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Voorwoord

‘Wij denken dat je het kunt.’

Deze woorden bleven bij me resoneren. Zojuist had ik met Roger, mijn lector,

gesproken over de vacature van PhD Researcher & Docent in Digital Forensics.

Hij wilde weten of ik de vacature had gezien en had overwogen. Uiteraard had

ik die gezien: die had direct mijn interesse gewekt! Een PhD-traject was de

uitdaging waar ik naar op zoek was, en het forensische vakgebied intrigeerde me

enorm. Jeroen, een beoogd begeleider van het traject, had ik ook al leren kennen,

en tussen ons was er direct een klik geweest. Dus waarom had ik dan nog niet

gereageerd op de vacature?

Hoe gaaf een promotietraject in digital forensics ook mocht lijken, ik moest

ook realistisch zijn over wat me te wachten stond. Het vakgebied was nieuw voor

mij en de slagingskansen voor buitenpromovendi zijn ronduit laag. En wanneer je

het parttime onderzoek moet combineren met het docentschap én een mooi gezin,

snap je misschien waar mijn terughoudendheid vandaan kwam.

Ondanks allemaal redenen om het niet te doen, ben ik toch het avontuur

aangegaan. Ik ben begonnen aan een uitdaging waar ik de omvang nog niet van

kon overzien, dankzij dat mooie blijk van vertrouwen.
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Dankwoord

Allereerst wil ik graag mijn dank uitspreken aan de leden van de beoordelingscom-

missie voor hun tijd en waardevolle feedback die hebben bijgedragen aan de

verbetering van dit proefschrift.

Marko, jij was mijn promotor bij de start van dit traject. Mede dankzij jouw

steun heb ik een succesvolle subsidieaanvraag gedaan en is mijn promotietraject

uit de startblokken geschoten. Als je gezondheid het had toegelaten, weet ik zeker

dat ik met jou de eindstreep zou hebben bereikt.

Harald, jij hebt de rol van promotor overgenomen. Dat heb je op een

zorgvuldige en integere manier gedaan. Je hebt een belangrijke inspanning

en bijdrage geleverd aan het eindresultaat. Daar ben ik je dankbaar voor.

Hugo, mijn dagelijks begeleider en co-promotor. Vanaf de start ben je mijn

begeleider geweest. Ik heb je leren kennen als hartelijk persoon met een gezellige

Brabantse inslag, en als iemand die de lat hoog legt. Werkend aan het onderzoek

hebben we niet alleen veel dagen, maar ook veel avonden samen doorgebracht.

Op kantoor, aan mijn keukentafel en aan jouw keukentafel. Het commitment

dat je aan het promotietraject (en dus ook aan mij) hebt gegeven was groot.

Jouw credo was: als jij hard werkt, werk ik net zo hard mee. En dat heb je

waargemaakt. We hebben geknald! En het is zeker niet altijd makkelijk geweest,

maar je hebt me ook gesteund op belangrijke momenten. Zo had ik je ineens aan

de lijn voorafgaand aan een conferentiepresentatie, of wist me meteen te vinden

als we een (harde) reject op een ingediend artikel ontvangen hadden. Dank je wel

voor onze jaren van samenwerking, ik kijk daar met plezier op terug.

Dan is het tijd om mijn andere begeleider en co-promotor, Jeroen, te bedanken.

Met jouw aanstelling als lector in Digital Forensics, was je natuurlijk een beetje
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de aanstichter van dit traject. Ik ben blij dat onze paden elkaar hebben gekruist.

We hebben in de afgelopen jaren veel mogen samenwerken, en ik zie dat als een

groot voorrecht. Ik heb veel van je geleerd en genoten van je beschouwingen

over de gebeurtenissen in de wereld. Je hebt een aanstekelijk optimisme. Zelfs

wanneer we in de diepste krochten van het JPEG-formaat hopeloos verstrengeld

waren geraakt, was er nooit enige vorm van twijfel bij je te bespeuren. Je had een

rotsvaste overtuiging dat deze problemen oplosbaar waren, mits we het onderwerp

maar écht konden doorgronden. Pas in die periode leerde ik de echte betekenis

daarvan kennen, en dat is een bijzondere, waardevolle ervaring geweest. Ik had

nooit gedacht dat ik de resultaten kon boeken die we geboekt hebben.

Harm, jij was mijn begeleider en linking pin vanuit het Nederlands Forensisch

Instituut. Ik heb onze vrijdagochtendgesprekken zeer kunnen waarderen. Je bracht

een belangrijke forensische invalshoek aan op mijn onderzoek, en tegelijkertijd

moedigde je me aan om fundamenteel of theoretisch onderzoek niet uit de weg

te gaan. Als ik twijfel had bij een onderzoeksonderwerp, kon jij juist overtuigd

zijn dat het meerwaarde had. Je steun en inzichten hebben me vaak geholpen om

door te zetten.

Ook wil ik graag Dion bedanken, die mij als teamleider Forensische Software

Engineering hartelijk heeft ontvangen. En natuurlijk de andere NFI-collega’s, die

altijd vriendelijk, gëınteresseerd en meedenkend zijn geweest.

Tijdens mijn promotieonderzoek heb ik het voorrecht gehad om met een groot

aantal getalenteerde, enthousiaste (en inmiddels voormalig) studenten te mogen

samenwerken, in de vorm van stage- of afstudeerbegeleiding. Daarom een hartelijk

dank je wel aan Dewi, Jasper, Johannes, Mart, Nick, Remco, Robbert, Yvonne en

Zowie. In het bijzonder wil ik Guy, Jelle en Laurent bedanken. Jullie afstudeerw-

erk, samen met jullie extra inspanningen na de afronding van de projecten, heeft

geleid tot een publicatie waar jullie co-auteur van zijn geworden. Een fantastisch

resultaat!

Wat mij brengt naar mijn collega’s van Zuyd Hogeschool. Roger, dit traject

is gestart met jouw blijk van vertrouwen, en dat vertrouwen ben ik al die jaren

blijven voelen. Je hebt mij als lector de ruimte gegeven om mijn traject naar

eigen inzicht vorm te geven en te organiseren. Terugkijkend denk ik dat dat een

heel belangrijke succesfactor voor mijn traject is gebleken.

Peter, je hebt me als faculteitsdirecteur niet alleen aangemoedigd om dit

traject aan te gaan, ook gedurende de hele rit kon ik op je steun rekenen als
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ik daar om vroeg. Out-of-the-box-oplossingen lijk je zo uit je mouw te kunnen

schudden, met zowel een lach als een serieuze ondertoon. Ik wist dat ik op je kon

rekenen als dat nodig was. Dank je wel daarvoor!

En er zijn nog veel meer Zuyd-collega’s die mij gesteund hebben. Wanneer

er een paper deadline naderde (en ik elk beschikbaar uur aan het schrijfproces

besteedde) of wanneer ik weg was voor een conferentiebezoek, dan werden er voor

mij toetsen en casussen nagekeken en lessen overgenomen. Zonder morren, altijd,

door iedereen. Wauw! Ik heb ook altijd een mooie interesse gevoeld van mijn

collega’s: met plezier heb ik jullie bij de koffieautomaat deelgenoot kunnen maken

van mijn PhD-avonturen, en hebben we samen elk geaccepteerd paper kunnen

vieren met vlaai. Ik dank jullie allemaal voor jullie steun en interesse, en in het

bijzonder wil ik graag noemen: Chris, Hans, Isolde, Josianne, Kees, Luuk, Marc,

Marlou, Maud, Miguel, Roel, en Roland.

Een bijzonder woord van waardering voor Eddy. Je hebt een visualisatie

ontworpen en geautomatiseerd, wat vele ontwerpiteraties heeft gekost, maar

waarbij je altijd bereid was mee te werken. Ik ben er trots op dat jij co-auteur

bent van een van de papers.

Nog een bijzondere vermelding wil ik voor Bianca maken: naast dat ik heerlijk

met je heb kunnen lachen, heb jij mij alle administratieve ondersteuning geboden

die al die jaren bij dit PhD-traject kwam kijken. Voor dit niet-standaard traject

kwamen we nogal gauw buiten de gebaande paden uit. Voor jou leek dat nooit

een probleem, jij wist van alles voor elkaar te boksen. Dank je wel voor al je inzet!

Als laatste Zuyd-collega een speciaal woord voor Marcel. Er zijn denk ik

weinig mensen die echt snappen wat een traject als dit betekent. Ik heb het

daarom altijd heel fijn gevonden dat we (als PhD’ers en lotgenoten) steun en

begrip bij elkaar konden vinden. We hebben onze hoogte- en dieptepunten van

dit traject kunnen delen samen. Dank je wel daarvoor! Wat is het ongelofelijk

gaaf dat we beiden ook de eindstreep hebben weten te bereiken.

Dan wil ik nog mijn oud-collega’s Geny, Laurent en Emiel bedanken voor

de fijne samenwerking die we hebben gehad, en voor hun steun aan mij om dit

promotietraject te beginnen.

Dan richt ik mij graag tot mijn vriendenkring, waar ik niet iedereen kan

noemen, maar de volgende personen zeker niet mogen ontbreken. Aukje, dank

je wel voor je nuchtere, vrolijke kijk op het leven. Ik heb onze koffiemomentjes

zeer kunnen waarderen. Heleen, wat een lol hebben we gehad, en wat fijn dat we

elkaar na al die jaren nog weten te vinden. Al was het maar met een (veel te laat)
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felicitatie-berichtje! Monique, jij bood me een luisterend oor, en we hebben mooie
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was daarbij geen bevredigend antwoord. Dank je wel voor je steun en vriendschap.

Stefan, je bent een heerlijke gozer met een flinke bak humor. Daar ga ik voorlopig

geen genoeg van krijgen! Jody, er is geen onderwerp waar wij niet samen goed
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Chapter 1

Introduction

The field of digital forensics encompasses numerous specializations, one of which

is the retrieval and restoration of deleted computer files. Potentially, it is precisely

these deleted files that can contain crucial evidence, and in the case of digital

imagery, significantly contribute to the identification of perpetrators and victims.

The successful recovery of deleted files is a complex task: comprehensive searches

for deleted files can feasibly only be conducted in an autmated way, yet the

performance of such software remains a critical concern. Strict deadlines often

exist in legal proceedings, setting a limit on the file recovery phase [AvdB11]. The

success rate in finding and restoring deleted files is influenced by multiple factors,

the most significant being the manner in which files are stored in a file system,

and in-depth, applicable knowledge about forensically relevant file formats. This

dissertation is dedicated to improving these foundations of file recovery.

The chapter begins with an introduction to digital forensics, highlighting its

brief yet rapidly evolving history. Then, it lays the groundwork with an overview

of file storage, deletion, and recovery. Subsequently, the research questions are

presented, along with the relevant context in which this PhD project was conducted

in. Finally, an outline of the thesis is provided, which guides the reader through

the structure and key contributions of the work.

1.1 An introduction to digital forensics

Forensic research is dedicated to answering legal questions through the scientific

method. This field encompasses trace evidence analysis specifically conducted to

support the discovery of truth within criminal investigations, testing hypotheses

about events that might have occurred. These traditionally include a real-world

location of a (suspected) crime scene, but in a digitally connected world, it extends

to virtual spaces across the internet, mobile devices, and cloud storage.
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Digital forensics shares its foundations with other forms of forensic investigation.

However, it is distinguished by the specific techniques and technologies required

for acquiring and analyzing data from digital sources.

Digital Forensics: The application of science to the identification,

collection, examination, and analysis of data (distinct pieces of digital

information) while preserving the integrity of the information and

maintaining a strict chain of custody for the data [tech-KCG06].

Digital traces can be found on a variety of media, ranging from traditional

hard drives and removable media like USB sticks and SD cards, to data stored on

smartphones, wearables, automotive systems, distributed across networks and the

cloud. Each of these sources presents unique challenges to the forensic community

due to their diversity and rapidly evolving technologies.

The data itself is just as varied. Direct user data such as emails, documents,

images, and videos can be crucial for an investigation, but it is often the supporting

data—log files, metadata, timestamps, and encryption keys—that enable the

reconstruction of activities and events. Identifying the origin, authenticity, and

integrity of this data is a key task for digital forensic investigators.

Golden Age of digital forensics

The late 1990s and early 2000s can be regarded as the ’Golden Age’ of digital

forensics. The internet was still emerging, and the digital footprint of everyday

life was still relatively small. Broadband internet was the exception rather than

the norm, social media had yet to make their breakthrough, and mobile phones

were primarily used for calling and texting.

In most households, there was a single desktop PC, often equipped with

Windows ’95 or ’98. These computers ran a limited set of software, making it

easier for forensic experts to locate and extract relevant data. Outlook Express

and Internet Explorer were the standard software for many PC users at the time,

and this homogeneity made predicting where and how information was stored

much less complex.

Storage space was a valuable commodity at that time. Hard drives had a

capacity that we would now consider minimal, often no more than a few gigabytes.

This meant that users had to be selective about what they kept, which limited the

amount of potential forensic data. The limited storage and lack of cloud services

resulted in a situation where, during a house search, the places to look for digital

traces were clear: the local drives of the computer.
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1.2 – Storage and recovery of computer files

An Era of Crisis

The period following the ’Golden Age’, often depicted as an ’Era of Crisis’ [Gar10],

is characterized by the disruptive impact of a rapidly digitizing society on digital

forensic investigation practices. With the increasing prevalence of digital tech-

nologies, such as smartphones and tablets, which reach a wide range of target

groups, digital traces are being generated everywhere by a diverse audience.

These devices have not only become more numerous, but also more powerful

and complex. Each device is accompanied with an evolving ecosystem of apps,

each with their own and changing file formats, making the collection and analysis

of potential evidence more complicated. The challenges are further compounded

by increasing storage capacities and the use of cloud services, forcing investigators

to look beyond just local hard drives.

Additionally, new privacy laws, like the GDPR in the EU, bring extra legal

and ethical challenges for the collection and processing of digital evidence. This

period is also marked by the emergence of new technologies, such as pervasive

encryption, which significantly complicate the forensic process. In different ways,

these all contribute to the fact that data is less readily accessible to investigators.

This combination of factors underscores the importance for forensic investi-

gators to continuously update their methods and techniques, in line with the

ever-changing digital landscape. Ongoing research in various fields is essential,

and although it is uncertain where the next major breakthrough will occur, it is

clear that the field of digital forensics cannot afford to fall behind.

1.2 Storage and recovery of computer files

In order to understand how computer files can be recovered after their deletion, it

is important to understand how they are stored and what happens when a user

deletes a file, and why file fragmentation hinders the recovery of files.

1.2.1 How files are stored on a storage device

Files on a storage device are stored in a structured way, usually in a format

determined by the file system. This system keeps track of where data resides

on the storage medium. The file system uses a central index with metadata for

each file, including the name, size, date, and location of the data clusters on the

disk. The file system uses this index to read and write the file data. In computers

running the Windows operating system, NTFS (New Technology File System) is
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the default file system, and this central index is known as the Master File Table

(MFT), see Figure 1.1.

Figure 1.1: NTFS volume on a storage device

1.2.2 File fragmentation

Fragmentation is a common occurrence in file systems where files are split into

non-contiguous fragments and scattered across different areas of a storage device.

This typically happens when files are modified, enlarged, or deleted, leading to

irregular free space distribution on the device. Consequently, when the file system

attempts to write a new file and cannot find a sufficiently large contiguous space,

it will break the file into fragments, see Figure 1.2.

File fragmentation refers to the condition of a file system where a

single file is divided into multiple separate pieces, or fragments, that

are stored in non-adjacent locations.

These fragments are written in blocks, with 4096 bytes being the default block

size, meaning that each fragment of a file will be 4 kB or a multiple thereof. This

fragmentation can impact the performance of the storage device, as the read/write

head (in the case of traditional hard disk drives) has to move to different parts of

the disk to access a single file.

Figure 1.2: File storage and fragmentation example
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1.2.3 File deletion and recovery

When a file is deleted, the file system typically only removes its index and marks

the space it occupied as available for new data. The actual data often remains

intact until overwritten, presenting a window for potential recovery. This situation

arises not because file systems are designed with file recovery in mind, but due to

efficiency: completely erasing data takes more time and resources.

The type of storage device influences how long deleted data remain recoverable.

On hard disk drives (HDDs), deleted data persists until physically overwritten.

However, solid-state drives (SSDs) may autonomously manage and erase unused

data blocks to optimize performance and extend lifespan, potentially reducing

the window for data recovery [HMK21].

File carving: File carving is the process of reassembling computer files

from fragments in the absence of file system metadata [web-Wik23].

File carver: Software designed to reconstruct files from raw data

on storage media without file system metadata, utilizing file carving

techniques to identify and piece together file content.

To recover a deleted file, file carvers often assume that files are not fragmented

and search for distinctive starting and ending markers to piece the file back

together. This process is relatively straightforward for non-fragmented files, as it

only requires correctly identifying the start and end of the file.

However, for fragmented files, which are spread out across the disk in pieces,

the challenge significantly increases. The absence of information regarding the

file’s fragmentation status renders accurate reassembly difficult, often leading to

extensive and impractical search times or failure to locate the fragments entirely.

Note that while file carving can retrieve the contents of a file, it does not

recover its metadata. This metadata, such as timestamps and allocation data, is

stored within the Master File Table in NTFS systems and is often lost upon file

deletion.

1.2.4 File format specific recovery

The recovery of deleted or corrupted files is significantly influenced by their

specific file format, each having a unique structure and layout. These unique

characteristics can either aid or complicate the recovery process. Features like

internal consistency checks, length fields, and internal pointers in some file formats
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can provide strong clues about which data fragments belong to a particular file

and their correct sequence.

From a forensic perspective, certain file formats are particularly noteworthy.

For instance, photographs have always been crucial pieces of evidence. Although

there are multiple formats for storing visual data (such as BMP, PNG, GIF),

JPEG has emerged as the de facto standard for photographs. However, it is this

specific format that poses distinct challenges in recovery. Unlike other formats,

JPEG lacks many features like internal consistency checks that could facilitate

its recovery. This absence of recovery supporting features means that recovering

JPEG files, especially when they are fragmented, requires more sophisticated

techniques and a deeper understanding of the structure of the format.

1.3 Research questions

This thesis aims to improve the foundations of file recovery, addressing the evolving

challenges in digital forensics as described in sections 1.1 and 1.2. Therefore, the

main research question of this thesis is:

How to identify and leverage unexplored potential in file recovery?

We address this research question by focusing on specific aspects of file recovery

from a digital forensic perspective. We first consider the current state of file

fragmentation. As explained, file fragmentation introduces major challenges for

file carving. To assess the necessity of considering file fragmentation in file carving,

we conduct an empirical study to reveal how files are currently fragmented on real-

world Windows-based systems. In this empirical study, we collect and examine a

large collection of systems in the wild. This should be done in a privacy-friendly

manner, since we should not reveal any personal information of the users or owners

of these systems. Next, we consider the reconstruction of potential file histories.

We study to what extent file history can be recovered from file timestamps. Finally,

we study how file carving of JPEG files can be improved, since JPEG files are

particularly noteworthy from a forensic perspective and the JPEG file format

introduces major challenges for file carving.

To investigate this, we examine the structure and recoverability of files across

different perspectives:

• File system – Understanding the entire file system’s impact on file recovery

processes.
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• File metadata – Analyzing how an individual file’s metadata can aid in

recovery efforts.

• File format – Research file format specific properties to maximize file

recovery opportunities.

Based on this, we have formulated the following sub-research questions to

address the main research question.

RQ1: How can data on file fragmentation be collected in a privacy-friendly

manner?

RQ2: How are files on real-world, in-use Windows systems fragmented?

RQ3: To what extent can file history be recovered from file timestamps?

RQ4: To what extent can entropy-coded JPEG data be validated?

RQ5: How effective are the newly identified approaches to JPEG fragmentation

point detection in real-world JPEGs?

Within the context of the whole file system, our focus is directed toward

research questions RQ1 and RQ2. There was no data or study available on file

fragmentation data, the most recent study was published in 2007 [Gar07], and likely

contained data from predominantly PC’s running Windows 95, Windows 98 and

Windows 2000 (due to the time frame of the data collection). Therefore, there was

a need for a modern, large, real-world data-collection on file fragmentation. RQ1

addresses this, considering the fundamental challenge of preserving the privacy of

device owners. Once an appropriate data collection tool is developed and a dataset

is obtained, RQ2 delves into the degree of file fragmentation across various storage

devices and file types. It further distinguishes between different fragmentation

patterns, providing insights into which patterns are (most) prevalent, and must

therefore be addressed by file recovery methods.

For the forensic analysis of individual files, we turn our attention to research

question RQ3, which examines the extent to which a file’s history can be recon-

structed from its system metadata. Shifting to the file metadata perspective, RQ3

investigates the potential of file timestamps in reconstructing a file’s history. This

query highlights the critical role of metadata in recovery efforts and explores how

timestamps can unveil the potential lifecycles of a file.

Transitioning to the file format specific analysis, RQ4 and RQ5 delve into the

JPEG format. RQ4 focuses on bit-level correctness—a notably neglected aspect
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in current studies. With these theoretical findings, RQ5 investigates the extent

to which these identified approaches are effective when realized in a functioning

artifact and tested on a large-scale JPEG dataset.

Each subsequent chapter addresses one of the subquestions, aiding in answering

the central research question. Chapter 2 addresses RQ1, Chapter 3 addresses RQ2,

Chapter 4 addresses RQ3, Chapter 5 addresses RQ4, and Chapter 6 addresses

RQ5.

1.4 Thesis overview and contributions

As an article-based dissertation, each chapter is based on one peer-reviewed

publication. The following publications form the core of this work:

• The paper titled File Fragmentation in the Wild: a Privacy-Friendly Ap-

proach, at IEEE International Workshop on Information Forensics and

Security (WIFS), in 2019 ([WIFS19]). The main contributions are:

– Establishing a set of requirements to safeguard privacy during the

collection of file information.

– Designing a filtering wrapper for Fiwalk, a commonly used forensics

tool, based on these requirements.

– Measuring file fragmentation in the wild through a case study of 220

in-use, privately-acquired laptops.

• The paper titled A contemporary investigation on NTFS file fragmentation,

at the Digital Forensics Research Conference (DFRWS-APAC), in 2021

([DFRWS-APAC21]). The main contributions are:

– The file fragmentation corpus contains significantly more files than

previous studies, with (among others) over 1 million .jpg and 87,000

.docx files, marking a 2 to 10-fold increase.

– Novel metrics are introduced to assess the complexity of fragmentation,

including the degree of internal fragmentation and the degree of out-

of-orderedness.

– Analysis of various fragmentation characteristics, including the relation-

ship with file size, used volume space, fragmentation by file extension,

gap size for files fragmented into two parts, distribution of the number

of fragments, correlation between fragmentation and disk size, and the

impact of disk type (primary/secondary) on fragmentation.
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– Among the findings is the discovery that the average degree of out-of-

order fragmentation of files is substantial, carrying significant implica-

tions for the field of digital forensics.

• The paper titled Reconstructing Timelines: from NTFS Timestamps to File

Histories, at the International Workshop on Digital Forensics (WSDF), held

in conjunction with ARES, in 2023 ([WSDF23]). This paper was awarded

the Best Research Paper Award of the workshop WSDF @ ARES 2023. The

main contributions are:

– A method for determining all possible histories of a file based on a set of

operations, encompassing (1) identifying the impact of each operation

on timestamps, (2) reversing these impacts to ascertain the applicable

constraints for inversion, and (3) reasoning back from the current file

timestamps by aligning them with these reversed effects.

– Development of a proof-of-concept toolchain tailored for the NTFS

file system, enabling a visualization of possible histories (sequences of

operations) deduced from the file’s existing timestamps.

• The paper titled JPEG File Fragmentation Point Detection Using Huffman

Code and Quantization Array Validation, at the International Workshop

on Digital Forensics (WSDF), held in conjunction with ARES, in 2021

([WSDF21]). The main contributions are:

– Introduction of a novel method for validating JPEG files through

detection of invalid Huffman codes and quantization array overflows.

– A validation algorithm that incorporates these techniques, underpinned

by an analysis of file fragmentation and JPEG structure.

– A practical example illustrating the algorithm’s application, followed

by an evaluation of its effectiveness, limitations, and considerations in

the context of existing research.

• The paper titled Problem solved: a reliable, deterministic method for JPEG

fragmentation point detection, at the Digital Forensics Research Conference

(DFRWS-EU), in 2024 ([DFRWS-EU24]). This paper was awarded the

DFRWS EU 2024 Best Paper Award. The main contributions are:

– Expansion, implementation, and efficacy measurement of our previously

introduced fragmentation point detection algorithm, leading to the

creation of a JPEG validator.
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– Compilation of a sizeable, relevant dataset covering all JPEG variants

occurring in the real world, to test the validation methods.

– Evaluation of the performance of the validator in detecting fragmenta-

tion points, demonstrating an exceptional success rate of 99.997% for

the most common JPEG encoding.

1.4.1 Collaborating institutions and roles

This PhD research was conducted as an external candidate at the Open Universiteit.

The candidate worked as a lecturer at Zuyd University of Applied Sciences

and as a researcher at the Data Intelligence research group. Furthermore, he

served as an external employee at the Netherlands Forensic Institute during the

research period. The candidate was awarded a Teacher Doctoral Grant by the

Netherlands Organisation for Scientific Research (NWO), ensuring the continuity

of the research.

1.4.2 Personal Contributions

This section provides an overview of the PhD candidate’s contributions, outlined

on a per-publication basis following the CRediT (Contributor Roles Taxonomy)

guidelines [web-Els24]. Each CRediT role listed here represents a substantial

personal contribution, but does not imply sole responsibility. Multiple authors

may have contributed in similar or different roles.

• [WIFS19]: Conceptualization, Investigation, Writing – Original

Draft, Supervision

I conceptualized and designed the Artifact [artefact-Dol19]. The data

collection, conducted under my supervision, included ethical reviews and

participant briefing. As the first author, I co-authored this paper and

presented the results at the International Workshop on Information Forensics

and Security in 2019.

• [DFRWS-APAC21]: Data Curation, Writing – Original Draft

I conducted a thorough analysis on the dataset, uncovering all potentially

relevant results and their representations. As the first author, I co-authored

this paper and presented the findings at the Digital Forensics Research

Conference APAC in 2021.

• [WSDF21]: Investigation, Writing – Original Draft

For this two-author paper, I collaboratively engaged in both the research and
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the writing processes. I presented the results at the International Workshop

on Digital Forensics in 2021.

• [WSDF23]: Writing – Original Draft, Visualization, Supervision

I conceptualized and validated a visualization tool [artefact-vdAke21], that

complements the previously constructed artifact under my supervision [artefact-

Bou21]. I co-authored the paper and presented the results at the Interna-

tional Workshop on Digital Forensics in 2023.

• [DFRWS-EU24]: Software, Validation, Data Curation, Writing –

Original Draft

I constructed the JPEG dataset [dataset-vdMee22] and all subsets used

for both validating the validator and addressing research questions. I co-

developed and tested the JPEG validator [artefact-vdBvdM23]. As the first

author, I co-authored the paper and presented the results at the Digital

Forensics Research Conference Europe in 2024.

1.4.3 Relations between publications and other research
components

Figure 1.3 illustrates the interconnections between supervised student projects,

artifacts, datasets, and the publications resulting from this research. As can

be seen, many research opportunities were explored. Sometimes, the results of

projects led to artifacts, datasets, and contributed to publications. This visual-

ization demonstrates the exploratory, result-driven approach that was employed

during this PhD project.

1.4.4 Contributions to society

In the role of both a part-time teacher and researcher, there were two explicit

objectives aligned with the applied research: (1) contributing to student education

and (2) contributing to society. The course on Reverse Engineering Data, directly

linked to the research, was among the subjects taught. Additionally, courses related

to applied statistics and research design also benefited from the accumulated

research experience.

Beyond the teaching responsibilities, 12 student projects were supervised,

including internships and graduation assignments at both Zuyd University of

Applied Sciences and the Open Universiteit, integrating these projects into the

broader context of the PhD research.

11



Chapter 1 – Introduction

Figure 1.3: Relation between artifacts, datasets, supervised student project and
publications

• Zuyd University of Applied Sciences

– 4 internship assignments

– 2 graduation projects (BSc)

• Open Universiteit

– 4 Bachelor’s projects (BSc)

– 2 Master’s projects (MSc)

In 2018 at Zuyd University of Applied Sciences, Dols [stud-Dol18] conducted

a graduation project exploring the possibilities of measuring file fragmentation in

a detailed and privacy-friendly manner on Windows computers, leading to the

first version of the artifact [artefact-Dol19]. Inspired by the work of Karresand et

al.[KAD19], Patti [stud-Pat19], undertook an internship project that investigated

volume visualization using fractals. Van Kan [stud-vKan19] carried out an

internship that investigated the creation of a privacy-friendly, low-level access

method for examining storage devices on Android phones.
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At the Open Universiteit, three students simultaneously started their bachelor’s

projects in 2019. Vollebregt [stud-Vol19] investigated file dating based on physical

location on a disk, inspired by the work of Bahjat and Jones [BJ19]. Noordzij [stud-

Noo19] designed and implemented a method to synthetically age a file system

in order to create realistically fragmented file systems. Following this, Van

Dillen [stud-vDil21] evaluated existing file system ageing tools, building on the

work of Noordzij and Hueting (not supervised by the author). Bouma [stud-Bou19]

researched file timestamps, examining how file operations impact timestamps and

which sequences of file operations may have led to the current set of timestamps.

The supervision at the Open Universiteit also extended to two master’s projects:

Peters [stud-Pet21] focused on file format structures for file recovery, particularly

the PST (Outlook) format, and Borgers [stud-Bor23] sought to identify differences

between NTFS drivers and their interactions with storage devices.

Lastly, at Zuyd University of Applied Sciences, the graduation project of

Hanegraaf [stud-Han20], who explored file recovery on solid-state drives, and the

internships of Dassen [stud-Das22], who automated the extraction and storage of

JPEG metadata, and Smitz [stud-Smi23], who benchmarked existing file carvers

for their effectiveness in recovering fragmented JPEG files, were supervised.

Public outreach

Engaging in public outreach offered additional avenues to disseminate research

findings to broader audiences. These opportunities, ranging from industry confer-

ences to public science fairs, facilitated the contribution of insights from the work

beyond the academic sphere. The following events stand out:

• Futurum, 2017 [web-Fut17], Heerlen.

• Nederlands ICT in het Onderwijs Congres [web-NIO18], 2018, Leeuwarden.

• Learning and Innovation in Resilient Systems [web-OU23a], 2019, Heerlen.

• APG devConf [web-Dev22] (Keynote), 2022, Online.

• IllionX DevDays, 2022, Arnhem.

• NFI Science Fair, 2023, The Hague.

• PROMIS’23 [web-OU23b] (Keynote), 2023, Utrecht.
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1.4.5 Thesis outline

This dissertation is divided into two main parts. The first part, titled ”File

fragmentation and timestamps”, focuses on the collection of a comprehensive

dataset containing metadata about file fragmentation and timestamps. It also

discusses the findings, artifacts, and publications that emerged from this research.

The second part, titled ”JPEG validation”, delves into the JPEG file format. It

introduces and evaluates a novel approach for validating JPEG images, aiming to

enhance the success rate of recovering fragmented JPEG files.

Part I – Chapter 2: Collecting real-world data on File Fragmenta-

tion. Considering the current scarcity of real-world data on file fragmentation,

this chapter establishes the foundation for gathering a contemporary dataset

on the subject. It details the design, implementation, and publication of the

artifact [artefact-Dol19], as well as an evaluation of its design objectives following

a data collection exercise.

Part I – Chapter 3: A Contemporary Investigation of NTFS File

Fragmentation. This chapter introduces novel metrics to express the degree

of file fragmentation, facilitating a clear comparison with previous studies and

enabling detailed reporting on the current dataset. Additionally, it provides

insights into various characteristics of fragmentation, including analysis by file

extension and disk type.

Part I – Chapter 4: Reconstructing Timelines: From NTFS Timestamps

to File Histories. This chapter studies to what extent file history can be

derived from timestamp information. To this end, it provides a methodology

for deriving and describing a file’s previous timestamp values, and introduces

two artifacts. One artifact [artefact-Bou21] that implements this methodology, a

second artifact [artefact-vdAke21] that visualises the resulting tree in a timeline-

format. This demonstrates the practical applicability of the approach.

Part II – Chapter 5: JPEG File Fragmentation Point Detection using

Huffman Code and Quantization Array Validation. Building upon the

insights from file fragmentation findings, particularly the often overlooked out-of-

order fragmentation not addressed in current file-carvers, this chapter presents a

new theoretical approach to JPEG file validation, with algorithms applicable to a

wide range of JPEGs (both baseline and progressive). This method is designed to
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significantly enhance future file carving efforts in restoring deleted fragmented

JPEG files.

Part II – Chapter 6: Problem solved: a reliable, deterministic method

for JPEG fragmentation point detection. This chapter presents a JPEG

validator [artefact-vdBvdM23] that implements the JPEG validation mechanisms

introduced in the previous chapter. The validation mechanisms are extensively

tested on a large-scale JPEG dataset, covering both regular and worst-case

scenarios, yielding exceptionally positive results.
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Part I

File fragmentation and
timestamps

Highlights:

• Design and implementation of a privacy-friendly tool for file

fragmentation analysis ([artefact-Dol19]), followed by the

collection of a large-scale dataset on file fragmentation.

• Detailed reporting on file fragmentation, including the in-

troduction of new metrics to address the phenomenon of

’out-of-order’ fragmentation, an important aspect often over-

looked in existing file recovery methods.

• An novel approach to file timestamp analysis through

timeline creation, featuring artifacts that demonstrate the

feasibility ([artefact-Bou21]) and visualization ([artefact-

vdAke21]) of this method.
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Chapter 2

Collecting real-world data on file
fragmentation

This chapter presents an adapted version of the paper File Fragmen-

tation in the Wild: a Privacy-Friendly Approach, by Vincent van der

Meer, Hugo Jonker, Guy Dols, Harm van Beek, Jeroen van den Bos,

and Marko van Eekelen, which was published in the 11th IEEE Inter-

national Workshop on Information Forensics and Security [WIFS19].

Abstract Digital forensic tooling should be based on refer-

ence data. Such reference data can be gathered by measuring a

baseline, e.g. from volunteers. However, the privacy provisions in

digital forensics tools are typically tailored for criminal investiga-

tions. This is not sufficient to ensure privacy obligations towards

volunteer participants. Thus, privacy adaptations are necessary

before such tooling can be used to establish or rejuvenate a base-

line.

We illustrate the feasibility of this approach by rejuvenating a

baseline for file carving, via a case study of file fragmentation. We

derive a set of privacy requirements to prevent deanonymisation

of individuals. Atypical properties of files can nevertheless still

lead to plausible deanonymisation of the file. With regards to

fragmentation, we find out-of-order fragmentation, where a later

block is stored on disk before an earlier block of the same file,

occurs in nearly half of all fragmented files. This is the first study

to report on prevalence of this type of fragmentation. Its high

rate of occurrence has implications for the practice of file carving.
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2.1 Introduction

Forensics is the science of finding and evaluating evidence in the context of a

criminal investigation. Digital forensics is the application of this science to the

digital domain. Both need to be grounded in reality. Moreover, technological

developments are swift, implying that any baseline for digital forensics must

regularly be recalibrated.

Consider the case of file carving, a technique to reconstruct files from their

contents as blocks stored on disk, instead of from metadata. This technique is

used in digital forensics to e.g. recover deleted files. However, the amount of

blocks on a modern drive is enormous, which leads to a gargantuan search space

for file carvers. To reduce the search space, file carvers make several assumptions,

one of which is how blocks belonging to the same file are distributed over the

disk: file fragmentation. The current de facto baseline for file fragmentation is the

seminal study by Garfinkel [Gar07] from 2007. Technology has marched on since

then: that study concerned mostly FAT12, FAT16 and FAT32 file systems, which

have since been replaced by NTFS; disks have become (much) larger, operating

systems have been updated, and laptops continue to replace desktops – and act far

more as personal computers than traditional desktops. Finally, modern laptops

often use a fast SSD drive for read-write intensive operation, and a slower HDD

drive for data storage. Such a task-based division of drives did not exist at the

time of Garfinkel’s study.

Given these considerations, it is important to restudy file fragmentation,

specifically to examine current, real-world occurrences of fragmentation, to improve

the reliability and development of existing and future file carvers. Thus, a new

study of file fragmentation would ideally be based on a large group of real-world,

in-use systems.

However, there is a privacy problem. Studying file fragmentation requires

determining the location of all blocks, which requires access to file metadata.

But this metadata also contains information not pertinent to studying file frag-

mentation, some of which may be privacy-sensitive (e.g., filenames containing

personal details). Such metadata must absolutely not be collected in measuring

fragmentation. This entails that standard forensics tools cannot be used as-is,

since these tools do not offer the required privacy provisions. Fragmentation

tools outside the forensic domain typically focus on solving fragmentation, not on

analysing it. Thus, there are currently no tools which can analyse fragmentation

and simultaneously ensure the privacy of volunteer participants.

This chapter focuses on RQ1, which is stated as: How can data on file
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fragmentation be collected in a privacy-friendly manner?

Contributions. The main contributions of this chapter are:

• We establish a set of requirements to safeguard privacy when collecting file

information.

• We design a filtering wrapper for Fiwalk, a commonly used forensics tool,

based on these requirements.

• We measure file fragmentation in the wild by a case study of 220 in-use,

privately-acquired laptops and find:

– the privacy requirements successfully prevent identification of individ-

ual users, but atypical properties of a file could lead to its plausible

identification.

– over 46% of fragmented files are fragmented out-of-order, a type of

fragmentation whose occurrence was not previously reported on.

2.2 Background

2.2.1 Terminology

We make use of the following NTFS terminology:

• Master File Table: the Master File Table (MFT) contains the metadata

of the files in a NTFS volume. For each file, the MFT holds the metadata

(like timestamps, filename, size, permissions) and the allocation of blocks

for the files data. The location of the MFT itself is stored in the boot sector

[Car05]. To prevent fragmentation of the MFT itself, space is reserved for

future growth.

• Resident files: resident files are files that do not have allocated blocks.

Their data is fully stored in their record in the MFT. Typically, a resident file

has a maximum size of about 700 to 800 bytes [Car05]. Note that resident

files by definition cannot be fragmented, since no blocks are allocated to

them.

• Compressed files: Files may be compressed by NTFS itself, as opposed

to application-level compression. This compression is transparent to any

application using NTFS.
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• Sparse files: Files where only blocks containing non-zero data are stored.

The file size of sparse files is thus typically larger than allocated on disk.

(Used e.g. for virtual machine files.)

• Hard links: An MFT entry may contain more than one path + filename.

These names appear to the user as individual files,

• Symbolic links: a symbolic link (also called soft link) is an entry in the

MFT that points to a path + filename. To resolve a symbolic link, the path

and filename must exist. While symbolic links resemble files, they do not

contain any data and thus cannot be fragmented.

• Volume: A storage device is a physical unit for storing data. It is partitioned

into one or more volumes, which in Windows are addressable via drive letters.

In addition, we use HDD to denote hard disk drive, i.e., a storage medium

based on magnetic storage with moving read and write heads and spinning discs;

and SSD to denote solid-state drive, i.e., a storage medium based storing data

based on integrated circuits (typically flash memory), without physically moving

parts.

2.2.2 Data storage and deletion on SSDs

SSD devices operate differently than HDDs. For example, to extend the longevity

of the disk, they typically use wear leveling: a technique to avoid writing overly

much in one area of the disk. However, wear leveling happens in the firmware

and is invisible to the NTFS file system. That is: it does not affect the operation

of NTFS, and the NTFS file system is not aware of this taking place.

SSD devices also handle deletion differently than HDDs. Regular HDDs handle

deletion by marking the deleted blocks of the disc as available. That is, regular

HDDs leave the data on the disc until it is overwritten. In contrast, an SSD drive

cannot write to an already occupied part. Thus, each block must be empty before

it can be written to. The earliest SSDs used a form of garbage collection to empty

deleted blocks. This matured into the creation of the TRIM command, which

wipes the specified blocks. Once blocks have been wiped, their data is physically

removed from the disc and thus the data no longer recoverable. This raises the

question of whether recovery of deleted files is possible at all on SSDs.

Nisbet et al. [NLR13] show that once the TRIM command has been sent

to the drive, erasing usually takes places within minutes. They also show that,

within the time frame of deleting a file by the user and the execution of the TRIM
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command, significant amounts of data can still be recovered, with small files being

fully recovered, and for large files being partially recovered. After the execution

of the TRIM command however, only up to 0.6% of the data was recoverable.

This places concrete boundaries on the forensic effectiveness for file carving.

In case the data on the SSD was subjected to a successfully executed TRIM

command, the data thus is not realistically recoverable. However, there is no

one-to-one correspondence between file deletion and successful execution of a

TRIM command. In particular, there are various reasons why a SSD either is not

TRIM-enabled, or that a TRIM command is not succesfully executed [web-Foc20].

2.2.3 Fragmentation

The NTFS file system stores files into blocks, where each block occupies a fixed

size on disk. Blocks are identified by their block number. A file is thus assigned

a list of block numbers. A file is not fragmented if the assigned block numbers

are listed in order, and these block numbers are consecutive. When this is not

the case, the file is fragmented. This may be because the blocks occur out of

order, because the block numbers are not consecutive, or both. This gives rise

to four storage patterns, as depicted in Figure 2.1. Of these storage patterns,

in-order contiguously stored files are not fragmented. The other patterns describe

fragmented files.

Contiguous Non-contiguous

In-order A B A . . . B

Out-of-Order B A B . . . A

Figure 2.1: Examples of the four storage patterns for a bi-fragmented file

Two types of fragmentation can occur on a file system:

1. fragmentation of free space is caused due to the deletion and shrinking of

files. While these operations typically do not fragment the file itself, they

do create unallocated space that is likely not adjacent to the (other) already

existing unallocated space.

2. file fragmentation occurs when the file system does not write a file contigu-

ously. File fragmentation can happen when new files are created or existing

files are extended. Note that file system implementations may choose to

do so even when it is not strictly necessary (i.e., when there is sufficient

contiguous free space available).
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We refer to the various parts of a fragmented file as fragments. More specifically,

a file consists of a number of blocks, which are grouped into one or more fragments.

A fragment is contiguous and in-order, and cannot be extended with more blocks

of the same file while remaining in-order and contiguous.

Note that since Windows Vista, Windows by default schedules a periodic

defragmentation task.

Lastly, remark that while SSD firmware performs wear leveling (which dis-

tributes file blocks evenly over the physical storage), this is invisible to the file

system.

2.2.4 Degree of fragmentation

The degree of fragmentation can be defined in various ways, depending on what

is considered the total number of files. In literature, it is not always clear which

definition is used. It is the ratio of the number of fragmented files divided by

a total. Different choices can be made for the total, which gives rise to four

definitions.

Definition 1 (degree of fragmentation). The degree of fragmentation is the

number of fragmented files divided by the total number of files. The total number

of files defined as:

I all MFT entries, OR

II all MFT entries with data, OR

III all MFT entries with blocks assigned, OR

IV all MFT entries with ≥ 2 blocks assigned.

Note that definition I covers all MFT entries, including symbolic links; defini-

tion II excludes symbolic links; and definition III furthermore excludes resident files.

Nevertheless, definition III still includes files of one block – which inherently cannot

fragment. Definition IV is the only definition which excludes all non-fragmentable

MFT entries from consideration. It is thus the most strict, while definition I is

the most broad definition (gives the smallest degree of fragmentation).

We consider definition IV most relevant for reporting on measurements of

file fragmentation. Definition III is useful when the number of blocks of a file is

unknown (e.g., in file carving). Most studies unfortunately do not clarify which

definition they use.
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2.3 Related work

2.3.1 File fragmentation

There have been three large-scale studies reporting on file fragmentation. We

summarise their findings in Table 2.1.

source year % frag used frag. definition

[Gar07] Garfinkel 2007
– all file systems 6 ?
– NTFS file systems 12.2 ?

[MB12] Meyer & Bolosky 2012 4 ?
[WIFS19] Van der Meer et al. 2019 2.2 all MFT entries (I)

4.4 fragmentable files (IV)

Table 2.1: Comparison of fragmentation rates found in literature

The seminal large-scale study into file fragmentation is due to Garfinkel [Gar07].

He gathered data from over 300 used hard disks. The dataset includes 219 FAT

file systems, 51 NTFS file systems and 5 UFS file systems. He found an average

percentage of file fragmentation of 6%. Most findings are reported over the entire

dataset. The paper does provide sufficient information to derive the fragmentation

rate over all 51 NTFS file systems, namely 12.2%.

Garfinkel reports several findings. He found different file types have different

fragmentation rates, that most fragmented files are split into two parts (bifrag-

mented), and he reports on the gap size between the two fragments of bifragmented

files. It is not clear which definition of degree of fragmentation Garfinkel uses in

his paper.

In a study on file system content of 597 Windows computers, Meyer and

Bolosky [MB12] reported finding a level of file fragmentation of 4%. In addition,

the most highly fragmented files within their dataset were log files. Note that it

is not clear which definition Meyer and Bolosky used to calculate the percentage

of fragmented files.

While the previous works focused on desktops and laptops, several studies

have investigated file fragmentation on smartphones. Ji et al. [JCS+16] report

on EXT4 fragmentation behaviour on four Android smartphones. They observe

that files, especially database files, may suffer from severe fragmentation. In a

study [CBJ+17] on the effects of file fragmentation, the authors observed that

fragmentation quickly emerged in the aging process and impacts user-perceived
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latencies. In a study using five smartphones, Ji et al. [JCH+18] find that, under

daily use, fragmentation quickly begins to occur. They find that for such devices,

fragmentation is strongly correlated with disk space utilization. Moreover, the

specific way how SQLite files are used (frequent deletions, synchronous writes)

exacerbates fragmentation as well.

Finally, Darnowski and Chojnackhi [DC18] derive a model of NTFS block

allocation algorithms that predicts how a new file will be stored. They propose

modelling the NTFS allocation strategy as a finite state machine. They define a

sequential model for writing files, which provides predictions on block allocation.

These predictions include predicting when fragmentation occurs and even cover

out-of-order fragmentation. They confirm the accuracy of their model via synthetic

experiments.

2.3.2 File carvers

Another area of related work regards file carvers. Garfinkel [Gar07] constructed

a file carver targeted specifically at bi-fragmented files. Following up on this,

Roussev and Garfinkel [RG09] argued for a specialized carving approach: carvers

tailored to specific file content types. Such carvers would be able to improve upon

generic file carving techniques.

A different approach was taken by Cohen [Coh07]. He supplied a mathematical

analysis of file carving. His analysis accounts for a model of fragmentation, to

reduce the number of mappings from blocks to files. Notably, the approach he

proposed allows to model different kind of fragmentation patterns, including

contiguous out-of-order fragmentation.

Nevertheless, file fragmentation poses a problem for file carving. This was

discussed in several file carving surveys, such as Pal and Memon’s survey of the

evolution of file carving [PM09]. They found that the first generation of carvers,

based on file structure (using identification of file-header and -footer) was unable

to handle fragmentation. Such carvers would typically ‘recover’ files that had

unrelated content in their midst. This led to the development of new approaches

to file carving, which aimed to overcome the difficulties of carving caused by file

fragmentation. Similar findings resulted from the multimedia file carving survey of

Pahade et al. [PSS15]. They concluded that multimedia files are often fragmented

and compressed, and find that then-current carving tools are often unable to

handle different types of fragmentation patterns.
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2.3.3 Privacy-preserving forensics

The other area of related work revolves around privacy-preserving digital forensics.

The notion of preserving an individuals privacy while trying to uncover relevant

information about a suspected crime seems a contradiction. Nevertheless, several

approaches have been suggested to enable some form of privacy during a forensics

investigation. Most approaches focus on revealing only part of the (seized) data.

One early use case where this emerges is in unavoidable attribution, which is

sometimes proposed for privacy-enhancing technologies. For example, Olivier

discussed [Oli05] how to enhance a method for obscuring web requests to assure

attribution in case of investigation.

A different approach, more applicable in digital forensics, is to limit the data

revealed to the investigator only to that which is necessary. Efforts in this vein

seek to balance the privacy of the investigated subject (who may be innocent)

with the needs of a forensic investigation. For example, Croft and Olivier [CO10]

proposed an incremental model of cryptographic keys where knowing plaintext

(facts) pertaining to less privacy-sensitive issues will reveal keys for higher privacy-

sensitive information. The approach by Lawe et al. [LCY+11] similarly sought to

limit the information disclosed to an investigator. In contrast, they chose to use

cryptography to enforce regulation. They proposed to use a keyword encryption

scheme to encrypt the data. Requests for decryption keys are then evaluated

by a designated intermediate, who is responsible for privacy. Finally, Verma et

al. [VGG18] proposed a privacy-preserving framework for analysing collected data.

While these approaches are interesting, they focus on limiting access to data

in the analysis phase of a forensics investigation. In contrast, this study is focused

on acquiring data to improve forensic tooling. Since we do not gather data in

the context of a (criminal) investigation, privacy must be ensured prior to data

analysis. A concept more in line with this is the concept of verifiable limited

disclosure, as proposed by Tun et al. [TPB+16]. The authors recognised that

more crimes are happening on social media, and proposed a way for witnesses

to share their view of the social media with investigators, without providing full

access. They proposed an approach where cloud providers encrypt and certify

partial time lines for forensics investigation. While our setting does not use cloud

providers, the idea of collecting only limited data is one that we will apply.
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2.4 A privacy-friendly approach to file system
data collection

Ideally, all digital forensics is grounded in real-world data. However, digital forensic

tools are privacy-invasive, which makes using these on volunteer participants

(whose privacy must be ensured) problematic. Therefore, the development of

privacy-preserving digital measurement techniques is foundational to advancing

the field.

In order to gain an accurate view on modern fragmentation patterns, file

fragmentation data from current, in-use devices is collected. To provide accurate

data for this purpose, data should be collected from the general population.

Acquiring fragmentation patterns requires a low-level view on a disk, specifically,

knowing which blocks correspond to what file. Such a low-level view requires

broad access to the disk. Since the data is collected from volunteer participants,

privacy is a strong requirement. Measures must be taken to preserve participant

privacy whilst collecting data. This will ensure privacy during analysis and further

processing.

2.4.1 Ethical aspects of data collection

The study design was reviewed and approved by our institutional ethics review

board. Participation was on a voluntary basis. All participants were informed

about the data that would be collected, and the risks associated with the data

collection to their equipment. Before participation, volunteers were informed that

since data collection was anonymous, their data could not be removed from the

collection.

2.4.2 Privacy requirements and operational constraints

To guarantee participant anonymity, we require that no elements of the data

collection can be traced back to an individual participant. We consider an attacker

that has access to the full dataset, but not to any participant’s device. Thus, any

file system data that could potentially identify a participant must not be recorded.

For each column in the MFT, we considered whether a user could, in the regular

course of using a system, cause personal identifiable information to be present.

These are the Data and FileName columns. Users can enter information in these

columns via the file contents itself, the file name and extension, and directory

names.
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In addition, some entries in the MFT are special (meta-files). These may also

contain user-settable information. We considered all special entries in the MFT.

Of these, only the $Volume entry contains user-settable information (the volume

name of a file system).

This leads to the following privacy requirements:

• no-participant-info: information about participants must not be recorded.

• no-file-contents: file contents must be excluded.

• no-filenames: filenames must be excluded.

• no-file-paths: file paths must be excluded.

• no-volume-names: volume names must be excluded.

However, the motivation for collecting data is to result in data that is useful

for the file carving community. In particular, it is important to learn whether

specific file types are fragmented differently than others. Moreover, barriers to

participation should be reduced as much as possible. This leads to the following

operational constraints:

• only-safe-extensions: only file extensions known to not contain privacy

sensitive data are included.

• performance: data collection on a system should be finished within a

reasonable amount of time.

• no-change: the evaluation must not change the contents of the observed

file system.

2.4.3 Implementation

Acquiring data on file fragmentation can be done using three approaches:

• using user-grade disk analysis tools,

• creating a new tools,

• using forensic-grade disk analysis tools.

The objective of user-grade fragmentation-related tooling is to defragment rather

than to report on current status of fragmentation. As such, this type of tooling is

rather limited in what it reports about fragmentation – an insufficient level of
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detail for fragmentation analysis. In addition, these tools cause changes on the

studied object (the defragmentation itself), which is neither needed nor desirable.

A straightforward approach to creating our own tooling would be to copy the

MFT. However, the contents of resident files are stored within each MFT-entry.

To avoid copying this content would require substantial effort in parsing the MFT

format. On the other hand, forensic tools already provide such functionality.

They are ideally suited to provide the measurements we sought. However, privacy

is typically not a consideration when designing forensic tools. Thus, such tools

cannot be used out-of-the-box.

Fiwalk [Gar09] is a forensic tool for gathering details from a file system. It can

be configured to omit file contents and not compute hashes of file contents. Not

only does this dramatically improve scanning speed (performance constraint), it

also happens to satisfy the no-file-contents requirement. To ensure the no-change

constraint, we chose to collect data via a bootable USB stick instead of running

on the host OS. We ensured privacy in the following ways:

• no-participant-info: No information about participants was recorded.

• no-file-contents: Fiwalk provides an option (for speed optimisation) to

exclude file contents. This also excludes the contents of resident files. In

addition, we used the Fiwalk option to not compute hashes of file contents

(by default, hashes are computed).

• no-filenames, no-file-paths, no-volume-names: Fiwalk output contains

filenames, paths and volume names. During the data collection phase, after

Fiwalk completes gathering the metadata from a volume, we immediately

process the data to remove these.

• only-safe-extensions: Fiwalk output contains the full extension. We

post-process the data to only keep known extensions and extensions of three

(UTF-8) characters or less. For the list of known extensions, we used a list

of known extensions from Wikipedia [web-Wik19].

This resulted in a script that executes Fiwalk and filters its output. This artefact

is available from [artefact-Dol19].

2.4.4 Data collection

Data was collected from the personal machines of volunteer student participants,

between October 2018 and January 2019. The machines were individually bought,

managed, and maintained by their respective owners. The student population
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is divided into classes. By visiting each class once, we ensured no double par-

ticipation, since students can only be enrolled in one class. Data was collected

by a custom-made privacy-friendly data gathering tool [artefact-Dol19] based

on Fiwalk, by [Gar09]. The output of this is standardised DFXML [web-For20]

structured data. This was converted into an SQLite database for analysis.

On six storage devices, one or more volumes were encrypted and thus not

accessible for data collection. The 4 encountered EXT4 volumes were also excluded

from consideration.

Out-of-scope NTFS data

The focus of this study was on collecting data on file fragmentation in a privacy-

friendly fashion to benefit file carver development. Therefore, data related to

NTFS features such as junctions, Encrypting File System (EFS)-files or alternate

data streams, was not collected.

2.5 Results

MFT entries

All 84,390,537
With data 82,960,039
With blocks 70,320,268
With ≥ 2 blocks 42,671,054

Fragmented 1,871,109
Out-of-Order fragmented 868,917
% OoO of fragmented 46.4 %

% fragmented

of all (definition I) 2.2 %
of those with data (definition II) 2.3 %
of those with blocks (definition III) 2.7 %
of those with ≥ 2 blocks (definition IV) 4.4 %

Table 2.2: Fragmentation results

In total, we collected data from the laptops of 220 volunteers, which are stored

in the ’file fragmentation dataset’ [dataset-vdMee19]. 217 of these were running
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Windows 10, the other three were running Windows 7. Combined these laptops

contained 334 drives. A common configuration was to find a laptop with both

HDD and SSD (111 laptops), while three systems contained two SSDs. In 70 of

the 106 systems with one drive, this was an SSD. All together, these drives were

split into 729 volumes containing a total of ∼84 million MFT entries, of which

∼70 million with allocated blocks, see Table 2.2.

Of the NTFS volumes, 707 volumes had a block size of 4096 bytes. Other

NTFS block sizes were rare: 14 volumes had a block size of 512 bytes; 7 had a

block size of 1024 bytes and 1 volume had a block size of 2048 bytes.

2.5.1 Overall fragmentation results

Over the years, file fragmentation seems to be declining. In 2007, Garfinkel [Gar07]

reported that 6% of files ‘with data’ was fragmented. Meyer and Bolosky [MB12]

reported in 2012 that 4% of ‘files’ was fragmented. It is not clear if they consider

this with respect to all MFT entries, all files ‘with data’ or some other ratio.

For our study, we consider the most relevant fragmentation rate for file carving

to be only files that could be fragmented, i.e., files of 2 or more blocks. We

supply various fragmentation rates in Table 2.2 for comparison purposes. We

distinguish between ratios for all MFT entries, for those with data (excluding

symbolic links), for those with blocks (also excluding resident files) and for those

with at least 2 blocks. Note that we cannot distinguish between empty and

non-empty resident files – a consequence of the privacy-aware approach to data

collection. The category ‘files with data’ therefore includes all resident files.

2.6 Analysis of fragmentation results

The presented fragmentation results provide a relevant view of the current state

of file fragmentation on modern hardware. This provides valuable input into

whether advanced file carving techniques remain useful in data recovery and if so,

in what area their development should focus in order to increase performance.

2.6.1 Amount of fragmented data increases

When combined with earlier studies, there appears to be a steady decline in

fragmentation over the years. In twelve years, fragmentation rate has decreased

from 6% (Garfinkel in 2007, on all MFT entries with data) to 2.3%, a significant

reduction. Whether this means that a smaller amount of data is fragmented is an

entirely different matter.
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We found that fragmentation of current HDD drives is very low at approxi-

mately 0.7%. However, in 2007 a typical $100 hard drive had a 500 GB capac-

ity [web-McC19], while in Spring 2019, a hard drive in that price range had a

capacity of 4 TB. So even though fragmentation is reduced by a factor of eight,

the size of a typical hard drive has increased by that same factor.

SSDs were not considered in earlier studies, since they were not common in

computer systems at the time. In the 2007 study, the average size of a disk was

below 3 GB, so a 6% fragmentation rate would correspond to about 184 MB.

The rate of fragmentation measured in this study would correspond to the same

amount of data if current SSDs were only 8 GB in size. Given that the smallest

SSD in our study is 16 GB, it is safe to assume that the amount of fragmented

data has actually increased since 2007.

2.6.2 Relevance to file carving

Standard file carving can typically recover non-fragmented files. In our study,

97.7% of MFT entries with data were not fragmented and thus recoverable

via a standard file carving approach. Nevertheless, there are cases where it

is desirable to recover specific files, e.g., as they may contain key evidence.

Standard techniques cannot do this. In particular, out-of-order fragmentation is

not considered by current standard techniques. Yet, this type of fragmentation

constitutes a significant portion of all fragmented files. For example, of all files

that are fragmented into two parts, 25.75% is fragmented out-of-order. This

means that a file carver focused on recovery of in-order two-part fragmented files

(such as proposed by Garfinkel [Gar07]) will miss about a quarter of these files.

Carving for out-of-order fragmented files faces steep combinatorial complexity,

but the amount of files fragmented in this fashion is sufficiently large (46.42% of

all fragmented files) that in certain cases, recovery of such files will be worthwhile.

In particular, there is a significant number of out-of-order fragmented files with

two parts (14.46% of all fragmented files). This percentage is even greater than

the percentage of all in-order fragmented files of three or more parts (11.89% of

all fragmented files).

Cohen [Coh07] developed an advanced file carving approach to also recover

contiguous out-of-order fragmented files (see Figure 2.1). Interestingly, this type

of fragmentation is nearly non-existent. In our dataset of 42.3 million files with

2 or more blocks, only 8 files are fragmented contiguous out-of-order. All of

those 8 files are fragmented into two parts. We conclude that while techniques

for recovering out-of-order fragmented files are relevant, recovery of contiguous
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out-of-order fragmented files is currently not relevant.

2.7 Discussion

2.7.1 Privacy

The goal of the privacy-filtering was to not collect any personally identifiable

(PII) data. To this end, we removed filenames, path names, and unknown file

extensions from the collected data. Nevertheless, the collected data does contain

a lot of information about an individual drive’s master file table (MFT). Thanks

to the filtering, none of this information leads to an individual. Thus, the stated

privacy goals have been successfully achieved.

However, in reviewing the data, we found that we could make plausible

conjectures to the identification of specific files. In particular, an online search

showed that certain combinations of exact, large file size and extension (exe, mp4)

seemed to be unique. Note that plausible identification of files does not lead to

identification of individuals: at best, it serves to distinguish a disk from others,

not to identify its owner. Nevertheless, such plausible identification of files was

unexpected and we consider this undesirable.

One theoretical mitigation would be to remove all file sizes from the dataset.

In this case, the file size can still be approximated from the block size and the

(known) number of blocks, but the exact number of bytes is no longer available. In

a small experiment, we tested whether a particular (very large) exe file would be

harder to find when the exact size was not available. We found that the test file

was still readily distinguishable amongst the search results. Thus, while removing

the file size would theoretically introduce more uncertainty, in practice the effect

is negligible.

Therefore, we deem that removing the file size is insufficient to mitigate this

problem in practice. Moreover, additionally removing the block size likely does

not bring relief: in our dataset, 97% of disks has the same block size. Thus, while

participant privacy is successfully safeguarded, possible inferences regarding files

must be further investigated before the dataset can be made publicly available.

2.7.2 Generalisability of file fragmentation findings

The finding that the average fragmentation rate has dropped since previous studies,

is supported by the introduction of default weekly defragmentation in Windows

systems since Garfinkel’s study.
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The second fragmentation finding is the rate of out-of-order (OoO) fragmen-

tation. This type of fragmentation was previously not reported on. To validate

this finding, we examined individual OoO rates for file systems with more than

10,000 files in our dataset. Of these, three quarters had an OoO-rate of over

40%. In addition, we measured file fragmentation on two fresh Windows 10

installations on virtual machines. Both installations were updated, one online,

one with an offline update package. As expected, the fragmentation rates were

low (0.2% tot 0.4%). We found that the percentage of fragmented files that was

OoO-fragmented was 44.4% and 45.0%, respectively. These results show that our

findings on out-of-order fragmentation are not user-dependent. Moreover, they

are remarkably close to our finding of an average rate of out-of-order fragmented

files of 46%.

2.8 Conclusions

In this chapter, we proposed a privacy-friendly approach to performing mea-

surements using forensic tooling. We establish a set of requirements to prevent

deanonymisation of participants. The requirements are derived by considering

where personal identifiable information (PII) could be stored in the MFT. We

developed a wrapper around Fiwalk to discard any such data. Our data collection

attained the desired level of privacy: our data collection does not contain any

PII. However, atypical properties of individual files may still allow the file to

be deanonymised. While we believe this only applies in certain edge cases, we

nevertheless consider this undesirable and will consider measures to address this

in the dataset.

The presented data also provides new input for designing file carvers. As

such, this data provides a basis for a discussion on which advanced file carving

techniques to apply in specific situations. The major novel data points are that

the percentage of fragmented files has reduced, the amount of fragmented data

has nevertheless increased, and that there is a category of fragmentation that

was not yet considered in practice: out-of-order fragmented files. This provides

actionable input into designing advanced file carving techniques.
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Chapter 3

A contemporary investigation of
NTFS file fragmentation

This chapter presents an adapted version of the paper A contem-

porary investigation of NTFS file fragmentation, by Vincent van der

Meer, Hugo Jonker, and Jeroen van den Bos, which was published

in the special issue “DFRWS APAC 2021 – Proceedings of the First

Annual DFRWS APAC Conference” of the journal Forensic Science

International: Digital Investigation [DFRWS-APAC21].

Abstract There is a significant amount of research in digi-

tal forensics into analyzing file fragments or reconstructing frag-

mented data. At the same time, there are no recent measurements

of fragmentation on current, in-use computer systems. To close

this gap, we have analyzed file fragmentation from a corpus of

220 privately owned Windows laptops.

We provide a detailed report of our findings. This includes

contemporary fragmentation rates for a wide variety of image,

video, office, database, and archiverelated extensions. Our data

substantiates the earlier finding that fragments for a significant

portion of fragmented files are stored out-of-order. We define

metrics to measure the degree of “out-of-orderedness” and find

that the average degree of out-of-orderedness is non-negligible.

Finally, we find that there is a significant group of fragmented

files for which reconstruction is insufficiently addressed by current

tooling.
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3.1 Introduction

File fragmentation impacts (amongst others) file system performance and file

recovery. Indeed, many studies in these areas rely on assumptions with respect to

fragmentation. In the domain of digital forensics, this includes studies into file

fragment classification (e.g., [RNP+17]), generic file carvers (e.g., [YT10; Gar07])

as well as file type specific file carvers (e.g., [DKM19; YXL+17]), and fragment

dating (e.g., [BJ19]).

For all such studies, contemporary data on file fragmentation is a necessary

prerequisite to determine carving strategies. The most recent large-scale study

of file fragmentation is from 2007 by [Gar07], with data gathered from 1998 to

2006. This corpus is now outdated: it concerns mostly FAT-type file systems,

while Windows (since XP) by default uses the NTFS file system. Moreover, this

corpus concerns deprecated versions of Windows whose combined market share is

below 1.75% [web-Net20]

As explained in the previous chapter, to remedy this, we gathered data of file

fragmentation on NTFS file systems from 220 laptops. These machines are indi-

vidually acquired, owned and maintained, and are in regular use by their owners.

As these machines were owned by volunteer participants, privacy was paramount.

Therefore, we designed a privacy-friendly approach to data gathering [WIFS19].

In the previous chapter, we also presented initial fragmentation findings. Key

amongst those was that out-of-order fragmentation occurs fairly frequently – a

type of fragmentation that seems to mostly have been overlooked in literature.

This chapter focuses on RQ2, which is stated as: How are files on real-world,

in-use Windows system fragmented?

Contributions. In this chapter, we present in-depth, contemporary data on

NTFS file fragmentation. The main contributions are:

• Our corpus provides a contemporary (Oct’18 – Jan’19) view on file fragmen-

tation, based on the Dataset [dataset-vdMee19]

• The number of files in the corpus is significantly larger (2–10 times) than

previous works (>1 mln .jpg; 14,000 .doc; 87,000 .docx; . . . ).

• We provide novel metrics on the convolutedness of fragmentation: degree of

internal fragmentation and degree of out-of-orderedness.

• We report on a number of fragmentation characteristics: fragmentation

vs. file size, fragmentation vs. used volume space, fragmentation per exten-
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sion, gap size for files fragmented in two parts, distribution of number of

fragments, correlation between fragmentation and disk size, fragmentation

and disk type (primary / secondary).

• We find (amongst others) that the average degree of out-of-orderedness

of fragmented files is non-negligible. This has implications for the field of

digital forensics.

3.2 Results

In this section, we present our results. Note that many of the distributions on

which we report are skewed. To provide some insight into the skewedness, we

present both average and median values for such distributions.

The results will be presented using the different definitions on fragmentation

(primarily def. I and def. IV), where we use the most relevant definition of the

degree of fragmentation per context. However, these metrics do not convey how

complex the fragmentation of a file is. Two aspects determine the complexity

of a file’s fragmentation: the number of fragments (relative to the file size) and

the order between the fragments. To provide insight into the complexity of

fragmentation, we introduce two corresponding metrics: the percentage of internal

fragmentation to quantify the number of fragments in relation to the file size,

and the percentage of out-of-order’ness (OoO’ness for short), which quantifies the

extent to which the fragments occur out-of-order. Both definitions make use of the

number of fragmentation points, which is the number of times a process reading

the file sequentially would need to jump over one or more blocks to continue

reading the file.

Definition 2 (% of internal fragmentation). The percentage of internal fragmen-

tation of a file f of at least 2 blocks is the ratio of the number of fragmentation

points vs. the number of blocks minus one, i.e.:

intfrag(f) =
fragpoints(f)

blocks(f)− 1
· 100,

where blocks(f) denotes the total number of blocks of file f , and fragpoints(f) is

the number of times where, when reading a block of file f , the next block of f is

not the next block on disk.

For example, a file f1 whose blocks are stored contiguous and in order has 0

fragmentation points and therefore intfrag(f1) = 0%. Another example, consider

39



Chapter 3 – A contemporary investigation of NTFS file fragmentation

a file f2 of N blocks, where the blocks occur in order, but every block of f2 is

followed by a block of another file. In this case, there is a fragmentation point

after every block except the last block of the file. Thus, fragpoints(f2) = N − 1,

which gives intfrag(f2) =
N−1
N−1 · 100 = 100%.

Definition 3 (% of OoO’ness). The percentage of out-of-order’ness of a frag-

mented file f is the ratio of the number of times the next fragment occurs prior

to the current vs. the total number of fragmentation points, i.e.:

OoOness(f) =
backfragpoints(f)

fragpoints(f)
· 100,

with fragpoints(f) defined as before, and where backfragpoints(f) denotes the

number of times the next block of file f is stored earlier on disk than the current

block.

For example, consider a file f3, of N blocks, which is contiguous, but written

backwards. I.e., the second block is the block before the first block; the third

block is the block before the second, etc. In this case, every fragmentation point

is backwards, hence OoOness(f3) = 100%. In contrast, OoOness(f2) = 0%, as file

f2 was stored in-order, so backfragpoints(f2) = 0.

Remark that extreme values of OoO’ness correspond to relatively simple cases:

an OoO’ness of 100% is a file where the next block is always stored earlier on

disk (e.g., f3), and an OoO’ness of 0% concerns a file where the next block is

always stored further (e.g., f1). In contrast, an OoO’ness of 50% means half the

fragmentation points are backwards – i.e., when reaching the end of a fragment,

there is no preference for either forward or backward direction to find the next

block. Thus, an average OoO’ness of 50% is a worst-case (with respect to out-of-

orderedness) situation for a file carver.

3.2.1 Fragmentation per MFT entry type

In Table 3.1, the main fragmentation characteristics of our dataset are presented,

split per MFT entry type. For completeness and comparison purposes, we include

our previously [WIFS19] reported totals (right column), extended with new

measures of average internal fragmentation and average OoO’ness. Remark that

both resident files and symbolic links can inherently not fragment. In our dataset,

we find that hard-linked files are up to 7 times less likely to be fragmented than

the average. Sparse files and NTFS compressed files were already known to be

prone to fragmenting; to the best of our knowledge, we are the first to quantify the
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extent of this. In the dataset, we find that (under definition I) around 10% of both

sparse and NTFS compressed files are fragmented. Under a stricter definition of

fragmentation, one that only considers files that may potentially fragment (under

definition IV), the ratios increase to one in five (NTFS compressed) and close

to one in three (sparse), respectively. Finally, note that when NTFS-compressed

files are fragmented, the average degree of internal fragmentation is lower than

average (8.6% vs. 19.9%).
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NTFS-compressed sparse files hardlinks resident files symbolic links MFT entries [WIFS19]

all 598,119 242,844 8,778,592 12,639,771 1,380,728 84,390,537
with data 597,255 97,322 8,659,294 12,616,364 – 82,960,039
with blocks 597,255 97,322 8,079,067 – – 70,320,268
with ≥ 2 blocks 367,284 75,645 5,365,324 – – 42,671,054
fragmented files 72,351 24,079 34,720 – – 1,871,109
out-of-order frag. files 40,660 12,156 14,259 – – 868,917

% fragmented

of all 12.1 % 9.9 % 0.4 % – – 2.2 %
of those with data 12.1 % 24.7 % 0.4 % – – 2.3 %
of those with blocks 12.1 % 24.7 % 0.4 % – – 2.7 %
of those with ≥ 2 blocks 19.7 % 31.8 % 0.6 % – – 4.4 %

of fragmented files:

out-of-order fragmented 56.2 % 50.5 % 41.1 % – – 46.4 %
avg. internal fragmenta-
tion

8.6 % 12.8 % 24.3 % – – 19.9 %

avg. OoO’ness 32.5 % 29.2 % 24.1 % – – 29.9 %

Table 3.1: Fragmentation per MFT entry type.
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3.2.2 Fragmentation per file extension

Table 3.2 provides various data on the fragmentation per extension. In this

table, we list the number of files with at least 2 blocks (i.e., the number of files

relevant for definition IV), as well as the percentage of files that are fragmented.

Specifically, we include both def. I for comparison purposes, and def. IV as most

representative definition of fragmentation. Furthermore, like Garfinkel [Gar07],

we provide the percentage of fragmented files that are fragmented into 2, 3, and

4 or more parts completely in-order, and similar for files that are fragmented at

least partially out-of-order. For the fragmented files, we also provide the average

internal fragmentation (definition 2), the average OoO’ness (definition 3), as well

as the average number of fragments.

Images. Fragmented images are often fragmented out-of-order. For fragmented

bmp, png, and raw files, the percentage of fragmented files that are fragmented

out-of-order are 44.1%, 38.0% and 37.5%, respectively. For all other image formats,

fragmented files are more likely to be fragmented out-of-order than in-order.

Videos. Yang et al. [YXL+17] claim avi files are more likely to be fragmented

than other files. Our dataset does not corroborate this. We find that the average

fragmentation rate for avi files (1.8%) is lower than the general average (4.4%).

However, when avi files are fragmented, the number of fragments is often large

(average of 40.8 fragments).

The .mts format is a video format typically used in camcorders. In our dataset,

2 systems account for 1,555 of the 1,591 mts files.

Office documents. Interestingly, Outlook pst files are often fragmented (35.8%).

The number of fragments is low, leading to a negligible rate of internal fragmen-

tation. The main complexity in recovering fragmented pst files is due out-of-

orderedness. Another interesting document-related finding is that pdf files have a

higher fragmentation rate than the word-processing extensions rtf (Wordpad),

odt (OpenOffice), doc and docx (MS Word); an unexpected result considering

pdf files are typically static, i.e., not intended for editing.

Databases. Ji et al. [JCH+18] studied fragmentation on Android systems and

found that database files are prone to fragmentation, due to concurrent and

frequent growth. Our dataset shows that this is true on NTFS systems as well:

all database extensions are fragmented above average.
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% of fragmented files with . . . fragments: of fragmented files:

# files with % fragmented in-order out-of-order avg. % avg. % avg. #
ext ≥2 blocks def. I def. IV all 2 3 ≥4 all 2 3 ≥4 intfrag OoO’ness fragments

Image
bmp 70,425 1.6 2.5 55.8 40.7 9.7 5.4 44.2 14.6 10.7 18.8 10.3 29.2 3.2
gif 276,241 0.8 1.8 53.6 40.4 7.9 5.3 46.4 10.3 9.0 27.0 28.4 26.4 3.6
jpeg 13,774 8.5 8.7 39.7 24.8 8.8 6.0 60.3 10.6 9.1 40.7 13.6 33.6 3.8
jpg 1,043,198 2.7 3.1 42.6 32.6 6.2 3.8 57.4 13.8 10.5 33.1 12.4 33.5 4.4
png 2,389,752 0.9 3.1 62.0 48.9 9.5 3.5 38.0 14.4 10.2 13.4 32.9 25.6 2.8
psd 7,022 4.5 4.5 40.4 31.0 7.8 1.6 59.6 16.6 17.2 25.7 6.8 37.2 9.3
psp 422 4.6 6.2 42.3 15.4 15.4 11.5 57.7 3.8 7.7 46.2 5.7 24.8 8.7
raw 5,246 1.1 1.2 62.5 57.8 4.7 0.0 37.5 12.5 18.8 6.3 3.5 24.9 17.1
tif 6,309 9.3 9.7 37.7 13.3 18.7 5.7 62.3 3.6 19.7 39.0 4.8 31.3 4.1

Video
avi 9,800 1.8 1.8 14.1 9.6 1.7 2.8 85.9 0.0 1.1 84.7 1.1 29.9 40.8
flv 332 26.8 26.8 11.2 6.7 3.4 1.1 88.8 1.1 4.5 83.1 1.5 38.5 29.8
mkv 2,404 2.7 3.1 46.7 44.0 2.7 0.0 53.3 12.0 8.0 33.3 0.1 32.4 6.8
mov 4,459 4.3 4.4 32.0 30.9 0.5 0.5 68.0 13.9 13.9 40.2 0.5 39.0 20.2
mp4 38,007 6.4 6.5 39.5 31.3 5.7 2.5 60.5 14.4 11.2 35.0 1.0 36.7 28.8
mpg 3,269 0.4 0.4 15.4 0.0 15.4 0.0 84.6 7.7 0.0 76.9 1.9 42.0 21.8
mts 1,591 0.2 0.2 33.3 33.3 0.0 0.0 66.7 0.0 33.3 33.3 0.0 52.4 4.3
wmv 27,328 0.7 0.7 36.7 33.2 3.6 0.0 63.3 35.7 10.7 16.8 1.8 50.1 5.8

Office
doc 14,831 5.1 5.5 40.8 21.4 9.7 9.7 59.2 8.5 13.4 37.3 15.8 31.4 5.1
docx 87,077 6.0 6.2 49.4 35.1 8.6 5.6 50.6 13.5 9.7 27.4 16.5 30.2 4.6
msg 7,120 0.7 6.2 75.7 75.7 0 0 0.0 24.3 23.6 0.0 0.7 38.2 24.1 2.1
odt 2,147 4.8 4.9 57.1 44.8 6.7 5.7 42.9 23.8 7.6 11.4 35.9 33.7 2.8
pdf 92,117 7.9 8.1 30.4 14.6 6.1 9.7 69.6 6.7 8.9 53.9 7.3 33.6 9.3
ppt 3,406 7.9 8.0 10.3 7.0 0.0 3.3 89.7 5.1 1.5 83.1 3.0 37.4 10.9
pptx 17,846 11.6 11.7 17.5 8.7 2.5 6.3 82.5 5.5 4.2 72.8 3.4 36.3 19.2
prf 1,113 0.9 4.6 66.7 66.7 0.0 0.0 33.3 23.5 0.0 9.8 31.6 26.8 2.4
pst 120 33.1 35.8 58.1 55.8 2.3 0.0 41.9 9.3 23.3 9.3 0.0 24.7 2.8
rtf 80,977 0.9 1.0 49.0 39.4 3.5 6.1 51.0 29.9 9.7 11.4 6.7 40.7 3.5
xls 8,550 2.0 2.3 36.1 22.2 5.7 8.2 63.9 5.2 13.9 44.8 13.9 33.8 5.2
xlsx 17,721 4.1 4.1 64.7 48.6 12.3 3.8 35.3 16.6 8.6 10.1 27.3 30.4 3.3

Database
accdb 1,450 12.0 12.0 14.9 8.6 3.4 2.9 85.1 2.9 13.8 68.4 4.7 40.6 30.0
db 33,320 12.0 17.4 39.6 28.2 7.8 3.5 60.4 8.8 9.2 42.5 19.5 32.2 24.5
mdb 11,052 3.8 6.1 33.0 21.1 7.9 4.0 67.0 14.0 13.5 39.5 9.8 39.2 5.1
sqlite 7,959 26.2 27.8 52.0 44.3 5.6 2.2 48.0 20.5 7.1 20.4 9.0 33.2 6.9

Archive
7z 3,568 12.2 18.1 68.1 58.5 7.7 1.9 31.9 6.7 9.9 15.3 49.7 19.0 31.8
gz 48,900 1.8 3.7 60.7 33.4 21.0 6.2 39.3 5.9 12.5 20.9 56.2 20.5 6.4
rar 3,589 7.3 7.5 21.1 13.7 4.8 2.6 78.9 5.2 7.4 66.3 3.5 34.5 48.1
zip 53,919 7.9 11.2 38.3 22.9 7.6 7.9 61.7 8.5 7.7 45.5 15.9 30.4 22.4

Table 3.2: Fragmentation per extension (categorised)
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3.2.3 Fragmentation in relation to file size

File size† # fragmented files % frag

min⋆– 10 kB 11,531,201 1.8
10– 50 kB 15,669,438 3.9
50 – 100 kB 4,468,221 4.9
100 – 500 kB 6,490,196 7.4
0.5 – 1 MB 1,573,008 6.8
1 – 5 MB 2,096,812 8.2
5 – 10 MB 397,872 7.8
10 – 50 MB 341,782 9.5
50 – 100 MB 45,148 14.0
100 – 500 MB 44,534 21.4
> 500 MB 12,842 46.1

⋆ min: 2 assigned blocks, irrespective of file size and block size.
† kB = 1,000 bytes, MB = 1,000,000 bytes.

Table 3.3: Fragmented files per file size

Tables 3.3 and 3.4 show fragmentation and fragment properties split out in file

size intervals. The ranges include start point, and exclude the end point. With

regards to the smallest file that may be fragmented: this is dependent on the

number of allocated blocks. Note that allocated blocks do not need to be filled.

Indeed, we found 10 fragmented files, whose file size was 1 byte.

Table 3.3 shows that smaller files occur more often than larger files. Note

that 74% of all files of at least two blocks are smaller than 100 kB. Furthermore,

we make the following observations:

• Of all fragmented files with a file size between 1 and 100 MB, over 75% is

fragmented out-of-order.

• As file size increases, the number of fragments typically increases (though

this correlation is not perfect).

• For files >50 kB, the average OoO’ness is slightly over a third, more or less

irrespective of the file size. This means that at each fragment boundary,

there is, on average, a probability of about 1
3 that the next fragment is

located before the current fragment, and a probability of about 2
3 of the

next fragment being ahead.

• We found that some files are extremely fragmented, such as one file split

into 20,000 fragments. This skews the average, but the median value of the
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# fragments

File size† % OoO % intfrag % OoO’ness avg median

min⋆– 10 kB 18.7 77.0 18.2 2.0 2
10– 50 kB 29.7 26.0 24.9 2.3 2
50 – 100 kB 47.1 10.7 32.2 2.8 2
100 – 500 kB 57.5 5.5 34.3 3.6 3
0.5 – 1 MB 70.2 2.9 37.3 5.5 4
1 – 5 MB 76.2 2.2 38.1 10.0 5
5 – 10 MB 80.4 1.5 37.4 23.1 7
10 – 50 MB 82.6 1.3 37.2 49.2 12
50 – 100 MB 76.7 1.3 33.7 126.3 14
100 – 500 MB 66.2 0.6 35.9 156.8 3
> 500 MB 74.1 0.1 36.3 93.1 4

⋆ min: 2 assigned blocks, irrespective of file size and block size.
† kB = 1,000 bytes, MB = 1,000,000 bytes.

Table 3.4: Fragmentation characteristics of fragmented files versus file size

range is less affected and provides a more nuanced view on the number of

fragments.

3.2.4 Distribution of the number of fragments

Table 3.5 shows how many files are split into N parts, in percentages of the total

number of fragmented files (rounded to two decimals, hence the numbers do not

sum precisely to 100%).

Note that the majority of fragmented files are fragmented into two parts

(56.76%), most of which are fragmented in-order. Furthermore, remark that for

all files split into 3 or more fragments, out-of-order fragmentation occurs (much)

more frequently than in-order fragmentation.

In Table 3.6, we extend upon Table 3.5 with file size and gap size information.

In-order bi-fragmented files are common amongst fragmented files, they con-

stitute 41.84% of all fragmented files. Theoretically, as files are fragmented into

more parts, it is increasingly less likely that all fragments occur in order. Our

dataset corroborates this.

Files split into 11 fragments or more are over 14× more often fragmented

out-of-order than in-order. Files split up in 100 parts or more make up for 0.6%

of all fragmented files in the dataset.

Finally, note that the average OoO’ness is hardly correlated with the number
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# Fragments Total In-order Out-of-Order

2 56.76 % 41.84 % 14.92 %
3 18.21 % 7.92 % 10.29 %
4 8.58 % 2.15 % 6.43 %
5 5.02 % 0.77 % 4.25 %
6 2.96 % 0.29 % 2.67 %
7 1.40 % 0.13 % 1.27 %
8 0.97 % 0.07 % 0.90 %
9 0.69 % 0.04 % 0.65 %
10 0.53 % 0.04 % 0.49 %

≥ 11 4.89 % 0.34 % 4.55 %

Table 3.5: Distribution of number of fragments (excluding non-fragmented files)

of fragments. For any file fragmented into three or more fragments, average

OoO’ness is yet again roughly a third.

Sum of all gap sizes (in blocks) (carving-distance)
#fragments #files % OoO average min average median max

OoO’ness

2 1,062,539 26.3 26.3% 1 7,038,401 711,673 517,861,056
3 340,422 56.5 32.8% 2 15,594,100 5,406,252 990,207,960
4 160,472 74.9 34.9% 3 25,645,754 11,833,174 811,066,168
5 93,835 84.6 35.5% 4 34,104,018 16,748,220 969,975,568

6–10 122,388 91.5 36.7% 5 53,979,693 28,003,492 2,002,994,256
11–20 45,031 93.5 36.8% 11 90,567,873 47,230,761 3,037,661,708

21–100 35,890 92.4 36.8% 42 227,973,821 96,196,576 9,852,412,280
101–1000 9,721 93.6 34.6% 399 1,194,774,735 345,806,721 69,129,433,312

1001+ 811 96.4 30.3% 17,636 5,760,340,498 948,806,352 270,488,355,485

Table 3.6: Distribution of number of fragments per file (expanded)

3.2.5 Gapsize distribution of bi-fragmented files

For in-order fragmented files, the gap between two consecutive fragments is

unambiguously defined as the distance from the last block (“tail”) of the first,

to the first block (“head”) of the second. For out-of-order files, there is not one,

unique, unambiguous definition of the distance between two consecutive fragments.

Note that since Garfinkel’s study does not consider out-of-order fragmented files,

a direct comparison is not possible.

Figure 3.1 depicts three possible metrics. All three metrics have their applica-

tions. Note that when looking at in-order fragmented files, these three metrics are

equivalent. It is only when the next fragment appears before the current fragment

that differences arise.
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. . .
c d a b

1. tail-head ←−−−−−−−−−−−−−−−
2. shortest gap ←−−−−−
3. carving distance ←−−−−−−−−−−

Figure 3.1: Possible metrics for gapsize of OoO fragmented files

The first, tail-head distance, covers the total length to be covered, but includes

the length of both fragments themselves. For file carving, this is not that useful:

once the first fragment is found, this will be skipped when searching for further

fragments. This metric therefore will not directly support finding the start of a

new fragment. The second metric, shortest gap distance, measures the shortest

distance between the two fragments, which only makes sense if both fragments are

known. The third metric, carving distance, measures the distance an out-of-order

file carver would have to make. This includes the fragment length of the unknown

fragment, but skips the already-found fragment.

Figure 3.2 depicts the number of in-order bi-fragmented files with a distance

of 1 to 300 blocks. The part shown in the figure covers 10.0% of all distances

between the fragments of in-order bi-fragmented files. The large trends depicted

in the figure hold over the entire range; in particular, we found that distances in

general decline, with a generic exception for gapsize distances that are a power of

two (see also Table 3.9).

We evaluated all three distances for out-of-order bi-fragmented files. We found

that there are only small deviations between them. Interestingly, the peaks at

distances of powers of two as seen for in-order files occurred much more strongly

for carving distance than for the other two distance metrics. Hence, from here on

out we will use this metric for the gapsize of out-of-order files.

Figure 3.3 depicts the carving distances for out-of-order files. As was the

case for in-order files, the main trends depicted in the figure continue across the

entire range. The gapsizes depicted in the figure cover 5.0% of all out-of-order

bi-fragmented files.

Lastly, concerning the aforementioned preference for gap lengths of powers of

two: note that these gap lengths are not necessarily aligned with specific locations

on disk. More specifically, the length of the first fragment determines the gap

start. This preference for gap lengths of powers of two thus seems to be an artefact

of how NTFS assigns blocks. Consequently, the fact that carving distance aligns

well with these observations suggests that carving distance aligns with how NTFS
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Figure 3.2: Gap-size distribution of in-order 2-fragmented files

allocates blocks.

3.2.6 Percentage of used volume space and file fragmenta-
tion

As a volume becomes more filled with data, the remaining unallocated space

becomes progressively more scarce and more likely to be fragmented. This may

impact for the degree of fragmentation. For example, Ji et al. [JCH+18] concluded

from their study of Android devices that the degree of fragmentation is highly

correlated with the percentage of used volume space.

We examined this in our dataset. First of all, we excluded volumes with very

few files (≤ 15), as we do not consider such volumes to be in active daily use (but

act e.g., as recovery partition). Moreover, they contain so few files, that even a

single fragmentation on such a volume will strongly skew the fragmentation rate,

and thus, strongly affect the correlation. For example, in our dataset there are 44

volumes that each contain 3 files, one of which is fragmented (i.e., a fragmentation

percentage of 33%).

Given these constraints, we find a moderate positive relation between data

49



Chapter 3 – A contemporary investigation of NTFS file fragmentation

Figure 3.3: Gap-size distribution of out-of-order 2-fragmented files

fragmentation and the percentage of used volume space, using Pearson’s corre-

lation coefficient as a measure. For SDDs we find that the correlation is 0.462,

and for HDDs the correlation is 0.464. Though the correlation coefficients are

nearly identical, the underlying data distribution is rather different, as shown in

Figure 3.4.

3.2.7 Fragmentation per storage device

For non-dual-boot systems, we distinguished between primary (boot disk) and

secondary storage devices within our dataset based on file count and extension

occurrence. This is possible as a Windows install has roughly 80,000 files, with

many system-related extensions such as .dll and .com. For every non-dual-boot

system in our dataset, these heuristics provided a clear division between primary

and secondary storage device.

By default, Windows has a scheduled defragment-task, with different schedules

for SSDs (monthly) and HDDs (weekly). The defragmentation strategy can differ

per storage device [web-MS20].
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Figure 3.4: Fragmentation vs. used volume space

Table 3.7 shows that single disk SSD-systems are more fragmented than

single disk HDD-systems, on average 2.4 times more. The most common system

configuration is a SSD/HDD combination. In this configuration, the primary

SSDs are way more fragmented than secondary HDDs, on average 5.2 times more.

Note that in this dataset there was no system with a dual HDD configuration.

With respect to the popularity of SSDs versus HDDs: in our dataset, we find

that 84% of the laptops use an SSD, and 67% uses an HDD.

3.2.8 Other extremes and curiosa

• In our dataset, there are 2,914 file extensions for which no file happened to

be fragmented. The top 10 most occurring of these is listed in Table 3.8.

• Among the extremely fragmented files (files with thousands fragments or
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Storage Device # average median
frag frag

Single disk (SSD) 67 5.6 % 2.0 %
Single disk (HDD) 36 2.3 % 1.2 %
Primary disk (SSD) 113 7.3 % 4.7 %
Secundary disk (HDD) 110 1.4 % 0.2 %
Secundary disk (SSD) 3 4.1 % 3.9 %

Table 3.7: Fragmentation per storage device

more), the most frequent occurring extensions are exe, log, xml, dat, and

dll.

• The most fragmented file is a 2 GB .bin file that is split up in 20,464

fragments.

• Of all the 1,871,109 fragmented files, only 8 are fragmented contiguous

out-of-order. All these 8 files are bi-fragmented.

• Some files occupy vastly more blocks than their file size requires. One file

in our corpus had a 1 byte file size, yet had 369 blocks allocated on disk.

Moreover, this 1 byte file was fragmented (out-of-order) into 5 fragments.

• Table 3.9 presents the frequency of gap sizes (measured in blocks) of powers

of 2 for bi-fragmented files in our dataset. For comparison, we also show

the incidence for adjacent gapsizes. The table points out that gap sizes

corresponding with powers of 2 act as local maxima.

3.2.9 Auxiliary data per file extension

In Table 3.10, we provide auxiliary data on file sizes. The right-hand side of

this table focuses on NTFS-compressed and sparse files. Recovery of such files is

complex, irrespective of whether they are fragmented or not. Therefore, results

concerning these file types in Table 3.10 are reported on all files with blocks

(definition III), and not only files that could fragment (definition IV).
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File size in bytes
Ext # files (def. IV) # systems Avg. Median St. Dev.

ctt 51,315 28 7,596 4,904 5,545
ovl 47,998 14 313,040 33,599 3,716,227
p7x 36,030 99 10,693 10,653 733
tt 24,032 47 27,017 26,786 3,466
anm 23,807 12 42,248 22,522 125,422
vcd 21,288 8 1,959 1,547 4,509
prx 20,885 197 11,889 4,286 241,195
slp 20,461 7 926,198 63,459 3,236,241
p7s 17,252 42 9,834 9,355 2,036
ovs 16,310 8 3,735,952 51,213 8,313,296

Table 3.8: Top 10 most frequently occurring extensions without fragmented files

Gap # Files Gap # Files Gap # Files

20 3793
21 2507 . . . . . . . . . . . .
3 1819 63 212 1023 28
22 2408 26 1346 210 78
5 1603 65 210 1025 23

. . . . . . . . . . . . . . . . . .
7 1165 127 121 2047 23
23 2431 27 421 211 43
9 972 129 106 2049 11

. . . . . . . . . . . . . . . . . .
15 1016 255 77 4095 10
24 1587 28 300 212 20
17 498 257 57 4097 4
. . . . . . . . . . . . . . . . . .
31 469 511 39 8191 3
25 1083 29 138 213 7
33 302 513 46 8193 2

Table 3.9: In-order bi-fragmented gap sizes around powers of 2.
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# systems file size in bytes using def. IV: using def. III:

% NTFS-
ext def. III def. IV avg. median st. dev. max. # files compressed % sparse

Images
bmp 214 213 380,653 36,176 4,603,975 1,150,221,432 105,371 0.1 0.0
gif 214 214 73,113 14,878 587,069 67,859,584 468,406 0.4 0.0
jpeg 181 177 430,900 132,696 921,712 19,905,785 14,137 5.1 0.1
jpg 215 215 469,789 43,499 1,383,941 202,187,275 1,157,750 1.7 0.1
png 215 215 77,909 13,385 819,778 443,815,127 6,551,794 0.6 0.0
psd 156 156 6,098,161 318,875 25,696,786 657,852,455 7,111 1.1 0.0
psp 68 67 2,913,965 164,864 13,461,247 79,354,648 444 5.0 0.0
raw 207 200 4,943,742 38,144 22,211,217 340,245,502 6,038 0.0 0.0
tif 188 178 2,174,293 178,288 9,322,608 536,980,180 6,512 0.8 0.0

Videos
avi 199 199 20,822,230 730,952 105,051,447 1,886,142,464 9,805 0.1 0.4
flv 34 34 25,612,283 3,670,220 83,269,828 911,348,494 332 0.0 0.0
mkv 206 206 250,121,103 109,239,726 351,135,887 1,994,939,880 2,406 0.1 0.2
mov 95 95 51,779,439 15,788,157 119,573,812 1,925,087,760 4,478 1.6 0.0
mp4 214 214 55,803,648 2,005,846 211,305,187 1,998,753,571 38,155 2.4 0.1
mpg 92 92 2,802,244 569,095 33,224,606 1,644,236,800 3,269 0.0 0.0
mts 8 7 168,426,360 113,362,944 191,510,208 1,893,931,008 1,747 0.0 0.0
wmv 206 206 4,187,920 398,973 47,347,382 1,892,176,290 27,382 0.0 0.0

Office
doc 214 214 480,189 43,520 9,447,633 1,000,000,000 15,666 0.7 0.0
docx 214 214 371,838 29,359 2,032,033 117,328,214 87,124 2.8 0.0
msg 213 213 28,180 4,823 111,153 4,486,144 36,296 0.7 0.0
odt 140 140 152,304 16,500 818,144 24,663,942 2,147 1.1 0.0
pdf 215 215 2,619,014 462,167 12,769,129 695,725,963 93,265 1.1 0.0
ppt 210 210 1,462,596 802,816 2,396,460 35,269,926 3,406 0.6 0.0
pptx 211 211 4,711,035 1,089,065 16,722,112 871,334,541 17,851 1.3 0.1
prf 119 118 15,741 8,405 101,644 3,145,728 3,156 0.2 0.0
pst 31 27 152,551,442 173,720,576 213,757,822 1,896,784,896 125 2.4 12.8
rtf 214 214 183,797 82,239 1,051,434 77,456,537 90,604 0.3 0.1
xls 207 207 252,638 67,072 642,497 15,325,184 9,891 0.1 0.0
xlsx 214 214 205,915 17,573 4,159,236 307,409,090 17,729 1.1 0.0

Databases
accdb 190 190 2,029,463 724,992 6,719,223 145,084,416 1,450 2.1 0.0
db 215 215 4,075,278 74,752 54,485,792 1,988,837,638 41,762 1.5 7.7
mdb 175 175 233,414 31,773 764,419 18,874,368 14,762 5.6 0.2
sqlite 212 212 782,992 65,536 7,712,433 454,340,608 8,245 1.8 9.6

Archives
7z 201 201 37,437,492 112,778 143,243,604 1,926,983,279 5,170 0.7 0.0
gz 213 213 243,467 10,277 7,615,496 816,336,896 84,665 1.7 0.0
rar 161 161 49,886,452 5,883,486 156,451,000 1,927,419,308 3,667 0.4 0.1
zip 217 217 18,503,962 168,076 102,922,058 1,988,366,193 67,884 0.3 0.0

Table 3.10: Meta information per extension (categorised)
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3.3 Discussion

3.3.1 Overall fragmentation rates

The overall fragmentation rates (Sec. 3.2.1) have implications for file carvers.

First, an upside for file recovery tooling: most files are not fragmented. This

means that file recovery tools which ignore fragmentation (which are far easier to

construct) will recover most files. Indeed, various studies assume that files are

not fragmented, such as [GJ17; SZ12].

However, there is also a downside: out-of-order files constitute close to half of

all fragmented files. This means that any tool that aims to recover fragmented

files, must account for out-of-order fragmentation. This impacts existing studies.

For example, neither the file carver due to Garfinkel [Gar07] nor the file carver

for fragmented jpg files due to Abdullah et al. [AIM+13] account for out-of-order

fragmentation.

3.3.2 Fragmentation per extension

The general trend of less fragmentation compared to previous studies extends

also to specific files. In Table 3.11, we compare our findings to those reported in

the 2007 study by Garfinkel. Note that jpeg and jpg file formats are equivalent,

but they use a different extension. The same holds true for the mpeg and mpg

file format. In Table 3.11, we compare Garfinkel’s findings against our ratio as

determined by def. IV (fragmentable files). We find a lower fragmentation rate

across all extensions. Note that since this observation is true for def. IV, it is also

true for the other three (less strict definitions) of file fragmentation.

3.3.3 Implications for file carving

Although file fragmentation is a topic that attracts some interest in the digital

forensics research community, most popular file carvers used in practice focus

almost exclusively on recovering unfragmented files. This is an understandable

choice given the considerable time it takes to carve large disks and other media

even in the simplest scenarios.

This study makes it possible for developers and users of file carvers to make

informed choices about the type of recovery they implement and use. It allows

an assessment of the added benefits of actually using bifragment gapcarving and

whether to extend such an algorithm to include out-of-order fragments or extend

it to something else, such as reconstructing files containing multiple gaps.
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# files reported % fragmented
file type 2007, [Gar07] 2020, def. IV 2007 2020

Image
bmp 26,018 70,425 8 2.5
gif 357,713 276,241 8 1.8
jpeg 108,539 13,775 16 8.7
jpg – 1,043,198 – 3.1
png 9,995 2,389,752 5 3.1

Office
doc 7,673 14,831 17 5.5
ppt 1,120 3,406 8 8.0
pst 70 120 58 35.8
xls 2,159 8,550 11 2.3

Video
avi 998 9,800 20 1.8
mpeg 168 9 17 11.1
mpg – 3,269 – 0.4

Database
mdb 402 11,052 27 6.1

Table 3.11: Comparison of fragmentation rates between 2007 and this study

An important contribution is the explicit measurement of the incidence of out-

of-order fragmented files (Tables 3.1, 3.2, 3.4 and 3.6), especially given that this is

a large (percentage-wise) subset of all fragmented files. Additionally, the reporting

on encountered actual gap sizes (Sec. 3.2.5) allows for practical estimations of the

performance impact on deploying such an extended file carver. Given the amount

of data fragmented out-of-order, as reported in this chapter, the impact of a file

carver able to reconstruct such files can now be properly ascertained.

3.3.4 Carving of NTFS-compressed and sparse files

NTFS allows special storage modes that do not store the actual file contents as-is

on disk: NTFS-compression and sparse files. For both types, the blocks as stored

on disk are not sufficient to reconstitute a file. Note that either mode may be

used irrespective of a file’s contents or file type. Thus, these NTFS storage modes

could pose a challenge for file carvers.

Yoo et al. [YPL+12] state that most file carvers are unable to handle NTFS-
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compressed data (irrespective of fragmentation). They consider files of at least

one block. In our dataset, only 0.8% of all files with allocated blocks (597,255 /

70,320,268) is NTFS-compressed. Yoo et al. propose a file carver to recover NTFS-

compressed files. Their carver does not account for fragmented NTFS-compressed

files, which (in our dataset) constitutes 12.1% of all NTFS-compressed files with

blocks. Interestingly, their carver is targeted at NTFS-compressed avi, wav and

mp3 files. In our dataset, the percentage of these files that are NTFS-compressed

is 0.1%, 0.0% and 0.1%, respectively (Table 3.10).

With respect to sparse files, we find only three extensions (of those investigated)

have a significant portion of them as sparse: pst (12.8%), sqlite (9.6%), and db

(7.7%). All of these are significantly more fragmented than the average: 35.8%,

27.8% and 17.4%, respectively. The percentage of sparse files for the other studied

extensions remains below 0.5%.

3.4 Conclusions

We performed a contemporary study into file fragmentation. Our dataset [dataset-

vdMee19] is comprised of disk information from 220 personally acquired, owned,

and managed machines. The data was collected in a period of 4 months (Oct’18 –

Jan’19).

Previous reports lacked a clear definition on which files were considered. We

remedied this by distinguishing four possible definitions of fragmentation rates,

from including all MFT entries to only including MFT entries that could possibly

fragment. We focused our reporting on the latter definition: files that could

possibly fragment. We found an average fragmentation rate of 4.4%, which

presents a significant decrease compared to Garfinkel’s 2007 study. This decrease

is also evident on the level of individual file types. AIn particular, 25% of

files fragmented into two parts is fragmented out-of-order, and this rate quickly

increases with the number of fragments.

We reported on a number of fragmentation characteristics, including the

convolutedness of fragmented files and the gapsize. To assess the convolutedness

of fragmented files, we proposed two novel metrics: degree of internal fragmentation

and degree of out-of-orderedness. Fragments are separated by a gap. We noted that

there are three possible definitions of gapsize in case the next fragment precedes

the current. Although the differences between these definitions are not very large,

the carving distance still stood out: of the three, its measurements most strongly

showed the “powers-of-two” gapsize property that forward-measured gapsizes so

strongly exhibit. Lastly, 25% of files fragmented into two parts is fragmented

57



Chapter 3 – A contemporary investigation of NTFS file fragmentation

out-of-order, and this rate quickly increases with the number of fragments.
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Chapter 4

Reconstructing timelines:
from NTFS timestamps to file
histories

This chapter is based on the paper Reconstructing timelines: from

NTFS timestamps to file histories, by Jelle Bouma, Hugo Jonker,

Vincent van der Meer, and Eddy van den Aker, which was accepted at

the 16th International Workshop on Digital Forensics (WSDF 2023),

and published in the proceedings of the 18th International Conference

on Availability, Reliability and Security [WSDF23]. It was awarded the

Best Research Paper Award of the workshop WSDF @ ARES 2023.

Abstract File history facilitates the creation of a timeline of

attributed events, which is crucial in digital forensics. Timestamps

play an important role for determining what happened to a file.

Previous studies into leveraging timestamps to determine file

history focused on identification of the last operation applied to

a file. In contrast, in this chapter, we determine all possible file

histories given a file’s current NTFS timestamps. That is, we infer

all possible sequences of file system operations which culminate

in the file’s current NTFS timestamps. This results in a tree

of timelines, with root node the current file state. Our method

accounts for various forms of timestamp forgery. We provide

an implementation of this method that depicts possible histories

graphically.
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4.1 Introduction

A major goal of digital forensics is to construct a timeline of events. Specifically,

placing digital evidence (incriminating as well as exculpatory) correctly on possible

timelines is a key goal of digital forensics. For example, suppose a hacked computer

is seeding a torrent file of illegally downloaded content. It is rather relevant whether

the seeding started before or after the computer was hacked. In some cases, this

can be determined via the timestamps of relevant files. File timestamps log,

amongst others, the effect of file operations: when a file last was written to, was

last read, or was last accessed.

Operations on a file have a deterministic effect upon the file’s timestamps.

That is: executing an operation on a file will cause the file’s timestamps to be

updated in a specific, predetermined way, based on the time the operation was

executed and the initial timestamps of the file. Moreover, different operations can

affect timestamps differently. Therefore, assuming (see Sec. 4.8) no tampering and

a monotonically increasing clock, a given set of timestamps can only result from a

limited set of file operations. In addition, each of these possible operations imposes

certain requirements on the values of the timestamps prior to its execution. As

such, it is possible to determine the set of possible operations that were last

applied to a file, i.e., the operations that could have led to that set of timestamps.

By applying this recursively, we can reconstruct all histories of a file possible

for a given set of operations. Moreover, some timestamp forgery approaches

have detectable, distinctive effects and can, thus, be included in this history. We

consider our method sufficiently mature to be used by practitioners.

This chapter focuses on RQ3, which is stated as: To what extent can file

history be recovered from file timestamps?

Contributions. The main contribution of this research is a method to determine

all possible histories of a file, given a set of operations. This method is based on:

1. determining, for each operation, its effect on timestamps,

2. inverting these effects and determining under which constraints this inverse

may be applied,

3. reasoning back from the file’s current timestamps by matching these inverse

effects.

Secondly, we develop a proof-of-concept toolchain implementing this method for

the NTFS file system. This allows us to visualise the histories (sequences of oper-

ations) possible given the file’s current timestamps. Our toolchain, which includes
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timestamp effects of an initial list of file operations, can support practitioners in

executing the proposed method.

Availability. We provide two proof-of-concept tools that together implement

the presented method. Both tools are publicly available on GitHub. The tool

TimestampAnalyzer [artefact-Bou21] implements the history-inference method;

the tool TimestampVisualizer [artefact-vdAke21] parses TimestampAnalyzer’s

output and presents it graphically.

4.2 Background

New Technology File System (NTFS). The NTFS file system has been the

default on Windows systems since Windows 2000. It stores information about

files in a Master File Table (MFT). An MFT-entry contains metadata as well

as disk allocation data for that file. Entries have multiple attributes for storing

metadata; timestamps are stored as part of an entry’s $STANDARD INFORMATION

(SI) and $FILE NAME attributes (FN) [web-MS09].

Timestamps in NTFS. A timestamp denotes when a certain event has taken

place. The NTFS file system stores eight timestamps per file in the file’s entry in

the MFT. Operations on files cause changes to anywhere between zero and eight

timestamps. We therefore treat these eight timestamps as separate data points.

Four timestamps are stored in a file’s SI attribute, and another four are stored

in the file’s FN attribute. Timestamps are stored in units of 100 nanoseconds

(10−7 seconds) since 1601-01-01 00:00:00 UTC. As such, timestamp values are not

affected by local time zone or daylight saving time.

Timestamps are also stored in a file called $Logfile, which is stored in the root

of any NTFS volume. Cho [Cho13] has not observed any differences between the

values of the timestamps stored in the $Logfile from those in the MFT.

4.3 Related work

The importance of timestamps in digital forensics has long been established in

literature. For example, Buchholoz and Spafford [BS04] address importance of

file system metadata (including timestamps), and discuss considerations and

limitations that arise when trying to answer when and where a file came from,

and who was responsible for the actions that generated the observed metadata.
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Effect of file operations on timestamps. Timestamps change when file

operations are executed. This can be leveraged for forensic purposes. In 2007,

Chow et al. [CKL+07] were one of the first studies to describe the effects of file

operations on timestamps. They did this for both files and folders, using 3 SI

timestamps from NTFS. The authors introduce timestamp rules to describe the

effect of a file operation, warning to not apply these rules without considering

timestamp-forgery. In their 2009 study, Bang et al. [BYK+09] expanded upon

this work by adding the FN timestamps for NTFS and the FAT file system, and

their expected values for a set of file operations and FAT timestamps. With

these timestamp rules, the authors demonstrate how to identify manipulation of

timestamps. In 2011, Bang et al. [BYL11] expanded upon their previous study by

analyzing file operations and their effects on timestamps for Windows from 2000

up to Windows 7. In addition, the authors observe different timestamp effects

when modifying a file via Notepad vs. via MS Word. This suggests application-

specific timestamp behaviour. By using a superincreasing sequence function,

Cho [Cho16b] presents a method to identify file operations that were performed on

a file. This method however does assume that the previous timestamps are known,

in order to identify the correct file operation. Ho et al. [HKW18] also investigated

file operations and their affect on timestamps, and expand that to cloud access

behavioral patterns. They present observation rules for 7 file operations applied to

a public cloud environment (OneDrive) and a private cloud environment (Hyper-V

Management). In a 2021 study, Oh et al. [OLH21] created a tool called NTFS

Data Tracker to identify and group all information related to a single file. This

tool uses data from both the $MFT and $LogFile, and uses a Simulation of MFT

Transaction technique. With it, they demonstrated they can reconstruct a file’s

history based on the available information in the $LogFile.

Timestamp manipulation detection. Timestamps can be manipulated. Var-

ious works have investigated detection of manipulated timestamps. Ding and

Zou [DZ11] proposed a cross-reference time-based approach to detect timestamp-

manipulation. With the Windows Registry as their cross-reference source for a

given set timestamps and derived timestamp rules, they demonstrate how certain

timestamp manipulations can be detected. Cho [Cho13] showed in 2013 how $Log-
File can be used as a source for timestamp validation. Based upon the timestamp

effects for seven file operations, he derives new rules that the timestamps must

adhere to. When the timestamp rules are violated, the $LogFile can give con-

clusive evidence when the forgery occurred. In a subsequent study, Cho [Cho14]

described timestamp changing patterns based on file operations. He presented
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ten distinguishable patterns which can be conclusively attributed to specific file

operations. To the best of our knowledge, this is the first work that aims to

identify the last operation that was performed on a file. Jang et al. [JAH+16]

presented a methodology to identify timestamp manipulation. Much like earlier

work, they derive effects of operations on timestamps and build upon this. This

resulted in equations of relations between $MFT and $LogFile, violation of which

indicates timestamp manipulation. Palmbach and Breitinger [PB20] consider

alternative sources of information for detecting timestamp manipulation. These

include prefetch files, $USN journal (an NTFS log file), link files, and Windows

event logs. None of the tested artifacts individually constitutes a reliable source

of information, as each of them can be manipulated. However, the more sources

of information included in a forensic analysis, the harder it is to manipulate all

artifacts consistently.

Other impacts on timestamps. Other studies have considered timestamp

effect beyond those of regular operations and timestamp manipulations. Schatz

et al. [SMC06] report on system clock behaviour, one of the factors that influence

timestamp reliability. They characterize the behaviour of drifting clocks and

describe ways to correlate timestamps to events by using other, more reliable

source(s). Willassen [Wil08] expanded upon their work, presenting a methodology

for determining whether or not the system clock was altered using causality

of timestamps. Galhuber and Luh [GL21] showed that, in addition to regular

file operation and their effects on timestamp, many applications have specific

timestamp effects not matching regular file operations. This gives rise to a

potentially enormous set of operations with unique timestamp effects. While it

may seem impossible to detect timestamp forgery in the face of this multitude

of options, it turns out that most timestamp tools have telltale limitations (e.g.,

setting timestamps to full seconds), which allows their effects on timestamps to

be distinguished from other operations. Lastly, Nordvid and Axelsson [NA22]

examined whether different operating systems treated file systems equally. For

the exFAT file system, they experimented with Windows, MacOS and Linux, and

conclude that not all file system drivers implement the specification equivalently.

Small differences exists in how each operating system stores exFAT timestamps.

4.4 Methodology: reasoning backwards

As previously stated, the goal is to arrive at the set of possible histories of a file.

More specifically, each element in this set is an ordered list of operations that may

63



Chapter 4 – Reconstructing timelines:
from NTFS timestamps to file histories

have been applied to the file, with the last operation in the list culminating in

the file’s current state. Note that some sequences of operations are not possible.

For example, creation must be the first operation; it cannot be preceded by other

operations. To arrive at such a set of lists, we first determine how to denote a

file’s current state and make a selection of file operations to consider.

Next, for each file operation under consideration, we determine what effect

it has on file state. Note that an operation can impose very specific effects on

file state. This implies that the state of a file whose metadata lacks this telltale

signature cannot be the direct result of that specific operation. For example,

suppose an operation initialises all timestamps to the same value. A file whose

timestamps are all equal may then be the direct result of this operation; however,

a file whose timestamps vary, cannot.

Next, we determine for each operation its effect on file state. Then, we

determine what the previous state of a file was, if the current state is the result of

the operation under consideration. That is, we determine the effect’s inverse. As

mentioned, some operations cannot possibly have resulted in a given state. Such

operations must thus be excluded for this transition in a file’s history.

Given the inverse state transition for each operation, and the requirements

that state transition imposes on the resulting timestamp, we can then reason

backwards to reconstruct the set of all possible lists of operations applied to the

file, given a specific list of file operations and a specific state of a file.

4.5 Effect of operations on timestamps

In this section, we discuss the effect of operations on NTFS timestamps. To that

end, we first establish notation of file state and a list of file operations to consider.

File operations have different effects depending on “modifiers” – system settings

under which (some) operations have a (slightly) different effect on timestamps.

Last, we measure the impact of these modifiers separately.

Selecting file operations. There is no consensus in literature on a canonical

list of file operations to include for timestamp research. We align with previous

studies by including the basic file operations (create, access, delete), operations

for altering file metadata (rename and attribute change), and basic file system

operations affecting two MFT entries (variants of move and copy). This leads to

the following list:

• Create: Create new MFT entry
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• Access: Access file contents

• Update: Modify file contents

• Delete: Mark MFT entry for deletion

• Rename: Change file name in MFT

• Attribute change: Change attribute(s) in MFT

• Copy: Create new MFT entry from source MFT entry, copy on-disk data

• Overwriting copy: Copy, destination is an existing MFT entry

• Move within volume: Updates the file path within the MFT entry

• Move from another volume: Create new MFT entry on destination

volume, marks MFT entry for deletion on source volume

• Overwriting move from other volume: Destination is an existing MFT

entry

4.5.1 Modifiers on file operations

File operation modifiers describe (system) environment changes that affect the

workings of existing file operations. For example, ‘last access updating’ is a

Windows system setting that can be active or not. Among others, the file

operations ‘copy’ and ‘update’ are slightly different depending on this setting. In

this research, we account for the following four file operation modifiers.

File tunneling. To prevent data loss during saving (e.g., in case of write errors),

OS designers invented ‘safe save’. ‘Safe save’ does not save changes to the original

file, but to a new file instead. Once writing this file is finished successfully, the

new file then replaces the original file by removing the original and renaming

the new file. Normally, this file would appear to the user as a newly created

file. To prevent that, Windows introduced file tunneling. Due to file tunneling, a

create or rename operation is treated differently if the OS determines that file

tunneling applies. More specifically, if a file is deleted or renamed, some of its

metadata (incl. certain timestamps, long file name) is cached for a short time

(default: 15 sec). If within this time frame a new file is created with the original

name/path, or an existing file is renamed to the original name/path, that other file

acquires the cached metadata. Note that, while file tunneling is intended to offer
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functionality for ‘safe save’, its implementation does not check for intent. That

is, file tunneling occurs when its preconditions are met, irrespective of whether a

‘safe save’ operation was intended.

Last access updating. The last access timestamp value indicates the most

recent event when the file was accessed. This feature is controlled by a registry

setting, and was by default disabled for Windows Vista, 7, 8 and early builds of

Windows 10. Since Windows 10 build 1607 (August 2016), last access updating is

by default enabled for volumes smaller than 128 GB. The actual update of the

last access timestamp itself is typically first cached in memory, not immediately

written to disk. Writing the new timestamp to disk can be postponed by up to

an hour [web-MS22].

Transfer from FAT/exFAT. Occasionally, files are copied from a non-NTFS

file system onto an NTFS file system. As the originating file system may differ

in which timestamps are tracked, and to what resolution, the NTFS copy’s

timestamps may bear recognizable traces of the file’s origin. In this chapter, we

investigate the effects of transferring files from FAT and exFAT file systems, two

file systems widely used for portable storage media (memory cards, USB keys,

portable hard disks).

The modified effects from file-operations originating from FAT or exFAT

primarily come from limitations that these file systems have compared to NTFS.

FAT only tracks three timestamps per file (SI 1, SI 2 and SI 4). The SI 1
timestamp is stored in 10 milliseconds (or 0.01 seconds), and the SI 2 timestamp

is stored with a resolution of two seconds [web-MS22]. The SI 4 timestamp is

different: it is stored with an accuracy of one day for FAT. However, none of the

operations under consideration transfer the SI 4 timestamp from FAT to NTFS

systems. FAT also does not store any timezone information, whereas NTFS

stores timestamps in UTC, making them ‘resistant’ to time zone changes or

daylight savings time. exFAT (Extended File Allocation Table) solves some of the

limitations FAT has. From a timestamp perspective, the same set of timestamps is

available, i.e. SI 1, SI 2 and SI 4. The accuracy of both the SI 1 and SI 2 timestamps

is now 10 milliseconds. SI 4 has a resolution of 2 seconds, but again, no operation

under consideration transfers it to NTFS.

Directories. We follow Bang et al.’s approach [BYK+09] to measure timestamp

effect of operations on directories separately from that on regular files. This

makes sense, as directories are MFT entries like regular files, except that some
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operations (overwriting copy, overwriting move from another volume) cannot be

applied to them.

4.5.2 Measuring the effect of operations

For each combination of the considered file operations and file operation modifiers,

we determine the effect on NTFS timestamps. As mentioned previously, the official

documentation and existing literature is insufficient to determine these effects.

Therefore, we perform experiments to measure the impact of each operation on

timestamps. The process of performing the experiments consists of four steps:

1. Set up the environment with the volumes and files to be tested.

2. Read all the timestamps of the testfiles.

3. Perform the file operation on all the testfiles.

4. Read all the timestamps again and determine all the differences.

We perform tests for all Windows versions from Windows XP to Windows 11, for

the following setup:

• Windows settings with last access updating enabled or disabled

• Files with filesizes ranging from 1 kb to 10 GB.

• Files with different extensions (i.e. .jpg, .exe, .txt)

Experimental setup. Since NTFS file timestamps are stored in the Master

File Table, the effects of a file-operation can be observed in the MFT. We used

RawCopy [web-Sch22a] to make an image of the test-volume before and after

the file operations are performed, and used Mft2Csv [web-Sch22b] to extract the

timestamps in a human-readable form from the MFT.

4.5.3 Experiment results

Notation. In this work, we consider file state as determined by the timestamps

of an NTFS file. We denote the timestamps as SI = (SI 1,SI 2,SI 3,SI 4) for

the SI timestamps and the FN timestamps as FN = (FN 1,FN 2,FN 3,FN 4).

These are abstractions of the created, modified, record changed, and accessed

timestamps. When considering the state transition resulting from a specific file

operation, timestamps before the operation are denoted as SI and FN ; timestamps

67



Chapter 4 – Reconstructing timelines:
from NTFS timestamps to file histories

Operation SI ′,FN ′

Create (opstart , opstart , opstart , opstart )
(opstart , opstart , opstart , opstart )

Access (SI 1, SI 2, SI 3, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Update (SI 1, opend , opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

Delete (SI 1, SI 2, SI 3, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Rename (SI 1, SI 2, opstart , SI 4)
(SI 1, SI 2, SI 3, SI 4)

Attribute change (SI 1, SI 2, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

Copy (opstart , src.SI 2, opend , opstart )
(opstart , opstart , opstart , opstart )

Overwriting copy (SI 1, src.SI 2, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

Move within volume (SI 1, SI 2, opstart , SI 4)
(SI 1, SI 2, SI 3, SI 4)

Move from other volume (src.SI 1, src.SI 2, opend , opstart )
(opstart , opstart , opstart , opstart )

Overwriting move from other volume (src.SI 1, src.SI 2, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

Table 4.1: Timestamp effect of file operations (no modifiers)

post-operation are denoted as SI ′ and FN ′. Finally, we denote the time when

an operation starts as opstart and the time when it ends as opend . Treating

timestamps symbolically abstracts away from irrelevant details such as the speed

of the storage device being used, and instead highlights the effect of the specific

operation under investigation.

We denote the effects of file operations under a modifier by showing the same

table (with measurements for the non-modifier case) in gray, with any changes in

regular black. Operations whose behaviour remains unchanged under a modifier

are omitted from the table.

Table 4.1 shows the effects of the file operations on timestamps. These values

were established without any modifiers enabled.

For example, for copy we see that the target file’s timestamps are affected: all

FN values are set to the starttime of the operation (opstart ), the SI 2 timestamp is
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set to the source file’s SI 2 timestamp (src.SI 2), SI 1 and SI 4 are set to operation

starttime (opstart ) and finally SI 3 is set to operation endtime (opend ). We found

no difference in the effect of file-operations for the different versions of Windows,

file size or file extension.

File tunneling. Table 4.2 lists the operations whose behaviour is affected by

file tunneling, and their behaviour under this operation. In short, in some cases,

SI 1 and FN 1 take their value from the original (now removed) file’s SI 1 and FN 1

timestamps, respectively.

Operation SI ′,FN ′

Create (del .SI 1, opstart , opstart , opstart )
(del .FN 1, opstart , opstart , opstart )

Rename (del .SI 1, SI 2, opstart , SI 4)
(SI 1, SI 2, SI 3, SI 4)

Copy (del .SI 1, opstart , opstart , opstart )
(del .FN 1, opstart , opstart , opstart )

Move within volume (del .SI 1, SI 2, opstart , SI 4)
(SI 1, SI 2, SI 3, SI 4)

del : the file with the same exact path and name as this file, that was deleted prior to this
operation (within the File Tunneling time window).

Table 4.2: Modifiers: File Tunneling (“safe save”)

Last access updating. Effect on timestamps of file operations when last access

updating is active is presented in Table 4.3. If the system crashes before last

access updating is effectuated, the timestamps will not be updated beyond what

was presented in Section 4.5.3. From the table, it is clear that enabling last access

updating only affects timestamp SI 4.

Transfer from FAT / exFAT. The results for file operations regarding incom-

ing files from FAT and exFAT are presented in Tables 4.4 and 4.5 respectively.

Directories. We measured the effect of the considered file operations upon

directories. The results of this are presented in Table 4.6; the only change from

Table 4.1 is for the update operation, w.r.t. SI 4.
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Operation SI ′,FN ′

Access (SI 1, SI 2, SI 3, opstart )
(FN 1, FN 2, FN 3, FN 4)

Update (SI 1, opend , opstart , opend )
(FN 1, FN 2, FN 3, FN 4)

Copy (opstart , src.SI 2, opend , opend )
(opstart , opstart , opstart , opstart )

Overwriting copy (SI 1, src.SI 2, opstart , opstart )
(FN 1, FN 2, FN 3, FN 4)

Move from another volume (src.SI 1, src.SI 2, opend , opend )
(opstart , opstart , opstart , opstart )

Overwriting move from other volume (src.SI 1, src.SI 2, opstart , opstart )
(FN 1, FN 2, FN 3, FN 4)

Table 4.3: Modifiers: Last access updating

4.5.4 Effects of timestamp forgery

Lastly, we illustrate the potential of our file histories method to detect timestamp

forgery. To that end, we determine the effects of three timestamp forgery ap-

proaches: two basic Windows system calls and a popular timestamp forgery tool.

The effects of each of these are presented in Table 4.7.

Approach 1: SetFileTime. Timestamps can be altered by the Windows

system call SetFileTime. This system call allows to set the SI 1, SI 2, and SI 4
timestamps in whole seconds. Timestamp changing tools using this call are thus

limited to changing only these three timestamps with conspicuous values. While

in theory it is possible for these three timestamps to all three be exact whole

seconds for most operations, in practice, this is a strong indication of tampering.

Approach 2: NtSetInformationFile. Another way of manipulating times-

tamps is through the undocumented NtSetInformationFile Windows system call.

This system call can set the SI 1,SI 2 and SI 4 timestamps to any user specified

values with full precision.

Approach 3: Timestomp. Lastly, we consider Timestomp, a timestamp

manipulation tool. Timestomp uses the NtSetInformationFile system call [Cho16a].

Nevertheless, like other timestamp manipulation tools, it limits accuracy of altered

timestamps to full seconds. These stand out from NTFS’s default resolution of 100
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Operation SI ′, FN ′

Copy (opstart , valB, opend , opstart )
(opstart , opstart , opstart , opstart )

Overwriting copy (SI 1, valB, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

Move from FAT volume (valA, valB, opstart , opstart )
(opstart , opstart , opstart , opstart )

Overwriting move from FAT volume (valA, valB, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

valA: src.SI 1 rounded up to centiseconds (0.01 second) plus time zone difference (tzd);
valB: src.SI 2 rounded up to even seconds plus tzd .

Table 4.4: Modifiers: Transfer from FAT

Operation SI ′, FN ′

Copy (opstart , valB, opend , opstart )
(opstart , opstart , opstart , opstart )

Overwriting copy (SI 1, valB, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

Move from exFAT volume (valA, valB, opend , opstart )
(opstart , opstart , opstart , opstart )

Overwriting move from exFAT volume (valA, valB, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

valA: src.SI 1 rounded up to centiseconds (0.01 second);
valB: src.SI 2 rounded up to centiseconds

Table 4.5: Modifiers: Transfer from exFAT

nanoseconds. This is a strong indication of tampering, though most operations

could theoretically result in such values.

4.6 Deducing possible file histories from NTFS
timestamps

With the effects of file operations on the SI and FN timestamps, we have laid the

groundwork for reconstructing possible timelines. The concept will be introduced

with a simplified running example. First, we can describe the state of a file along

with its eight timestamps. When a file undergoes multiple file operations, its

state and its timestamps change accordingly. For example, in Figure 4.1 a file
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Operation SI ′,FN ′

Update (SI 1, opend , opstart , opend )
(FN 1, FN 2, FN 3, FN 4)

Overwriting copy operation not applicable to directories
Overwriting move from another volume operation not applicable to directories

Table 4.6: Directories

Method SI ′,FN

SetFileTime() (valA, valB, opstart , valD)
(FN 1, FN 2, FN 3, FN 4)

NtSetInformationFile() (any1, any2, any3, any4)
(FN 1, FN 2, FN 3, FN 4)

Timestomp (valA, valB, valC, valD)
(FN 1, FN 2, FN 3, FN 4)

valA, valB, valC, valD: any value, rounded to whole seconds.
anyi: any value, up to full precision.

Table 4.7: Effect of API / tool timestamp manipulation

is first created, then updated, and, lastly, renamed. After each state transition,

its timestamps are updated (changes in bold italic red) according the timestamp

rules described in the previous section.

Figure 4.1: Example: forwards evolution of timestamps under file operations

We see that the update operation changes SI 2 and SI 3, leaving all other

timestamps unchanged. Similarly, rename overwrites all FN timestamps with

copies of the original’s SI counterparts and changes SI 3, leaving the other three

timestamps unchanged.

With the forwards evolution of timestamp established, we can now apply this

reasoning backwards to determine previous allowed states of the file. Assume that

you find a file in a certain state with SI(10, 12, 13, 10) and FN(10, 12, 11, 10).

In Figure 4.1, this state was the result of the rename operation. If we now apply

72



4.6 – Deducing possible file histories from NTFS timestamps

the inverse of the effect of the rename operation on the timestamp, we arrive at

a state where we do not know any value of the FN timestamps, as they were

overwritten. We do know what the SI timestamp should be in that previous state

– namely, precisely the values of the FN timestamp of the current state. This is

depicted graphically in Figure 4.2.

Figure 4.2: Example: backwards reasoning and information loss

The inverse effects of file operations on timestamps are described in Table 4.8.

Some timestamps are overwritten by the operation; for these, no information of

its previous state is available (denoted as ‘?’ in the table). This table allows us

to consider not one, but all operations at each turn. For each file state under

consideration, we can try to apply the inverse of each file operations. Not all

inverses will be possible, for example, for state St in Figure 4.2, only rename and

copy (source) are possible. No other file operations could result in that state’s

timestamps. In general, most file operations can only result in certain values for

timestamps. For example, the timestamps following a create operation are all

equal. Therefore, any file state whose timestamps are not all equal, cannot be the

result of a create operation. In other words, this imposes a constraint on (relations

between) values for timestamps which can follow from a create operation.

Note that in Table 4.8, unlike in Table 4.1, we must distinguish between source

and target for overwriting copies/moves. This is because for overwriting copy and

overwriting move, two files must have existed previously: source and target. For

all other operations, there is only one “ancestor” file.

For a state to result from a specific file operation, certain conditions have to

be met, depending on the operation. These conditions are specified in Table 4.9.

In addition to operation-specific constraints, there are constraints related to

operation start/end time. We refer to these collectively as ‘OPTIMING’. The

first type of OPTIMING constraint is that operations cannot end before they

start. Thus, all timestamps set to opstart must have values smaller than or equal

to any timestamp set to opend . Second, under a monotonically increasing system

clock, operation start/end time must always be later than timestamps copied

from the previous state. The last OPTIMING constraint is that if more than

one timestamp is set to opstart , all such timestamps must be equal. This holds
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Operation SI t−1, FN t−1

Create N/A
N/A

Access (SI 1, SI 2, SI 3, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Update (SI 1, ?, ?, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Delete (SI 1, SI 2, SI 3, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Rename (FN 1, FN 2, FN 3, FN 4)
(?, ?, ?, ?)

Attribute change (SI 1, SI 2, ?, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Copy (source) (?, SI 2, ?, ?)
(?, ?, ?, ?)

Overwriting copy
– target (SI 1, ?, ?, SI 4)

(FN 1, FN 2, FN 3, FN 4)
– source (?, SI 2, ?, ?)

(?, ?, ?, ?)

Move within volume (FN 1, FN 2, FN 3, FN 4)
(?, ?, ?, ?)

Move from another volume (source) (SI 1, SI 2, ?, ?)
(?, ?, ?, ?)

Overwriting move from another NTFS volume
– target (?, ?, ?, SI 4)

(FN 1, FN 2, FN 3, FN 4)
– source (SI 1, SI 2, ?, ?)

(?, ?, ?, ?)

Table 4.8: Previous state for file operations for
SI t = (SI 1,SI 2,SI 3,SI 4), FN

t = (FN 1,FN 2,FN 3,FN 4)

similarly for opend .

For brevity, we abstract away from stating all such constraints explicitly and

denote these as ‘OPTIMING’ in Table 4.9. The opstart and opend columns indicate

which timestamps are set to operation starttime and which for operation endtime,

respectively. Lastly, note that, for both overwriting operations, the constraints

apply equally to both source and target, and there is no further information on

which to base any further constraints for either.

Using these constraints, we can extend the example of Figure 4.2. A more

extended, but still not complete, example of backwards reasoning is shown in

Figure 4.3. We see branching, when a state could have been the result from

more than one operation. We also see that information loss occurs, e.g., when

timestamps are overwritten as by the rename operation. Lastly, we see that
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Operation Constraint opstart opend

Create SI i = FN j , for i, j ∈ {1, . . . , 4} SI 1...4, FN 1...4

Access True
Update OPTIMING SI 3 SI 2

Delete True
Rename OPTIMING ∧ FN i = SI i, i ∈ {1, 2, 4} SI 3

Attribute change OPTIMING SI 3

Copy OPTIMING SI 1,4, FN 1...4 SI 3

Overwriting copy OPTIMING SI 3

Move within volume OPTIMING ∧ FN i = SI i, i ∈ {1, 2, 4} SI 3

Move from another
volume OPTIMING SI 4, FN 1...4 SI 3

Overwriting move from
other NTFS volume OPTIMING SI 3

Table 4.9: Constraints operations impose on timestamps

applying the backwards reasoning process recursively, we can end up in a state

where no information on timestamp values is known anymore (S′
t−2 in the figure).

There might still be more file history preceding this state, but nothing is known

about this.

Figure 4.3: Example: backwards reasoning with branching and different
branch-lengths
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4.7 Proof of concept implementation

We implemented and realized the presented methodology of reasoning backwards

in two proof-of-concept tools: a timestamp analyzer and a visualisation tool.

4.7.1 Timestamp analyzer

This tool is configured with a list of file operations, where, for each operation,

its effect on timestamps must be specified. We supply the list of operations and

effects as discussed in the previous section. Operations that do not affect any

timestamp are removed from consideration, as these can occur infinitely often at

all points in a timeline. For our previously established list, this concerns first, the

access operation when last-access-updating is not active, and second, the delete

operation. Below, we describe three aspects (one concept and two algorithms) of

the implementation.

Tracking information loss. To track loss of information in progressive steps

of reasoning backwards, we use the concept of markings. A timestamp is marked

when its value was changed due to the preceding file operation. This implies a

loss of information: the value of a marked timestamp prior to the file operation

that caused its marking is unknown and may not be used.

File operations can also unmark a timestamp. Unmarking is the reverse of

marking: it denotes a gain of information, which occurs when a timestamp’s new

value originates from a known source. For example: the rename operation sets

SI ′3 to opstart(which is thus marked), but also sets FN ′
1 to SI 1, FN

′
2 to SI 2, etc.

Thus, we can still derive each of SI 1...4 from FN ′
1...4.

Match-operation algorithm. The matching algorithm is responsible for iden-

tifying file operations compatible with the current state. As input, it is given the

timestamps, markings, and a candidate file operation. If no constraint is violated,

then the given state could have resulted from this operation and the algorithm

returns True. In addition to the criteria presented in Table 4.9, the algorithm

also takes constraints following from modifiers (Tables 4.3–4.6). This includes

time-resolution constraints following from modifiers ‘transfer from FAT/exFAT’

(Tables 4.4, 4.5).

Timelines construction algorithm. The Timelines construction algorithm

recursively builds all possible timelines of a given file state. Each timeline consists
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of a sequence of one or more file operations matching the state of the file at that

point in the sequence (timestamps, markings). A sequence terminates when it

encounters a create operation, or when no more operations can be matched to

the file state. The latter can occur either due to complete loss of information, or

when no file operation can match the available information.

Detecting timestamp forgery. Our proof-of-concept implementation consid-

ers timestamp forgery for timestamps. Our tooling adds a forgery branch only

when:

1. not all information has been lost yet,

2. no regular operation can have caused the timestamps under consideration,

3. the timestamps match the requirements induced by Table 4.7.

Implementation limitations. The proof-of-concept has only been tested on a

limited number of MFTs and has not been optimised; quality attributes such as

scalability and performance were not part of our testing process.

4.7.2 Visualisation tool implementation

This tool creates a visualisation of all possible timelines based on the output of the

analysis tool. To illustrate the use of this visualisation tool, we show in Figure 4.4

a visualisation of the analysis of a file that underwent comparable file operations

as our running example. The only difference is that these are real timestamps,

instead of simple numbers.

The visualisation is oriented like a timeline, with time increasing to the right.

States further left are older, with the current (known) state depicted rightmost.

The time at which an operation has taken place is noted in the black titlebar.

When multiple operations lead to an identical state, they are grouped together

for readability purposes. A file state that does not contain sufficient information

to match any file operation is preceded by a question mark instead of another

file state. This denotes that there is insufficient information to go back further in

time.

4.8 Discussion

System clock monotonicity. Our method relies on the key assumption that

the system clock is monotonically increasing. This cannot be correct in all
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circumstances: switches from daylight savings time to regular time set the clock

back. Similar problems may occur when system time is synchronised (e.g., via

NTP) and the system clock drifts too far ahead, requiring the system clock to be

wound back. Moreover, it is typically trivial to change the system clock.

Information loss. Our method for backwards reasoning inherently suffers from

information loss. Therefore, each reconstructed timeline has a finite horizon of

how far back our method can reconstruct possible file states. Possible file histories

beyond a file’s horizons cannot be reconstructed via this method.

Forensic limitations. Our approach supports reasoning about any file oper-

ation. However, our proof-of-concept analysis tool is only seeded with a list of

basic file operations. Concretely, it lacks application-specific file operations. We

recommend practitioners to follow our approach to determine the timestamp

effects of file operations for any applications that they wish to incorporate into the

reasoning framework. Expanding the list suffices to incorporate new file operations

into the tooling.

4.9 Conclusion and future work

In this chapter we presented a novel method to reconstruct an overview of allowed

histories of a file based on its timestamps. We discussed how to measure the

timestamp effect of operations with and without modifiers (file tunneling and last

access updating), and apply this to a set of basic file operations. The measurements

reveal that operations can result in a file state where there are specific relations

between some of the timestamps (Table 4.8). Our method leverages this to derive

previous states: a certain file state cannot be the result of a given file operation,

unless the state’s timestamps all satisfy the relations required by the operation

(Table 4.9). Thus, certain operations can be excluded as having caused the

current state. This gives a set of possible previous file states. By recursively

applying this process, our method can construct all allowed histories of a file, for

the operations under consideration. This is fundamentally different from prior

timestamp studies, which limit their approach to identifying only the last possible

operation. In contrast, our method constructs a set of timelines of events. Lastly,

we implemented our method in a proof-of-concept and showed viability of this

approach to construct file histories.

The described method can be readily used by practitioners to reconstruct

possible file histories. This will help them to substantiate or refute timeline-related
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hypotheses.

Future work. First, to improve practical use, the list of file operations can be

expanded with application-specific file modifiers.

Second, the presented method of reconstructing possible file histories is based

on the timestamp values stored in the MFT. Possible timeline reconstruction

can be improved upon when sources of previous timestamp information can be

included, such as log files, link files, or prefetch files [PB20]. With such additional

points of information, information loss would be reduced and therefore the timeline

horizon could be improved.

Last, the algorithms of the proof-of-concept tool are operation-agnostic. That

is, they will accept any list of operations. Moreover, information loss ensures that

our process for determining timelines always terminates for the operations from

Table 4.1. It is possible that information loss of some other, not yet considered

operations is insufficient to guarantee termination. That is, some operations could

exist that jointly cause cyclical patterns in the reconstructed timeline. How to

detect this and how to handle such occurrences are left for future work.
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Part II

JPEG validation

Highlights:

• Design and demonstration of a novel algorithm capable of

detecting fragmentation points in JPEG files, addressing a

key challenge in digital forensics.

• Implementation ([artefact-vdBvdM23]) and thorough vali-

dation of the artefact.

• Extensive evaluation of the proposed methods using real-

world datasets, demonstrating their effectiveness and ap-

plicability for validation and file recovery. This effectively

solves a long standing problem in the field of Digital Foren-

sics.
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Chapter 5

JPEG file fragmentation point
detection

This chapter presents an adapted version of the paper, JPEG File

Fragmentation Point Detection using Huffman Code and Quantiza-

tion Array Validation, by Vincent van der Meer and Jeroen van den

Bos, which was accepted at the 14th International Workshop on Dig-

ital Forensics (WSDF 2021), and published in the proceedings of the

16th International Conference on Availability, Reliability and Secu-

rity [WSDF21].

Abstract File carving is a data recovery technique used in

many investigations in digital forensics, with some limitations.

Especially JPEG files are difficult to recover when fragmented,

because they consist almost entirely of large blobs of highly com-

pressed entropy-coded data, with no clearly discernible structure.

This chapter describes an approach that leverages two obser-

vations about many JPEG files in practice. First, the Huffman

tables used to decode a large proportion of the entropy-coded

data often do not use all possible code values at their longest

code length, offering possibilities to detect errors when invalid

codes are encountered. Second, after translating Huffman codes

to symbols, the next step in decoding involves filling quantization

arrays with exactly 64 values, offering another possibility to detect

errors when an overflow is encountered.

This chapter presents algorithms to validate the entropy-coded

data using these two observations and finds that the odds of finding

fragmentation points are quite high, especially with regard to

invalid Huffman codes. It will work with the example Huffman

tables provided by the JPEG standard that are used by many

digital cameras, but also with many optimized Huffman tables

generated by specialized applications.
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5.1 Introduction

Many investigations in digital forensics rely on data recovery. Apart from suspects

hiding or removing information, accidents or acts of violence often physically dam-

age devices making their contents no longer directly accessible. A key technique

in data recovery is file carving, which is a process of recovering files that is not

based on metadata (e.g., such as file system information) but on recognizing the

internal structure of file types. Using this technique, many types of files can be

recovered quickly and reliably from a raw copy of a device’s contents.

A complication that often arises when file carving is file fragmentation: file

systems commonly split files into multiple pieces for performance reasons. Basic

file carvers, that look for the magic values in the headers and footers of many file

types cannot recover fragmented files. To recover fragmented files, more advanced

carving tools are required that reconstruct fragmented files. However, this requires

a method to determine where the actual fragmentation has occurred (i.e., where

the end of a fragment is located).

For this purpose a file validator is employed: a recognizer for a specific file

format that, when given a potential file, responds whether it indeed qualifies as

a valid instance of that file type and ideally also provides detailed information

about where an error occurred if the answer is no. Whether it is complicated or

even possible to construct a validator for a specific file type that can accurately

determine the location of such a fragmentation point depends on the internal

structure of that file type.

Arguably the most important file type in digital forensics is JPEG: by a

significant margin, the JPEG file format is the most widely used digital storage

format for photos [HLN+18]. It is used used for images in any media, on digital

cameras, on websites, social media and in any other type of application. In

order to effectively carve JPEG files, a file validator is needed that is capable of

accurately identifying the fragmentation point when reading from the start of a

JPEG fragment. JPEG has a fairly simple file structure, but because almost its

entire contents is not guarded by values such as length fields, checksums or other

easily identifiable markers, constructing a file validator with this capability for it

is non-trivial.

In this chapter we present a novel approach to validate the entropy-coded data

of JPEG files based on detecting invalid Huffman codes and quantization array

size overflows. Our contributions consist of both the two validation approaches as

well as the described algorithms that incorporates both. The algorithms presented

are capable of validating baseline as well as progressive JPEGs. In the following
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section we discuss the background of both file fragmentation, the file structure

of JPEG and the encoding and decoding processes. Next, we discuss some

observations that lead to our description of the validation algorithms, followed

by the description of an example showing how the algorithm works in practice.

Finally, we analyze the success rate, discuss limitations, considerations and related

work.

This chapter focuses on RQ4, which is stated as: To what extent can entropy-

coded JPEG data be validated?

5.2 Background

5.2.1 File fragmentation in practice

File fragmentation occurs in many situations: file systems use it on storage media,

protocols in network streams and operating systems in how they allocate memory.

Since file carving is performed most commonly on storage media such as hard

drives and flash chips, we focus here on aspects specifically relevant to file systems,

but the principles apply everywhere.

File systems allocate files on storage media. The smallest amount of data

they allocate is called a block. For the NTFS file system commonly used on

Windows systems, the default size of these blocks is 4096 bytes for volumes up to

16 TB [web-MS21]. So whenever a file is stored in a file system, it takes up at

least one single block 1 but in many cases it will take up multiple blocks, up to

thousands or millions for extremely large files. File systems use this technique

in order to support very large storage devices with relatively modest metadata

overhead.

A file is considered fragmented when its blocks are not stored both contiguously

and in-order. Files thus need to have two blocks or more allocated to them to

become susceptible to file fragmentation. A file fragment consist of one or more

contiguous blocks that form a part of a file. This type of fragmentation occurs

because of churn on the file system: when a system is in use, its operating system

regularly creates, resizes and removes files. When storing and resizing a file on a

volume with a lot of activity, the operating system often has no other choice but

to cut it into fragments in order to store it in the available space.

Some research has been done on analyzing the fragmentation rate on storage

media. In a dataset that consists of file systems gathered between 1998 and 2006,

Garfinkel [Gar07] reports a 6% fragmentation rate. Meyer and Bolosky [MB12]

1Except for small files that can sometimes be stored in the file system’s metadata.
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report a 4% fragmentation rate in 2012. In Chapter 2, we reported a 2.2%

fragmentation rate for all files, and a 4.4% fragmentation rate for files that can

be fragmented. Despite a slowly decreasing fragmentation rate, the amount of

fragmented data has increased in that time period due to exponential increases in

average storage media size.

5.2.2 The JPEG file format

The JPEG image file format is the predominant file format for photos by a

significant margin [HLN+18]. Since its introduction in 1992, it quickly became

the de facto standard in many domains. The JPEG standard is extensive and

offers many extension points and implementation options, but in practice nearly

all files encountered in practice use lossy compression using Huffman encoding

and are serialized into one of two popular file formats that adhere to the JPEG

Interchange Format (JIF). These two formats are the JPEG File Interchange

Format (JFIF) and an extension of it that is popular among digital cameras

called Exchangeable Image File Format (EXIF). The JPEG specification allows

for 16 types of encoding of image data (SOF0–SOF15). In practice, two types

of encoding are used: baseline JPEGs (SOF0, Fig. 5.1) and progressive JPEGs

(SOF2, Fig. 5.2). Baseline JPEGs must be encodable/decodable in a single scan

of the image data. Progressive JPEGs require more than one scan.

JPEG uses various transition and encoding techniques to transform pixel color

values to highly compressed image data. A typical JPEG file is the result of the

following transformations:

1. Color conversion from RGB to YCbCr. This transformation is lossless, as it

only separates brightness from color data.

2. 2D Discrete Cosine Transform (DCT), which is also lossless.

3. Quantization of DCT-coefficients, using a quantization matrix. This trans-

formation is lossy.

4. The quantization matrix is mapped using a zig-zag pattern, and encoded

with either delta (the first coefficient) or zero run-length encoding for the

remaining coefficients. Both encodings are lossless.

5. Huffmann encoding to further compress the remaining data (lossless).

A JPEG file consists of two types of data: metadata needed for decoding, and

image data (also called entropy-coded data) that is actually decoded when viewing
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an image. The metadata specifies how the image should be decoded. JPEG files

are self-contained since they contain the values of the quantization tables along

with information needed to construct the Huffman tables.

Markers. The JPEG format uses markers for structure. Markers (also called

magic values) are reserved two-byte values that may not be used for other purposes.

These markers denote the the type of serialized data structure and length fields

to simplify parsing. The marker values all start with byte value 0xFF followed by

a byte that specifies its meaning. For example, there are markers for start/end

of image, type of encoding, metadata, etc. (see Table 5.1). By definition, each

JPEG file starts with a start of image (SOI) marker and ends with an end of

image (EOI) marker. The start of scan (SOS) marker indicates the start of

an entropy-coded data segment, and the first such marker thus is the separator

between header and content of a file. The header contains all information needed

for decoding such as information on how many color channels an image has

(part of start of frame (SOF) marker), whether, and what type of chromatic

subsampling is used (also part of the SOF marker), what values should be used

for quantization (DQT marker), and compressed representations of the Huffman

tables (DHT marker) that should be used.

Symbol Hex value Meaning

SOI FFD8 Start of Image
APP0 FFE0 JFIF metadata
APP1 FFE1 Exif metadata
DQT FFDB Define quantization table(s)
SOF0 FFC0 Start of frame, baseline DCT
SOF2 FFC1 Start of frame, progressive DCT
DHT FFC4 Define Huffman table(s)
DRI FFDD Define restart interval
SOS FFDA Start of scan
RSTn FFDn Restart (n ∈ {0, 1, ..., 7})
EOI FFD9 End of image

Table 5.1: Most important JPEG Markers

The SOI, DQT, SOF and DHT data structures constitute only a few kilobytes

of a typical JPEG file of several megabytes as produced by any modern mobile

phone or camera. The rest of the data is in one or more so-called Scans following

the SOS structure and terminating right before the EOI. Within this entropy-

coded data some escaped values (starting with 0xFF) are allowed, but these are
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rare in practice.

As a result, any JPEG file larger than a couple of kilobytes will consist almost

entirely of entropy-coded data, which is highly compressed and does not contain

any checksums, length fields or other hints to easily determine whether the contents

has been corrupted or fragmented. A single exception to this are restart markers,

which is an optional mechanism specified by the JPEG standard that allows

numbered markers to be inserted into the entropy-coded data specifically to detect

errors. Unfortunately, the mechanism is optional and it is rarely encountered in

practice (in our experience, but also as reported by Tang et al. [TFC+16]).

Decoding compressed image data. At the lowest level, the JPEG format

stores the values of each 8×8 block of pixels in a Minimal Coded Unit (MCU). An

MCU contains either one (Y) or three (YCbCr) color channels. Each color channel

is described by a two-dimensional 8 × 8 data structure called the quantization

array (QA). The QA is stored as follows: the lengths of the quantization values

are Huffman-encoded. In addition, the decoded Huffman values also encode how

many (if any) zeroes must be placed in the quantization array before the actual

value. The actual values are stored directly in the bitstream.

Figure 5.1: Example JPEG baseline file structure

Progressive encoding. Progressive JPEGs, as previously mentioned, mandate

sequential scans since the image is constructed of multiple layers of image data,

with each subsequent layer adding additional image detail. The occurrence of

markers within the high-entropy-coded data section of a progressive JPEG differs

compared to a baseline coded JPEG. Not only does each layer start with a SOS

marker, each layer can be accompanied by new Huffman tables, indicated by the

presence of a DHT marker.

Support for file recovery. In terms of file recovery, JPEG has some major

shortcomings. While it does have identifiable markers, it lacks integrity checks
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Figure 5.2: Example JPEG progressive file structure

(like CRC) or length fields that encompass the image data. Additionally, its design

prioritizes data storage optimization, meaning that image data has high-entropy.

By prioritizing compression over robustness, the JPEG file format’s design severely

complicates file recovery.

5.3 Fragmentation point detection for JPEG

Fragmentation point detection. In file recovery, sometimes a file needs to

be reconstructed from fragments that consists of one or more consecutive blocks

of data, found on a storage device. This is generally a difficult task, since the file

system metadata with the allocated blocks for that file is missing.

In order to successfully carve fragmented JPEG files, a validator is needed

that can accurately pinpoint where inside a provided candidate file the fragment

ends. This will allow the file carver to remove or reshuffle the blocks around only

that location in order to more quickly find a valid file. If validation concludes

successfully, the file is reconstructed from the used blocks. If the validator returns

an error, the reported location helps the carver determine in which block the

fragmentation occurred. The validator reports the last known good location. The

more precise the validator’s information is, the smaller the search space that the

file carver needs to consider.

If the fragmentation occurs near the start of a JPEG file, then this is fairly

easy: the first data structures have clear markers, length fields and a well-defined

structure. Unfortunately, this only concerns the first few blocks as the rest of a

JPEG file is mostly entropy-coded, highly-compressed data. This chapter describes

a method to easily and quickly validate many parts of this entropy-coded data by

looking for invalid Huffman codes and possible size overflows when constructing

quantization arrays.
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5.3.1 Validation using Huffman table lookup errors

A large proportion of the entropy-coded data consists of Huffman codes, which

when mapped to their symbol are either directly used or refer to a value in the

data following the code. Because of this it is difficult to directly describe the

percentage of data that consists of Huffman codes, since both Huffman codes and

values have variable sizes. In practice, it seems reasonable to expect more than

50% of the entropy-coded data to consist of Huffman codes.

Instead of storing the Huffman tables directly, the DHT data structure describes

the symbols and a list of code lengths to be generated by the decoder. Since this

algorithm is fixed in order to guarantee interoperability, the resulting Huffman

table is always the same and the DHT structure is just a form of compression.

These Huffman tables consist of a list of codes of variable length and their

accompanying symbols. Whenever a code is encountered in the input, it is

translated to its symbol for further interpretation. An example of such a table is

shown in Table 5.2, which shows one of the default Huffman tables provided by

the JPEG standard (and as such, used by many encoders).

Code Length

00 2

010 3

011 3

100 3

101 3

110 3

1110 4

11110 5

111110 6

1111110 7

11111110 8

111111110 9

Table 5.2: One of the default Huffman tables

Huffman codes are generated in such a way that there is never any ambiguity

during decoding: the shortest possible matching stream of bits that matches a

code always maps to that code, since there is never a longer code with that value

as prefix. An observation that holds on many Huffman tables (including all the

default tables provided by the JPEG standard) is that often not all combinations
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of the longest code length are all used, such as the code 111111111 (of length 9)

which does not appear in Table 5.2.

This is actually a side-effect of design choice in the algorithm to keep its

complexity low. For example, in Table 5.2, it would have provided a marginally

better compression rate to have two tokens of size 8, instead of one of size 8 and

one of size 9. This would have kept the table identical, except that it would have

eliminated the trailing 0 on the longest code and would have ensured that all

codes of valid sizes could be translated. In many cases, it would simply not be

useful to map each possible code at the highest length to a useful symbol, leaving

the possibility for codes of valid length to exist that do not map to any symbol.

Due to this design, there is an opportunity to validate a stream that uses a

Huffman table with this characteristic. In the above example of Table 5.2, whenever

a Huffman code of length 9 is encountered, this value must be 111111110, since

111111111 is of the same length but not defined in the Huffman table.

5.3.2 Validation using quantization array overflows

The process of decoding Huffman codes into symbols leads to values that must

be stored in a quantization array. Each first code maps to a length value that

describes a value that appears in the data after the Huffman code, which must

be stored in the first location in the quantization array. The following Huffman

codes map to symbols that each encode two 4-bit values in a single byte. These

two values (along with possibly some additional bits in the input) represent a

run-length encoded description of one or more values to be inserted into the

quantization array.

This process leads to another possibility to detect errors in the entropy-coded

data. If the description leads to an overflow in filling out the quantization array,

an error has been detected in the data.

An example of such an error is that if 62 of the 64 values in the array have been

filled, only a few possible values are allowed: two descriptions of two individual

values of a single byte, a run-length encoded description with a size that equals

2 bytes or the terminator special value that denotes that the rest of the array

consists of zeros. Any other value that appears is invalid since it would lead to an

overflow of the specified quantization array size.

5.3.3 Entropy-coded data validation

When validating the entropy-coded data, some considerations need to be taken.

First, JPEG allows escaped values in the entropy-coded data, that always start
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with 0xFF, so whenever at the start of a full byte this value is encountered, it

needs to be interpreted according to the rules defined. This can include restart

markers, a literal byte value of 0xFF or another marker (only EOI is allowed).

Any incorrect values encountered at this level will immediately lead to a

validation error. Examples are a restart marker without the header of the JPEG

specifying them or a restart marker with an incorrect increment. Additionally, an

escaped value that does not need to be escaped or an EOI marker not at the end

of a logical block of decoded data both also denote a validation error.

The smallest amounts of data that can be decoded together are called Minimum

Coded Units (MCU). In our example we will assume a non-chromatic subsampled

baseline JPEG. The principles apply to all other common variants, but are left

out here to simplify the description.

An MCU consists of 3 color channels (Y, Cb, Cr), and each color channel

has 64 coefficients stored in a 8*8 matrix. The first value of this matrix is a

DC value, and decoded using a Huffman table specifically defined for DC values.

The next 63 values are AC values, and decoded using a separate Huffman table

specific to AC values. As such, an MCU can be seen as a 3*8*8 matrix (or as 3

8*8 matrices). DC (Direct Current) values represent the average color intensity

of an image block, capturing the baseline level of brightness. AC (Alternating

Current) values, on the other hand, detail the variations in color intensity and

texture within the block, encoding the finer details and contrasts. Together, DC

and AC values enable efficient image compression by separately managing basic

intensity and intricate details.

5.3.4 Algorithm for baseline JPEGs

The pseudocode for baseline JPEG validation is detailed in Algorithm 1. This

algorithm demonstrates how to leverage the two bit-level validation techniques to

detect fragmentation points in baseline JPEGs.

The error checks are the bold-faced If-statements in Algorithm 1. If they

evaluate to true, an error has been encountered in the entropy-coded data and

the location of the byte where the associated data was read from is reported as

the first location where validation failed. The block this location resides in can

then be considered to not be part of a valid JPEG file and a fragmentation point

has been identified: the end of the directly preceding block.
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Algorithm 1 JPEG Baseline validation algorithm

[For each color channel] (once for each matrix in the MCU), perform the following
steps:

1. Set QAcounter to 1, b to empty bitstring.
2. while (b is not a valid Huffman code)

add next bit of bitstream to b
If no valid Huffman code found after maximum Huffman code length:
validation error, report last known good location.

3. Convert b to symbol via DC Huffman table.
4. Interpret the symbol as integer and skip this amount of bits; (re)set QAcounter

to 1.
5. Until QAcounter is 64, perform the following steps:

5.1. Read bits from bitstream until the shortest valid Huffman code is encountered
If not found: validation error, report last known good location.

5.2. Use AC Huffman table to convert found code to symbol.
5.3. # Validate quantization array

Interpret the symbol:

5.3.1. If the symbol is 0x00: the quantization array is complete, set QAcounter
to 64, skip to next iteration.

5.3.2. If the symbol is 0xF0: add 16 to QAcounter.

5.3.3. For all other values, split symbol into upper and lower nibble.
• Add int(upper nibble) + 1 to QAcounter

• Skip int(lower nibble) number of bits in bitstream
5.4. If counter > 64: validation error, report last known good location.

6. # Validation succeeded
return true

5.3.5 Validation of progressive JPEGs

Progressive JPEGs contain multiple Start-of-scan (SOS) markers. Moreover,

all progressive JPEGs use spectral selection encoding. This encoding method

necessitates multiple scans, each refining the image’s detail level. Spectral selection

affects how QA-overflow validation works. Lastly, progressive JPEGs may also

make use of successive approximation encoding. Both encodings enable additional

validation opportunities.

Spectral selection. Spectral selection only fills the quantization array for a

specific range of values, starting from the first value. Each scan (indicated by

a SOS-marker) adds a specific number of values to the quantization array. The

number of values to be added is part of the SOS-marker. This alters the QA-
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overflow validation method, since each SOS-marker determines the upper bound

for QA-indices to be filled for that scan.

JPEG structure validation using SOS markers. Each SOS marker must be

present from the first bit following completion of the previous scan. In addition,

each next SOS marker must cover QA-indices adjacent to the previously filled

range. Violating either of these requirements constitutes a validation error.

Successive approximation. Successive approximation is a refinement of spec-

tral selection. In successive approximation, quantization values are stored per

8 bits. In the first scan (denoted as ‘DC-first’ or ‘AC-first’ in the validation

algorithm), a bit sequence of at least one bit (commonly 6 or 7 bits) is decoded.

In the refinement scans, a single bit per quantization value is added. This means

that the decoded Huffman value for a refinement scan must have a lower nibble

with value ‘1’, since the lower nibble of the decoded Huffman value determines

the number of bits to be read. A lower nibble with a different value than ‘1’ in a

refinement scan thus constitutes a (coefficient length) validation error.

5.3.6 Algorithm for progressive JPEGs

The description here only shows the validation mechanisms related to Huffman

table lookup errors, quantization array size overflow, and violations of the single-

bit refinement used in successive approximation. Interestingly, JPEGs need not

be optimally encoded. The specification itself leaves room for suboptimal (or

inefficient) use of Huffman encoding as well as suboptimal run-length encoding.

Such inefficiencies are still valid within the JPEG standard, and thus do not cause

a validation error.

The validation algorithm has four separate decoding phases. Initial quantiza-

tion values are set in the ’DC-first’ and AC-first’ phase, respectively. Progressive

JPEGs that only use spectral selection only use these two phases, the other two

phases are only used for JPEGs containing successive approximation encoded

values. More specifically, the ’DC-refine’ and ’AC-refine’ phases add bits to an

existing QA-value.

The resulting validation algorithm is split up in the Main Algorithm 2, and

its four subalgorithms, namely Algorithms 3, 4, 5 and 6.
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Algorithm 2 JPEG progressive validation: main algorithm

Main algorithm
1. For each SOS-marker:

(a) Determine SOS-type & validate spectral selection range:
DC-first, DC-refine, AC-first, or AC-refine

(b) For all channels in this scan, for each MCU:
perform relevant validation case

2. # validation succeeded
return true

Algorithm 3 JPEG progressive validation: DC-first

1. Set b to empty bitstring.
2. while (b is not a valid Huffman code)

add next bit of bitstream to b
If no valid Huffman code found after maximum Huffman code length:
validation error, report last known good location.

3. Convert b to symbol via DC Huffman table.
4. Interpret the symbol as integer and skip this amount of bits;

Algorithm 4 JPEG progressive validation: AC-first

1. Set QAcounter to start-of-spectral-selection, b to empty bitstring
2. while (b is not a valid Huffman code)

add next bit of bitstream to b
If no valid Huffman code found after maximum Huffman code length:
validation error, report last known good location.

3. # Validate quantization array
Interpret the symbol:

3.1. If the symbol is 0x00: the quantization array is complete, skip to next
iteration.

3.2. If the symbol is 0xF0: add 16 to QAcounter.
3.3. For all other values, split symbol into upper and lower nibble.

• Add int(upper nibble) + 1 to QAcounter
• Skip int(lower nibble) number of bits in bitstream

4. If QAcounter > end-of-spectral-selection: validation error, report last known
good location.

Algorithm 5 JPEG progressive validation: DC-refine

Case: DC-refine
1. skip one bit for each MCU.
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Algorithm 6 JPEG progressive validation: AC-refine

1. for QAcntr = SpectralSelection-start to SpectralSelection-end:

(a) while (b is not a valid Huffman code)
add next bit of bitstream to b
If no valid Huffman code found after maximum Huffman code
length: validation error, report last known good location.

(b) Split the symbol into a symbol into upper and lower nibble.
(c) # Check for coefficient length error

If the lower nibble is not 1:
validation error, report last known good location.

(d) Read one bit, add its value to the least significant position at QAcntr.
(e) Set ZSKIP = upper nibble (i.e., #zeroes to be skipped)

If ZSKIP > zeroes available in spectral selection range:
validation error, report last known good location.

(f) Skip ZSKIP zeroes in the bitstream

5.3.7 Runtime-performance

Our algorithm, designed for integration with a file carver, is not I/O-intensive.

Compared to the tasks performed by a standard JPEG decoder, our implementa-

tion involves a subset of these operations, primarily focusing on image validation

rather than display. Based on this, we anticipate that the algorithm will not

significantly impact the overall runtime performance of a file carver.

5.4 Example and analysis

In this section we provide an example that shows the validation of a single MCU

from a JPEG file, as a practical illustration of the algorithm. Additionally, we

analyze how quickly the algorithm would be expected to detect an error when

encountering incorrect data. Finally, we discuss some of the considerations and

limitations of applying this approach in practice.

5.4.1 Example: validating a single MCU

Table 5.5 contains a representation of 10 bytes that together make up a single

MCU from a JPEG file generated by the GIMP application on Linux2. Since

2We omit a detailed description of the process and settings since any JPEG file that employs
Huffman compression should suffice for this example.
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GIMP generates optimized Huffman tables, the example MCU does not use the

standard tables as defined by the JPEG standard. Table 5.3 (for DC values)

and Table 5.4 (for AC values) show the generated optimized Huffman tables as

decoded from the JPEG file that contains the example MCU. In this case, a total

of 4 Huffman tables were generated, which is common.

Furthermore, the file is a baseline (as opposed to progressive) encoded JPEG

that does not employ chroma subsampling. As discussed before, all principles

apply across all common types of JPEG files, but this configuration was chosen

because of its relative simplicity for this example.

DC#0 DC#1

Code Symbol Code Symbol

0 00000101 00 00000000

10 00000100 01 00000001

110 00000110 10 00000100

1110 00000010 110 00000010

11110 00000011 1110 00000011

Table 5.3: Decoding example: DC Huffman tables

Table 5.5 has five columns. The first column (Offset) contains the relative

offset of the value in the MCU. The second column (Values) contains the value

of the byte(s) at that offset in binary encoding. Two bytes are shown when

applicable, and this illustrates clearly how Huffman-compression crosses byte

boundaries. The third column (Huffman table lookup) refers to a translation

from a Huffman code to a symbol, if that row contains such an action. First,

the applicable Huffman table is named (referencing the names in the headers of

Table 5.3 and Table 5.4) and next to it the code that was matched. The translated

value (the symbol) appears as a result of the lookup in the appropriate Huffman

table. If no match is found the validation fails.

The fourth column shows the interpretation, in case something else needs to

be done except translate a Huffman code to a symbol. In all cases this refers to

interpreting the resulting symbol, along with skipping bits in the input, which

would normally be read as a value to be stored in the quantization array. Since

a validator is not interested in decoding a JPEG file but simply recognizing it

for validation purposes, the actual values are ignored and instead a counter is

incremented to note that a value would have been read.
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AC#0 AC#1

Code Symbol Code Symbol

00 00000001 00 00000000

01 00000010 01 00000001

100 00000011 10 00010001

1010 00000000 110 00000010

1011 00000100 11100 00000011

1100 00010001 11101 00010010

1101 00100001 111100 00100001

11100 00010010 111101 00110001

11101 00110001 1111100 00010011

111100 01000001 1111101 00100010

1111010 00100010 1111110 01000001

1111011 01100001 11111110 01010001

11111000 00000101

11111001 00010011

11111010 00010100

11111011 00010101

11111100 00100011

11111101 01010001

11111110 10100001

111111110 10110001

Table 5.4: Decoding example: AC Huffman tables
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Offset(s) Values Huffman table lookup Interpretation Counter

0 11001111 DC#0: 110 ⇒ 00000110 One value: skip 6 bits, counter = 1 #1=1
0, 1 11001111 11011110 6 bits skipped
1 11011110 AC#0: 1011 ⇒ 00000100 No zeros, one value: skip 4 bits, counter+1 #1=2
1, 2 11011110 00110111 4 skipped bits
2 00110111 AC#0: 01 ⇒ 00000010 No zeros, one value: skip 2 bits, counter+1 #1=3
2 00110111 2 skipped bits
2, 3 00110111 00010010 AC#0: 11100 ⇒ 00010010 One zero, one value: skip 2 bits, counter+2 #1=5
3 00010010 2 skipped bits
3 00010010 AC#0: 00 ⇒ 00000001 No zeros, one value: skip 1 bit, counter+1 #1=6
3 00010010 1 skipped bit
3, 4 00010010 00001010 AC#0: 00 ⇒ 00000001 No zeros, one value: skip 1 bit, counter+1 #1=7
4 00001010 1 skipped bit
4 00001010 AC#0: 00 ⇒ 00000001 No zeros, one value: skip 1 bit, counter+1 #1=8
4 00001010 1 skipped bit
4 00001010 AC#0: 01 ⇒ 00000010 No zeros, one value: skip 2 bits, counter+1 #1=9
4, 5 00001010 11111001 2 skipped bits
5 11111001 AC#0: 111100 ⇒ 01000001 4 zeros, one value: skip 1 bit, counter+5 #1=14
5 11111001 1 skipped bit
6 11101011 AC#0: 11101 ⇒ 00110001 3 zeros, one value: skip 1 bit, counter+4 #1=18
6 11101011 1 skipped bit
6, 7 11101011 00110100 AC#0: 1100 ⇒ 00010001 1 zero, one value: skip 1 bit, counter+2 #1=20
7 00110100 1 skipped bit
7 00110100 AC#0: 1010 ⇒ 00000000 Fill with zeros, counter=64, next array #1=64
7, 8 00110100 11010000 DC#1: 01 ⇒ 00000001 skip one bit, counter = 1 #2=1
8 11010000 1 skipped bit
8 11010000 AC#1: 01 ⇒ 00000001 No zeros, one value: skip 1 bit
8 11010000

8 11010000 AC#1: 00 ⇒ 00000000 Fill with zeros, counter=64, next array #2=64
8, 9 11010000 00110010 DC#1: 00 ⇒ 00000000 Skip 0 bits, counter=1 #3=1
9 00110010 AC#1: 01 ⇒ 00000001 No zeros, one value: skip 1 bit #3=2
9 00110010 1 skipped bit
9 00110010 AC#1: 00 ⇒ 00000000 Fill with zeros, counter=64, next MCU #3=64

Table 5.5: Decoding example: entropy-coded data representing a single MCU in a JPEG file.
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5.4.2 Detecting errors

The example in Table 5.5 covers only 10 bytes but has many opportunities for

validation errors to occur: 18 times a Huffman code is read from the input. Since

none of the four generated Huffman tables use all possible values at the longest

code size, every time a Huffman code is read it can potentially have a correct size

but an incorrect value (e.g., for DC#0 in Table 5.3 this would be 11111, since the

only defined code at length 5 is 11110). In addition, three quantization arrays

are filled, which can all potentially lead to a size overflow if more than 64 values

are defined for it in the input.

As a result, these 10 bytes constituting a single MCU have 21 validation

opportunities. In order for this validation approach to be usable to detect a

fragmentation point in the entropy-coded data of a JPEG file, only one single

validation needs to fail in an entire block that typically has a size of 4096 bytes

(or bigger).

5.4.3 Practical analysis

To gain an idea of the potential usefulness in practice, the following sections

investigate the success rates of both methods of validating entropy-coded data.

They are separately discussed since they have different characteristics, mostly

because they operate on different levels: the Huffman codes are directly present

in the data while the quantization array values are discovered after a step of

decoding. For both methods, we assume a block size of 4096 bytes since that is

the minimum encountered in practice on all modern systems.

Invalid Huffman codes

Each Huffman table lookup has a chance of failing, which in turn fails validation

on the entire JPEG file, which indicates that the current block is not part of a

valid JPEG file. The success rate of this approach depends on both the maximum

length of each Huffman table that is used, as well as the amount of lookups that

are performed within a block. In the example in this section, the chance for a

failed lookup for each Huffman table is (1/2)5 (DC#0), (1/2)4 (DC#1), (1/2)9

(AC#0) and (1/2)8 (AC#1). These values represent the chance of encountering

an invalid bit at the end of a string of bits of the longest size in the respective

Huffman table.

On average, in this example 1.8 lookups are performed per byte. Extrapolated

to 4096 bytes, that would result in more than 7,000 lookups per block. Given
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that only one lookup needs to be erroneous to establish that a fragmentation

point has passed, the odds of this method being successful are extremely high

even though each individual chance is low. However, considering JPEG files with

longer maximum Huffman code sizes, the odds change, but since every JPEG

potentially has a different set of tables, it is difficult to estimate a realistic worst

case.

Quantization array size overflows

The success rate of a validation failure caused by a quantization array size overflow

depends not on reading a single value in the input data, but relies on a longer

sequence of AC-huffman table lookups that together cause the total size to overflow.

A typical MCU consists of three quantization arrays. A small investigation of

different JPEG images made with different cameras shows that there are between

490 and 640 arrays per block.

As with detecting invalid Huffman codes, only one quantization array size

overflow is needed for validation to fail. In reference to the algorithm explained in

Section 5.4.3, the loop at step 3 must be repeated without 3.2.1 occurring or the

loop finishing at exactly 64. The chance of this happening will be dependent on

both the used quantization tables while encoding (i.e., the lower the compression

due to quantization, the higher the chance of success), as well as the Huffman

code used to decode the special 0x00 symbol. The longer that specific Huffman

code is, the higher the chance of detecting a quantization array size overflow.

Given the high interdependence between many factors it seems unhelpful to

speculate about practical odds. These factors include the sizes of the relevant

Huffman tables, the size of the code in these tables that maps to the special

0x00 symbol and during a decode process how far along the construction of a

quantization array is. Instead, validating quantization array sizes can better

be considered an almost free extra chance to discover errors that incurs no

performance penalty to the validator and may sometimes yield a validation error.

5.4.4 Limitations and considerations

Even though the expected success rate of invalid Huffman code detection looks

promising, this approach has some limitations that must be considered when

applying it in practice.

Empty blocks (zero-blocks) will not necessarily be recognized as incorrect, due

to one or more zeros likely mapping to reasonable symbols in each Huffman table.

However, recognizing and removing (partially) empty blocks is typically a concern
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handled by the file carver that assembles candidate files (e.g., by excluding blocks

with very low entropy as not being candidates for compressed data).

When the validator encounters other JPEG fragments that are encoded with

the same Huffman tables, chances decrease of this validation technique being

successful. However, the entropy-coded data is not automatically byte-aligned,

so fragmentation can occur at any point in the entropy-coded data. Thus,

fragmentation point detection is still possible in this case, but the odds decrease

slightly in case the fragments end up being aligned.

Even if validation does succeed in an entire block that is not part of the

original JPEG file, subsequent blocks can still fail to validate. The first block (or

more) after the fragmentation point will then be missed by the file carver, but in

this way a partial file may potentially still be recovered.

The described approach will work when the default Huffman tables are used,

which are very popular especially with digital cameras. The Huffman tables as

they are presented in the JPEG specification were not meant as a standard, but

were presented as a good reference point. However, these tables became a de facto

standard [web-Has21] because calculating custom Huffman tables for each picture

comes with processing costs, with only limited gains with in compression efficiency.

Since each default table in the JPEG spec has the same property as described

in Section 5.4.3, both the default Huffman tables and many custom-generated

Huffman tables will work with this approach.

5.5 Related work

Since the early 2000s, the recovery of deleted computer files has been a topic of

extensive research, as highlighted by Pal and Memon [PM09]. Recovery strategies

primarily fall into two main categories: file structure and content-based approaches,

though there are other methods and combinations of these methods as well.

JPEG file structure. Research on recovering JPEG files often rely on the

identification of JPEG markers. The work by Mohamad and Deris [MD09] focuses

on the Define Huffman Table (DHT) marker in a JPEG files. By analyzing the

length fields of the DHT marker, they determined how to validate DHT data,

highlighting fragmentation points if the subsequent data fails this validation. The

effectiveness of this method hinges on the frequency of fragmentation within the

JPEG’s DHT section.

In a study on thumbnail carving using image pattern matching, Abdullah et

al. [AIM13] use the fact that each JPEG starts and ends with a Start of image
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(SOI) and End of image marker (EOI). Thumbnails, smaller versions of the original

picture, found within the JPEG header, also use these markers. Therefore, a

JPEG might house multiple SOI/EOI pairs. When tested on the DFRWS 2006

and 2007 datasets, their file carver flagged 4 files incorrectly as thumbnails but

surpassed a benchmark algorithm, recovering 31 compared to the latter’s 28 files.

Validation categories can also be combined: Karresand and Shahmehri [KS08]

use both the restart markers and their expected occurrence within a file in addition

to using metrics in the expected maximum change in luminosity in order to try

to reassemble JPEG files.

In their work, Fei and Adbullah [FA20] introduced a file carver tailored for the

recovery of in-order fragmented JPEGs, using the file’s structure. When tested

on the DFRWS 2006 dataset, this carver successfully retrieved 8 of the 12 JPEG

images.

Content-based approach. The recovery of JPEG files can also be approached

through analyzing the visual representation of its data—a content-based strategy.

Most studies interpreting potential JPEG image data often incorporate knowledge

of the JPEG file structure to optimize their analyses. Memon and Pal [MP06] focus

on file fragment classification and present techniques for image reconstruction.

Using a greedy search algorithm, the sum of differences metric outperformed a

pixel matching strategy for file recovery purposes. Li et al. [LSC+11] delve into

artifacts emerging from fragmented or corrupted data. Notably, they highlight

the DC-values, which are delta encoded, as indicators of sudden color shifts.

Furthermore, they demonstrate that the distribution of AC-values can signal errors

in JPEG data. Uzun and Sencar [US15] propose a method to infer Huffman tables,

subsampling ratios, and quantization values for dealing with a missing JPEG

header. They analyzed statistics from photos uploaded to Flickr to determine

common values for JPEG decoding metadata. Given that 99.5% of the Flickr

dataset was encoded with default Huffman tables, their method offers a reliable

way to discern the remaining decoder settings for JPEG fragments. Birmingham

et al. [BFV17] leverage the embedded thumbnail within the JPEG header to

predict the primary image’s characteristics. By applying a probabilistic model

centered on thumbnail affinity, they showcase this method’s capacity to pinpoint

invalid JPEG data.

Recovery related to metadata. Metadata may be derived from image data,

and be used for image identification. In their research, Thai et al. [TCR+17]

proposed a method to estimate quantization steps for an image originally com-
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pressed as JPEG but later saved in a lossless format. Through their analysis, they

demonstrated that a fingerprint technique could suggest potential true quantiza-

tion steps, achieving over 99% identification accuracy on grayscale images from

the Dresden database (Gloe and Böhme [GB10]).

Unlike traditional digital cameras, smartphones frequently undergo software

updates and setting modifications. In a comprehensive study on Apple smart-

phones, Mullan et al. [MRF19] explored how evolving software might influence

source identification. Using machine learning, they devised classifications from

EXIF data and quantization matrices. Their findings reveal that while EXIF

headers and JPEG quantization table values can effectively differentiate specific

apps or OS versions, identifying images from smartphones proves more challenging

than from standard digital cameras.

Statistics oriented. Another perspective on JPEG recovery involves statistical

analysis. Pal et al. [PSM08] combine syntactical tests (keywords and file head

matching) statistical tests in the form of entropy analysis. With a matching-metric

(tuned with a training-set of images), chances are calculated for the likeliness of

two fragments belonging together. Nescar and Memon [SM09] propose a method

to match JPEG fragments to JPEG headers, based on pattern recognition in the

encoded data. Kadir et al. [KAC15] employed statistical byte frequency analysis

to distinguish groups of JPEG fragments, noting that each image exhibits distinct

characteristics. Their study on 4 JPEG files indicated that byte frequency analysis

unveiled multiple unique patterns. Taking a similar route, Tang et al. [TFC+16]

introduced a novel similarity metric, the Coherence of Euclidean Distance (CED),

to determine if two data blocks belong to the same JPEG. Their results showed

the CED algorithm outshining the Adriot Photo Forensics (APF) in file recovery.

For 3-piece JPEGS, CED recovered 96 out of 109 files, whereas APF managed

66. For 4-piece JPEGS, CED retrieved 61 out of 75, with APF securing only 32.

Lastly, Azhan et al. [AIR+22] developed the Error Level Analysis technique to

pinpoint the distinct signature of 8x8-pixel JPEG blocks. Their tests on 21 JPEG

images demonstrated the uniqueness of each block.

Camera sensor information. Each camera’s sensor introduces unique noise

to an image. This sensor noise can determine if an image originated from a

specific camera (Lukás et al. [LFG06]). Building on this concept, Durmus et

al. [DMT+17] demonstrated how JPEG fragments can be both attributed to a

particular camera and pinpointed to their location within an image, assuming

the originating camera is known. To verify fragment correctness, the researchers
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employed Sum-of-Differences and Histogram Differences. In tests, their method

achieved a true positive rate of 94.2%, correctly identifying 21,713 out of 23,040

fragments. In a subsequent study, Durmus et al. [DKM19] noted the limitations of

their earlier work, especially its potential weaknesses under real-world conditions

due to overlooked brightness and color artifacts. To address this, they introduced

a compatibility metric for fragment matching and subsequent image stitching.

They tested their approach on 2,000 images from a single camera, all converted to

JPEG with identical quality settings. Results showed a 52.4% correct fragment

identification rate for JPEGs at a quality factor of 90, and a 42.0% identification

rate for those at 80.

JPEG file carvers (other). De Bock and de Smet [dBdS16] presented a

novel file carving approach, implemented in the tool JPGcarve, which employs an

external decoder library (libjpeg-turbo) as a validation mechanism for the JPEG

data. While validating JPEG data, the decoder either processes it successfully or

fails, indicating a fragmentation point. The file carver itself includes support for

single- and multifragment file recovery, and search space reduction techniques. In

tests across six datasets, JPEGcarve successfully recovered all multi-fragmented

JPEGs, totaling 46 images.

Further advancing file carving methods, Ali and Mohamad [AM21] introduced

RX myKarve, combining the Extreme Learning Machine and JPEG structure

validation. This dual approach classifies file fragments to distinguish between

JPEG and non-JPEG fragments. Subsequent structure-based carving aids in

JPEG reconstruction. The authors highlight its efficacy, noting the recovery of all

19 images from the DFRWS 2006 dataset and 18 from the DFRWS 2007 dataset.

Generic file recovery. Not all JPEG recovery techniques are exclusive to the

JPEG file format. Generic file recovery approaches can sometimes be applicable

to JPEG. For example, Ying and Thing [YT10] posed file fragment reconstruction

as a graph-theoretic challenge. In a test involving 10 files, their method surpassed

a brute-force technique, successfully restoring all files to their original state.

In a study on hash-based file carving, Garfinkel and McCarrin [GM15] introduce

a modified whole file hashing approach. While the hash value of known files can

identify intact files, this method struggles with fragmented, altered, or incomplete

files. With their hash-based carving technique, centered on individual data blocks

of a target file and leveraging a target hash database, the authors demonstrate

the feasibility of this approach.

Leveraging Convolutional Neural Networks (CNN), Ghaleb et al. [GSF+23]
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unveil a light-weight file fragment classification model. They report enhanced

time efficiency and comparable accuracy to earlier CNNs, achieving 79% accuracy

on the FFT-75 dataset. However, the team echoes prior findings, pointing

out the challenge in classifying high-entropy file fragments due to their lack of

distinguishable statistical patterns.

5.6 Conclusion

Even though file carving is a powerful data recovery technique used in many

investigations in digital forensics, it would be even more useful if it could reliably

recover fragmented files in especially the most relevant file format: JPEG. Unfor-

tunately, JPEG files consist almost entirely of large blobs of highly compressed

entropy-coded data, making it very difficult to construct a reliable validator to

aid file carvers in recovering fragmented files.

In this chapter we describe an approach that leverages two observations about

many JPEG files in practice. First, the Huffman tables used to decode a large

proportion of the entropy-coded data often do not use all possible code values

at their longest code length, offering possibilities to detect errors when invalid

codes are encountered. Second, after translating Huffman codes to symbols, the

next step in decoding involves filling quantization arrays with exactly 64 values,

offering another possibility to detect errors when an overflow is encountered.

This chapter describes algorithms to validate the entropy-coded data in both

baseline JPEGs and progressive JPEGs using these two observations and finds

that the odds of finding fragmentation points in practice are quite high, especially

with regard to invalid Huffman codes. It will work with the example Huffman

tables provide by the JPEG standard that are used by many digital cameras, but

also with many optimized Huffman tables generated by specialized applications.

The next step is to implement this approach to work with a file carver designed

to recover fragmented files and report on practical findings.
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Chapter 6

Problem solved: a reliable,
deterministic method for JPEG
fragmentation point detection

This chapter presents an adapted version of the paper Problem

solved: a reliable, deterministic method for JPEG fragmentation point

detection, by Vincent van der Meer, Jeroen van den Bos, Hugo Jonker,

and Laurent Dassen, which was accepted at the 11th annual Digital

Forensics Research Conference Europe [DFRWS-EU24]. It was awarded

the DFRWS EU 2024 Best Paper Award.

Abstract Recovery of deleted JPEG files is severely hindered

by fragmentation. Current state-of-the-art JPEG file recovery

methods rely on content-based approaches. That is, they consider

whether a sequence of bytes translates into a consistent picture

based on its visual representation, treating fragmentation indi-

rectly, with varying results. In contrast, in this chapter, we focus

on identifying fragmentation points on bit-level, that is, identify-

ing whether a candidate next block of bytes is a valid extension

of the current JPEG. Concretely, we implement and exhaustively

test the deterministic algorithms for finding fragmentation points

in JPEGs, as presented in the previous chapter. Even in the worst

case scenario, our implementation finds over 99.4% of fragmenta-

tion points within 4 kB – i.e., within the standard block size on

NTFS and exFAT file systems. As such, we consider the problem

of detecting JPEG fragmentation points solved.
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6.1 Introduction

Photos can contain crucial evidence in forensics. File recovery (i.e., the reconstruc-

tion of deleted digital files) is an essential forensic capability. Since the JPEG file

format is the most widely used digital storage format for photos [HLN+18], JPEG

file recovery is an important and ongoing field of research. Recovery of JPEG

files is severely hindered by file fragmentation. While not all JPEG files represent

photos, those that do are sufficiently large (a few megabytes) that roughly ∼8%
are likely to be fragmented (Chapter 3, Table 3.4) on NTFS file systems. Exac-

erbating this problem is the fact that JPEG files consist mostly of high-entropy

data, without markers or checksums that can validate partial (nor full) integrity.

This seems to imply that there is hardly any relation between the bytes of a JPEG

file. Consequently, most existing literature on JPEG file recovery has thus focused

on one of two approaches. The first focuses on recovering non-fragmented JPEG

files based on header and footer matching, for example, the works by Karresand

and Shahmehri [KS08] or Fei and Abdullah [FA20]. The second approach focuses

on recovering any JPEG file using visual compatibility, such as the works by Li et

al. [LSC+11] or Tang et al. [TFC+16].

However, in Chapter 5 we showed that there are internal consistency require-

ments for the high-entropy portion of a JPEG file. We proposed a theoretical

algorithm that would leverage these consistency requirements to determine whether

a block of bytes, as stored on-disk, is a valid continuation of an initial part of a

JPEG file. While we showed feasibility, we did not implement our approach and

therefore did not test efficacy.

This chapter focuses on RQ5, which is stated as: How effective are the newly

identified approaches to JPEG fragmentation point detection in real-world JPEGs?

Contributions. In this chapter, we implement, and measure efficacy of the

algorithms introduced in the previous chapter. We implemented a JPEG validator

that reports the exact location where the continuation of a JPEG bitstream

(specifically within the high-entropy-coded data sections) becomes invalid by

1. Huffman code lookup errors, and

2. quantization array overflow.

For the purpose of testing these validation methods, we gathered a sizeable, relevant

dataset ([dataset-vdMee22]) of JPEG files, covering all variants of baseline and

progressive JPEGs occurring in the real world. The performance of our validator

in detecting fragmentation points is tested against these JPEGs. The results
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show that our validator achieves phenomenal performance: for the predominant

encoding (baseline JPEGs), it achieves a success rate of 99.997% in identifying a

fragmentation point.

Availability. An open-source implementation of the algorithm proposed in

this chapter is available for download from our GitHub repository [artefact-

vdBvdM23]. The JPEG datasets, as described in Section 6.3.4, are also included

in this repository. We have compiled a comprehensive list of 230,157 JPEG image

filenames used in our validation process (see Section 6.3.1). Available as a text

file in the repository, this list aids in enhancing transparency and facilitates the

reproduction and validation of our research.

6.2 Construction of a wide-coverage evaluation
test set

To determine efficacy of the algorithms discussed in the previous chapter, we need

a real world, diverse set of JPEGs. There are various possible sources for such

a set, but not all are equally suitable. For instance, platforms like Instagram or

Imgur, which are image-centric social media sites, could serve as potential sources

for JPEGs However, these platforms tend to recompress and/or re-encode images

in order to optimize storage and bandwidth. This leads to little divergence in

relation to used encoders and encoder-settings. An alternative would be photo-

sharing sites, such as Flickr. Such sites tend to preserve the original input to avoid

altering the intended vision of the image. As such, the original input encoder

settings are more likely to be preserved. However, such sites are typically used

for high-resolution photos taken by high-end equipment. This also leads to a bias

in relation to encoders and encoder-settings. The ideal source should offer a wide

range of encoders and/or encoder settings for JPEGs.

One suitable source for this is Wikipedia. Wikipedia requires a very diverse set

of images, from photos to maps to diagrams of electrical wiring, the solar system,

to geometric proofs, to newspaper scans, etc. Succinctly put, any graphically

representable concept can be found on Wikipedia in order to transfer knowledge

about the concept. Moreover, Wikipedia is open to contributions from anywhere

in the world. This leads to the expectation that a large variety of image creators

for a large variety of content can be found there, and thus that a large variety of

encoders would be used.
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6.2.1 Collection & sanitisation

In order to collect JPEG files from Wikipedia, a crawler1 was used with both

wikipedia.org and wikimedia.org as starting points, with a crawl depth of

two. Only files with extension .jpg or .jpeg (case insensitive) were collected,

with a minimal file size of 4097 bytes. 2 We collected 230,157 JPEG files in

January 2022. It is important to note that the media files on Wikipedia are

subject to various licenses, many of which require attribution. Therefore, while

our method of data collection can be replicated, sharing the entire set of collected

images directly is not feasible due to these attribution requirements. To facilitate

research transparency and reproducibility, the filenames of all JPEG files in this

dataset have been compiled and are available in a text file within our GitHub

repository [artefact-vdBvdM23].

Files that did not start or end with a valid JPEG marker (i.e., 0xFFD8 or

0xFFD9) were removed. For bit-identical images, only one image was kept in the

dataset.

6.2.2 JPEG dataset characteristics

Table 6.1 shows characteristics of the collected dataset. As can be seen, baseline

JPEGs are by far the most frequently occurring type of JPEGs.

Marker occurrence. Markers in the entropy-coded data can be leveraged

for validation. Progressive JPEG files contain additional SOS markers in the

entropy-coded data. Both baseline and progressive JPEG files may contain Restart

Markers (RST) in entropy-coded data. However, our data collection shows that

the rate of occurrence of these markers is rare. Only 0.6% of the collected files

are progressive, and only 1.0% of the files contain Restart Markers.

Chromatic subsampling. Chromatic subsampling is an optional JPEG feature

that reduces the resolution of the chrominance color-channels (Cb, Cr). This

reduces the amount of color information by a factor 2 (either horizontal or vertical

subsampling) or 4 (both horizontal and vertical subsampling). Therefore, there

are twice or even four times as many Huffman table lookups (during decoding) for

luminance (Y) compared to a color channel (Cb, Cr). This would bias lookup errors

1WFDownloader
2Smaller files fit into one default-sized NTFS block, which implies they cannot be fragmented

(in default settings). The default block size on exFAT file systems varies with volume size, but
is at least 4096 bytes, so the same reasoning applies.
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Description # files % of total

JPEG files in dataset 230,157 100.0%
Baseline JPEG (SOF0) 228,793 99.4%
Progressive JPEG (SOF2) 1,364 0.6%
– using spectral selection 397 0.2%
– using successive approximation 967 0.4%

JPEGs that include or use
Grayscale 26,359 11.5%
Restart markers 2,309 1.0%
Chromatic subsampling 53,128 23.1%
– horizontal subsampling 13,335 5.8%
– vertical subsampling 1,855 0.8%
– horizontal and vertical subsampling 37,937 16.5%

Table 6.1: JPEG dataset characteristics

to occur more frequently in Huffman tables for the chrominance channel. Nearly

a quarter of all JPEGs in the dataset use a form of chromatic subsampling (see

Table 6.1). The most common form is both horizontal and vertical subsampling.

6.2.3 Huffman code lengths

An important mechanism of validating JPEGs relies on Huffman table lookups

(Sec. 5.3.1). If one or more of a JPEG’s Huffman tables have short maximum

code-lengths, a random bitstream continuation is more likely to trigger a lookup

validation error. Therefore, it is relevant to know what Huffman table lengths

occur in our dataset. The distribution of maximum Huffman table code lengths is

shown in two figures, in Figure 6.1 for Luminance-DC and AC, and in Figure 6.2

for Chrominance-DC and AC.

6.3 Evaluation design

6.3.1 Validating the validator

We deliberately aimed to collect a dataset of JPEGs that would show a broad

diversity in how the file format is used. Even if these violate the official JPEG

specification, these files are in use in the real world and therefore we hold that,

ideally, all these files should be correctly processed. We fed the validator process
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Figure 6.1: Maximum HT code lengths for luminance-DC and luminance-AC

each file in the dataset individually. Our validator (at the time of writing) is

able to correctly process 230,149 of 230,157 files. The 8 remaining files exhibit

rarely occurring deviations of the JPEG specification. If desired, support for these

deviations can still be added in the future.

6.3.2 Choosing fragmentation points

To test the validator’s efficacy, we will feed it a stream of bits from a JPEG file

from the dataset, and then suddenly switch to a random bitstream.

There are three main criteria for determining at which point we want to

break the input stream, which simulates a fragmentation point. First, we will

only fragment JPEGs after the header, since our validation mechanism is only

designed to validate high-entropy coded data sections. The second criteria is

to align with the most frequently occurring block size. The default block size

on both exFAT and (modern) NTFS file systems is at least 4 kB [web-MS21].

Lastly, for robustness, we opt to measure validation performance at two distinct

fragmentation points. These criteria led us to test fragmentation after 16 kB and

after 32 kB.
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Figure 6.2: Maximum HT code lengths for chrominance DC and chrominance AC

6.3.3 Post-fragmentation point data

An important experiment design consideration is what data is presented after a

fragmentation point. JPEG’s entropy-coded data exhibits high entropy. Various

types of file formats tend to use compression, including audio, video, and office

file formats. Compressed data is, by definition, high-entropy data and would

resemble random data. Therefore, we generate and inject random data after the

fragmentation point.

6.3.4 Experiment goals

The main goal of our experiments is to determine efficacy of the validation

algorithms described in Sec. 5.3.4 and 5.3.6. That is, how well do they perform in

identifying fragmentation points? We are interested in:

1. how well they perform against the entire set,

2. the contribution of each validation mechanism to the validation result,

3. evaluating how well validation mechanisms perform in extreme scenarios.

1. Benchmarking validation success. We evaluate our implementation of

the baseline validation algorithm, as introduced in the previous chapter, using
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the SOF0-set of baseline JPEGs. Additionally, we evaluate our extensions for

progressive validation using the SOF2-set of progressive JPEGs. Since our dataset

contains an order of magnitude more baseline than progressive JPEGs, the SOF0

set is 10× as large as the SOF2-set. We select subsets of 1,000 and 100 JPEGs,

respectively, from the baseline and progressive sets, of at least 100 kB. Baseline

JPEGs may optionally contain any of the following: restart markers, gray scale,

or chromatic subsampled JPEGs. Progressive JPEGs may, in addition, also

optionally use successive approximation.

2. Benchmarking the contribution of each validation mechanism. To

this end, we keep track of which validation mechanism raised the error for all test-

sets. We include the new coefficient length mechanism (Sec. 5.3.5), the various

variants of Huffman lookup table and QA-overflow mechanisms, and existing

JPEG file marker mechanisms. It’s important to note that validation halts upon

detecting the first failure, as any subsequent bits would be incorrect, rendering

further validation pointless. These tests thus show which mechanisms trigger

the soonest, not how well a validation mechanism performs. The latter would

require a different kind of experiment, one where other validation mechanisms are

excluded.

3. Benchmarking extreme cases. We consider 3 extreme cases for the

validation mechanisms: HT-max, consisting of 100 JPEGs with the longest

Huffman table codes from the data set; HT-min, consisting of 100 JPEGs with the

shortest Huffman table codes; RST, consisting of 100 JPEGs containing restart

markers.

The length of the Huffman table codes impacts the likelihood of a lookup

error. Longer code length means more bit sequences are valid Huffman symbols.

This implies that the longer the code length, the less likely a bit sequence from

elsewhere triggers a lookup error. The longest code lengths thus constitute a

worst-case scenario for this validation mechanism (HT-max set). Conversely, the

shortest code lengths constitute a best-case scenario (HT-min set). Lastly, the

RST-set is created to test RST-marker validation. Although restart markers are

only present in 1.0% of all JPEG files in the dataset (Table 6.1), RST-markers are

one of the few marker-based validation mechanism usable within the entropy-coded

data sections (aside from SOS markers in progressive JPEGs).
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6.3.5 Execution

Both the SOF0- and SOF2-sets underwent tests at two fragmentation offsets: 16

kB and 32 kB. This approach ensures any validation behavior unique to the 16 kB

fragmentation point will be revealed. For the other datasets, we conducted the

tests using a single fragmentation offset, specifically at 16 kB from the start of

the data, as opposed to the dual 16 kB and 32 kB offsets used for the SOF0- and

SOF2-sets. Each file is tested 100 times, with each of these 100 tests performed

with different random data after the fragmentation point. The number of tests

performed per fragmentation offset is therefore 100,000 for the SOF0 set and

10,000 each for the SOF2, HT-max, HT-min, and RST-sets.

6.4 Results

The evaluation results are shown in Tables 6.2–6.9.

6.4.1 Overall performance

Table 6.2 shows the performance of the algorithms in terms of correctly identifying

the fragmentation point within a number of bytes. In Table 6.3, we present

distribution of the location (in bytes) at which the validation algorithms detected

the fragmentation points in the evaluation. Negative offsets indicate that the last

known good location precedes the fragmentation point.

SOF0 frag. point at SOF2 frag. point at

bytes 16 kB 32 kB 16 kB 32 kB

< 512 88.854% 88.878% 96.97% 93.15%
< 1,024 97.566% 97.607% 98.72% 97.28%
< 2,048 99.849% 99.853% 99.59% 99.21%
< 4,096 99.997% 99.999% 99.78% 99.92%
< 8,192 100.000% 100.000% 99.92% 100.00%

< 16,384 100.000% 100.000% 100.00% 100.00%
≥ 16,384 100.000% 100.000% 100.00% 100.00%

Table 6.2: Fragmentation point detection within given number of bytes
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SOF0 frag. point at SOF2 frag. point at

16 kB 32 kB 16 kB 32 kB

Minimum -3 -2 -1 -25

25th percentile 52 51 8 12

50th percentile (median) 131 129 25 36

75th percentile 285 284 77 124

95th percentile 729 729 340 684

99th percentile 1,272 1,255 1,393 1,963

99.9th percentile 2,193 2,193 5,712 3,773
Maximum 5,675 4,941 11,076 5,810

Table 6.3: Number of bytes from frag. point till validation error (distribution)

6.4.2 Contributions of individual validation mechanisms

Tables 6.4 and 6.5 show the contribution of each validation mechanism to fragmen-

tation point detection. The results are split into two tables, since the validation

mechanisms needed to be adapted, albeit slightly, for progressive JPEGs. In

particular, Huffman encoding validation is performed in four distinct phases

for progressive JPEGs (Sec. 5.3.6). Note that the Coefficient length validation

mechanism did not trigger once in our experiments.

SOF0 validation type frag. point at

16 kB 32 kB

Huffman-DC 25.944% 25.801%
Huffman-AC 0.893% 0.870%
QA-overflow 72.741% 72.979%
Restart marker 0.422% 0.350%
Start of scan marker 0.000% 0.000%
End of file marker 0.000% 0.000%

Table 6.4: Baseline (SOF0): Validation per validation type

In addition, Table 6.6 splits the results per validation type and per channel

(being luminance (Y), blueness (Cb), and redness (Cr) from the YCbCr color

space).
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SOF2 validation type frag. point at

16 kB 32 kB

Huffman-DC First 47.87% 20.00%
Huffman-AC First 1.47% 1.07%
Huffman-DC Refine 0.00% 0.00%
Huffman-AC Refine 0.00% 0.43%
Coefficient length 0.00% 0.00%
QA-overflow 49.55% 76.13%
Restart marker 0.00% 0.00%
Start of scan marker 1.11% 2.37%
End of file marker 0.00% 0.00%

Table 6.5: Progressive (SOF2): Validation per validation-type

6.4.3 Validation performance for extreme cases

Tables 6.7, 6.8, and 6.9, are the counterparts to Tables 6.2, 6.3, and 6.4,

respectively. These tables present the performance of the validation algorithm for

extreme cases (HT-max,HT-min, and RST-sets).

6.5 Analysis of the results

6.5.1 Overall performance

Tables 6.2 and 6.3 show within how many bytes fragmentation was detected.

Table 6.2 present this data in number of bytes used in block sizes on file systems;

Table 6.3 shows the distribution of the number of bytes from the fragmentation

point till a validation error occurred.

First, we consider the position of the fragmentation point: 16 kB vs. 32 kB.

In a rare few SOF2 cases, fragmentation is not detected within 8,192 bytes from

the 32 kB fragmentation point (it always is for the 16 kB point). However, the

distributions associated with the two fragmentation points are rather similar, and

differences in validation performance are tiny. We therefore conclude that no

special validation behaviour should be expected at the 16 kB point.

Secondly, we examine performance on the level of file system blocks. In

Table 6.2, we include the full range of allowed block sizes for completeness sake.

The default block size on NTFS volumes is 4 kB; on exFAT volumes, 4 kB is the

minimum size.3 The main takeaway from the table then is that, for both SOF0

3For exFAT volumes larger than 256 MB, the block size is at least 32 kB.
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Validation type SOF0 frag. point at

16 kB 32 kB

Huffman-DC 25.944% 25.801%
– luminance (Y) 14.143% 13.956%
– blueness (Cb) 6.070% 6.108%
– redness (Cr) 5.731% 5.737%

Huffman-AC 0.893% 0.870%
– luminance 0.245% 0.282%
– blueness 0.478% 0.451%
– redness 0.170% 0.137%

QA-overflow 72.741% 72.979%
– luminance 68.910% 69.098%
– blueness 1.948% 1.941%
– redness 1.883% 1.940%

Table 6.6: Baseline (SOF0): Validation types per color channel

and SOF2 JPEGs, our validator is all but certain to determine fragmentation

occurred within the first file system block following the fragmentation point.

Moreover, the validation mechanism is fully deterministic. These two factors

combined enable file carvers to use more efficient search strategies, since there is

next to no uncertainty in the results of the validation mechanism.

Lastly we consider the distribution of the amount of bytes after the fragmenta-

tion point before a validation error is triggered. In Table 6.3, we see that the last

known good location can occur before the fragmentation point. This can happen

when JPEG-markers or Huffman table values start close to the fragmentation

point. Such cases may end up not continuing / terminating correctly after the

fragmentation point, triggering the validation error. The table also shows that

the distributions are rather skewed. The 95th and 99th percentiles are within 2

kB from the fragmentation point, and even the 99.9th percentile for SOF0 JPEGs

(the most frequently occurring type of JPEGs in our dataset) is slightly less than

half the maximum value found.

6.5.2 Contribution of individual validation mechanisms

In the previous chapter where we proposed the validation algorithm for SOF0

JPEGs, we hypothesized on the use of quantization array overflows that they
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bytes HT-max HT-min RST

< 512 79.74% 95.84% 84.20%
< 1,024 95.21% 99.72% 96.87%
< 2,048 98.81% 100.00% 99.89%
< 4,096 99.41% 100.00% 100.00%
< 8,192 99.74% 100.00% 100.00%

< 16,384 99.90% 100.00% 100.00%
< 32,768 100.00% 100.00% 100.00%
≥ 32,768 100.00% 100.00% 100.00%

Table 6.7: Fragmentation point detection within given number of bytes for
HT-max, HT-min, and RST-sets

HT-max HT-min RST

Minimum -1 -1 0

25th percentile 94 41 78

50th percentile (median) 208 102 175

75th percentile 418 206 359

95th percentile 996 481 871

99th percentile 2,468 758 1,312

99.9th percentile 16,253 1,344 2,049
Maximum 32,766 1,621 2,705

Table 6.8: Number of bytes from frag. point till validation error (distribution)

“may sometimes yield a validation error”. Indeed they do: In Tables 6.4 and 6.5,

we see that the QA-overflow mechanism triggers first in ∼73% of SOF0 cases and

SOF2 cases with a 32 kB fragmentation point.

Interestingly, the SOF2 set at the 16 kB fragmentation point is an outlier. In

this case, the Huffman-DC First validation mechanism shows unexpected strong

performance. This may be linked to properties of progressive JPEGs. In particular,

we recall that progressive JPEGs contain multiple scans of varying length, each

of which allows the use of new Huffman tables. We suspect that the fact that

Huffman tables may be replaced in progressive JPEGs is part of the reason, but

finding a full explanation will require further experimentation.

The difference between the performance of the Huffman-DC and Huffman-AC

mechanisms are explained by the fact that DC-tables have a maximum length of

11, whereas the AC-tables have a maximum length of 16. Amplifying this point,

Figures 6.1 and 6.2 show that the DC-max lengths often are much shorter than
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Validation type HT-max HT-min RST

Huffman-DC 5.61% 28.24% 10.91%
Huffman-AC 0.34% 0.93% 0.36%
QA-overflow 94.03% 70.83% 58.92%
Restart marker 0.00% 0.00% 29.81%
Start of scan marker 0.00% 0.00% 0.00%
End of file marker 0.02% 0.00% 0.00%

Table 6.9: Validation types for HT-max-, HT-min-, and RST-set

their theoretical maximum length compared to their AC counterparts.

When evaluating the results per color-channel (Table 6.6), we see that valida-

tion errors are most frequently detected in the luminance channel. A factor that

plays a role is chromatic subsampling. First, chromatic subsampling is relatively

common (23.1% of SOF0+SOF2 JPEGs). Second, chromatic subsampling reduces

the amount of chromatic data (compared to luminance data) by either a factor

of 2 or a factor of 4. The number of Huffman table lookups for chrominance are

thus reduced by the same factor.

When considering the QA-overflow mechanism, we see an even more dominant

result for the luminance channel. This is not surprising: chrominance is often much

more compressed than luminance in the quantization tables (see e.g., [tech-II92,

Table K.1, K.2]). Chrominance quantization arrays therefore typically contain

significantly less non-zero values than luminance arrays. They are therefore more

likely to contain a “fill out with zeroes” command, which fills out the quantization

array completely and correctly, thereby avoiding triggering a QA-overflow.

6.5.3 Validation performance for extreme cases

The HT-max set represents a worst-case scenario for Huffman-based validation

mechanisms. Validation for this set is indeed significantly hindered, as shown

in Tables 6.7, and 6.8. Table 6.9 shows clearly that the otherwise so reliable

Huffman-DC validation mechanism is kneecapped by this set. In several test cases,

the End of File marker mechanism was even triggered before any other validation

mechanism. This implies that the entire (fragmented) bitstream was considered

valid, except only for the absence of an End of File marker at the correct bit.

Conversely the HT-min set constitutes a best-case scenario for this mechanism.

The distribution of number of bytes before a validation error was triggered is only

slightly better than for the SOF0 set (Table 6.3 vs. Table 6.8). The performance
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of the Huffman-DC mechanism is only slightly better in this best-case scenario

than for the SOF0 set (Table 6.4 vs. Table 6.9). Apparently, the common case is

thus not far off from the best-case scenario.

Table 6.9 shows that ∼30% of all validation errors in the RST-set are due

to the RST validation mechanism. Even in a dataset where all files contain

restart markers, the QA-overflow mechanism remains the dominant validation

mechanism.

6.6 Conclusion

We implemented the algorithms for fragmentation point detection in both baseline

JPEGs and progressive JPEGs, as introduced in our previous chapter. To rigor-

ously evaluate our validator, we assembled a comprehensive test set comprising

over 230,000 JPEG files by scraping WikiMedia. This test set encompassed a

diverse range of variations in JPEG files, including differences in cameras, en-

coders, and encoder settings. We tested our validator thoroughly, in different

scenarios where each JPEG file was tested 100 times, with different random bit-

streams following the fragmentation point. For each test scenario, we focused on

specific JPEG properties and specific fragmentation points. Of all the validation

mechanisms, the QA-overflow most often was the mechanism that triggered first.

Considering the combined performance of all validation mechanisms, in the

worst case scenario, our implementation has over 99.4% probability of correctly

invalidating an incorrect bitstream within 4096 bytes of the fragmentation point.

For the most common case of baseline JPEGs, the validator achieves over 99.99%.

These results are, frankly, astounding – especially given the diversity and quantity

of the test set. Therefore, we consider the problem of finding JPEG fragmentation

points solved in practice.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In order to address the main research question, this section will first reiterate and

discuss the five subsidiary research questions.

RQ1: How can data on file fragmentation be collected in a privacy-friendly

manner?

RQ1 raised the critical issue of collecting data on file fragmentation while

maintaining the privacy of individuals. In Chapter 2, this research question

is explored by devising methodologies and tools committed to respecting and

safeguarding personal privacy. The chapter outlines a strategy for acquiring

file fragmentation data without revealing the identity of individuals involved.

This was achieved through a high-level adoption of privacy- by-design principles,

detailed in six stringent requirements and operational constraints, leading to the

creation and development of a tailor-made tool facilitating this process. This tool

([artefact-Dol19]) enabled privacy-friendly data collection, but with a minor caveat:

although no personally identifiable information was collected, it was sometimes

possible to make an educated guess about the identity of specific files. Because

this was an unforeseen aspect, and we could not be certain if there were other

similar unforeseen issues, we decided not to make the dataset publicly available.

RQ2: How are files on real-world, in-use Windows systems fragmented?

RQ2 invited a deep dive into understanding the patterns of file fragmentation in

real-world, actively used Windows systems. Following the establishment of privacy-

preserving data collection methods in RQ1, Chapter 3 presents a comprehensive

analysis of the collected file fragmentation dataset [dataset-vdMee19].
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The degree of fragmentation we found was 2.2% for all MFT entries, and 4.4%

for files that could be fragmented (i.e., files with two or more blocks allocated).

Specific file types or file extensions are more likely to be fragmented than others.

For example, for files with two blocks or more, the observed fragmentation rates

are: NTFS-compressed files (19.7%), sparse files (31.8%), .jpg files (3.1%), .docx

files (6.2%), and .pst files (35.8%). Additionally, of all the fragmented files,

nearly half (46.4%) are fragmented out-of-order.

RQ3: To what extent can file history be recovered from file timestamps?

RQ3 explores into the capabilities of reconstructing a file’s history using the

timestamps available within the file system. Chapter 4 showcases techniques for

uncovering the past states and versions of files, leveraging timestamp information

to piece together the chronological sequence of file modifications. This research

introduces a temporal dimension to the existing realm of timestamp analysis and

offers a new perspective on the lifecycle of digital files, enhancing ways for digital

investigators to test, verify or refute working hypotheses.

Our conclusion is that potential file histories can be deduced from a current

set of timestamps. However, there is an inherent loss of information during

the reconstruction of such a timeline. This loss affects the number of potential

file operations that can be accurately matched with a given set of timestamps.

Ultimately, each timeline either concludes with a file creation event or remains

open-ended. Additional sources of timestamp information for a specific file can

impact the potential timelines in two ways: by limiting the number of branches

(i.e., reducing the number of potential timelines) and by extending the remaining

timelines (i.e., allowing us to trace further back in time for a given timeline).

RQ4: To what extent can entropy-coded JPEG data be validated?

RQ4 investigates the realm of JPEG file validation with the goal of fragmen-

tation point detection. This investigation, detailed in Chapter 5, encompasses a

comprehensive examination of existing techniques, and identifies and demonstrate

a novel, deterministic approach for fragmentation point detection in JPEG files.

This approach detects invalid Huffman codes and quantization array size overflows

within the entropy-coded data section, a section which notoriously lacks file mark-

ers or other validation mechanisms. The algorithm’s correctness is demonstrated.

However, the practical effectiveness of the algorithm remained to be evaluated, as

it depended on the actual structure and composition of JPEG files encountered

in real-world scenarios. This uncertainty led to the formulation of RQ5.
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RQ5: How effective are the newly identified approaches to JPEG fragmentation

point detection in real-world JPEGs?

Building upon the findings of RQ4, RQ5 examines in detail the practical effi-

cacy of the newly identified approaches for JPEG fragmentation point detection.

Chapter 6 presents an empirical evaluation of these methods, applying them to

real-world JPEG files (as collected in [dataset-vdMee22]) to assess their accuracy

and reliability in a variety of scenarios. The results are remarkably convincing:

the constructed JPEG validator [artefact-vdBvdM23] successfully identifies frag-

mentation points within a regular block size with an accuracy of over 99.4% in

worst-case scenarios and exceeds 99.9% in average scenarios. This achievement

effectively solves a longstanding challenge in the field of digital forensics.

With the discussion of the subsidiary research questions complete, we now turn

to the central aim of this research, encapsulated in the primary research question:

How to identify and leverage unexplored potential in file recovery?

To address this, the investigation was approached from three perspectives, as

outlined in the introduction:

• File system – The use of file systems and the extent of file fragmentation

were extensively studied through a large-scale data collection on real-world,

in-use laptops, using a privacy-respecting approach. This research high-

lighted, among others, the relationship between file fragmentation and

volume space usage, differences in file fragmentation across types of storage

devices, and the prevalence of specific NTFS file types.

• File metadata – Metadata has demonstrated significant value in research.

By collecting and analyzing file allocation data and extensions, a compre-

hensive analysis of file fragmentation types was conducted. Furthermore,

the study of timestamps—alongside file operations and their impact on

these timestamps—revealed the ability to reconstruct possible file histories

of individual files.

• File format – Successful file recovery, particularly of fragmented files,

hinges on accurate fragment validation. This research not only demonstrates

the feasibility of bit-level validation for JPEG files but also presents a JPEG

validator that exhibits exceptional performance. This finding is particularly

noteworthy because JPEG for the most part lacks internal mechanisms that

would facilitate such validation.
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Beyond the scientific findings, our approach to the central research question

also embodies a specific research strategy. Drawing upon the foundation of

scientific literature, insights from experts, and integrating student projects into

our exploratory process, we not only enriched our research with fresh perspectives

but also expanded our exploration into additional research avenues.

7.2 Future work and final thoughts

In the evolving domain of digital forensics, continuous research and development

is crucial to keep pace with rapidly advancing technology and emerging challenges.

The work presented in this thesis lays a foundation for several promising areas of

exploration and advancement. The following paragraphs outline key directions

for future research, expanding on the concepts and findings discussed throughout

this thesis.

File carver framework. We intend to design and implement a modern file

carver framework. This framework will accommodate both in-order and out-of-

order fragmentation, a frequently occurring fragmentation pattern which was

revealed in Chapter 3. This framework will integrate the JPEG validator intro-

duced in Chapter 6.

Additionally, there are still unexplored and relevant areas where this file

carver could bring improvements, particularly in the carving of sparse and NTFS-

compressed files, areas that have seen limited research and development efforts

to date. We have shown that NTFS-compressed files can be up to five times as

likely fragmented compared to regular files, further increasing the need for a in-

and out-of-order capable file carver.

Expanding file format validation opportunities. The algorithms presented

in Chapters 5 and 6 allow recovery of fragmented high-entropy data for the

JPEG file format. Given their impressive success rate, it would be worthwhile

to investigate the applicability of bit-level validation as a fragmentation point

detection mechanism for other high-entropy file formats.

On a broader perspective. With an updated perspective on file fragmentation

in NTFS systems, there remains a gap in understanding concerning other file

systems, such as those used in Linux (ext4) and Apple (APFS) environments, as

well as embedded file systems in IoT devices. Increased knowledge in these areas

could greatly benefit file fragmentation analysis and recovery techniques.
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7.2 – Future work and final thoughts

Regarding storage devices, Solid State Drives (SSDs) have altered the landscape

of file recovery. The window of opportunity for successful file recovery on SSDs is

significantly narrower compared to traditional hard disk drives (HDDs). While

HDDs maintain their relevance in today’s technological landscape, the prominence

and future dominance of SSDs is inevitable. This shift is poised to transform the

landscape of file carving until the next technological evolution takes place.

Lastly, the rise of Artificial Intelligence (AI) applications, including in the

fields of Cyber Security and Digital Forensics, cannot be overlooked. While the

use of AI must adhere to the same standards of integrity, transparency, and

reproducibility as other methods for digital evidence, it is undeniable that AI will

create new opportunities in the development of new file recovery techniques.

Final thoughts

Reflecting on my PhD process, two moments particularly stand out for me. On

two separate occasions during this PhD project, we encountered results that were

so unexpected that we were convinced they could not be right. Consequently, we

spent many hours scrutinizing our methodology and data, searching for errors. In

both instances, the findings proved to be valid, marking the discovery of genuinely

novel insights. Such moments are serendipitous and cannot be anticipated, which

is what makes them so memorable.

Looking forward, the landscape of digital forensics is perpetually shaped by

the advancements in technology and the ongoing digitalization of our society.

Predicting where the next forensic breakthrough will occur is impossible. What

remains certain is that discovering these breakthroughs requires both time and

dedication. Researchers around the globe contribute to the field of digital forensics.

Their collective work, encompassing everything from minor advancements to major

innovations, not only refine existing methods but also establish the foundation for

novel forensic approaches. All these research efforts either preserve or enhance

our ability to uncover evidence and address legal questions about what might

have happened at a crime scene. This thesis represents my personal contribution

to this ongoing, collective pursuit.
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Summary

The recovery of deleted computer files is an important part of digital forensic

investigations. The process of recovering computer files from a storage medium

(such as a hard disk, USB-drive, or memory card) in the absence of a file’s

metadata is also called file carving. This thesis improves the foundations of file

recovery. It does so by expanding our knowledge of factors that affect the success

of file recovery efforts and by designing, implementing, and validating relevant

artifacts that demonstrate their feasibility and effectiveness.

The challenges in file recovery are manifold. They are influenced by the

ever-increasing amount of data on storage media. The diversity of digital sources

in our everyday lives also plays a significant role, alongside the emergence of new

storage media such as solid-state drives (SSDs), the application of cryptography,

and the use of cloud storage. Of particular importance is the challenge posed by

file fragmentation, where files are spread across multiple fragments on different

locations on the storage medium.

Prior to this work, the most recent survey measuring file fragmentation was

severely outdated, leaving a gap in the current data for the field of digital forensics

that this dissertation seeks to address. Consequently, this work begins with the

design and development of an artifact to measure file fragmentation on real-world,

actively used computers. Given the significant role of computers (including laptops)

in our lives, which contain vast amounts of personal information, examining the

contents of a storage device must be performed in a privacy-friendly manner. Our

artifact was therefore developed using a privacy-by-design approach. We used

this tool to gather data from over 200 laptops belonging to students from Zuyd

University of Applied Sciences. This data collection not only demonstrated the

functionality of our methodology but also resulted in the largest dataset on file

fragmentation since 2007.

This data collection revealed that, although the average rate of fragmentation

has decreased, largely due to the automated scheduled defragmentation processes,
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the sheer volume of fragmented data has risen, a trend tied to the increasing

capacity of hard drives. Remarkably, it also uncovered that nearly half of all

fragmented files exhibit out-of-order fragmentation, a form of file fragmentation

not accounted for in current file carving tools.

The collected dataset also enabled a detailed study of file timestamps, including

their manipulation and the impact of file operations on these timestamps. By

examining the state of a file prior to specific operations (effectively, analyzing the

reverse effect of file operations on timestamps) we were able to reconstruct potential

file histories. This methodology, along with its visualization, was showcased and

automated through the development of two artifacts.

The dissertation then focuses on the JPEG file format, which is forensically

the most prevalent type of visual evidence. Due to the lack of effective algorithms

for identifying fragmentation points in JPEG files, recovering these files presents

a considerable challenge. Following an in-depth analysis of the JPEG decoding

process, we developed a validation algorithm for JPEG files. Distinguishing itself

from many existing approaches, this algorithm operates on deterministic principles,

guaranteeing consistent results with identical inputs. In forensic investigations,

the reproducibility of findings is an important requirement, and our algorithm

meets this standard by design.

We have implemented this algorithm with broad support for all currently

utilized JPEG file format variations. To evaluate its performance, particularly in

detecting fragmentation points within the ’entropy-coded data’ sections of JPEG

files, we compiled a substantial dataset of JPEG files encountered ’in the wild’.

This algorithm underwent rigorous and extensive testing, applying it to a wide

array of JPEG files that included both baseline and progressive formats.

The results are exceptionally convincing: in average-case scenarios, the frag-

mentation point was detected in 99.997% of cases (for baseline encoded JPEGs)

within 4 kilobytes (the most common block size of NTFS). Even under the most

challenging conditions, a detection rate of 99.4% was achieved. These outcomes

underscore the effectiveness of the algorithm, leading us to conclude that the

longstanding problem of JPEG fragmentation point detection has been effectively

solved.

Looking forward, with in-depth knowledge of file fragmentation patterns and a

proven functioning JPEG validator, we intend to design and implement a file carver

framework that accommodates both in-order and out-of-order fragmentation. This

will enhance the ability for forensic researchers to recover deleted (photographic)

evidence.
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Het herstellen van verwijderde computerbestanden is een belangrijk onderdeel van

digitaal forensisch onderzoek. Het proces waarbij computerbestanden worden her-

steld van een opslagmedium (zoals een harde schijf, USB-stick of geheugenkaart)

zonder de bijbehorende metadata, wordt ook wel file carving genoemd. Dit

proefschrift heeft als doel de fundamenten van bestandsherstel te verbeteren.

Dat gebeurt door onze kennis over de factoren die het succes van bestandsher-

stelinspanningen bëınvloeden te vergroten, en door het ontwerpen, implementeren

en valideren van relevante artefacten die hun haalbaarheid en effectiviteit aantonen.

Er zijn veel factoren die het herstel van verwijderde bestanden compliceren,

zoals de steeds groter wordende opslagcapaciteit van apparaten, en de toenemende

hoeveelheid locaties waarop gegevens worden opgeslagen. Daarnaast verliest de

klassieke harde schijf steeds meer terrein aan nieuwe opslagmedia zoals solid-state

drives (SSD’s), en ook het gebruik van cryptografie en cloudopslag vormen extra

barrières bij bestandsherstel. Een bijzonder complicerende factor voor bestandsh-

erstel is bestandsfragmentatie, waarbij bestanden opgesplitst worden in meerdere

fragmenten die op verschillende locaties op het opslagmedium terechtkomen.

Voorafgaand aan dit onderzoek was de meest recente studie naar bestandsfrag-

mentatie al sterk verouderd, waardoor er een gebrek aan actuele gegevens ontstaan

was voor het digitaal forensisch vakgebied. Daarom begint dit proefschrift met

het ontwerp en de ontwikkeling van een artefact om bestandsfragmentatie te

meten op computers die actief in gebruik zijn. Gezien de belangrijke rol van

computers (waaronder laptops) in ons leven, die enorme hoeveelheden persoonlijke

informatie bevatten, moet het onderzoeken van de inhoud van een opslagmedium

op een privacyvriendelijke manier worden uitgevoerd. Ons artefact is daarom

ontwikkeld met het privacy-by-design principe. Dit artefact hebben we gebruikt

om gegevens te verzamelen van meer dan 200 laptops van studenten van Zuyd

Hogeschool. Deze gegevensverzameling toonde niet alleen de werking van onze

methodologie en het artefact, maar resulteerde ook in de grootste dataset over
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bestandsfragmentatie sinds 2007.

Deze gegevensverzameling laat zien dat, hoewel de gemiddelde fragmen-

tatiegraad is gedaald (grotendeels door de geautomatiseerde defragmentatiepro-

cessen), de totale hoeveelheid gefragmenteerde data is gestegen. Dit is een trend

die gekoppeld is aan de toenemende capaciteit van harde schijven. Opvallend

genoeg bleek bijna de helft van alle gefragmenteerde bestanden out-of-order

gefragmenteerd te zijn, een patroon van bestandsfragmentatie dat niet wordt

geadresseerd door huidige file carving tools.

De verzamelde dataset maakt het ook mogelijk om timestamps gedetailleerd te

bestuderen, inclusief hun aanpassing en het effect van bestandsoperaties op deze

timestamps. Door de toestand van een bestand te onderzoeken voor specifieke

bestandsoperaties en de inverse effecten van deze operaties op timestamps te

analyseren, konden we potentiële bestandsgeschiedenissen reconstrueren. Deze

methodologie, inclusief de visualisatie ervan, is gedemonstreerd en geautomatiseerd

met de ontwikkeling van een tweetal artefacten.

Het proefschrift richt zich vervolgens op het JPEG-bestandsformaat, dat foren-

sisch gezien het meest relevante bestandsformaat voor foto’s is. Door het gebrek

aan effectieve algoritmen voor het identificeren van fragmentatiepunten in JPEG-

bestanden, vormt het herstellen van deze bestanden een significante uitdaging.

Na een diepgaande analyse van het JPEG-decoderingsproces hebben we een vali-

datiealgoritme voor JPEG-bestanden ontwikkeld. Dit algoritme onderscheidt zich

van veel bestaande benaderingen doordat het werkt op deterministische principes,

wat garandeert dat het consequent identieke resultaten oplevert bij identieke

invoer. In forensisch onderzoek is de reproduceerbaarheid van bevindingen een

belangrijke eis, en ons algoritme voldoet aan deze standaard.

We hebben dit algoritme gëımplementeerd met brede ondersteuning voor

alle momenteel gebruikte JPEG-bestandsformaatvariaties. Om de prestaties te

evalueren, met name bij het detecteren van fragmentatiepunten binnen de entropy-

coded data-secties van JPEG-bestanden, hebben we een aanzienlijke dataset van

JPEG-bestanden samengesteld die ’in het wild’ zijn aangetroffen. Dit algoritme

heeft een rigoureuze en uitgebreide test ondergaan, waarbij het is toegepast op een

breed scala aan JPEG-bestanden, met zowel baseline- als progressive formaten.

De resultaten zijn bijzonder overtuigend: in average-case scenario’s werd het

fragmentatiepunt gedetecteerd in 99,997% van de gevallen (voor baseline JPEG’s)

binnen 4 kilobytes (de meest voorkomende blokgrootte van NTFS). Zelfs onder de

meest moeilijke omstandigheden werd een detectiepercentage van 99,4% bereikt.

Deze resultaten bewijzen niet alleen de effectiviteit van het algoritme, maar leiden

ons ook tot de conclusie dat het lang bestaande probleem van het detecteren van
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JPEG-fragmentatiepunten is opgelost.

Met het oog op de toekomst willen we, met de kennis van fragmentatiepatro-

nen en een bewezen effectieve JPEG-validator, een framework voor file carving

ontwerpen en implementeren dat zowel in-order als out-of-order fragmentatie

ondersteunt. Dit zal de mogelijkheden van forensisch onderzoekers om verwijderde

foto’s te herstellen aanzienlijk verbeteren.
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