Marviq desired to investigatewhether code smell coverage could serve as a complementary adequacy criterionfor evaluating the scriptless testing effectiveness of their industrial web applica-tion, Yoho. If successful, this approach could enhance the industrial applicabilityof scriptless testing by incorporating maintainability-focused test evaluation cri-teria, potentially improving defect detection and maintainability assessment. Theresearch question for this research reads as follows:
RQ5: To what extent can scriptless GUI testing with testar provide mean-ingful coverage of code smells, and how does this relate to traditional testadequacy metrics?
As a financial institution, ING Bank increasingly relies on mobile applicationsto provide essential services such as account management, payments, and in-vestment tools. However, mobile application testing presents unique challenges,including a highly diverse device ecosystem, rapid update cycles, and stringentplatform-specific guidelines. Ensuring high-quality, reliable mobile applicationsrequires robust testing strategies that can adapt to these dynamic conditions.Consequently, within the IVVES project, ING proposed adopting a scriptless test-ing approach for mobile Android platforms to explore how automated exploratorytesting can be enhanced for mobile environments. In addition to automating testexecution, ING identified several key features and improvements necessary foreffective scriptless testing in mobile applications, including: (1) a more advancedexploration strategies to guide the automated navigation of the SUT; (2) enhancedmobile-specific testing oracles to improve failure detection and validation accu-

1.5. PUBLICATIONS 19
racy. These needs led to the formulation of the following research question:

RQ6: How can scriptless GUI testing be adapted for mobile applicationsby improving exploration strategies and integrating mobile-specific testingoracles?
1.5 Publications
The findings of this thesis are underpinned by a series of peer-reviewed researchpapers developed through engagement in academic projects and industry col-laborations. Each article targets one or more of the research questions definedpreviously. This section details my contributions to these works and the projectsI participated in during the research period.

• Rodríguez-Valdés, O., Vos, T. E. J., Aho, P., & Marín, B. (2021). 30 years
of automated GUI testing: a bibliometric analysis. published in the pro-ceedings of the International Conference on the Quality of Information andCommunications Technology (QUATIC). As the first author, I took primary re-sponsibility for conducting the bibliometric study, including data collection,analysis, and visualisation. While all authors collaborated on identifyingaspects such as keywords or other elements requiring general agreement tominimise threats to validity, the study’s execution was my primary responsi-bility. This article targets research question RQ1 of this thesis, presentinga quantitative evaluation of key themes and collaborations in automatedGUI testing over three decades. The paper is contained in Chapter 2.

• Vos, T. E. J., Aho, P., Pastor Ricos, F., Rodriguez-Valdes, O., & Mulders, A.
(2021). TESTAR–scriptless testing through graphical user interface. pub-lished in Software Testing, Verification, and Reliability. This publication isthe most updated key paper of testar, describing its advances from 2010till 2021 and paving the way for an international research agenda in GUItesting that can be built upon stable and open-source infrastructure. Mycontribution to this paper is the following:

20 CHAPTER 1. INTRODUCTION

– conducting the comparative study of testar with existing academicscriptless tools (mentioned in Section 1.3.3)
– conducting the generalisation study grounded in architectural analogyto target research question RQ2 of this thesis.

These contributions and a description of testar are contained in Chapter 3.
• Mulders, A., Rodriguez-Valdes, O., Ricós, F. P., Aho, P., Marín, B., & Vos,

T. E. J. (2022). State model inference through the GUI using runtime test
generation presented at the International Conference on Research Chal-lenges in Information Science (RCIS). My contributions to this researchwere critical in empirically validating the proposed state model inferencemechanisms. I was responsible for running the experiments and analysingthe results, ensuring the findings were backed by rigorous empirical eval-uation. The experiments systematically assessed the impact of differentabstraction techniques on the inferred state model. The results providedinsights into the trade-offs associated with different levels of abstraction,contributing to a better understanding of how scriptless GUI testing caneffectively infer state models while maintaining scalability and practicalapplicability in industrial contexts. This article targets research question
RQ3 of this thesis regarding state abstraction and is contained in Chapter4.

• Rodríguez-Valdés, O., Vos, T. E. J., Marín, B., & Aho, P. (2023). Reinforcement
learning for scriptless testing: An empirical investigation of reward func-
tions presented at the International Conference on Research Challengesin Information Science (RCIS). As the first author, I was responsible for theoverall coordination of the research, including designing experiments, imple-menting reinforcement learning frameworks, conducting statistical analysisand discussing the results. This article targets research question RQ4 ofthis thesis and is contained in Chapter 5.

• Rodríguez-Valdés, O., Amalfitano, D., Sybrandi, O., Marín, B., Vos, T. E. J.
(2025). The Scent of Test Effectiveness: Can Scriptless Testing Reveal Code

1.6. SUPERVISION, ACADEMIC SERVICE, AND PROFESSIONAL ENGAGEMENT21
Smells?, presented at the International Conference on Evaluation of NovelApproaches to Software Engineering (ENASE). I adapted testar to the com-pany’s SUT, maintained continuous feedback with industry practitioners toidentify their needs, and discussed the benefits of using testar in theirsoftware development lifecycle. I also implemented and executed the ex-periments and statistical analyses, and discussed the results, highlightingthe practical applicability of the proposed solutions. This article targetsthe use of quality-oriented metrics as an indicator of test effectiveness, ad-dressing question RQ5 of this thesis. The paper is contained in Chapter6.

• Rodríguez-Valdés, O., van der Vlist, K., van Dalen, R., Marín, B., & Vos, T.
E. J. (2024). Scriptless and Seamless: Leveraging Probabilistic Models for
Enhanced GUI Testing in Native Android Applications, presented at theInternational Conference on Research Challenges in Information Science(RCIS). As the first author, I led the integration of the framework developed incollaboration with ING into testar, performed a state-of-the-art review, andconducted the experiments. This article examines the use of a probabilisticheuristic in scriptless exploration for mobile testing, addressing question
RQ6 of this thesis. The paper is contained in Chapter 7.

1.6 Supervision, academic service, and professional
engagement

During this period, I was actively engaged in various academic conferences, sym-posia, and workshops to disseminate my research and the testar approach:
• Published the short paper Finding the shortest path to reproduce a failure

found by TESTAR [71] at the 2019 ESEC/FSE (European Software Engi-neering Conference and Symposium on the Foundations of Software Engi-neering). This work served as the basis for my initial learning about thescriptless GUI testing approach.

22 CHAPTER 1. INTRODUCTION

• Prepared and presented a poster at the 2020 SEN Symposium8 (NationalSymposium Software Engineering) titled ITEA3 IVVES project: Industrial-
grade verification and validation of evolving systems (In Finance).

• Published the Doctoral Symposium paper Towards a testing tool that learns
to test [72] at the 2021 ICSE (International Conference on Software Engi-neering) Companion Proceedings, and later presented this paper again atan OUrsi (Open Universiteit Research Seminar Informatica) event for furtherpeer engagement and collaborative refinement.

• Co-authored and disseminated a poster on the IVVES project [73] at RCISWorkshops in 2022, bridging theoretical advances with industry needs
• Delivered the tutorial Getting started with scriptless test automation through

the graphical user interface, a hands-on tutorial [74], at RCIS 2023. The tu-torial covered key topics such as GUI testing fundamentals, the scriptlessapproach, and practical exercises to analyse test results. This engage-ment strengthened academic and industry connections by disseminatingknowledge on scriptless GUI testing and fostering potential collaborationsin research and industry.
• Organised and presented the workshop Inspiratie sessie: TESTAR at Top-icus in Deventer, The Netherlands, to give practitioners hands-on exposureto the scriptless GUI testing tool testar. The session focused on demon-strating how testar can streamline testing processes and improve softwarequality in real-world projects. By bridging academia and industry, thissession helped participants understand the immediate practical impact ofautomated GUI testing while fostering a local community for collaborationand shared learning.
• Presented Empowering Students with Modern Skills and Connections Through

Open Source GUI Testing with TESTAR, at 10th ACM Celebration of Womenin Computing: womENcourage 2023. The conference context highlighted
8National Symposium Software Engineering, https://www.sen-symposium.nl/

https://www.sen-symposium.nl/

1.6. SUPERVISION, ACADEMIC SERVICE, AND PROFESSIONAL ENGAGEMENT23
how inclusive communities and open-source collaboration can help womenin technology overcome challenges and gain international visibility. Bydemonstrating effective strategies for integrating testar into student projects,the workshop also illustrated how students from diverse backgrounds candevelop essential skills, access broader professional networks, and preparefor successful careers in computer science.

• Provided a hands-on session at the Universitat Politècnica de València(UPV) Master Class: TESTAR – An Open Source Tool for Scriptless Testing
Through Graphical User Interface (GUI), thereby bridging research insightswith practical student engagement.

• Presented the work Reinforcement Learning for Scriptless Testing at the2023 PROMIS-ES symposium organised by the Faculty of Science of theOpen University, where ongoing PhD research was showcased.
In parallel, I supervised and advised various Bachelor and Master theses,including:
• Supervising the Bachelor’s thesis of Mark Dourlein at the Open Universiteit:"testar and reinforcement learning" (2020).
• Advising the Master’s final project of Borja Davo Gelardo at UniversitatPolitècnica de València: "Improving action selection in testar with artificialintelligence techniques" (2020–2021).
• Supervising the Master’s project of Sven Ordelman at the Open Universiteit:"Q-learning for action selection" (June 2022).
• Supervising the Master’s final project of Moujib Chorfi at Universitat Politèc-nica de València: "An empirical investigation comparing different GUI testingtools for Android" (2022–2023).
Additionally, serving as Web Chair for the 2022 International Conference onSoftware Testing (ICST), widely recognised as one of the most important confer-ences in the field, enabled me to establish important connections with interna-tional experts, helping to refine the direction of this research. Participation in

24 CHAPTER 1. INTRODUCTION

IPA events9, and TestDag10, further expanded my professional network, providednew practical insights, and influenced the overall scope of this work.
1.7 Thesis Structure
The thesis contains seven chapters in addition to this introduction. Chapter 2 toChapter 7 correspond to research questions RQ1 till RQ6 respectively. Chapter8 concludes with the answers to the research questions and offers a synthesis ofkey findings, implications for the field, and directions for future research.

9Institute for Programming research and Algorithmics (IPA), https://ipa.win.tue.nl/10Dutch Testing Day (Nederlandse Testdag), https://www.testdag.nl/

https://ipa.win.tue.nl/
https://www.testdag.nl/

2
Thirthy years of automated GUI testing

"We can only see a short distance ahead, but we can see
plenty there that needs to be done"

Alan Turing, Computing Machinery and Intelligence
A bibliometric study is presented in this chapter to gain insight into the com-munity, publication patterns, and trends in automated GUI testing. A bibliometricanalysis enables visualisation of the main topics in the literature, their evolu-tion, and their interrelationships. Furthermore, this analysis helps to objectivelyidentify the most impactful works based on the number of citations received [75].To provide an overview of the state of the art of GUI testing, Bao et al. [76]conducted a mapping study spanning the years 1991 to 2011, which included136 publications. Since then, the field of GUI testing has experienced significantgrowth, with the number of papers on the topic reaching 52 in 2020 alone.The rising interest in GUI testing has led to specialised workshops focusedon this topic. In 2009, the first edition of the International Workshop on TESTingTechniques & Experimentation Benchmarks for Event-Driven Software (TESTBEDS)was held, co-located with IEEE’s International Conference on Software Testing,Verification, and Validation (ICST). This event was followed by the first edition of

25

26 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

INTUITEST (International Workshop on User Interface Test Automation) in 2015,co-located with STV and UCAAT. In 2018, these two workshops merged to formINTUITESTBEDS1, focusing on user interface test automation and testing tech-niques for event-based software.To the extent of available knowledge, this is the first bibliometric analysis ofautomated GUI testing over the past 30 years. The main contributions are to:
1. Provide facts about the size and growth of the field.
2. Indicate the type of publications and their rankings, including most citedpapers, prolific authors, and influential journals and conferences.
3. Show the distribution of the publications among the available sources andover the years using the Referenced Publication Year Spectroscopy.
4. Present and discuss the productivity and the level of collaboration amongresearchers in the literature.
5. Use the bibliometric laws of Bradford [77] to know the most influencingjournals, and of Lotka [78] to evaluate scientific productivity of authors.
6. Show the evolution of the major research topics in the field by analysingthe keywords used by the authors.
The chapter is structured as follows. Section 2.1 presents the scope of au-tomated GUI testing, establishing the criteria and definitions used to select rel-evant studies for the bibliometric analysis. Section 2.2 details the methodologyemployed in this study, including data retrieval, pre-processing steps and thetechniques applied to interpret the data. Section 2.3 presents the analysis re-sults, encompassing the growth and size of the field, influential authors, relevantpublications and keyword trends. Section 2.4 addresses potential threats to thestudy’s validity. Finally, Section 2.5 concludes the chapter by summarising thekey insights derived from the bibliometric analysis.

1International Workshop on User Interface Test Automation and Testing Techniques for Event BasedSoftware, https://www.intuitestbeds.org/

https://www.intuitestbeds.org/

2.1. SCOPE: AUTOMATED GUI TESTING 27
2.1 Scope: automated GUI testing
This section outlines the definition of automated GUI testing used to determinewhich papers should be included in the bibliometric analysis. As explained inChapter 1, GUI testing involves executing sequences of events on the GUI widgetsof a System Under Test (SUT) and checking test oracles, intending to identifyfailures, reduce risks, and improve the quality of the SUT.It is possible to automate the execution of these test sequences, known as
automated GUI testing. However, other activities related to GUI testing can alsobe automated. Therefore, the definition of automated GUI testing was refined toencompass these additional activities. Thus, automated GUI testing in the contextof this study includes the automated generation of test cases, test oracles, and testexecution, as well as other related activities such as test selection, prioritisation,and debugging.
Automating the creation of test sequences: Test sequences in GUI testing con-sist of sequences of GUI actions/events on widgets together with input val-ues. Test sequences are made to cover some test goal of the SUT (e.g.,checking some specific functionality or finding a failure). Test sequencedefines which path through the SUT should be taken (which states shouldbe visited), i.e., what actions will be executed, and in which order.
Automating the definition or checking of the oracles: Oracles [40] are proceduresthat distinguish between the correct and incorrect behaviour of the SUT.Since test cases in GUI testing are sequential, oracles can be checked aftereach action (test step) during execution (online oracle), just once at the endof each sequence, or analyse the results after the execution (offline oracle).Test oracle automation is essential for removing the current bottleneck thatinhibits greater overall test automation [40]. Without test oracle automation,a human has to determine whether the observed behaviour is correct.
Automating the analysis of test results: This consists of analysing, for example,the failures that were found in a specific SUT or evaluating the quality ofthe test cases that were executed, using a set of defined metrics.

28 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

If any of these activities are automated, the study will consider it "automatedGUI testing" (even if the test execution is conducted manually), and the papersrelated to such automation will be included in this bibliometric analysis.
2.2 Methodology

This study adopts the workflow for bibliometric analysis defined in [79], whichconsists of the following steps: data retrieval, pre-processing, analysis, and visu-alisation.
2.2.1 Data retrieval

Scopus was used for the search process as it is the largest abstract and cita-tion database of peer-reviewed literature, providing broader coverage comparedto other scientific repositories such as WoS [80]. Scopus gives a comprehensiveoverview of research output across various fields, including science and technol-ogy, and also includes valuable tools for research analysis and visualisation. Toensure no relevant papers were missed, the initial search term "Automated GUItesting" was expanded by generating a set of related terms for each keyword(refer to Table 2.1).
Term Familyautomated automated, automatic, automatically, automation, automating, au-tomate, generation, generate, generating, generatorGUI GUI, UI, “graphical user interface"testing testing, test, tested

Table 2.1: Family of words for the search string
Figure 2.1 presents the complete search query. To ensure the relevance ofthe results, the search terms had to appear in the article’s title, abstract, orkeywords, which was achieved using the Scopus operator TITLE-ABS-KEY (refer tolines 1-3). To further refine the search results, a minimum distance between terms

2.2. METHODOLOGY 29
was established using the W/ operator. After several tests, the minimum distancewas set to 5. In Figure 2.1, each family of words is represented by its primaryterm, and the search query was adjusted to include the entire family of wordsusing the OR operator, allowing for the appearance of at least one term withineach family. At this stage, the search query was designed to return all indexedpapers that contained at least one term from each family in the title, abstract,or keywords (TITLE-ABS-KEY), with at least one pair of terms from different familieswithin the minimum distance.
1 TITLE-ABS-KEY((Automated W/5 Testing) AND GUI)2 OR TITLE-ABS-KEY((Automated W/5 GUI) AND Testing)3 OR TITLE-ABS-KEY((GUI W/5 Testing) AND Automated)45 AND LIMIT-TO(LANGUAGE, "English")67 AND PUBYEAR>1989 AND PUBYEAR<202189 AND (LIMIT-TO(DOCTYPE, "cp") OR LIMIT-TO(DOCTYPE, "ar")10 OR LIMIT-TO(DOCTYPE, "ch") OR LIMIT-TO(DOCTYPE, "Undefined"))1112 AND (LIMIT-TO(SUBJAREA, "COMP")13 OR LIMIT-TO(SUBJAREA, "ENGI")14 OR LIMIT-TO(SUBJAREA, "MATH"))

Figure 2.1: Boolean search query for systematic review
Using the Scopus facilities, papers were also excluded according to their type,language and publication date, excluding works that:

exC1: are not written in English (on line 5, using the Scopus Document fieldcode: LANGUAGE and limiting it to “English")
exC2: are published before the year 1990 and after 2020 (on line 7 using theScopus Publication field code: PUBYEAR)
exC3: are not conference, workshop, journal publications or book chapters (inlines 9 and 10) using the Scopus Document field code: DOCTYPE and limitingit to types Conference Paper-“cp", Article-“ar", Book Chapter-“ch" and “Un-defined"). The last one was included because some documents have been

30 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

accepted for publication but have not yet been assigned to a journal orconference, so they are temporarily indexed as “Undefined".
exC4: do not belong computer science area (in lines 12-14) using the Scopussubject areas: COMP 2, ENGI 3 and MATH4.

The search was performed in January 2021. The total amount of papers re-trieved was 2240.
2.2.2 Pre-processing

Pre-processing the data retrieved is necessary since references may be dupli-cated, the authors’ names may appear in different formats, and papers that containthe terms can be unrelated to automated GUI testing, among others.Initially, papers from unrelated fields in Scopus were manually excluded, re-ducing the total number of papers to 1233. This step was necessary becausesome papers may be classified under multiple fields, such as Computer Scienceand Social Science, if they describe a social science study using a computationalsystem. As a result, such papers are retrieved by the search query even if they donot belong to the Computer Science, Engineering, or Mathematics (COMP, ENGor MATH) fields. Any papers that were unrelated to the topic of automated GUItesting were manually excluded from the study.In addition to the goal of conducting a bibliometric analysis on automatedGUI testing, this study aimed to establish a repository of GUI testing research.
2classifying: Computer Science(miscellaneous), Artificial Intelligence, Computational Theory andMathematics, Computer Graphics and Computer-Aided Design, Computer Networks and Communi-cations, Computer Science Applications, Computer Vision and Pattern Recognition, Hardware andArchitecture, Human Computer Interaction, Information Systems, Signal Processing, Software3classifying: Engineering(miscellaneous), Aerospace Engineering, Automotive Engineering,Biomedical Engineering, Civil and Structural Engineering, Computational Mechanics, Control andSystems Engineering, Electrical and Electronic Engineering, Industrial and Manufacturing Engineer-ing, Mechanical Engineering, Mechanics of Materials, Ocean Engineering, Safety, Risk, Reliability,and Quality, Media Technology, Building and Construction, Architecture4classifying: Mathematics (miscellaneous), Algebra and Number Theory, Analysis, Applied Math-ematics, Computational Mathematics, Control and Optimisation, Discrete Mathematics and Combina-torics, Geometry and Topology, Logic, Mathematical Physics, Modelling and Simulation, NumericalAnalysis, Statistics and Probability, Theoretical Computer Science

2.2. METHODOLOGY 31
A simple and flexible environment was sought to support the work and enablefuture interactions with the extracted papers. Consequently, BUHOS [81], anopen-source, web-based paper management system, was used. The 1233 paperswere uploaded to BUHOS, and additional exclusion criteria (exC5 and exC6) weredefined and manually applied by carefully reviewing the title and abstract of eachpaper.
exC5: clearly off-topic, i.e. not at all related to the scope (Section 2.1)
exC6: not a primary study

The papers were uploaded to BUHOS in BibTeX format, including all availableinformation, such as authors, citation counts, and venue. Any missing informationnot present in the BibTeX file was automatically extracted from Crossref5.The 1233 papers were divided among the authors, who, after reading the titleand abstract, marked them as included, excluded or undecided. Next, a collectiveanalysis was carried out involving all authors to make a final decision on theundecided papers, resulting 720 papers.Additionally, BUHOS provides a backward snowballing [82] feature that scansthe references of each paper and includes any papers referenced by a minimumnumber of papers already included in the initial pool. This feature was used toidentify interesting works that Scopus did not initially retrieve. This added 24papers, resulting in the total of 744 included publications.
2.2.3 Analysis and Visualization

CRExplorer [83] and Biblioshiny [84] were used to analyse and visualise the data.Both tools were chosen for their specific capabilities in generating bibliometricmaps. Moreover, Biblioshiny6 is a free tool that provides a broader range ofanalysis possibilities compared to other bibliometric tools [85]. In addition, Scopusanalysis functionalities were used in conjunction with Microsoft Excel to generatecharts.
5Crossref is a digital citation and linking service that provides metadata for scholarly content,

https://www.crossref.org6Official website: https://www.bibliometrix.org/home/index.php/layout/biblioshiny

https://www.crossref.org
https://www.bibliometrix.org/home/index.php/layout/biblioshiny

32 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

To ensure data consistency, normalisation was applied to the keywords usinga thesaurus of synonyms7, and on the author names by taking accent marks anddifferent formatting into account. For the conference information, the descriptionwas split to accurately extract the name of the conference separately from thepublisher and year of publication.

2.3 Results

This section presents the results of this study and a brief discussion related to thesize and growth of the area. It also classifies the type of publication (journals,conferences, or workshops), the most influential journals and conferences, themost influential papers, and the most influential authors.
2.3.1 Size of the area and growth

The number of publications in a field over time is a central piece of informationfor investigating its growth and development.Table 2.2 presents, on a year-to-year basis, the total amount of publications(column #), the percentage of the cumulative amount by each year (column %),and the growth of the number of publications against the previous year (column
↗). Figure 2.2 depicts the evolution of the growth per year along with the trend.The first decade covered by this study only included 18 papers related to thefield. Two years (1992 and 1993) passed without papers. In the second decade,this number increased to 170 works. Finally, in the third decade, 556 works werefound. Given that 41.4% of all documents have been published in the last fiveyears, it is likely that the automated GUI testing field will continue to grow at asimilar pace to the last decade.

7Available at: https://gui-testing-repository.testar.org/keywords

https://gui-testing-repository.testar.org/keywords

2.3. RESULTS 33

Figure 2.2: Evolution of the number of publications
Year # % Growth (↗)1991 2 0.27% -1992 0 0.00% -1993 0 0.00% -1994 1 0.13% -1995 1 0.13% 0.00%1996 3 0.40% 200.00%1997 3 0.40% 0.00%1998 4 0.54% 33.33%1999 1 0.13% -75.00%2000 3 0.40% 200.00%2001 5 0.67% 66.67%2002 3 0.40% -40.00%2003 10 1.34% 233.33%2004 6 0.81% -40.00%2005 13 1.75% 116.67%

Year # % Growth (↗)2006 14 1.88% 7.69%2007 18 2.42% 28.57%2008 26 3.49% 44.44%2009 39 5.24% 50.00%2010 36 4.84% -7.69%2011 50 6.72% 38.89%2012 45 6.05% -10.00%2013 47 6.32% 4.44%2014 61 8.20% 29.79%2015 45 6.05% -26.23%2016 64 8.60% 42.22%2017 56 7.53% -12.50%2018 68 9.14% 21.43%2019 68 9.14% 0.00%2020 52 6.99% -23.53%
Table 2.2: Publications by Year: Number (#), Percentage (%), and Growth (↗).

34 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

Between 2009 and 2013, the number of papers increased, deviating from theoverall trend. There could be various reasons for this. The first ICST conference,held in 2008, was the first international conference entirely dedicated to softwaretesting. Moreover, the first TESTBEDS workshop was celebrated at ICST in 2009.There was also an increase in papers related to web testing. This can be relatedto the fact that in 2009, it was decided to merge Selenium RC and Webdriverand called the new project Selenium WebDriver [53], or Selenium 2.0. A thirdreason might be that Sikuli started in 2009 [86]. Sikuli is a visual approach tosearching GUIs using screenshots, allowing users to take a screenshot of a GUIelement (such as a toolbar button, icon, or dialogue box) and query a help systemusing the screenshot instead of the element’s name. Finally, in 2009, there wasan increase in papers related to mobile testing. This is probably related to thefact that Apple’s App Store went live in July 2008, and the Android Market wentlive in August.During 2020, a decrease in the number of publications was observed, whichcould be attributed to the Covid-19 pandemic. This situation likely impacted re-search outcomes due to the cancellation of several conferences, reduced mobility,and other disruptions [87].
2.3.2 Types of publications and their ranking

Publications were found across various types, including journals, conferences,workshops, and book chapters. Figure 2.3 shows the number of papers of eachkind.The majority of papers have been published in conference proceedings. Thismakes sense since conferences provide feedback to researchers more quickly thanjournals. Moreover, in many cases, papers describing part of a more extensivesolution are presented at conferences to obtain feedback and validate each pieceof work. Later, the entire proposal is presented in a journal. This is also thebehaviour in the whole Computer Science field [88].Table 2.3 shows journals with the highest number of publications in the field,highlighting IEEE Transactions on Software Engineering (TSE) as the top journalwith 12 published articles. Even though the automated GUI testing field has been

2.3. RESULTS 35

Figure 2.3: Number of papers published in (journals + books) vs (conferences + work-shops)
steadily growing during the last 3 decades, STVR is the first journal to launch aspecial issue entirely dedicated to this field in only 2020. Papers included in thatspecial issue were not counted for this study because they were not publishedyet.By examining the data in Table 2.3, Bradford’s Law [77] can be applied. Brad-ford’s law is related to the distribution of papers among journals of a specificdiscipline. This law establishes that the total number of journals in a researchfield can be divided into three categories or zones, each containing approximatelyone-third of the total number of papers in the field. The first zone includes a smallnumber of highly influential journals that publish a disproportionately large num-ber of papers in the field. These journals are considered the core of the field. Thesecond zone corresponds to the journals with an average number of papers. Thelast zone corresponds to several journals that publish fewer papers.The zones are characterised by a growth factor n, which describes how thenumber of journals increases between the zones. This progression leads to acharacteristic ratio of journals across the zones: 1:n:n2, with the Second Zonecontaining n times as many journals as the Core Zone and the Third Zone con-

36 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

Journal Name Publications Proportion Impact Factor
(SJR)Transactions On Software Engineering (TSE) 12 9.83% 1.19Information And Software Technology (IST) 8 6.55% 0.78Software Quality Journal (SQJ) 7 5.73% 0.36IEEE Software 6 4.92% 0.81Transactions On Software Engineering AndMethodology (TOSEM) 5 4.10% 0.76

Software Testing Verification And Reliability(STVR) 5 4.10% 0.31
Empirical Software Engineering (ESE) 4 3.28% 1.08Information Technology Journal 4 3.28% 0.11ACM SIGPLAN Notices 3 2.46% 4.90IEEE Access 3 2.46% 3.90Innovations In Systems And Software Engi-neering 3 2.46% 1.90
Remaining 54 from the total of 65 journals 62 50.82% -
Total number of papers 122 100% -

Table 2.3: Top 11 contributing Journals
taining n2 times as many journals as the Core Zone. The Leimkuhler model [89]provides a mathematical formalization of Bradford’s Law, employing a logarithmicfunction to define the cumulative number of articles as a function of journal rank.This model enables precise computation of rank boundaries for the zones, offeringa quantitative approach to analyse journal productivity.From Table 2.3, the Leimkuhler model was used to compute the rank bound-aries for the zones. The top 5 journals are the core journals since they correspondto 38 articles, which is 31.1% of all 122 journal papers. The next group is found inthe following 15 journals (39 articles or 32%). In order to represent the last arti-cles, the 45 remaining journals are necessary. The Bradford relation for journalsis 1:3:32, reflecting the characteristic progression described by Bradford’s Law,and the details per zone can be found in Table 2.4.

2.3. RESULTS 37
Zones Journals Publications Bradford multiplierCore 5 38 1Zone 1 15 39 3Zone 2 45 45 9
Total 65 122

Table 2.4: Bradford’s Law zones for journal articles
Zones Conferences Publications Bradford multiplierCore 8 188 1Zone 1 38 141 4.75Zone 2 179 199 22.38
Total 225 528

Table 2.5: Bradford’s Law zones for conference publications

(a) Applied to journals. (b) Applied to conferences.
Figure 2.4: Leimkhuler models.

The same model was applied to the conferences among the papers publishedin conference editions, obtaining a Bradford relation for conferences of approx-imately 1:5:52 for which the details per zone can be found in Table 2.5. Giventhat Leimkuhler’s model describes properly both journals and conferences distri-butions, as shown in Figures 2.4a and 2.4b respectively, Bradford’s law fits thisdata set very well.The 87 workshop papers were presented at 56 workshops, of which 37.50% wasco-located at a CORE A∗ conference, 28.57% at a CORE A conference, 3.57% at a

38 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

CORE B conference and 12.50% at a CORE C conference, 5.36% at conferences withno CORE ranking, and 5.36% at workshops not co-located with any conference.The remaining 7.15% workshops were in years when no CORE ranking was given(yet).The 528 papers were presented at 386 conference proceedings, of which 4.15%has CORE ranking A∗, 16.32% CORE A, 16.84% CORE B, 10.36% CORE C and37.31% has no CORE ranking. The remaining 14.51% conferences were in yearswhen no CORE ranking was given (yet).
Conference name Publications ProportionInternational Conference on Software Engineering(ICSE) 37 7,01%
International Conference on Software Testing, Verifi-cation and Validation (ICST) 36 6,81%
International Conference on Automated Software En-gineering (ASE) 27 5,11%
International Symposium on Software Testing andAnalysis (ISSTA) 26 4,92%
Joint Meeting European Software Engineering Confer-ence and Symposium on the Foundations of SoftwareEngineering (ESEC/FSE)

22 4,17%
IEEE International Symposium on Software ReliabilityEngineering (ISSRE) 15 2,84%
International Conference on Software Maintenance(ICSM) 14 2,65%
International Computer Software and ApplicationsConference (COMPSAC) 11 2,08%
International Conference on Software Engineering andKnowledge Engineering (SEKE) 9 1,70%
International Conference on Software Quality, Relia-bility and Security (QRS) 9 1,70%
Remaining 215 conferences from the total of 225 con-ferences 322 60,98%
Total number of papers 528 100%

Table 2.6: Top 10 of most influential Conferences

2.3. RESULTS 39
Table 2.6 shows the number of papers published in the most contributingconferences. ICSE and ICST are nearly equal at the top, although by 2020, ICSEhad celebrated 42 editions, compared to ICST’s 13 editions.

2.3.3 Citations and Reference Publication Year Spectroscopy

Table 2.7 presents the top 10 papers with the highest number of citations inScopus, along with the year of publication, the complete reference, the number ofcitations retrieved by Scopus (Sc), and the number retrieved by Google Scholar(GS). The cites from Scopus and Scholar differ because Scholar has a much highercount. According to [90], Scholar citation data is essentially a superset of Scopus,offering substantially broader coverage.
Ref Title Author(s) Year Sc GS
[91] Dynodroid: An input generation system for

android apps
Machiry, A., Tahiliani, R.,Naik, M. 2013 397 672

[92] Using GUI ripping for automated testing of an-
droid applications

Amalfitano, D., Fasolino,A., Tramontana, P., DeCarmine, S., Memon, A.
2012 343 563

[93] Automated test input generation for android:
Are we there yet?

Choudhary S.R., Gorla A.,Orso A. 2016 245 401
[94] Automated concolic testing of smartphone

apps
Anand, S., Naik, M., Har-rold, M., Yang, H. 2012 231 428

[95] Testing Web applications by modeling with
FSMs

Andrews A.A., Offutt J.,Alexander R.T. 2005 227 477
[96] Sikuli: Using GUI screenshots for search and

automation
Yeh T., Chang T.-H.,Miller R.C. 2009 217 400

[97] Sapienz: Multi-objective automated testing
for android applications

Mao K., Harman M., Jia Y. 2016 207 336
[98] RERAN: Timing- and touch-sensitive record

and replay for Android
Gomez L., Neamtiu I.,Azim T., Millstein T. To-tal

2013 202 341
[99] An event-flow model of GUI-based applica-

tions for testing
Memon A.M. 2007 193 364

[100] PUMA: Programmable UI-automation for
large-scale dynamic analysis of mobile apps

Hao S., Liu B., Nath S.,Halfond W.G.J., GovindanR.
2014 192 321

Table 2.7: Top 10 papers with most cites in Scopus (includes cites in Google Scholar)
Most of the top 10 most cited papers focus on Android testing, with 7 out of 10dedicated to this area. The remaining three frequently cited papers are related

40 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

to models (event-flow or state models) and widget detection (Sikuli).The technique of Reference Publication Year Spectroscopy (RPYS) [101] is aquantitative method to identify the historical origins or turning points of researchfields. This method analyses the publication years of the references cited by allthe papers in a specific field. A Reference Publication Year (RPY) is reflectedin the spectrogram as a pronounced peak, usually corresponding to a frequentlyreferenced publication. These publications are of significant importance, as theymay represent the origins of the research field in question.An RPYS chart was obtained using CRExplorer and is shown in Figure 2.5,from 1960, although there are references up to 1901. The most influential yearseems to be 2001 when Atif M. Memon finished his PhD entitled A comprehensive
framework for testing graphical user interfaces [102]. He gave a big impulse tothe field, as demonstrated by the RPYS.

Figure 2.5: Reference Publication Year Spectroscopy
In that year, Memon published two final papers for his thesis. The first pa-per [103] presents a new test case generation technique based on Artificial In-telligence Planning and using a model based on a GUI structure. Artificial In-telligence and Model-based Testing are trends that will guide the research fieldin the posterior years to this publication, as it will be explained later in Section2.3.7. In the second paper, Memon et al. [104] introduce different coverage criteriafor GUI testing and evaluate them through a case study for the first time.In addition, the years 2012 and 2013 appear as peaks in the Spectroscopychart. Five publications [91, 105–108] appear among the most cited within the

2.3. RESULTS 41
field. All of them have one common topic: Android testing.
2.3.4 Most influential authors

The 744 documents that integrate this study have been written by a total of 1488authors. Table 2.8 shows the 11 most prolific authors, among them contributing203 publications (27.28 %). For this ranking, all authors of each paper are counted,not just the first author.
Name Total Journals Conferences Workshops Book Year of firstChapters publicationMemon, A.M. 53 18 29 5 1 1999Paiva, A.C.R. 31 6 20 5 0 2005Alégroth, E. 17 3 8 5 1 2013Vos, T.E.J. 16 2 11 3 0 2012Xie, Q. 15 4 10 1 0 2004Fasolino, A.R. 13 4 5 4 0 2010Zeller, A. 13 1 10 2 0 2012Aho, P. 12 0 7 4 1 2011Amalfitano, D. 11 3 4 4 0 2010Coppola, R. 11 4 3 4 0 2016Ramler, R. 11 1 8 2 0 2008

Table 2.8: Ranking of authors by number of publications
There is a remarkable difference between the 1st and 2nd position, as wellas between the 2nd and the rest, from which a smooth distribution among theauthors is observed. One notable fact is that 7 of the 11 authors published theirfirst paper in the field since 2010, and only one published before 2000.The distribution of the number of publications among authors is presented inTable 2.9. The largest group comprises authors who published a single paper,representing 75.81%. As shown in the table, the number of authors tends todecrease as the number of publications increases. Lotka’s law describes thisbehaviour and states that the number of authors y publishing a certain amountof papers x is inversely proportional to x , as y = c

xn , where n and c are twoconstants to be estimated for every data set. The software Lotka [109] was used to

42 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

apply the Maximal Likelihood method and estimate the parameters for this study,resulting in n ≈ 2.59 and c ≈ 0.77, i.e., this data set follows Lotka’s general lawas y = 0.77
x2.59 . The Kolmogorov-Smirnov statistical test was applied to assess thefitness between this hypothesised Lotka model and the actual distribution of thedata. Even for a significance level of 0.2, the results support the hypothesis: thecalculated Lotka model fits the observed distribution.

Publications 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 31 53
Authors 1128 198 60 36 21 14 8 3 3 6 3 1 2 1 1 1 1 1

Table 2.9: Distributions of number of authors per number of publications

2.3.5 Productivity and funding

Figure 2.6 shows the distribution of publications per country of origin. There isa large gap between the most contributing country, the United States, and therest. China published its first papers in 2006 and has contributed 108 publicationssince then, keeping a rate of 7.2 publications per year, similar to that of the UnitedStates, with 7.5 annual papers since 1991.Although China and the US are the main contributors to the field, the Euro-pean region has had a boost in the last decade and has occupied first place with308 publications since 2015. The Asian continent has contributed 242 publica-tions, closely followed by North America, with 245 publications so far.A 21% of the papers included funding information. Of all the mentions, 9,7%came from private funding by big companies, such as Google, Microsoft, AmazonWeb Services, and Boeing. Asia is the continent that provides the most fundingresources for the majority of sponsored works (33,7%), followed by Europe (28,6%)and North America (27,1%).The leading funding agency in Asia is the National Natural Science Foun-dation of China. Likewise, the leading funding agencies in Europe and NorthAmerica are the European Commission and the National Science Foundation, re-spectively. It is worth mentioning that the only South American country that hasfunding is Brazil.

2.3. RESULTS 43

Figure 2.6: Most contributing countries
2.3.6 Collaboration

Figure 2.7 depicts the collaboration between the most prolific authors in the fieldfrom Table 2.8. Six authors have co-authored with Atif M. Memon, who can alsobe related to another two authors through those six. Only 2 of the 11 authors donot have co-authorship with any of the most contributing authors.

Figure 2.7: Collaboration network of authors

44 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

Regarding the co-authorship between the authors, Figure 2.8 shows the evo-lution of the author’s collaboration over 30 years. Single-author publications havehistorically remained low, while publications of more than 4 authors have beenincreasing. However, only 18.95% of the papers have resulted from a collaborationamong affiliations from different countries.

Figure 2.8: Authorship evolution

2.3.7 Trends in keywords

By analysing the keywords provided by the authors, the goal is to reveal thesignificant research topics within the domain and their introduction to the field.This is not as easy as counting the most used keywords [110,111]. Many keywordsdo not give specific information on the details of the field because they areinherent to it (e.g., software testing, GUI testing, tools, regression testing, oracle,coverage, test case). In addition, different terms are often used to describe thesame concept, requiring them to be grouped.Plural forms were standardised into their singular form using NLTK [112]. Theavailable keywords were analysed to group the keywords, and the authors per-formed individual classifications, as detailed in [113]. Two brainstorming sessionswere organised to develop the following classification, which represents relevantresearch themes in the domain under study:

2.3. RESULTS 45
mobile, web, model-based testing (MBT), search-based testing (SBT), visual-based testing (VBT), Artificial Intelligence and Machine Learning (AI&ML),Capture and Replay (C&R) and Automated Exploration

The objective is to study: mobile and web to distil the trend in the types ofSUTs that are tested; MBT, SBT, VBT, AI&ML to visualise the timeline of thepick-up of different technologies into automated GUI testing; C&R to investigatethe evolution of the trend where the focus was on these tools; and Automated
Exploration for the shift from scripted to scriptless testing using random testing,traversal techniques and crawling. Table 2.10 shows the specific classification ofeach group of keywords.

Group Keywordsmobile mobile-device, mobile-application, smartphone-application, smartphone,android, android-testing, google-android, android-application, android-phone, mobile-testing, mobile-application-testing, mobile-application-gui-testing, mobile-application-gui-testing, smartphone-application-testing,mobile-application-test-case-generation, mobile-development, mobile-application-development, mobile-cross-platform-development, mobile-software-development, android-testing, android-application-testing,android-gui-testing, android-ui-testing, android-compatibility-testing,android-test, android-testing-automation, automated-android-testing,automated-mobile-application-testing, android-security, android-malware-detection, android-security, android-permission, secure-virtual-mobile-platform, ios, ios-application, ios-testing, ios-ui-testing, android-crawler, android-system-webview, android-gui-model, android-mobile-accessibility, mobile-communication, mobile-crawler, mobile-environment,mobile-interaction, web-based-android-emulator, mobile-browser-security, mobile-computing, mobiguitar, droidbot, humanoid-robot,espresso, robotium, selendroid, tema-tool, appiumweb web-application, webbased, web-user-interface, dynamic-web-page, web-testing, web-application-testing, testing-of-web-application, testing-web-application, web-application-test, web-interface-testing, web-system-testing, dom-based-testing, cross-browser-compatibility, cross-browser-

46 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

Group Keywordsweb (cont.) testing, web-element-locator, web-object-identification, xpath, xpath-locator, dom, dom-selector, web-of-data, web-scraping, web-usability-evaluation, web-page-visual-representation, web-requirement, semantics-web-service-test-generation, web-accessibility, web-automation, sele-nium, selenium-webdriver, selenium-web-driver, webdriver, selenium-ide,selenium-testing-tool, ajax, ajax-application, asp-net, web-cat, webaii, xml-injection, rich-internet-application-testingSBT genetic-programming, genetic-combination, evolutionary-testing,evolutionary-algorithm, genetic-algorithm, search-based, search-based-software-engineering, search-based-testing, ant-colony-optimisation,particle-swarm-optimisation, ant-colony-optimisation-(aco), multi-objective-optimisation, multi-objective-pso, metaheuristics, traversal-algorithm, best-first-search, depth-first-search, depth-first-traversalVBT image-recognition, sikuli, image-analysis, image-processing, image-recognition-testing, image-search, image-similarity, image-storage,opencv, visual-gui-testing, visual-testing, object-detection, visual-gui-testing, visual-testing, jautomate, eyeautomate, pixel-comparator, ocr,element-recognitionC&R capture/replay, record-and-replay, capture-and-replay-tool, test-recording-and-playback, gui-capture/replay, record-and-playback-problem, record/replay, test-recording, capture-replay, capture-replay-testing, capture/playback, gui-regression-testing, visual-regression-testing, selenium, selenium-webdriver, selenium-web-driver, webdriver,selenium-ide, selenium-testing-tool, testcomplete, recordexploration systematic-exploration, automatic-exploration, random-testing, monkey-testing, monkey, monkey-test, testar, automated-traversal-tool, gui-exploration, gui-traversal, systematic-gui-exploration, automated-gui-exploration, crawling-efficiencyAI&ML ai-algorithm, ai-planning, machine-intelligence-quotient, intelligent-planning, computer-vision, automation-computer-vision-gui, active-learning, active-learning-testing, machine-learning, learning,reinforcement-learning, q-learning, deep-reinforcement-learning, deep-q-network, multi-armed-bandit-problem, neural-network, deep-learning,

2.3. RESULTS 47
Group KeywordsAI&ML (cont.) deep-neural-network, convolutional-neural-network, computational-intelligence, unsupervised-learning, support-vector-machine, natural-language-processing, clustering, cluster-algorithm, cluster-analysis,multi-agent-collaboration, agent-based-testing, teaching-learning-based-optimizationMBT model-based-gui-testing, mbt, mbgt, modelbased-gui-testing,modelbased-gui-testing, model-based-testing-mbt, model-testing,model-based, model-based-test-generation, model-based-testing-uml,multi-model-testing, test-model, test-model-development, model-based-input-generation, model-based-test-input-generation, model-generation,automatic-model-generation, automatic-gui-map-generator, automatic-gui-model-generation, gui-model-gen-eration, generative-model, gui-model-gen-eration, automatic-gui-model-generation, gui-modeling,gui-modelling, gui-model, visual-gui-modelling, gui-map, ui-model,user-interface-model, visual-gui-modelling, user-interface-model,gui-state-model, modeling, graphical-modeling-dsl, model-extraction,model-inference, model-analysis, model-mining, model-transformation,model-validation-and-analysis, directed-graph-model, software-modeling,dynamic-modeling, dynamic-gui-model, event-flow, event-interactive-graph, event-pattern, event-sequence, event-flow-graph, event-flow-model,context-event, event, event-sequence-graph, gui-event, model-based-exploration, activity-diagram, activity-flow-graph, uml-activity-diagram,gui-specification, user-interface-specification, spec-explorer, guitar-testing-system, guitar, mobiguitar, domain-specific-language, fsm, finite-state-machine, finite-state-machine-testing-framework, state-machine,finite-state-automaton, specification-based-testing, test-specification-language, ontology, ontological-modeling, gui-ripping, sequence-based-specification, uml, uml-profile, concur-task-tree, concurtasktrees, gui-call-graph, gui-control-flow-graph, gui-controls-graph, augmented-model,component-tree-graph, dsl, knowledge-graph, labeled-transition-system,petri-net

Table 2.10: Grouping the keywords

48 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

Figure 2.9 shows the cumulative frequency values per each group of keywordsannually. MBT and C&R made their first appearance in 1998. Since then, MBThas been the main topic of the field until Mobile reached a greater number ofpapers in 2019. Since 2007, in just 13 years, Mobile has become the most frequentkeyword.

Figure 2.9: Cumulative frequency of keywords
As of 2010, two topics were introduced: SBT, which includes genetic algo-rithms and swarm intelligence, and Automated Exploration, with algorithms fortraversing or randomly exploring the GUI. Exploration has grown in recent years,as seen in Figure 2.9. AI&ML is the technology that has had the greatest increasein the last 5 years, only being surpassed by MBT towards the conclusion of thisstudy.The evolution of the eight groups of keywords was analysed using the in-formation presented in Figure 2.10, generated with Biblioshiny. The size of thepoints classifies each keyword according to the number of papers in which it hasbeen used (i.e., its frequency), while the position of the points indicates the year inwhich each keyword has reached 50% of its frequency. The horizontal lines beginand end in the year in which a keyword reaches 25% and 75% of publications,

2.3. RESULTS 49

Figure 2.10: Keywords trends
respectively. All keywords reached 25% of their frequency in the last decade, i.e.,75% of the papers that mention these keywords were published in the last 10years.Publications mentioning Web-based SUT have remained constant. Remark-ably, 50% of MBT papers have been published as of 2014, given that MBT is oneof the first topics in the field. This coincides with the increase in Explorationtechniques. Conversely, SBT techniques have a lower frequency.C&R has decreased in frequency, coinciding with the considerable increasein VBT. This might indicate that CR is being replaced by Image Recognition orImage Comparison techniques.AI&ML has appeared in 56 papers: by 2013, it had appeared in 48 papers(26.79%), and it took 5 years to reach 50% of its total frequency. However, justone year was needed for AI&ML to reach 75%. In the last two years, AI&MLappeared in as many papers as in the entire previous history of the field.Considering their frequency and accelerated growth in recent years, Mobile-based SUT and AIML are the trending topics in the field. In addition, explorationtechniques have accelerated in the last five years, although they have not yetreached a large number of papers.

50 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

2.3.8 Discussion

This bibliometric analysis of 30 years of automated GUI testing provides valu-able insights into the evolution and dynamics of this research field. The studyhighlights significant publication growth, with the field gaining traction in thelast decade due to technological advancements and the increasing complexityof software systems. The introduction of specialised workshops and the steadyrise of contributions from mobile and web testing contexts underscore the field’sresponsiveness to industrial and technological shifts. Notably, the emergence ofmobile testing and Artificial Intelligence techniques in the past decade indicatesa transition toward more sophisticated and adaptive testing methodologies.The keyword analysis reveals shifts in research focus over time, with model-based testing maintaining a consistent presence while mobile testing and AI-based approaches have surged in popularity. Traditional capture-and-replaymethods have declined, potentially supplanted by visual-based testing methodsleveraging image recognition. The rapid adoption of AI and novel explorationstrategies signals a fundamental shift in testing approaches, highlighting thegrowing demand for more adaptable, efficient, and intelligent quality assurancemethods. These findings not only chart the historical trajectory of automated GUItesting but also provide a roadmap for future research directions.
2.4 Threats to Validity

This section discusses the potential threats to the validity of the bibliometricanalysis conducted in this study, following the guidelines proposed by [114].
2.4.1 Internal Validity

Scopus, the largest database of peer-reviewed scientific literature, was used tomitigate internal validity threats. A search string was defined to retrieve relevantpublications, and the results were validated with a small set of known relevantworks to ensure accuracy. However, some relevant studies might not have been

2.4. THREATS TO VALIDITY 51
captured due to potential misclassification within the database or inherent limi-tations of the search string.Additionally, the keyword extraction process threatens internal validity, askeyword grouping and classification inaccuracies could skew trend analyses. Tomitigate this, keyword grouping was conducted collaboratively by multiple au-thors to enhance objectivity and consistency.

2.4.2 External Validity

This study focuses exclusively on automated GUI testing within the Scopus-indexed literature, predominantly in English. Consequently, publications in otherlanguages or those indexed in different databases may not be represented, poten-tially limiting the applicability of the findings to the global research landscape.Future studies could incorporate additional databases and languages to providea more comprehensive view of the field.Regarding the replicability of the study, a protocol has been clearly defined,and the entire process has been documented to mitigate this threat. The metadataof the works was used to perform this analysis, mitigating the threat that resultsmay be biased by researchers’ judgment. To gain a deeper understanding ofthe techniques used for automated GUI testing, this work proposes conducting amapping review to establish trends in the area.

2.4.3 Construct Validity

This analysis used a combination of established bibliometric tools, CRExplorerand Biblioshiny, to analyse and visualise the data. These tools are widely recog-nised and validated within the bibliometrics community, ensuring that the mea-sured constructs (e.g., publication trends, author influence) are accurately cap-tured.

52 CHAPTER 2. THIRTHY YEARS OF AUTOMATED GUI TESTING

2.4.4 Conclusion Validity

Using validated bibliometric tools strengthens the confidence in the study’s find-ings. Ensuring transparent documentation of the methodology and analysis pro-cesses reinforces the validity of this study’s conclusion.
2.5 Conclusions
The bibliometric study of automated GUI testing over the past 30 years revealsa dynamic and evolving field that has grown significantly in response to the in-creasing complexity and variety of software systems. Publications have increasedcontinuously, with exponential growth observed in the last decade, suggestingthat this trend is likely to continue.The analysis exposes the transformation in automated GUI testing method-ologies. The decline in capture-and-replay techniques has paralleled the rise ofmore sophisticated approaches using visual recognition, exploration, and AI capa-bilities. This evolution reflects broader technological shifts, particularly evident inthe expanding focus on mobile and web testing domains. These changes demon-strate how testing strategies have adapted to meet modern software developmentneeds.Collaborative efforts, particularly in Europe, and funding from prominent agen-cies such as the European Commission and the National Natural Science Foun-dation of China have driven much of the recent progress. However, limited cross-border collaboration and a concentration of highly productive authors suggestopportunities to broaden engagement within the global research community.Finally, a repository8 was developed, listing all the 744 referenced papersand further bibliometric results. This repository provides access to the curateddataset, further enhancing the study’s replicability. This study demonstrates theevolution of automated GUI testing over three decades, revealing key researchtrends and highlighting promising directions for AI integration in future work.

8Available at: https://gui-testing-repository.testar.org

https://gui-testing-repository.testar.org

3
TESTAR

"Beware of bugs in the above code; I have only proved it
correct, not tried it."

Donald E. Knuth, Correspondence to Dr. P. van Emde Boas
testar1 is an open-source tool that carries out automated testing withoutthe need for scripts, falling into the scriptless GUI testing tools category. Itimplements a scriptless approach, meaning the test cases do not have to bedefined prior to test execution. Instead, each test step is generated during thetest execution based on the actions available at that specific time and state ofthe GUI.The underlying principle of testar is straightforward: generate test sequencesof (state, action)-pairs by starting up the SUT in its initial state and continuouslyselecting an action to bring the SUT to another state. The action selectioncharacterises the most fundamental problem of intelligent systems: what to do

next. The challenging parts are optimising the action selection to find faults andrecognising a faulty state when it is encountered with an oracle.A testing session with testar is illustrated in Figure 3.1. After starting up the
1Official website: https://testar.org/

53

https://testar.org/

54 CHAPTER 3. TESTAR

SUT, the tool goes into the loop of continuously selecting and executing an actionto bring the SUT from one state to another state until some stopping criterionhas been met, after which the SUT is closed. In the following sections, each ofthe basic steps of the approach will be described:
• Obtaining the GUI state (Section 3.1).
• Deriving the set of actions that a potential user can execute in that specificstate (Section 3.2).
• Selecting and executing one of these actions (Section 3.3).
• Evaluating the new state to find failures (oracles) (Section 3.5).
Start Start SUT Obtain GUI

State Derive Actions Select Action

Execute ActionEvaluate
Oracles

Yes

More
Actions?

More
Sequences?

No

End
NoYes

Figure 3.1: testar testing cycle
These steps are implemented with a modular design, as depicted in Figure3.2, allowing testers to enhance and customise them as needed. This design offersseveral advantages, such as scalability, ease of maintenance, and more flexibility.Section 3.4 introduces the representation of states and actions, explaining howconcrete and abstract identifiers are constructed to identify GUI states and actionseffectively. Subsequently, Section 3.6 describes the runtime execution of testarand the execution of the test sequence loop (as shown in Figure 3.1). This Sectionalso explains how new Action Selection Mechanisms (ASMs) can be added toenhance the exploration process by prioritising or selecting actions strategically.Section 3.7 discusses a test run’s outputs, including logs, screenshots, and HTMLreports that support fault analysis and reproducibility.

3.1. OBTAINING THE GUI STATE 55

TESTAR
Protocol

SUT
Integration

Action and
State Storage

Action
Selector

State
Evaluator

Figure 3.2: testar modular architecture
The chapter further elaborates on advanced functionalities. Section 3.9 ex-plores action filtering techniques, such as regular expressions, click-based filter-ing, and programmatic customisation, to optimise the testing process. The chapterconcludes with Section 3.10, where industrial case studies demonstrate the prac-tical application and effectiveness of testar, outlining the phases for setting upTESTAR for a SUT, providing a structured, systematic approach to deployment.

3.1 Obtaining the GUI State

A GUI can consist of a wide range of widgets. Examples of these are in Table 3.1.These widgets are structured in a hierarchy called the widget tree. Figure 3.3displays an example of a widget tree. Each node corresponds to a visible widgetand contains widget properties like its type, position, size, title, and whether itis enabled.These trees and properties can be defined as plugins for the interaction withthe SUT as shown in Figure 3.2, in various ways:

56 CHAPTER 3. TESTAR

Windows Menus Controls• Main window• Child windows• Popup windows• Dialog windows
• Menu bars• Dropdown menu• Context-aware menu

• Buttons• Textboxes• Links• Radio buttons• Checkboxes• Dropdown select boxes• Sliders• Tabs• Scrollbars
Table 3.1: Examples of widgets of which a GUI can be composed.

Process

Window Menu

MenuBar Pane

... Button ...

MenuItem MenuItem MenuItem ...

Role MenuItem
Title Chapter

Enabled False
Rec [x:523.0 y: 250.0 w:230.0
Next "Programme" menu item

Figure 3.3: The state of a GUI as a widget tree.
• accessibility APIs, which allow computer usage for people with disabilitiesat the Operating System level (i.e. UIA Automation for Windows, ATK/SPIfor Linux, NSAccesibilty for MacOS). These accessibility APIs allow us togather information about the visible widgets of an application and givetestar the means to query their property values.
• programmatic APIs, or automation frameworks, like the Selenium Web-driver [53] at the browser level, or Appium [115] for iOS, Android, and Win-dows.
• language specific APIs like the Java Access Bridge for existing Java objectsat the Java Virtual Machine level.
• SUT specific APIs are an option: a first experience with it has been doneby testing a smart home through a RESTful API with testar [116].

3.1. OBTAINING THE GUI STATE 57
• Image recognition [117] can be used as a platform-independent way to ob-tain the state of the GUI from the screenshots. However, image recognitionalgorithms are less accurate and give less information than the technicalAPIs.
In the current2 implementation of testar there are plugins for detecting thestate using the UIA Automation for Windows, Selenium Webdriver for web appli-cations and Appium for Android. For example, the UIA API gives access to around170 attributes or properties [52], enabling the retrieval of detailed informationsuch as:
• The role of a widget: whether it is a button, checkbox, dropdown, etc.
• The path that the widget has in the stack of widgets on the screen, i.e. thewidget tree.
• The size which describes a widget’s rectangle (necessary for clicks andother interactions).
• Whether a widget is enabled, as interacting with disabled widgets may notbe meaningful.
• Whether a widget is focused (has keyboard focus) so that the tool knowswhen to type into text fields.
• Attributes such as title, help and other descriptive attributes are essentialto distinguish widgets from each other and give them an identity.
All these properties and their values are stored in the widget tree. In thisway, these trees capture the current state s of the GUI like the example fromFigure 3.3.Consider a widget tree that represents a specific state s. The nodes of this

widget tree are the widgets visible on the GUI in that particular state s. Thisset of nodes is denoted as W (s) = {w1, w2, . . . , wk}, where each wi representsa widget such as a button, slider, text field, or menu. The edges of the tree are
2Plugins for Linux using ATK/SPI, and for macOS using NSAccesibilty exist in older versions.

58 CHAPTER 3. TESTAR

defined by the parent-child relationships: each child widget is displayed withinthe screen area occupied by its parent widget. The set of edges is denoted by
E (s). A directed edge (wi, wj) ∈ E (s) exists when wi ∈ W (s) is the parent widgetof wj ∈ W (s) in state s.The state is further defined by the values of all properties associated withthe widgets. For a widget w ∈ W (s), P(w, s) denotes the set of all properties
{w.p1, w.p2, . . . , w.pm} (e.g. role, title, position, enabled)All the properties P(w, s) obtained by testar in state s for the widgets in
W (s) through a plugin for interacting with the SUT are associated with the testarrepresentation of States, Widgets and Actions. This is done through Tags and isdepicted in Figure 3.4.

TESTAR CORE

«interface»
Taggable

«interface»
Widget

«interface»
Action

«interface»
State

«interface»
Tag

Tags

Accessibility
APIs

Automation
Frameworks

Language
Specific APIs

SUT Specific
APIs

Image
Recognition

Figure 3.4: Taggable classes: State, Widget and Action.
Taggable classes implement the Taggable interface, which means that Tagscan be added to their instances. In testar, the interfaces State, Widget and Ac-tion are taggable, and the Tags are pairs of: (property name, value). Propertiesthat are common to all widgets are defined in a final class Tags. The proper-ties specific to an implemented API technology or automation framework (such

3.1. OBTAINING THE GUI STATE 59
as Windows UIAutomation, Selenium Webdriver, ATK/SPI) are defined in specificAPI-Taggable final classes (UIATags, WebTags, AtSpiTags). We can use the getmethod to read the properties of taggable objects (i.e. an instance of the classes
State, Widget and Action) as follows:

taggableObjectName.get(Tags.PropertyName)

In Example 3.1 there is an if-statement in line 1 whose guard checks whethersome action’s role tag equals LeftClick. Similarly, in line 3, the href tag ischecked for some example-text that we want to act upon in the if-statement.
1 if (action.get(Tags.Role).equals("LeftClick"))
2 {.....}
3 if (widget.get(WebTags.Href).contains("example-text"))
4 {.....}

Example 3.1: Obtaining property values
Obtaining the state, i.e. extracting the properties of the widgets and buildingthe widget tree, is done automatically after each executed action. For Windowsdesktop applications, testar monitors the CPU usage of the SUT process to figureout when the SUT has finished executing a GUI action. However, the widget treeis sometimes extracted before the GUI has finished updating, resulting in a partialwidget tree. If the partial tree contains interactive widgets, actions are derivedfor them. If not, a default action (such as executing an NOP action or pressing theESC key) will be executed, and testing will continue by deriving the state again.testar can be configured to change the waiting time between the executed actionand the next widget tree construction.For Web applications and the Selenium Webdriver framework, testar offersthe possibility to use a JavaScript command document.readyState to wait untilthe web page has been loaded. However, this has the disadvantage of waiting forweb pages to load their ads. Moreover, collaboration with partners has revealedthat this functionality is insufficient in some cases, as the web document mayindicate it is ready while the internal server is still processing data.

60 CHAPTER 3. TESTAR

3.2 Deriving a set of actions
Once the GUI’s current state s is obtained, a set of available actions that a usercan choose from in that specific state can be derived, which is suitable for mostapplications. To achieve this, a set of actionable widgets is first identified (seeFigure 3.5). Actionable widgets are defined as widgets on which actions can beperformed because they:• are enabled• are unblocked• are not blocklisted or filtered by a tester (see Section 3.9)• expect user interaction, i.e.:

– widgets that are clickable (left or right mouse button);
– widgets that are typable;
– widgets that are draggable or slidable.For example, considering a scenario in which state s includes a clickablebutton widget b ∈ W (s) that is enabled and unblocked3: if a tester did notblocklist or filter this widget, then this means there exists a possible action thatcan click on that button (click(b)). Likewise, for an actionable typeable text fieldwidget t ∈ W (s), it means there exists a possible action that can click to focusand type into that text-field (type_into(t)).To derive the actions that can be executed in a certain state s, testar loopsthrough the widget tree and collects those actionable widgets. To create ex-ecutable actions from these actionable widgets, testar converts them into im-plementations of the Action interface (see Figure 3.4). An execution scheme forbutton b ∈ W (s) from above is:1. Determine the position on the screen that falls inside the widget;2. Move the mouse cursor to that point;3. Press the mouse down;4. Release the mouse.The movement of the cursor and pressing and releasing the mouse buttoneach have their own implementation of Action, called MouseMove, MouseDown

3More specifically: b.(Tags.Enabled) == true and b.(Tags.Blocked) == false

3.2. DERIVING A SET OF ACTIONS 61

Figure 3.5: Deriving actions from actionable widgets.
and MouseUp, respectively. A fourth implementation of Action is introduced in theform of the CompoundAction class. This class aggregates sequences of actionsinto an Action. Example 3.2 shows how to create an action to click a button.

1 public Action leftClickAt(Position position) {
2 return new CompoundAction.Builder()
3 .add(new MouseMove(position), 1) // Move mouse to position
4 .add(MouseDown, 0) // Press mouse button
5 .add(MouseUp, 0) // Release mouse button
6 .build();
7 }

Example 3.2: Create action for button b ∈ W (s)
When the current state is obtained using the Selenium WebDriver imple-mentation, in addition to interacting with the browser through the actions de-scribed above, a set of actions representing JavaScript commands executable

62 CHAPTER 3. TESTAR

through the Selenium WebDriver interface can also be derived (i.e., calling Web-Driver.executeScript(JScommand)).These JavaScript commands allow us to interact with the web elements thatexist in the current web document using DOM API web methods and existing ele-ment attributes to find them or interact with the browser window tabs themselves.testar predefines a couple of JavaScript commands to define useful actions duringtesting. These are defined internally as calls to WebDriver.executeScript:
• WdCloseTabAction to close a tab.
• WdHistoryBackAction to simulate a click on the history back button in abrowser
• WdSubmitAction to simulate a click on a submit button in a detected web-form
• WdAttributeAction to find a web element by its unique identifier andwrite a value in the desired attribute using a pair (key, value).

It is possible to change or add new actions on the tester’s need. As an example,consider WdAttributeAction. A web element can be searched and retrievedwithin a web document using one of its web attributes. With the focus on thedesired web element, certain DOM API web methods enable reading or writinga value to one of the multiple attributes of the web element. This is defined in
WdAttributeAction as follows:

1 public WdAttributeAction(String elementId, String key, String value) {
2 WebDriver.executeScript(
3 String.format(
4 "document.getElementById(’%s’).setAttribute(’%s’,’%s’);",
5 elementId, key, value));
6 }

Example 3.3: Create a custom WebDriver action using a JavaScript command andthe executeScript interface

3.3. SELECT AND EXECUTE ONE OF THESE ACTIONS 63
Another type of action being derived includes bringing the SUT to the fore-ground or terminating undesired processes. To achieve the first objective, nativecalls invoke the main window to the foreground. If this is not possible for anyreason, keyboard commands such as Alt + Tab are utilised. To terminate unde-sired processes, the existing processes in the SUT’s environment are constantlymonitored after each action. Moreover, for web applications, it is necessary toensure not only that the desktop browser remains in the foreground but also thatthe URL domain of the SUT being tested retains focus, preventing the explorationof undesired web pages.The set of actions derived in state s is denoted as A(s).

3.3 Select and execute one of these actions
In state s, a set of actions A(s) is derived and made available for execution. Oneaction, denoted as a, is then selected and executed. In testar’s default mode,this selection is performed randomly. Upon executing the action a, the systemtransitions to a new state s′. In this manner, test sequences are generated asfollows:

s →a s′ →a′ s′′ → . . .

until some stopping condition holds. Such stopping conditions can be, for example,when a failure was found or when a configured number of actions have beenselected and the test sequence has reached its predefined length. To achieve this,the number of sequences to generate (number of sequences) and the number ofactions to select for creating each sequence (number of actions) can be definedduring the startup of testar.
3.4 Representation of States and Actions
A unique and stable identifier must be assigned to each state and action tofacilitate their recognition and comparison. This can be achieved by using the

64 CHAPTER 3. TESTAR

attribute or property values associated with each widget in the widget tree ofa specific state s. A concrete identifier is obtained if all properties are used.However, it is not necessary to use all properties; instead, a subset can beselected to create abstract identifiers.A concrete state encompasses all widgets and their properties, capturing theprecise status of the SUT. In contrast, an abstract state refers to a high-levelrepresentation that simplifies this information by focusing on a relevant subset ofproperties.To illustrate this concept of abstraction, consider that concrete actions canbe Press key ’q’ or Press key ’w’ while both actions are represented abstractlyas Press key. Hence, certain actions may be considered equivalent and can beexecuted interchangeably. In the case of pressing a key, the specific key that ispressed may not be important at a high level of abstraction. Similarly, an abstractstate depends on the attributes selected from each widget.When selecting properties for the identifier, it is important to ensure they arerelatively stable. For example, a window’s title is quite often not a stable value(opening new documents in a text editor will change the title of the main window),whereas its help text is less likely to change. However, the role is a more stableproperty.To identify a GUI state s, all widgets w ∈ W (s) are considered, and a subsetABS_prop of stable properties is selected from the complete set of properties ofall widgets on the screen. This subset ABS_prop defines what is referred to asan abstraction function PABS_prop(w, s) ⊆ P(w, s), such that:
PABS_prop(w, s) = {w.p | w ∈ W (s) ∧ p ∈ ABS_prop}

The abstraction function is configurable in the test settings of testar. By default,ABS_prop is defined as role, title, position, enabled.A hash value generated from these properties is stored instead to managethe potentially large number of property values. testar recursively calculatesa unique hash for each widget based on the concatenation of the mentionedattributes. It then combines the hashes for the widgets and uses them to calculatethe unique hash for the state. Of course, this could lead to collisions. However,

3.5. EVALUATE THE NEW STATES TO FIND FAILURES (ORACLES) 65
for the sake of simplicity, it is assumed that this scenario is unlikely and doesnot significantly impact the optimisation process.The same approach can be applied to represent actions. However, each actiontype may have parameters. For example, a click action has two parameters:the button (e.g., left or right) and the clicking position (x and y coordinates).Action identifiers need to also take these parameters into account. The methodof calculation is as follows: for an action identifier, for an action identifier, testaruses the identifier of the current state and concatenates it with a hash generatedfrom the details of the action. These details include the mouse cursor position,the key typed, and other relevant information. A unique hash is then computedbased on this concatenation.For example, to create a unique identifier for a button click, a combination ofthe button’s property values can be used, such as its role, title, help text, or its
path within the widget hierarchy. To create a unique identifier for a text field, ifthe action identifier incorporates the entered text, the action that types the text
foo will have a different identifier from the action that types boo.
3.5 Evaluate the new states to find failures (oracles)
A test oracle is a mechanism that distinguishes between a passed or failed testcase. As explained in the previous section, scriptless testing generates the testsequence one step at a time during execution. The test oracles verify each statevisited. This means that testar oracles assign verdicts to states, referred to as
online or on-the-fly state oracles. Without specifying anything, testar can detectthe violation of general-purpose system requirements or implicit oracles, likethose stating that the system should not:• crash, i.e. an unexpected close,• freeze, i.e. get in an unresponsive state,• contain any suspicious titles in any of the GUI widgets. 4Suspicious titles can be easily specified using regular expressions, as shown inExample 3.4.

4In newer versions, these are referred to as "suspicious tags."

66 CHAPTER 3. TESTAR

SuspiciousTitles = .*[eE]rror.*
|.*[eE]xception.*

Example 3.4: Regular expression for suspicious titles
When this oracle is active, each state s visited during the generation of the testsequence is checked to determine whether the patterns defined by the regularexpression of the suspicious titles appear in the widgets composing W (s). A goodexample from web testing could be defining the HTML error codes in suspicioustitles to detect dead links that throw 404 Not Found error.testar also allows the user to define more sophisticated application-specifictest oracles programmatically in the SUT-specific testar protocol in Java code.Considering an example that checks for a security vulnerability, the OWASP5lists a vulnerability for Information exposure through query strings in url. Whensensitive data is passed to parameters in the URL, attackers can easily obtainsensitive information such as usernames, passwords, tokens (authX), databasedetails, and other confidential data. This vulnerability cannot be resolved simplyby using HTTPS; instead, sensitive data should be prevented from appearing inthe URL. Example 3.5 shows an oracle capable of detecting these vulnerabilities.In line 1, a variable inputTextData is defined to store all text entered intotext fields during executing actions (lines 3-6) to create test sequences. Theoracle (lines 10-14) checks in each state whether elements from inputTextDataare exposed in the current URL of the SUT.Besides the online state oracles, testar can also interact with the process ofdesktop applications, listening to the buffers of its process in the System outputand Error output of the operating system. This enables the tester also to definebuffer oracles enable to find suspicious output coming from the processes, similarin the way that it checks suspicious titles. Moreover, the output of the processesis stored in logs for subsequent offline manual inspection to identify anomalies.

5Open Web Application Security Project, https://www.owasp.org

https://www.owasp.org

3.6. RUNTIME EXECUTION AND MODES 67
1 Set<String> inputTextData = new HashSet<>();
2
3 method executeAction(Action action){
4 if (action.get(Tags.Role).equals("clickTypeInto")){
5 // Save the inputted text into the set inputTextData
6 inputTextData.add(action.get(Tags.Desc));
7 }
8 }
9

10 method getVerdict(State state){
11 for(String dataText : inputTextData){
12 if(state.get(WebTags.Href).contains(dataText)){
13 return new Verdict(Verdict.SEVERITY_WARNING,
14 "Be careful with sensitive information and HTTP GET method");
15 }
16 }
17 }

Example 3.5: Programmatic Java oracle

3.6 Runtime execution and modes

The entry point of the testar Java runtime process is the Main class. This classhas access to the test.settings configurations file, defined by the tester. Be-sides settings like number of sequences, number of actions and Suspicious
Titles, the testers can define their own specific testar protocol class that needsto be used for testing. This can be specific for a SUT, a kind of test or just for thetester.A testar protocol is a Java class that is responsible for executing the differentparts of the test sequence loop as depicted in Figure 3.1. The code in the protocolclass gets compiled at runtime. The SUT-, test- or tester- specific testar protocolsare at the bottom of an inheritance tree as shown in Figure 3.6.The Desktop and the WebdriverProtocol add a default implementation forspecific platforms. Action filtering as it will be explained in Section 3.9 is done

68 CHAPTER 3. TESTAR

 Platform Independent Protocols

Platform Specific Protocols

WebdriverProtocol

DesktopProtocol

 Defines the Testar testing cycle

DefaultProtocol

ClickFilterLayoutProtocol

RuntimeControlsProtocol

 SUT-, Test- or Tester- Specific Protocols

SUT1

SUT2

TEST1

TEST2

AbstractProtocol
+ getState(): State
+ deriveActions(State): Action[]
+ selectAction(State, Action[]): Action
+ executeAction(State, Action): Boolean
+ getVerdict(State): Verdict

Figure 3.6: Layers of the different testar protocols
by the The ClickFilterLayerProtocol class.The DefaultProtocol class is the class that contains all the code that actuallyexecutes the test sequences. It implements the interface as defined in the Ab-stractProtocol class that contains methods for executing the different parts of thetest sequence loop (conform Figure 3.1 and the previous four sections):

• getState() (from Section 3.1),
• deriveActions() (from Section 3.2),
• selectAction() and executeAction() (from Section 3.3),
• getVerdict() (from Section 3.5).
Finally, the RuntimeControlsProtocol class offers controls that allow for themanipulation of testar’s runtime modes during execution. There are currentlyfour modes of runtime execution:
• The spy mode can be used to inspect the widgets of the SUT and see all

3.7. TEST RESULTS 69
the information that testar can extract. In this mode, actions can be filtered(see Section 3.9).

• In generate mode the test cycle depicted in Figure 3.1 is executed.
• The record mode can be used to manually interact with the SUT and storethe actions into test sequences.
• The replay mode permits replaying an existing test sequence.
This flexible architecture allows the addition of new Action Selection Mecha-nisms (ASM) by implementing the ActionSelector interface (see Figure 3.7). Themost used ASM is Random (RND) [118, 119]: arbitrarily selecting one action outof all possible actions in the current state. Another known ASM is Least executed

actions (LEA) [120], or the frequency-based algorithm [121] using Q-learning, se-lecting the least explored actions from the current state.
UseTestar Protocol

+ getState(): State
+ deriveActions(State): Action[]
+ selectAction(State, Action[]): Action
+ executeAction(State, Action): Boolean
+ getVerdict(State): Verdict

«interface»
ActionSelector
+ selectAction: Action

Extends

Random

Extends

LEA

Figure 3.7: Extending testar with different ASMs.

3.7 Test Results
As explained in previous sections, a testar run results in a specified number oftest sequences with a specified number of actions that have been executed. Foreach of the resulting sequences, the following information is saved in a directorywith a name composed of a timestamp and the name of the SUT:• Logs that include all the executed actions, the target widget and the dif-ferent states of the test sequence, as well as a timestamp that can helpsynchronise results with other applications.

70 CHAPTER 3. TESTAR

• Screenshot images that capture the GUI state after each action in a se-quence. For this, the coordinates of the states and widgets obtained throughthe API are used.• HTML reports to help users follow the flow of executed actions. Theycombine the API textual information and the visual screenshots to displaythe different sequences.• Sequences replayable by testar in replay mode (.testar format). Thesesequences are classified in directories according to the final verdict ob-tained from the defined oracles (i.e. unexpected close, unresponsive, sus-
picious titles). These sequences consist of a Java object stream that savesthe object information of states, actions and widgets.All the results of a testar run are saved in a directory with a name composedof a timestamp and the name of the SUT. An index log is created during thefirst testar run and is updated with each sequence execution. This index isparticularly useful for supporting the integration and synchronisation of testarwith other applications. Timestamps can be used to locate all testar sequencesby navigating to the directory with the corresponding timestamp (see Figure 3.8).

Timestamp run + Sequence

Timestamp run + Sequence

Timestamp run + Sequence

Timestamp run + Sequence

Index {t, s, r}

Index {t, s, r}

Index {t, s, r}

Index {t, s, r}

Index {t, s, r}

...

...

...

Index.log
Timestamp + sequence + results

Sequence Results
Logs + Screenshots + HTML report + Sequences.testar

Figure 3.8: Output Structure for Test Results

3.8. ADVANCED DERIVE ACTIONS 71
3.8 Advanced Derive Actions

As explained in Section 3.2, after obtaining the GUI’s current state, a set of actionscan be derived, from which one will be selected. It is important to note that thelarger the set of available actions, the greater the sequence space, which canincrease the time required to search for crashes.Ideally, the selection should be limited to a small set of actions most likely toexpose faults. Therefore, the challenge is to keep the search space as small aspossible while ensuring it is sufficiently large to find faults.
Deriving sensible actions: This strategy involves generating a set of sensibleactions, ensuring that the actions are appropriate for the widgets on which theyare executed: buttons should be clicked, scrollbars should be dragged and textboxes should be filled with text. Furthermore, the focus is on exercising onlythose widgets that are enabled and not blocked. For example, in a window that isblocked by a message box, it would not make sense to click on any widget behindthe message box. Since the box blocks the input, it is unlikely that any eventhandling code (with potential faults) will be invoked. Putting more intelligenceinto action derivation will reduce the likelihood of selecting uninteresting actionsduring the action selection process.
Deriving top-level actions: Widgets at the top of the layout hierarchy aremore likely to lead to actions that trigger state transitions. Elements such asmenus or emerging windows within the SUT typically contain and are designedto facilitate the functional flow of the application. To favour top actions, testarimplements a prioritisation approach based on an internally defined propertycalled z-index. The z-index of widgets presents their position in the stack ofwindows. The window with the highest z-index is on top. This gives the possibilityof deriving actions from top-level widgets.
Deriving new actions: Another prioritisation approach for faster GUI explo-ration is comparing the available actions in the current state and the previousstate to detect which are new. Suppose an action requires multiple steps, such asopening the File menu and selecting a menu item. In that case, this prioritisationincreases the likelihood of triggering new actions after opening the File menu.

72 CHAPTER 3. TESTAR

3.9 Filter Actions

Besides telling testar the actions it can do, it is also important to tell whatit should not do. Action filters can be defined for this purpose. Letting testarrandomly interact with widgets on a GUI could trigger hazardous operations likedeleting or overwriting files, possibly damaging the operating system. A wayto safeguard this is simply running test monkeys in a safe environment, like avirtual machine that can be easily recovered or a sandbox. Filtering actionablewidgets remains helpful to ensure the focus is on actions contributing to testingthe SUT. For example, actions that minimise/maximise a window, close the SUTor open a Help menu that goes to a website outside the SUT are not interestingfor testing. Filtering those will reduce the search space and save time during thetest execution.Action filters can also define specific areas for scriptless testing, such asfiltering different menu options or directing the tool to test a particular area ofthe SUT. Action filtering with testar can be performed in three different ways,each of which will be discussed next.
Filtering with regular expressions. Similarly to using regular expressions fordefining oracles to detect suspicious titles (see Example 3.4), regular expressionscan also be used to filter widgets whose titles match a specified pattern. Forexample:

WidgetTitleFilter = .*[cC]lose.*
|.*[mM]inimi[zs]e.*
|.*[sS]ave.*
|.*[pP]rint.*

Example 3.6: Regular expression to filter widgets
When this filter is active, in each state s visited while generating the test se-quence, the title property w.title of all widgets w ∈ W (s) are matched againstthe regular expression. Actions on that widget will not be considered in case of amatch. The WidgetTitleFilter mentioned above serves as a general-purpose

3.9. FILTER ACTIONS 73
filter pattern that applies to almost all SUTs. It prevents actions such as closingor minimising the application under test, saving files that could lead to hazardousoutcomes, and accessing the system’s print menu for printing documents.

Using the click-filter. testar click-filter functionality allows testers to filterwidgets just by clicking on them through the GUI of the SUT during spy-mode.The filtered widgets are stored in a blocklist, rendering them non-actionable,meaning no actions will be derived for them. Filtering of widgets can be undonein the same manner, even if the filtering was performed using a regular expressionmatch.
Accurate filtering relies on the uniqueness of the abstract identifiers, as de-tailed in Section 3.2. Selecting the right level of abstraction and precision isimportant to guarantee uniqueness. For example, consider an OK button: if the

role (i.e. button) and title (i.e. OK) properties are used for the abstract identi-fier, it would result in filtering all OK buttons across all the states of the SUT.Including the path property would make the filtering more precise, and the pathof the button in the widget tree will most likely differ across different states.
Programmatic filtering. The third and most flexible way to filter actionsis by programming the desired behaviour in the SUT-, test- or tester- specifictestar Java protocol. In some SUTs, the configured set of properties may not besufficient for proper filtering of the existing widgets, for example, because theyuse a different set of accessibility properties. Then, programmatic filtering is thebest option.
testar allows customising all methods within its execution flow, enabling usersto define specific action filtering based on the appropriate properties.
For example, in web applications, specific properties, such as href, helpText,or class, can be particularly useful for filtering widgets. In the deriveActions()function of a specific testar protocol, actions can be filtered based on customconditions. For instance, as demonstrated in Example 3.7, widgets with undesiredURLs in their href tag property can be excluded from action generation.

74 CHAPTER 3. TESTAR

1 for (widget: state)
2 if (widget.get(WebTags.Href).contains("Undesired-URL"))
3 continue; // skip this widget
4 else
5 // derive actions as defined

Example 3.7: Filtering widgets programmatically

3.9.1 Comparison of Scriptless GUI Testing Tools

This section provides a comparison between existing scriptless GUI testing tools,highlighting the main differences. The tools included in the comparison wereselected based on the following criterion: they must be scriptless testing toolsusing dynamic analysis during automated GUI exploration.Table 3.2 presents a detailed comparison of scriptless testing tools, summaris-ing key aspects such as the implementation language, license, types of SUTs thatcan be tested with the tools, methods of ASMs during test sequence generation,models used or inferred during testing, oracles employed for fault detection, andactions considered as components for the sequences.Most of the compared tools are implemented in Java. This predominancemight be due to the well-established Java libraries for GUI handling and theirability to run across multiple platforms. Similarly, the majority of the tools arecurrently open source. The tools differ substantially in the types of SUT theytarget. Murphy, for instance, is specific to Windows applications, whereas GUIDriver and Augusto focus primarily on Java-based GUIs. By comparison, testarprovide broader support (Windows, Web and Java) with respect to the other tools.This flexibility better accommodates organisations and researchers working withheterogeneous technology stacks, as it removes the need to switch tools whentesting different types of software.

3.9. FILTER ACTIONS 75
Ta

bl
e

3.
2:

testa
rcom

paris
onw

ithot
herto

ols
To

ol
Im

pl
.

Li
ce

ns
e

SU
T

Ty
pe

s
G

U
IL

ib
ra

rie
s

Ac
tio

n
Se

le
ct

io
n

G
U

IA
ct

io
ns

M
od

el
In

fe
re

nc
e

O
ra

cl
es

TE
ST

AR
Java

OS
Wind

ows,
Web,

Java
(AWT

,SWT
,

Swin
g,FX

)UIAu
toma

tion,
WebD

river,
Java

Acces
sBri

dge
Rand

om,
progr

amma
ble,

mode
l-bas

ed,
Q-lea

rning
Mous

eclic
ks,

texti
nput,

drag-
and-d

rop,
keyb

oard
event

s
State

graph
s,

config
urabl

ewid
get

prope
rties

Crash
es,fr

eezes
,

suspi
cious

widg
et

prope
rties,

progr
amma

ble
M

ur
ph

y
[122]

Pytho
nOS

Wind
ows

UIAu
toma

tion,
imag

e
recog

nition
Rand

om,s
tate

mode
l-bas

ed,
progr

amma
ble

trigge
rs

Mous
eclic

ks,
texti

nput
State

graph
s,dat

a
value

sabs
tracte

d
from

state
s

Crash
es,fr

eezes
,

progr
amma

ble
G

U
I

D
riv

er [123]
Java

NA
Java

(AWT
,

SWT, Swin
g)

Jemm
yJav

a
librar

y
Rand

om,s
tate

mode
l-bas

ed,u
ser

actio
nsca

pture
dinto

mode
l

Mous
eclic

ks,
texti

nput
State

graph
s,

actio
nsde

fines
tate

abstr
actio

n,da
tain

trans
itions

Crash
es,fr

eezes
,

excep
tions

,erro
rsin

syste
mou

tputs
Cr

aw
lja

x/
AT

U
SA [124]

Java
OS

Web
WebD

river
Ksho

rtest
paths

algor
ithm

Click
actio

ns
only

State
-flow

graph
of

DOM
state

s
Clien

t/serv
er-sid

e
error

s,dea
d

clicka
bles,

incon
sisten

t
back-

butto
n

W
eb

m
at

e
[125]

NA
Comm

ercia
lWe

b
WebD

river
Inferr

ings
tatem

odel,
Dijks

tra’s
short

est
path

Mous
eclic

ks,
hover

ing,t
ext

input
heuri

stics
Finite

state
autom

aton,
multi

ple
state

abstr
actio

n
optio

ns
Cross

-brow
ser

differ
ences

,cras
hes,

HTTP
/JSe

rrors,
progr

amma
ble

G
U

IT
AR

[29]
Java

OS
Java

JFC,
Java

SWT,
Web,

UNO
(Open Office

)
Java Acces

sibili
ty,

WebD
river,

UNO
Acces

sibili
ty

Grap
hmo

del-b
ased,

config
urabl

etrig
gers

Invok
eGU

I
API-l

ibrary
event

s
GUIe

vent
flow

graph
Crash

es,
State

Verifi
er,

progr
amma

ble
Au

gu
st

o
[126]

Java
OS(I

BM
Func

tiona
l

Teste
r)

Java
(AWT

,
SWT, Swin

g)
IBM

Func
tiona

l
Teste

r
Dept

h-firs
tand

mode
l-bas

ed
Mous

eclic
ks,

texti
nput,

comp
lexa

ction
sGUIe

vent
flow

graph
,wid

get
prope

rties
Func

tiona
lorac

les,
non-c

rashi
ngfa

ults
Au

to
-

Bl
ac

kT
es

t
[127]

Java, .NET
OS(I

BM
Func

tiona
l

Teste
r)

Java
(AWT

,
SWT, Swin

g),
.NET

,
Wind

ows,
Linux

IBM
Func

tiona
l

Teste
r,Sel

enium
Rand

om,R
L,sta

te
mode

l
Mous

eclic
ks,

texti
nput,

comp
lexa

ction
sGUIe

vent
flow

graph
,wid

get
prope

rties
Crash

es,ha
ngs,

uncau
ghte

xcept
ions,

asser
tionv

iolati
ons

76 CHAPTER 3. TESTAR

Random exploration constitutes a baseline method, augmented in various toolsby state-based models (GUI Driver, Murphy, Crawljax) and advanced algorithms(K shortest path in Crawljax and Dijkstra’s in Webmate). testar and Murphy fur-ther support programmable triggers for higher customizability. Moreover, testarand AutoBlackTest use Reinforcement Learning for action selection, with a rewardfunction designed to encourage exploration of less-frequent actions. In practice,this means each action gains a higher reward the less often it has been executed,aiming to steer the exploration towards rarely visited states.While all tools include basic mouse clicks and text input capabilities, thereis a variation in the complexity of supported actions. testar, Murphy and Au-toBlackTest incorporate dragging, dropping or keyboard events in addition tostandard interactions. Furthermore, most tools construct some representation ofthe state, typically in the form of a state or event-flow graph. These represen-tations capture transitions triggered by GUI events. While abstraction methodsdiffer (for instance, Murphy and GUI Driver encode data values or abstract prop-erties, whereas Webmate and testar offer multiple levels of state abstraction), theconsensus is clear: some form of model inference is incorporated to the scriptlessGUI testing approach.Finally, the oracle mechanisms (to detect faults) consistently check for crit-ical issues such as crashes, exceptions and freezes. testar also allow for pro-grammable extensions, enabling verification of specific domain properties or sus-picious GUI elements. Although every solution supports fundamental crash/errordetection, the exact scope and sophistication of these oracles vary, leaving roomfor further research into more comprehensive, automated, or domain-tailored cor-rectness checks.
3.10 Industrial case studies involving TESTAR

The successful transfer of academic results into industry is important. On the onehand, academic research activities should be guided more towards the challengesof industry and solutions to their immediate problems. On the other hand, industrypractitioners should help academics validate their research results within a real

3.10. INDUSTRIAL CASE STUDIES INVOLVING TESTAR 77
industrial context. Technology transfer has always been on the top priority listof the testar project and remains to be. This section summarises collaborationprojects that have been successfully executed over the years.All studies are case-driven and executed following the Methodological Frame-work for Evaluating Testing Techniques and Tools (MFEST3) described in [128].The need for this framework emerged during the execution of the EU-fundedproject EvoTest (IST-33472, 2007-2009, [129]) and continued emerging during theEU-funded project FITTEST (ICT-257574, 2010-2013, [130]). The framework con-forms to the well-known and general guidelines and checklist from case studyresearch [131–134], but has been made specific for evaluating software testingtreatments.MFEST3 outlines different scenarios for conducting and evaluating studies,with increasing dependence on the available information for comparison. Sce-
nario 1 consists of only a qualitative assessment, with insufficient informationfor direct comparison. In this scenario, the number of faults is unknown, errorinjection is not feasible, and no documentation exists to compare it with othertesting techniques or establish a company baseline. Despite these limitations,measurements of effectiveness, efficiency, and subjective satisfaction are collectedthrough semi-structured interviews. Scenario 2 builds on Scenario 1 by incor-porating some quantitative analysis, made possible through the availability of acompany baseline for comparison. Scenario 3 extends Scenario 1 or 2 by in-cluding a quantitative analysis of the Fault Detection Rate (FDR), leveragingaccess to a known set of faults, whether injected or naturally occurring. Scenario
4 includes the elements of Scenario 1 or 2 and adds a quantitative comparisonbetween the test cases generated by the evaluated approach and those in anexisting test suite. Scenario 5 builds on Scenario 4 by incorporating the FDRof the different test suites. Two additional scenarios are described in [128], butthese types of studies have not yet been conducted with testar.In [128], numerous metrics are defined to address research questions related totest effectiveness, efficiency, and subjective satisfaction. The metrics employed intestar studies are listed and numbered in Table 3.3, facilitating cross-referencingwith Table 3.4, which provides a summary of the executed case studies.

78 CHAPTER 3. TESTAR

Table 3.3: Metrics from [128] used in the testar studies.
Effectiveness Efficiency Subjective Satisfaction1. Number of failures 1. Time needed to design the test suites. 1. Reaction cards2. Code coverage 2. Time needed to run 2. Informal interview3. Functional test coverage 3. Lines Of Code (LOC) for setup 3. Face questionnaires4. Number of false positives 4. Time needed for post analysis5. Reproducibility6. Impact or severity of faults

In Table 3.4, the GUI testing-column describes how GUI testing was donebefore the case started (M meaning manual, and CR meaning using Capture &Replay). The scenario-column refers to the scenarios from MFEST3 describedabove. The context/subject-column mentions the project in which the study wascarried out and indicates how many academics (aca) and how many industrialists(ind) participated. The numbers in the ”effectiveness, efficiency, and subjectivesatisfaction”- columns correspond to those in Table 3.3. These industrial casestudies covered different contexts, providing a comprehensive understanding oftestar’s capabilities.testar’s learnability varied depending on the context and prior expertise ofthe testers. Across studies, the early stages of using testar, such as configuringits basic settings and employing predefined oracles (e.g., regular expressions forfault detection), were straightforward. However, challenges emerged when testersattempted to delve deeper into testar’s advanced functionalities. For instance, inthe SOFTEAM study [55], testers required significant training to configure moresophisticated oracles and effective setup action sets.Interestingly, the enthusiasm for learning testar seemed to grow as testersgained more confidence in its capabilities. During the SOFTEAM study, testersreported a deeper understanding of testar’s potential after one month of hands-ontraining. However, they emphasised the need for more detailed manuals tailoredto industrial testers without advanced programming skills. Similarly, the itera-tive development process in the Clave study [57] allowed testers to progressivelyimprove their understanding of testar’s customisation options, creating more pow-erful and context-specific oracles.

3.10. INDUSTRIAL CASE STUDIES INVOLVING TESTAR 79
Ta

bl
e

3.
4:

testa
rCas

eStu
dies

SU
T

Ev
al

ua
tio

n
St

ud
y

M
et

ric
s

Re
su

lts

Comp
any

Platfo
rm

Langu
age/LO

C GUIte
sting Scena

rio Conte
xt/Sub

jects Public
ation Effect

ivenes
s Efficie

ncy Satisf
action

Softe
am

(Larg
e)

Web
PHP (2k)

M
5

FITTE
ST(2

aca,2
ind)

[55]
1,2,5

1,2
1,2,3

Autom
ated

tests
gene

rated
byte

starw
erec

om-
petiti

vewi
thma

nual
tests.

With
custo

mizat
ion

ofact
ionse

lectio
nand

oracl
es,su

bjects
belie

ved
testa

rcou
ldac

hieve
bette

rcov
erage

andf
ault

detec
tion,

savin
gma

nual
testin

gtim
e.

Pro-d
evelo

p
(SME

)
Web

Java
M

1
TEST

OMA
T

(1a
ca,

3
ind)

[56]
1,5

1,2
2

Integ
ration

intoC
Irequ

ireda
djustm

ents.
testa

r
ranfo

r12h
ours

over
4nig

htlyb
uilds

(with
ran-

dom
selec

tionp
rotoc

olan
daco

nfigu
ration

of30
seque

nces
of20

0act
ions),

detec
ting

21fa
ilure

seque
nces

cause
dby

twof
aults

.
Clave

i
(SME

)
Wind

ows
Desk

top
VB

M
1

SHIP
(1

aca,2
ind)

[57]
1,5,4

1,2,3
2

Setup
took

26ho
urs,w

ith10
0min

utes
need

ed
form

anua
llog

inspe
ction

,rep
roduc

tion
and

comp
rehen

sion
ofer

rors.
testa

rde
tecte

d10
critic

alfau
ltspr

eviou
slyu

nkno
wn.

Cap
Gem-

ini
(Larg

e)
and

Prora
il

(Larg
e)

Web
Java (12k)

M
5

OU,U
PV(1

aca,3
ind)

[58]
1,3,6

1,2
1,2

testa
rran

for7
1ho

urs(
192

seque
nces

and
98.08

1act
ions),

findin
g4fa

ilures
unde

tecte
dby

manu
alte

sting
,with

80%
funct

ional
cover

age.
Failu

resin
clude

d:nu
llpoi

nter
excep

tion,
func-

tiona
lfaul

t,and
concu

rrent
modi

ficati
oner

ror,
allra

tedh
ighs

everi
ty.O

nefa
ilure

wasn
otre-

produ
cible.

Kuve
yt

Türk
Bank

(Larg
e)

Web
Many (562k

)M
1

TEST
OMA

T
(2a

ca,
3

ind)
[59]

-
-

2
testa

r’sW
ebdri

verp
rotoc

olwa
sexte

nded
toex-

clude
exten

sions
ofre

sourc
es,s

ucha
sPD

Fs,
and

tore
strict

testin
gto

white
listed

doma
ins

andU
RLs,

avoid
inge

xtern
alpa

ges.
Theg

oal
was

toev
aluat

escr
iptles

stes
ting

and
reduc

e
main

tenan
ceco

stsw
hilei

mpro
ving

testc
over-

age.

80 CHAPTER 3. TESTAR
SU

T
Ev

al
ua

tio
n

St
ud

y
M

et
ric

s
Re

su
lts

Comp
any

Platfo
rm

Langu
age/LO

C GUIte
sting Scena

rio Conte
xt/Sub

jects Public
ation Effect

ivenes
s Efficie

ncy Satisf
action

Pons
se

(Larg
e)

Embe
dded

Wind
ows

VB (>1M
)M

1
TEST

OMA
T

(1a
ca,

3
ind)

[60]
1,6

-
2

testa
rinte

grate
dinto

CI,ru
nning

tests
again

st
night

lybu
ilds,

findin
gfau

ltsm
issed

bym
anua

l
GUIt

estin
gand

scrip
tedte

stau
toma

tion.
Inden

ova
(SME

)
Web

-
M

1
SHIP

,
PERT

EST
(1a

ca,
1

ind)
[61]

1
1,2,3

2
Setup

requi
red3

5lin
esof

code
and

10m
in-

utes.
Oracl

esdi
dnot

requi
rean

yline
sofc

ode,
butju

star
egula

rexp
ressio

nwit
hthe

listo
fun-

want
edlo

calise
dwo

rds.
testa

rdet
ected

two
issue

sdur
inga

one-h
ourt

estse
ssion

.
B&M

(SME
)W

indow
s

Desk
top

Java (240k
)CR

1
FITTE

ST(1
aca,2

ind)
[62]

1
1,2

2
testa

rrev
ealed

null
point

erex
cepti

onsw
hen

minim
izing

them
aine

ditor,
which

wasn
otfun

c-
tiona

llysp
ecifie

d.Th
ecom

pany
saw

testa
ras

comp
lemen

taryt
othe

ircur
rentp

ractic
esfor

im-
provi

ngfa
ultde

tectio
n.

E-Dy
nami

csW
eb

JavaS
cript/

Reac
t

(616k
)M

3
iv4XR

,
IVVE

S
(2

aca,4
ind)

[63]
1,2,

3,
6

1,2,4
1,2

Comp
ared

scrip
tless

(test
ar)an

dscri
pted

(Sele
-

nium
)test

inga
pproa

ches.
Both

tools
were

com-
plem

entar
y,wi

thte
star

excel
ling

inGU
Ifaul

t
detec

tion
abd

high
event

cover
age,

and
Sele-

nium
inpr

ocess
faults

.Se
leniu

mne
edsm

ore
time

forcr
eatin

gtes
tcas

esan
dtes

tarn
eeds

more
time

inev
aluat

ingte
strep

orts.
ING

Mobi
le

(Andr
oid,

iOS)
-

M
4

IVVE
S

(4
aca,3

ind)
[64]

2,3
2

2
Outp

erform
edot

hers
criptl

essto
olsin

cover
age

andm
atche

dscr
ipted

testa
utom

ation
,com

ple-
ment

inge
xistin

gscr
iptsa

ndco
verin

gadd
itiona

l
code.

3.10. INDUSTRIAL CASE STUDIES INVOLVING TESTAR 81
Regarding effectiveness, testar consistently demonstrated its ability to ex-plore diverse GUI paths and detect unique and valuable faults that other ap-proaches, including manual testing and script testing tools like Selenium, did notdetect. For example, in the E-Dynamics study [63], testar uncovered issues thatstemmed from unexpected application states and that were often less visible intraditional testing scenarios. These faults reflected the tool’s strength in explor-ing paths that were less explored and identifying areas of the application thatmay not receive sufficient attention during manual or scripted tests.Furthermore, testar’s complementary nature to other techniques was empha-sised. While scripted approaches (e.g. Selenium or Espresso tests) excelled inverifying common use cases and process flows, testar’s exploratory nature en-abled it to cover broader, less predictable aspects of the SUT. This complemen-tarity underscores testar’s value in enhancing overall testing effectiveness whenintegrated into a diverse test suite.The efficiency of testar is closely tied to its ability to automate test executionwith minimal manual intervention over time. In several studies, the initial setupand configuration required significant manual effort, particularly in defining ora-cles and refining action definitions. The Clave study [57] showed that this effortwas comparable to the time required for crafting manual test cases. Importantly,once configured, testar required minimal manual intervention during execution,making it particularly resource-efficient in identifying critical issues with minimalhuman effort.The autonomous nature of testar of executing tests unattended for extendedperiods of time makes it especially suitable for integration into continuous in-tegration pipelines, where it can complement other testing tools and methods.These findings suggest that while the setup phase is labour-intensive, the long-term benefits of testar outweigh the initial costs, especially in environments withfrequent updates or large-scale GUIs.Another insight of testar’s impact was its subjective satisfaction among testers.Tester feedback across studies revealed mixed but generally positive perceptionsof testar. Participants in the studies generally appreciated testar’s flexibility,with many recognising its potential to uncover faults that traditional methods

82 CHAPTER 3. TESTAR

might overlook. However, concerns about its user-friendliness were recurrent,particularly regarding the complexity of its configuration process and the techni-cal expertise required to utilise its advanced features fully. Feedback suggestedthat while testar’s exploratory approach was refreshing and effective, enhance-ments in its reporting mechanisms and usability could significantly improve testersatisfaction.The industrial case studies collectively underscore the importance of itera-
tive learning in adopting scriptless GUI testing tools like testar. The studiesalso highlight the complementary role of testar in augmenting traditional test-ing practices, particularly in autonomously detecting state failures and exploringuntested paths without further manual intervention once finished the configura-tion phase.To try to generalise the results of these case-based studies, an architecturalanalogy [66] can be used. This requires describing the architecture of the cases,i.e. components with interactions, such as the systems, the people and their roles.The architectural model for testar (depicted in Figure 3.9) was developed basedon the insights gained from the industrial case studies, ensuring that it reflectsthe practical realities of integrating testar into diverse testing environments.At the highest level, the testing environment with testar can be viewed as aninterconnected system of actors and components. The system context shows fourkey actors: Clients, Developers, and Testers. In some case studies, researcherscan also fill the tester role.Clients interact directly with the SUT by using it or providing requirementsand feedback. If they encounter issues, they can report them to be processed bythe Bug Tracking System. Developers implement and maintain the SUT, relyingon bug reports from the Bug Tracking System to identify and address defects.Testers manage the Test Environment by planning, executing, and evaluatingtests. They also configure and provide domain knowledge to testar, interpretoutputs, and report any defects discovered to the Bug Tracking System. Thishigh-level view illustrates how testar integrates into existing testing workflows,particularly the need for collaboration among these actors to continuously im-prove the SUT.

3.10. INDUSTRIAL CASE STUDIES INVOLVING TESTAR 83

Set up

Reports
 faults

Bugs
to fix

Clients
<<Person>>

Business Stakeholders,
End Users, Customers

SUT
<<Software System>>

System Under Test

Developers
<<Person>>

Implement and maintain
the SUT

Testers
<<Person>>

Manage the existing test
environment

Use

Test Environment
[Container]

Test Execution
<<Container>>

Schedules and runs tests

Test Strategy
<<Container>>

Stores test strategies

Testar
[Container]

Interaction
<<Container>>

Performs test actions on
SUT

Exploration
<<Container>>

Decides navigation and
actions

Oracles
<<Container>>

Checks faults

Test Results
<<Container>>

Generates Testar Test
Reports, calculates metrics

Checks
correctness

Executes
Action

Executes tests

Stores
faults

Stores State
and Action

Reports test results
and metrics

Bug Tracking System
<<Software System>>

Manages bug reports

Report
bugs

Implement /
Maintain

Report
bugs

TestManage

Figure 3.9: Similar components and interactions of the cases for generalisation througharchitectural analogy
Examining the architecture at a more detailed level reveals the specific con-tainers comprising the Test Environment and testar. The existing Test Environ-ment is composed of two main containers that structure how tests are definedand executed. Test Strategy defines testing methodologies and strategies, guid-ing manual and automated tests. Test Execution schedules and runs tests.Within testar, four main containers handle different aspects of testing. The

Interaction container manages how testar performs test actions on the SUT. The
Exploration container decides the navigation paths and actions taken during test-ing. The Oracles evaluates the SUT’s state against fault-detection rules, helpingidentify unexpected behaviour. The Test Results container compiles reports and

84 CHAPTER 3. TESTAR

calculates metrics. These findings are shared with the testers, who will inform theBug Tracker System if any new bug is encountered. Testers might also use thetest results to optimise testar in future iterations, ensuring continuous improve-ment. These components enabled testar to detect faults related to unexpectedapplication states. This container view shows how the test artefacts flow be-tween components and how testar’s automated testing capabilities complementthe existing test infrastructure.These industrial case studies highlight the practical applicability and effec-tiveness of testar in diverse real-world settings. However, a crucial aspect ofthese studies was the process of setting up testar for the SUT. Establishingthis process in a structured and systematic manner ensures that the tool can beeffectively integrated into existing testing workflows while minimising overhead.Figure 3.10 captures testar’s iterative learning process by breaking it downinto four key phases: Planning, Implementation, Testing, and Evaluation. Thesephases provide a generic framework that can be tailored to suit the unique re-quirements of each industrial case study. This iterative approach underscores thegradual learning curve where testers require ongoing refinement and feedbackto achieve optimal results. The connection between testar’s test artefacts andthe test environment, as shown in the container diagram, supports the iterativelearning process, allowing testers to integrate lessons learned into future testsessions.
Planning Phase. The first phase involves setting up the technical environment,including the installation and configuration of testar and the necessary compo-nents to interact with the SUT. Key configurations included defining the SUT byspecifying the execution method (e.g., a URL for web applications or an executablepath for desktop applications), setting up any login or initialisation procedures,and configuring the environment such as browser settings or operating systemdetails (e.g., Windows). Additionally, during this phase, the tester must anticipateand define potential faults that the system might encounter.
Implementation Phase. In the second phase, the focus shifts towards implement-ing the configurations and customisations necessary for testar to carry out thetests effectively.

3.10. INDUSTRIAL CASE STUDIES INVOLVING TESTAR 85

Testing Phase

Planning Phase

Setup technical
environment

Start TESTAR Setup

Define potential
faults

Implementation Phase

Oracle
Implementation

Action
Definition

Stopping
Criteria

Small-scale
Tests

Test Protocol

Tests
passedTests did not pass X

verification of
small tests

Run TESTAR

Test Reports

Evaluation Phase

Identify and
Reproduce

Faults

Analyse Test
Reports

Yes

X

Yes

No

X

End Testing

More Tests?

Refine Test
Setup?

Figure 3.10: Generic Process for setting up testar for automated scriptless testing.
First, Oracle Implementation is performed to ensure testar can detect theerrors defined in the planning phase. This involves setting up oracles that monitorthe application’s behaviour and identify when a failure occurs. For example, testarcan be configured to check for faults in the browser’s console log or to monitorthe response time of the web pages.Next, the Action Definition Implementation involves refining the actions thattestar could execute. Defining these actions helps testar explore the applicationand simulate user behaviour during testing. Additionally, the Stopping Crite-

ria are set to manage the limit of each test run, like the maximum number ofinteractions.Finally, the Testing Configuration Sub-phase is performed. Before proceedingto full test execution, small-scale tests should be run to validate that the config-urations made during the implementation phase behave as expected. These testsensure that the oracles, actions, and stopping criteria are functioning correctly.The tester can ensure the basic setup is correct by running these small testsbefore proceeding to a more comprehensive test run. If any configuration is-sues are detected, they can be resolved during this sub-phase, saving time andreducing the risk of faulty test executions during the full-scale run.

86 CHAPTER 3. TESTAR

Figure 3.11: Iterative use of testar in an industrial testing workflow.

3.10. INDUSTRIAL CASE STUDIES INVOLVING TESTAR 87
Testing Phase. With the configurations complete, the third phase runs the testprocess. In this phase, testar autonomously executes the defined actions andmonitors the web application for faults. This phase may be repeated severaltimes with different configurations to cover various test cases.
Evaluation Phase. After executing the test process, the Evaluation phase focuseson analysing testar’s reports. These reports provide a detailed breakdown of theactions performed, the system’s responses, and any detected faults.The tester then investigates the most severe issues, reproduces problematicsequences, and refines the test configuration based on the findings. This iter-ative process ensures the test environment evolves with each run, improving itscoverage and fault detection capabilities in subsequent iterations.The sequence diagram (Figure 3.11) provides a structured, time-ordered viewof how testar integrates into typical industrial workflows, encapsulating its in-teraction with the SUT, the Bug Tracking System, and the Test Environment. Thisrepresentation builds on the architectural analogy and the generic process forsetting up testar. All these systems interact in parallel and over repeated cyclesas part of modern development practices.Several key insights from the industrial case studies are highlighted in thesequence diagram. It emphasises the iterative learning process where testarundergoes continuous refinement with each execution cycle. These industrialstudies demonstrated how repeated iterations improved oracles and exploratorybehaviour, making testar progressively more effective.The diagram also showcases how testar automatically executes tests by con-tinuously interacting with the SUT, allowing bug tracking and software improve-ments to occur in parallel. This aligns with modern software development method-ologies, particularly in continuous integration environments where automatedtesting runs alongside development activities.These industrial case studies collectively illustrate the potential of testar asa scriptless GUI testing tool capable of enhancing traditional testing approaches.While initial setup and configuration require some effort, the tool’s ability to au-tonomously explore diverse application states, detect critical faults, and comple-ment scripted testing approaches demonstrates its long-term value. The insights

88 CHAPTER 3. TESTAR

gained from these studies highlight not only the challenges of adopting testarbut also its strengths in scalability, fault detection, and integration into iterativeand continuous testing workflows.
3.11 Conclusions
This chapter provides a comprehensive overview of testar, an automated script-less testing tool designed to explore the graphical user interface (GUI) of a systemunder test (SUT). The tool’s key components and workflow were described, in-cluding state identification, action derivation, action selection, and the applicationof oracles for fault detection. With its modular architecture and flexible configu-ration, testar delivers an effective solution for GUI-based software testing acrossdiverse environments.The practical relevance of testar was demonstrated through industrial casestudies, highlighting its ability to complement existing testing practices and un-cover edge failures. Additionally, the structured setup process presented in Sec-tion 3.10 emphasises how testar can be systematically integrated into varioustesting workflows, making it suitable for continuous integration and regressiontesting scenarios.However, the industrial case studies also reveal challenges associated withadopting testar. These challenges served as motivation for creating the archi-tectural analogy and the iterative process for setting up testar, ensuring that thetool can be more effectively deployed in different industrial contexts.

4
Inferring state models with TESTAR

"The purpose of abstraction is not to be vague, but to
create a new semantic level in which one can be
absolutely precise."

Edsger W. Dijkstra, "The Humble Programmer"
This chapter presents an extension to testar that enables state model infer-ence during GUI exploration. This feature allows the creation of a map of theSUT navigation and actions during testing. Initial steps toward this functionalitywere described in previous work [10, 135], where models were used for offlineoracles (i.e., after testing) that consisted of querying the model for accessibilityinformation. However, the current work expands these capabilities for multiplepurposes:
• Enhancing testar’s Action Selection Mechanisms (ASMs) during and afterthe model inference
• Defining offline oracles to compare models between different releases orversions of a SUT
• Providing visual reference models for testers and users

89

90 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

• Supporting model-based GUI testing (MBGT) tools [136].
The integration of model inference capabilities is particularly valuable forMBGT, which has seen limited adoption due to the expertise and effort requiredfor model creation [137]. If even initial models can be inferred, these problemsmay be (partially) solved.While several approaches exist for inferring models during automated GUIexploration (described in Section 4.1), most are academic prototypes or abandonedopen-source projects. State space explosion is still an open challenge for theinference of state-based models through GUI. Most programs with a GUI have alarge number of possible states, and to make the size of the models manageable,some information has to be abstracted away. It is challenging to define a suitablelevel of abstraction and find an equilibrium between the necessary expressivenessof the extracted models and the computational complexity [138].Abstracting away too much information might make a model unsuitable for itspurpose (e.g., ASM, MBGT, oracles) and lose opportunities to discover faults andchanges between versions. Abstracting away too little information might resultin state space explosion, making the model less suitable for its purpose. Most ofthe existing related work does not explain in sufficient detail how they deal withthe abstraction, raising questions about whether their solutions are generallyapplicable or simply tailored for the applications used in validation.The main contributions of the research that is contained in this chapter are:
• A description of the model inference functionality implemented into testar.
• A novel algorithm for ASM based on the inferred model.
• An initial validation of the test effectiveness of the new ASM regarding codecoverage and reached states.
• An initial validation of the approach by experimenting with how variousabstraction mechanisms affect the inferred models.
The rest of the chapter is organised as follows. Section 4.1 presents relatedwork. Section 4.2 presents the approach used to infer state models, and their

4.1. RELATED WORK ON MODEL-BASED GUI TESTING 91
application for action selection and experiments on the test effectiveness of theimplemented ASM. Section 4.4.2 describes the experimentation to find out howvarious abstraction mechanisms affect the inferred models. Section 4.5 analysesthe findings and challenges. Finally, Section 4.6 presents the main conclusions.
4.1 Related work on Model-based GUI testing
As mentioned in Chapter 1, Model-based GUI testing (MBGT) [136,139,140] gen-erates test cases from a model. MBGT approaches require modelling the GUI andits expected behaviour on a higher level of abstraction than the GUI itself. Themodelling language should be understandable by a tool that uses it to generatetests automatically.An advantage of this type of testing is that it is possible to precisely specifythe exact test specifications that a GUI should conform to. Another advantage isthat when the GUI changes, the test scripts do not have to be manually updated.Instead, the model is updated, and the scripts/tests are generated again.However, the main disadvantages are that MBGT approaches require a deepknowledge of the application domain and expert knowledge of formal modellingmethods and languages to manually create a model of the GUI. Modelling alsorequires quite a lot of time and effort.To address these limitations, several approaches for automated GUI modelinference, also referred to as GUI ripping [37] or GUI reverse engineering [38],have emerged. These can be categorised into three main types:

1. Static Analysis uses the program’s source code to infer a model of theGUI [27,28]. Static techniques concentrate only on the structure of the GUI,not taking the runtime behaviour of the GUI into consideration in the model.
2. Dynamic Analysis approaches analyse the GUI while the system is running[31]. APIs or libraries are used to automatically explore the GUI and getaccess to all the GUI elements in a specific state of the application. Tocreate a model, these tools can recognise whether the application is in astate that the tool has already visited before or whether the state is being

92 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

visited for the first time. Examples of tools using model inference throughdynamic analysis are GUITAR [29], GUI Driver [30], Crawljax [32], ExtendedRipper [141], GuiTam [142] and Murphy Tools [31].
3. Hybrid Approaches combines static and dynamic techniques [33–35], lever-aging benefits of both techniques.
A critical challenge across all approaches is determining a suitable level ofabstraction for the model inference that ensures that the model is useful for itspurpose (e.g., ASMs, offline oracles, or visualisation of testing). Most relatedwork does not sufficiently explain how they deal with abstraction. This chapterpresents the first attempt to research how the abstraction level affects the resultswhen using the models.

4.2 State model inference for TESTAR
testar’s operational flow was described in Chapter 3. When the SUT has started,testar captures the current state of the GUI using APIs like Windows AutomationAPI (WUIA) (for desktop), Selenium Web Driver (for web), or the Java access bridge(for Swing). This (concrete) state consists of all the properties (that are availablethrough the API) of all the widgets that are part of the GUI.Subsequently, to derive the actions that it is able to perform in that state, itcycles through all the widgets and adds all possible actions associated with thewidgets to a pool. Sometimes, if the SUT includes custom widgets and the APIdoes not detect all the widget attributes, the user must provide testar with someextra configuration to correctly detect all the available actions.From this action pool, one is selected by the ASM of testar. After the actionhas been executed and the GUI has reached a new state, testar will againcapture the new state and derive, select, and execute an action. This processrepeats until the specified stop criterion is reached (e.g., the test sequence lengthor the occurrence of an error condition).State abstraction1 is an important facet of scriptless GUI testing. testar has

1 "Abstraction is the elimination of the irrelevant and the amplification of the essential." by Robert

4.2. STATE MODEL INFERENCE FOR TESTAR 93
an implementation to calculate state identifiers based on hashes over a selectedset of widget attributes. This selected set defines the abstraction level, which de-termines the number of different states testar will distinguish. This can evidentlyinfluence test effectiveness and is related to the equilibrium explained previously.Experiments were conducted to gather evidence about the suitable set of widgetattributes for state abstraction as described in Section 4.4.2.testar uses dynamic analysis techniques to infer a model. The flow for cap-turing the state model is depicted in Figure 4.1, which extends Figure 3.1 from theprevious chapter. The state of the SUT is constantly saved in the OrientDB graph
database, together with available actions and the executed action. As explainedlater in this section, the state model can be queried by an ASM, but also by ahuman, an offline oracle, or other MBGT approaches.

Start Start SUT Obtain GUI
State Derive Actions

Select Action

Execute
Action

Evaluate
Oracles

Yes

More
Actions?

More
Sequences?

No

End
NoYes

Graph
DB

Save sate
and actions

Query DB

Save
executed action

Save verdicts

Figure 4.1: testar testing cycle including model inference
As indicated, the model will be built incrementally with subsequent testarruns. All states (concrete and abstract) visited during a run are stored in thedatabase. For analysis and reporting, the structure of the inferred model isdivided into three layers, as shown in Figure 4.2.The top layer is an abstract state model. It allows ASMs to use the model

C. Martin (Agile Principles, Patterns, and Practices in C#)

94 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

bottom layer

AbstractState A

IsAbstractedBy

ConcreteState A

accessed

Sequence NodeTest Sequence Sequence Step Sequence Node

AbstractState B

IsAbstractedBy

ConcreteState B

accessed

ConcreteAction A

AbstractAction A
top layer

mid layer

Figure 4.2: Layered design of the state model
for action selection or end users to analyse the behaviour of the SUT. Creatingthe abstract model requires identifying unique states at a suitable abstractionlevel. As indicated, this means trying to avoid state space explosion while, simul-taneously, not losing the purposefulness of the model. Overly abstract states canintroduce non-determinism in the inferred model.The mid layer is the concrete state model. This model contains all the in-formation that can be extracted through the APIs used by testar. The concretestate model will contain too many states to drive the execution of testar or serveas a visual model for humans. It will serve as information storage, e.g., when aspecific part of the abstract model requires deeper analysis. Each concrete stateof this layer will be linked to an abstract one in the top layer, and each actionwill be linked to an abstract transition.The bottom layer is the management layer, whose purpose will be to recordmeta-information about the executed test sequences. Where the abstract andconcrete layers describe the SUT, the management layer represents the executionof the tests in testar. The individual test sequences will be linked to the concretestates and actions of the middle layer.Figure 4.3 shows an example of the layered model, where the SUT was ex-tremely simple (only three abstract and three concrete states). The management

4.2. STATE MODEL INFERENCE FOR TESTAR 95

Figure 4.3: Visualization of an example model inferred by testar
layer has information about the exact sequence generated by testar. During themodel inference, when testar arrives at a new state and discovers actions thathave not been executed before, "BlackHole" state is used as their destination tomark unvisited actions. When a previously unvisited action is visited and testarobserves the SUT behaviour, the destination of the executed abstract action isupdated with the observed abstract state.testar was extended with a new ASM (ASM_statemodel). The algorithmprioritises actions that have not yet been visited and can be found in Algorithm 1.The goal is to select a new action when in state s. It uses the State_Model andmaintains a path of actions that leads to a specific unvisited action it wants toprioritise. If a path has been previously identified (i.e., path is not empty line 1),then the ASM selects the next action on that path. If the path is empty2, the ASMwill try to find an unvisited action. It does so by searching (in BFS3 order) for
unvisitedActions (line 8) from all the states that are reachable from s in the statemodel (line 4). Since s is reachable from s in 0 steps, s itself is the first state

2Because testar has initialised the algorithm or the previous path was already completed.3Breadth-First Search (BFS) explores all neighbours of a node before proceeding to the next level

96 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

Algorithm 1 ASM_statemodel: Select an Unvisited Action
Input: s ▷ Current state of the SUT

Input: State_Model ▷ The inferred state model

Input: path ▷ Path to an unvisited action (if any)1: if path ̸= ∅ then ▷ Follow the existing path2: a ← path.pop() ▷ Next action in the path3: else ▷ Create a new path to an unvisited action4: reachableStates ← getReachableStatesWithBFS(s, State_Model)5: unvisitedActions ← ∅6: while unvisitedActions = ∅ and reachableStates ̸= ∅ do7: s′ ← reachableStates.pop()8: unvisitedActions ← getActions(State_Model, s′, unvisited)9: if unvisitedActions ̸= ∅ then ▷ Found unvisited actions with BFS10: ua ← selectRandom(unvisitedActions) ▷ Select a random unvisited action11: path ← pathToAction(ua) ▷ Determine path from s to ua12: a ← path.pop() ▷ Next action in s towards ua13: else ▷ No unvisited actions found14: availableActions ← getActions(State_Model, s, all) ▷ All available actions in s15: a ← selectRandom(availableActions)16: return a

checked for unvisited actions (line 7). If unvisited actions are found, it randomlyselects one (ua, line 10) and updates the path to the state where that action canbe found (line 11). Then, it selects the first action that leads towards that action(line 12). If no unvisited actions are found, the ASM just randomly selects anaction from those available in state s (line 15).
To integrate this new ASM, testar’s flexible architecture (Figure 3.7) discussedin Section 3.6 was extended by implementing the ActionSelector interface, asdepicted in Figure 4.4.

UseTESTAR Protocol

+ getState(): State
+ deriveActions(State): Action[]
+ selectAction(State, Action[]): Action
+ executeAction(State, Action): Boolean
+ getVerdict(State): Verdict

«interface»
ActionSelector
+ selectAction: Action

Extends

Random

Extends

LEA

Extends

UseASM_statemodel StateModel

Figure 4.4: Extending testar with ASM_statemodel

4.3. EXPERIMENTAL DESIGN 97
4.3 Experimental Design

Building on the discussed challenges of state model abstraction, two key aspectsof automated model inference are researched:
RQ1: How do different levels of abstraction affect automated GUI exploration ofASM_statemodel compared to random selection?This question examines the practical impact of model abstraction on testingeffectiveness.
RQ2: Which widget attributes contribute to generating deterministic models instate abstraction?This question addresses the fundamental challenge of creating reliable modelsthrough automated inference.The experimental design encompasses two distinct studies aligned with theresearch questions. Each study uses a different subject system to investigatespecific aspects of model inference and the effectiveness of GUI testing. Figure4.5 presents an overview of the experimental design.

RQ1 Study

Abstraction
Mechanism

Abstract

Intermediate

Dynamic

Customised

ASM

Random

ASM_statemodel

Test Run 1
300 actions

Test Run 2
300 actions

Test Run 30
300 actions

Code and
State

Coverage

Code and
State

Coverage

Code and
State

Coverage

RQ2 Study

Widget Attribute
Combination

1-attribute comb.

2-attribute comb.

3-attribute comb.

5-attribute comb.

ASM

ASM_statemodel

Test Run 1
4 Sequences
of N actions

Test Run X
4 Sequences
of N actions

Non-determinism
data and number
of states

Non-determinism
data and number
of states

Number of test runs and actions
differs across combinations

Non-determinism
data and number
of states

4 Abstraction Mechanisms x 2 ASMs x 30 test runs:
240 test runs

Test Run 2
4 Sequences
of N actions

Figure 4.5: Overall experimental design showing separate studies for RQ1 and RQ2
4.3.1 Subject SUTs

Rachota and Windows Notepad were selected as the subject systems, each serv-ing different experimental purposes. Rachota, an open-source Java Swing time-

98 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

tracking application, provides an ideal platform for evaluating testing effective-ness due to its accessible source code and measurable coverage metrics. Table4.1 presents an overview of Rachota’s characteristics.
Metrics RachotaJava Classes 52Methods 934LLOC 2722Classes incl. Inner classes 327

Table 4.1: Overview of Rachota
For the second study, Windows Notepad (version 1909, OS Build 18363.535)was explicitly selected due to its rich set of widget attributes accessible throughthe Windows Automation API, providing over 140 attributes to choose from. Thatoffers more choice compared to the six attributes of the Java Bridge from Table4.2. Notepad presents common GUI patterns, including menus, dialogues, andtext input areas, while offering both static and dynamic interface elements. Thiscombination makes it particularly suitable for investigating model determinismand attribute selection impacts.

4.3.2 Independent and Dependent Variables

The independent and dependent variables were defined as follows to addresseach research question.
4.3.2.1 RQ1 Study

The first study examines how different abstraction levels affect GUI explorationeffectiveness. The variables used in this study are summarised below.The Independent Variables are defined as follows:
• Abstraction Level for State Identification: Different abstraction levels aredefined by selecting attributes from those available in the Java AccessBridge API (see Table 4.2). Four abstraction levels were investigated:

4.3. EXPERIMENTAL DESIGN 99
1. Abstract: ControlType (cf. was defined in [135])2. Intermediate: ControlType, Path3. Dynamic: ControlType, Path, Title (including the dynamic attributeTitle)4. Customised Abstraction: ControlType, Path, HelpText, IsEnabled(this one was customised for Rachota following the impacts describedin Table 4.2)

• Action Selection Method : The new ASM_statemodel algorithm is com-pared to the baseline ASM_random approach.
• Test Run Parameters: Each test run contains one sequence of 300 actions,which is enough [143] to show the differences between ASMs. Each testrun was repeated 30 times to account for randomness [144].
Attribute API Impact on Abstract RepresentationTitle name Visual name of the widget. In Rachota, this isdynamic because widgets update the currenttime.HelpText description Tooltip or help text of the widget. Static at-tribute in Rachota.ControlType role Role of the widget. It may fail to distinguishelements, causing non-determinism.IsEnabled states Indicates whether the widget is enabled ordisabled.Boundary rect Pixel coordinates of the widget’s position.Too concrete; one-pixel changes result in anew state.Path childrenCount

+
parentIndex

Position in the widget tree. Useful for dis-tinguishing states by widget tree structure.
Table 4.2: Java Access Bridge properties and their impact on state abstraction in Rachota.
The Dependent Variables are defined as follows:

• Code Coverage: Measured as both instruction and branch coverage usingJacoco [145].

100 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

• Abstract State Coverage: The number of abstract states visited in the statemodel during testing.
• Concrete State Coverage: The number of concrete states visited in the statemodel during testing.
Code coverage and state discovery metrics are collected after each executedaction. The open-source application Rachota [146] is used as the SUT to measurethese metrics effectively for the experiments.

4.3.2.2 RQ2 Study

This study aims to select a suitable subset of widget attributes for state abstrac-tion that generates deterministic models without causing state explosion. Thefollowing independent and dependent variables were defined.The Independent Variables are defined as follows:
• Widget Attribute Combination: The primary independent variable is thecombination of widget attributes used for state abstraction. A systematicevaluation is conducted on single-attribute configurations from the availableWindows Automation API properties, followed by two-attribute combina-tions, three-attribute combinations using the top performers, five-attributecombinations, and extended pattern combinations.
• Action Selection Mechanism: The ASM_statemodel algorithm (from Algo-rithm 1).
• Test Sequence Length: Different test sequence lengths were employed toevaluate model behaviour across different temporal scales. These configu-rations comprised two lengths (50 and 100 per test sequence). To analysethe effect of abstraction levels on the number of states created, longer testruns of 5000 actions are also performed.

The Dependent Variables are defined as follows:

4.4. RESULTS 101
• Steps Before Non-Determinism; Number of actions executed before encoun-tering the first non-deterministic state.
• Model Characteristics: Includes the count of abstract states and concretestates generated during testing.
• Sources of Non-Determinism: Analyses dynamic content changes and history-dependent behaviours contributing to non-determinism.

4.4 Results

This section presents the results of the experimental evaluation of testar’s statemodel inference capabilities. The results encompass quantitative metrics, includ-ing code coverage and state counts, and qualitative analysis of model character-istics and non-determinism sources.
4.4.1 RQ1: Impact of abstraction on GUI exploration

Figure 4.6 shows the results of the code coverage measurements across differentabstraction levels. The ASM_statemodel consistently outperformed ASM_random,even with a less suitable abstraction. This means that model-based ASMs are apromising way to improve the effectiveness of scriptless testing.The coverage data shows that the level of abstraction affects the GUI explo-ration performance of the ASM_statemodel. Having too high or too low level ofabstraction negatively impacts the performance. The customised abstraction level(ControlType, Path, HelpText, IsEnabled) achieved the highest code coverage, fol-lowed by the intermediate configuration. However, the best random sequencescan achieve coverage similar to the average coverage provided by abstract, dy-namic, and intermediate abstract mechanisms. This highlights the significance ofcustomising a suitable abstraction level to enhance effective exploration comparedto random but also underscores the inherent capabilities of random explorationitself.

102 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

Figure 4.6: The code coverage that was reached when comparing ASM_random with 4different abstraction levels of the ASM_statemodel

Figure 4.7: The number of abstract states (top layer) and concrete states (mid layer)

4.4. RESULTS 103
The results to analyse state discovery are shown as a box plot in Figure4.7. Results show that too concrete level of abstraction creates almost as manyabstract states as concrete states. As expected, the customised level creates moreabstract states in comparison with abstract and intermediate configurations, butsignificantly less than the dynamic one. The customised level finds more concretestates, which indicates slightly better GUI exploration capability and matches thecode coverage results.The dynamic mechanism includes the dynamic widget title as part of theabstraction level, and as a consequence, new abstract states are constantly beingdiscovered. However, this similar number of abstract and concrete states hindersexploration effectiveness, as the abstract mechanism fails to adequately trackwhich states are newly discovered or were already visited during exploration.
RQ1 answer: Different abstraction levels significantly affect GUI explo-
ration effectiveness. A customised abstraction level, tailored to the appli-
cation’s characteristics, provided the best balance between state abstrac-
tion and exploration effectiveness. An ASM based on the state model con-
sistently outperformed random selection regardless of abstraction level.

4.4.2 RQ2: Defining a suitable level of abstraction

As observed in the previous section (and results from Figure 4.7), widget attributesused for abstraction should not be dynamic because they lead to state spaceexplosion. Dynamic attributes are not stable because they can change theirvalue during or in between runs without a detectable reason. Potentially stableattributes selected for the experiment are in the first column of Table 4.3.Various attribute combinations were systematically evaluated to examine whichwidget attributes contribute to the generation of deterministic models. As illus-trated in Figure 4.8, each combination (from single-attribute to multi-attributesets) was applied to the subject SUT, and the impact on model determinism andstate abstraction was measured.

104 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

4 Test Sequences
50 actions each

1-attribute
combination

12 times

19 combinations:
228 test runs

4 Test Sequences
100 actions each

2-attribute
combination

171 combinations:
2736 test runs

16 times

4 Test Sequences
100 actions each

3-attribute
combination

Combination of three best
attributes from 1- and 2-

attribute combinations: 16
test runs

16 times

4 Test Sequences
100 actions each

5-attribute
combination

120 combinations:
960 test runs

8 times

Figure 4.8: Overview of RQ2’s attribute-combination experiment setup
4.4.2.1 Single Attribute Analysis

First, an experiment was conducted with only one attribute in the state ab-straction. A test run consisted of four sequences, with a maximum of 50 ac-tions per sequence. After some initial tests, these values were enough to detectnon-determinism. Twelve consecutive test runs were executed for each widgetattribute using the 12 available Virtual Machines (VMs).Table 4.3 shows the results. Displayed are the widget attributes used, theaverage number of generated test steps executed in the test for each attribute,and the total number of steps taken in each test run before non-determinism wasencountered. The results are ordered by the total number of steps executed overall 12 tests, starting with the widget attributes that “lasted the longest” before themodel became non-deterministic. Although none of the generated models weredeterministic, the WidgetTitle, WidgetBoundary, and WidgetHasKeyboardFocusattributes noticeably stand out from the others regarding the average number ofsteps executed.
4.4.2.2 Multi-Attribute Analysis

A second experiment was conducted with two attributes in the state abstrac-tion. Combining two widget attributes gives 171 possibilities. Instead of fourtest sequences with 50 steps each, the number of actions per sequence was

4.4. RESULTS 105
Table 4.3: Number of generated test steps before the model became non-deterministicusing a single widget attribute for state abstraction.

Attribute Mean TotalWidgetTitle 95.5 14,74,74,79,79,92,92,93,108,136,145,160WidgetBoundary 90.6 5,61,64,77,79,83,84,103,105,115,155,156WidgetHasKeyboardFocus 82.1 38,55,67,68,70,72,78,87,100,105,118,128WidgetIsKeyboardFocusable 21.6 9,12,14,16,17,17,19,20,26,28,28,53WidgetSetPosition 20.4 10,11,12,12,13,16,18,21,21,22,26,63WidgetIsContentElement 20.3 7,9,14,15,17,17,18,21,24,27,35,39WidgetIsOffscreen 19.7 6,9,11,14,14,15,15,18,19,27,29,59WidgetGroupLevel 19.1 7,10,11,11,12,13,15,18,22,29,33,48WidgetClassName 19.0 11,11,15,16,17,19,19,19,21,22,26,32WidgetIsControlElement 16.9 8,11,11,12,13,13,16,16,20,24,28,31WidgetIsEnabled 16.8 7,8,14,15,15,16,16,19,19,20,25,28WidgetControlType 16.3 8,13,13,13,13,13,17,17,18,19,25,27WidgetOrientationId 16.2 8,9,12,13,16,16,17,19,19,21,21,23WidgetIsPassword 15.8 6,10,10,12,14,14,17,17,19,20,22,28WidgetZIndex 15.6 9,11,12,12,13,14,15,16,16,19,22,28WidgetIsPeripheral 15.4 7,8,9,13,14,14,16,19,20,21,22,22WidgetSetSize 15.0 7,9,10,12,14,15,16,17,17,18,21,24WidgetFrameworkId 15.0 8,11,12,13,13,14,15,16,17,18,21,22WidgetRotation 14.7 8,9,12,12,13,14,16,16,16,20,20,20
upgraded to 100. This upgrade was based on the hypothesis that these combi-nations should last longer before the state model inference module encountersnon-determinism. Each combination is tested 16 times, making for a total of2736 test runs. In summary, none of the 171 combinations was able to producea deterministic model. Moreover, after the 48 best-performing combinations, theaverage number of steps executed per test run declines quickly. Within these48 combinations, three attributes occur 17 times, whereas the next best attributeoccurs only 3 times. Again, the three best-performing attributes are WidgetTitle,WidgetBoundary, and WidgetHasKeyboardFocus.A combination of these three attributes was employed and executed 16 timesfor the next experiment. Table 4.4 shows the results. Unfortunately, none ofthe test runs reached the complete 400 possible steps. Moreover, the average

106 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

and median are lower than the highest results from the 2-attribute combinations.However, the highest number of steps reached during a test run was 293, wherethis was 229 for the two-attribute combinations.
Table 4.4: Selection of attributes for state abstraction

Attributes Total Mean MedianWidgetTitle, WidgetBoundary, WidgetHasKeyBoardFocus 1781 111.3 92.5
In the next experiment, combinations of five attributes were evaluated by se-lecting the three highest-scoring attributes from the two-attribute experiment andcombining them with all the possible pairs of two additional widget attributesfrom the remaining 16 attributes. This resulted in 120 combinations, each exe-cuted eight times. Once again, no combination resulted in a deterministic model.Surprisingly, the more concrete abstraction using five attributes resulted in non-determinism faster than the three attributes in the previous experiment. This isprobably due to the dynamic nature of some of the attributes.As using five attributes for abstraction also resulted in non-determinism, themodel was made even more concrete by incorporating all 32 control patternproperties into the tests. To make some headway, the three high-scoring generalproperties (WidgetTitle, WidgetHasKeyBoardFocus, and WidgetBoundary) wereonce again added and combined with all the combinations of two control patterns.This results in 492 possible combinations, and running each one eight times makesa total of 3936 test runs.Several widget combinations reached the limit of 400 sequence actions with-out encountering non-determinism in the model, and all of these combinationsincluded the ‘Value‘ control pattern. Even though some combinations made it to400 sequence steps 3 or 4 times out of the 8 test runs, they also encounteredcertain actions that led to non-determinism in the model. ‘Value‘ pattern is avery ‘concrete‘ attribute: 1) Using the ‘Value‘ pattern can lead to models of infi-nite size, in the case that the application accepts text input that is not bounded.Hence, ideally, this attribute would be excluded from the abstraction mechanism.2) While using this very concrete widget attribute, plenty of non-determinism inthe state models was still encountered.

4.4. RESULTS 107

(a) Notepad ’Replace’ dialogue

(b) Notepad ’Cannot find’ popup
Figure 4.9: Notepad examples of non-determinism

Analysing the reasons for non-determinism, it was observed that certain ac-tions lead to different states depending on the history of actions and states tra-versed before. For example, if the ‘Replace’ option in the ‘Edit’ menu is clickedin Notepad, the ‘Replace’ dialogue is opened (see Figure 4.9a). If the text writtenin the ‘Find what’ field is not found in the Notepad document, clicking the ‘FindNext’ or ‘Replace’ buttons will result in the same popup dialogue (see Figure4.9b), having only an ‘OK’ button. Clicking that button will lead back to the ‘Re-place’ dialogue. Still, the focus remains on the button that was pressed before,and if WidgetHasKeyBoardFocus was used in the state abstraction, clicking the‘OK’ button leads to two different states based on the action that was taken inthe previous state. In this case, altering the abstraction level by adding morewidget attributes would not remove the non-determinism because the concretestates for the two visitations of the popup screen are also the same.

108 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

4.4.2.3 Including the predecessor state

Another solution is incorporating the state’s incoming action into the state identi-fier [31]. In some situations, the state could depend on the previous state, requiringtaking the previous state into account in the state identification algorithm. Con-sequently, the predecessor state and the incoming action were included in thestate abstraction.The first experiments run with all the combinations of widget attributes usedin the experiments from Section 4.4.2 including the previous state identifier. Theresults showed that including the previous state in the abstraction resulted ina lower best performance and higher worst performance compared to using thesame attribute combinations without the previous state. The average performanceover all the combinations and test runs is comparable. The top-performing widgetattributes are almost the same in both cases. Non-determinism related to viewingthe status bar was still happening.Subsequently, the incoming action was included in addition to the previousstate in the abstraction identifier. Using the same attributes as the experiments inSection 4.4.2 allowed for comparison of the results. The average number of stepsexecuted before encountering non-determinism significantly increased when us-ing 1 or 2 widget attributes and including the incoming action. However, the re-sults seemed to get worse with more widget attributes, probably because, in thoseexperiments, the widget attributes were selected for their good performance with-out incoming action. With incoming action, the best-performing widget attributeswere different. When executing the experiments including pattern attributes withincoming action, the ValuePattern and the ‘incoming action‘ combination seemsvery successful. The following three combinations did not encounter any non-determinism during their 8 test runs of 400 actions:1. Boundary, HasKeyboardFocus, LegacyIAccessiblePattern, Title, ValuePattern.2. Boundary, DropTargetPattern, HasKeyboardFocus, Title, ValuePattern.3. Boundary, ExpandCollapsePattern, HasKeyboardFocus, Title, ValuePattern.As some of the detected cases of non-determinism were due to various lengthsof text inputs, an additional experiment was executed, disabling input actions and

4.5. DISCUSSION 109
only allowing left-click actions. Results showed an increased average number ofexecuted steps before encountering non-determinism. However, the model maybe partial, and some functionality of the SUT may be excluded from the model.After conducting additional experiments to produce a deterministic model, it wasconcluded that this is not a trivial task.Another aspect that might be important when using the inferred models, buthas not been monitored so far in these experiments, is the size of the inferredabstract state model. For using the model programmatically, the size of the modelprobably affects the computation, but if the model is analysed by a human, thesize restrictions have to be more strict. To have a first estimation of the model size,a selected set of different abstraction configurations was explored, measuring thenumber of abstract states in the model after a long execution of 50 000 actions.The quest for inferring a deterministic model by making the abstraction moreconcrete resulted in a huge increase in the number of abstract states, as de-picted in Figure 4.10. The implications of possible future research directions arediscussed in Section 4.5. The results demonstrate the inherent tension betweenmodel determinism and usability. More concrete models achieve better deter-minism but face state explosion, while more abstract models remain manageablebut encounter non-determinism more frequently.

RQ2 answer: While no single or simple combination of widget attributes
consistently produces deterministic models, including action history and
carefully selected attribute combinations can significantly reduce non-
deterministic behaviour. However, achieving determinism requires in-
creasingly complex state representations, leading to potential state ex-
plosion and reduced model usability.

4.5 Discussion

This section presents findings highlighting key challenges encountered during thestate model inference process and the application of inferred models in testing.

110 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

Ab1: Current+previous+incoming action; all; Boundary, IsControlElement, IsKeyboardFocusableAb2: Current; all; TitleAb3: Current; all ; Boundary, HasKeyboardFocus, TitleAb4: Current+previous; all; Boundary, HasKeyboardFocus, TitleAb5: Current+previous+incoming action; all actions; Boundary, HasKeyboardFocus, TitleAb6: Current; left click only; Boundary, HasKeyboardFocus, ScrollItemPattern, Title, ValuePatternAb7: Current; all; Boundary, HasKeyboardFocus, ScrollItemPattern, Title, ValuePatternAb8: Curr+prev+incom; all; Boundary, HasKeyboardFocus, ScrollItemPattern, Title, ValuePattern

A
ve

ra
ge

 n
um

be
r o

f a
bs

tr
ac

t s
ta

te
s

af
te

r 5
0.

00
0

st
ep

s

0

10000

20000

30000

40000

Ab1 Ab2 Ab3 Ab4 Ab5 Ab6 Ab7 Ab8

Figure 4.10: Average number of abstract states after 50000 actions for abstractions Abi:state; actions; attributes for i ∈ 1, . . . , 8
These challenges and lessons learned offer insights into the complexities of cre-ating effective and usable state models for automated GUI testing. Additionally,potential directions for addressing these challenges and improving the utility ofinferred models in testing are discussed.
4.5.1 State abstraction

The first finding is that tuning the abstraction level for model inference seemshighly dependent on the specific SUT. While tuning the abstraction level, the

4.5. DISCUSSION 111
following SUT-specific characteristics should be taken into account:

• Dynamic increment of widgets: Some applications, for example, Rachota,contain dynamic lists of elements where new items can be continuouslyadded. This constantly creates new widgets and states in the model, caus-ing a state and action space explosion.
• High number of combinatorial elements: Some applications, such as Notepad,include multiple scroll lists with a large number of different elements, andfrom a functional point of view, it is not important to cover all of theseoptions (e.g., Notepad font selection).
• Slide actions: In some applications where scrolling actions are required,the exact scrolling coordinates from start to end can cause a change in thenumber of widgets visible in the state. Depending on the state abstractionand how the widget tree is obtained, this can create new states and causea high number of combinatorial possibilities.
• Popup information: In some applications, like Rachota, a descriptive popupmessage may appear for a few seconds in the GUI when the mouse hoversover some of the widgets. This could result in a new state for the model,and it might cause non-determinism if hovering over a widget was not anintentional action that was executed on purpose.

A second finding is that trying to produce a deterministic state model is farfrom a trivial effort. There are various options to address the challenges of non-determinism in the inferred models.
1. Let the models have non-determinism and deal with it when using them.Action selection requires detecting when the modelled behaviour deviatesfrom the observed behaviour and temporarily adjusting the action selectionto avoid getting stuck during GUI exploration. Another solution, and aninteresting future research topic, could be using the concrete state modelto navigate through states that have non-determinism in the abstract statemodel.

112 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

2. Try to infer a deterministic model. This would require more SUT-specificways to dynamically adjust the abstraction, for example, based on the wid-get type or even a specific widget in a particular state. testar currentlysupports triggered behaviour that overrides normal action selection. Simi-larly, a mechanism is planned to trigger changes in the calculation of stateidentifiers, such as ignoring a specific widget during state abstraction. Anexample of a widget that can be ignored from the state model is a dynam-ically changing advertisement on a website.
3. Correct non-deterministic models after runtime. However, this techniquehas not yet been observed in existing model-based testing tools.

4.5.2 Applying the inferred models in testing

One of the core objectives for this chapter was to use the inferred models for a newaction selection mechanism (ASM) for testar. The new ASM was presented inAlgorithm 1, and initial experiments show that it is better than random. Althoughthis is a good result, it is also a step towards implementing more advancedASMs. For example, ASMs-based artificial intelligence (AI) needs some modelfor learning, and the inferred model can serve that purpose.Another advantage of the inferred state models is that human testers can usethem during testing. For instance, it is interesting to have an overall view of anapplication’s execution flow: to see the details about a certain state or executedaction, to identify the path to a state where an application failed, and to obtainvarious metrics about the state model. Although some of this information can beobtained by querying the OrientDB database and outputting it as textual data,e.g., in tabular format, it is argued that the data would be best presented throughvisualisation, making it more intuitively understandable for humans.Abstract state models can also allow performing conformance testing, whichdetermines how a system under test conforms to meet the individual require-ments of a particular standard. Before using inferred abstract models, the do-main experts must validate them to use the automatically generated test casesfor conformance testing. This also requires suitable visualisation.

4.6. CONCLUSIONS 113
4.6 Conclusions
This chapter describes the state model inference extension for testar and reportsexperiments on the impact of various state abstraction mechanisms for the purposeof producing a deterministic model and on the evaluation of the performance ofan action selection algorithm using the inferred models.The experiments on using various state abstraction mechanisms show thatinferring a deterministic abstract state model is difficult, especially when tryingto prevent the state space explosion. Based on these experiences and the factthat, in the literature, many approaches using inferred models for GUI explorationor testing do not explain the details about state abstraction, more research andnew, more flexible abstraction mechanisms are needed. Also, dealing with non-determinism in the inferred models is an important direction for future research.Based on the experiments on the impact of various levels of state abstractionon the performance of an ASM using the inferred models, it can be concludedthat an appropriate level of abstraction enhances the performance of GUI explo-ration, as measured by code coverage. Having a too-abstract or too-concretemodel has a negative impact on performance. However, in the experiments, theASM_statemodel performed better than the ASM_random with all tested ab-stractions.

114 CHAPTER 4. INFERRING STATE MODELS WITH TESTAR

5
Adding intelligence

"You will have to lose hundreds of games before becoming
a good player."

José Raúl Capablanca, A Primer of Chess
This chapter examines the use of Reinforcement Learning (RL) [147] to im-plement more sophisticated ways to select actions. RL is a branch of machinelearning that is directly applicable to scriptless testing. It is trained using re-wards after every interaction with an environment. As observed in Chapter 2, agrowth of papers applying Artificial Intelligence techniques has been observed inGUI testing during the last decade, mainly for mobile Android applications. RLuses reward functions to guide the selection of actions and explore the searchspace of the system being tested. These rewards are usually based on the dif-ference between consecutive states, with high rewards given to actions that leadto very different states.Using rewards based on the difference between consecutive states can lead tounwanted behaviour such as Jumping Between States (JBS) instead of exploringother areas. Pan et al. [148] describe the problem: if a large reward is obtainedas the result of moving between two very different states, the RL agent will

115

116 CHAPTER 5. ADDING INTELLIGENCE

frequently jump between these states instead of exploring other areas of theSUT. A solution to the JBS problem was proposed based on neural networks toextract main features from the states to detect if two states are different and savethem as a vector in a memory buffer to avoid repeating states. However, neuralnetworks require much data and time to work well. Additionally, the inability todebug and explain the reasoning and evolution of a neural network over time is adisadvantage of this technique. Instead, the approach proposed in this study usesstate abstraction to compare states and includes memory, based on the frequencyof executed actions, to the reward itself.Testing Web applications has more diverse and complex states than mobileor desktop applications due to their frequent dynamic content updates and elab-orate workflows. More effective exploration is required to test Web applications,considering their huge search space and interactive nature. Therefore, this chap-ter focuses on testing Web applications in addition to proposing an alternativesolution to the JBS problem. The contributions of this chapter are:• an implementation of an RL framework that can be used to compare differentrewards used during scriptless testing of Web applications;• an empirical evaluation showing the reduction of the JBS problem for rewardscontaining memory based on the frequency of executed actions• a comparison of the exploration effectiveness of the different rewards lookingat URL coverage and state exploration.The rest of the chapter is organised as follows: Section 5.1 presents backgroundabout Q-Learning, and Section 5.2 offers relevant related work. Section 5.3presents the proposed approach for smart exploration, Section 5.4 presents theempirical evaluation, and Section 5.5 presents the results. Section 5.8 concludesthe chapter.
5.1 Q-Learning

Reinforcement Learning (RL) [147,149] is a machine learning technique that con-sists of an agent that learns to behave in an interactive environment. The agent

5.1. Q-LEARNING 117
works as an independent entity that executes actions within the environment andobtains information through trial-and-error interactions. RL algorithms containfour basic elements:

• The state describes the situation of the environment at every step.
• An action is a possible move from one specific state to another.
• The policy defines the strategy used to select an action in a given stateand the learning approach of the algorithm.
• The reward defines the goal to achieve.
The environment can be formalised with a Markov Decision Process (MDP),defined as a 4-tuple M = ⟨S, A, T , R⟩, where S is the set of states, A is the set ofactions. At each time step t , the agent executes an action at ∈ A and will receivea reward rt ∈ R . The transition probability function T describes the probability

P(st+1|st , at) of transitioning into state st+1 from state st after executing action
at . The goal of RL is to maximise the rewards obtained over time, formalised as
expected return and defined as:

E
(∞∑

t=0 rt | s0 = s
)

This value represents the expected sum of rewards starting from an initial state
s0 = s. This formulation assumes that all future rewards contribute equally to thereturn. However, in many real-world scenarios, sooner rewards are often morevaluable than those received later. To incorporate this preference, the concept ofa discounted return is introduced.The discounted return modifies the expected return by multiplying future re-wards by a discount factor γ ∈ [0, 1], used to define the balance between long-term and immediate rewards. The discounted return is defined as:

Rt = ∞∑
k=0 Rt+k+1γk

118 CHAPTER 5. ADDING INTELLIGENCE

When γ is close to 1, the agent values long-term rewards almost as muchas immediate rewards. When γ is close to 0, the agent focuses primarily onimmediate rewards.To make this practical, the expected return is associated with an action-valuefunction Q(s, a), which estimates the expected return after taking an action a ina state s and following a specific policy π . Formally:
Qπ (s, a) = E (Rt | st = s, at = a)

The policy π defines the agent’s action-selection strategy. It can be deter-ministic, where π : S → A, mapping each state s to a specific action a, orprobabilistic, where π : S × A → [0, 1], assigning a probability distribution overactions for each state.
Q-learning [150] is a model-free RL approach to learn the value of an actionin a particular state and, hence, find an optimal action-selection policy π . Anaction-value function estimates the expected return Qπ (st , at) after executing anaction at in state st following policy π . The action-value function can be definedin terms of its successor state-action pair as:

Q(s, a) = Q(s, a) + α ∗ [reward + γ ∗max
a′∈A

Q(s′, a)−Q(s′, a′)] (5.1)
The Q-function refers to the maximum Q expected for a given (state, action)pair over all possible policies. Furthermore, Q can also be interpreted as theoptimal strategy at each step, maximising the sum of the immediate reward rof the current step and the Q-value Q(s′, a′) of the next step. The parameter

α (step size) defines the learning rate of the algorithm. A higher learning rate(closer to 1) makes the algorithm adapt more quickly to recent experiences butmay lead to instability, as it can overwrite previous information too aggressively.Conversely, a lower learning rate (closer to 0) makes the algorithm update moreconservatively, allowing it to retain more of its past knowledge but potentiallyslowing down learning.The idea behind using Q-learning for GUI testing is to reward each selectionof possible actions over the SUT (see Algorithm 2). Choosing an action (line 5)

5.1. Q-LEARNING 119
and executing it (line 6) moves the agent from the current state s to a new state s′(line 7). The agent is rewarded with a reward upon executing the action a (line8). This reward is calculated by the reward function R. The main objective of Q-learning is to learn how to act in an optimal way that maximises the cumulativereward (line 9). An approximation for the optimal Q-function that simplifies theproblem and enables early convergence is shown in algorithm 5.1, where learnis defined as the action-value in equation 5.1.
Algorithm 2 Q-Learning
Input: γ , α ▷ discount factor, learning rate1: initialiseQV alues()2: s ← getStartingState()3: repeat4: availableActions ← deriveActions(s)5: a ← selectAction(availableActions) ▷ Select an action6: executeAction(a)7: s′ ← getReachedState()8: reward ← R (s, a, s′) ▷ Reward the action9: learn(s, s′, a, reward, γ, α) ▷ Learn from the experience10: s ← s′11: until s’ is the last state of the sequence

In this context, online Q-learning is employed, where the Q-values are up-dated incrementally after each action and reward observed during interaction withthe environment. Due to its dynamic and exploratory nature, online Q-learningis particularly well-suited for scriptless GUI testing. Unlike offline Q-learning,which relies on pre-collected datasets, online Q-learning allows the testing toolto continuously adapt its knowledge of the SUT’s state space as new states andtransitions are encountered.A critical aspect of online Q-learning is balancing exploitation (choosing theaction with the highest known Q-value to maximise immediate rewards) andexploration (selecting less-frequented actions to discover potentially better re-wards). This trade-off is usually managed using an ε-greedy strategy, where theagent selects the best-known action with probability 1−ε and explores a randomaction with probability ε . This approach ensures the agent avoids getting stuck

120 CHAPTER 5. ADDING INTELLIGENCE

in suboptimal strategies while still improving its policy.The following section reviews the related work to contextualise this methodwithin the field of scriptless GUI testing. The related work focuses on exist-ing reinforcement learning techniques applied to software testing and scriptlessmethods.
5.2 Related Work
RL has been used for GUI testing in different ways. Offline Q-learning, uses onlypreviously collected offline data in [151, 152]. These works learn from existingSUTs about actions that are useful to reach a particular objective and then applyit to new SUTs. Online Q-learning is applied independently for every SUT withstate-based rewards and the approaches are summarized in Table 5.1. Since thischapter focuses on online learning, each of these aspects is discussed next.testar, as described in Chapter 3, has implemented Q-learning with a frequency-based reward function for Java desktop applications [121]. This reward aims toencourage the selection of the least executed actions, thus guiding explorationtowards unvisited areas of the application. Also applying Q-Learning, Adamoet al. [153] use the same frequency-based reward but in the scope of Androidapplications.AutoBlackTest [154] also uses Q-Learning to test Java desktop applications.Their reward function favours actions that increase the difference between twoconsecutive states, measured by comparing their respective widget trees. Simi-larly, a combination of frequency and widget tree rewards can be found in [155].AimDroid [156] uses RL to guide the exploration of Android applications. Apositive reward is obtained if a new activity or crash is observed. More recently,ARES [157] uses a similar reward to AimDroid (larger values) but with DeepNeural Network as a technique to learn the best exploration strategy. In thescope of Deep Reinforcement Learning, Collins et al. [158] use a reward based onthe code coverage obtained during the execution.

5.2. RELATED WORK 121
Ta

bl
e

5.
1:

Relat
edw

orkw
ithst

ate-b
ased

rewa
rds

Publi
catio

nR
LAlg

orithm
Rewa

rd
Polic

y
SUT

types
Vos[1

0]
Q

-Lear
ning

α
=1 multi

pleγ
Frequ

ency-
based

Gree
dy

Wind
ows

deskt
op,

Web
Adam

o
[153]

Q
-Lear

ning
α

=1 dyna
micγ

Frequ
ency-

based
Gree

dy
Andro

id
Maria

ni
[154]

Q
-Lear

ning
Widg

etT
ree

differ
ence

betw
een

conse
cutive

state
s

ε-Gre
edy,

ε
=0.8

Wind
ows

(Java
)

Vuon
g

[155]
Q

-Lear
ning

α
=1

γ
=0.9

Comb
inatio

nofe
vent

dista
nceb

etwe
enco

nsec-
utive

state
sand

frequ
ency-

based
rewa

rds
ε-Gre

edy(
ε in

it
ia

l
=1)

Grad
ually

decre
ased

upto
0.5

Andro
id

Cao[
156]

SARS
A

Smal
lrew

ard(1
)ifcr

asho
rnew

activi
tyis

found
.

Low
rewa

rd(-1
)ifac

tivity
isou

tofS
UT.

Very
lowr

ewar
d(-1

0)oth
erwis

e.
ε-Gre

edy
Andro

id
Romd

hana
[157]

Q
-Lear

ning
and

Deep
RL

algor
ithms

Very
large

rewa
rd(10

00)if
crash

orne
wact

ivity
isfou

nd.
Large

rewa
rd(10

0)ifa
ctivity

isou
tofS

UT.
Smal

lrew
ard(1

)othe
rwise

.
ε-Gre

edy
ε

=0.8
orε=

0.5
Andro

id
Collin

s
[158]

Deep
RLa

l-
gorith

m
Large

rewa
rdifc

odec
overa

gein
creas

esor
new

activi
tyis

found
.

Smal
lrew

ardif
state

does
notc

hang
e.

-
Andro

id
Pan[

148]
Q

-Lear
ning

Simil
arity

betw
eenc

onsec
utive

state
s

(usin
gNe

uralN
etwo

rk)
ε-Gre

edy,
ε

=0.2
Andro

id
Dego

tt
[159]

multi
-arme

d
band

it[16
0]

1if
interf

ace
chang

esb
etwe

enc
onsec

utive
state

s.
0oth

erwis
e.

ε-Gre
edy

Thom
pson

Samp
ling

Andro
id

122 CHAPTER 5. ADDING INTELLIGENCE

Similar to AutoBlackTest, Pan et al. [148] give a large reward when a verydifferent state is reached. They described the JBS problem that arises with thisreward: if two states are too different, the agent will continuously receive highrewards, and consequently, the testing tool might frequently jump between them.As mentioned in the introduction, to address this problem, Pan et al. used aneural network to compare the reached state with the previously visited states.Degott et al. [159] build a general model with the goal of sharing modelsbetween different apps. Their reward is either 1 or 0, according to visual changes.A different and more straightforward solution to the JBS problem is proposedin this study by incorporating memory, based on the frequency of executed actions,into the reward. To achieve this, the visited states and executed actions aretracked. An additional novelty of this proposal is using RL to explore web-basedapplications. Little work has been done on RL-based web exploratory testingwithout prior knowledge, with most studies focusing on Android or Windowsapplications.
5.3 Smart Scriptless Testing

This section outlines the method for integrating Q-Learning into testar. The SUTis the environment, and states are determined by testar along with all availableactions that can be executed. Initially, testar has no knowledge of the SUT, butas the tool learns to select the most optimal action at each step, it updates itsknowledge to find the best policy. These actions generate test sequences. Forthe 4-tuple MDP M = ⟨S, A, T , R⟩:
• a state s ∈ S is represented as the set (w1, ..., wn) of widgets that togetherconstitute the widget tree.
• an action a ∈ A is represented as a 2-dimensional: (action type, widget).
• the execution of the SUT causes the transition T : testar executes an actionand observes the new state.

5.3. SMART SCRIPTLESS TESTING 123
• each time testar executes an action a in state s that results in state s′, areward R (s, a, s′) is calculated.

5.3.1 Rewarding test behaviours

To apply RL to automated GUI testing using testar and define smart explorationstrategies, rewards must be tailored towards improved testing. The followingdefines four types of state-based rewards: frequency, state-change, state, andcombined.
Frequency-based Rewards: This reward is based on the previous work describedby Vos et al. [10], where actions with low execution count are favoured (see 5.2).The reward function is inversely proportional to the number of times ec(a, s) theaction a has been executed in state s. The Rmax parameter determines the initialreward assigned to unexplored actions. High values of Rmax might bias the searchtowards executing new actions.

Rf requency(s, a, s′) = { Rmax , if ec(a, s) = 01
ec(a,s) otherwise

} (5.2)
Rewarding State Changes: By simply observing the interface of the state, itis possible to observe the changes, similar to how the user will experience theexploration of the SUT. Two screenshots corresponding to the previous and thecurrent state are obtained and scanned pixel by pixel to compare their RGB value.The reward consists of calculating the ratio between the total number of differentpixels dp(s, s′) and the total of pixels tp. If all pixels are equal, no observablestate change is detected; hence, the reward is 0. Otherwise, the maximum rewardvalue of 1 is returned if all pixels differ.

Rstate−change(s, a, s′) = dp(s, s′)
tp , (5.3)

Rewarding Reached State: While tuning the RL parameters, a problem describedby Pan et al. was encountered [148]. An agent is rewarded with large values afterfinding very different states, which might result in constantly jumping betweenthem. The problem persists even when State Changes rewards are combined

124 CHAPTER 5. ADDING INTELLIGENCE

with frequency-based rewards, as the initial situation reemerges once most statesand actions have been visited or executed multiple times. To solve this problem,in [148], a memory buffer was proposed, where the reached state is compared witha set of previously visited states instead of with only the immediately previousstate. This research uses testar’s state model to keep a memory of which actionshave been executed on every abstract state.Initially, a single reward is calculated according to the level of exploration ofthe reached state, as shown in 5.4. The value is 1 (maximum possible) if noneof the available actions has been executed, i.e. the state has not been exploredyet. On the other hand, as the actions are executed, the reward decreases untilit reaches the minimum value of 0. The main advantage of this reward is thatit is independent of the previously visited states, acting as a pure measure ofhow useful the current state is. This research hypothesises that this reward willexhibit a lower incidence of the JBS problem.
Rstate(s, a, s′) = ∑

a′∈A(s′)[ec(a′) = 0]
||A(s′)|| (5.4)

Combining Rewards: A final reward is proposed, combining all previous rewardsto address the JBS problem and provide the agent with enhanced informationfor effectively exploring the state space of the SUT. However, the weights of thisreward may need to be adjusted for each specific SUT. For the sake of simplicity,the reward function weights were assigned equal values.
Rcombined(s, a, s′) = w1 ∗ Rf requency + w2 ∗ Rstate−change + w3 ∗ Rstate (5.5)

5.3.2 RL Framework

The interface-based architecture (from Section 3.6) results in a modular and main-tainable framework since the RL functionality is independent of the rest of thetool. The framework consists of an implementation of the ActionSelector interfacecalled QLearningActionSelector as depicted in Figure 5.1. This class implements
selectAction and is responsible for selecting the following action using Q-

5.3. SMART SCRIPTLESS TESTING 125
Learning. The QLearningActionSelector class uses three main interfaces:

• RewardFunction is an abstraction for reward functions. In Figure 5.1, thefour implementations of the reward functions from Section 5.3.1 are shown.
• Policy is an abstraction for possible policies. For this study, ε-Greedy wasimplemented: a strategy that defines a probability ε for exploration.
• QFunction represents the action-value function, implemented by QLearn-ingFunction to calculate Formula 5.1.

«interface»
ActionSelector
+ selectAction: Action

Use

Use

Use

QLearningActionSelector

Extend

«interface»
RewardFunction
+ getReward

«interface»
Policy
+ getQValue

«interface»
ActionSelector
+ selectAction: Action

Extend

Use

Classes implementing the reward functions

FrequencyReward StateReward

CombinedRewardStateChangeReward

UseQLearningFunctionExtend

Use
ε-GreedyExtend

StateModel

Figure 5.1: QLearningActionSelector implements selectAction with Q-Learning.
Algorithm 3 implements selectAction using the interfaces described earlier.Lines 1 and 2 in Algorithm 3 correspond to lines 8 and 9 in Algorithm 5.1, respec-tively. Once the Q value is computed, it is stored in the testar State Model (seeSection 4.2) as a property of the action, since every action is represented as anoutgoing transition of a state. Therefore, the Q-values are associated with boththe abstract representation of the state and the action. Finally, the QLearningAc-tionSelector uses the policy to select the next action.Configuration of a specific Q-Learning set-up is done through testar’s con-figuration file (test.settings). This is used to configure the reward function,policy and Q-function that the ASM will use and to define the parameters suchas ε for the policy and δ and α for the Q-learning algorithm (see Algorithm 2).

126 CHAPTER 5. ADDING INTELLIGENCE

Algorithm 3 selectAction in class QLearningLActionSelector
Input: RewardFunction

Input: QFunction

Input: Policy

Input: s, a, s′ ▷ Previous State, Executed Action, Current State1: reward ← RewardFunction.getReward(s, a, s′)2: q ← QFunction.getQV alue(s, a, reward)3: updateQV alue(s, a, q)4: a ← Policy.applyPolicy(s′)5: return a
Factory method patterns1 are used to select and initialise the applicable im-plementation class. During the initialisation of the applicable classes, the config-ured parameters are set. It is possible to generalise this implementation, as it isindependent of the internal implementation of testar and could be applied to anyother tool capable of abstracting states from a SUT. However, an adapter classwas implemented to integrate it with the testar implementation. This adapterclass could be easily modified or replaced to integrate the implementation witha different tool.

5.4 Experiment Design

This study investigates the effectiveness of the different rewards and their influ-ence on the JBS problem. To achieve this, the following research questions wereformulated:
RQ1 Which reward-based ASM most effectively explores the SUTs?

RQ2 Does Rstate−change result in a higher occurrence of the JBS problem com-
pared to Rf requency, Rstate or Rcombined?

1A design pattern that handles object creation by delegating the instantiation decision to spe-cialised classes.

5.4. EXPERIMENT DESIGN 127
Our experiment, based on guidelines presented in [114, 144], aims to answerthe research questions by analysing the exploration effectiveness of four differentrewards compared to random action selection. Additionally, the effectiveness offrequency-based and state-based rewards as memory-based solutions for theJBS problem is evaluated. Null hypotheses are formulated to facilitate statisticalanalysis of the experiment.

H01 : The exploration performance of the ASMs, as measured by state, action,and URL coverage, is statistically equivalent across all evaluated ASMs.
H02 : The occurrence of states associated with the JBS problem is statisticallyequivalent for Rstate−change, Rstate, Rcombined and Rf requency.
5.4.1 Objects: Selection of SUTs

The SUTs selected for the experiment should comply with the following: 1) TheSUTs have a GUI; 2) testar can detect the widgets on the GUI of the SUTs;3) The SUT contains a high difference between consecutive states to increasethe probability of encounter loops. Since the focus was on web exploration, thefollowing three SUTs were selected.
Shopizer is an e-commerce sales management software that allows the cre-ation of online stores, marketplaces or product listings. The home page comprisesa search form, an item menu and a banner. Shopizer is an open-source websitecontaining 126 Java packages for a total of 410 Java classes and 23330 lines ofcode. Shopizer was selected as a demo application for the initial experimentsof this work. To increase the search space, 10000 fake products were addedto 6 categories and 60 subcategories. Complex actions such as pagination andsearching are required to access the products.
Craigslist is a classified advertisement website with more than 80 million newclassifieds each month. Similar to Shopizer, Craigslist divides the products intomultiple categories and subcategories. However, the product listing view is morecomplex: each category has specific search options for refining the displayedproduct list. During the execution of the experiments, a total of 105 search optionswere observed among all the categories.

128 CHAPTER 5. ADDING INTELLIGENCE

Bol.com is a large webshop with many different products. It was selected dueto its similarity with both Shopizer and Craigslist. Nevertheless, Bol.com providesa more complex interface: extensive sequences of complex actions are required tounblock certain areas of the application. Moreover, small images of the productsare always displayed, making the comparison based on screenshots betweenstates more sensitive. Furthermore, the home page consists of the more recentproducts visited by the user, adding extra dynamism to the website. Finally, aswith Craigslist, specific search options are provided for every category.
5.4.2 Independent and Dependent Variables

The ASMs based on the different rewards from Section 5.3.1 are compared with therandom ASM. This means the factors are the rewards, and all other independentvariables are kept constant.
Independent Variables: The independent variables in this study are the param-eters manipulated to observe their impact on exploration effectiveness. Thesevariables include:

• State abstraction: The abstract state representation affects how testardetects widgets. In this work ABSPROP = {W idgetID, W idgetT extContext} . Thisabstraction was selected after several trials.
• Action derivation: The widget associated with the action is always partof the action’s abstract representation. To differentiate actions originatingfrom the same widget, the role of the action (e.g., click or type) is added toits representation.
• Filters: Different parts of the web applications were filtered out for ev-ery SUT, such as payment checkouts or registration, because they requirespecific sensitive information to work correctly.
Other independent variables for the experiment are constant values:
• Execution time: Each action has an execution time of 1 second

5.4. EXPERIMENT DESIGN 129
• Time between actions: a minimum waiting time of 1 second betweenexecuted actions.
• Length and number of test sequences: A test run consists of 300 se-quences of 100 actions each.
• Exploration policy: An ε-Greedy policy was selected as the policy prob-ability of exploration, with α = 1, γ = 0.7 as the Q-learning parameters(based on the related work).

Dependent Variables: The dependent variables represent the outcomes mea-sured to assess exploration effectiveness and the presence of the JBS problem.To answer RQ1, it is necessary to measure the exploration performance ofeach ASM. While the SUT is explored, new states and actions will be discoveredand/or visited by the RL agent. To measure the exploration performance of eachRL algorithm in terms of state and action space size, the available information isextracted from testar’s state model. Although code coverage is a good indicator ofthe exploration effectiveness of a testing tool, in the case of real web applications,this is not always available. Alternatively, the number of unique URLs visited oneach website was counted.The JBS problem occurs when two states are significantly different. Thisproblem arises because the agent receives high rewards for transitioning betweensuch states. As a result, the agent may frequently "jump" between these states,limiting the exploration of other areas. States that frequently appear in shortsequences are often very different from their consecutive reachable states. It ispossible to obtain a path S1, S2, ..., Sn from every test sequence, where Si is theabstract state visited after executing action ai−1. A loop in a path means thatcertain abstract state was revisited. A jumping state can be defined as a state thatappears excessively in multiple loops, which intuitively indicates the presence ofthe JBS problem. When a test execution is finished, every loop in every path isextracted. If a state s is the initial and final state of the loop, the length li of theloop is associated with that state. Thus, a tuple (s, li) is obtained for every loopin the test sequence.The Dependent Variables measured to answer the RQs are:

130 CHAPTER 5. ADDING INTELLIGENCE

• Number of different abstract states visited
• Number of different abstract actions executed
• Number of different abstract actions discovered
• Average number of distinct URLs visited
• Number of state-loop pairs (Si, li) identified per test sequence.
The number of (Si, li) pairs represents the loops detected during a test se-quence. Here, Si is the state that starts and ends the loop, while li is the loop’slength. By analysing these pairs, "jumping states" (i.e. states that frequently ap-pear in loops) can be identified, serving as a key indicator of the JBS problem.For instance, if a specific state Si is involved in multiple loops with short lengths,it suggests that the agent often returns to this state without exploring new areas,highlighting the presence of the JBS problem.The goal for identifying such states is to detect outliers, i.e., states exhibitingextreme looping patterns, such as high loop frequency and short loop length.By analysing the proportion of outliers across different rewards and SUTs, theinfluence of each reward on mitigating (or failing to mitigate) the JBS problemcan be evaluated.

5.4.3 Experimental Process

In this experiment, the general design principle of blocking was used. This meansfault-detection mechanisms are disabled to ensure that errors and exceptions donot interrupt the test runs, as the primary focus is exploration rather than faultdetection. As a result, oracles (that define the errors and exceptions that testarwill check) will not be used during this experiment because finding an error orexception will interrupt the test sequence, and the goal of this experiment isexploration.To address the randomness of testar ASMs, all test runs of the experimentwill be repeated 20 times using concurrent Virtual Machines (VMs) to execute

5.4. EXPERIMENT DESIGN 131
the tests. Each virtual Windows machine is configured with a 4.5 GHz CPU and16 GB RAM.

To analyse the data and evaluate the hypotheses, the Mann-Whitney-U testwas used for pairwise comparisons between ASMs due to the non-normal dis-tribution of data. The effect size of significant differences was calculated usingCliff’s Delta, with thresholds for large, medium, and small effects.
States exhibiting unusual loop behaviour are identified using DBSCAN, adensity-based clustering algorithm. DBSCAN explicitly labels points that do notbelong to any cluster as noise and does not require predefining the number ofclusters, making it ideal for unknown state-loop distributions [161].
DBSCAN requires three parameters: the neighbourhood radius (ε-DBSCAN),the minimum number of points (minPoints) required to form a dense region andthe features used for clustering. To determine the optimal radius, the k-NearestNeighbors (kNN) distance plot is often used [162]. In statistics, the kNN distanceplot is a reliable method for determining density thresholds, as it objectivelyidentifies the transition between high-density clusters and sparse regions.
To configure kNN to predict the optimal neighbourhood radius, the parameters

k (for KNN) and minPoints (for DBSCAN) are both set to the same value: √n,where n represents the total number of loop states. This approach aligns withstandard practices in kNN classification, where k is often chosen as the squareroot of the total number of data points [163]. Table 5.2 shows the parameterconfiguration per SUT. Moreover, loop frequency and average loop length perloop state were used as the features for clustering with DBSCAN.
SUT k ε-DBSCANCraigslist 33 0.75Bol.com 23 0.45Shopizer 23 0.75

Table 5.2: DBSCAN parameters configuration for each SUT.

132 CHAPTER 5. ADDING INTELLIGENCE

5.5 Results

This section presents the findings of the experiments, addressing the formulatedresearch questions through statistical analyses. The exploration effectiveness ofthe evaluated ASMs is compared, and the incidence of the JBS problem acrossthe different rewards is analysed.
5.5.1 RQ1: Exploration Effectiveness

The ability of the different ASMs to explore a web application was tested bymonitoring the URLs visited during execution. Additionally, testar’s state modelprovides information about states and actions that have been discovered or visited.The number of distinct abstract states visited, different actions executed, andunvisited actions were counted for each application. An action is consideredunvisited when derived by testar but has yet to be visited. Table 5.3 shows theaverage values per SUT and ASM, while Figures 5.2, 5.3 and 5.4 show the resultsfor URL performance and space-related variables.
Table 5.3: Average values of dependent variables for every SUTASM Rcombined Random Rf requency Rstate Rstate−change

Shopizer
Abstract States (mean) 291.50 296.00 312.50 321.95 290.33
Abstract Actions (mean) 1097.85 1109.20 1146.17 1177.65 1065.67
Unvisited Actions (mean) 5135.65 4684.85 5551.56 5687.40 5180.39
URL (mean) 115.80 115.05 122.67 125.40 114.56

Craigslist
Abstract States (mean) 1010.30 1022.05 991.14 959.20 1003.26
Abstract Actions (mean) 2234.65 2464.25 2226.00 2229.70 2223.11
Unvisited Actions (mean) 35625.15 25781.40 37752.00 38824.10 36861.42
URL (mean) 1028.55 1031.70 963.10 946.50 1049.63

Bol.com
Abstract States (mean) 813.10 701.60 803.63 733.70 722.40
Abstract Actions (mean) 1544.47 1365.80 1546.42 1443.80 1422.70
Unvisited Actions (mean) 17445.26 14402.20 17455.95 15686.30 14748.50
URL (mean) 217.53 222.10 227.42 224.85 199.75

5.5. RESULTS 133
Pairwise comparisons between each ASM were conducted following estab-lished guidelines [144], and the effect size was measured in each case. Table 5.4summarises the findings after applying the Mann-Whitney-U test to compare theexploration of abstract states. The statistical results shown in Table 5.4 confirmthat Rstate obtained the best performance. Also Rf requency outperforms Rcombined .

Table 5.4: The p-values calculated pairwise for Abstract States. When p < 0.05, the effectsize is calculated with Cliff’s delta.ASM Rcombined Random Rf requency Rstate Rstate−change
Shopizer

Random 0.61 - - - -
Rf requency <0.01 (l) 0.07 - - -
Rstate <0.01 (l) 0.01 (l) 0.43 - -
Rstate−change 0.60 0.94 <0.01 (l) <0.01 (l) -

Craigslist
Random 0.72 - - - -
Rf requency 0.33 0.02 (m) - - -
Rstate 0.18 0.03 (l) 0.39 - -
Rstate−change 0.55 0.53 0.35 0.22 -

Bol.com
Random 0.01 (l) - - - -
Rf requency 0.20 0.18 - - -
Rstate 0.03 (m) 0.21 0.49 - -
Rstate−change 0.01 (l) 0.52 0.36 0.54 -

2

Figure 5.2 shows high variability for Random across all dependent variablesin Shopizer, with some executions achieving excellent results while others exhibitthe worst performance. Shopizer always lists the same products in the sameorder, making it challenging to browse different items. The pagination is basedon a "load more button". Consequently, new actions only appear if that buttonis clicked. On the contrary, RL ASMs had less variability and obtained betterresults. Especially, Rstate visited a larger amount of new abstract actions whilealso discovering more unvisited actions than any other ASM.

134 CHAPTER 5. ADDING INTELLIGENCE

Figure 5.2: Exploration performance of Shopizer
Figure 5.3 shows that Random ASM visits more unique abstract actions andexecutes more unique actions for Craigslist. Table 5.4 indicates that there is asignificant statistical difference between Random and Rstate or Rf requency withregards to Abstract State exploration. This may be due to Craigslist’s multiplesearch options available in most states, resulting in a vast set of possible actionsto execute. Conversely, RL ASMs repeat many actions already executed to learn

5.5. RESULTS 135
from the experience. Further research is needed to improve abstraction to handlemultiple search options or increase the testing time to train the RL agent.

Figure 5.3: Exploration performance of Craigslist
To verify if this is also the case for Craigslist, a single run of 100 test sequences,each consisting of 100 actions, was executed using Random and Rcombined . Table5.5 shows the results for state exploration. Both ASMs reached a similar numberof abstract states, while Rcombined visited considerably fewer concrete states than

136 CHAPTER 5. ADDING INTELLIGENCE

Random as a sign of better exploration. The model generated can be used infuture test sessions or in different versions of the same SUT. Theoretically, theRL agents will need less execution time to reach the same exploration level.
Table 5.5: State exploration after 10000 actionsASM Abstract States Concrete States URL coverageRandom 3274 6479 1136

Rcombined 3166 4576 1301

Figure 5.4: Exploration performance of Bol.com

5.5. RESULTS 137
For Bol.com, Figure 5.4 indicates that the RL approaches generally outper-formed Random. In particular, Rcombined outperformed Rstate and Rstate−changein terms of search space exploration. Table 5.4 shows that there is a statisticaldifference at a significant level for the exploration of new abstract states.However, there are no significant differences in terms of URL coverage. Ananalysis of the extracted URLs during the executions revealed that most URLsinclude multiple search parameters. Since this is an e-commerce site, new URLsare obtained after accessing a product view or refining the product search on thelisting views. This highlights the importance of domain-specific preprocessing,such as URL normalisation, to distinguish meaningful navigational actions fromparameter variations.
RQ1 answer: State-based reward (Rstate) generally exhibited superior
performance in exploring diverse areas of the SUTs, as indicated by metrics
like abstract state discovery and action coverage. However, the frequency-
based reward (Rf requency) proved to be effective in promoting balanced
exploration across more complex and interconnected state spaces.

5.5.2 RQ2: JBS Problem

Intuitively, jumping between states happens when states appear multiple timeswith short sequences of actions between each occurrence. However, the lengthand frequency required to classify a state as a jumping state are hard to predictfor every SUTs. Loops were extracted to analyse the distribution of jumping states,with a focus on the initial state and loop length. Figure 5.5 shows the relationbetween the number of times a state starts a loop and the average size of thoseloops. The pattern is consistent across ASMs. The interesting sections rely onthe bottom right of every chart: states (represented as red dots) with many loopsof small size. DBSCAN’s outlier detection was applied for all rewards across thethree SUTs. Each point in the data represents a state-loop pair, characterised bythe average loop length and the number of loops.

138 CHAPTER 5. ADDING INTELLIGENCE

(a) Craigslist

(b) Bol.com

(c) Shopizer
Figure 5.5: Distribution of states starting loops and their mean loop length

5.5. RESULTS 139
Figure 5.5a presents the clustering for Craigslist. Rstate−change and Rcombinedseem to have a higher accumulation of points in this area, while Rstate containsno problematic states.In Figure 5.5b, Bol.com’s clustering results reveal fewer outliers overall despiteits complex navigation requirements. Similar to Craigslist, Rf requency tends to havefewer loops per test sequence in Bol.com, with the states being visited fewertimes. Rstate−change again shows a higher number of potential jumping states,while Rstate and Rcombined appear to balance exploration and revisitation, leadingto a moderate number of outliers. Additionally, the graphs show fewer loops forBol.com. This could be an important factor in explaining the better performanceof the rewards in this web application.Figure 5.5c shows the clustering results for Shopizer, which contains a moresignificant presence of jumping states, and in general, all the loops are of smallsize. There is no noticeable difference between the rewards. This can be ex-plained by the nature of Shopizer, which has smaller state space and simplenavigability to access the main parts of the SUT. This result is expected: Rstate isa reward based solely on the reached state, not depending on any characteristicof the consecutive states.To further evaluate the incidence of the JBS problem in each ASM, the num-ber of jumping states was statistically analysed using the Mann-Whitney U test.The goal is to measure if there is any statistical difference between the re-ward Rstate−change and the other three rewards, respectively. Table 5.6 sum-marises the p-values calculated for this comparison for Craigslist and Bol.com.

Rstate−change is significantly different from Rstate and Rf requency (p − value <0.05). Rstate−change tends to visit the same states more frequently with feweractions in between. The hypothesis for Rcombined in Craigslist could not berejected. The weight parameter could give too much influence to the state-changereward within the combined reward.
Table 5.6: p-values calculated between every reward and Rstate−change

Rcombined Rf requency RstateCraigslist 0.48 p < 0.001 p < 0.001Bol.com 0.03 p < 0.001 0.03

140 CHAPTER 5. ADDING INTELLIGENCE

RQ2 answer: The frequency-based reward (Rf requency) was most effective
in mitigating the JBS problem, reducing the prevalence of states involved in
short, repetitive loops. The reward based on state-change (Rstate−change)
exacerbated the issue by rewarding transitions between a limited set
of states. In contrast, the state-based reward (Rstate) showed resilience
against this problem in most cases.

5.6 Discussion

The analysis demonstrated that the state-based reward tends to excel in envi-ronments where exploration breadth is critical, as it prioritises the discovery ofnew states. Conversely, the frequency-based reward promotes a more uniformexploration. In contexts where navigation complexity is high, such as e-commerceplatforms, a frequency-based reward provides a balance between revisiting keystates and discovering new regions.The JBS problem arises when rewards incentivise behaviour that limits theexploration potential, leading to frequent transitions between a small subset ofstates. Frequency-based strategies discourage such behaviour by penalising re-visitation patterns, enabling more balanced exploration. In contrast, rewardsbased on state differences, if not calibrated, risk reinforcing the problem, even inlarge state spaces.Several factors might affect the incidence of the JBS problem. Web applica-tions with a high probability of accessing previously visited states can presentthis problem regardless of the selected reward. This can be observed, for exam-ple, when the state space is small, when there is a bottleneck to access otherunvisited parts of the SUT or when there is high interconnectivity between themain states. This is the case with Shopizer, where new pages are only accessiblethrough a button that is not always visible, and the state space is small.

5.7. THREATS TO VALIDITY 141
5.7 Threats to Validity

In this study, several threats to validity were identified and addressed to ensurethe reliability and applicability of the results. These threats are categorised intofour main types, following the guidelines proposed by [114].
5.7.1 Internal Validity

Although multiple runs (20 repetitions) were conducted to mitigate randomness,the selection of specific web applications might inherently favour certain explo-ration strategies over others. Three web applications with varying complexitiesand navigation structures were chosen to reduce this threat.Furthermore, the choice of RL parameters can significantly influence theagent’s performance. While default values were selected based on related work,different configurations might yield different results. Future studies could explorethe sensitivity of the outcomes to these parameters.Regarding testar’s configuration, the state and action abstraction methodplays a crucial role in how states (and actions) are represented and differentiated.An inappropriate abstraction could lead to misleading state representation, as ob-served in Chapter 4, affecting the learning process. Although this abstraction wasselected after several trials during the Implementation Phase (see Figure 3.10),alternative abstraction methods might produce different exploration behaviours.
5.7.2 External Validity

Only three web applications were evaluated, each with its unique characteris-tics. While they represent a range of complexity, the results may not generaliseto all types of web applications, especially those with highly dynamic content.Future research could include a broader spectrum of applications to enhancegeneralizability.Moreover, the integration of Q-Learning with testar is tailored to its architec-ture and state modelling capabilities. Ensuring modularity in the implementationallows for easier adaptation and testing across different tools.

142 CHAPTER 5. ADDING INTELLIGENCE

5.7.3 Construct Validity

The study used metrics such as the number of abstract states visited, actionsexecuted, and URL coverage as proxies for exploration effectiveness. While thesemetrics provide valuable insights, they might not fully capture the qualitativeaspects of exploration, such as the relevance of the visited states.The methodology for detecting the JBS problem relied on loop detection andclustering using DBSCAN. The choice of parameters and features might influencethe identification of outliers. Alternative clustering techniques or parameter set-tings could yield different interpretations of what constitutes a jumping state. Tomitigate this threat, parameter tuning was performed on the kNN distance plotto objectively identify optimal clustering thresholds.
5.7.4 Conclusion Validity

Each ASM was executed 20 times to account for randomness. While this numberprovides a reasonable balance between computational feasibility and statisticalpower, larger sample sizes might offer more robust estimates and detect smallereffect sizes. Future experiments could increase the number of repetitions to en-hance statistical reliability.The implementation details of the Q-Learning algorithm, including the calcu-lation of the rewards and the application of the policy, could introduce inconsis-tencies. Ensuring that the algorithm is correctly implemented and that all ASMsare evaluated under identical conditions is crucial for drawing valid conclusions.Rigorous testing and validation of the implementation were performed to minimisethis threat.The rewards were tailored based on existing state models. The ASMs mayhave performed well on the selected SUTs but might not generalise to unseenapplications or different testing scenarios. The study acknowledges this andrecommends validating the approach across additional and more diverse SUTs infuture research.

5.8. CONCLUSIONS 143
5.8 Conclusions
A Q-learning approach for automated GUI testing was presented, utilising re-wards based on the state model of web applications. This is an understudied yetvaluable area for understanding an agent’s behaviour when executing actions toattain rewards. This approach offers a unique advantage in this domain.An experiment was conducted on three complex web applications to evaluatethe performance of four rewards, using Random as a baseline for comparison.The results showed that frequency, state, and combined rewards had the bestperformance for state exploration. The state-change reward, however, was out-performed by or did not improve upon the results of the other rewards. Addition-ally, a solution to the Jumping Between States (JBS) problem was proposed byincorporating memory information into the reward. The results demonstrated thatrewards based solely on the reached state effectively circumvent the JBS problem.However, in domains with high connectivity between states, where most pagesare accessible within a few clicks, the JBS problem is more prevalent, regardlessof the reward. Nevertheless, state or frequency rewards performed better in webapplications with complex navigability.

144 CHAPTER 5. ADDING INTELLIGENCE

6
Applying it at a company: Marviq

"Software never was perfect and won’t get perfect. (...) The
missing ingredient is our reluctance to quantify quality."

Boris Beizer, Software testing techniques
The increasing reliance on complex web applications demands robust soft-ware testing practices to prevent bugs that could cause user dissatisfaction, databreaches, and reputational harm [63]. For companies, testing at the GUI level isessential, as it provides insights into the customer experience. However, man-ually executing GUI tests is resource-intensive and error-prone, particularly inregression testing, prompting a shift toward automation.The industry case-based studies discussed in Chapter 3 have demonstratedthat scriptless GUI testing complements traditional scripted testing techniques.Despite these advantages, industrial adoption remains limited.In collaboration with the private company Marviq 1 and under the EuropeanIVVES (Industrial-grade Verification and Validation of Evolving Systems) project 2,several critical needs were identified influencing the adoption of scriptless testing

1Official website: https://marviq.com/2Official website: https://www.ivves.eu
145

https://marviq.com/
https://www.ivves.eu

146 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

in industrial settings:
1. the optimisation of test session length to balance coverage and time effi-ciency.
2. the evaluation of random GUI testing as a complement to existing manualtesting processes.
3. the introduction of code smell coverage to address maintainability and tech-nical debt.
4. the assessment of correlations between code smell coverage and traditionalcoverage metrics to identify testing gaps.
To address these needs, it is essential to consider the breadth of code exer-cised during testing and the underlying quality of the code being tested. Tradi-tional metrics, such as line, branch, and complexity coverage, have been widelyused to measure how much of the code is covered during testing. While thesemetrics offer valuable insights, they have long been debated for their limitationsin fully capturing the quality of testing [164,165]. High code coverage can be de-ceptive, as it does not guarantee thorough testing or the detection of more subtledefects, leaving critical areas of software quality unaddressed.This chapter will explore the use of code smells as a metric for evaluatingtraditional coverage metrics within the context of an industrial web application.Code smells indicate potential issues that may lead to maintainability problemsand hidden bugs [166]. Covering these smells during testing can reflect the abilityof the testing tool to detect deeper quality issues. While static analysis identifiespotential smells, dynamic testing ensures these smells are encountered duringreal application use, increasing confidence in addressing areas that may con-tribute to defects and boosting confidence in overall software quality.This study uses SonarQube [167] for code smell detection to assess the impactof test sequence length on coverage and investigates correlations between codesmells and traditional coverage metrics. Additionally, this work compares thecomplementarity of scriptless testing with Marviq’s existing manual testing pro-cess. This collaboration brings significant relevance to this research, as it adds

6.1. RELATED WORK 147
a real-world and practical component and another industrial validation of script-less GUI testing needed for case study generalisation through the architecturalanalogy presented in Chapter 3. The contribution of this chapter is threefold:

1. An empirical study to analyse the influence of test sequence length ontraditional coverage metrics.
2. The use of known code smells in an industrial application for evaluatingthe effectiveness of traditional coverage metrics in exploring a system.
3. A comparison of random scriptless testing with Marviq’s manual testingprocess to demonstrate their complementarity and the potential of scriptlesstesting.
This study offers insights for software testing professionals and researchersinterested in expanding traditional coverage metrics to include aspects of codemaintainability. By integrating code smell detection, this work contributes to theongoing development of testing techniques that address both functionality andsoftware quality. Moreover, new research directions could emerge in softwaretesting, code quality, and the relationship between GUI testing and code smells.The chapter is structured as follows. Section 6.1 presents the state of theart in random scriptless GUI testing, adequacy metrics and code smell analysis.Section 6.2 describes the industrial context of this study. Section 6.3 describes theexperiments with random testing. Section 6.4 shows the results and answers tothe research questions. Section 6.5 discusses Marviq’s perspective of the findings,while Section 6.6 presents the validity threats and mitigation actions. Finally,Section 6.7 concludes the work.

6.1 Related Work

This section presents relevant studies that provide insights into random scriptlessGUI testing, test adequacy metrics, and the relationship between testing and codesmells.

148 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

6.1.1 Random Scriptless GUI testing

Although random scriptless GUI testing has been shown to effectively identifya range of faults, its success largely depends on how the randomisation pa-rameters are configured. Recent studies demonstrate that test outcomes can besignificantly influenced by settings such as the length of the test sequences, thestate abstraction (as observed in Chapter 4), and the stopping criterion [168,169].However, improving the effectiveness of random GUI testing requires carefuladaptation of the random strategy to overcome specific challenges presentedby GUI components, such as blocking GUI (i.e., GUIs that need specific userinteractions to be unlocked). To address this, recent work has explored the useof novel techniques to enhance the ability of random agents to navigate and testsophisticated interfaces, improving overall testing adequacy [170].Furthermore, a body of research compares random testing with manual test-ing approaches. These studies highlight that random and manual techniquesare complementary: while manual testing is capable of covering parts of thecode that random testing might miss, random approaches can explore unexpectedinteractions and pathways that manual testers may overlook. This complemen-tarity suggests that a hybrid testing strategy, leveraging both methods, can offerimproved coverage and fault detection capabilities [64, 171].
6.1.2 Test adequacy metrics

Code coverage has been widely used in the literature to evaluate the quality oftesting by relating coverage to the test effectiveness [172], [173], [174], [175].The most commonly used coverage criteria for GUI testing include:
• Line of Executable Code Coverage (LC): percentage of executable lines ofcode covered by an execution of random scriptless GUI testing session. Anexecutable line of code is considered covered when it is executed by therandom scriptless GUI testing session.
• Statement Coverage (SC): percentage of executable statements that havebeen executed, focusing on individual operations regardless of how they are

6.1. RELATED WORK 149
arranged on lines of code. Multiple statements can be on a single line, orone statement can span multiple lines.

• Instruction Coverage (IC): percentage of bytecode instructions that havebeen executed during testing.
• Branch Coverage (BC): percentage of branches in the code that were exe-cuted at least once during testing. A branch is a decision point in the codewhere the program can take different paths based on a condition.
• Complexity Coverage (CoC): percentage of the code’s cyclomatic complexitythat has been tested. Cyclomatic complexity measures the complexity of aprogram’s control flow by counting the number of independent paths throughthe code.
• Method Coverage (MC): percentage of methods (or functions) in the code-base that have been executed at least once during testing.
• Class Coverage (ClC): percentage of classes in the codebase that have beeninstantiated or had their static members accessed during testing.
• State Space Exploration (SSE): number of distinct states explored duringtesting.
• Action Space Exploration (ASE): number of distinct actions executed duringtesting.
Choudhary et al. [176] conducted a comprehensive comparison of Android GUItesting tools, including Monkey, using line of executable code coverage. Similarly,Wang et al. [177] compared various automated Android testing tools, focusing onmethod coverage, activity coverage and fault detection. Branch coverage was usedas a primary metric when comparing random testing with a search-based testdata generation study for web applications in [178]. Van den Brugge et al. [179]assessed effectiveness using instruction, branch, and accumulated instruction andbranch coverage in Java applications. Likewise, in [180], line and statement cov-erage were used to propose a framework to evaluate the effectiveness of different

150 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

Android GUI testing tools. Recently, Collins et al. [181] examined the effectivenessof a reinforcement learning testing approach for Android using instruction, branch,line and method coverage. Additionally, in [182], an image-based GUI testing ap-proach was empirically evaluated in Android and Web applications using linecoverage and branch coverage.Thus, coverage metrics act as surrogate measures of the thoroughness oftesting efforts. Nevertheless, there is also evidence in the literature arguing thatcoverage criteria alone are not a sufficient indicator of test quality [183], and thatnew solutions should be explored to improve test quality by looking beyond justcode coverage [184].Memon in [185] recognises that code coverage metrics do not address prob-lematic interactions between the GUI user events and the application and arguesthat coverage criteria for GUI testing require new perspectives. Subsequently,in [186], an empirical evaluation to analyse the impact of the test suite size on thecapability to detect faults is presented, showing that larger test suites identifymore faults previously seeded in toy projects. This conclusion is straightforwardsince high coverage means that the system has been explored more deeply, andthen the quality of the test process should improve to detect faults. However,this conclusion raises the question of which of the traditional coverage metrics ismore likely to be a good indicator of test quality in real projects.
6.1.3 Code Smells

Code smells [70] refer to indicators of design flaws or issues in source codethat can lead to future problems. Consequently, finding these smells duringtesting can reflect the ability of the testing tool to cover code with deeper qualityissues, such as code smells. Most of the existing research on code smells focuseson prioritisation [187–189], filtration [190], and the code smells-faults correlation[191–193].Spadini et al. [194] examined how the presence of code smells affects thecoverage of test suites, revealing that classes with code smells tend to havelower test coverage. Bavota et al. [195] studied the relations between qualitymetrics, or the presence of code smells, and refactoring activities performed by

6.2. INDUSTRIAL CASE 151
developers. Results highlighted that only 7% of the refactorings performed onclasses affected by smells actually removed those smells. These findings indicatethat developers focus on mitigating the problem without necessarily removingcompletely the code smell.While these studies have made important steps in linking code smells to testquality, a gap remains in assessing how the different traditional coverage metricsrelate to code smells.Based on existing research, this study is the first to assess the power oftraditional coverage metrics to predict testing quality by using known code smellsin an industrial application. This approach offers a new perspective on GUI testingeffectiveness, bridging the gap between testing and code quality assessment.By applying testar, this work builds on scriptless testing theory using thearchitectural analogy and strategies from [196]. This work provides a deeperexplanation of the testing effectiveness of the industrial application of scriptlesstesting presented in [197], contributing this way to the generalisation of the find-ings.
6.2 Industrial case

Marviq is a software development company offering Team as a Service, SoftwareDevelopment as a Service and IoT development, with a focus on integrating skilledprofessionals into client teams and managing entire development projects. Mar-viq is a small company with 35 professionals who work with agile practices ontypically eight concurrent development projects while serving 25 clients.As these projects are tailored to the client’s needs, Marviq applies a tailor-made Quality Assurance (QA) process consisting of the following steps: (1) con-duct a workshop with the client for business alignment and scoping; (2) developthe MVP (Minimum Viable Product) as a prototype of the project; (3) developthe product and environment following agile practices based on SCRUM [46]; (4)and provide support channels to the client when the project is released. It isimportant to mention that QA for small companies like Marviq faces several chal-lenges [47], [48], such as unclear requirements, the illusion that the prototype is

152 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

the final product, mapping existing software to new business process mismatchor running out of time for testing.The selected SUT is Yoho 3, a digital solution developed by Marviq to en-hance operations and communications within industrial environments. Yoho offersfunctionalities such as alert and notification management, task handling, work in-structions and enhanced communication tools (see Figure 6.1). Yoho is a softwareas a service (SaaS) platform with the typical web application functionality.

Figure 6.1: Excerpt of Yoho SUT.
The Yoho Software as a Service (SaaS) platform initially began as a well-defined minimum viable product. However, market circumstances caused theproduct scope to rapidly change with each potential customer, resulting in asystem more akin to a prototype than a functional product. At this stage, Marviqwas brought in to adopt the project and transform it into a market-ready product.With the first customers in sight, the product focus became clear, and develop-ment resumed a straightforward path towards a production-ready state, resultingin the product as it stands today.

3Yoho showcase: https://marviq.com/our-showcases/yoho-factory-management-platform/

https://marviq.com/our-showcases/yoho-factory-management-platform/

6.2. INDUSTRIAL CASE 153
At its core, Yoho has been designed with highly configurable options anda role-based access mechanism to support future requirements and customer-specific demands. The design includes interaction units tailored by roles, whichprovokes that while executing tests a specific role and customer would result ina relatively low percentage of code coverage as not all functionality would berevealed for this user.Table 6.1 presents an overview of the size of Yoho. As can be observed, themetrics presented are representative of a real-world application. Additionally,this SUT exposes relevant challenges, such as the dynamism of modern webapplications (i.e., dynamic identifiers for the GUI widgets).

Metrics YohoJava Classes 569 (709 incl. interfaces)Methods 3033SLOC 25099LLOC 9059Branches 1622Instructions 37180Cyclomatic Complexity 3856
Table 6.1: Overview of the size of Yoho

Marviq uses SonarQube to identify code smells in the Yoho application. Thisinformation provides a rich basis for evaluating the performance of different cov-erage metrics to test the parts of the code that may be causing problems. Nev-ertheless, Marviq faces several challenges in ensuring effective software testingwhile managing limited resources. To address these challenges, the companyidentified the need to explore random testing, manual testing, and new coveragemetrics to enhance testing efficiency and code quality. Below are the specificneeds that motivated the study.
(a) The Need to Conduct Random Testing with Different Session Lengths: Thecompany needs to optimise testing resources to ensure the process is effectiveand efficient. Since testing resources are limited, finding the optimal sessionlength that balances coverage and time is important. Testing sessions that are

154 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

too short may miss critical issues, while longer sessions may be inefficient. Byexperimenting with different session lengths, the company aims to identify the
best trade-off between test coverage and resource expenditure. This is especiallyimportant in environments with rapid development cycles like Agile, where theability to quickly adapt testing to available time windows is critical.
(b) The Need for a New Coverage Metric: Code Smell Coverage: The companyaims to ensure not only functional correctness but also long-term high code
quality and maintainability. Traditional metrics like code or method coveragefocus on functionality but do not fully capture the maintainability and readabilityaspects of the codebase. Introducing code smell coverage addresses the need totrack potential technical debt that could accumulate unnoticed. This metric helpsthe company ensure that, while functional coverage may be high, the code remainsmaintainable and scalable, reducing the risk of future issues as the softwareevolves.
(c) The Need to Assess Correlations between Code Smell Coverage and Tradi-
tional Metrics: The company seeks to understand whether traditional metrics likecode and method coverage correlate with overall code quality, as high coveragedoes not guarantee well-structured or maintainable code. By exploring the rela-tionship between code smell coverage and traditional metrics, the company aimsto identify gaps in its testing process. Low correlation would suggest traditionaltesting may not fully address long-term maintainability concerns. This insightcan help the company develop a more holistic testing approach, including bothfunctional correctness and code quality to ensure robust, maintainable software.
(d) The Need to Compare Random Testing with Manual Testing: Given the limitedresources for manual testing, there is a need to evaluate whether random testing
can complement the existing manual testing processes. Manual testing is labour-intensive and expensive, so the company seeks a solution that can reduce the time
and cost associated with it. By comparing the two approaches, the company aimsto determine if random testing can identify different types of issues that manualtesters may miss. The ultimate goal is to enhance test coverage while reducingthe burden on manual testers, allowing them to focus on more critical scenarios.

6.3. EXPERIMENT DESIGN 155
6.3 Experiment Design

An experiment to explore the application of random testing on an industrial webapplication was conducted, addressing the industrial needs discussed in Section6.2. Specifically, the study focuses on optimising testing resources, assessingrandom testing’s complementarity to manual testing, and introducing innovativemetrics like "code smell coverage" to monitor code quality and maintainability. Thefollowing three research questions were formulated along with their rationalesto achieve this goal.
RQ1: How do the number and length of random scriptless GUI testing sequencesimpact the coverage of testing adequacy metrics?

This question investigates Need 1. The company aims to determine howthe number and length of random scriptless GUI testing sequences influencetesting adequacy metrics. Understanding this relationship will help optimisethe testing process by balancing thoroughness with resource limitations in Agileenvironments with tight testing cycles.
RQ2: How do traditional coverage metrics (e.g., code and method coverage) relateto code smell coverage?

This question addresses Need 2 and Need 3 . The company seeks to examinethe relationship between traditional coverage metrics and new metrics, like codesmell coverage, to determine how well they align in assessing overall code quality.
RQ3: How can random testing complement or reduce the reliance on manualapproaches?

This question tackles Need 4. The company aims to assess whether randomtesting can supplement or reduce the need for manual testing.
The experiment was designed following the guidelines proposed by Wohlin[114]. Moreover, this study follows a methodological framework [198] specificallydesigned to evaluate testing tools in order to encourage future secondary studies.The experiment is described in the following subsections.

156 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

6.3.1 Independent and Dependent Variables

The independent and dependent variables were defined as follows to address theresearch questions.
Independent Variables: The independent variables refer to the parameters usedto configure the random scriptless GUI testing tool. These variables include:

• Number of random testing sequences: the total number of random testsequences executed.
• Number of GUI actions per sequence: the number of actions executed withineach test sequence.
• Time delay between actions: the time interval (in seconds) between twoconsecutive random actions.
• Action duration: the time (in seconds) taken for each GUI action to complete.
• State abstraction: defined by the properties of the widgets used to repre-sent the state of the system under test (SUT).
• Initial sequence needed: for example, to pass a login screen.
• Form filling enabled: to fill detected forms with meaningful data.
Additionally, the parameters used for detecting code smells are treated asindependent variables.

Dependent Variables: To answer the research questions, several traditional cov-erage metrics were measured, including Line Coverage (LC), Instruction Coverage(IC), Branch Coverage (BC), Complexity Coverage (CoC), Method Coverage (MC),and Class Coverage (ClC). In addition, the following variables were defined toanalyse coverage within the state models and to quantify code smells:
• Abstract State Coverage (AbSC): The number of abstract states covered inthe state model during testing.
• Abstract Transition Coverage (AbTC): The number of transitions covered inthe abstract state model.

6.3. EXPERIMENT DESIGN 157
• Concrete State Coverage (CoSC): The number of concrete states covered inthe concrete state model.
• Concrete Transition Coverage (CoTC): The number of transitions covered inthe concrete state model.
• Code Smell Coverage (CSC): The number of unique code smells encountered.A code smell is considered "covered" when the Java method containing it isexecuted at least once during testing.
• Code Smell Occurrences (CSO): The total number of code smell instancestriggered during testing, including multiple occurrences of the same codesmell.

6.3.2 Experimental Setting

To carry out the experiment, both the testar testing tool and the SonarQubestatic analysis platform were configured to suit the needs of this study, ensuringan effective evaluation of test coverage and code quality metrics.
TESTAR Configuration: For testing the Yoho application using testar, severalkey configurations were implemented to optimise the testing process. First, theSUT was specified by defining Yoho’s URL and establishing the necessary loginprocedures. This ensured that testar could consistently access and interact withthe application. The blocking principle [114] was applied to focus on exploringthe SUT, turning off testar’s oracles to prevent test interruptions.For widget identification, testar was configured to consider attributes such asname, ID, control type, and text content. In cases where clickable elements weredefined by CSS classes instead of standard attributes, clickability was manuallyconfigured to ensure accurate testing. State abstraction (SA) consisted of theWebWidgetId, WebWidgetName, WebWidgetTextContent, and WidgetControlTypeproperties. The action abstraction strategy followed testar’s default configuration.Additionally, certain actions, such as logging out or file uploads, were excludedto avoid interactions outside the test scope.

158 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

A mandatory login sequence was defined to execute at the start of each testrun, using consistent credentials across all tests to ensure a uniform startingpoint. Based on preliminary trials, time parameters were optimised, with theaction duration set to 0.5 seconds and the delay between actions to 0.8 seconds.
Additionally, a BTrace4 server was integrated alongside testar. BTrace al-lows real-time instrumentation of Java methods without modifying the source codeor interrupting the normal execution of the application. BTrace intercepted andlogged method calls triggered by GUI actions while operating in a separate envi-ronment. Each traced method (along with its class name, timestamp, and relevantparameters) was stored in a database. This information was cross-referencedwith known code smells, enabling us to track and measure variables such as CSCand CSO, as described in Section 6.3.1.

SonarQube Configuration: SonarQube [69] was used to perform static analysisof the Yoho codebase, identifying code smells and other violations. SonarQubeclassifies violations by severity: Blocker, Critical, Major, Minor, or Info. In Yoho’sanalysis, SonarQube detected a total of 173 code smell instances, categorised asshown in Table 6.2 using both Fowler’s [70] original classification of code smellsand a more recent classification system [199].
Most detected code smells were categorised as Object-Orientation Abusers.Conditional Complexity was the most frequent, suggesting a need for better ad-herence to object-oriented design patterns in the Yoho codebase. Although onlyone security-related issue was found, it was classified as Critical. This analysisprovided valuable insights, allowing us to assess both the prevalence and sever-ity of code smells in relation to the executed test sequences. Furthermore, codesmells in comments and dead code were excluded from the study, as they are notexecutable, to ensure accurate coverage analysis and responses to the researchquestions.

4Source code available at: https://github.com/btraceio/btrace

https://github.com/btraceio/btrace

6.3. EXPERIMENT DESIGN 159
Table 6.2: Code Smell Classification and Severity

Code Smell Type Critical Major Minor
Bloaters (26) Data Clumps 1 0 0Long Parameter List 0 11 0Primitive Obsession 1 11 2
Couplers (11) Indecent Exposure 0 11 0
Dispensables (29) Comments 12 3 0Dead Code 0 8 0Lazy Class 0 0 1Speculative Generality 0 4 1
Lexical Abusers (3) Inconsistent Naming 0 0 3
Obfuscators (8) Clever Code 0 1 3Inconsistent Style 0 0 4
Abusers (95) Conditional Complexity 0 70 0Refused Bequest 0 3 20Switch Statements 0 0 1Temporary Field 0 1 0
Security (1) Vulnerability 1 0 0
Total (173) 15 123 35
Total excluding comments and dead code (150) 3 112 35

6.3.3 Experimental Procedure

The experiment was designed with three different configurations of test processesconsisting of 10, 000 actions, i.e. TP100, TP500 and TP1000. Table 6.3 shows thedetails of these configurations. Moreover, the best configuration was selected(that turned out to be TP500 for the answer to RQ1 in Section 6.4.1) to run it withthe advanced form-filling feature of testar, to conduct the comparison with manualtesting for RQ3. Table 6.3 also shows the details for this enhanced configuration(TP500Forms).testar’s form-filling feature automatically populates forms with data. As thescriptless tool randomly navigates through the different states of the SUT, it au-tomatically detects forms. Once a form is identified, testar generates an XMLfile with each key representing an editable widget within the form, and the cor-responding value is an automatically generated input.The generated input data type depends on the widget type (e.g., random text

160 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

Table 6.3: Test Process Configurations
Variable TP100 TP500 TP1000 TP500FormsTest sequences 100 20 10 20Actions per sequence 100 500 1000 500Time delay (s) 0.8 0.8 0.8 0.8Action duration (s) 0.5 0.5 0.5 0.5State abstraction SA SA SA SALogin sequence yes yes yes yesForm-filling no no no yes
for text fields or a valid email address for email fields). The XML file can containmultiple input sets for the same form, each with an associated weight indicatingthe likelihood of selection. These XML files can be manually edited to replace oradd specific values and weights, enabling the form to be tested with varied datacombinations based on assigned probabilities.Example 6.1 illustrates an automatically generated XML, representing a sim-ple form containing two fields: a description and an email. The XML file containstwo input sets with different values for the form fields, and equal weight values.

Example 6.1: Example of XML form
<form>

<data>
<description>RandomText1</description>
<email>first.email@example.com</email>
<weight>50</weight>

</data>
<data>

<description>RandomText2</description>
<email>second.email@example.com</email>
<weight>50</weight>

</data>
</form>

During the configuration of testar, 23 forms were automatically identified

6.3. EXPERIMENT DESIGN 161
within the SUT, ranging from one to six fields in complexity. Two distinct in-put profiles were created for each form to thoroughly test these forms: one withbaseline values across fields and another with varied, alternative values to coverbroader data cases. The edition and small-scale testing (during the Implemen-tation Phase, as described in Chapter 3) of the 23 respective XML files took oneworking day (8 hours). With this functionality added to TP500Forms, if testardetects a form during testing, a form-filling action will be added to the list ofavailable actions in this state. If selected randomly, one of the input profilesdefined in the XML file will be chosen based on its weight.

30
times

30
times

 10 Test Sequences
1000 actions each

30
times

20 Test Sequences
500 actions each

Form-filling enabled
30

times

Code, State
and Code

Smell
Coverage

Manual Testing

1 test
session

RQ1
RQ2

RQ3

20 Test Sequences
500 actions each

100 Test Sequences
100 actions each

Code, State
and Code

Smell
Coverage

Code, State
and Code

Smell
Coverage

Code, State
and Code

Smell
Coverage

Code, State
and Code

Smell
Coverage

Figure 6.2: Overall experimental design architecture.
Figure 6.2 presents an overview of the experimental design. Each configura-

162 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

tion was repeated 30 times to deal with randomness. testar was configured torestore the initial state of the SUT after each sequence. This setup was used toevaluate the influence of sequence length on coverage metrics and the relation-ship of code smells to traditional coverage metrics. Manual testing was performedby an experienced tester with prior knowledge of the Yoho application. The testerexplored the application thoroughly during a manual test session that lasted oneworking day.
6.4 Results

This section presents the results obtained to understand the influence of sequencelength on traditional test adequacy metrics, the relationship between code smellsand traditional coverage metrics, and the comparison of random with manualtesting.
6.4.1 RQ1: Number and length of test sequences

Figure 6.3a presents the box plot graphs comparing the different traditional cov-erage metrics across the three test runs. The box plots reveal a consistent trendacross all metrics, with coverage generally increasing from TP100 to TP1000,though the magnitude of the increase varies by metric. Instruction Coverage (IC)and Branch Coverage (BC) show relatively lower percentages with minimal vari-ation across test processes. Line Coverage (LC) and Complexity Coverage (CoC)show moderate coverage with slightly more variability. In contrast, Method Cov-erage (MC) and Class Coverage (ClC) show the highest coverage levels and themost noticeable differences across configurations. Notably, TP1000 consistentlyachieves higher median coverage and often larger variability, particularly for MCand ClC. Several metrics, especially ClC, show outliers, indicating instances ofexceptionally high or low coverage in some test runs.For the state coverage metrics, Figure 6.3b illustrates how test runs withlonger sequences lead to significantly better coverage of both abstract and con-crete states and transitions.

6.4. RESULTS 163

(a) Code Coverage (b) State Model Coverage
Figure 6.3: Distribution of coverage metrics.

Figure 6.4 shows the distribution of unique code smells covered by each con-figuration. Similarly, the data suggest a trend towards higher code smell coveragewith test processes featuring longer sequences.

Figure 6.4: Distribution of code smell coverage

164 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

A detailed analysis revealed that 40 code smells were covered by at least onerun in each test process. Although TP1000 covered more code smells on average,three smells were never covered by this test process. TP100 and TP500 uniquelycovered a smell related to the Delete Post functionality, while TP500 uniquelycovered two smells associated with Delete User. The three aforementioned codesmells are classified as Major severity and fall under the Conditionals Complexitysubcategory.Figure 6.5 shows the distribution and density of code smell occurrences acrosstest processes. Occurrences refer to the total number of times code with existingcode smells is executed during testing. TP100 shows the lowest total of occur-rences, with a relatively narrow distribution centred around 7500 occurrences perrun. In contrast, TP500 and TP1000 configurations present broader distributionswith longer upper tails, suggesting these configurations occasionally produceruns with a higher number of interactions with smelly code.

Figure 6.5: Distribution of code smells occurrences.
Statistical analysis was done to test whether the observed differences inmetrics across the test configurations (TP100, TP500, and TP1000) are meaningfulor likely due to random variation, as shown in Table 6.4. Kruskal-Wallis test wasused to determine whether there was at least one significant difference among

6.4. RESULTS 165
Table 6.4: Statistical Analysis of Code Coverage MetricsMetric KWa Mann-Whitney U (Effect Size) Significant Pairsp-value TP1000 vs TP500 TP1000 vs TP100 TP500 vs TP100 (M-W U / Dunn’s test)CSC 0.28 0.71 (0.05) 0.13 (0.22) 0.22 (0.18) -CSO 0.001 0.08 (0.27) 0.001 (1) 0.001 (1) TP1000 vs TP100b,c ,TP500 vs TP100b,c

LC 0.049 0.77 (0.04) 0.04 (0.31) 0.03 (0.33) TP1000 vs TP100b ,TP500 vs TP100bIC 0.13 0.89 (0.02) 0.09 (0.26) 0.08 (0.27) -BC 0.09 0.71 (0.06) 0.051 (0.29) 0.07 (0.27) -CoC 0.02 0.65 (0.07) 0.02 (0.36) 0.01 (0.38) TP1000 vs TP100b,c ,TP500 vs TP100bMC 0.01 0.70 (0.06) 0.01 (0.37) 0.01 (0.38) TP1000 vs TP100b,c ,TP500 vs TP100b,cClC 0.03 0.65 (0.07) 0.02 (0.35) 0.03 (0.34) TP1000 vs TP100b,c ,TP500 vs TP100b

AbSC 0.001 0.001 (0.74) 0.001 (0.99) 0.001 (0.78) all pairsb,cCoSC 0.001 0.28 (0.16) 0.001 (0.88) 0.001 (0.89) TP1000 vs TP100b,c ,TP500 vs TP100b,cAbTC 0.001 0.001 (0.64) 0.001 (0.94) 0.001 (0.45) all pairsb,cCoTC 0.001 0.25 (0.18) 0.001 (0.68) 0.04 (0.31) TP1000 vs TP100b,c ,TP500 vs TP100b,c

a KW: Kruskal-Wallis testb Significant according to Mann-Whitney U test (p < 0.05)c Significant according to Dunn’s test with Bonferroni correction (p < 0.05)Note: Bold values indicate statistical significance (p < 0.05). Effect sizes (Cliff’s delta) are shown inparentheses.
the test configurations for each metric without assuming normal distributions.Mann-Whitney U tests followed up for pairwise comparisons, while Dunn’s testfurther confirmed significance across multiple comparisons.Code coverage metrics across the three configurations revealed significantdifferences in several metrics. TP100 showed significantly lower coverage acrossall metrics (except IC and BC) when compared to both TP1000 and TP500, withmoderate effect sizes (0.31 to 0.38), indicating practically meaningful differences.No significant differences were found between TP1000 and TP500 for traditionalmetrics.Regarding state metrics, Kruskal-Wallis tests indicated significant differencesacross all metrics (p < 0.001). Post-hoc analysis revealed that TP100 resulted in

166 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

significantly lower coverage than TP500 and TP1000 for both AbSC and AbTC,with large effect sizes highlighting the substantial impacts of shorter sequenceson coverage levels.Kruskal-Wallis and Dunn’s tests confirm significant differences in code smelloccurrences among the configurations, with large effect sizes in comparisons be-tween TP100 and the other test processes.In summary, these results show that longer test sequences lead to significantlyhigher values in traditional coverage metrics and an increase in code smell oc-currences. Additionally, the distribution pattern suggests that longer sequenceslead to better code smell coverage.
RQ1 answer: longer random test sequences improve traditional coverage
metrics and code smell coverage metrics.

6.4.2 RQ2: Relationship between code coverage metrics

To investigate the relationship between different coverage measures, Spearman’srank correlation coefficients were calculated between code smell coverage andeach traditional adequacy metric for each configuration. Spearman’s correla-tion was selected because the data is not normally distributed. The results arepresented in Table 6.5.
Table 6.5: Spearman’s Correlation: Code Smell Coverage vs Traditional Metrics

Code Coverage Metrics State Model Coverage

Test Process IC BC LC CoC MC ClC AbSC AbTC CoSC CoTCTP100 .459* .393* .508** .611*** .664*** .578*** -.049 .043 -.050 -.048TP1000 .597*** .627*** .597*** .586*** .585*** .590*** .078 -.097 -.256 -.224TP500 .401* .536** .433* .451* .435* .455** .150 .212 .302 .243* p < 0.05, ** p < 0.01, *** p < 0.001
All correlation coefficients between code smell coverage and traditional codemetrics are statistically significant. Results mostly show a moderate correlationbetween code coverage metrics and code smell coverage. The correlation with

6.4. RESULTS 167
state metrics is generally weak and not statistically significant.This finding suggests that relying solely on traditional coverage metrics mightnot fully represent a test suite’s effectiveness at uncovering deeper issues like codesmells. This highlights the need for complementary metrics or deeper analysisbeyond basic coverage percentages.Testers should consider these correlations when designing test suites and pos-sibly combine traditional metrics with newer, more code-quality-focused metrics.Among traditional metrics, Method and Complexity Coverage show the highestcorrelations with Code Smell Coverage across all test processes, suggesting thesemetrics are more reliable indicators for exposing quality issues like code smells.However, widely used metrics like Instruction and Branch Coverage appear lessreliable as standalone indicators of test quality.

RQ2 answer: traditional metrics are useful, but not sufficient alone at
reflecting the ability of the test suite to detect deeper quality issues, such
as code smells. Code Smell Coverage can be a valuable metric to be
considered along with the traditional coverage metrics to obtain a more
holistic view of software quality and test effectiveness

6.4.3 RQ3: Comparison of random with manual testing

Following the analysis of RQ1 (see Section 6.4.1), TP500 covered all code smellsreached by TP1000, and additional ones, while achieving similar levels of codesmell coverage in most test runs and using fewer resources than TP1000. Forthat reason, TP500 was enhanced with the form-filling feature to conduct thecomparison with manual testing.Figure 6.6 presents a comparison between the scriptless testing processes,including the enhanced test process (TP500Forms), and the manual testing results,in terms of Code Smell Coverage. TP500Forms significantly outperformed theoriginal TP500 test process, closing the gap with the 88 code smells detected bymanual testing. Some runs of TP500Forms even detected up to 99 unique codesmells, surpassing the manual testing results.

168 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

Figure 6.6: Distribution of code smell coverage
The coverage metrics in Table 6.6 provide further insight. While manual testingachieved slightly higher or similar code coverage, TP500Forms exhibited broaderclass exploration. Furthermore, TP500Forms discovered more unique code smells(101) than manual testing (88), suggesting that the enhanced approach can matchthe thoroughness of manual testing in terms of traditional adequacy metrics andsurpass it for code smell coverage.Figure 6.7 depicts a detailed analysis of the type of code smells covered (ornot) by random or manual testing. This analysis revealed that all scriptless ap-proaches (TP100, TP500, TP1000, and TP500Forms) covered 12 code smells thatwere not reached during manual testing. Two code smells were of Minor sever-ity, categorised as Clever Code and Inconsistent Style, while the remaining tenwere classified as Conditional Complexity with Major severity. These code smells

6.4. RESULTS 169
Table 6.6: Manual Testing Coverage Results
Metric Manual Testing TP500Forms

Mean MaxIC 43.03% 43.21% 54.50%BC 20.53% 17.42% 21.95%LC 49.48% 47.76% 60.01%CC 42.09% 39.20% 49.22%MC 51.47% 48.00% 60.27%ClC 57.47% 72.28% 82.95%CSC 88 70.5 99

were associated with two specific functionalities of the application (deleting feedand task commenting), whose corresponding user stories were not covered by themanual testing process.Despite not consistently outperforming manual testing in individual runs, theTP500Forms configuration, when considered in aggregate across all runs, coveredthree additional code smells that were not reached during manual testing or bythe other random test processes. Two of these code smells were classified asMajor. Furthermore, these code smells were triggered in multiple runs.One of the new covered smells was reached as a consequence of a randominput combination of a filtering functionality within the SUT. This was the onlynewly reached code smell that did not result from the predefined form field values.Notably, every code smell triggered by manual testing was also triggered by atleast one test run of TP500Forms. Notably, every code smell covered by manualtesting was also covered by at least one test run of TP500Forms.In summary, random testing identified code smells missed by manual testing,demonstrating (again [10, 64]) its potential as a complementary approach. How-ever, random testing struggled with forms requiring specific inputs, which manualtesting handled better. The enhanced form-based approach demonstrated com-parable and even surpassed manual testing by covering all manually reachedsmells and additional ones.

170 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

Figure 6.7: Coverage of Code Smell types
RQ3 answer: findings suggest that random testing offers promising com-
plementary effectiveness in test coverage and identifies unique smells that
manual testing might overlook.

6.5 Discussion

To understand the impact of adopting random testing and introducing the newcode smell coverage metric on Marviq’s QA process, two one-hour focus groupswere conducted with three of their test engineers. Marviq shared that these ad-ditions significantly enhanced their workflow. While manual testing leveragestesters’ domain expertise, random testing complements it by uncovering unex-pected navigation paths, providing a balanced approach that strengthens Marviq’squality control.

6.6. THREATS TO VALIDITY 171
The team further emphasised the value of scriptless testing as a complemen-tary tool within their established QA practices. Running these scriptless testsovernight and integrating them into the CI/CD pipeline enables a continuous andefficient testing cycle. This enhances software robustness and supports the movetoward continuous delivery, reducing the need for separate acceptance testingphases and optimising both time and effort per release.Marviq also observed that, once configured for a specific project as demon-strated with the Yoho project (Section 6.3.2), the testing setup can be easilyadapted for other projects using similar technologies, making it a scalable andreusable solution.Finally, Marviq noted that monitoring coverage metrics closely linked to codesmells acts as an effective early warning system. This proactive insight intopotential code issues enables the team to address quality concerns early in thedevelopment lifecycle, ultimately supporting the delivery of more robust software.

6.6 Threats to Validity

Potential threats to the validity of the study and the mitigation actions takento address them within the available means are discussed. They are classifiedinto four categories following [114]: internal, external, construct, and conclusionvalidity.
6.6.1 Internal Validity

Internal validity refers to factors that may introduce bias in this experiment. Onepossible threat is the random nature of the scriptless GUI testing process. Sincethis study relies on a random testing algorithm, the specific sequence of actionsgenerated during the testing process may influence the coverage of code smells.Different executions could lead to different levels of coverage, which may not fullyrepresent the testing tool’s effectiveness. To mitigate this threat, multiple testingsessions with varied configurations were executed to observe trends and reducethe impact of randomness.

172 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

6.6.2 External Validity

External validity concerns the generalizability of the findings to other contexts.This study focused on a specific industrial web application, selected for its roleas a core system for the company with functionalities commonly used in webapplications. While we advocate that the selected SUT is representative of otherindustrial web applications, the results might not be directly applicable to dif-ferent types of applications, such as mobile or desktop software. Additionally,the reliance on the SonarQube tool for detecting code smells and the testar toolfor GUI testing could limit the generalisation of the findings. Other tools mayproduce different results regarding code smell detection and coverage. Futureresearch should replicate this approach with various applications, frameworks,and testing tools to validate the general applicability of the findings.
6.6.3 Construct Validity

Construct validity refers to how well this experimental setup measures its in-tended outcomes. This study used code smells as a proxy for software qualityand testing effectiveness. While code smells are widely recognised as indica-tors of potential maintainability and quality issues, they may not always directlycorrelate with defects in the system. Additionally, code smell detection fromSonarQube was relied upon, which may not capture all relevant issues. To ad-dress this, efforts were made to ensure that detected smells were representativeof common issues, but the limitations of the tools should still be acknowledged.
6.6.4 Conclusion Validity

Conclusion validity relates to the reliability of the relationship between the treat-ments and the observed outcomes. One potential threat is the sample size of thetesting actions and configurations. Although 10,000 actions were executed, thismay still be insufficient to generalise the findings across all possible scenariosin the application. Moreover, the impact of different configuration settings oncode smell coverage should be interpreted carefully, as certain configurations

6.7. CONCLUSIONS 173
may favour specific types of code smells over others. This risk was minimised byconducting experiments with varied configurations; however, future work shouldexplore a broader range of parameters to draw more robust conclusions.
6.7 Conclusions
This study explored the potential of random scriptless GUI testing as a com-plementary approach to traditional testing in an industrial setting, focusing onMarviq’s Yoho web application. The results indicate that increasing the length ofrandom test sequences significantly enhances both traditional coverage metricsand code smell coverage, suggesting that longer test sequences can lead to morethorough and effective testing even within resource constraints.The findings further suggest that while traditional coverage metrics offer valu-able insights into testing adequacy, they are insufficient to capture the full scopeof quality issues, particularly regarding code maintainability. Integrating codesmell detection with traditional coverage metrics provides a more comprehensiveperspective on software quality, addressing areas of technical debt and maintain-ability that may be overlooked with conventional coverage alone.Moreover, random GUI testing also demonstrated a unique strength in identi-fying code smells missed by manual testing, including some critical ones. Whilemanual testing benefits from the tester’s domain knowledge, random testing of-fers the potential of unexpected navigation paths. Therefore, the study highlightsthe complementary role of random testing alongside manual testing, as randomtesting effectively identifies unique code smells that manual efforts might miss.This synergy between testing methods enhances overall test coverage, poten-tially reducing reliance on manual testing and enabling a more resource-efficientapproach to quality assurance in software development.In conclusion, combining coverage metrics with maintainability-focused anal-yses, such as code smell detection, provides a robust and efficient testing frame-work that better aligns with industrial needs. This integrated approach offersa deeper and more accurate assessment of software quality, covering aspects ofboth functionality and maintainability.

174 CHAPTER 6. APPLYING IT AT A COMPANY: MARVIQ

7
Going mobile: the Android plugin

"There are two ways to write error-free programs;
only the third one works"

Alan J. Perlis, Epigrams on Programming
Existing scriptless tools for Android lack efficient prioritisation and advancedoracles to detect problems in the SUT. They also require significant manual inputfor specific SUT information. This chapter presents MINTestar: an implementationof the testar scriptless testing approach [197] for Android that solves some ofthese drawbacks. The implementation encompasses: (1) customisable rules, (2)probabilistic exploration to improve coverage, (3) composable oracles, (4) effortlessintegration, and (5) improved reporting. Furthermore, we conducted a preliminaryempirical comparison with two relevant scriptless testing tools applied to onemobile application. The selected testing tools are testar [197] and DroidBot [200].The contribution of this chapter is:
• a novel scriptless testing tool for Android that uses a probabilistic modeland composable oracles for the selection of actions;
• a preliminary comparison with testar and DroidBot regarding effectiveness

175

176 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

and efficiency.
The rest of the chapter is structured as follows. Section 7.1 presents a briefdiscussion of tools for Android testing. Section 7.3 introduces MINTestar alongwith its key features and contributions. Section 7.4 presents preliminary resultsfrom the initial comparative experiment. Section 7.5 concludes the chapter.

7.1 Scriptless Android GUI testing
This section presents a detailed overview of the existing scriptless testing toolsfor Android. The literature review phase used Google Scholar as the primarydigital platform. The search process leveraged keyword-based queries focusingon: android testing, GUI testing, and scriptless testing.After a review of paper titles and abstracts, 12 tools in the field of scriptlessAndroid GUI testing were identified. Each paper was evaluated based on criteriaincluding novelty, presence in previous experiments, and alignment with currentstudy metrics. Table 7.1 presents key information about each tool, analysingfundamental aspects, such as testing techniques, oracles, state representation,available actions, and whether or not the tool is publicly available and activelymaintained.The review of scriptless testing tools for Android apps showed diverse ap-proaches. Tools like Dynodroid [201] and DroidBot [200] use random action se-
lection, with DroidBot adding a model-based approach for state recognition.Similarly, Stoat [202] and APE [203] employ a model-based strategy to guide theexploration towards areas of the application that have to be explored yet.

7.1. SCRIPTLESS ANDROID GUI TESTING 177
Ta

bl
e

7.
1:

Summ
aryo

fscri
ptles

sAnd
roidG

UIte
sting

tools
To

ol
Pu

bl
ic

ly
av

ai
la

bl
e

Ac
tiv

el
y

m
ai

nt
ai

ne
d

Te
st

in
g

te
ch

ni
qu

e
Co

nc
ep

to
fs

ta
te

Fa
ul

td
et

ec
tio

n

Dyno
droid

Yes
No

Rand
om(w

ithth
reed

iffere
ntev

ent
selec

tions
trateg

ies).
Yes(w

idget
tree)

Impli
cit

Sapie
nz

No
No

Syste
matic

,
Searc

h
(mult

i-
objec

tive
searc

h-bas
ed

testin
g

with
gene

tical
gorith

ms.)
Yes(w

idget
set)

Impli
cit

Droid
Bot

Yes
Yes

Syste
matic

,Ran
dom

(mod
el-ba

sed
explo

ration
testin

g)
Yes(W

idget
tree)

–
Huma

noid
Yes

No
Unsu

pervi
sedd

eepl
earni

ng(w
ith

super
vised

learn
ingu

sing
huma

n
intera

ction
s)

No
–

Stoat
Yes

No
Stoch

astic
mode

lbas
ed

Yes(b
ased

onst
atic

analy
sis)

Impli
cit

Droid
Mate

2Y
es

No
Rand

om,m
odel-

based
strate

gies
Yes(w

idget
tree)

–
PUM

A
Yes

No
Progr

amma
blee

xplor
ation

testin
g

with
custo

misab
leac

tions
electi

on
Yes

Progr
amma

ble
oracl

es
RegD

roid
Yes

Yes
Differ

entia
l(com

parin
gbeh

aviou
rs

betw
eent

wove
rsion

s)
Yes(w

idget
tree)

Impli
cit

QTes
ting

Yes
No

Reinf
orcem

ent
Learn

ing
with

curio
sity-d

riven
explo

ration
Yes(w

idget
tree)

Impli
cit

AimD
roid

Yes
No

Reinf
orcem

ent
Learn

ing
(SAR

SA
algor

ithm)
Yes(w

idget
tree)

Impli
cit

ARES
Yes

No
Deep

Reinf
orcem

entL
earni

ng
Yes(w

idget
tree)

Impli
cit

Comb
oDro

idY
es

No
Comb

inato
rial

Yes(w
idget

tree)
Impli

cit

178 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

Some existing tools use more advanced techniques to improve their ASM.Sapienz [204] uses fuzzing and search-based methods with evolutionary algo-rithms. Humanoid [205] applies deep-learning to mimic human interactions, whileARES [206] uses deep-learning for better exploration strategies. QTesting [207]and AimDroid [208] use reinforcement learning, the former for prioritising unfa-miliar states and the latter for predicting events likely to trigger new activities orcrashes. ComboDroid [208] uses combinatorial exploration for identifying unvis-ited states, and RegDroid [209] focuses on finding functional bugs via differentialregression testing.Although the landscape of scriptless GUI testing tools for Android is diverse,these tools often have limitations. Random testing tools lack efficient prioritisa-tion, while tools with more advanced ASM such as RL require more extensivetraining periods. Generally, these tools rely on implicit oracles, detecting ap-plication crashes or exceptions during the execution of tests. Additionally, mostof these testing tools are not actively maintained, which may result in compat-ibility issues with the evolving Android ecosystem. Furthermore, outdated toolswill likely lack crucial updates addressing security vulnerabilities and adaptingto new testing requirements.
7.2 Extending TESTAR to support mobile testing

To support mobile application testing, testar has been extended to handle bothAndroid and iOS platforms. This section describes how the mobile testing capa-bilities were integrated into testar’s architecture.testar’s modular architecture 3.6 allows the integration of new platforms whilemaintaining a unified testing approach. To minimise maintenance costs, Appiumwas chosen to be integrated into testar as the bridge between testar’s corearchitecture and both mobile platforms. This choice was driven by Appium’simplementation of the WebDriver API for mobile apps, which aligns well withtestar’s existing web testing capabilities. Additionally, Appium provides a unifiedinterface for both Android and iOS, abstracting many platform-specific details.Figure 7.1 depicts the adapted testar loop for mobile testing, extending the

7.2. EXTENDING TESTAR TO SUPPORT MOBILE TESTING 179
generic scriptless testing loop discussed in Section 4.2. testar uses the Appiumautomation driver to initialise the SUT and to capture the current application stateas an XML document containing the complete widget tree with its attributes. Aftersome ASM selects the next action, testar instructs the Appium driver to executeit on the SUT.

Start Start SUT Obtain GUI
State Derive Actions

Select Action

Execute
Action

Evaluate
Oracles

Yes

More
Actions?

More
Sequences?

No

End
NoYes

Graph
DB

appium

android

iOS

Figure 7.1: testar testing cycle with mobile capabilities.
While Appium claims to abstract away Operating System differences, sepa-rate handlers were necessary in practice due to fundamental differences in howeach platform exposes UI information. For example, the attributes available forcertain widgets were different across platforms. As depicted in Figure 7.2, thesedifferences result in the creation of two specific protocols for Android and iOS:

AndroidProtocol and IOSProtocol, respectively, which complement the alreadyexisting DesktopProtocol and WebProtocol (as explained in Section 3.6).Platform-specific protocols parse and normalise the data obtained from the
Appium-specific drivers for Android and iOS before integrating it into testar’sstate model. This normalisation process ensures that despite the underlyingplatform differences, testar’s core testing algorithms can work with a consistentstate representation.Consequently, the action derivation was also implemented separately for bothAndroid and iOS, as it depends on the widgets and their attributes. For instance,Android relies on explicit properties such as a clickable boolean, while iOS might

180 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

 Platform Independent Protocols

Platform Specific Protocols

WebdriverProtocol

DesktopProtocol

AndroidProtocol

IOSProtocol

Defines the Testar testing cycle

DefaultProtocol

ClickFilterLayoutProtocol

RuntimeControlsProtocol

 SUT-, Test- or Tester- Specific Protocols
SUT1
SUT2
TEST1
TEST2

AbstractProtocol
+getState(): State
+deriveActions(State): Action[]
+selectAction(State, Action[]):Action
+executeAction(State, Action):Boolean
+ getVerdict(State): Verdict UsesAndroidAppiumFramework

Uses
iOSAppiumFramework

Uses

Uses

Appium Driver

Figure 7.2: Layers of the different testar protocols

determine action availability through widget class types like XCUIElementType-
Button. For Android, support was implemented for clicking, long clicking, scrolling,
typing, back navigation, and system actions. For iOS, support focuses on clicking,
scrolling, and typing, as iOS does not support certain Android-specific actionslike long-clicks or back navigation.

Finally, testar’s ASM and oracles work for both Android and iOS, as theyare platform-independent. Once an action is selected, the automation driverconfigured for Appium will connect and interact with the mobile environment.This cross-platform approach through Appium provides significant advantagesfor organisations testing applications across multiple platforms. However, theadditional abstraction layer can introduce performance overhead, which is par-ticularly noticeable in scenarios requiring rapid state inspection or action exe-cution. As an alternative, complementary approaches were explored to leverageplatform-specific capabilities while the core principles of scriptless testing weremaintained.
In the following section, MINTestar is introduced, through which it is demon-strated how testar’s scriptless testing philosophy can be adapted for specialisedAndroid testing needs.

7.3. MINTESTAR: SCRIPTLESS AND SEAMLESS 181
7.3 MINTestar: scriptless and seamless

While testar provides a comprehensive mobile testing solution through Appiumintegration, the mobile testing ecosystem offers opportunities for more specialisedapproaches. MINTestar1 was developed as a dedicated Android testing tool,through which testar’s core principles of scriptless testing are preserved. Thesame fundamental testing loop is followed, yet rather than Appium being utilisedas an intermediary layer, direct interfaces with Android’s native testing frame-works are established. Through this direct integration, the testing process isstreamlined and natural alignment with existing Android development workflowsis achieved.MINTestar’s ASM is built upon a probabilistic exploration approach aug-mented by customisable rules to identify and (de) prioritise GUI interactionsduring action selection. Once configured, MINTestar autonomously explores na-tive Android applications, obviating the need for manual script development andmaintenance. Unlike scripts, which require detailed programming to define everytest case, MINTestar’s rules allow testers to specify testing criteria and prior-ities more abstractly and intuitively, facilitating rapid adaptation to applicationchanges.MINTestar relies on the Espresso API to locate and interact with UI elements.Espresso is an Android testing framework specifically designed for writing UItests to automate the testing through the GUI of Android apps. Espresso usesmatches to detect View elements, representing any visible or interactive elementthat users can see and interact with on the GUI.The SUT’s intended behaviour is verified through oracles, as is done with tes-tar, producing verdicts that record specific aspects of the SUT, which facilitatesa comprehensive evaluation of the SUT. The oracles are composable, providinga continuous and multidimensional assessment of the SUT. Additionally, an in-teractive reporting tool accompanies MINTestar, providing detailed analysis ofsystem interactions and insights into the SUT’s behaviour, crucial for enhancingthe quality and Customer Experience (CX).
1Available at: https://github.com/ing-bank/mint

https://github.com/ing-bank/mint

182 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

MINTestar starts by accessing the top-level View container, encompassingall GUI elements, and recursively traverses the GUI hierarchy, aggregating Viewelements to form a concrete state representation saved as an XML document.Figure 7.1 illustrates the XML state representation with one container layoutand three actionable widgets.
Example 7.1: XML State representation

<View class="Layout" ...>

<View class="Checkbox" id="like" .../>

<View class="TextField" id="comment" .../>

<View class="Button" id="done" .../>

</View>

MINTestar is conceived to seamlessly integrate as a plugin into a testingpipeline. Therefore, MINTestar tests can be executed as a task similar to unitor integration testing tasks. Consequently, Android app developers can effort-lessly and expeditiously incorporate an exploratory GUI testing solution into theirtesting processes. MINTestar introduces three key features: customisable rules,probabilistic exploration, and composable oracles.
7.3.1 Core Architecture

Figure 7.3 depicts the high-level architecture of MINTestar, divided into two mainparts: the MINTestar Core and the Android Environment.The Core of MINTestar is built from several core components, each with aspecific testing function: the Test Engine manages test execution, the Rules
Engine controls test behaviour, the Oracle Manager monitors application state,the Interaction Engine handles GUI actions, the State Collector captures theSUT’s state, and the Report Generator creates test results.

7.3. MINTESTAR: SCRIPTLESS AND SEAMLESS 183
MINTestar Core

Test Engine

Rules Engine Oracle Manager Report
Generator

Android Environment

Espresso
Framework

Android Debug
Bridge

Android Emulator/
Virtual Device

SUT

Interaction
Engine State Collector

Figure 7.3: MINTestar Architecture Overview
The Android Environment involves the components that allow MINTestar tointeract with the Android testing infrastructure through two main paths:
• Android Debug Bridge (ADB), which communicates with the Android Em-ulator/Virtual Device where the SUT runs.
• Espresso Framework, which provides direct UI testing capabilities for in-teracting with the SUT.
This dual-path approach allows MINTestar to both control the Android envi-ronment through ADB and perform precise UI interactions through Espresso. TheSUT runs within an Android Virtual Device, which can be either an emulator ora physical device.

7.3.2 Test Engine

The Test Engine acts as MINTestar’s central orchestrator of the entire testingprocess. This component coordinates the test execution flow, ensuring that eachtest sequence is properly initialised, executed, and completed. It maintains state

184 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

information throughout the testing process, enabling the framework to make in-formed decisions about test progression and to adapt its behaviour based on theapplication’s current state.The sequence diagram in Figure 7.4 illustrates MINTestar’s testing process,summarising how a tester can utilise this system and understand the sequenceof operations that occur during testing.
Tester

Start Testing

Test
Engine

Interaction
Engine

Oracle
Manager

Report
Generator

Rules
Engine

Android
Environment

State
Collector

Initialize device
connection

Collect State (UI State)

Request Action Selection

Execute Selected
Action

Setup Android
Environment

UI State UI State

Current State Data

Selected Action

loop

UI State

Perform Action
(via Espresso)

UI State

Collect State (UI State)

Current State Data

Oracle Results

Evaluate State

Final Report

Generate Report

Figure 7.4: MINTestar Testing Process
The process begins with the initial setup of a MINTestar test run. The TestEngine begins its initialisation sequence. The diagram shows that the Test Enginefirst establishes the device connection and sets up the Android Environment.This initialisation phase is crucial as it prepares the testing environment andestablishes proper communication channels between MINTestar and the SUT.Following initialisation, the sequence moves into state management. TheInteraction Engine obtains the application’s initial GUI state, which is then passedto the State Collector for analysis. This state collection process provides the

7.3. MINTESTAR: SCRIPTLESS AND SEAMLESS 185
foundation for understanding the application’s current condition and determiningpossible actions.The main testing loop (inspired by the scriptless generic testing cycle fromFigure 3.1), which forms the core of MINTestar’s testing process, begins its exe-cution. The Test Engine requests action selection from the Rules Engine. Uponreceiving the selected action, the Test Engine coordinates with the InteractionEngine to execute it through Espresso. After each action, the Oracle Managercollects and evaluates a new GUI state, ensuring the application behaves asexpected.This testing loop continues until predetermined conditions, such as time lim-its, are met. Upon completing the testing loop, the Report Generator creates acomprehensive final report.
7.3.3 Customizable Rules

MINTestar’s functionality revolves around the adherence to predefined rules.MINTestar’s Rule Engine governs how the framework interacts with SUTs througha system of hierarchical rules. These rules define the interactions with the SUT,such as clicks or text inputs. Every rule is assigned a relative importance, collec-tively forming a model that intelligently guides MINTestar’s exploration throughvarious SUT states without prior knowledge.A rule is a tuple denoted by R = (P, A, π). The predicate function P : S →
{0, 1} serves the fundamental role of mapping the state s ∈ S to a binary set
{0, 1}, such as P(s) = 1 if and only if the rule is applicable under the conditionsrepresented by state s. The finite set A represents all possible actions that canbe executed. Lastly, priority π ∈ R quantifies the importance and precedence ofthe rule relative to other rules. This numerical priority plays an important role indecision-making processes, influencing the order in which rules are consideredand executed.A rule also encompasses attributes such as name, description, and modifier.The modifier characterises the adjustment applied to a rule’s priority, offeringfine-tuning for its significance in decision-making. For example, if a rule with anoriginal priority π = 0.5 has a multiplicative modifier with a factor 2, the modified

186 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

priority becomes π = 1.0, increasing its importance by the multiplicative value.Rules can be categorised into three types:
• Generic rules: applicable to all SUT (e.g., interacting with clickable ele-ments).
• Specific rules: tailored for particular application types, addressing uniquescenarios such as inputting email addresses in relevant email input fields.
• Domain-Specific rules: designed for internal use with specific account num-bers or identifiers.
Tables 7.3 and 7.2 show all existing rules provided by MINTestar. Theseinclude navigation rules such as scrolling to and clicking any yet hidden widget, orde-prioritising previously executed actions. Every de-prioritising rule contains a

multiplicative modifier to reduce the priority of the rules. MINTestar also featuresinput rules, facilitating the generation of various input types (e.g., emails, names,dates, postal codes) as needed for different testing scenarios. For instance, thegeneric rule simpleClickableRule, defined as:
Example 7.2: Simple Click defined as a rule

GenericRule(action = Action.CLICK,
pred = xpred(".[@isClickable = ’true’

and @isDisplayed = ’true’]"),
prio = 0.5)

uses Espresso to evaluate whether an element is clickable and visible and appliesthe action of clicking with a given priority. The rules can be defined using regularexpressions, such as emails or numbers, to generate specific input types. Thelibrary JavaFaker was used to generate fake, realistic, and non-sensitive data,like phone numbers or postal codes.Once all rules have been assigned individual priorities, the Rule Engine pro-ceeds to generate a model containing the final set of available actions and their

7.3. MINTESTAR: SCRIPTLESS AND SEAMLESS 187

Table 7.2: Generic rules provided by MINTestar
Rule Name DescriptionsimpleClickableRule Click on any widget that has ’isClickable’ as trueand is displayed.scrollingClickableRule Scroll to and click any widget that is clickable, notyet displayed, and can be scrolled to.clickableRuleForItemWithTag Click on any displayed, clickable widget that has aspecific tag.clickableRuleBasedOnPosition-InViewHierarchy Click on any displayed, clickable widget.clickableRuleBasedOnPosition-InViewHierarchyForPopupItem Click on any displayed, clickable widget in a pop-upwindow.deprioritizeClickingOnPopupItem-OnCurrentRoot Deprioritize clicking on widgets in pop-up windows.deviceRotationRule Change the device’s rotation to check the respon-siveness of the UI.deviceThemeRule Change the device’s theme to check the responsive-ness of the UI.clickableRuleForAdapterViewItems Click on an item in a list backed by an adapter.clickableRuleForSpinnerItems Click on an item in a spinner list.spinnerSimpleClickDeprioritizRule Deprioritize clicking of a Spinner.adapterViewClickDeprioritizeRule Deprioritize clicking of an AdapterView.scrollingPagerRightRule Select scrolling to the right within pagers for hori-zontal navigation.scrollingPagerLeftRule Select scrolling to the left within pagers for horizon-tal navigation.timePickerInputRule Generate time input for TimePickers.datePickerInputRule Generate date input for DatePickers.clickableRuleBasedOnPosition-InViewHierarchyForBottomSheet Click on any displayed, clickable widget that has abottom sheet as an ancestor.defaultPreviousActionDeprioritize-Rule De-prioritized actions that were already taken his-torically.

188 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

Table 7.3: Specific rules provided by MINTestar
Rule Name DescriptiondefaultUTF8InputRule Generate UTF8 text streams for anything acceptingtext.defaultTextInputRule Generate generic text for anything accepting text.defaultMultilineTextInputRule Generate generic text for anything accepting text.defaultEmailAddressInputRule Generate text in email address format for widgetsaccepting email addresses.defaultNumberInputRule Generate number input for widgets accepting inputof numbers type.defaultDecimalNumberInputRule Generate decimal number input for widgets accept-ing input of decimal number type.defaultSignedNumberInputRule Generate signed number input for widgets acceptinginput of signed number type.defaultPersonNameInputRule Generate text for widgets accepting person nameinput.defaultUriRule Generate text for widgets accepting input of URItype.defaultPhoneNumberInputRule Generate phone number for widgets accepting textin phone format.defaultPostalAddressInputRule Generate postal address input for widgets acceptinga postal address as input.defaultDateInputRule Generate date input for widgets accepting date asinput.defaultTimeInputRule Generate time input for widgets accepting time asinput.defaultGenericTextInputRule Generate generic text for anything accepting anyinput.defaultUneditableTextClick-DeprioritizeRule De-prioritize the input of text in uneditable textfields.defaultTextClickDeprioritizeRule De-prioritize the clicking of text elements.defaultTextClickAtPosition-DeprioritizeRule De-prioritize the clicking of text elements based onposition.

7.3. MINTESTAR: SCRIPTLESS AND SEAMLESS 189
relative importance with the goal of selecting the next action. The ASM explainedin Algorithm 4 works in two phases: priority computation and probabilistic se-
lection.
Algorithm 4 ASM: Select an Action
Input: actionRules ▷ Set of available action rules1: pairs ← [] ▷ List of (action, priority) pairs2: prioritySum ← 0 ▷ Total sum of priorities3: for all rule in actionRules do4: if rule has modifier attribute then5: modPriority ← ModifyPriority(rule) ▷ Adjust priority if modified6: else7: modPriority ← rule.Priority ▷ Use default priority8: pairs ← pairs + (rule.action, modPriority)9: prioritySum ← prioritySum + modPriority10: accumPriority ← 011: dice ← RandomFloat() ∗ prioritySum ▷ Random threshold for selection12: for all (action, modPriority) in pairs do13: accumPriority ← accumPriority + modPriority14: if accumPriority ≥ dice then ▷ Select the action when threshold is met15: return action

Initially (lines 1-9), the algorithm iterates through all applicable action rulesto compute their effective priorities (modPriority). Each rule initially has anassociated priority, which may be modified based on certain conditions (lines 4-7). If a rule has a modifier attribute, its priority is adjusted; otherwise, the defaultpriority is used. As each rule is processed, a pair consisting of the action andits resulting modified (or not) priority is stored, and the total sum of all priorities(prioritySum) is updated (lines 8 and 9). This results in a set of (action, modified
priority) pairs, where actions with higher priority will have a greater influencein the selection process.

In the second phase (lines 10-15), the probabilistic action selection takesplace. A random value (dice) is generated within the range [0, prioritySum] (line11). The next action to be executed is selected (lines 12-15) by choosing the firstaction that surpasses this random value. Actions with higher priorities are morelikely to be selected while still allowing some degree of randomness in the actionselection mechanism.

190 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

7.3.4 State Collector

MINTestar’s state management system forms a critical component of its testingintelligence. The system creates detailed representations of each unique stateencountered during testing, capturing not only the visible UI elements but alsotheir properties, relationships, and interactive capabilities.MINTestar builds a comprehensive model of the application’s behaviour andstructure. This model enables the framework to make informed decisions abouttest progression, identifying unexplored states and potential paths through theapplication. The state management system also detects state changes resultingfrom user interactions, system events, or background processes, ensuring thoroughtesting coverage.The representation of the state is extended by MINTestar through incorporat-ing actions to its nodes. As shown in Algorithm 5, the process starts by iteratingover all available action rules (actionRules) (line 1). Each rule contains a predi-cate function, which determines whether the rule is applicable to a specific statenode. For each action rule, a nested loop is used to recursively traverse allwidget nodes within the state structure (line 2). At each node, if the rule’s pred-icate is satisfied (equivalent to P(s) = 1), the rule’s action is associated with thenode (line 4). This step ensures that each widget is correctly associated withapplicable actions.
Algorithm 5 Annotate State With Rules
Input: state ▷ The current state representation

Input: actionRules ▷ A set of rules to be applied1: for all rule in actionRules do ▷ Iterate through all action rules2: for all node recursively in state do ▷ Traverse all nodes in the state3: if rule.predicate(node) then ▷ Check if rule applies to the node4: node.append(rule) ▷ Associate rule’s action with node

Following the Example 7.1, an XML hierarchy with annotated actions andtheir corresponding priorities is shown in Example 7.3. Note that the Button hasan associated multiplicative action, which will modify its final priority.

7.3. MINTESTAR: SCRIPTLESS AND SEAMLESS 191
Example 7.3: Annotated state representation

<View class="Layout" ...>

<View class="Checkbox" id="like" ...>
<action type="click" prio="1.0" .../>

</View>

<View class="TextField" id="comment" ...>
<action type="text" prio="2.0" value="text" .../>
<action type="text" prio="1.0" value="1282" .../>

</View>

<View class="Button" id="done" ...>
<action type="click" prio="2.0" .../>
<action type="multiplicative" prio="3.0" .../>

</View>

</View>

7.3.5 Composable oracles

MINTestar implements a module for oracles designed to evaluate different aspectsof the SUT. This module classifies oracles into distinct categories, each addressingspecific testing objectives. These categories include Accessibility, International-isation, Performance, Stability, Aesthetics and Miscellaneous. The structure ofan oracle is defined by an interface that incorporates key information such asthe category, probe, and evaluation function. Probes serve as a data source fororacles, enabling them to form judgments about the SUT. For instance, oracle An-
droidLogOracle creates a probe with the information extracted from the systemlogs to assess the presence of faults.A significant subset of implemented oracles is dedicated to accessibility checks.These oracles scrutinise the SUT for adherence to standard accessibility guide-lines [210]. They assess factors like text readability or image contrast to ensure

192 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

a positive CX. Currently available oracles (Table 7.4) also include CrashOracle,which detects a crash of the SUT, and AndroidDeviceOracle, to monitor the CPUand memory usage. Oracles to check internationalisation and stability are yet tobe added.
Table 7.4: Implemented Oracles Provided by MINT

Category Oracle Name DescriptionStability,Performance AndroidDeviceOracle Monitors the Android device for system met-rics.AndroidLogOracle Checks the Android system log for relevantevents.CrashOracle Detects application crashes during execution.Accessibility ClassNameCheckOracle Verifies if the class name is appropriate foraccessibility.ClickableSpanCheckOracle Ensures that ClickableSpan is not misusedwithin a TextView.DuplicateClickableBoundsCheckOracle Detects cases where a clickable containeroverlaps entirely with a child view, leadingto unexpected interactions.DuplicateSpeakableTextCheckOracle Checks if two views in the hierarchy have thesame speakable text.EditableContentDescCheckOracle Ensures that an editable TextView is not la-belled with a content description.ImageContrastCheckOracle Validates that images have sufficientforeground-background contrast for visibility.LinkPurposeUnclearCheckOracle Warns about links whose purpose is unclearto assistive technologies.RedundantDescriptionCheckOracle Identifies cases where speakable text maycontain redundant or irrelevant information.SpeakableTextPresentCheckOracle Ensures that elements requiring speakabletext have appropriate descriptions.TextContrastCheckOracle Ensures text has sufficient contrast against itsbackground for readability.TextSizeCheckOracle Detects text scaling issues that may affect vis-ibility.TouchTargetSizeCheckOracle Ensures that touch targets meet the minimumrecommended size (e.g., 48x48dp).TraversalOrderCheckOracle Identifies problems in the accessibility traver-sal order defined by developers.UnexposedTextCheckOracle Detects texts that might be blocked from OCR(Optical Character Recognition) and unread-able by accessibility services.
MINTestar’s oracle framework emphasises extensibility, allowing developersto compose sets of oracles or add custom oracles. Testers can create compre-

7.3. MINTESTAR: SCRIPTLESS AND SEAMLESS 193
hensive test suites by combining oracles from different categories, providing aversatile and adaptable testing environment. For instance, the following codeshows the definition of a rule, accompanied by the oracle step of checking errorsin the system logs without monitoring the memory usage. MINTestar also offersthe inclusion (withAllOracles) or exclusion (withoutAllOracles) of all oracles, incombination with specific ones.

Example 7.4: Rule definition, with explicit oracle inclusion/exclusion
Mint.Rule(DefaultBuilder.withOracle(AndroidLogOracle)

.withoutOracle(AndroidDeviceOracle)

.build())

7.3.6 Interaction Engine

MINTestar’s interactions with the GUI involve two main components: AndroidDebug Bridge (ADB) and Espresso. By integrating with the ADB, MINTestarestablishes reliable communication with the test device or emulator, ensuringconsistent and accurate testing. This communication layer manages all aspects ofdevice interaction, from application installation and launch to command executionand state monitoring. The system implements robust error handling and recoverymechanisms, ensuring stable testing sessions even in the presence of device-levelissues or communication interruptions.The device communication system supports both physical Android devicesand emulators, automatically adapting its behaviour to accommodate the specificcharacteristics of each target environment. It manages device-specific featuresand limitations, ensuring consistent test execution across different device typesand Android versions.Additionally, MINTestar leverages Espresso’s precise view matching and inter-action capabilities to execute actions on the GUI. The engine translates MINTes-tar’s high-level testing directives into specific UI interactions, automatically han-dling complexities such as view synchronisation and wait conditions.

194 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

The framework allows testers to define specific sequences of actions usingEspresso’s familiar syntax. These predefined steps serve multiple purposes, fromsetting up specific application states to validating critical user flows. Testers cancreate precise sequences of actions when needed, such as logging into an appli-cation or navigating to a specific screen, before allowing MINTestar’s automatedexploration to take over.Test creation in MINTestar follows a straightforward pattern, allowing testersto define test scenarios through a combination of automated exploration and,when needed, specific scripted steps. Basic exploration can be started with:
Example 7.5: Basic test instruction

Mint.explore()

For more controlled testing, it is possible to combine scripted steps withscriptless exploration:
Example 7.6: Exploration with predefined steps

Mint.step {
onView(withId(R.id.button)).perform(click())
onView(withId(R.id.input)).check(matches(isDisplayed()))

}.explore()

7.3.7 Reporting the results

MINTestar saves the testing process information in XML format. The previouslydescribed plugin provides a reporting task that parses the XML data and gen-erates an overview HTML page with all the oracle outputs, individual pages foreach test sequence, and screenshots associated with the test sequences. Eachreport (see Figure 7.5) contains a chronological record of actions taken, statesencountered, and any issues detected by the various oracles.

7.3. MINTESTAR: SCRIPTLESS AND SEAMLESS 195
The report also allows the search of elements of the application through theirXPath and highlights their location within the screenshots, making it easier fortesters and developers to understand and reproduce any identified issues. Thisreporting structure enhances the comprehensibility of test results by organisingthem into structured HTML pages, significantly improving the clarity and analysisof test results.

Figure 7.5: Excerpt of a MINTestar report

7.3.8 Seamless integration

MINTestar provides a plugin that serves as a gateway for the integration ofMINTestar-based tests into the Android testing process. This integration aimsto align with the execution patterns of classical integration and unit tests in An-droid, following established testing practices [211], promoting a consistent andfamiliar testing experience for developers and testers without requiring substan-tial changes to existing testing practices.The plugin enables the incorporation of specific Gradle tasks, such as datacollection and report generation, into the standard Android testing framework.Gradle is the default automation tool used by Android Studio, the official IDEfor Android development. Hence, developers can effortlessly incorporate MINTes-

196 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

tar into their existing Gradle-based projects by simply adding the plugin to theGradle configuration file:

Example 7.7: Integration with Gradle
apply plugin: ’mint-tooling’

Thus, any MINTestar test run can be defined and executed similarly to existingunit and integration tests, as demonstrated in the simplified example code below.

Example 7.8: Integration with Android testing
@org.junit.Test
fun MintExploratoryTestRun() {

Mint.explore()
}

The practical implementation of MINTestar in a testing environment involvesseveral carefully structured steps, each designed to ensure proper setup andeffective test execution. The implementation process begins with the integration ofMINTestar into the project’s build system, typically through Gradle configuration.
The framework’s API provides easy-to-use methods for defining test behaviour,setting test conditions, and specifying validation criteria. MINTestar providesflexible configuration options through its builder pattern:

7.4. PRELIMINARY EVALUATION 197
Example 7.9: Rule configuration

var mint = MintRule(
Mint.DefaultBuilder

.withRule(customRule) // Add custom rules

.withSequences(5) // Set sequence count

.withStepsPerSequence(30) // Set steps per sequence

.build { e -> fail(e) } // Configure failure
handling
)

7.4 Preliminary evaluation

A preliminary evaluation was done to compare MINTestar with actively main-tained random testing tools reported in Section 7.1. This evaluation aims toassess the effectiveness of MINTestar compared to existing random testing tools.Specifically, the following research questions are addressed:
RQ1: How does MINTestar compare to existing scriptless Android testing toolsin terms of fault detection capabilities?
RQ2: What is the code coverage effectiveness of MINTestar compared to existingtools?To answer these research questions, a comparative study was conducted.First, variables were defined to ensure a controlled comparison, followed by adetailed description of the tools and applications used in the evaluation.
7.4.1 Independent and Dependent Variables

The Independent Variables refer to the configuration of the test processes andthe selection of the testing tools:
• Testing tools used: DroidBot, testar, MINTestar. Each tool was configuredwith its default settings.

198 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

• Subject applications: Two open-source applications were selected basedon their different functionalities and active maintenance status.
• Test sequence length: Fixed 300 actions per run to ensure comparableexecution time across tools.
• Number of test runs: 10 runs per tool-application combination to accountfor the random nature of testing.
To answer these research questions, DroidBot and testar (with Random asthe ASM for baseline) were selected as the testing tools. For their selection, toolsnot actively maintained or not publicly available were excluded.The SUTs were selected randomly from F-Droid, a platform for distributingfree and open-source Android apps. The first SUT, Amaze File Manager, is an ad-vanced file explorer that allows different operations over the Android file system.Next, Arity is a scientific calculator with function graphing. Both applicationswere instrumented with Jacoco for code coverage measurement.To ensure consistency and reliability, a standardised testing protocol wasestablished. The evaluation protocol consisted of executing 300 test actions perrun, with 10 test runs conducted for each tool.To evaluate fault detection capabilities (RQ1) and code coverage effectiveness(RQ2) of the tools, the following Dependent Variables were defined:
• Fault Detection: Recorded through Android Log Oracle for runtime excep-tions and derived oracles included by default (or not) by each tool.
• Code Coverage: Measured using Jacoco, capturing instruction code cover-age (ICC).
After each test run, the final code coverage was measured, and all issuesdetected were recorded for subsequent analysis.

7.4.2 Results

The experimental results reveal distinct differences between MINTestar and exist-ing tools for both bug detection and coverage metrics. The findings are presented

7.4. PRELIMINARY EVALUATION 199
according to the research question.The comparative analysis (see Table 7.5) of the testing tools showed a nuanceddistinction in their bug detection capabilities. MINTestar uniquely excelled inidentifying specific types of accessibility issues.

Table 7.5: Comparison of Testing Tools on Various APKs
AUT LOC Metric Droidbot testar (Random) MINTestarAmaze File Manager 84247 ICC 15.6% 23.7% 22.5Faults 0 0 46Arity 5197 ICC 26.0% 66.6% 40.7%Faults 0 0 5

MINTestar found two different types of accessibility problems on multiplewidgets: not speakable text and touch target size not large enough, detected byoracles SpeakableTextPresentCheckOracle and TouchTargetSizeCheckOracle re-spectively. Figure 7.6 depicts a sample of states where such accessibility issueswere found. A total of 13 different widgets did not have a speakable text. Addi-tionally, 10 widgets did not meet the minimum size suggested by the accessibilityguidelines. For both problems, widgets with the same functionality were countedas one, such as Three dots menu items that indicate "advanced options".

Figure 7.6: Sample of accessibility issues detected by MINTestar
Orange: The touch widget size is not large enough. Blue: Widget without speakable text.

Moreover, multiple exceptions obtained through the Android Log Oracle were

200 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

discarded as false positive bugs, except for one identified in Arity. Neither Droid-Bot nor testar detected any faults during their test runs.
RQ1 answer: MINTestar shows superior fault detection capabilities
specifically for accessibility issues. However, all tools performed simi-
larly for runtime exception detection.

Moreover, analysis of code coverage metrics (see Table 7.5) shows that MINTes-tar’s effectiveness presents mixed results when compared to existing tools. Forthe Amaze File Manager application, MINTestar achieved higher instruction cov-erage than Droidbot but slightly lower than testar. However, when testing theArity application, MINTestar notably outperformed Droidbot’s coverage, thoughstill falling short of testar’s results.MINTestar’s lower coverage can be explained by its requirement for a manualfine-tuning of the rules, as it is designed for use by testers of the SUT itself,leveraging their knowledge of its specific nature. This contrasts with the plug-and-play approach of the existing tools, which require minimal setup.
RQ2 answer: code coverage effectiveness exhibits mixed results, sug-
gesting that MINTestar’s specialised ASM can achieve competitive but
not superior coverage compared to random exploration approaches.

7.4.3 Discussion

The experimental evaluation reveals important insights about the trade-offs be-tween code coverage and specialised fault detection. While MINTestar showedlower coverage, it excelled in identifying specific types of accessibility issues thatwent undetected by other tools. This reflects the understanding in software test-ing that code coverage is a helpful but not definitive indicator of test quality [212].Furthermore, MINTestar’s specialised focus on certain failure categories, likeaccessibility, adds a valuable dimension to the testing landscape that the existingtools have not addressed (see Section 7.1).

7.5. CONCLUSIONS 201
testar’s ASM could be augmented with a configurable rule system similar toMINTestar’s, through which more sophisticated testing strategies could be im-plemented while maintaining testar’s platform independence. Such rules couldbe defined at an abstract level that would work across platforms. Furthermore,platform-specific oracles could be implemented within testar’s architecture, al-lowing specialised checks when testing mobile applications while maintainingcompatibility with existing cross-platform oracles.

7.5 Conclusions
This chapter presents MINTestar, a scriptless Android application testing toolthat uses probabilistic rule-based exploration. Preliminary results show thatMINTestar fills a critical gap in detecting faults like accessibility issues, whichare increasingly important in creating inclusive and user-friendly applications.Therefore, rather than viewing MINTestar’s performance in isolation, it should beconsidered part of a diverse toolkit, hence its seamless design for easy integrationwith standard Android testing frameworks.MINTestar’s approach to Android application testing offers several signifi-cant advantages over traditional testing methodologies. The framework’s abilityto combine automated exploration with scripted testing provides unprecedentedflexibility in test creation and execution. This hybrid approach allows teamsto leverage the benefits of both testing styles - the thoroughness of automatedexploration and the precision of scripted tests.The framework’s state management and oracle systems provide comprehensivecoverage and validation capabilities, helping teams identify issues that conven-tional testing approaches might miss. The integration with Espresso enhancesthese capabilities further, providing reliable interaction with GUI elements whilemaintaining the benefits of scriptless testing.

202 CHAPTER 7. GOING MOBILE: THE ANDROID PLUGIN

8
Conclusions and future work

"I may not have gone where I intended to go, but I think I
have ended up where I needed to be."

Douglas Adams, The Long Dark Tea-Time of the Soul
This chapter synthesises the findings of this thesis by addressing the researchquestions posed in the Introduction Chapter and providing a perspective on thecontributions. The chapter is organised into two main sections. The first sectionpresents a detailed discussion of the research questions and their correspondinganswers, while the second section proposes future research directions that buildupon the work presented herein.

8.1 Answers to the Research Questions

This section thoroughly examines the six primary research questions, each con-tributing to a comprehensive understanding and practical application of scriptlessGUI testing across diverse software environments.
203

204 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1.1 Evolution of Automated GUI Testing

RQ1: How has automated GUI testing evolved over time regarding size,research trends, collaboration, authors and publication patterns?
The bibliometric analysis conducted by this thesis (see Chapter 2: Thirthy

years of automated GUI testing) has provided a broad historical overview ofautomated GUI testing, identifying key trends, research patterns, and shifts intesting methodologies. Over the years, GUI testing has transitioned from earlymanual scripting to scriptless methodologies enhanced by artificial intelligence.This evolution reflects the increasing complexity of software applications and theneed for more efficient testing solutions. The field has also shown significantgrowth, with 41.4% of all papers being published in the last five years.Figure 8.1 shows how GUI testing techniques have evolved. The timelinemarks important milestones, like the shift from manual testing to script-basedand model-based approaches and eventually to scriptless and AI-driven methods.Although each approach offers advantages, recent trends favour exploration-basedand AI-driven techniques. Additionally, there has been a marked increase inresearch targeting mobile-based SUTs, demonstrating the growing demand formobile testing strategies.Rapid advancements in hardware and software platforms, coupled with therising complexity of systems, have prompted researchers and practitioners toseek more adaptive, efficient, and intelligent testing solutions. This trajectory un-derscores the importance of specialised methods for state abstraction and actionselection, which this thesis investigates in detail.
Manual
Testing C&R Model-based

Testing
Visual GUI
Testing

Scriptless
GUI Testing

Low automation, high
human effort.

Tools record interactions
and replay them later.

Test cases are generated
from models of the
system’s behavior.

Uses image recognition
and pixel-based

comparisons.

Automates test execution
without needing pre-

written scripts or models.

AI-driven
Testing

Continued integration of
AI/ML for smarter test

automation.

Figure 8.1: The Evolution of GUI Testing Techniques: A timeline depicting the transitionfrom manual to AI-driven GUI testing.

8.1. ANSWERS TO THE RESEARCH QUESTIONS 205
8.1.2 Industrial Insights on Using TESTAR for GUI Testing

RQ2: What general insights do industrial case studies provide about usingtestar for GUI testing in industry?
The industrial studies (as observed in Chapter 3: TESTAR demonstrate thattestar, as a vehicle to explore scriptless GUI testing, is a valuable addition to thetesting process, particularly for identifying faults in less probable sequences ofactions. Its exploratory nature complements traditionally used testing approaches,such as Capture and Replay, enhancing overall testing coverage and effectiveness.While its efficiency improves over time, as setups are refined and reused, theinitial learning curve and configuration effort can be challenging. Subjectivesatisfaction among testers was generally positive, but improvements in usabilityand reporting could further enhance its adoption and impact.A significant takeaway from the case studies is that the setup process is cru-cial: the case studies underscored the importance of a structured and systematicprocess for setting up testar. The generic process developed from these industrialstudies (see Figure 3.10) provides a structured framework for deploying testarwith minimal overhead. This iterative approach ensures that the test environmentevolves with each run, improving its coverage and fault detection capabilities overtime.The architectural analogy (see the simplified version in Figure 8.2) for testar’sintegration, derived from the industrial case studies, illustrates how the tool fitsinto diverse testing environments. This architectural analogy emphasises the sep-aration of concerns between different actors (i.e., clients, developers, and testers)and illustrates the tool’s complementary role in enhancing testing effectiveness.The findings from those case studies collectively support the conclusion thattestar is an effective and resource-efficient exploratory testing tool in industrialcontexts. While initial setup and usability challenges persist, its iterative refine-ment process and ability to reduce manual effort make it a compelling addition toGUI testing strategies. This architectural analogy synthesises the findings fromvarious case studies and provides a scalable blueprint for companies looking to

206 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Figure 8.2: Simplified architectural analogy showing the most important components
adopt scriptless testing solutions. It emphasises the collaborative and iterativenature of the testing process, where the complementarity between automatedscriptless testing and traditional scripted approaches can lead to more compre-hensive software validation with reduced manual effort over time.
8.1.3 Impact of State Abstraction on State Model Inference

RQ3: How does state abstraction in testar influence the inference of statemodels during on-the-fly exploration with scriptless testing?
The choice of state abstraction in scriptless GUI testing plays a crucial role inthe effectiveness of inferred state models, as observed in Chapter 4: Inferring state

models with TESTAR. Figure 8.1 illustrates the impact of state abstraction. Anoverly fine-grained abstraction (i.e., using many dynamic attributes), where everyminor GUI change results in a distinct state, generates a state explosion, makingthe inferred model very large and expensive to maintain and interpret. Conversely,if the abstraction is too coarse (e.g., ignoring important widget properties), themodel becomes overly abstract and can introduce non-deterministic transitions,reducing its ability to guide test exploration effectively.

8.1. ANSWERS TO THE RESEARCH QUESTIONS 207

Figure 8.3: Effect of state abstraction in testar.
Striking the right balance, where each state is meaningful but not excessivelydetailed, improves test coverage (e.g., code coverage, state coverage) and reducesmodel complexity. The experiments show that an appropriately chosen set ofstable widget attributes (sometimes augmented by action-history information)can substantially improve coverage and detect more states than overly abstractor concrete configurations. Different state abstraction mechanisms can eitherempower or hinder scriptless GUI testing. A thoughtful, SUT-specific abstraction(one that filters out noise yet preserves functionality-relevant properties) yieldsthe most compelling exploration and best coverage results in automated GUItesting.Additionally, using a model-based Action Selection Mechanism (ASM) that

208 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

prioritises unvisited actions/states (rather than purely random action selection)further boosts effectiveness, regardless of the specific abstraction level.
8.1.4 Reward Mechanisms for Exploratory Testing with Rein-

forcement Learning

RQ4: Which reward mechanism is most effective for exploratory testingwith reinforcement learning in testar?
Random exploration can become inefficient in scriptless testing tools by re-peatedly visiting states or actions that do not lead to improved coverage. Intelli-gent or probabilistic approaches address this limitation through adaptive policiesthat focus on uncovered or critical areas of the GUI. Reinforcement Learning (RL)is one such approach: it rewards transitions leading to previously unexploredstates, gradually refining its exploration strategy to balance exploration (of newstates) and exploitation (of known high-impact actions).This thesis investigated several reward mechanisms to enhance exploratorytesting using reinforcement learning (see Chapter 5: Adding intelligence). Eachapproach directs the testing process by assigning higher values to certain ac-tions or transitions, encouraging the test generator to select those actions morefrequently. Four different rewards were evaluated: State Difference Reward, Ac-tion Frequency Reward, State Reward, and a Combined Reward combining thesestrategies. Table 8.1 presents a summary of these rewards = mechanisms.The State Difference Reward is designed to encourage exploration by assign-ing higher rewards to actions that lead to significantly different states. While thispromotes novelty, it introduces the Jumping Between States (JBS) problem, wherethe agent oscillates between highly different states without exploring new states.To address this, rewards based on action frequency memory were introduced.The Action Frequency Reward tracks action repetition and discourages theagent from over-relying on a particular action, ensuring that different interactionsare explored over time. While this approach helps prevent excessive reliance onspecific actions, it can also discourage the agent from repeating actions that might

8.1. ANSWERS TO THE RESEARCH QUESTIONS 209
Table 8.1: Comparison of Reward Mechanisms

Reward Description Key Advantage Key Limitation
MechanismState DifferenceReward Rewards actions thatlead to significantlydifferent states

Encourages explorationof new states Causes JBS (agent jumpsbetween distinct states)
State Reward Rewards states withmany unexplored actions Best for discovering newinteractions May not ensure broadcoverage in complexSUTsActionFrequencyReward

Discourages the repeti-tion of frequently usedactions
Promotes balanced ex-ploration across inter-connected states

Can discourage repeat-ing actions necessary forreaching unexplored ar-easCombinedReward Combines the rewardstrategies Achieves a trade-off be-tween exploration andJBS mitigation
More complex to imple-ment and tune

lead to states with many unexplored interactions. This limitation can result insuboptimal exploration when certain actions must be executed multiple times toreach deeper or more complex areas of the application.The State Reward, in contrast, evaluates the level of exploration of the reachedstates by the number of available unexplored actions. This encourages deeperexploration of individual states while still allowing necessary repetitions whenbeneficial.Empirical results indicate that the State Reward was the best at maximizing
exploration regarding abstract state discovery and action coverage, as it en-abled the RL agent to systematically discover unexplored actions. The Action
Frequency Reward was more effective in mitigating repetitive loops betweenpreviously explored paths, and achieved better exploration across interconnectedstate spaces. The Combined Reward, which combines aspects of both, achieved awell-balanced trade-off, optimizing exploration while mitigating JBS, but it maybe more complex to implement and tune.In general, compared to purely random methods, reward-based explorationguides scriptless testing toward a more thorough exploration of the state spaceby adapting over time. As some areas of the GUI are covered, the approachnaturally shifts attention to the less-explored regions, maximising the overalltesting efficiency and effectiveness.

210 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1.5 Scriptless GUI Testing and Code Smell Coverage

RQ5: To what extent can scriptless GUI testing with testar provide mean-ingful coverage of code smells, and how does this relate to traditional testadequacy metrics?
Traditional coverage criteria (e.g., line, branch and state coverage) have longbeen used to measure the thoroughness of testing activities. While these metricsprovide valuable insights into how extensively a software application is exercisedduring testing, they may fail to capture deeper structural or maintainability prob-lems. Quality-oriented metrics, by contrast, directly measure the extent to whichtests exercise areas of the software known to have maintainability issues.The collaboration with Marviq (see Chapter 6: Applying it at a company: Mar-

viq) investigates the extent to which scriptless GUI testing with testar providesmeaningful coverage of code smells and its relation to traditional test adequacymetrics.testar effectively exercises code containing detected code smells, but its abil-ity to cover unique smells varies with testing configurations. Longer test se-quences result in more executed smelly code, but the number of unique codesmells covered plateaus. The introduction of meaningful form inputs leads to im-proved exploration, increasing the likelihood of exposing code smells that dependon realistic user input. However, on average, testar covered fewer unique codesmells per test sequence when compared to manual testing. Despite this, acrossall test sequences, testar covered code smells that were not encountered duringmanual testing.To understand whether traditional test adequacy metrics can serve as indi-cators for code smell coverage, Spearman correlation analysis was conducted asshow in Figure 8.4. The study revealed that high coverage alone does not nec-essarily translate into coverage of subtler quality issues. Correlations betweencode smell coverage and traditional metrics were moderate to weak, suggestingthat higher code coverage does not automatically translate into covering codewith deeper structural or maintainability issues. The findings suggest that incor-

8.1. ANSWERS TO THE RESEARCH QUESTIONS 211
porating quality-oriented metrics like code smell coverage can serve as a helpfulindicator of test effectiveness.

IC BC LC CoC MC ClC AbSC AbTC CoSC CoTC

TP
10

0
TP

50
0

TP
10

00

0.46 0.39 0.51 0.61 0.66 0.58 -0.05 0.04 -0.05 -0.05

0.40 0.54 0.43 0.45 0.43 0.46 0.15 0.21 0.30 0.24

0.60 0.63 0.60 0.59 0.58 0.59 0.08 -0.10 -0.26 -0.22

1.0

0.7

0.0

0.7

1.0

Figure 8.4: Spearman’s Correlation: Code Smell Coverage vs Traditional Metrics1 fordifferent test lengths2

While traditional coverage metrics remain valuable for measuring how exten-sively the code is exercised, code smell coverage highlights parts of the code proneto design flaws. Consequently, using code smell detection alongside traditionalcoverage metrics results in a more holistic view of test quality.
8.1.6 Adapting Scriptless GUI Testing for Mobile Applications

RQ6: How can scriptless GUI testing be adapted for mobile applicationsby improving exploration strategies and integrating mobile-specific testingoracles?
Mobile application testing introduces unique challenges due to platform-specific behaviours, diverse hardware configurations, and touch-based interac-

1Metrics: IC = Instruction Coverage, BC = Branch Coverage, LC = Line Coverage, CoC = Com-plexity Coverage, MC = Method Coverage, ClC = Class Coverage, AbSC = Abstract State Coverage,
AbTC = Abstract Transition Coverage, CoSC = Concrete State Coverage, CoTC = Concrete TransitionCoverage,2Test process: TP100 = 100 actions, TP500 = 500 actions, TP1000 = 1000 actions.

212 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

tions. This research investigated improvements to testar’s exploration strategiesfor mobile SUTs (see Chapter 7: Going mobile: the Android plugin).Two complementary solutions were developed to adapt scriptless GUI testingfor mobile applications. Table 8.2 summarises the differences between these twoapproaches. The first involved extending testar to provide cross-platform mo-bile testing, ensuring a seamless integration with the existing testar framework.This approach allows testar to test Android and iOS applications while main-taining platform independence. This is particularly beneficial for organisationsthat develop applications for multiple platforms, as it reduces maintenance effortand ensures consistency in testing results. However, this approach introducessome performance overhead due to the additional abstraction layer that Appiumprovides.The second solution, MINTestar, was explicitly designed as a lightweightAndroid-focused tool fully integrated into the Android testing ecosystem. MINTes-tar enables seamless execution within Android environments, offering direct in-teractions with native frameworks. This allows for faster execution, deeper inte-gration into development pipelines, and a more seamless experience for testersand developers working within Android environments.
Table 8.2: Comparison of testar (with Appium) and MINTestar for Mobile Testing

Feature testar + Appium MINTestar

Platform Support Android and iOS AndroidIntegration WebDriver-based (Appium) Direct Android APIs (Espresso, ADB)Exploration Strategy All ASMs available with testar Probabilistic rule-based explorationOracles Generic cross-platform oracles Mobile-specific oracles (e.g., accessibility)Ease of Use Generic testar setup process Seamless integration into Android work-flows
This extension to mobile has introduced adaptations that enhance scriptlesstesting capabilities for Android applications. These enhancements include mobile-specific oracles, gesture-based interactions, and rule-based probabilistic explo-ration strategies to improve test execution in mobile environments.The mobile-specific oracles aim to detect UI inconsistencies and accessibilityissues. Domain specificity becomes critical in contexts such as mobile platforms,

8.2. FUTURE RESEARCH DIRECTIONS 213
where the literature review indicated limited exploration of accessibility-relatedproblems. Incorporating oracles tailored to mobile accessibility, for instance, hasthe potential to identify subtle or device-specific issues that remain invisible togeneral-purpose oracles. Addressing such gaps in oracle design can encouragethe adoption of scriptless testing tools in industrial environments specialised inmobile applications. Preliminary experiments suggest that these adaptationsimprove coverage and enhance the detection of subtle, mobile-specific defects,thereby making testar a versatile tool for desktop, web and mobile environments.
8.2 Future Research Directions

Building upon the findings from this research, some areas for future explorationemerge, each offering potential advancements in scriptless GUI testing method-ologies. The proposed future directions provide a clear roadmap for ongoingresearch, enabling both academic and industrial communities to further enhanceand adopt scriptless GUI testing methodologies. Figure 8.5 presents an overviewof the key research directions categorised into four main areas: Interaction, Ex-
ploration, Oracles, and Test Results and Evaluation.

• Expanding to Emerging Interfaces: Emerging technologies such as aug-
mented reality (AR), virtual reality (VR), and voice-controlled applica-
tions present new challenges for GUI testing. Traditional scriptless testingmethodologies may not directly translate to these interfaces, necessitatingnovel research directions to adapt and expand automated testing capabili-ties.

• Adaptive State Abstraction Techniques: State Abstraction is a crucial fac-tor in determining the effectiveness of GUI testing. A promising future re-search direction includes developing dynamic state abstraction methodsthat adjust based on real-time feedback during testing execution, poten-tially incorporating computer vision for analysing the screenshots in ad-dition to the attributes of the widget tree, and/or visualising the results of

214 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Interaction

Exploration

Oracles

Adaptive State Abstraction Techniques

Distributed State Model

Software Version Changes

Domain-Specific Oracles

Emerging Interfaces

Test Adequacy Criteria

Automated Failure Reproduction

Visualization and Test Reporting
Test Results
and Evaluation

Exploration Strategies

Expanding MFEST

Figure 8.5: Future Research Directions in Scriptless GUI Testing.
state abstraction for the user and learning from the user input to find asuitable level of abstraction.
A novel approach could involve an AI-based system that continuously re-
fines abstraction levels during test execution, adjusting dynamically basedon the complexity of the GUI. Researchers can improve test efficiency whilemaintaining model interpretability by developing an adaptive mechanismthat iteratively refines the abstraction strategy. Such an approach couldbenefit large-scale or continuously evolving software environments.

• Distributed State Model: Beyond abstraction, improving the scalability ofGUI testing remains a challenge. Even when the execution is automated,GUI testing is significantly slower than lower-level tests, such as unit test-ing, due to the need for GUI updates after each action. Future researchshould explore parallelising scriptless GUI testing to speed up execution.For instance, running multiple testar instances in parallel could improve

8.2. FUTURE RESEARCH DIRECTIONS 215
efficiency, but this requires a robust method for synchronising state modelsacross distributed test executions. Recent research [213] has demonstratedthe feasibility of inferring a model with a distributed approach, thus reduc-ing the time required to infer a similar-size state model.

• Exploration Strategies: Reinforcement learning has already demonstratedits potential in guiding GUI testing, but there is room for improvement.One primary challenge this research identified is the trade-off between ex-haustive exploration and efficient test execution. Future work could investi-gate the integration of advanced AI-driven adaptive exploration strategies,where reinforcement learning (RL) and deep learning models dynamicallyadjust exploration policies based on real-time feedback.Future research should also explore adaptive reward mechanisms thatevolve dynamically based on real-time testing goals, such as deeper GUIcoverage or exploring areas with known technical debt. Code smells couldbe exploited as part of these reward mechanisms to guide the explorationprocess toward more critical software weaknesses.Recent research [214] has studied the potential of evolutionary-based ap-proaches in test case generation, allowing structured and adaptable explo-ration strategies. Future work should investigate how evolutionary algo-
rithms can be integrated into GUI testing to dynamically refine explorationpolicies.The explosion of Large Language Models (LLMs) offers a new paradigm forintelligent action selection in scriptless testing. Future work could explorehow LLMs can assist in dynamically generating GUI interactions by under-standing application context and user behaviour patterns. Research shouldassess the feasibility of fine-tuning LLMs to predict meaningful and diverseGUI actions that maximize coverage while reducing redundant interactions.Furthermore, LLMs could be leveraged for adaptive exploration, where theyguide test execution toward complex or undertested GUI components basedon real-time feedback.An additional research direction involves integrating LLMs with reinforce-

216 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

ment learning (RL) to balance between random exploration and goal-directed
testing. LLMs could provide semantic reasoning capabilities, ensuring thatgenerated actions align with realistic user behaviours while reinforcementlearning fine-tunes the testing policy over time.Implementing a Domain-Specific Language (DSL) can enhance the usabil-ity of scriptless GUI testing by providing a human-readable mechanism fordefining test strategies. A DSL could allow users to specify action deriva-tion rules, state abstraction configurations, and oracle definitions in anintuitive and structured format. Future work should focus on designing aflexible and extensible DSL that enables testers to fine-tune test behaviourwithout requiring deep programming expertise. Incorporating AI-driven ab-straction refinements within the DSL could enable self-adaptive scriptlesstesting, where the exploration model evolves based on application changesand user feedback.Another area for improvement is human-in-the-loop techniques, which ex-plore reinforcement learning strategies where testers or users can guidethe training process. This would allow a balance between full automationand human expertise. By leveraging imitation learning, these agents couldlearn from seasoned testers and gradually develop sophisticated testingstrategies. Explainable AI techniques could ensure these agents’ decisionsremain transparent and interpretable.Beyond action selection, further research is needed to explore methods forgenerating more effective actions. For instance, improving input generationis a crucial area for future research, aiming to produce meaningful valuesfor text fields automatically.

• Automated Failure Reproduction: Debugging remains one of the mosttime-consuming aspects of software development. Future research shouldpush the boundaries of automated fault reproduction by leveraging inferredstate models to trace the shortest paths to faults. This requires recognisingwhether a failure is unique or duplicates a previously encountered issue.Advanced anomaly detection and clustering techniques could be used to

8.2. FUTURE RESEARCH DIRECTIONS 217
automate failure classification and reproduction, reducing debugging effortsignificantly.A key challenge in failure reproduction is determining whether an observedfailure is truly reproducible or influenced by non-determinism. Since GUItesting often encounters dynamic behaviours, failures may not always occurin the same sequence of actions. Future work could explore probabilisticmodels that assess failure recurrence likelihood, helping testers prioritisedebugging efforts based on statistical confidence in the reproducibility ofan issue.

• Software version changes: The inferred models can aid regression test-ing by automating change detection between consequent versions of thesame SUT. Similar approaches have been explored in the Murphy tools [31],and future research could further refine these methodologies by integrat-ing automated GUI comparison techniques. This would allow GUI testingframeworks to efficiently identify regressions and determine the potentialimpact of software updates. This aligns with ongoing research [215] onautomatic inference and recognition of GUI changes between versions fordelta testing.
• Domain-specific Oracles: The test oracle problem remains one of thebiggest challenges in automated GUI testing. While existing oracles primar-ily focus on detecting crashes or functional misbehaviour, future researchshould explore domain-specific oracles tailored for different testing goals,such as accessibility, usability and security.

Accessibility and usability remain underexplored in automated GUI testing.Future work could investigate new accessibility oracles, heuristic evalua-tions, and user behaviour simulations. By simulating diverse interactionpatterns (e.g., using screen readers or navigating with a keyboard), script-less testing tools could proactively detect usability issues.
Security testing is another underexplored area in scriptless GUI testing.Future research should investigate security-specific oracles capable of de-tecting authentication weaknesses, insecure data handling, and potential

218 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

injection vulnerabilities. Automating security validation through exploratorytesting could significantly improve software robustness.Another relevant research direction is improving internationalisation test-ing through automated layout validation. Many localisation issues arisewhen translated text does not fit within designated UI elements, causinglayout distortions. Future work could explore image recognition and textextraction techniques to compare rendered UI elements against expectedtranslations.
• Test Adequacy Criteria: Traditional coverage metrics, such as code cover-age and state coverage, provide valuable insights into test thoroughness butfail to capture broader aspects of software quality, such as maintainability,performance, and usability. Future research should explore expanding testeffectiveness metrics to include additional quality indicators, enabling amore comprehensive evaluation of GUI testing.By integrating dynamic performance monitoring into GUI testing frame-works, testers could identify laggy UI interactions and inefficient renderingprocesses, ensuring a smooth user experience. Additionally, quality-drivenmetrics could help identify parts of the application that require further test-ing attention.Another crucial research area is defining effective stopping criteria for GUItesting. One potential criterion is the saturation effect [216], where testexecution is halted once no new states, transitions, or faults are discoveredover a certain number of iterations. Research could explore the automateddetection of test saturation by analysing coverage trends and fault detectionrates over time.Future work should explore alternative stopping heuristics, such as mutation-based coverage, state-model-based saturation, or diversity-based explo-ration metrics. These approaches could help define when enough test-ing has been performed, particularly in complex and dynamically changingGUIs. One possible direction for future research is switching to a differ-ent action selection algorithm after reaching saturation. This could involve

8.2. FUTURE RESEARCH DIRECTIONS 219
transitioning from GUI exploration to combinatorial testing, aiming to dis-cover new state transitions by varying the order of actions within a specificstate or the sequence of state transitions.

• Visualization and Test Reporting: While testar has proven effective inexploratory testing, its adoption in industrial settings could be further im-proved by enhancing its reporting and result interpretation mechanisms.One promising direction is the development of interactive dashboards thatautomatically analyse, categorise, and visualise test results. Such dash-boards could integrate:
– NLP-based log analysis to summarise execution traces and highlightpotential issues.
– Visual heatmaps of explored states to show areas of high interactiondensity.
– Automated clustering of failure cases to detect patterns and minimiseduplicate issue reporting.

Future research can enhance test reporting, visualisation, and failure anal-ysis mechanisms to ensure that scriptless GUI testing frameworks provideclear, interpretable, and actionable insights, making them more practical forindustrial adoption.
• Expanding MFEST with Architectural Components: The architectural anal-ogy from industrial studies highlights key actors and systems in the testautomation process. These components interact structurally, influencingthe effectiveness, efficiency, and usability of test automation strategies. Fu-ture research should extend MFEST (explained in Chapter 3) by explicitlyintegrating these components into the evaluation methodology.While subjective satisfaction is already assessed, further evaluation couldfocus on how well the testing tool integrates into the existing testingpipeline. The Test Environment, comprising Test Strategy and Test Exe-cution, defines how automated testing tools operate. Future work should

220 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

assess whether the tool aligns with predefined test strategies and inte-grates effectively into execution pipelines. The Bug Tracking System isanother crucial element, serving as the primary feedback loop for detectedfaults. Research should determine how seamlessly the tool communicatesfindings to the bug tracking system and whether reported faults facilitatedebugging for developers.Fault Detection Rate (FDR) analysis could be enhanced by breaking it downacross different layers of the SUT. Research should explore how many faultsare detected in GUI components versus business logic layers to identifystrengths and weaknesses depending on the software architecture. Evalu-ating FDR across architectural levels will provide a deeper understanding ofcoverage and refine testing approaches to better target critical fault-proneareas.Beyond raw FDR, analyzing the nature and impact of detected faults isessential. Future research should examine a new scenario for fault clas-sification and prioritisation, comparing scriptless testing results with theexisting manual or scripted approaches. Measuring how often detectedfaults are marked as critical in the Bug Tracking Systems and how fre-quently they lead to actual fixes can provide insight into their relevance.Additionally, studies should explore whether detected faults contribute tolong-term software improvements, in order to understand the broader im-pact of scriptless testing beyond detection rates.
The future directions outlined above highlight key opportunities to enhancethe capabilities and impact of scriptless GUI testing. By integrating AI-drivenadaptive strategies, expanding testing to new domains such as accessibility orsecurity, and improving result interpretation mechanisms, the research communitycan further advance automated testing methodologies. These directions will playa crucial role in ensuring that scriptless testing remains a viable, scalable, andindustry-adopted solution, addressing the challenges posed by emerging tech-nologies, evolving software architectures, and increasing demands for automation.This thesis has embraced the philosophy of exploring beyond the happy path,

8.2. FUTURE RESEARCH DIRECTIONS 221
advocating for scriptless approaches that push boundaries. While this work rep-resents a step forward, the journey does not end here. Future research canfurther refine these techniques, integrating more intelligent decision-making anddomain-specific knowledge. As software systems evolve, so too must the ap-proaches used to test them, ensuring that even the less-travelled paths are notoverlooked. As Frodo and Sam demonstrated, sometimes the unexpected route isthe one that changes everything.

222 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] J. R. R. Tolkien. The Two Towers. George Allen & Unwin, London, 1954. Partof The Lord of the Rings. (Cited on page 1)
[2] What went wrong with hawaii’s false emergency alert. Cable News Network(CNN), 2018. [Online; accessed: December 22, 2024]. (Cited on page 3)
[3] Tsb chief paul pester steps down after it meltdown. The Guardian, 2018.[Online; accessed: December 22, 2024]. (Cited on page 3)
[4] Southwest’s $140m penalty ‘should put all airlines on notice’ after traveldebacle. Politico, 2023. [Accessed: December 22, 2024]. (Cited on page 3)
[5] LeadDev Staff. Crowdstrike disaster: A lesson about testing. LeadDev, 2024.[Online; accessed: 2025-01-10]. (Cited on page 4)
[6] Ing customer suddenly had access to a complete stranger’s account. Ned-erlandse Omroep Stichting (NOS), 2024. [Online; accessed: 2025-01-10].(Cited on page 4)
[7] MA Johnson. Automated testing of user interfaces. In Pacific North West

Software Quality conference, pages 285–293, 1987. (Cited on page 5)
223

224 BIBLIOGRAPHY

[8] Emil Alégroth and Robert Feldt. Industrial Application of Visual GUI Testing:
Lessons Learned, pages 127–140. Springer International Publishing, Cham,2014. (Cited on page 5)

[9] Pekka Aho, Emil Alégroth, Rafael A. P Oliveira, and Tanja E. J. Vos. Evolutionof automated regression testing of software systems through the graphicaluser interface. In The First International Conference on Advances in Com-
putation, Communications and Services (ACCSE 2016), pages 16–21, May2016. (Cited on page 5)

[10] Tanja E. J. Vos, Pekka Aho, Fernando Pastor Ricos, Olivia Rodriguez-Valdes,and Ad Mulders. TESTAR – scriptless testing through graphical user inter-face. STVR, 31(3), 2021. (Cited on pages 5, 11, 13, 89, 121, 123, and 169)
[11] Atif M Memon and Mary Lou Soffa. Regression testing of guis. ACM SIG-

SOFT software engineering notes, 28(5):118–127, 2003. (Cited on page 6)
[12] Emil Alégroth, Robert Feldt, and Pirjo Kolström. Maintenance of automatedtest suites in industry: An empirical study on visual gui testing. Information

and Software Technology, 73:66–80, 2016. (Cited on page 6)
[13] S. Berner, R. Weber, and R. K. Keller. Observations and lessons learnedfrom automated testing. In Proceedings. 27th International Conference on

Software Engineering, 2005. ICSE 2005., pages 571–579, 2005. (Cited onpage 6)
[14] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Robula+:an algorithm for generating robust xpath locators for web testing. Journal

of Software: Evolution and Process, 28(3):177–204, 2016. (Cited on page 6)
[15] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. Visual web testrepair. In Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2018, pages 503–514, New York, NY, USA,2018. ACM. (Cited on page 6)

BIBLIOGRAPHY 225
[16] Shauvik Roy Choudhary, Dan Zhao, Husayn Versee, and Alessandro Orso.Water: Web application test repair. In Proceedings of the First International

Workshop on End-to-End Test Script Engineering, ETSE ’11, page 24–29,New York, NY, USA, 2011. Association for Computing Machinery. (Cited onpage 6)
[17] Z. Gao, Z. Chen, Y. Zou, and Atif M. Memon. Sitar: Gui test script repair. IEEE

Transactions on Software Engineering, 42(2):170–186, Feb 2016. (Cited onpage 6)
[18] Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, and XuandongLi. Gui-guided repair of mobile test scripts. In 2019 IEEE/ACM 41st In-

ternational Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 326–327. IEEE, 2019. (Cited on page 6)

[19] E. Alegroth, M. Nass, and H.H. Olsson. Jautomate: A tool for system- andacceptance-test automation. In Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, pages 439–446, March2013. (Cited on page 7)

[20] Sikulix. http://sikulix.com/. [Online; accessed 20-12-2019]. (Cited onpage 7)
[21] Eyeautomate. https://eyeautomate.com/. [Online; accessed 20-12-2019].(Cited on page 7)
[22] José L. Silva, José Campos, and Ana Paiva. Model-based user interface test-ing with spec explorer and concurtasktrees. Electronic Notes in Theoretical

Computer Science, 208:77 – 93, 2008. Proceedings of the 2nd InternationalWorkshop on Formal Methods for Interactive Systems (FMIS 2007). (Citedon page 7)
[23] Vivien Chinnapongse, Insup Lee, Oleg Sokolsky, Shaohui Wang, and PaulJones. Model-based testing of gui-driven applications. In Sunggu Lee and

http://sikulix.com/
https://eyeautomate.com/

226 BIBLIOGRAPHY

Priya Narasimhan, editors, Software Technologies for Embedded and Ubiq-
uitous Systems, pages 203–214, Berlin, Heidelberg, 2009. Springer BerlinHeidelberg. (Cited on page 7)

[24] Rodrigo M. L. M. Moreira, Ana Paiva, Miguel Nabuco, and Atif M. Memon.Pattern-based gui testing: Bridging the gap between design and qualityassurance. Software Testing, Verification and Reliability, 27(3):e1629, 2017.e1629 stvr.1629. (Cited on page 7)
[25] Anneliese A. Andrews, Jeff Offutt, and Roger T. Alexander. Testing web ap-plications by modeling with fsms. Software & Systems Modeling, 4:326–345,2005. (Cited on page 7)
[26] Tommi Takala, Mika Katara, and Julian Harty. Experiences of system-levelmodel-based gui testing of an android application. In Proceedings of the

2011 Fourth IEEE International Conference on Software Testing, Verification
and Validation, ICST, pages 377–86. IEEE Computer Society, 2011. (Citedon page 7)

[27] João Carlos Silva, Carlos Silva, Rui D. Gonçalo, João Saraiva, and José Creis-sac Campos. The GUISurfer tool: Towards a language independent approachto reverse engineering GUI code. In Proceedings of the 2nd ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, page 181–186.ACM, 2010. (Cited on pages 7 and 91)

[28] Rui Couto, António Nestor Ribeiro, and José Creissac Campos. A patternsbased reverse engineering approach for java source code. In 35th IEEE
Software Engineering Workshop, pages 140–147, 2012. (Cited on pages 7and 91)

[29] Bao N Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. GUITAR:an innovative tool for automated testing of GUI-driven software. Automated
software engineering, 21(1):65–105, 2014. (Cited on pages 7, 75, and 92)

[30] Pekka Aho, Tomi Räty, and Nadja Menz. Dynamic reverse engineering of GUImodels for testing. In 2013 International Conference on Control, Decision and

BIBLIOGRAPHY 227
Information Technologies (CoDIT), pages 441–447, 2013. (Cited on pages 7and 92)

[31] Pekka Aho, M. Suarez, T. Kanstren, and Atif M. Memon. Murphy tools:Utilizing extracted gui models for industrial software testing. In Software
Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh
International Conference on, pages 343–348, March 2014. (Cited on pages 7,8, 91, 92, 108, and 217)

[32] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling ajax-basedweb applications through dynamic analysis of user interface state changes.
ACM Trans. Web, 6(1), March 2012. (Cited on pages 7 and 92)

[33] Andres Kull. Automatic GUI model generation: State of the art. In 2012
IEEE 23rd ISSRE Workshops, pages 207–212. IEEE, 2012. (Cited on pages 7and 92)

[34] Pekka Aho, Teemu Kanstrén, Tomi Räty, and Juha Röning. Automated ex-traction of GUI models for testing. volume 95 of Advances in Computers,pages 49–112. Elsevier, 2014. (Cited on pages 7, 8, and 92)
[35] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of ajax webapplications. In 2008 1st International Conference on Software Testing,

Verification, and Validation, pages 121–130, 2008. (Cited on pages 7 and 92)
[36] Antonia Bertolino, Andrea Polini, Paola Inverardi, and Henry Muccini. To-wards anti-model-based testing. In In Proc. DSN 2004 (Ext. abstract, pages124–125, 2004. (Cited on page 7)
[37] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. Gui ripping: re-verse engineering of graphical user interfaces for testing. In 10th Working

Conference on Reverse Engineering, 2003. WCRE 2003. Proceedings., pages260–269, Nov 2003. (Cited on pages 7 and 91)
[38] André MP Grilo, Ana CR Paiva, and João Pascoal Faria. Reverse engineeringof GUI models for testing. In 5th ICIST, pages 1–6. IEEE, 2010. (Cited onpages 8 and 91)

228 BIBLIOGRAPHY

[39] Tanja E. J. Vos and Pekka Aho. Searching for the best test∗. In 2017
IEEE/ACM 10th International Workshop on Search-Based Software Test-
ing (SBST), pages 3–4, May 2017. (Cited on page 8)

[40] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and ShinYoo. The oracle problem in software testing: A survey. IEEE Transactions
on Software Engineering, 41(5):507–525, 2015. (Cited on pages 8 and 27)

[41] Gunel Jahangirova. Oracle problem in software testing. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2017, pages 444–447, New York, NY, USA, 2017. ACM. (Citedon page 8)

[42] Rafael A.P. Oliveira, Upulee Kanewala, and Paulo A. Nardi. Automated testoracles: State of the art, taxonomies, and trends. Advances in Computers,95:113 – 199, 2014. (Cited on page 8)
[43] Marcel Böhme and Soumya Paul. A probabilistic analysis of the efficiencyof automated software testing. IEEE Transactions on Software Engineering,42(4):345–360, 2015. (Cited on page 9)
[44] Pekka Aho and Tanja E. J. Vos. Challenges in automated testing throughgraphical user interface. In 2018 IEEE International Conference on Software

Testing, Verification and Validation Workshops (ICSTW), pages 118–121, LosAlamitos, CA, USA, Apr 2018. IEEE Computer Society. (Cited on page 9)
[45] Pekka Aho, Tanja E. J. Vos, Otto Sybrandi, Sorin Patrasoiu, Joona Oikarinen,Olivia Rodriguez Valdes, and Lianne V. Hufkens. IVVES (industrial-gradeverification and validation of evolving systems). In João Araújo, Jose Luisde la Vara, Isabel Sofia Brito, Nelly Condori-Fernández, Leticia Duboc, Gio-vanni Giachetti, Beatriz Marín, Estefanía Serral, Alessandra Bagnato, andLidia López, editors, Joint Proceedings of RCIS 2022 Workshops and Re-

search Projects Track co-located with the 16th International Conference on
Research Challenges in Information Science (RCIS 2022), Barcelona, Spain,
May 17-20, 2022, volume 3144 of CEUR Workshop Proceedings. CEUR-WS.org, 2022. (Cited on page 10)

BIBLIOGRAPHY 229
[46] Manuela Andreea Petrescu and Simona Motogna. A perspective from largevs small companies adoption of agile methodologies. In ENASE, pages 265–272, 2023. (Cited on pages 11 and 151)
[47] M Hossain. Challenges of software quality assurance and testing. Interna-

tional Journal of Software Engineering and Computer Systems, 4(1):133–144,2018. (Cited on pages 11 and 151)
[48] Nelson Vargas, Beatriz Marín, and Giovanni Giachetti. A list of risks andmitigation strategies in agile projects. In 2021 40th International Conference

of the Chilean Computer Science Society (SCCC), pages 1–8. IEEE, 2021.(Cited on pages 11 and 151)
[49] Ing erkent technische storing na problemen met overboekingen. Tweakers,2023. [Online; accessed 30-January-2025]. (Cited on page 13)
[50] Vijftien uur niet online bankieren bij ing: ‘we zijn het niet meer gewend’.Nederlandse Omroep Stichting (NOS), 2023. [Online; accessed 30-January-2025]. (Cited on page 13)
[51] Ing-klant had plots toegang tot de rekening van een wildvreemde. Neder-landse Omroep Stichting (NOS), 2023. [Online; accessed 30-January-2025].(Cited on page 13)
[52] Uia windows. https://docs.microsoft.com/en-us/windows/win32/

winauto/uiauto-entry-propids. [Online; accessed 25-12-2019]. (Citedon pages 13 and 57)
[53] Selenium. https://selenium.dev/. [Online; accessed 20-12-2019]. (Citedon pages 13, 34, and 56)
[54] Java Access Bridge. https://docs.oracle.com/javase/8/docs/

technotes/guides/access/, 2025. [Online; accessed 30-January-2025].(Cited on page 13)
[55] Sebastian Bauersfeld, Tanja E. J. Vos, Nelly Condori-Fernández, AlessandraBagnato, and Etienne Brosse. Evaluating the TESTAR tool in an industrial

https://docs.microsoft.com/en-us/windows/win32/winauto/uiauto-entry-propids
https://docs.microsoft.com/en-us/windows/win32/winauto/uiauto-entry-propids
https://selenium.dev/
https://docs.oracle.com/javase/8/docs/technotes/guides/access/
https://docs.oracle.com/javase/8/docs/technotes/guides/access/

230 BIBLIOGRAPHY

case study. In 2014 ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM ’14, Torino, Italy, September
18-19, 2014, page 4, 2014. (Cited on pages 14, 78, and 79)

[56] Fernando Pastor Ricós, Pekka Aho, Tanja Vos, Ismael Torres Boigues,Ernesto Calás Blasco, and Héctor Martínez Martínez. Deploying testarto enable remote testing in an industrial ci pipeline: A case-based evalua-tion. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applica-
tions of Formal Methods, Verification and Validation: Verification Principles,pages 543–557, Cham, 2020. Springer International Publishing. (Cited onpages 14 and 79)

[57] Sebastian Bauersfeld, A de Rojas, and Tanja E. J. Vos. Evaluating rogueuser testing in industry: An experience report. In Research Challenges in
Information Science (RCIS), 2014 IEEE Eighth International Conference on,pages 1–10, May 2014. (Cited on pages 14, 78, 79, and 81)

[58] Hatim Chahim, Mehmet Duran, Tanja E. J. Vos, Pekka Aho, and Nelly Con-dori Fernandez. Scriptless testing at the gui level in an industrial setting.In Fabiano Dalpiaz, Jelena Zdravkovic, and Pericles Loucopoulos, editors,
Research Challenges in Information Science, pages 267–284, Cham, 2020.Springer International Publishing. (Cited on pages 14 and 79)

[59] P. Aho, G. Buijs, A. Akin, S. Senturk, F. Pastor Ricos, S. de Gouw, and T. Vos.Applying Scriptless Test Automation on Web Applications from the FinancialSector. In S. Abrahão, editor, Actas de las XXV Jornadas de Ingeniería del
Software y Bases de Datos (JISBD 2021). Sistedes, 2021. (Cited on pages 14and 79)

[60] Pekka Aho, Tanja E. J. Vos, Sami Ahonen, Tomi Piirainen, Perttu Moilanen,and Fernando Pastor Ricos. Continuous piloting of an open source testautomation tool in an industrial environment. In Jornadas de Ingeniería del
Software y Bases de Datos (JISBD), pages 1–4. Sistedes, 2019. (Cited onpages 14 and 80)

BIBLIOGRAPHY 231
[61] Mireilla Martinez, Anna I. Esparcia, Urko Rueda, Tanja E. J. Vos, and CarlosOrtega. Automated localisation testing in industry with testar. In FranzWotawa, Mihai Nica, and Natalia Kushik, editors, Testing Software and

Systems, pages 241–248, Cham, 2016. Springer International Publishing.(Cited on pages 14 and 80)
[62] Tanja E. J. Vos, Peter M. Kruse, Nelly Condori-Fernández, Sebastian Bauers-feld, and Joachim Wegener. TESTAR: Tool support for test automation at theuser interface level. Int. J. Inf. Syst. Model. Des., 6(3):46–83, July 2015. (Citedon pages 14 and 80)
[63] Axel Bons, Beatriz Marín, Pekka Aho, and Tanja EJ Vos. Scripted and script-less gui testing for web applications: An industrial case. Information and

Software Technology, 158:107172, 2023. (Cited on pages 14, 80, 81, and 145)
[64] Thorn Jansen, Fernando Pastor Ricós, Yaping Luo, Kevin Van Der Vlist,Robbert Van Dalen, Pekka Aho, and Tanja EJ Vos. Scriptless gui testingon mobile applications. In 2022 IEEE 22nd International Conference on

Software Quality, Reliability and Security (QRS), pages 1103–1112. IEEE,2022. (Cited on pages 14, 80, 148, and 169)
[65] Rafael Ball. An introduction to bibliometrics : new developments and trends.Chandos Information Professional Series. Chandos Publishing, Cambridge,Massachusetts, 2018 - 2018. (Cited on page 14)
[66] Roel Wieringa and Maya Daneva. Six strategies for generalizing softwareengineering theories. Science of Computer Programming, 101:136 – 152,2015. Towards general theories of software engineering. (Cited on pages 14,15, and 82)
[67] Richard S Sutton. Reinforcement learning: An introduction. A Bradford

Book, 2018. (Cited on page 17)
[68] Claes Wohlin and Per Runeson. Guiding the selection of research methodol-ogy in industry–academia collaboration in software engineering. Information

and software technology, 140:106678, 2021. (Cited on page 17)

232 BIBLIOGRAPHY

[69] G Ann Campbell and Patroklos P Papapetrou. SonarQube in action. Man-ning Publications Co., 2013. (Cited on pages 18 and 158)
[70] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley Professional, 2018. (Cited on pages 18, 150, and 158)
[71] Olivia Rodriguez Valdes. Finding the shortest path to reproduce a failurefound by testar. In Proceedings of the 2019 27th ACM Joint Meeting on Euro-

pean Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 1223–1225, 2019. (Cited on page 21)

[72] Olivia Rodriguez-Valdes. Towards a testing tool that learns to test. In 2021
IEEE/ACM 43rd International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), pages 278–280. IEEE, 2021. (Citedon page 22)

[73] Pekka Aho, Tanja EJ Vos, Otto Sybrandi, Sorin Patrasoiu, Joona Oikarinen,Olivia Rodriguez Valdes, and Lianne V Hufkens. Ivves (industrial-gradeverification and validation of evolving systems). In RCIS Workshops, 2022.(Cited on page 22)
[74] Selmin Nurcan, Andreas L Opdahl, Haralambos Mouratidis, and AggelikiTsohou. Research challenges in information science: Information scienceand the connected world: 17th international conference, rcis 2023, corfu,greece, may 23–26, 2023, proceedings. 2023. (Cited on page 22)
[75] Henry Small. Visualizing science by citation mapping. Journal of the Ameri-

can Society for Information Science, 50(9):799–813, 1999. (Cited on page 25)
[76] Ishan Banerjee, Bao Nguyen, Vahid Garousi, and Atif Memon. Graph-ical user interface testing: Systematic mapping and repository. IST,55(10):1679–1694, October 2013. (Cited on page 25)
[77] Brian C Vickery. Bradford’s law of scattering. Journal of documentation,4(3):198–203, 1948. (Cited on pages 26 and 35)

BIBLIOGRAPHY 233
[78] Alfred J Lotka. The frequency distribution of scientific productivity. Journal

of the Washington academy of sciences, 16(12):317–323, 1926. (Cited onpage 26)
[79] M.J. Cobo, A.G. López-Herrera, E. Herrera-Viedma, and F. Herrera. Sciencemapping software tools: Review, analysis, and cooperative study amongtools. Journal of the American Society for Information Science and Technol-

ogy, 62(7):1382–1402, 2011. (Cited on page 28)
[80] Elizabeth S. Vieira and José A. N. F. Gomes. A comparison of Scopus andWeb of Science for a typical university. Scientometrics, 81(2):587–600, 2009.(Cited on page 28)
[81] Claudio Bustos, Maria Malverde, Pedro L., and Alejandro Díaz-Mujica.Buhos: A web-based systematic literature review management software.7, 11 2018. (Cited on page 31)
[82] Claes Wohlin. Guidelines for snowballing in systematic literature studiesand a replication in software engineering. In Proceedings of the 18th inter-

national conference on evaluation and assessment in software engineering,pages 1–10, 2014. (Cited on page 31)
[83] Andreas Thor, Werner Marx, Loet Leydesdorff, and Lutz Bornmann. Introduc-ing citedreferencesexplorer (crexplorer): A program for reference publicationyear spectroscopy with cited references standardization. Journal of Infor-

metrics, 10(2):503–515, 2016. (Cited on page 31)
[84] Massimo Aria and Corrado Cuccurullo. bibliometrix: An r-tool for compre-hensive science mapping analysis. Journal of informetrics, 11(4):959–975,2017. (Cited on page 31)
[85] José A Moral-Muñoz, Enrique Herrera-Viedma, Antonio Santisteban-Espejo,Manuel J Cobo, et al. Software tools for conducting bibliometric analysis inscience: An up-to-date review. 2020. (Cited on page 31)

234 BIBLIOGRAPHY

[86] Eric Paulos. The rise of the expert amateur: Diy culture and citizen sci-ence. In Proceedings of the 22nd annual ACM symposium on User interface
software and technology, pages 181–182, 2009. (Cited on page 34)

[87] Shir Aviv-Reuven and Ariel Rosenfeld. Publication patterns’ changes due tothe covid-19 pandemic: a longitudinal and short-term scientometric analy-sis. Scientometrics, 126(8):6761–6784, 2021. (Cited on page 34)
[88] Massimo Franceschet. The role of conference publications in cs. Communi-

cations of the ACM, 53(12):129–132, 2010. (Cited on page 34)
[89] Ferdinand Leimkuhler. An exact formulation of bradford’s law. J. of Docu-

mentation, 1980. (Cited on page 36)
[90] Alberto Martín-Martín, Enrique Orduna-Malea, Mike Thelwall, and EmilioDelgado López-Cózar. Google scholar, web of science, and scopus: A sys-tematic comparison of citations in 252 subject categories. Journal of Infor-

metrics, 12(4):1160–1177, 2018. (Cited on page 39)
[91] Aravind MacHiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An inputgeneration system for android apps. pages 224–234, Saint Petersburg, 2013.cited By 397; Conference of 2013 9th Joint Meeting of the European Soft-ware Engineering Conference and the ACM SIGSOFT Symposium on theFoundations of Software Engineering, ESEC/FSE 2013 ; Conference Date:18 August 2013 Through 26 August 2013; Conference Code:99148. (Cited onpages 39 and 40)
[92] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatorede Carmine, and Atif M. Memon. Using gui ripping for automated testing ofandroid applications. pages 258–261, Essen, 2012. cited By 343; Conferenceof 2012 27th IEEE/ACM International Conference on Automated SoftwareEngineering, ASE 2012 ; Conference Date: 3 September 2012 Through 7September 2012; Conference Code:92925. (Cited on page 39)
[93] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Auto-mated test input generation for android: Are we there yet? pages 429–440.

BIBLIOGRAPHY 235
Institute of Electrical and Electronics Engineers Inc., 2016. cited By 245;Conference of 30th IEEE/ACM International Conference on Automated Soft-ware Engineering, ASE 2015 ; Conference Date: 9 November 2015 Through13 November 2015; Conference Code:118982. (Cited on page 39)

[94] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Au-tomated concolic testing of smartphone apps. Cary, NC, 2012. cited By231; Conference of 20th ACM SIGSOFT International Symposium on theFoundations of Software Engineering, FSE 2012 ; Conference Date: 11November 2012 Through 16 November 2012; Conference Code:94505. (Citedon page 39)
[95] Anneliese Amschler Andrews, Jeff Offutt, and Roger T. Alexander. Testingweb applications by modeling with fsms. Software and Systems Modeling,4(3):326–345, 2005. cited By 227. (Cited on page 39)
[96] Tom Yeh, Tsunghsiang Chang, and Robert C. Miller. Sikuli: Using gui screen-shots for search and automation. pages 183–192, Victoria, BC, 2009. citedBy 217; Conference of 22nd Annual ACM Symposium on User InterfaceSoftware and Technology, UIST 2009 ; Conference Date: 4 October 2009Through 7 October 2009; Conference Code:78541. (Cited on page 39)
[97] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automatedtesting for android applications. pages 94–105. Association for ComputingMachinery, Inc, 2016. cited By 208; Conference of 25th International Sym-posium on Software Testing and Analysis, ISSTA 2016 ; Conference Date:18 July 2016 Through 20 July 2016; Conference Code:122744. (Cited onpage 39)
[98] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd D. Millstein. Reran:Timing- and touch-sensitive record and replay for android. pages 72–81, SanFrancisco, CA, 2013. cited By 202; Conference of 2013 35th InternationalConference on Software Engineering, ICSE 2013 ; Conference Date: 18 May2013 Through 26 May 2013; Conference Code:100317. (Cited on page 39)

236 BIBLIOGRAPHY

[99] Atif M. Memon. An event-flow model of gui-based applications for testing.
Software Testing Verification and Reliability, 17(3):137–157, 2007. cited By193. (Cited on page 39)

[100] Shuai Hao, Bin Liu, Suman Kumar Nath, William G.J. Halfond, and RameshGovindan. Puma: Programmable ui-automation for large-scale dynamicanalysis of mobile apps. pages 204–217, Bretton Woods, NH, 2014. Asso-ciation for Computing Machinery. cited By 192; Conference of 12th AnnualInternational Conference on Mobile Systems, Applications, and Services,MobiSys 2014 ; Conference Date: 16 June 2014 Through 19 June 2014;Conference Code:105809. (Cited on page 39)
[101] Werner Marx, Lutz Bornmann, Andreas Barth, and Loet Leydesdorff. De-tecting the historical roots of research fields by reference publication yearspectroscopy (rpys). Journal of the Association for Information Science and

Technology, 65(4):751–764, 2014. (Cited on page 40)
[102] Atif M. Memon. A comprehensive framework for testing graphical user in-

terfaces. 2001. Advisors: Mary Lou Soffa and Martha Pollack; Committeemembers: Prof. Rajiv Gupta (University of Arizona), Prof. Adele E. Howe (Col-orado State University), Prof. Lori Pollock (University of Delaware). (Citedon page 40)
[103] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Hierarchical gui testcase generation using automated planning. IEEE Transactions on Software

Engineering, 27(2):144–155, 2001. cited By 187. (Cited on page 40)
[104] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Coverage criteriafor gui testing. pages 256–267, Vienna, 2001. Association for ComputingMachinery (ACM). cited By 166; Conference of 8th Eiropean EngineeringConference (ESEC) and 9th ACM SIGSOFT Symposium on the Foundationsof Software Engineering (FSE-9) ; Conference Date: 10 September 2001Through 14 September 2001; Conference Code:60512. (Cited on page 40)
[105] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatorede Carmine, and Gennaro Imparato. A toolset for gui testing of android ap-

BIBLIOGRAPHY 237
plications. pages 650–653, Riva del Garda,Trento, 2012. cited By 38; Con-ference of 28th International Conference on Software Maintenance, ICSM2012 ; Conference Date: 23 September 2012 Through 28 September 2012;Conference Code:95267. (Cited on page 40)

[106] Wontae Choi, George C. Necula, and Koushik Sen. Guided gui testing of an-droid apps with minimal restart and approximate learning. pages 623–639,Indianapolis, IN, 2013. cited By 129; Conference of 2013 28th ACM SIGPLANConference on Object-Oriented Programming, Systems, Languages, and Ap-plications, OOPSLA 2013 ; Conference Date: 29 October 2013 Through 31October 2013; Conference Code:100913. (Cited on page 40)
[107] Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box approach for automatedgui-model generation of mobile applications. International Conference on

Fundamental Approaches to Software Engineering, FASE, 7793 LNCS:250–265, 2013. cited By 185; Conference of 16th International Conference onFundamental Approaches to Software Engineering, FASE 2013, Held asPart of the European Joint Conferences on Theory and Practice of Software,ETAPS 2013 ; Conference Date: 16 March 2013 Through 24 March 2013;Conference Code:95779. (Cited on page 40)
[108] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first explorationfor systematic testing of android apps. pages 641–660, Indianapolis, IN,2013. cited By 158; Conference of 2013 28th ACM SIGPLAN Conferenceon Object-Oriented Programming, Systems, Languages, and Applications,OOPSLA 2013 ; Conference Date: 29 October 2013 Through 31 October2013; Conference Code:100913. (Cited on page 40)
[109] Brendan Rousseau and Ronald Rousseau. Lotka: A program to fit a powerlaw distribution to observed frequency data. Cybermetrics: International

Journal of Scientometrics, Informetrics and Bibliometrics, (4):4, 2000. (Citedon page 41)

238 BIBLIOGRAPHY

[110] Guo Chen and Lu Xiao. Selecting publication keywords for domain analysisin bibliometrics: A comparison of three methods. J. of Informetrics, 10:212–223, 02 2016. (Cited on page 44)
[111] Hsin-Ning Su and Pei-Chun Lee. Mapping knowledge structure by key-word co-occurrence: a first look at journal papers in Technology Foresight.

Scientometrics, 85(1):65–79, October 2010. (Cited on page 44)
[112] Edward Loper and Steven Bird. Nltk: The natural language toolkit. arXiv

0205028, 2002. (Cited on page 44)
[113] Olivia Rodríguez, Tanja EJ Vos, Pekka Aho, and Beatriz Marín. 30 years ofautomated gui testing: a bibliometric analysis. In QUATIC, pages 473–488.Springer, 2021. (Cited on page 44)
[114] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,and Anders Wesslén. Experimentation in software engineering. SpringerScience & Business Media, 2012. (Cited on pages 50, 127, 141, 155, 157,and 171)
[115] Appium. http://appium.io/. [Online; accessed 25-12-2019]. (Cited onpage 56)
[116] Mirella Martínez, Anna I. Esparcia-Alcázar, Tanja E. J. Vos, Pekka Aho, andJoan Fons i Cors. Towards automated testing of the internet of things:Results obtained with the testar tool. In Tiziana Margaria and BernhardSteffen, editors, Leveraging Applications of Formal Methods, Verification

and Validation. Distributed Systems, pages 375–385, Cham, 2018. SpringerInternational Publishing. (Cited on page 56)
[117] Pekka Aho, M. Suarez, T. Kanstrén, and Atif M. Memon. Murphy tools:Utilizing extracted gui models for industrial software testing. In 2014 IEEE

Seventh International Conference on Software Testing, Verification and Val-
idation Workshops, pages 343–348, March 2014. (Cited on page 57)

http://appium.io/

BIBLIOGRAPHY 239
[118] Noel Nyman. Using monkey test tools - how to find bugs cost-effectively through random testing. Software Testing & Quality Engineering,Jan/Feb:18–21, 2000. (Cited on page 69)
[119] Priyam Patel, Gokul Srinivasan, Sydur Rahaman, and Iulian Neamtiu. Onthe effectiveness of random testing for android. In A-TEST, 2018. (Cited onpage 69)
[120] Nataniel Borges, Jenny Hotzkow, and Andreas Zeller. Droidmate-2: a plat-form for android test generation. In 33rd ACM/IEEE ASE, pages 916–919,2018. (Cited on page 69)
[121] Anna I Esparcia-Alcázar, Francisco Almenar, Mirella Martínez, Urko Rueda,and Tanja EJ Vos. Q-learning strategies for action selection in the testarautomated testing tool. 6th International Conferenrence on Metaheuristics

and nature inspired computing (META 2016), pages 130–137, 2016. (Citedon pages 69 and 120)
[122] Pekka Aho, Matias Suarez, Teemu Kanstrén, and Atif M. Memon. Indus-trial adoption of automatically extracted gui models for testing. volume1078, pages 49–54. CEUR-WS, 2013. cited By 6; Conference of 3rd Interna-tional Workshop on Experiences and Empirical Studies in Software Mod-eling, EESSMod 2013 - Co-located with 16th International Conference onModel Driven Engineering Languages and Systems, MoDELS 2013 ; Con-ference Date: 1 October 2013; Conference Code:111113. (Cited on page 75)
[123] Pekka Aho, Nadja Menz, Tomi D. Räty, and Ina Schieferdecker. Automatedjava gui modeling for model-based testing purposes. pages 268–273. IEEEComputer Society, 2011. cited By 21. (Cited on page 75)
[124] Ali Mesbah, Engin Bozdag, and Arie Van Van Deursen. Crawling ajax byinferring user interface state changes. pages 122–134, Yorktown Heights,NY, 2008. cited By 133; Conference of 8th International Conference on WebEngineering, ICWE 2008 ; Conference Date: 14 July 2008 Through 18 July2008; Conference Code:73518. (Cited on page 75)

240 BIBLIOGRAPHY

[125] Valentin Dallmeier, Martin Burger, Tobias Orth, and Andreas Zeller. Web-mate: a tool for testing web 2.0 applications. In Proceedings of the Workshop
on JavaScript Tools, pages 11–15, 2012. (Cited on page 75)

[126] Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas. Augusto: Exploitingpopular functionalities for the generation of semantic gui tests with ora-cles. volume 2018-January, pages 280–290. IEEE Computer Society, 2018.cited By 14; Conference of 40th International Conference on Software Engi-neering, ICSE 2018 ; Conference Date: 27 May 2018 Through 3 June 2018;Conference Code:137142. (Cited on page 75)
[127] Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro Santoro.Autoblacktest: Automatic black-box testing of interactive applications. In

2012 IEEE fifth international conference on software testing, verification
and validation, pages 81–90. IEEE, 2012. (Cited on page 75)

[128] Tanja E. J. Vos, Beatriz Marín, María José Escalona, and AlessandroMarchetto. A methodological framework for evaluating software testingtechniques and tools. In 12th International Conference on Quality Soft-
ware, Xi’an, China, August 27-29, pages 230–239, 2012. (Cited on pages 77and 78)

[129] Tanja E. J. Vos. Evolutionary testing for complex systems. ERCIM News,2009(78), 2009. (Cited on page 77)
[130] Tanja E. J. Vos. Continuous evolutionary automated testing for the futureinternet. ERCIM News, 2010(82):50–51, 2010. (Cited on page 77)
[131] B. Kitchenham, L. M. Pickard, and S. L. Pfleeger. Case studies for methodand tool evaluation. Software, IEEE, 12(4):52 –62, July 1995. (Cited onpage 77)
[132] Per Runeson and Martin Höst. Guidelines for conducting and reporting casestudy research in software eng. Empirical Softw. Engg., 14(2):131–164, 2009.(Cited on page 77)

BIBLIOGRAPHY 241
[133] Martin Host and Per Runeson. Checklists for software engineering casestudy research. In Proceedings of the First International Symposium on

Empirical Software Engineering and Measurement, ESEM ’07, pages 479–481, Washington, DC, USA, 2007. IEEE Computer Society. (Cited on page 77)
[134] B. Kitchenham, S. Linkman, and D. Law. Desmet: a methodology for evaluat-ing software engineering methods and tools. Computing Control Engineering

Journal, 8(3):120 –126, June 1997. (Cited on page 77)
[135] Floren de Gier, Davy Kager, Stijn de Gouw, and E.J. Tanja Vos. Offlineoracles for accessibility evaluation with the TESTAR tool. In 13th RCIS,pages 1–12, 2019. (Cited on pages 89 and 99)
[136] Pekka Aho, Emil Alégroth, Rafael AP Oliveira, and Tanja EJ Vos. Evolutionof automated regression testing of software systems through the graphicaluser interface. In 1st Int. Conf. on Advances in Computation, Communications

and Services, pages 16–21, 2016. (Cited on pages 90 and 91)
[137] Pekka Aho, Matias Suarez, Atif Memon, and Teemu Kanstrén. Making GUItesting practical: Bridging the gaps. In 2015 12th International Conference

on Information Technology-New Generations, pages 439–444. IEEE, 2015.(Cited on page 90)
[138] Karl Meinke and Neil Walkinshaw. Model-based testing and model in-ference. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging

Applications of Formal Methods, Verification and Validation. Technologies
for Mastering Change, pages 440–443, Berlin, Heidelberg, 2012. SpringerBerlin Heidelberg. (Cited on page 90)

[139] Alexandre Canny, Philippe Palanque, and David Navarre. Model-basedtesting of gui applications featuring dynamic instanciation of widgets. In
2020 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 95–104, 2020. (Cited on page 91)

[140] Antti Kervinen, Mika Maunumaa, Tuula Pääkkönen, and Mika Katara.Model-based testing through a gui. In Wolfgang Grieskamp and Carsten

242 BIBLIOGRAPHY

Weise, editors, Formal Approaches to Software Testing, pages 16–31, Berlin,Heidelberg, 2006. Springer Berlin Heidelberg. (Cited on page 91)
[141] Domenico Amalfitano, Anna R. Fasolino, Porfirio Tramontana, and NicolaAmatucci. Considering context events in event-based testing of mobile ap-plications. In 2013 IEEE Sixth International Conference on Software Testing,

Verification and Validation Workshops, pages 126–133, March 2013. (Citedon page 92)
[142] Y. Miao and X. Yang. An fsm based gui test automation model. In 2010 11th

International Conference on Control Automation Robotics Vision, pages 120–126, Dec 2010. (Cited on page 92)
[143] Aaron van der Brugge, Fernando Pastor Ricos, Pekka Aho, Beatriz Marín,and Tanja E.J. Vos. Evaluating TESTAR’s effectiveness through code cover-age. In S. Abrahão Gonzales, editor, XXV JISBD. SISTEDES, 2021. (Citedon page 99)
[144] Andrea Arcuri and Lionel Briand. A practical guide for using statistical teststo assess randomized algorithms in software engineering. In 33rd ICSE, page1–10. ACM, 2011. (Cited on pages 99, 127, and 133)
[145] Jacoco coverage tool. https://www.jacoco.org/jacoco/. last accessed17 Jan 2022. (Cited on page 99)
[146] Rachota timetracker. http://rachota.sourceforge.net. Last accessed:17 Jan 2022. (Cited on page 100)
[147] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement

Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998. (Cited onpages 115 and 116)
[148] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. Re-inforcement learning based curiosity-driven testing of android applications.In 29th SIGSOFT. ASM, 2020. (Cited on pages 115, 121, 122, 123, and 124)

https://www.jacoco.org/jacoco/
http://rachota.sourceforge.net

BIBLIOGRAPHY 243
[149] Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adap-

tation, learning, and optimization, 12(3):729, 2012. (Cited on page 116)
[150] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,8(3):279–292, 1992. (Cited on page 118)
[151] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi, and Y. Don-mez. Qbe: Qlearning-based exploration of android applications. In 2018

IEEE 11th International Conference on Software Testing, Verification and
Validation (ICST), pages 105–115, Los Alamitos, CA, USA, apr 2018. IEEEComputer Society. (Cited on page 120)

[152] Reyhaneh Jabbarvand, Jun-Wei Lin, and Sam Malek. Search-based energytesting of android. In IEEE/ACM 41st International Conference on Software
Engineering (ICSE). (Cited on page 120)

[153] David Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée Bryce. Re-inforcement learning for android gui testing. In Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design, Se-
lection, and Evaluation, A-TEST 2018, pages 2–8, New York, NY, USA, 2018.ACM. (Cited on pages 120 and 121)

[154] Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro Santoro.Autoblacktest: Automatic black-box testing of interactive applications. In
2012 IEEE Fifth International Conference on Software Testing, Verification
and Validation, pages 81–90, 2012. (Cited on pages 120 and 121)

[155] Thi Vuong and Shingo Takada. A reinforcement learning based approach toautomated testing of android applications. In 9th ACM A-TEST Workshop,2018. (Cited on pages 120 and 121)
[156] T. Gu, C. Cao, T. Liu, C. Sun, J. Deng, X. Ma, and J. Lü. Aimdroid: Activity-insulated multi-level automated testing for android applications. In ICSME.(Cited on pages 120 and 121)

244 BIBLIOGRAPHY

[157] Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella.Deep reinforcement learning for black-box testing of android apps. arXiv
preprint arXiv:2101.02636, 2021. (Cited on pages 120 and 121)

[158] Eliane Collins, Arilo Neto, Auri Vincenzi, and José Maldonado. Deep rein-forcement learning based android application gui testing. In SBES. ACM,2021. (Cited on pages 120 and 121)
[159] Christian Degott, Borges Jr., Nataniel P., and Andreas Zeller. Learninguser interface element interactions. In Proceedings of the 28th ACM SIG-

SOFT International Symposium on Software Testing and Analysis, ISSTA2019, pages 296–306, New York, NY, USA, 2019. ACM. (Cited on pages 121and 122)
[160] Herbert Robbins. Some aspects of the sequential design of experiments.

Bulletin of the American Mathematical Society, 58(5):527–535, 1952. (Citedon page 121)
[161] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering clusters in large spatial databases withnoise. In kdd, volume 96, pages 226–231, 1996. (Cited on page 131)
[162] Youguang Chen, William Ruys, and George Biros. Knn-dbscan: a dbscan inhigh dimensions. ACM Transactions on Parallel Computing, 2020. (Cited onpage 131)
[163] Marcel Jirina. Using singularity exponent in distance based classifier. In

2010 10th international conference on intelligent systems design and ap-
plications, pages 220–224. IEEE, 2010. (Cited on page 131)

[164] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlatedwith test suite effectiveness. In Proceedings of the 36th international con-
ference on software engineering, pages 435–445, 2014. (Cited on page 146)

[165] Lech Madeyski. The impact of test-first programming on branch coverageand mutation score indicator of unit tests: An experiment. Information and
Software Technology, 52(2):169–184, 2010. (Cited on page 146)

BIBLIOGRAPHY 245
[166] José Pereira dos Reis, Fernando Brito e Abreu, Glaucode Figueiredo Carneiro, and Craig Anslow. Code smells detectionand visualization: a systematic literature review. Archives of Computational

Methods in Engineering, 29(1):47–94, 2022. (Cited on page 146)
[167] Sonarcube. https://www.sonarsource.com/products/sonarqube/.(Cited on page 146)
[168] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, Atif Memon,and Anna Rita Fasolino. Developing and evaluating objective terminationcriteria for random testing. ACM Trans. Softw. Eng. Methodol., 28(3), July2019. (Cited on page 148)
[169] Domenico Amalfitano, Nicola Amatucci, Atif M. Memon, Porfirio Tramontana,and Anna Rita Fasolino. A general framework for comparing automatictesting techniques of android mobile apps. Journal of Systems and Software,125:322–343, 2017. (Cited on page 148)
[170] Domenico Amalfitano, Vincenzo Riccio, Nicola Amatucci, Vincenzo De Si-mone, and Anna Rita Fasolino. Combining automated gui exploration ofandroid apps with capture and replay through machine learning. Informa-

tion and Software Technology, 105:95–116, 2019. (Cited on page 148)
[171] Sergio Di Martino, Anna Rita Fasolino, Luigi Libero Lucio Starace, andPorfirio Tramontana. GUI testing of android applications: Investigating theimpact of the number of testers on different exploratory testing strategies.

J. Softw. Evol. Process., 36(7), 2024. (Cited on page 148)
[172] Hadi Hemmati. How effective are code coverage criteria? In 2015 IEEE In-

ternational Conference on Software Quality, Reliability and Security, pages151–156. IEEE, 2015. (Cited on page 148)
[173] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. Code coverage andtest suite effectiveness: Empirical study with real bugs in large systems.In 2015 IEEE 22nd international conference on software analysis, evolution,

and reengineering (SANER), pages 560–564. IEEE, 2015. (Cited on page 148)

https://www.sonarsource.com/products/sonarqube/

246 BIBLIOGRAPHY

[174] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Moham-mad Amin Alipour, and Darko Marinov. Comparing non-adequate test suitesusing coverage criteria. In Proceedings of the 2013 International Sympo-
sium on Software Testing and Analysis, pages 302–313, 2013. (Cited onpage 148)

[175] Sonali Pradhan, Mitrabinda Ray, and Srikanta Patnaik. Coverage criteriafor state-based testing: A systematic review. International Journal of Infor-
mation Technology Project Management (IJITPM), 10(1):1–20, 2019. (Citedon page 148)

[176] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input generation forandroid: Are we there yet? pages 429–440, 2015. (Cited on page 149)
[177] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, YuetangDeng, and Tao Xie. An empirical study of android test generation tools inindustrial cases. In Proceedings of the 33rd ACM/IEEE International Con-

ference on Automated Software Engineering, pages 738–748, 2018. (Citedon page 149)
[178] Nadia Alshahwan and Mark Harman. Automated web application testingusing search based software engineering. In 2011 26th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE 2011), pages3–12. IEEE, 2011. (Cited on page 149)
[179] Aaron van der Brugge, Fernando Pastor-Ricós, Pekka Aho, Beatriz Marín,and Tanja Ernestina Vos. Evaluating testar’s effectiveness through codecoverage. Actas de las XXV Jornadas de Ingeniería del Software y Bases

de Datos (JISBD 2021), pages 1–14, 2021. (Cited on page 149)
[180] Domenico Amalfitano, Nicola Amatucci, Atif M Memon, Porfirio Tramontana,and Anna Rita Fasolino. A general framework for comparing automatictesting techniques of android mobile apps. Journal of Systems and Software,125:322–343, 2017. (Cited on page 149)

BIBLIOGRAPHY 247
[181] Eliane Collins, Arilo Neto, Auri Vincenzi, and José Maldonado. Deep rein-forcement learning based android application gui testing. In Proceedings of

the XXXV Brazilian Symposium on Software Engineering, pages 186–194,2021. (Cited on page 150)
[182] Shengcheng Yu, Chunrong Fang, Xin Li, Yuchen Ling, Zhenyu Chen, andZhendong Su. Effective, platform-independent gui testing via image embed-ding and reinforcement learning. ACM Transactions on Software Engineer-

ing and Methodology, 33(7), 2024. (Cited on page 150)
[183] Matt Staats, Gregory Gay, Michael Whalen, and Mats Heimdahl. On thedanger of coverage directed test case generation. In Fundamental Ap-

proaches to Software Engineering: 15th International Conference, FASE
2012, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2012, Tallinn, Estonia, March 24-April 1, 2012.
Proceedings 15, pages 409–424. Springer, 2012. (Cited on page 150)

[184] Dávid Tengeri, Árpád Beszédes, Tamás Gergely, László Vidács, Dávid Havas,and Tibor Gyimóthy. Beyond code coverage—an approach for test suiteassessment and improvement. In 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pages1–7. IEEE, 2015. (Cited on page 150)

[185] Atif M Memon. Gui testing: Pitfalls and process. Computer, 35(08):87–88,2002. (Cited on page 150)
[186] Atif M Memon and Qing Xie. Studying the fault-detection effectiveness ofgui test cases for rapidly evolving software. IEEE transactions on software

engineering, 31(10):884–896, 2005. (Cited on page 150)
[187] Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki. Context-basedapproach to prioritize code smells for prefactoring. Journal of Software:

Evolution and Process, 30(6):e1886, 2018. (Cited on page 150)
[188] Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and RiccardoRoveda. Towards a prioritization of code debt: A code smell intensity in-

248 BIBLIOGRAPHY

dex. In 2015 IEEE 7th International Workshop on Managing Technical Debt
(MTD), pages 16–24. IEEE, 2015. (Cited on page 150)

[189] Zadia Codabux and Byron J Williams. Technical debt prioritization usingpredictive analytics. In Proceedings of the 38th International Conference on
Software Engineering Companion, pages 704–706, 2016. (Cited on page 150)

[190] Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and Aiko Ya-mashita. Automatic metric thresholds derivation for code smell detection. In
2015 IEEE/ACM 6th International Workshop on Emerging Trends in Soft-
ware Metrics, pages 44–53. IEEE, 2015. (Cited on page 150)

[191] Md Masudur Rahman, Toukir Ahammed, Md Mahbubul Alam Joarder, andKazi Sakib. Does code smell frequency have a relationship with fault-proneness? In Proceedings of the 27th International Conference on Evalua-
tion and Assessment in Software Engineering, pages 261–262, 2023. (Citedon page 150)

[192] Steffen M Olbrich, Daniela S Cruzes, and Dag IK Sjøberg. Are all codesmells harmful? a study of god classes and brain classes in the evolutionof three open source systems. In 2010 IEEE international conference on
software maintenance, pages 1–10. IEEE, 2010. (Cited on page 150)

[193] Iker Gondra. Applying machine learning to software fault-proneness pre-diction. Journal of Systems and Software, 81(2):186–195, 2008. (Cited onpage 150)
[194] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Al-berto Bacchelli. On the relation of test smells to software code quality. In

2018 IEEE international conference on software maintenance and evolution
(ICSME), pages 1–12. IEEE, 2018. (Cited on page 150)

[195] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto,and Fabio Palomba. An experimental investigation on the innate relationshipbetween quality and refactoring. Journal of Systems and Software, 107:1–14,2015. (Cited on page 150)

BIBLIOGRAPHY 249
[196] Roel Wieringa and Maya Daneva. Six strategies for generalizing softwareengineering theories. Science of computer programming, 101:136–152, 2015.(Cited on page 151)
[197] Tanja EJ Vos, Pekka Aho, Fernando Pastor Ricos, Olivia Rodriguez-Valdes,and Ad Mulders. TESTAR–scriptless testing through graphical user inter-face. Software Testing, Verification and Reliability, 31(3):e1771, 2021. (Citedon pages 151 and 175)
[198] Tanja EJ Vos, Beatriz Marín, Maria Jose Escalona, and AlessandroMarchetto. A methodological framework for evaluating software testing tech-niques and tools. In 2012 12th international conference on quality software,pages 230–239. IEEE, 2012. (Cited on page 155)
[199] Marcel Jerzyk and Lech Madeyski. Code smells: A comprehensive onlinecatalog and taxonomy. In Developments in Information and Knowledge

Management Systems for Business Applications: Volume 7, pages 543–576.Springer, 2023. (Cited on page 158)
[200] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: alightweight ui-guided test input generator for android. In IEEE/ACM ICSE-

C. IEEE, 2017. (Cited on pages 175 and 176)
[201] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An inputgeneration system for android apps. Proc. de ESEC/FSE ’13, 2013. (Citedon page 176)
[202] Ting Su. Fsmdroid: Guided gui testing of android apps. In IEEE/ACM

ICSE-C, 2016. (Cited on page 176)
[203] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,Qirun Zhang, Jian Lu, and Zhendong Su. Practical gui testing of androidapplications via model abstraction and refinement. In IEEE/ACM 41st ICSE,pages 269–280, 2019. (Cited on page 176)
[204] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automatedtesting for android applications. ISSTA’16, 2016. (Cited on page 178)

250 BIBLIOGRAPHY

[205] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Humanoid: A deeplearning-based approach to automated black-box android app testing. 2019
34th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2019. (Cited on page 178)

[206] Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella.Deep reinforcement learning for black-box testing of android apps. ACM
TOSEM, 2022. (Cited on page 178)

[207] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. Rein-forcement learning based curiosity-driven testing of android applications.
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2020. (Cited on page 178)

[208] Tianxiao Gu, Chun Cao, Tianchi Liu, Chengnian Sun, Jing Deng, XiaoxingMa, and Jian Lu. Aimdroid: Activity-insulated multi-level automated testingfor android applications. Int. Conf. on Software Maintenance and Evolution,2017. (Cited on page 178)
[209] Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen,Geguang Pu, Jifeng He, and Zhendong Su. An empirical study of functionalbugs in android apps. In ACM SIGSOFT, 2023. (Cited on page 178)
[210] Android. Android accessibility overview. (accessed: 26.11.2023). https:

//developer.android.com/guide/topics/ui/accessibility. (Cited onpage 191)
[211] Android Developers. Fundamentals of Testing Android Apps. Google, 2024.Accessed: 2024-11-25. (Cited on page 195)
[212] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The

art of software testing, volume 2. Wiley Online Library, 2004. (Cited onpage 200)
[213] Fernando Pastor Ricós, Arend Slomp, Beatriz Marín, Pekka Aho, andTanja EJ Vos. Distributed state model inference for scriptless gui testing.

Journal of Systems and Software, 200:111645, 2023. (Cited on page 215)

https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility

BIBLIOGRAPHY 251
[214] Lianne V Hufkens, Tanja EJ Vos, and Beatriz Marín. Novelty-driven evolu-tionary scriptless testing. In International Conference on Research Chal-

lenges in Information Science, pages 100–108. Springer, 2024. (Cited onpage 215)
[215] Fernando Pastor Ricós, Beatriz Marín, Tanja EJ Vos, Rick Neeft, and PekkaAho. Delta gui change detection using inferred models. Computer Standards

& Interfaces, page 103925, 2024. (Cited on page 217)
[216] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, Atif Memon,and Anna Rita Fasolino. Developing and evaluating objective terminationcriteria for random testing. ACM Trans. Softw. Eng. Methodol., 28(3), July2019. (Cited on page 218)

	Title and turning aproved v2.pdf
	Thesis without cover_v6.pdf
	Abstract
	Abstract in het Nederlands
	Acknowledgments
	Introduction
	Motivation and problem statement
	GUI Testing: State of the Art
	Script-based GUI Testing
	Model-based GUI Testing
	Scriptless GUI Testing

	Context and goal of the thesis: the IVVES project
	Marviq
	ING
	TESTAR

	The research methodology and questions
	Publications
	Supervision, academic service, and professional engagement
	Thesis Structure

	Thirthy years of automated GUI testing
	Scope: automated GUI testing
	Methodology
	Data retrieval
	Pre-processing
	Analysis and Visualization

	Results
	Size of the area and growth
	Types of publications and their ranking
	Citations and Reference Publication Year Spectroscopy
	Most influential authors
	Productivity and funding
	Collaboration
	Trends in keywords
	Discussion

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusions

	TESTAR
	Obtaining the GUI State
	Deriving a set of actions
	Select and execute one of these actions
	Representation of States and Actions
	Evaluate the new states to find failures (oracles)
	Runtime execution and modes
	Test Results
	Advanced Derive Actions
	Filter Actions
	Comparison of Scriptless GUI Testing Tools

	Industrial case studies involving TESTAR
	Conclusions

	Inferring state models with TESTAR
	Related work on Model-based GUI testing
	State model inference for TESTAR
	Experimental Design
	Subject SUTs
	Independent and Dependent Variables
	RQ1 Study
	RQ2 Study

	Results
	RQ1: Impact of abstraction on GUI exploration
	RQ2: Defining a suitable level of abstraction
	Single Attribute Analysis
	Multi-Attribute Analysis
	Including the predecessor state

	Discussion
	State abstraction
	Applying the inferred models in testing

	Conclusions

	Adding intelligence
	Q-Learning
	Related Work
	Smart Scriptless Testing
	Rewarding test behaviours
	RL Framework

	Experiment Design
	Objects: Selection of SUTs
	Independent and Dependent Variables
	Experimental Process

	Results
	RQ1: Exploration Effectiveness
	RQ2: JBS Problem

	Discussion
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusions

	Applying it at a company: Marviq
	Related Work
	Random Scriptless GUI testing
	Test adequacy metrics
	Code Smells

	Industrial case
	Experiment Design
	Independent and Dependent Variables
	Experimental Setting
	Experimental Procedure

	Results
	RQ1: Number and length of test sequences
	RQ2: Relationship between code coverage metrics
	RQ3: Comparison of random with manual testing

	Discussion
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusions

	Going mobile: the Android plugin
	Scriptless Android GUI testing
	Extending TESTAR to support mobile testing
	MINTestar: scriptless and seamless
	Core Architecture
	Test Engine
	Customizable Rules
	State Collector
	Composable oracles
	Interaction Engine
	Reporting the results
	Seamless integration

	Preliminary evaluation
	Independent and Dependent Variables
	Results
	Discussion

	Conclusions

	Conclusions and future work
	Answers to the Research Questions
	Evolution of Automated GUI Testing
	Industrial Insights on Using TESTAR for GUI Testing
	Impact of State Abstraction on State Model Inference
	Reward Mechanisms for Exploratory Testing with Reinforcement Learning
	Scriptless GUI Testing and Code Smell Coverage
	Adapting Scriptless GUI Testing for Mobile Applications

	Future Research Directions

