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Abstract

Machine learning is widely employed in our daily lives. However, the underlying
models often fail to meet expectations, which can be caused by imperfect
datasets or the inherent complexity of the problem itself. Classification models,
for example, will always make predictions even in situations of uncertainty.
This can lead to costly errors in critical areas such as autonomous driving,
medical diagnosis, and logistics.

Selective classification offers a solution by enabling models to reject samples
when the model is uncertain, thereby enhancing performance and safety by
avoiding costly mistakes.

This thesis contributes to the advancement of selective classification meth-
ods, showcasing their applicability in the logistics industry by developing
real-world applications and providing insights on data issues. Additionally, it
offers a process for tackling industrial problems, which is important for further
research and implementation in other industries.

We begin by identifying two key challenges in the logistics domain: pre-
dicting Harmonized System codes and importers, and demonstrating the ef-
fectiveness of selective classification. We then propose an improved rejection
criterion, the ‘confidence range,” to enhance classifier performance. Recognizing
the importance of data quality in logistics, we introduce a transfer learning
approach that uses a confidence score to assess whether the data contains
sufficient information for classification. Lastly, we present a novel approach to
modeling shipment journeys as a language model. This allows us to determine
how to selectively update customers based on their shipment’s progress.






Abstract(Dutch)

Machine learning wordt veelvuldig toegepast in ons dagelijks leven. De on-
derliggende modellen voldoen echter vaak niet aan de verwachtingen, wat kan
worden veroorzaakt door onvolmaakte datasets of de inherente complexiteit van
het probleem zelf. Classificatiemodellen, bijvoorbeeld, zullen altijd voorspellin-
gen doen, zelfs in situaties van onzekerheid. Dit kan leiden tot kostbare fouten
in kritieke gebieden zoals autonoom rijden, medische diagnoses en logistiek.

Selectieve classificatie biedt een oplossing door modellen in staat te stellen
om samples af te wijzen wanneer het model onzeker is, waardoor de prestaties
en veiligheid worden verbeterd door kostbare fouten te vermijden.

Deze thesis draagt bij aan de vooruitgang van selectieve classificatiemetho-
den, waarbij de toepasbaarheid ervan in de logistieke sector wordt aangetoond
door het ontwikkelen van toepassingen en door het bieden van inzichten over
data-issues. Daarnaast biedt het een proces voor het aanpakken van industriéle
problemen, wat belangrijk is voor verder onderzoek en implementatie in andere
sectoren.

We beginnen met het identificeren van twee belangrijke uitdagingen in
het logistieke domein: het voorspellen van Geharmoniseerde Systeemcodes
en importeurs, en het aantonen van de effectiviteit van selectieve classificatie.
Vervolgens stellen we een verbeterd afwijzingscriterium voor, het ‘vertrouwens-
bereik,” om de prestaties van de classifier te verbeteren. Met erkenning van het
belang van datakwaliteit in de logistiek, introduceren we een transfer learning-
benadering die gebruikmaakt van een betrouwbaarheidsscore om te beoordelen
of de data voldoende informatie bevat voor classificatie. Ten slotte presenteren
we een nieuwe benadering voor het modelleren van verzendingsreizen als een
taalmodel. Dit stelt ons in staat om te bepalen hoe we klanten selectief kunnen
updaten op basis van de voortgang van hun zending.
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Proposition

10.

. The existing terminology does not accurately capture the diversity in

selective classification.

Choose your baseline model carefully, as the rejection approach may
perform differently across various models.

Usability is of significant importance in the industry.

A pre-defined rejection score presents a challenge for the model to learn;
conversely, a model finds it easier to learn from a flexible target.

Data quality represents an unavoidable and critical issue within the
industry.

Language models can be applied to more than just text-based tasks.

The emergence of Large Language Models (LLMs) has significantly shaped
the direction of most text-based research.

Research becomes more engaging when its findings can be immediately
applied.

In the industry, understanding how to frame a real-world issue as a data
science problem is often more critical than the modeling aspect itself.

Life is not a sprint; it’s a marathon. Remember to take breaks from time
to time.
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Chapter 1

Introduction

The field of machine learning (ML) has witnessed a remarkable transformation
over the past few decades, evolving from rudimentary algorithms to sophisti-
cated models capable of performing complex tasks across various domains.

Neural Networks (NNs), a specific type of machine learning, are inspired
by the architecture of the human brain. They utilize interconnected neurons
organized into layers to analyze various forms of data, allowing for the automatic
extraction of intricate features from raw data and facilitating tasks such as
image and speech recognition. With the surge in computational power and
data volume, deep neural networks (DNNs) have emerged. These networks
have deep layers of neurons, enabling them to learn intricate patterns and
representations from data more effectively compared to NNs.

NNs and DNNs have undergone rapid and substantial evolution in recent
years. They have manifested remarkable achievements across a wide array
of domains [RBL22; VSPT17; RKX*23; CLB™21; SLL™23], demonstrating
their versatile applicability and innovative potential. Moreover, DNNs are now
emerging as a prominent feature in our daily lives [SBET21; MA20], which
subtly transform the way we interact with technology and each other.

However, these models still encounter challenges when deployed in diverse
scenarios. A primary concern is the model’s lack of a “do not know” response
mechanism. Classification models, for instance, will always make a prediction,
even under circumstances of uncertainty. This is particularly problematic in
areas with long-tail distributions, such as autonomous driving, logistics, or
medical diagnosis, where it is impractical to anticipate every possible scenario
during the model training phase. Another issue, which is more common in
reality, is when the model performance fails to meet the business or regulatory
requirements, particularly in industrial contexts [JOK™12], where data quality
often falls significantly short of ideal standards. The cost of the mistakes is
relatively high [BDD"16] and can even cause severe irreversible consequences.

In these cases, selective classification is crucial due to its ability to selectively
identify which inputs they can handle reliably and which ones they are uncertain
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Figure 1.1: Selective classification example: Using the distance to decision
boundary to reject samples. The confidence score C(x) here is the distance
to the decision boundary. Without any rejection, the model can achieve 60%
precision with 100% recall. However, if we apply the rejection as shown in the
figure, the model achieves 87.5% precision with 53.3% recall.

about. This allows it to pass uncertain cases to a human instead of risking a
costly mistake, thereby improving the safety and reliability of the model.

1.1 Selective classification

In a standard classification process, the classification model assigns an input
into one of the predefined classes that the model was trained on. The problem
arises when we give it an input that does not belong to predefined classes. For
example, we can train a classification model that distinguishes between cats
and dogs, but then a bird appears. The classification model will be forced to
classify the bird as either a cat or a dog since these are the only two classes
that the model knows, and both of which are wrong. This example might seem
bizarre, but it happens in real-world domains such as in self-driving cars where
novel objects can randomly appear on the streets, or in the logistics domain
where a new importer’s product needs to be cleared by Customs.

Selective classification incorporates an additional step: the capability to
reject specific samples on which the model is prone to errors or unsure in
prediction. As illustrated in Figure 1.1, a simple implementation of this
approach is to reject samples based on their proximity to the decision boundary.
This assumes that points closer to the decision boundary are the confusing
examples that the model is uncertain of. By rejecting these confusing examples,
the precision of the model on the processed data is enhanced.

The term ‘selective classification’ was introduced by El-Yaniv [El-T10].
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This concept, however, is not entirely new. The foundational ideas of ‘Reject
Option’ and the ‘Error-Reject Trade-off” were discussed as early as the 1970s
[Cho70], underpinning what would later be recognized as selective classification.
By adjusting the rejection threshold distance, as illustrated in Figure 1.1, it
is possible to generate a precision-recall plot, depicted in Figure 1.2. The
appropriate threshold can be selected based on the specific requirements of the
problem.

Another commonly used evaluation metric is the risk-coverage curve, where
risk is defined as the cross-entropy loss for a classification task [GE19]. From
a business perspective, the risk does not directly reflect the business value or
requirements. Instead, businesses typically prioritize precision. Specifically,
they aim to maximize the number of items processed (recall) while meeting
specific precision requirements. Therefore, in this thesis, we use precision-recall
curves to evaluate the performance of the models.

For multi-class classification problems, we use micro-average precision and
recall [SLO9] considering the problems discussed here have hundreds to millions
of different classes. Also, the individual class is not important for the analysis.
The micro-average precision/recall is defined as follows:

Zle True Positives;
Z?Zl(True Positives; + False Positives;)
(1.1)
where k is the number of classes. The score that is used for rejection is
denoted by C(x), it is referred to by various names, such as a confidence score,
model confidence, uncertainty, or trust score, depending on its method of
inference.

To maintain clarity and avoid confusion, this thesis will use the term
‘confidence score’ for C'(x) irrespective of the inference method. In Figure 1.1,
C(z) is represented by the distance to the decision boundary. The objective of
the selective classifier is to reject as many misclassified (or high-risk) samples
while accepting as many correctly classified samples. Consequently, misclassified
(or high-risk) samples should have lower confidence scores, whereas correctly
classified (or low-risk) samples should have higher confidence scores.

Micro-averaged precision/recall =

1.2 Confidence score criteria

There are two groups of methodologies to derive the confidence score C(x):
One is establishing a learnable or pre-existing target to act as the confidence
score. The other one is explicitly modeling the source of uncertainty.

The difficulty of the first methodology lies in defining an ideal learnable/ex-
isting confidence target that meets two criteria: 1. Higher confidence score

3
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Figure 1.2: Precision-recall plot: The tradeoff between between precision and
recall performance of the model. A better rejection approach should have
higher recall under the same precision. Model A performs better before the
intersection point while Model B performs better after the intersection point.

correlates with higher accuracy. 2. The model can generalize the confidence
score target well. Our experiments show that the previous state-of-the-art
predicted true class probability (TCP) [CTB*19] does not generalize well in
hierarchical text classification (HTC) problem (discussed in Section 5). Our
contribution is to introduce a flexible confidence score target that the model
can learn to predict on new samples. More specifically, a new confidence score
called confidence range (CR) is proposed. The CR combines the idea of failure
detection, which indicates how likely the model is to make a mistake [HDV18]
and the TCP score that represents the probability of the true class, as explained
in Chapter 5.

The target for the first methodology could be represented in several ways,
such as the highest softmax output from the classifier [GE17], the ratio derived
from the nearest neighbor trust score [JKGT18], a failure detection score
indicating the likelihood of misclassification [HDV18], or the probability of
the ground truth label [CTB'19], among others. These confidence scores
effectively rank samples based on their likelihood of being correctly classified,
without considering the specific source of potential errors. The details of those
approaches are explained in Chapter 2.2.

The second methodology, which focuses on explicitly modeling uncertainty,
is categorized into data uncertainty (aleatoric) and model uncertainty (epis-

4
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temic) as shown in Figure 1.3. This methodology is gaining popularity due
to its expressiveness. It looks at confidence by dividing it into two distinct
components:

1. Data uncertainty: This aspect concerns aleatoric uncertainty, reflecting
the noise in the measurements or inherent randomness in the system
being modeled. It represents the variability in the outcome that cannot
be reduced even if we had more data.

2. Model uncertainty: This refers to epistemic or model uncertainty,
which is the uncertainty in the model parameters themselves. This type
of uncertainty arises due to a lack of knowledge or information and is
theoretically reducible as we collect more data or improve our models
[HW21].

Both types of uncertainties can be used as confidence score in selective
classification [CZG20; LSS20; LLPT20]. The challenges in explicitly modeling
the different types of uncertainty include:

1. Separating aleatoric and epistemic uncertainty proves challenging.

2. Determining the best approach to model this uncertainty remains an
open question in ongoing research.

In this thesis, we did not directly enhance the methodology itself; instead,
we aimed to utilize these criteria to better understand complex data in logistics,
such as text and time series data. Chapter 7 demonstrates how these criteria
can be employed to understand data quality.

1.3 Different types of selective classification

There are different ways to group selective classifications: model-agnostic versus
model-specific and cost-known versus cost-unknown.

Model-agnostic vs model-specific. In the earlier stages of machine learn-
ing, before neural networks became predominant, the rejection approaches were
largely model-specific. This period saw the development of tailored approaches
for tree-based models [KW06; Hel70], SVMs [GRKT08]. These model-specific
approaches, while effective within their respective frameworks, posed significant
challenges in terms of adaptability and transferability to other models.

As machine learning evolved, there was a shift towards deep learning,
drawing increased attention to developing models capable of handling more
complex data and tasks. This shift also influenced the domain of selective
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Figure 1.3: A toy example of aleatoric and epistemic uncertainty.
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Figure 1.4: Optimization difference between cost-known vs cost-unknown.

classification, with a growing preference for deep learning-based approaches.
Despite the diversity in deep learning architectures, the recent methodologies
are easy to transfer across different neural networks with minimal adjustments.

This thesis primarily focuses on developing selective classification ap-
proaches that are not tied to any specific model architecture.

Cost-known vs cost-unknown. In the realm of selective classification, the
concept of ‘cost-unknown’ refers to scenarios where the cost associated with
misclassifying a sample is not predetermined, or where a minimum precision
level is not defined. This scenario mirrors the realities faced by many appli-
cations where optimization of model performance across the precision-recall
curve as shown in Figure 1.4. The advantage of this approach is its provision

of a comprehensive overview of model performance across varying precision
thresholds.
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Conversely, ‘cost-known’ means the cost of misclassified samples can be
quantified, or a minimum precision level is predefined. This allows for the
translation of cost-known situations into a subset of cost-unknown scenarios
where the optimization is only focusing on a specific precision range.

In the logistics industry, the requirements for model performance exhibit
significant variation, driven by distinct preferences and regulatory standards
across different countries and departments. This diversity often results in a
‘cost-unknown’ situation at the outset of many projects, where the specific
costs associated with misclassification are not predefined. Acknowledging this
prevalent challenge, our research is focused on the ‘cost-unknown’ domain.

There is also a cost associated with rejection as it requires humans to
classify it manually. This is use case specific, it will be discussed within each
problem we solved here.

1.4 Selective classification in logistics

Major logistics corporations, including DHL and FedEx, operate across multi-
ple departments, each offering substantial opportunities for the integration of
machine learning to enhance operational efficiency and service quality. These
applications span a wide range of logistics functions, such as package trans-
portation—including pickup and delivery processes, warehouse management,
scheduling [HXZ121], customs clearance [CBV21], and routing optimization
[HWC*20]. The deployment of machine learning in these areas not only
promises to streamline operations but also to significantly elevate the precision
and responsiveness of these logistical tasks.

There are numerous support functions available, including customer service
and financial services. Notably, these areas possess a large amount of domain-
specific data that is challenging to acquire through other channels. Additionally,
the volume of shipments handled by top-tier logistics companies is substantial,
exceeding one million per month. Enhancing automation or increasing the rate
of automation can significantly impact efficiency improvements.

In this thesis, our primary focus is on improving the quality of the clearance
process and customer service, based on an initial evaluation of the potential
high financial impact.

1.4.1 Clearance process

The clearance process encompasses all the necessary steps required to comply
with international trade regulations and customs formalities, ensuring that
goods are legally and efficiently transported from one country to another.
The clearance process stands as a critical component, ensuring the seamless
movement of goods across borders and through various regulatory landscapes.

7
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Logistics companies play a pivotal role in this complex process, acting as
intermediaries between shippers, carriers, and regulatory bodies to facilitate
the efficient and compliant transportation of goods.

The logistics company needs to submit valid shipment-related information.
This include the shipper, receiver, importer, exporter, shipment description,
dimension, and harmonized system codes (HS Codes): A standardized number
used to classify products for international trade.

HS Codes and importers are not always known by the customer. It requires
the broker or the agent in a logistics company to manually classify it based on
the description provided by the customer, the complexity of the hierarchical
structure of the HS Code (chapter, heading, subheading) makes it rather
difficult for an agent to classify.

Submitting incorrect shipment-related information to Customs will lead
to the rejection of the clearance process, which will put the shipment on hold
until the correct information is submitted. This naturally might lead to delays
in the shipment due to missing the truck/flight connection. More severely, it
might lead to the revocation of the clearance license if the accuracy of the HS
Codes declaration is too low.

Ensuring the accuracy of HS Codes and importer classifications is essential
for logistics companies. Currently, agents classify HS Codes and importers
manually because the accuracy of the HS Codes classification model and
importer prediction model does not meet business requirements, as discussed
in Chapters 3, 4, and 6. Therefore, having a rejection mechanism like selective
classification is necessary to reject the unsure or likely misclassified samples, to
ensure that the auto-classified samples can meet compliance. Considering the
large volume shipped through the logistic company, being able to auto-classify
part of the shipments can have a significant impact.

Ensuring high-quality descriptions is also essential. Generic or incomplete
descriptions that lack sufficient information cannot reliably identify HS Codes.
Therefore, a mechanism to assess description quality is equally important.

Our work in this area is:

e Validate the existing rejection methodology in HS Codes and importer
prediction problem (Chapter 3 and 4).

e Develop a better rejection methodology (Confidence range) that can
increase the automation rate in HS Codes prediction problem (Chapter
5).

e Use confidence score to identify shipment description quality (Chapter
6).
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1.4.2 Customer service

Customer service plays a crucial role in establishing trust, ensuring satisfaction,
and maintaining long-term relationships with clients. In logistics, customer
service encompasses various elements including timely and accurate commu-
nication, problem-solving, tracking and reporting, and providing customized
solutions.

In total, the customer service department in a large logistic company such
as DHL receives over half a million calls per month regarding shipment status,
representing a significant portion of their daily workload. To enhance efficiency
and customer satisfaction, we first need to understand why customers are
calling. Secondly, we explore whether we can predict when a customer will call
and provide updates before they reach out to the call center.

A language model in logistics is proposed to address customer call prediction,
as shown in Chapter 7. Due to the randomness of customer behavior, we need
to approach customers who are most likely to call. Additionally, given that
the shipment journey represents complex time-series data, we incorporate
uncertainty as one of the rejection criteria to better understand the data.

Our work in this area is:

e Propose a language model that can simulate the shipment journey. Such
a model can be used in different downstream tasks.

e Validate the language model in the customer calling prediction problem,
which enables the customer center to selectively update customers who
are likely to call.

e Utilize model uncertainty analysis to understand data label noise.

1.4.3 Research question

The objective of this thesis is to develop a better confidence score C'(x) for
selective classification and to investigate further how to utilize it to evaluate the
data quality. We chose the hierarchical text classification problem to study due
to its significant impact on the HS Codes classification problem: automating the
HS Codes classification process could save large logistics companies millions of
euros annually by partially automating what is currently a manual classification
task performed by agents.

Moreover, the design of the rejection methodology can be dependent on
the architectural design of the deep learning model. Therefore, our first
research question focuses on identifying the ideal base model for hierarchical
text classification. To enhance the automation rate, which is directly linked
to the potential savings in effort, we began to examine data error patterns
and consider how to design a more effective confidence score to improve the

9
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automation rate while meeting specific performance requirements. Additionally,
data issues present a serious challenge in the industry. To understand the
limitations, we explored the use of different uncertainties to gain insights into
data quality issues. In summary, our research questions are as follows:

e What deep learning models are suitable for hierarchical text classification?
e How to use the error pattern to design a better confidence score?

e How to use the confidence score to analyze data quality (1. Whether the
data contains enough information for the category. 2. Model uncertainty
analysis to understand data label noise.)?

By addressing these questions, this research seeks to offer tangible improve-
ments in the automation processes of large logistics operations.

For the first question, Chapters 3 and 5 looked into existing HT'C method-
ologies and validated different models, establishing the Transformer-based
seq2seq model as highly effective for HT'C challenges. This finding is significant
as it directs logistics companies towards adopting this model for improved
classification accuracy and efficiency, leading to potential cost savings and
enhanced operational workflows.

Addressing the second question, we validate the concept of rejection scoring
in Chapter 4 by evaluating an existing approach in logistics, setting the stage
for our contribution in Chapter 5. Here, we introduce a new rejection criterion,
the “confidence range” which leverages a combination of model error analysis
and predicted probability on the ground truth label. This criterion enhances
the automation rate even further.

For the third question, our research extends into evaluating data quality
through advanced techniques as described in Chapters 6 and 7. We demonstrate
how a confidence score, derived from transfer learning, can effectively assess
data quality as discussed in Chapter 6. Additionally, distinguishing whether
errors originate from the data or the model provides crucial insights into the
limitations faced when dealing with complex data problems. This distinction
is not merely academic; it has practical implications for the entire machine
learning pipeline as Chapter 7 shows.

1.5 Methodology

In a logistics company, problems or challenges are typically proposed by the
business or identified by data analysts and scientists from the data. Business-
proposed problems often address process bottlenecks or pain points in daily
operations, such as the HS Codes classification problem, where the company

10
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needs to hire numerous domain experts to classify a large volume of shipments
due to policy changes. Alternatively, problems can be identified by data
scientists or analysts. For example, this has happened when the shipment
description quality had to be evaluted, where quality issues in the descriptions
became evident in the data. These problems undergo an evaluation process and
are ranked based on difficulty, potential benefits, and stakeholder engagement.
Problems with high potential for success and significant benefits will be brought
to the discussion with stakeholders or higher managers.

Once a problem is approved by stakeholders, the data science team typically
follows the Cross-Industry Standard Process for Data Mining (CRISP-DM)
[WHO00] methodology. Such a methodology, as shown in Figure 1.5, is a widely
adopted framework for structuring data mining projects and it comprises
six phases: business understanding, data understanding, data preparation,
modeling, evaluation, and deployment. This methodology has been chosen, at
the early onset of the data analytics group in which the author is embedded,
because it ensures alignment with business objectives, promotes an iterative
approach for continuous improvement, and facilitates collaboration with the
stakeholders.

Among the identified problems, three problems tackled in this thesis ranked
among the highest-valued projects: (1) HS Codes prediction, (2) importer
prediction, and (3) customer calling prediction. For these problems, we detail
each specific process (except their deployment in the production environment)
in Chapters 3, 4 and 7 respectively.

Chapters 5 and 6 is the extension of the HS Codes prediction problem
discussed in chapter 3. We noticed the accuracy of the HS Codes classification
model could not meet the initially defined business requirements. Hence,
selective classification was used to meet such requirements on the part of
the data in which the prediction model had high confidence. The work in
Chapter 6 focuses on deepening business and data understanding to identify
the limitations in the data and process behind the collection of shipment
descriptions. It later proposes a better model, which is designed in Chapter
5 during a second iteration of a CRISP-DM cycle. In this cycle, the business
understanding is re-evaluated based on the results obtained, using selective
classification analysis to define the part of the data where automation is possible
due to higher confidence in certain data segments.

With respect to CRISP-DM, the thesis focuses on the stages between
business understanding, modeling, and evaluation, whereas specific aspects
concerning the deployment of the algorithms in production are left out of the
scope of this thesis. This is due to the fact that the thesis happened in an
industrial context in which the concerns were divided between analysis of the
problem and technical implementation of the solution in a production system,
with the author’s work focusing on modeling, training, and evaluating machine
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learning models, with the purpose of delivering the trained models to a software
engineering unit dedicated to deployment tasks. Despite such a division of
concerns, insights from the deployment of the proposed solutions in Chapter 3
and Chapter 6 have influenced the research proposed in this thesis by creating
new business understanding, which is then taken into account when defining
the approach described in Chapter 5 and the modeling of the applications in
Chapter 4 and Chapter 7.

1.6 Author contribution and outline

1.6.1 Awuthor Contribution

This thesis focuses on selective classification in the logistics domain. From
an application perspective, it demonstrates how selective classification can
be applied in logistics by addressing multiple real-life problems: HS Codes
prediction, importer prediction, and customer calling prediction. Additionally,
we propose simulating the shipment journey as a language model and using
uncertainty to understand the data. It can inspire other industries to adopt
selective classification. From the perspective of scientific advancement, this
work enhances the state of the art by introducing a new confidence score:
the confidence range in the HS Codes classification problem. Furthermore, it
looks into how to utilize confidence score to understand data quality. First,
it proposes a method for utilizing a confidence score to evaluate shipment
description quality when labeled data is limited. This approach can be extended
to use cases such as assessing the quality of feedback and reviews.

12



Chapter 1 — Introduction

1.6.2 Thesis Outline

Chapter 2 presents a background concerning selective classification, it offers
a novel perspective on the methodologies used in selective classification over
the past five years. The contribution to the field is that we categorize the
existing approaches based on their confidence score methods, rather than the
methodologies claimed by their authors. It provides a clearer understanding of
the landscape of selective classification techniques, enabling a more intuitive
comparison and assessment of their effectiveness.

Chapters 3, 4, 5 (Under review), 6 and 7 are reported from the publications
[CBV21; CBT22; CTG*23; CBV22; CAT*23].

Chapter 3 introduces an application of neural machine translation architec-
ture to the classification of HS Codes, an important logistic problem involving
hierarchical text classification within the selective classification context. It also
proposes a new hierarchical loss function tailored to this classification challenge.
This work was published at ICMLT (ICMLT 2021: 2021 6th International
Conference on Machine Learning Technologies, Jeju Island, Republic of Korea,
April 2021).

Chapter 4 focuses on the logistics clearance process. This chapter proposes
an alternative classification approach with a rejection option, aimed at au-
tomating a significant portion of the shipment process. It also examines the
effectiveness of the TCP approach in this context, with findings published at
ICMLC (ICMLC ’23: Proceedings of the 2023 15th International Conference
on Machine Learning and Computing), showcasing the potential for operational
improvements in logistics through machine learning.

Chapter 5 building on the foundations laid in the previous chapter, this
chapter addresses limitations in existing approaches to failure detection and
true class probability. It introduces a novel concept: the confidence range,
which synergizes both aspects to enhance performance in hierarchical text
classification tasks. This work is currently under review by Applied Intelligence,
a journal published by Springer.

Chapter 6 explores the application of confidence score in assessing the
quality of shipment description data, addressing a gap in the industry for a
standardized evaluation method. The discussion centers on how confidence
score derived from transfer learning can serve as an important feature for data
quality assessment. This work was published at SAC "22 (SAC ’22: Proceedings
of the 37th ACM/SIGAPP Symposium on Applied Computing).

The final research chapter 7 focuses on the application of selective classifi-
cation in language modeling to logistics, treating the shipment journey as a
sequence of events that can be modeled linguistically. The trained language
model, tested in customer calling prediction use case, allows the company
to selectively update customers who are likely to call. Also, in order to bet-
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ter understand the performance, we utilized the state-of-the-art uncertainty
measurement to understand where the limitations come from. This work was
published at ESANN 2023 (ESANN 2023 - European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning).

Chapter 8 provides a summary of the thesis, including a discussion of future
work and its potential impact.

14



Chapter 2

Background

In the field of selective classification research, several review papers are avail-
able. Zhang et al. [ZXL"23] provide valuable insights into general rejection
mechanisms, categorizing them into confidence, calibration, and discrimination.
However, these works have not fully explored the connection between rejection
scores and model uncertainty. Similarly, dedicated studies on uncertainty, such
as those by Hiillermeier et al. [HW21], Gawlikowski et al. [GTAT23], and
Abdar et al. [APH"21], offer in-depth discussions on uncertainty but do not
address it in the context of selective classification.

This chapter provides a background on selective classification. To bring
better clarity within this domain, we have organized the background based on
the underlying methodological approaches.

The definitions and evaluation metrics will be presented in the beginning.
Subsequently, each methodology will be discussed.

2.1 Definition

In the following we will assume the training data S, = {(zi, yi)}_, is sam-
pled independent and identically distributed from some unknown underlying
distribution P(X,Y’). A selective classifier [GE17] is a pair of functions (f, g),
where f : X — Y is a classifier that predicts class labels given an input, and
g: X — {0,1} is a selection function that determines whether to reject the
prediction or not. The selective classifier is defined as follows:

fz), ifg(z) =

: . (2.1)
reject, if g(x)

1
0

(f,9)(z) = {

The selection function g(x) is dependent on a confidence score C(x) and a
threshold 7, defined as follows:

, ifC(x)>7
= 2.2
9(@) {0, otherwise (22)
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2.2 — Rejection methodologies

Various evaluation metrics have been proposed to evaluate selective classifi-
cation. Risk-coverage [El-T10; GE17] is one of the early evaluation metrics to
measure the performance of the selective classifier, where the risk is defined as
the average loss on the accepted samples:

R(f.g) 2 EPW{; E?}; z;)y(@]

where Ep[l(f(x),y)g(x)] is the expected risk, ¢(f(x),y) is a loss function,
o(f,g) is the coverage.

The issue with the risk-coverage plot is that it does not directly reflect the
business value (e.g. automation rate), as a low risk does not guarantee better
precision. Also, it does not give any insights into the percentage of the samples
that can be classified. Thus when it comes to industry usage, precision-recall
[MS99; DG06; HG16] is better used in the context of selection classification.
That is also why we use the precision-recall metrics in our work as Figure 1.2
shows.

(2.3)

2.2 Rejection methodologies

The rejection methodology is categorized as shown in Figure 2.1, which includes
four main categories. Additionally, we separately discuss a fifth category that
is not depicted in the figure.

The first category includes the softmax baseline and its associated regu-
larization techniques. This approach is widely used in selective classification
due to its convenience and effectiveness. The idea is to use the softmax output
as a confidence score to determine whether to reject or retain the prediction.
The second category, the nearest neighbor approach, is well-known for its
explainability, a crucial attribute in sensitive industries such as law; however, it
is less commonly used due to scalability challenges. Here, the confidence score
depends on the proximity to the nearest neighbor. The third category focuses
on uncertainty, assessing it from model, data, or prediction perspectives. In
this case, the confidence score can reflect data uncertainty, model uncertainty,
or predictive uncertainty. The fourth category ranks samples based on their
likelihood of being correctly or incorrectly classified; this likelihood can be a
learnable target or an aggregate score obtained during training. The probability
of correct classification can be treated as the confidence score. Finally, the last
category is the model ensemble, which is not shown in Figur 2.1. It uses the
ensembled softmax output to represent the confidence score.

The approaches that do not use precision-recall or similar evaluation matrics
will not included here. Thus, in addition to the aforementioned models, there
exist calibration approaches that address the overconfidence issue in deep learn-
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Baseline: Max(softmax) & its regularization
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Figure 2.1: Different types of confidence score: softmax and its variations,
nearest neighbor, density evaluation, and ranking. The baseline and its regu-
larization use the maximal value of the softmax to represent the confidence
score. The nearest neighbor based approaches use the distance or the amount
of nearest neighbor to represent its confidence in hidden layer(s) or last layer.
The density-based approaches calculate the density score in its training data to
represent the confidence score, and the ranking-based approaches use different
targets that are derived from training data/process to represent the confidence

score.
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2.2 — Rejection methodologies

Table 2.1: Summary of Softmax-related approaches

Paper Year Approach
Softmax[HG16][GE17] 2017 Baseline
Confidence-penalty & Label smoothing [PTCT17] 2017 Regularization
Temperature scaling & perpatration [LLS18§] 2018 Data augmentation & Regularization
Relaxed softmax [NZV18§] 2018 Regularization

Mixup & Smoothing [TCB*19] 2019 Data augmentation & Regularization
Reg mixup [PYLT22] 2022 Data augmentation
LogitNorm [WXC122] 2022 Regularization

FMFP [ZCZ22] 2022 Regularization
DOCTOR [GRG™'21] 2022 Regularization

Umix [HLY 22 2022 Data augementation
Openmix [ZCZ123] 2023 Data augementation

ing models [GPS*17; JOK'12]. We will not discuss these in detail here because
those approaches aim to align confidence with accuracy. This differs from
the objective of selective classification and can even reduce prediction-recall
performance [ZCZ122]. Also, we will not discuss the Bayesian models as they
are barely evaluated under the context of selective classification [TAS18; HL20;
MNP21]. Also, those approaches are not scalable for industry applications due
to expensive computational costs.

2.2.1 Softmax baseline

In neural networks, it has been proven that the maximal value of the softmax
layer is a reliable indicator for identifying misclassified and out-of-distribution
examples [HG16; HG16; GE17], making it a strong baseline for selective
classification due to its high performance and ease of use [GE17]. However,
a significant issue highlighted with the maximal softmax probability in deep
neural networks is its tendency to be overconfident, even in some misclassified
samples [NYC15; GPST17], which leads to very confident mistakes. To address
this issue, various approaches have been proposed. Based on their methodology,
they can be grouped into two categories: regularization approaches and data
augmentation. The summary is shown in Table 2.1.

Inspired by principles of reinforcement learning, Pereyra et al. [PTCT17]
introduced output regularization techniques to mitigate overconfidence in deep
neural networks. They proposed two specific regularizers: a confidence penalty
based on maximizing entropy and label smoothing. Their findings demonstrate
that penalizing low entropy in output distributions serves as an effective
mechanism for regularizing deep neural networks, contributing significantly to
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Chapter 2 — Background

the ongoing efforts to enhance model reliability.

Building on the work of Pereyra et al. [PTCT17|, Liang et al. [LLS18]
extended these concepts by introducing two additional techniques aimed at
model calibration and robustness. The first technique, temperature scaling,
involves a post-processing calibration of the network through an adjusted
softmax function, mathematically represented as Softmax(logit/T), where
T denotes the temperature parameter. The second technique focuses on
enhancing model resilience against adversarial attacks by introducing small,
controlled perturbations to the inputs, effectively improving the model’s ability
to distinguish between in-distribution and out-of-distribution data.

Neumann et al. [NZV18] further contributed to this line of research by devel-
oping a relaxed softmax approach, an advanced version of temperature scaling
that allows for sample-based temperature adjustments rather than a fixed
global parameter. This enables more granular control over the regularization
process.

Thulasidasan et al. [TCB*19] validated the mix-up training, a method
originally proposed by Zhang et al. [ZCD7'18]. This technique involves the
creation of virtual training samples by blending pairs of random samples drawn
from the training dataset (z;,v;) and (z;,y;), using a mixing parameter A\. The
new training sample (a,y.) is:

z; = Az + (1= Nz
yi =My + (1= Ny;

where X € [0, 1]

The mix-up training approach has been shown to significantly enhance
model robustness, further contributing to the development of more reliable
and resilient deep learning models.

Along with the mixup approach, Pinto et al. [PYL"22] introduced Reg-
Mixup, a novel technique that synergizes empirical data distribution approx-
imations with the Mixup approach to enhance training data diversity. This
method aims to refine the training process by balancing between the original
data and Mixup-generated data.

Following a similar trajectory, Han et al. [HLY"22] and Zhu et al. [ZCZ"23]
presented variations of the mix-up approach that further expand its application.
Han et al. [HLY"22] developed UMix, which integrates a weighted linear
combination of the original and mix-up losses. This adjustment aims to
prioritize samples with lower performance, encouraging the model to allocate
more attention to these potentially underrepresented data points. Zhu et al.
[ZCZ123] proposed OpenMix, which leverages outliers to enrich the training
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Table 2.2: Summary of nearest neighbor approaches

Paper Year Layer Distance/Density Function
Distance-based confidence score [MAN17] 2017 single hidden layer K-nearest-neighbor
Deep KNN [PM18] 2018  all hidden layers = Ensemble on nearest neighbor
Trust score [JKG118] 2018 last layer Distance ratio

Deep Weighted Averaging Classifiers [CZS19] 2019 modified last layer weighted nearest neighbor
Justification-Based Reliability [VIY20] 2020 all layers

dataset and introduces an additional reject class for the model to predict,
thereby enhancing the model’s robustness and its ability to handle out-of-
distribution data.

Zhu et al. [ZCZT22] critically assessed the effectiveness of various regulariza-
tion approaches in enhancing failure detection capabilities of DNNs. Contrary
to common strategies, they advocated for the use of stochastic weight averaging,
as proposed by Izmailov et al. [IPG*18], to navigate towards flatter minima,
arguing that this approach significantly improves the model’s generalization
and reliability.

Further exploring indicators for misclassification detection, Granese et al.
[GRG™21] identified the ¢3-norm of the softmax output as a promising metric.
However, Xia et al. [XB22] observed that this behavior is similar to maximal
softmax response, suggesting that while useful, it may not provide substantially
new insights into misclassification detection beyond existing methodologies.

2.2.2 Nearest neighbor approach

The nearest neighbor approach is famous for its explainability, a crucial aspect
in sectors such as banking and law enforcement, where the clarity of decision-
making processes is more crucial than model accuracy [BGR199; Abd15]. This
characteristic underlines the importance of explainable models in sensitive
applications.

The hidden layers in deep learning models offer a robust representation
of input features [CYK™'18; LZM22], making them suitable candidates for
integration with the k-nearest neighbors (KNN) algorithm. Mandelbaum et al.
[MAN17] enhanced this integration by introducing a confidence score derived
from the local density estimation of points within an embedded space formed by
a trained network. This method involves using the Euclidean distance between
a point and its k nearest neighbors in the embedded space of the training set
to measure local density. To facilitate effective embedding, Mandelbaum et al.
[MAN17] suggested two strategies: 1. minimizing distance for samples with
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identical labels and maximizing it for those with different labels. 2. Adversarial
training.

Instead of looking at the neighbor on a single layer level, Papernot et
al. [PM18] proposed the Deep KNN—a method that calculates the nearest
neighbors across all hidden layers of a DNN. This approach not only leverages
the deep learning model’s layered representations but also enhances resilience
against adversarial inputs.

Instead of applying KNN in all of the hidden layers as Papernot et al.
[PM18] did, Virani et al. [VIY20] trained a nearest neighbor search tree
based on the information from training data and distance metric for inference
purposes. This method categorizes outcomes into three levels of certainty:
known, potentially known, and unknown directly instead of using a threshold
on a rejection score.

Card et al. [CZS19] introduced an alternative to traditional classification
approaches by implementing a deep weighted average method, which replaces
the softmax layer with a weighted sum of the nearest neighbor across the labels
of instances in the corresponding training set, using a Gaussian kernel based
on Euclidean distance for weighing.

The choice of which layer’s output to use for feature representation remains
a topic of debate [PGK™11; HZWT16]. In this context, Jiang et al. [JKG118§]
proposed a trust score that leverages the output of the last layer. This score
uses the ratio between the distance to the nearest class and the distance to
another class that is different from the predicted class. This approach supports
the notion that trust scores derived from the deeper, more processed layers of
a DNN tend to offer more reliable indicators of the model’s predictions.

2.2.3 Uncertainty

The uncertainty in the model’s prediction arises from two sources: the un-
certainty inherent to the model (epistemic uncertainty) and the uncertainty
intrinsic to the data itself (aleatoric uncertainty). Epistemic uncertainty, gen-
erally stemming from lacking of the knowledge, can be mitigated by increasing
the training dataset [Gall6; DD09]. Conversely, aleatoric uncertainty origi-
nates from the noise present in the data generation process and can not be
reduced by increasing more training data. Understanding and decomposing
predictive uncertainty into these components allow for a better interpretation
of model predictions and aid in making decisions based on the reliability of
these predictions.

In the realm of deep learning, Gaussian Process (GP) is commonly used in
modeling the uncertainty. It models the entire distribution of possible functions
that could describe the data.

Given a set of input-output pairs (X,Y’), where X represents the input
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Table 2.3: Summary of single uncertainty-related approaches

Paper Year Layer Density function
GPDNN [BMGL17] 2017 Modified last layer GP
Evidential deep learning [SKK18] 2018 last layer Dirichlet distribution
Dirichlet Prior Network [MG18] 2018 last layer Dirichlet distribution
DUQ [VST*20] 2020 Modified last layer RBF network
SNGP [LLP*20] 2020 Modified last layer GP with RBF kernels
DUE [vASJT21] 2021 Modified last layer GP with RBF kernels

features and Y represents the corresponding output values, a GP can be defined
by its mean function m(z) and covariance function k(x, z’). For simplicity, let’s
consider the mean function to be zero-mean, although it can be any arbitrary
function[Ras03; Bar12].

The GP is then defined as follows:

f(@) ~ GP(m(x), k(z,2"))
Where:

o f(z) is a function drawn from the GP.
e m(x) is the mean function, often assumed to be zero for simplicity.

e k(z,2') is the covariance function, also known as the kernel function,
which determines the similarity between input points x and 2. Common
kernel functions include the Radial Basis Function (RBF') kernel, linear
kernel, polynomial kernel, etc.

There are various methods to measure or approximate uncertainty, such
as Deep k-Nearest Neighbors [PM18], which is discussed in other sections.
In this section, the uncertainty-based approach will focus on density and
sampling-based methods.

Single uncertainty

The nearest neighbor algorithm has good explainability for its prediction.
However, scalability remains a significant challenge especially when it comes
to large datasets. The uncertainty-based approach can effectively manage
large datasets by clustering data points based on their density, thus improving
efficiency.
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GPs with RBF kernels are renowned for their ability to capture uncertainties
without being over-confident in their prediction. However, GPs face scalability
issues, struggling with datasets beyond a few thousand points. Furthermore,
compared to DNNs, GPs’ kernels may not represent data as effectively.

Addressing these limitations, Bradshaw et al. [BMG17] introduced a
Gaussian Process Deep Neural Network (GPDNN) model, combining the
strengths of DNNs with GPs. This hybrid model leverages a GP layered over
a DNN, integrating the predictive capabilities of both systems. Specifically, it
uses a GP on top of the DNN model to combine the capability of both models.

Similar to Bradshaw’s et al. [BMG17] idea, Sensoy et al. [SKK18] and
Malinin el at. [MG18] applied a Dirichlet distribution over the class proba-
bility. This approach transforms classification tasks into predictions about
distributions over possible softmax outputs, offering a richer interpretation
than point estimate of a softmax output. It outputs a probability vector that
indicates how likely it belongs to a certain class. Similar to softmax evaluation,
the maximal value of the vector is used to represent the confidence score.

Van et al. [VST*20] introduced an RBF network combined with a DNN,
named Deep uncertainty quantification (DUQ), designed to minimize intra-class
distances while maximizing inter-class separations. Uncertainty is quantified
through the proximity of model outputs to the nearest class centroid. Liu et
al. [LLP'20] extended this idea and proposed a Spectral-normalized Neural
Gaussian Process (SNGP), emphasizing distance-aware features within models.
By applying spectral normalization across layers and integrating a GP with an
RBF kernel at the final layer, they enhanced the model’s sensitivity to distance,
improving uncertainty measurement.

Van et al. [vASJT21] further developed these concepts and proposed
addressing the issue of feature collapse identified in earlier models. By incorpo-
rating residual connections and spectral normalization, the model can better
distinguish in and out-of-distribution data in feature space.

Aleatoric and Epistemic uncertainty

Distinguishing between different types of uncertainty is crucial for better
understanding model performance and identifying areas for improvement. It
also provides valuable insights to businesses on model behavior.

The Bayesian approach, one of the earliest methods for quantifying un-
certainty, was improved by Kendall et al. [KG17], who proposed a Bayesian
deep learning framework capable of modeling aleatoric and epistemic uncertain-
ties separately. This approach introduces a variance variable to each output,
trained via a maximum-likelihood loss (aka heteroscedastic loss), and employs
Monte-Carlo sampling to predict both model and data uncertainties. However,
this method requires architectural modifications and the use of heteroscedastic

23



2.2 — Rejection methodologies

Table 2.4: Summary of Aleatoric and Epistemic uncertainty related approaches

Paper Year Aleatoric uncertainty Epistemic uncertainty
[KG17] 2017 Model output log variance Monte Carlo

[TL19] 2019 SQR(Simultaneous Qunatile Regression) OCs (Orthonormal Certificates)
[LSS20] 2020 Assumed density filtering Monte-Carlo drop out
[CZG20] 2020 Normalizing Flow Dirichlet distribution
[MKvA*23] 2023 Softmax entropy Gaussian Discriminant Analysis

loss, which may not be feasible in all scenarios.

To capture aleatoric uncertainty, Tagasovska et al. [TL19] proposed the
Simultaneous Quantile Regression (SQR) technique to estimate aleatoric un-
certainty. This method employs a loss function to learn all the conditional
quantiles of a target variable, enabling the computation of well-calibrated pre-
diction interval. The aleatoric uncertainty is then estimated by the prediction
interval around the median, calculated as the difference between the quantiles
at 1 — /2 and «/2 , where « is the significance level. To quantify epistemic
uncertainty, the introduction of Orthonormal Certificates (OCs) was suggested:
a collection of diverse non-constant functions that map all training samples to
zero and signal epistemic uncertainty by mapping out-of-distribution examples
to non-zero values. These certificates are trained to minimize a loss function
that drives the dataset representations towards zero, with a regularization term
added to enforce orthonormality among the certificates. Epistemic uncertainty
is quantified by evaluating the mean square of the certificates’ outputs.

Loquercio et al. [LSS20] proposed a general framework to predict both
aleatoric uncertainty and epistemic uncertainty. The framework is based on
Bayesian belief networks and Monte-Carlo sampling, it modifies the forward
pass of a neural network to generate not only output predictions, but also their
respective data uncertainties. As for the model uncertainty, it uses the MC
approach with multiple passes, and computes the variance for the prediction.
The predictive uncertainty is the combination of both uncertainties.

One of the potential issues mentioned earlier [SKK18; MG18] is that it
requires OOD samples which in general is not always available. Furthermore,
these methods assume arbitrary data distributions. Charpentier et al. [CZG20]
propose a Posterior Network (PostNet), which assigns high epistemic uncer-
tainty to out-of-distribution samples, low overall uncertainty to regions nearby
observed data of a single class, and high aleatoric and low epistemic uncertainty
to regions near observed data of different classes. PostNet integrates three
key components: an encoder for latent space positioning, a normalizing flow
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Table 2.5: Summary of ranking based approaches

Paper Year Target type Target

Failure detection [HDV18] 2018 fixed Binary [1,0]

Learning Confidence for out of distribution [DT18] 2018 flexible N/A

True class probability [CTBT19) 2019 fixed Virue

Confidence range [CBT22] 2022 flexible [0,¥true) / [Yiruel]
Correctness Ranking loss [MKS*20] 2020 flexible Accuracy during training
DBLE [XAZT19] 2020 flexible Distance in the representation space
REL-U [GRP*23] 2023 flexible Density

HUQ [VKT*23] 2023 flexible Uncertainty

for density estimation in this space, and a Bayesian loss for uncertainty-aware
training.

Continuing the work of [LLP*20] and [vASJ*21], Mukhoti et al. [MKvA™23]
addressed the challenges of SNGP and DUE, notably the significant changes
required in the modeling process and their inability to disentangle aleatoric
from epistemic uncertainties. This method reduces architectural modification
efforts by fitting a feature-space density estimator post-training, assessing
epistemic uncertainty. For samples with low epistemic uncertainty, softmax
entropy is used to evaluate aleatoric uncertainty.

2.2.4 Sample Ranking

The objective of those approaches is to accurately separate the misclassified
and correctly classified samples irrespective of the source of error. In the
context of selective classification, the main aim is to maximize coverage (or
recall) while maintaining a predefined level of precision. So the objective in
those approaches is to make sure correctly classified samples have a higher
score than incorrectly classified samples.

One of the intuitive objectives is whether the model can classify the sample
correctly or not. Hecker et al. [HDV18] and Blatz et al. [BFF*04] introduce a
mechanism for predicting a correctness/failure score (0 or 1) for each sample
in addition to the standard output. This additional target enables the model
to learn from its predictions, distinguishing between correctly and incorrectly
classified samples.

The limitation of previous [HDV18; BFFT04] work is that it does not
differentiate difficult predicted samples from easily predicted samples, poten-
tially hindering the model’s ability to generalize. To address this, Corbiere
et al. [CTB'19] proposed a new learning target which is called True class
probability (TCP) where they designed a second model to predict the TCP
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from the classifier prediction instead of the failure of the classifier. In theory,
the correctly classified samples will tend to have a high probability while the
incorrectly classified sample will have a low probability.

Xing et al. [XAZ"19] share a similar perspective with Corbiere’s idea in
[CTB'19], employing a separate confidence predictor. It uses the distance to
representation space generated from protocol learning as the confidence target,
and it trains the classification model and confidence predictor simultaneously.

Devries et al. [DT18] designed a new architecture where the model can
predict confidence score and probability at the same time. It utilizes a novel
loss where the softmax prediction probabilities are adjusted by interpolating
between the original predictions and the target probability distribution, where
the degree of interpolation is indicated by the network’s confidence.

Emerging methodologies focus on error-aware approaches that learn from
training mistakes, adjusting confidence levels accordingly. Compared with
Devries’s [DT18] approach where it gives a hint to model to learn the confidence,
Moon et al. [MKS*20] introduced a confidence target that reflects accuracy,
utilizing a ranking criterion where the probability of correctness is proportionate
to the frequency of correct predictions during SGD-based optimization. This
ensures samples that are easier to classify are assigned higher confidence targets
than more challenging ones.

Gomes et al. [GRP123] propose an alternative method that leverages both
positively (correctly classified) and negatively (incorrectly classified) instances
to uncover patterns in the distribution of soft predictions. This enables the
identification of misclassified samples through predicted class probabilities.

Vazhentsev et al. [VKT123] did not propose any learnable target. However,
they combined the existing uncertainty approach and pre-existing methods
for aleatoric and epistemic uncertainty, generating a total uncertainty score to
represent its rejection score.

2.2.5 Ensemble approach

The Bayesian framework offers a practical tool to reason about uncertainty
in deep learning [Neal2]. Nonetheless, training the Bayesian NN is a difficult
task. Common approximation approaches such as variational inference [GG15;
MVH"21], Markov chain Monte Carlo(MCMC) [ZLZ*19; ZA20] to the model
posterior are often used instead.

However, those approximations in general are costly, and often deemed
impractical for industrial applications. This has led to the exploration of en-
semble methods as a simpler, yet effective, alternative for evaluating confidence
scores.

Dropout [SHK*14] can be viewed as an ensemble technique. Gal et al.
[GG16] introduced the Monte Carlo dropout (MC dropout) as a means to
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Table 2.6: Summary of ensemble related approaches

Paper Year Same model
MC Drop-off [GG16] 2016 Yes
Deep ensemble 2017 NO
Hyper deep ensemble [WST*20] 2020 NO
Anchor ensemble [PLB20] 2020 NO
Ensemble search [ZZE*21] 2021 NO
Repulsive deep ensembles [DF21] 2021 NO
Cascaded deep ensembles [XB23] 2023 N/A

approximate uncertainty by averaging the outcomes of multiple stochastic
forward passes.

MC dropout essentially represents an ensemble of neural networks, where
predictions are aggregated across several network instances. In contrast, Lak-
shminarayanan et al. [LPB17] suggested a straightforward deep ensemble
method, focusing on randomizing various models before combining their out-
puts. Enhancing diversity among ensemble members, as suggested by Lee et
al. [LPCT15], can significantly boost performance.

While deep ensembles primarily aggregate over model weights, Wenzel et al.
[WST*20] introduced the concept of hyper-deep ensembles, which additionally
incorporate hyperparameter variation to further enhance performance. Pearce
et al. [PLB20] addressed criticisms regarding the non-Bayesian nature of deep
ensembles by introducing the anchor ensemble approach, which regularizes
parameters based on values from an anchor distribution.

Subsequent research by Fort et al. [FHL19] and Ovadia et al. [OFR*19]
confirmed the effectiveness of deep ensembles in enhancing accuracy, uncer-
tainty quantification, and out-of-distribution detection. However, the risk of
insufficient diversity leading to model saturation remains a concern. Angelo et
al. [DF21] introduced a kernelized repulsive term in the update rule of the deep
ensembles to make sure the model discourages the sub-models from collapsing
to the same function.

Zaidi et al. [ZZET21] explored diversifying ensemble models through Neural
Ensemble Search, aiming to identify a set of complementary architectures. Xia
et al. [XB23] proposed a cascaded deep ensemble that each model will check
against the threshold to decide whether to accept or reject. If the sample gets
rejected, then it will pass to the next model. By doing so, it can balance the
computational and model performance.
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Despite these advancements, skepticism remains regarding the efficacy of
deep ensembles, as voiced in Abe et al. [ABPT22] and Theisen et al. [TKY"24],
encourage further research into the conditions under which ensembles yield
optimal results.

2.3 Summary

In this chapter, we presented the definition of selective classification and
its related work from the past five years. Furthermore, we categorized the
related work based on its methodology, including: the softmax baseline and its
regularization approach, the nearest neighbor approach, the uncertainty-based
approach, the ranking-based approach, and the ensemble-based approach. Each
approach has its advantages and disadvantages, and there is no consensus that
one methodology outperforms the others in terms of performance. In the
following chapters, we will discuss various problems and how the approach
described here can be applied.
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Chapter 3

Neural Machine Translation for
Harmonized System Codes
Prediction

The harmonized system codes (HS codes) are used world wide to
categorize products in international shipments. In its basic form
HS codes come in 6 digit format, subdivided hierarchically in groups
of two digits (chapters, headings and subheadings). When shipping
products, it is mandatory to specify a HS code for the purpose of
producing a custom declaration. Currently the process is mostly
carried out by human experts who take a decision on the HS code
to be assigned to a shipment depending on the item description
provided by the shipper. As such the process is time consuming
and prone to errors due to generic, incomplete or non interpretable
descriptions. The objective of this research is to automate the
classification of HS codes in order to increase productivity to cope
with extra volume in the customs classification area. For the purpose
of testing the developed models, we used an anonymized data set of
shipments provided by DHL. The main contribution of this paper is
we tried a deep learning model that has not been tried to tackle the
HS code classification problem: An attention-based neural machine
translation(NMT) model with integration of the idea of hierarchical
loss. The model can classify around 29% percentage of the dataset
where the model’s accuracy can reach 85%.

This chapter is based on the following publication:

Xi Chen, Stefano Bromuri, and Marko van Eekelen. 2021, DOI:
10.1145/3468891.3468915, Neural Machine Translation for
Harmonized System Codes prediction. In Proceedings of the 2021

6th International Conference on Machine Learning Technologies,
ICMLT.


https://doi.org/10.1145/3468891.3468915

3.1 — Introduction

Chapter 07 \ /
Potatoes, fresh or chilled
Heading 07.01

Fresh or chilled potatoes (excl. seed)
Subheading 07.01.90

Figure 3.1: HS Code illustration

3.1 Introduction

The harmonized system codes (HS codes) are used worldwide to categorize
products. Figure 3.1 illustrates the structure of an HS code, which is composed
of six digits. In its basic form, HS codes come in a 6-digit format (i.e. 07.01.90),
subdivided hierarchically into groups of two digits (chapters 07, headings
07.01, and subheadings 07.01.90). When importing or exporting goods, it is
mandatory to provide its associated HS codes to customs clearance. Currently,
the majority of the work for assigning HS codes is done by domain experts. It is
a labor-intensive and error-prone task. Thus, automatic classifying of HS codes
is needed in order to provide an aid to domain experts by proposing/predicting
the HS Code.

In the logistics sector shipments have to be described by a number of
attributes, such as origin, destination, shipper and item description of the
items being shipped. As such, our hypothesis is that the problem of producing
an HS code classification starting from item description and features of the
shipment can be considered as a machine translation problem [SVL14], where
the HS code space represents the target language to be produced starting from
the features and description of the line item being shipped.

In addition, the codes take a hierarchical structure, with dependencies
occurring between the chapters, headings and sub headings, therefore another
possible modeling could imply a hierarchical classification model [SLO1; SF11].

Thanks to deep learning models such as the neural machine translator
[SVL14] (NMT), machine translation has seen a quick advancement in recent
years. NMT models rely on recurrent neural networks (RNN) often in the
form of long short term memories [HS97], and are usually modelled with an
encoder-decoder architecture, where the encoder is fed with sentences of one
origin language, plus additional features, and the decoder is fed with sentences
of the target language. Further advancements have been achieved thanks to the
conception of attention models. Attention models allow to focus the network
on parts of subparts of the sequence and have shown to greatly improve tasks
such as image captioning and language translation [VSP*17].
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The problem of classifying HS codes has been previously recognized as a
research problem [WYYT06], but it has been tackled using exact word matching
and ontologies, with limited ability to generalize to unseen descriptions. The
main contribution of this paper with respect to the state of the art is to
model the problem of classifying HS codes as a machine translation task,
where the input language comprises the description of the shipment, its origin
and destination and the output language is the HS code associated with the
shipment. In addition to this, we also modeled a hierarchical loss specific
for the HS code task that allows us to improve over the basic NMT model.
This is significant because the proposed model and hierarchical loss allow
classifying automatically around 29% of the data used for the experimentation
with an accuracy of 85% for codes comprising 6 digits, where the human expert
accuracy has been estimated to be between 65% and 75%.

The rest of the paper is structured as follows. Section 3.2 discusses relevant
related work. Section 3.3 discusses the data sample used and Section 3.4
discusses the method applied in this contribution. Section 3.5 discusses the
results concerning and the limitations of the study. Section 3.6 concludes this
paper proposing potential future work directions.

3.2 Related Work

Most of the work about HS codes concerns the definition of a knowledge base
for manual search of the code, given a shipment description, for example Wei
et al. [WYY™T06] use an ontology based service to help a user generating
the right code given a product. Singh [SS04] adopted the fuzzy logic to help
identify wrongly classified HS codes. Ding et al. [DFC15] follow a fuzzy logic
approach by applying a background net (a model that dynamically builds a
network of words and their co-occurrences) to the automatic classification of
HS codes, showing that a statistical approach can lead to better results than
exact keywords matching.

Concerning classification, the HS code classification problem can be for-
mulated as a hierarchical classification problem. There are three different
approaches for hierarchical classification: flat approach, hierarchical local ap-
proach [KS97; SLO1] and hierarchical global approach [SF09; KMF*05]. The
flat approach addresses the hierarchical problem as a multi-class classification.
The global local approach, a top-down structure like a tree is specified in which
each node requires a local classifier. Instead, the hierarchical global approach
is utilizing one model and try to classify all at once. Figure 3.2 illustrates the
difference of those three approaches.

The main problem of flat classifiers is that they ignore the hierarchical
structure. The local approach [CH04; CGZ06] only takes partial hierarchical
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l Chapter I
o 1 /C\

Subheading ‘

Flat approach Hierarchical Local approach Hierarchical Global approach

Figure 3.2: Hierarchical Model

information into account since all the local classifiers are isolated between
each other. Recently, the global neural network based approach is prevailing
when dealing with hierarchical classification tasks. This approach simulates the
hierarchical structure by using neural network and modifying the loss function
accordingly [WS17; Gao20; WCB18; KBH'17; MTH™19] in order to make
sure the model will capture the information on global level.

Another field of research closely related with this problem is the one of
multi-label learning [Cha20]. Compared to standard classification approaches,
in multi-label learning the items can have multiple labels at the same time.
Several approaches exist to model the presence of multiple labels, such as
for example binary relevance [ZLLT18], chain classifiers [JLL*19] and also
multi-label deep learning architectures [NMK™17; US19]. Modeling the HS
code automatic classification with a multi-label approach would imply defining
an encoding for the chapter, heading, subheading sections of the HS code, that
is not very practical due to the fact that each of these sections can in principle
have many sub-labels (up to 100), with in addition the problem of considering
dependencies between these labels, following an approach similar to the NMT.
As a matter of fact, previous versions of our architecture used a three-output
neural network based on LSTMs to classify the HS code, but we found no
improvements with respect to hierarchical classification or the NMT approach
presented in this paper.

The NMT structure that is being applied in this research itself has the
advantage of carrying the hierarchical information while maintaining label
consistency.
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Figure 3.3: HS code distribution

3.3 Data

The data used in this experiment develops in a period of eight months of
shipments towards one country via the DHL network. The data set contains
the following features: item description, origin, destination, origin airport,
destination airport. It has 1.156 million records. Among those records, there
are 476128 (41.18 %) unique descriptions, 705 origin airports, 40 destination
airports, 183 export countries, 13014 different combination of origin airports
and destination airports, 4257 different HS code in six digits level and the
distribution of it shows in Figure 3.3. Since this work was prepared during
the COVID-19 outbreak, due to the influence of the pandemic, the description
that contained masks, kn95, and blood samples has been removed in order
to make the conclusion more generalizable. The infrequent HS codes which
appear less than 10 times also got removed in the cleaning step. Regarding the
preprocessing of the text descriptions, we applied a standard NLP approach
involving the conversion of every description and text field into lowercase, and
removed the punctuation and the digits.

It is worth to mention that the data set is not clean. There are two main
issues: first of all, often the description does not contain enough information to
classify six-digit HS code. Secondly, part of the HS codes are assigned wrongly
due to human mistakes. In order to address those two issues a parallel work to
this one is focusing on implementing a description quality measurement, but
the details of this development are beyond the scope of this paper.
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Figure 3.4: NMT Architecture

3.4 Methods

Three different architectures are being applied in this experiment: Hierarchical
logistic regression, LSTM and NMT. We briefly describe these three approaches
in this Section.

3.4.1 Logistic Regression

The first approach that is being applied is Hierarchical Multinomial Logistic
Regression(HLR) [B6h92]. It is a local hierarchical approach where we build a
multinomial logistic regression model at each node as showed in Figure 3.2.

For each multinomial logistic regression model, we expand on the node
where it has the largest probability:

e(BixXi)
Zle @/Bk*Xi

K is the total possible output, 5 is the coefficient[B6h92].

PY =K) = (3.1)

3.4.2 Neural Machine Translation

A neural machine translator (NMT) is an encoder-decoder model for sequences,
and it is meant to translate one sequence (i.e. an English sentence) to an-
other sequence (i.e. the respective French sentence). Formally, the NMT
transforms sequences of vectors x = (x1,x2,...,T7,) into sequences of vectors
y = (y1,Y2,...,Yyry) where the sequences may not necessarily have the same
length (i.e. T, different from 7}). The translation is often performed using
an RNN network (for example an LSTM), due to their ability of representing
sequences. Other architectures are possible, for example a combination of RNN
and CNN can also be used. In the case of the RNN, in the decoder part of
the NMT architecture, the the hidden state of the RNN at time ¢, h; is used
to define a context vector ¢ = q(f(h1,...,hrz)), where f and ¢ are non-linear
functions. The context vector effectively encodes all the information of the
sequence. The training of the decoder part of the network, that is usually also
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Figure 3.5: LSTM model structure

represented by means of an RNN, happens by predicting the next word y given
the context vector ¢ and all the previously predicted words y1,y2, ..., Yy _1-
Formally this can be written as:

T
p(y) = Hp(yt|y17y27 o 7yt’—17c)
t=1

In terms of an RNN;, this probability is expressed as

p(yt|y17y27' .. 7yt’—170) = g(yt - 1781576)

where g is a nonlinear, potentially multi-layered, function that outputs the
probability of y;, and s; is the hidden state of the RNN.

The context vector ¢ of the NMT has the disadvantage of behaving like a
bottleneck concerning the information contained in the sequence. Effectively
speaking the fixed length of the vector reduces the ability of the NMT to
remember long sequences, often forgetting important parts of the sequence.
Attention models have been introduced to reduce this effect. This paper makes
use of additive attention [BCB15], that makes use of an explicit layer of neurons
to reweigh the importance of certain parts of a sequence. Formally, the function
of such a layer can be expressed as:

Jart (hy, Sj) = Ug tanh (W, [hy; Sj])

meaning that additive attention learns to align hidden states of the decoder
(sj) with hidden states of the encoder (h;). In doing so, the attention layer also
learns parameters v, and W,. The final scores of the alignment are calculated
by means of a softmax layer that reweighs the importance of the hidden states
in the prediction.

3.4.3 Hierarchical loss

The NMT model itself trained in a teaching force [WZ89] way. It could be
argued that it might not necessarily learn the global information considering

35



3.4 — Methods

Xe

Figure 3.6: Long time short memory

it evaluates the model in the single output level instead of in the sequence
level. So the idea of hierarchical loss [Gao20] is also being introduced in for
addressing the hierarchical classification, which can be thought as a global loss
function. The loss function is defined as follow:

l

Ly, §) = ax Y yk = log(ge) + B+ H
k=0

The a and B are the hyper-parameters, y; and g are true and predicted
value at the ky digits respectively. H is the binary value, it equals to 0 for all
k if Yk = gk, 1 else.

3.4.4 Long Short-Term Memory (LSTM)

In order to identify the gain from the NMT decoder structure. We also tested
an LSTM model which has the same structure as the NMT encoder. The
structure of the model is showed in Figure 3.5. The LSTM cell will take one
input at a time, then it will predict the chapter, heading, subheading at one
goal after it went through all the input.

The LSTM is one type of RNN, and it was introduced in order to solve
the vanishing gradient issue that vanilla RNN suffered from. The LSTM cell
contains three different gates to control the information flow. They are: input
gate iy, forget gate f; and output gate o; respectively as Figure 3.6 shows. Each
gate state is determined by its internal states: weights W and bias b , output
from the previous state h;_1, and the current input X;.

The way it updates the state:

it = sigmoid(Wm cxp + Wi - he—1 + bz‘)
ft = sigmoid(Wy - x¢ + Wyp, - hy—1 + by) (3.2)
Ot = Singid(Wom ~xp + Wop - hy—1 + bo)
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The internal state will also get updated during each step:
Cy = f} x Cy_1 + iy x tanh(W, - z; + b.) (3.3)
The output at each step is:
he = ot - tanh(ct) (3.4)

3.5 Results

In this experiment, we evaluated five different models: HLR, LSTM , LSTM
with hierarchical loss(LSTM-HL), NMT and NMT with hierarchical loss(NMT-
HL). The results are compared in two dimension: the percentage of the data
that can be auto-classified and the accuracy on that scope.

The data X = {z1,x2,...,2,}, is analyzed with respect to a confidence
score P = {p1,p2,...,pn} where p, is the model’s predicted probability for the
data point z,. A threshold T is applied on confidence score p,, to obtain a
certain desired accuracy A. X/ , is the auto-classify percentage, a subset of
validation data set X,q;, where X/ , € Xy and its P, , >=T

The threshold is calculated on the validation dataset and result is evaluated
on the test dataset by applying the same threshold.[JKG*18] In order to make
the result closer to reality, we split the data temporally, using all the data,
except for the last two months, for training, and using the last two month of
the data for validation and testing respectively.

HLR NMT NMT-HL LSTM LSTM-HL
Accuracy Acc Recall Acc Recall Acc Recall Acc Recall Acc Recall
N.A 45.95 100 45.00 100 45.42 100 43.08 100 41.94 100
70 69.40 52.95 70.44 53.53 70.24 55.50 70.72 54.05 69.76 53.04
75 74.54 44.12 75.52 45.44 75.65 47.26 75.71 46.30 74.56 44.69
80 79.69 35.43 80.62 37.61 80.70 39.15 80.45 38.74 80.76 36.83
85 85.15 27.09 85.41 29.83 86.09 29.52 85.03 30.38 85.17 29.58
90 91.06 18.40 90.57 21.20 91.35 20.39 90.95 20.96 91.13 21.13

Table 3.1: Model comparison on accuracy and recall. The first columns is
the desired accuracy, it is used for calculating the threshold for the confidence
score on the validation dataset. The accuracy for each model is the accuracy
where its probability is larger than the threshold.

3.5.1 Result analysis

The result is showed in Table 3.1. If no limitation (N.A) is imposed on accuracy,
HLR has the best performance among all models. The NMT-HL performs
the best recall when the wanted accuracy is at 70%, 75% and 80%. The deep
learning models have more or less the same accuracy and recall at the accuracy
threshold of 85% and 90%. In general, the deep learning models have better
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performance compared to the HLR model at the accuracy threshold above
70%.

The additional hierarchical loss is improving the NMT model’s performance,
but it deteriorates the result of the LSTM model. One explanation could be
without hierarchical structure or direct connection in the predicted chapter,
heading and subheading, the additional penalty might just confused the model.

The overall difference on those five models are not big, this could come from
the following reasons: first, the data is noisy (i.e. wrong chapters, headings
and subheadings), and this might have impact on the models; secondly, the
majority of the descriptions are short and do not have language structure,
limiting the effectiveness of RNN networks. Also, the dataset is not that large
considering it has 4257 different HS code combinations, the deep learning model
might benefit more if more data can be provided.

3.6 Conclusion

In this experiment, we tested five models: HLR, LSTM, LSTM-HL, NMT and
NMT-HL model for predicting the HS Codes description, and established the
possibility of applying selective classification in this problem. Currently, all
the HS Codes classifications were done by the agent manually. Based on the
results, we can automate 29.52% of the descriptions in the current data set
with a precision of 85%. This is significant considering the millions of shipment
descriptions that need to be classified monthly in a large logistic company
like DHL. It can save lots of effort, improving the agent’s productivity and
accuracy.

In terms of future work, several questions can be further investigated in the
future. From the standpoint of embeddings, we can fine-tune the pre-trained
embedding on the current data instead of training it from scratch, so that we
can utilize more advanced embedding models like BERT [KT19] and XLNET
[YDY"19]. A transformer network [VSP*17] has been already attempted by
the authors, but no improvement compared to HLR could be found, albeit the
detailed analysis and fine-tuning still need to take place. A potential model to
try is a Transformer-based pre-trained model [DYW'19; STQ"19]. Also, the
positional encoding [VSPT17; GAG™17] that is being applied on most of the
latest seq2seq models [SUV18; TO19] might have some impact if added to the
decoding part on NMT model. Additionally, we could also investigate further
the probability of the model and see the alternative in determining whether or
not we should trust the model’s prediction [JKG'18; ASST20].
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Chapter 4

Pair-wise selective classification for
shipment importer prediction

Whenever a shipped package crosses the border, logistic companies
have to declare importer information for the clearance process. This
information is not always provided by the customer, causing delays
and additional expenses. Fortunately, importer information can
often be inferred from historical shipments. The current technical
standard, even in big companies, is to use a feature-weighted nearest
neighbor approach based on domain knowledge. Nearest neighbors
assume that each sample point is represented independently and is
fized in some high dimensional space. This makes it difficult to
integrate higher-order pair-wise relationships such as transaction
frequency from shipper to receiver transaction, because the features
are now changing dependent on the pairs. This would require a
complex ad-hoc feature engineering and metric learning to capture
pairwise relationships properly with nearest meighbors. In this
paper, we propose a framework for importer prediction based on a
pair-wise classification approach that allows us to capture higher
order pair-wise relationships. We also incorporate an auxiliary neural
network that can reliably reject shipments that our model could not
predict well such as shipments with new importers that are not in
the historical data. This allows us to pass the difficult cases to a
human agent instead of naively making an incorrect prediction. Our
proposed pair-wise solution outperforms the industry standard by a
significant margin of precision across a wide range of recall values.

This chapter is based on the following publication:

Xi Chen, Daniel Stanley Tan, Prakash Gupta, and Stefano Bromuri.
2023, DOI: 10.1145/3587716.3587741, Pair-wise selective
classification with dynamic sampling for shipment importer
prediction. In Proceedings of the 2023 15th International Conference
on Machine Learning and Computing, ICMLC.


https://doi.org/10.1145/3587716.3587741

4.1 — Introduction

4.1 Introduction

International packages shipped via a logistic company are required to declare
the importer information as part of the customs clearance process. However,
this information is not always provided by the customer. Fortunately, for
repeating shippers and importers, we can derive this importer information
based on their transaction histories.

From a machine learning perspective, we can formulate this problem as
identifying and retrieving the most similar shipments. There are different
distance functions that can be applied in here such as Euclidean distance and
feature weighted distance [VHAC*07; CH17]. Currently, logistic companies use
a feature-weighted nearest neighbour (FWNN) approach [VHACT07; KLY97],
to determine the importer identity, and reject the prediction if the similarity
is less than a certain threshold in order to meet the precision requirement
defined by the business. However, the issue of FWNN models is that they
can not cope with complex combinations of multiple rules or higher-order
relationships between different shipments, leading to sub-optimal performance
when predicting the importers.

Given this limitation, we propose a pairwise binary classification task that
takes two shipments’ information and statistics as input to predict whether
or not they come from the same importer. This allows us to incorporate
higher-order pairwise interactions between shipments. The main challenge
to train such a classifier is to construct a training data set with appropriate
positive and negative training pairs, considering that there are millions of
negative samples for each shipment record. This requires to apply sampling
strategies, the details will be explained in Section 4.2.1, but we use a dynamic
sampling strategy [ZCW™13] by sampling positive and negative pairs based on
a score function.

After the classifier is trained, a rejection approach for shipments with
uncertain or new importers is needed in order to meet the accuracy requirement
from the business and legal parties. For FWNN, a threshold is implemented
based on a similarity distance. As for our proposed pair-wise classifier, the
baseline is a threshold on the predicted probability. There are various strategies
of selective classification [GE17] that can be adopted, which will be covered
in Section 4.2.2. We use an auxiliary confidence network trained with True
Class Probability (TCP) [CTB'19] to predict the confidence score for rejection
purpose in this paper.

From an industry perspective, time efficiency is also important. So in order
to reduce the inference time, we also introduce an exact matching logic to
predict the easy samples before the classifier.

In summary, our contributions are:
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Figure 4.1: Pipeline for importer prediction.

1. We propose a pair-wise binary classification schema for determining the
importer, which takes pair-wise relationship into consideration.

2. We incorporate a confidence network on top of the classifier, which allows
for selectively classifying samples that can reduce costly mistakes.

3. The results show that our proposed model outperforms the feature-
weighted nearest-neighbor industry standard by a significant margin of
precision across a wide range of recall values, and multiple algorithms.

The rest of this paper is structured as follows: Section 4.2 discusses relevant
related work; Section 4.3 discusses the main technical methods used in this
paper; Section 4.4 discusses the data, and evaluation of the proposed approaches
against the baseline; Section 4.5 concludes this contribution by summarizing
its relevance and pointing out potential future work.

4.2 Related work

In the problem presented in this paper, when constructing the training pairs
to train the model, each sample may have several thousand positive samples
(shipments that have the same importer) and millions of negative samples. So
an effective sampling strategy is needed in order to select the proper negative
and positive samples.

Sampling approaches are used in many different domains to deal with
complex data-related issues [KB19; DQY™'20], but potentially the closest
field to the importer prediction problem is that of recommendation systems
[DQY"20; ZZH'22; DQH'19], in the case in which only implicit feedback is
observed, and the target is to learn a personalized ranking. This is similar
to our case as both of the problems are facing the same challenge, where the
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population of negative samples is really large, thus an effective sampling is
needed.

Other close related work concerns the rejection option of the classifier (also
known as selective classification) [Cho70; BW08; JKG118]. As the importer
identity is legally bounded to the shipment, it is important to make sure
the classifier’s performance can reach a predefined level imposed by business
requirements. Several rejection approaches will be explained later.

4.2.1 Negative sampling

Recommendation is an important task in many applications. From shopping
websites to Vlogs. Implicit feedback such as clicks is quite common. There are
many proposed methods that address this problem by means of different techni-
cal means: one successful technique uses matrix factorization (MF) [SKK102],
another successful technique uses adaptive k-nearest-neighbor (kNN) [PZCT08;
ZZH22]. However, these methods do not optimize the ranking directly. Rendle
et al. [RFGT09] proposed a bayesian personalized ranking(BPR) approach to
directly optimize the personal ranking. Namely, the model learns the ranking
relationship from the constructed positive and negative pairs. One of the
issue that arises from BPR is that it samples uniformly the negative samples
with respect to each positive sample, disregarding the problem of rank bias
[ZCWT13].

Directly extending on Rendle’s work, there are two directions to apply a
better negative sampling strategy: the first method implies using a heuristic
sampling, employing a model to select the negative sample from the database
[ZCW13; DQY120; ZZH122]; the second method is a model-based sampling
where a deep generative model is trained to generate the sample [CKK'18;
PC19; DQH™19]. The idea of these two techniques is to try to generate/identify
the hard negative as this proved to be a more efficient sampling for model
training [PC19].

The issue that arises from uniformed sampling is that it suffers from
the vanishing gradient issue, because the gap between positive and negative
samples is too large to provide valuable information for the training of a
machine learning model, thus taking a long time to converge [ZZH'22]. In
order to identify the hard negative samples, [ZCW'13; RF14] both proposed a
dynamic sampling approach using a score function to determine the rank of the
samples, and take this into account during the negative sampling. However,
this type of sampling might end up selecting false negatives, which may lead
to poor generalization. Subsequent research [DQY™20; ZZH" 22| proposed
solutions to overcome this problem. This paper focuses on dynamic sampling
without taking false negatives into consideration approach, as we noticed these
do not constitute an issue from an empirical perspective since the training data
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is checked by Customs.

4.2.2 Selective classification

Selective classification, also known as classification with rejection option, has
been used in machine learning research for a long time [Cho70]. There are two
types of rejection options. One is a cost-specific rejection option, where one
assumes the cost for wrongly classified samples is known [CDTT95; BWO0S|.
The other, which is more common nowadays, is a threshold-based rejection
option. This utilizes a confidence/trust/reliability score [CDT95; JKG118] to
be compared with a selected threshold to decide concerning the rejection of the
result. In this experiment, the threshold-based rejection option will be applied
due to the fact that different countries might have different requirements
concerning shipments. So the threshold-based solution gives the flexibility to
adapt the technical solution to different business requirements.

K-nearest neighbors (KNN) methods [Ati05; Dal09] are a natural choice
for producing confidence scores with good explainability associated with the
prediction. Some variations have been made in order to adapt KNN selective
classification with deep neural networks (DNNs), including combining KNN
with DNNs. The approaches that have been tried include: using softmax
output to represent the weights for the KNN model [Ati05], applying KNN on
a hidden layer on the DNN [MAN17], and applying KNN on all hidden layers
and aggregating the results [PM18; LCAT20]. Similarly, Jiang et al. [JKGT18]
used the distance ratio between the nearest class to the predicted class, while
Lee et al. [LCA'20] replaced the last layer with a KNN classifier.

In addition to KNN-based techniques, another approach involves working
with the softmax output directly. Vasconcelos et al. [VFB95] proposed a
more reliable network by replacing the sigmoid activation function with a
Gaussian activation function. Lately, Hendrycks et al. [HG16], and Geifman et
al. [GE17] used the maximum value from softmax to represent model reliability
and showed that the softmax output in DNN acts as a good baseline. Hecker
et al. [HDV18] trained the model with additional output to predict whether
the model would fail or not. Similar to Hecker, instead of predicting the
failure of the prediction model, Corbiere et al. [CTB'19] proposed an auxiliary
confidence network to predict the samples TCP. Chen et al. [CBT22] proposed
a confidence range target that bridges failure detection and TCP approach.
In this paper, we choose TCP because of its high performance and simplicity.
The best rejection approach for the importer problem could be defined with
an ad hoc technique, but this is subject to future work.
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4.3 Methodology

Figure 4.1 shows an overview of our framework. It consists of two components:
Exact rule matching (Section 4.3.1) and similarity classifier (Section 4.3.2),
with a confidence network (Section 4.3.5) for rejecting samples. The details of
each component will be explained in the following section.

4.3.1 Exact Rule Matching

If new shipments perfectly match all the features or information of a previous
shipment, then we can easily determine their importer. However, in many
cases, only a subset of the features match previous shipments. The problem
now becomes identifying the combinations of features that we can use for exact
rule matching to reliably determine the importer details.

Since the combinations of features exponentially increase with the number
of features considered, it quickly becomes infeasible to iterate through all
possible combinations. Therefore, we use beam search to efficiently determine
the matching rules, as shown in Figure 4.3.

For each feature or feature combination, as long as the value or combination
of the values is mapped with a unique importer in historical data, it will be
added to a dictionary as key and value pair respectively as shown in Figure
4.2.

To identify the rules, we evaluate all the single features and compute their
precision and recall performance in determining importers. Next, we expand
only the top k to pairwise combinations of features, which significantly reduces
the combinatorial explosion of features. We repeat this process for longer
combinations of features until the longest possible combinations have been
reached. The feature combination that has the best performance will be stored
as the initial exact matching rule. Then, we remove the data that can be
captured by the initial rule from the training data set, and iteratively search
for new rules on the rest of the data set until the precision and recall can not
meet the business requirement. This procedure leads to a sequence of exact
matching rules.

These rules can be implemented with dictionaries or hash maps, which can
determine the importers in a constant running time.

4.3.2 Pair-wise Classification

While the exact matching rules work well, there can be shipments that do
not satisfy any of the exact matching rules. We propose a pair-wise similarity
classifier (Section 4.3.3). Given any two shipments information, this classier
predicts whether two shipments belong to the same importer or not. This
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Figure 4.3: Beam search on rules.

45



4.3 — Methodology
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Figure 4.4: Similarity feature.

classifier can easily integrate distances of different features, statistics of ship-
pers, and the pair-wise relationship between shipper and receiver. We also
incorporate a dynamic sampling strategy (Section 4.3.4) for sampling pairs
that are most useful for training the model.

4.3.3 Pair-wise feature generation

With the pair-wise framework, we convert nominal features into a single value
that denotes the similarity between the two shipments, as shown in Figure 4.4.
This significantly simplifies the representation of nominal values since we do not
need to represent each unique value. Additionally, we integrate statistics of the
transaction history between shippers and receivers as part of the features for
the classification. This is can not be easily done under a standard classification
framework, since these features dynamically change depending on shipper and
receiver.

Figure 4.4 illustrates the difference between the FWNN approach and the
similarity classifier. The similarity classifier can integrate more hand-crafted
features and it can utilize more complicated logic when computing the overall
similarity score.

4.3.4 Dynamic Sampling

Our pair-wise classifier requires a pair of positive and negative samples for
training.

However, for every positive pair, there are several orders of magnitudes
more negative pairs, making the data heavily imbalanced. We need an efficient
sampling strategy to ensure that the classifier trains properly. Inspired by
Zhang et al. [ZCW™13], we introduce a dynamic sampling of both positive
and negative pairs.

Figure 4.5 illustrates how we used dynamic sampling for the importer
prediction task. Specifically, we first select positive and negative samples
randomly. Next, we employ the score function s(z) to score the samples.
Specifically, we use the output probability of the currently trained model to
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Figure 4.5: Dynamic sampling in the importer prediction task.

score each sample. Then, we re-sample based on the score. The lower score will
have a higher probability of getting sampled. Sampling the difficult samples
will help the model to converge faster and identify a better decision boundary
as explained in Section 4.2.1. We show the more detailed steps in Algorithm 1.

Algorithm 1 Dynamic sampling for both positive and negative samples

Require: positive samples (pi,p2,...,pi), negative samples (nq,n2,...,n;),
score function s(x)
Query s(p1), s(p2), ..., s(p;)
Query s(nq), s(n2), ..., s(nj)
Return one positive sample from (p1,p2,...,pi) with probability
(5(p1). 5(p2). - 5(p))/ Sieey 5(01)- 0m negative sample from (ny, na, ... n;)
with probability (s(n1), s(n2), ..., s(nj))/ > 7_; s(nk)

The whole process repeats until the model converges, i.e., the positive and
negative sample probabilities do not change.

4.3.5 Confidence Network

To meet business requirements the classifier should reject samples that can
not be predicted with high confidence, in order to let humans handle these
shipments (e.g. new importers, or hard samples). In this way, the prediction
performance on the processed data can still meet the precision standards
required.

The easiest approach is to use the predicted probability to represent the
sample’s confidence score [HG16], and then apply a threshold to reject low-
confidence samples. However, this does not consider the actual performance
of the classifier and has been shown to make mistakes with a high confidence
score associated [CTB*19].

We instead use the predicted True Class Probability (TCP) [CTB*19] to
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Figure 4.6: True class probability Training process. Model 1 is a probabilistic
binary classifier, while model 2 will calibrate the predicted confidence score.
After the model is trained, the sample will feed into both model 1 and model 2
sequentially, the final output is the predicted probability.

represent the sample’s confidence score, with a confidence network classification
schema as shown in Figure 4.6.

For a given input x, a standard approach is to compute the maximal
probability of the predicted class § Probability: P(Y = g|w,z). The TCP
target is, on the other hand, the probability of the ground truth label y*
probability: P(Y = y*|w,z). This works because the correctly classified
sample’s ground truth probability will tend to be higher, while the incorrectly
classified one will be on the lower side, therefore the additional prediction
model will work towards correcting this bias. In this contribution we discuss
implementations of the confidence network using random forests and neural
networks.

4.4 Experiment

4.4.1 Data

The data used in our experiments comes from one of the top logistics companies.
We use ten months’ worth of shipments toward one destination country as
our case study. This is further split into training, validation, and testing sets.
Specifically, we use 10 fold time series cross-validation to validate our approach
in order to avoid information leakage. The rolling window size is half a month.
The results that reported are the average of the 10 fold. Each month has
around 150k shipments in average. Each shipment has the following features
from both shipper and receiver: name, phone number, account, country, street,
email, and zip code. The data set contains 296,000 different importer ids.

4.4.2 Setup

As illustrated in Figure 4.1 exact rule matching is first applied on the test set,
to process obvious matches. We only evaluate the classifiers on the rest of the
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Table 4.1: Exact rule matching results

Rule Precision Recall

Rule 1 99.53%  62.82%
Rule 2 98.30%  1.63%
Rule 3 96.09%  1.97%

Overall 99.40%  66.32%

Table 4.2: Recall under different precision requirements

Precision FWNN RF RF +TCP NN NN + TCP

80% 7.17 16.95 22.96 22.13 23.76
85% 5.33 14.47 20.65 19.34 20.39
90% 3.94 10.47 15.45 14.34 17.08
95% 0 0.38 4.09 4.09 5.76

data (not obvious matches) to avoid inflating the evaluation performance.
We use the FWNN as a baseline for comparison, and experiment with two
versions of our model: one uses a random forest classifier and the other uses a
neural network classifier. For the random forest algorithm, we use 100 trees
with a maximum depth of 10. We use the scikit-learn implementation with
default values on the other parameter settings. For the neural network, we use
three layers with an input layer of 42 nodes, an intermediate layer of 8 nodes,
and an output layer of 1 node. Adam optimizer is used in this experiment. The
auxiliary network for the rejection is also evaluated on top of our two models,
and it has an identical structure to the neural network used for classification.

4.4.3 Results
Performance of Exact Rule Matching

The first result to look into is the performance of the matching rules that are
extracted from the beam search. As these rules reveal the inner working of the
company that provided the data for the experimentation, the exact details of
the extracted rules cannot be revealed, but their overall performance can be
discussed.

As shown in Table 4.1, we can observe that there is a dominating rule that
can classify more than half of the test data (62.82% recall) with almost perfect
precision (99.53%). The performance decreases a lot in the following rules
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Table 4.3: Paired T-test on FWNN and our proposed models

Precision RF RF + TCP NN NN + TCP

80% 1.185¢ 1 2.574e 12 1.279¢~ 11 1.179¢~ 1
85% 5.015¢79  2.598¢7 10  1.811e7? 2.041e™9
90% 1.542¢~7  1.326e7?  2.364e” 7  3.595¢7
95% 1.010e72  4.974e~*  7.840e 1.061e~*

in terms of recall. Thus, we keep only the first three matching rules in our
experiments.

Similarity classification results

While the majority of the shipments have straightforward matches with previous
shipments, a significant portion (33.68%) of shipments remain rather difficult
to match using rules. In addition, it is necessary to remember there is 17%
of all of the shipments belong to new importers and cannot be matched to
any record. In these cases, we rely on machine learning models to provide a
measure of similarity to aid us in the shipment match making process. We
evaluated three different models on the remaining 33.68% of the data set where
the matching rules do not apply. As a baseline model, we use a FWNN, which
is the standard practice of the business that contributed the data. The second
and third models are two versions of our framework wherein we train two types
of classifiers with dynamic sampling: a random forest classifier and a neural
network classifier. Both classifiers incorporate their own confidence network
(See Section 4.3.5) trained so that it provides the confidence score used to
reject samples.

From a business perspective, it is important to focus on part of the data
where the model will return a prediction, as that is where the benefit comes
from. Hence, a better model will have higher recall under the same precision.
Figure 4.7 shows the precision-recall curve, which presents the trade-off between
precision and recall as we change the rejection threshold 7 from 0 to 1. We
can see that both versions of our proposed model (random forest and neural
network versions) can achieve a significantly higher recall under the same
precision starting from a precision of 50%. The TCP rejection approach can
improve the performance further. This translates to being able to process
a significantly larger subset of shipments (by rejecting less shipments) while
still satisfying precision requirements. The results for several representative
precision requirements are shown in Table 4.2. In order to test the significant
difference in those models, paired T-test has been conducted between FWNN
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Figure 4.7: Precision-recall plot on test data.

and our proposed models. The results are shown in Table 4.3. All the p value
are less than 0.05 which proved that there is a significant difference between
FWNN and our proposed models.

In terms of time complexity, we applied K-D tree in the input to reduce
the search space, and only do the pair-wise classification on the top 100 closest
shipments, making the worst-case time complexity to be a constant O(100) for
a given input.

4.5 Conclusion

We propose a pair-wise classification method for the shipment importer pre-
diction problem that outperforms the industrial standard FWNN model by a
significant margin of precision across a wide range of recall values. Additionally,
we extend the solution to a pipeline by introducing exact matching rules for
the obvious importers to improve the time efficiency and an additional network
that can better reject the classifier’s prediction. This framework is significant
also because it is applicable to similar problems and can in general terms be
adapted to information retrieval domains.

From an algorithmic perspective, an interesting extension of this work
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can be exploring different confidence score representations and look into data
cleaning techniques that can be applied to those nominal values.
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Chapter 5

Confidence Range: Bridging Failure
Detection and True Class
Probability on selective hierarchical
text classification

This paper focuses on selective classification for hierarchical text
classification (HTC) problems. Selective classifiers reject unfavorable
samples in a classification process, by employing a confidence score.

Two standard approaches to obtain a confidence score are to use
an auziliary confidence network to predict the classifier’s True Class
Probability (TCP) for each sample or apply Failure Detection (FD).
This approach comes with the limitation that the confidence network
pushes the confidence score to match the TCP even when a high-
er/lower confidence score would improve the performance.

We empirically show that TCP and FD do not always work well
on HTC problems. We actually identify three data sets in which
these classification schemes perform worse than the softmax output.
To tackle this limitation, we propose a new confidence score called
Confidence Range (CR) which gives the confidence network more
flexibility to generalize to the samples, therefore allowing for a better
performance in HTC problems. In our experiments we evaluate
four different applicable rejection approaches built on top of long
short-term memory (LSTM) and Transformer based seq2seq models.
Our experiments show that our proposed method achieves the best
performance among all the tested approaches in the selected HTC
data sets.

This chapter is based on the following publication:

Chen, Xi and Bromuri, Stefano and Tan, Daniel Stanley. 2024, DOI:
10.2139/ssrn.4244490, Confidence Range: Bridging Failure Detection
and True Class Probability on Selective Hierarchical Text
Classification, Applied Intelligence - Under review.
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5.1 — Introduction

5.1 Introduction

Collecting and annotating classification data is a long and error-prone process.
Parts of the data can be unclear and ambiguous, making them difficult to label.
This is one of the reasons why the performance of a classification model does
not always meet business requirements and expectations. In cases in which
mistakes can be costly, it may be desirable to select the part of the data in
which the classifiers perform well.

Selective classification frameworks use a confidence score indicating how
reliable a model’s predictions are for a specific input. A threshold can then
be imposed on the confidence score to determine whether the classifier should
reject a prediction or not. The goal of a selective classifier is to maximize the
coverage (similar to recall) under the same cost requirements. Therefore, one
may want to induce an ordering of the samples according to difficulty such
that when a threshold is imposed, the correctly classified samples are above
the threshold, and the incorrectly classified ones are below the threshold. One
research direction is to learn from the classifier’s output. Two main approaches
that can exploit the classifier’s output are Failure Detection (FD) [HDV18] and
True Class Probability (TCP) [CTB*19]. FD learns a separate failure score on
top of an existing classifier. The failure score indicates whether the classifier
can classify the sample correctly (emitting 1 as a score) or not (emitting 0 as a
score). Figure 5.1 illustrates the FD target for a correctly classified sample.
A potential issue of FD is that it optimizes the values towards the extremes
(either 1 or 0), which as a result, leads to difficult samples with unintentionally
high confidence scores, but should instead have lower confidence scores due to
being close to a model classification boundary.

TCP, on the other hand, uses the classifier’s predicted probability of the
ground truth class as the target value to train the confidence network, as
illustrated in Figure 5.1. Once trained, the confidence network tries to predict
the true class probability for new samples. If the classifier is making a mistake,
then the TCP will likely be low. Otherwise, the TCP is expected to be high.
However, a problem arises on correctly classified samples: when the current
confidence estimates are greater than the target true class probability, the
training objective will force the confidence scores to be lower just to match the
true class probability, despite the fact that a higher confidence score is better
for correctly classified samples. Conversely, on incorrectly classified samples,
when the confidence estimates are lower than the target TCP, the training
objective will force the confidence scores to be higher despite being incorrectly
classified.

To address these limitations, we propose Confidence Range (CR), which
considers ranges in defining the learning objective for the confidence network
instead of a single target value. For correctly classified samples, we optimize
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Figure 5.1: Visualisation of the differences between True Class Probability
(TCP) [CTB*19], Failure Detection (FD) [HDV18] and our proposed Confidence
Range (CR) method.

the confidence scores to fall between the target range defined by the target TCP
and the maximum value of 1 (FD target). For incorrectly classified samples,
we optimize the confidence score to fall between the target range defined by
the minimum value 0 (FD target) and the target TCP. This is illustrated in
Figure 5.1. We stop penalizing the model once the output confidence score falls
within our target confidence range. This removes the contradictory objectives
and reduces mistakes with high confidence scores since we do not force the
confidence scores toward the extreme values, and we do not force it to align
with TCP target when it leads to better performance.

We would like to note that this approach is different from the range
loss [ZFW17] used in face recognition tasks. Range loss partitions the input
samples while our confidence range partitions the prediction target.

In this paper, we focus on hierarchical text classification (HTC) [Gar83]
as our case study in analyzing selective classification. HT'C typically involves
labels that have a hierarchical structure such as a hierarchy of classes organized
like a tree, where the leaves of the tree are exclusive between each other.
Rather than classifying only the leaves and transforming the problem into a
multi-class problem, the presence of the super-classes can help specify better
boundaries for the sub-classes [YSLT18]. In this contribution, we conduct our
experiments on three different data sets presenting HT'C labels: one private
data set provided by DHL Express and two public data sets. Additionally, we
also demonstrate the generalizability of our model to another data modality
by evaluating on CIFAR-10 and CIFAR-100, which are benchmark datasets
for image classification.

Our contributions are two-fold:

1. We propose Confidence Range (CR), a new objective for training the
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confidence score. This achieves the best performance on three different
data sets among all tested rejection approaches, demonstrating the effec-
tiveness of our approach. Our simple approach improves upon TCP and
can be a drop-in replacement to all models where TCP is applicable.

2. We report the first benchmark of threshold-based selective classifiers on
the setting of HT'C. To the best of our knowledge, this paper is the first
to look into the HT'C problem with a rejection option. We compare the
performance of the selective classification incorporated in a LSTM-based
NMT model and Transformer based model.

The structure of the paper is as follows: Section 5.2 covers fundamental
related work concerning the HT'C problem and selective classification; the
LSTM-based NMT and Transformer models are explained in Section 5.3, to-
gether with all the rejection approaches; Section 5.4 will present the experiment
and results; Section 5.5 concludes this paper by presenting our results and
discussing future work.

5.2 Related work

This section presents the contributions that are mostly related to the one
presented in this paper, concerning HTC and selective classification. Hier-
archical classification literature can be categorized into three different types:
flat classification, hierarchical local classification, and hierarchical global clas-
sification. The flat approach treats the task as a multi-class classification,
instead, the hierarchical local approach implements multiple local models to
determine next-level prediction, while the global approach uses one model and
predicts all levels at once. For instance, Kowsari et al. [KBH'17] proposed
a deep learning model, which uses a neural network for each hierarchy, but
with the development of deep learning, most of the recent research focuses
on the hierarchical global approach [HCL119]. Wu et al. [WS17] and Gao et
al. [Gao20] use fully connected networks to simulate the hierarchical structure.
Wehrmann et al. [WCB18] and Huang et al. [HCL"19] tested an LSTM-like
network. Mao et al. [MTH™"19] simulate the decoding process with reinforce-
ment learning. Lately, pre-trained Transformers [BB21] are dominating the
scene in this domain. Most of the global models follow the seq2seq structure.
Sequence generation for hierarchical text classification has proved its ability
in Hierarchical classification [YSLT18; US19]. Given the generalization capa-
bilities of pre-trained Transformer models, these can be easily fine-tuned and
adapted to deal with the HTC problem, while maintaining high performance
[BB21].

Selective classification, also known as classification with rejection option,
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has been used in machine learning research for a long time [Cho57; Cho70].
There are two types of rejection options. One is a cost-specific approach,
where we assume the cost for wrongly classified samples is known [DSV0O;
CDT195]. The other approach is threshold-based rejection option. This utilizes
a confidence, trust, or reliability score [DSV00; JKGT18] and compares it to a
selected threshold to decide whether to accept the result. Our contribution falls
under the variant using a threshold. Therefore, we mainly compare ourselves
with threshold-based approaches. There are several model-specific approaches,
such as SVM-based [FR02; BW08] and KNN-based. However, those are not
easy to apply in a deep neural network(DNN) setup. K-nearest neighbors
(KNN) approaches [Ati05; Dal09] are a natural choice for producing confidence
scores with good explainability associated with the prediction. Some variations
have been made in order to adapt KNN selective classification with deep neural
networks (DNNs), including combining KNN with DNNs. The approaches that
have been tried include: using softmax output to represent the weights for the
KNN model [Ati05], applying KNN on a hidden layer on the DNN [MAN17],
and applying KNN on all hidden layers and aggregating the results [LCAT20].
Similarly, Jiang et al. [JKG™18] used the distance ratio between the nearest
class to the predicted class, while Lee et al. [LCA'20] replaced the last layer
with a KNN classifier. KNN-based approaches come with good performance
and are easy to explain, but one of their biggest issues is scalability which
makes them not suitable when it comes to production environments like in our
case.

Other than KNN-based methods, another technique involves working on the
softmax output directly. Vasconcelos et al. [VFB95] proposed a more reliable
network by replacing the sigmoid activation function with a Gaussian activation
function. Lately, Hendrycks et al. [HG16] and Geifman et al. [GE17] used the
maximum value from softmax to represent model reliability and showed that
the softmax output in DNN acts as a good baseline. Hecker et al. [HDV18]
trained the model with additional output to predict whether the model would
fail or not. Similar to Hecker’s idea, instead of predicting the failure of the
prediction model, Corbiere [CTB*19] proposed an auxiliary confidence network
to predict the sample’s TCP.

One closely related area of research to the one of selective classification, is
model uncertainty [APH'21]. Currently, it is not clear how to infer uncertainty
from reliability /confidence/trust scores. For a confidence score, the target is
clear and it is to increase the coverage under the same risk [El-710]. However, for
the model uncertainty, there is no single metric that can be used for measuring
performance. Some common metrics, such as mean square error, are used for
evaluating how well the model fits the data [GHV14], negative log-likelihood
indicates how well-calibrated a model [Gall6] is, and the expected calibration
error [GPST17] is used to score the calibration of maximum posterior predicted
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probabilities. As a consequence, the model uncertainty approaches and other
calibration approaches [GPS™17; KLM19] will not be evaluated in this paper.

5.3 Methods

Problem Definition

In the following we will assume the training data S, = {(z;, vi)}7 is sampled
i.i.d. from some unknown underlying distribution P(X,Y"). A selective classifier
[GE17] is a pair of functions (f, g), where f : X — Y is a classifier that predicts
class labels given an input, and g : X — {0,1} is a selection function that
determines whether to reject the prediction or not. The selective classifier is
defined as follows:

fz), if g(x)
reject, if g(x)

(f,9)(z) = { (5.1)

1
0

The selection function g(x) is dependent on a confidence score C(x) and a
threshold 7, defined as follows:

o(a) = {1, if C(z) > 7 5:2)

0, otherwise

In the selective classification literature, the threshold is defined based on
either risk or precision requirements [JKGT18; GE17]. In this paper, we use
precision since it is more suitable for a business perspective. For a selective
classifier, the goal is not to maximize the overall accuracy. Instead, the goal of
a selective classifier is to find the model f(x) and the selective function g(z)
that has the highest coverage under the same precision requirements, where
coverage refers to the percentage of data that is not rejected by the selective
function.

5.3.1 Classification Model

For the HTC problem, we are validating two commonly used deep neural
networks: an LSTM-based NMT model and a Transformer. To maintain
similar notations in the literature, all variable notations in this section are only
applicable within their own sub-section.

Long Short Term Memory Based Neural Machine Translation

An NMT encodes all the input symbols into a hidden space, then predicts
the output symbols one by one. Formally, the model transforms the sequence
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vectors x = (1, x2, ..., £;) into sequences of vectors y = (y1, y2, ..., Y ), where j
and k are the length of the input and output respectively. The transformation
is performed by the LSTM unit in two phases: encoding and decoding process.
For the encoding process, the LSTM unit will read the tokens one by one
and output a Context Vector ¢ = ¢(f(h1,...,h;)) where f and ¢ are non-linear
functions, h is the hidden state. The context vector encodes all the information
of the sequence.

m

p(v) = [T p(welvr, vz, oye1,0) (5.3)
t=1

The attention mechanism has been first proposed by Wang et al. [WHZ'16].
It allows a neural network to concentrate on different parts of a sentence
that may be more important toward a specific machine learning task. Let
H = {h1, hg,...,h;}, V, represents the importance of the hidden states. The
final context vector c is calculated as follows:

¢ = tanh(Wpr + W3h;)
r=Hal
a = softmax(WrM)

M = tanh([WhH + Wyve ® eN])

(5.4)

where r is a weighted representation of the sentence. h,, is the final output
from the LSTM. ey is a column vector with 1s, the function of v, ® ey is to
repeatedly concatenate v for N times. W), W, W, W}, and W, are learnable
weights of the LSTM.

The idea of attention has been further explored in [MLZ"17; CMP*21] and
we refer the interested reader to these publications for a complete discussion
on attention models.

Transformer

The Transformer model is purely attention-based. The variants of the Trans-
former have been successfully used in NLP tasks [HLG"20; LOG'19]. The
essence of the Transformer is the multi-head attention (self-attention) mecha-
nisms. With respect to the basic attention mechanism, multi-head attention has
the benefit of being parallelizable, but also that it can remember longer-range
dependencies happening in sequential data.

The Transformer model consists of an encoder and a decoder, sharing a
similar structure. Both consist of multiple identical blocks. Each block has
multi-head attention and a feed-forward network that connects with a residual
connection [HZR"16] in the sub-layer.
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Multi-head attention consists of multipless scaled dot-product attentions.
Each independent attention output is then concatenated and linearly trans-
formed into the expected dimension. More formally, we can define multi-head
attention as follows:

Multi-head(Q, K, V) = [heady, heads...heady,] x W*°
Where each head;:

head; = Attention(QW<, KWF, VY

QWO « KWk"
()

where h is the number of heads, di, = dmoder /1, dmoder is the dimension of

the output. The attention function is computed as a set of queries, packed in

the matrix @, with respect to a set of keys and values, packed in a K and V'
matrices. WO, W&, W* WV are parameter matrices.

(5.5)

= softmax( ) VVVZV

5.3.2 Rejection options

In selective classification, whether a test sample is rejected or not depends on
its confidence score. In our experiments, we test four different confidence scores:
Maximum Softmax Probability (MSP) [HG16], Failure Detection (FD) [HDV18],
True Class Probability (TCP) [CTB*19], and our proposed Confidence Range
(CR).

Maximum Softmax Probability (MSP)

One of the simplest, yet effective, approaches to represent a sample’s confidence
score, is to use the maximum value from the softmax output of the neural
network. It has been shown that the prediction probability of incorrect samples
tends to be lower than the prediction probability for correct samples [HG16;
GEL17]. Geifman et al. [GE17] and Corbiere et al. [CTB"19] have shown that
MSP is a strong baseline for selective deep learning classifiers.

For hierarchical classification with K levels, the softmax probability is the
multiplication of probability on all of the hierarchical levels:

K
PY|X) =[] PwiIx) (5.6)
=1

The confidence score is the maximum value from softmax probability:
max(P(Y]X)).
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Failure detection (FD) & True Class Probability (TCP)

MSP is a common baseline for representing the confidence score. However,
it has been shown to be overconfident in some cases [GG16]. FD and TCP
specify an alternative way to represent the confidence score.

Both approaches share a similar idea: they learn the confidence score
from the classifier’s prediction. The main difference between the two is that
FD specifies a binary target whose value depends on whether the classifier
can predict the sample correctly (1) or not (0), whereas TCP predicts the
probability of the ground truth label, given the classifier’s prediction. For any
sample pair {z;,y;}, a classifier is trained first, which outputs the predicted
probability over each class p(y|x;; ), where 6 denotes the parameters of the
network. Then, an additional confidence network is trained to learn FD / TCP
scores on training samples. For TCP, the learning target is the classifier’s
probability on the sample’s ground true label, which is p(y = y;|zi;0). As for
FD, the learning target is 1 if the classifier can classify the sample correctly, 0
otherwise.

After the confidence network is trained, it is then used to predict the new
sample’s confidence score. Ideally, the correctly classified sample will have a
high confidence score, while the incorrectly classified sample will have a lower
confidence score. By setting a threshold to reject certain samples where the
model most likely misclassifies, we can achieve high precision on the rest of the
data.

Confidence Range (CR)

In order to improve the confidence network’s generalizability with respect to
TCP, we propose the following changes: first, we use the softmax output from
the classifier as an additional feature input for the confidence network when
predicting the target. Second, we propose Confidence Range (CR) as a new
learning target that bridges the gap between FD and TCP. Figure 5.2 shows
the structure of our proposed confidence network.

As shown in Figure 5.1, for the correctly classified sample x;, the TCP
target is equal to the maximum value from the softmax output:p(y = y;|x;) =
max(f(x;;0)). When the predicted score is larger than max(f(z,6)), the
confidence network still pushes the predicted value to max(f(x,#)). However,
this optimization direction is not good for performance, since in a correctly
classified sample it is better to have a higher confidence score. As a consequence,
we propose a new learning target CR that combines the ideas of FD and TCP.
In our proposed CR, we set the loss to zero if the predicted confidence score falls
in the designated range during the training. For the correctly classified sample,
the learning target range is between [p(y = y;|x;)], 1], and for misclassified
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Figure 5.2: Overview of our Confidence Range architecture. After training
a classifier, we train an auxiliary confidence network and use the classifier’s
output to define our target confidence range.

samples, the target range is between [0, p(y = y;|z;)]. More formally:

N
Lo =y > max (0,505 % (ply =uile) —e()))” (57)
i=1
L1 ity=g
S(y,y)—{_l ity 40 (5-8)

where g is the prediction and ¢(z) the output of the confidence network. This
allows the auxiliary confidence network to predict any value inside the range
without a penalty. The main advantage of this range target compared to TCP
is that it gives the auxiliary confidence network more generalization flexibility
in learning a suitable confidence score ordering of the data within the target
range as opposed to TCP which forces it to follow a fixed target defined by
the classifier. This flexibility also helps in improving the coverage compared to
the TCP approach as we show in our experiments (Section 5.4).

Since the confidence network is learning from the classification model,
it would be useful to integrate the classifier’'s output when predicting the
confidence score. Similar to Blatz’s work [BFF104], the classifier output is
concatenated with the hidden layer when predicting the confidence score. Due
to the complexity of the hierarchical structure of the problem, it is not realistic
to predict all the possible outcomes over the whole hierarchy. As a compromise,
we only use the top four highest predicted probabilities as additional input for
the auxiliary confidence network, with a beam search having a width of three.
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5.4 Experiments

5.4.1 Data set

Three different data sets have been tested in our experiments: a private data
set provided by DHL and two public data sets: Amazon Product description !
and Amazon Review data from Kaggle competition. The private data set can
not be released due to the confidential agreement with DHL.

DHL Shipment Description. The data used in this experiment were
collected over a period of ten months and it concerns shipments moving
towards one destination country via the DHL network. The data set contains
the following features: item description, origin, destination, and harmonized
system code (HSCode) [CBV21]. The HSCode is dependent on the shipment
content, and it is directly linked with import/export tariff. The model is
trained based on the description, origin, and destination to predict the HSCode
associated with the shipment. For example, if the shipment description is
”Used Aluminum door frame”, its corresponding HSCode is 76.02.00.

Amazon Product Description. This data set is a collection of product
descriptions from Amazon. Each description has been classified into three
sub-levels. In this experiment, we used data from three super-categories: Arts
Crafts and Sewing, CDs and Vinyl, and Electronics. All the combinations of
labels in the three levels that have less than 10 samples are removed during
pre-processing.

Amazon Product Review. This data set is a collection of product
reviews from Amazon. It contains a product categorization expressed in a
hierarchical structure and its review from the buyer. We use the review content
to predict the product category.

5.4.2 Implementation details

All the chosen data sets have three hierarchical levels. We apply 10-fold cross-
validation with validation and test set. For the DHL Shipment Description data
set, we order the shipment in time, then we use a rolling window evaluation
approach to prevent information leakage. For the Amazon Product description
and Amazon product review, we use a stratified split with an 80%, 10%, 10%
partitioning for train, validation, and test sets respectively. The size of the
data is shown below, the number of samples for DHL data set is the average in
the rolling window.

We use a bidirectional-NMT model and a Transformer model as basic
classifiers. Both models are trained with a teacher-forcing technique [WZ89).
The same classifier is used in evaluating different rejection approaches. BERT

"https://jmcauley.ucsd.edu/data/amazon/
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Data Train Val Test
DHL Shipment Description 925,168 115,647 125,627
Amazon Product Description 1,114,445 139,306 139,306
Amazon Product Review 40,000 5,000 5,000

Table 5.1: Data set statistics

[KT19] embedding is used in this experiment. In the NMT model, the dimension
of the LSTM units is 100 with a dropout of 0.2 since we noticed during the
experiment that it tends to over-fit with larger unit sizes. Rmsprop is used as
the optimizer with a learning rate of 0.001. Concerning the Transformer, it
contains two layers of Transformer blocks, with 4 multi-head attentions. The
dimension of the model is 768. The optimizer is Adam with g1 = 0.9, 85 = 0.98,
¢ = le™¥ with scheduled learning rate similar to [VSP*17]. As for the optimizer,
we use RMSprop optimizer starting with a learning rate at 0.0001 with a weight
decay of 0.975 per epoch except for the Amazon Product Review data set,
which uses 0.0005 as the initial learning rate and 0.8 as the weight decay.

5.4.3 Results and Discussion

In this contribution, both NMT and Transformer are evaluated on four different
rejection approaches: Maximum Softmax probability (MSP), Failure detection
(FD), True class probability (TCP), and Confidence Range (CR).

When evaluating the different rejection approaches on the same classifier,
we choose four representative precisions that are normally used in the industry
for coverage analysis, which are 80%, 85%, 90%, and 95% respectively. We are
comparing the coverage under each precision. The table below is the overview
of coverage under those chosen precisions. The way to calculate the coverage is
to order the samples by their confidence score first, then move the confidence
score threshold gradually, until the precision on the rest of the data is equal
to the desired precision. The coverage is the percentage of the data where its
confidence score is larger than the threshold.

We report the performance values as the average of a 10-fold cross-validation.
The statistic tests are discussed in this section. For the results analysis, we are
interested in two aspects: a) The coverage performance for different rejection
approaches; b) The performance of NMT and Transformer under the same
rejection approach.

Rejection Approach Evaluation. In Fig. 5.3 we plot the difference
between MSP and other rejection approaches. Based on the plot, we can
conclude that the MSP is a strong baseline also in the HTC with a rejection
option. FD and TCP do not seem to perform well in sequential tasks, despite
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NMT Transformer
Precision MSP FD TCP CR MSP FD TCP CR

Shipment Description 80% 35.21 32.06 33.29 36.74 38.22 34.46 35.82 39.28
Shipment Description 85% 26.92 24.39 25.64 28.84 29.51 25.61 27.16 31.51
Shipment Description 90% 18.47 17.22 18.43 20.97 20.31 16.74 18.30 22.49

Shipment Description 95% 9.08 870 9.83 11.14 10.01 7.53 8.89 11.56
Product Description 80% 81.60 80.55 80.68 81.45 82.84 81.86 82.03 82.73
Product Description 85% 72.80 69.89 70.26 72.88 73.91 7191 7233 74.08
Product Description 90% 62.71 56.85 57.45 63.18 63.71 60.97 61.81 64.20
Product Description 95% 47.99 39.43 40.62 49.08 48.78 4558 4748 50.42
Product Review 80% 37.30 30.32 30.39 38.02 38.30 32.02 33.74 38.96
Product Review 85% 28.06 22.65 22.99 28.94 28.86 24.20 25.09 30.49
Product Review 90% 19.25 14.18 14.58 20.89 20.14 17.31 18.73 21.51
Product Review 95% 10.46  7.47 7.54 11.64 11.44 9.11 10.59 12.92

Table 5.2: Selective classification coverage results on the three selected data
sets, using precision to specify the rejection threshold.

Shipment Description Product Description Product Review

+ FD
i L . ! L . - Tcp
0 | s . 0 i 0 . CR

NMT
Coverage Difference(%)
-

80 85 90 95 80 85 ) 95 a0 85 90 95

Transformer
Coverage Difference(%)

0o 85 %0 95 104 85 90 95 “0g 85 90 95

Precision Precision Precision

Figure 5.3: Rejection option comparison: X is the precision, Y is the im-
provement in terms of coverage, expressed as coverage(Evaluation approach) -
coverage(MSP). A Negative value means that the approach is worse than the
baseline.
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Precision NMT(MSP VS CR) Transformer(MSP VS CR)

Shipment Description 80% 7.10e~6 8.47¢75
Shipment Description 85% 7.78e77 3.02¢76
Shipment Description 90% 3.16e° 2.67¢8
Shipment Description 95% 5.20e~8 9.62¢~6
Product Description 80% 5.50e 3 4.24e73
Product Description 85% 1.48¢~ 1 6.96e4
Product Description 90% 2.45¢7 7.09¢6
Product Description 95% 4.55¢76 5.57¢6
Product Review 80% 2.93¢72 6.00e3
Product Review 85% 1.52¢7! 9.31e~*
Product Review 90% 3.40e~2 9.20e~*
Product Review 95% 1.20e7! 6.35¢73

Table 5.3: The p-value of Student’s t-test on MSP and CR. approach.

working well in image-related tasks [HDV18; CTB*19]. One possible cause
could be the different classifier architecture used in this paper. Considering
that the classifier in this problem is a seq2seq model, this implies that when
creating the auxiliary confidence network, we can only use up until the hidden
layer to predict TCP / FD, and the decoder knowledge is not utilized.

The second observation is that CR achieved the best performance among
most of the tested approaches except for the Amazon Product description data
set. CR performs slightly less than softmax when the precision threshold is
80%. We can notice that the difference between CR and MSP is rather small
when the precision threshold is close to the accuracy. The accuracy in this
data set is around 72%. But the coverage difference is increasing along with
the precision threshold, as shown in Figure 5.3

In order to validate whether there is a significant difference between CR
and MSP, we applied the Student’s t-test on each precision threshold. The
results are shown in Table 5.3

The result shows that for the Transformer, all the p-values are less than
0.05, which proves there is a significant difference between CR and MSP. For
the LSTM-based NMT model, our model performs better on average but it
is not statistically significant in certain thresholds. Especially in the Amazon
product review data set. We noticed that the training process is not stable in
some splits, the data size (40k) may have an impact on it. This result may
also be due to the limitations of the model in identifying important words as
compared to the Transformer which uses multi-head attention.

LSTM-based NMT VS Transformer. Other than comparing different
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Shipment Description  Product Description Product Review
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Figure 5.4: Comparison between LSTM-based NMT and Transformer for both
MSP and CR option. In this plot, the diff is the Transformer’s coverage minus
the LSTM-based NMT’s coverage.

rejection approaches on the same classifier, we also looked into the comparison
of the same rejection approaches on different classifiers. As aforementioned,
the CR approach achieves the best performance in most of the cases while FD
and TCP are worse than the baseline MSP in general. Hence, only the MSP
and CR techniques are compared here.

The comparison is shown in Figure 5.3. It can be easily concluded that the
transformer consistently outperforms the LSTM-based NMT model on both
rejection techniques, though there is no clear signal that Transformer gained
more coverage from the CR technique.

5.4.4 Ablation study

Compared with the original TCP approach, our proposed Confidence Range
(CR) has made two main changes: 1. Change the TCP target to a more
relaxed CR target. 2. Integrate the softmax output as additional input when
predicting the CR. We conduct an ablation study to better understand the
effects of these changes.

When looking at the result as shown in Table 5.4, on all three data sets, our
proposal has the best performance compared with the baseline TCP approach.
It is obvious to see that when integrated with the MSP output, the performance
increases a lot. Changing the target to our confidence range further improves
the performance even further.

Though, the difference in one of the datasets is rather small between TCP
(with MSP) and Confidence Range (with MSP). In order to understand whether
there is a significant difference between those two approaches, we also conduct
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Loss target ~ MSP output Shipment Description Product Description Product Review

TCP CR with without 80% 85% 90% 95% 80% 85% 90% 95% 80% 85% 90% 95%
NMT Baseline v v 3329 2564 1843 9.83 80.68 7026 5745 40.62 30.39 22,99 14.58 7.54
NMT v v 3423 2638 1888 10.12 81.01 7125 59.36 43.62 3381 2522 1741 9.39
NMT v v 36.45 28.65 20.67 10.79 81.51 72.88 63.08 48.92 3747 2885 20.37 10.97
NMT Ours v v 36.74 28.84 20.97 11.14 81.45 72.88 63.18 49.08 38.02 28.94 20.89 11.64
Transformer Baseline v v 3582 2716 18.30 8.89 8203 7233 61.81 4748 33.74 2509 1873 10.59
Transformer v v 36.60 27.76  19.09 9.38 8231 7284 6229 4814 3514 2646 19.57 10.98
Transformer v v 38.79 3101 21.88 1093 8273 7404 64.13 50.08 38.41 29.93 21.10 12.28
Transformer — Ours v v 39.28 31.51 22.49 11.56 82.73 74.08 64.20 50.42 38.96 30.49 21.51 12.92

Table 5.4: Results of the ablation study where we add or remove different
components of our model as well as its effects on the two different model
architectures.

NMT Transformer

Precision  TCP VS CR TCP(w. MSP) VS CR(w. MSP) TCP VS CR TCP(w. MSP) VS CR(w. MSP)
Shipment Description 80% 1.04e™4 2.66~2 2.29¢7° 5.12¢3
Shipment Description 85% 5.87¢ 4 2.65¢1 4.87¢? 2.13¢2
Shipment Description 90% 1.76e~* 3.56¢2 9.12¢~4 3.32¢2
Shipment Description 95% 2.48¢72 1.05¢72 4.75¢73 2.94¢72
Product Description 80% 3.93¢ 4 2.68¢71 8.18¢3 9.44e!
Product Description 85% 1.28¢73 8.49¢~! 7.43e1 1.53¢!
Product Description 90% 1.57¢™® 7.25¢2 5.12¢73 1.76e!
Product Description 95% 4.28¢73 3.81e73 3.13¢74 2.37¢2
Product Review 80% 1.13e4 1.58e7! 2.97¢* 1.77¢72
Product Review 85% 1.42¢73 9.09¢~! 2.23e3 1.80e~2
Product Review 90% 7.51e73 6.55e! 1.71e73 1.98¢2
Product Review 95% 1.54e~3 8.84¢71 1.28¢73 2.91e?

Table 5.5: The statistical significance of the performance differences in our
ablation study.

a t-test on each pair and summarize the results in Table 5.5.

For both NMT and Transformer models, the TCP is statistically different
from the CR approach on all datasets. However, when we add the softmax,
the TCP(with MSP) approach is closer to the CR(with MSP) approach. Both
models perform differently. We would like to note that including MSP is part
of our modifications and not part of the original approach of TCP [CTB*19].
For the NMT model, those are no significant differences in most of the precision
thresholds. As for the Transformer, there is a significant difference in the
Shipment description and product review data sets. For the Product Description
data set, there is only a difference in high precision thresholds. The difference
between the Product Description data set and the rest is that both models
have high accuracy when predicting the target which is around 75%.

In summary, our experiments show that our CR approach is better than
the TCP approach for the tested selective HT'C problems. Adding softmax as
additional input to predict TCP can improve the model performance.
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Dataset ~ AUPR-Success (1) AUPR-Error (1) AUC (1) FPR-@95-TPR ()

TCP [CTB*19] CIFAR-100 92.68% 73.68%  86.28% 62.96%
CR (Ours) CIFAR-100 94.10% 72.06% 87.20% 62.36%
TCP [CTB'19] CIFAR-10 99.24% 49.94% 92.12% 44.94%
CR (Ours) CIFAR-10 99.23% 47.80%  91.95% 44.23%

Table 5.6: Performance comparison on image classification data (CIFAR-10
and CIFAR-100).

5.4.5 Evaluations on image data

For completeness, we also evaluated our method on CIFAR-10 and CIFAR-100,
which are two benchmark datasets for image classification. We follow the
evaluation setup of Corbiere et al. [CTB*19] and report the area under the
precision-recall curve using the correct class as the positive class (AUPR-Sucess)
and its counterpart that uses the errors as the positive class (AUPR-Error).
We also report the area under the receiver operating characteristic curve
(AUC) and the false postive rate at 95% true positive rate (FPR-@95-TPR).
Table 5.6 shows the results in comparison to TCP [CTB*19]. Our proposed
CR outperform TCP [CTB*19] across all the metrics on CIFAR-100 and
performs competitively on CIFAR-10. This demonstrates that our method
is not only effective on hierarchical text classification but also generalizes to
image classification tasks.

5.5 Conclusion

In this paper, we proposed a new confidence score called confidence range
(CR) for selective classification. The results are compared under the context of
three HTC problems. The takeaways from this paper are: a) Our CR method
achieved the best performance among all tested rejection methods in the HTC
problems selected. b) FD and TCP do not seem to always work well in selective
HTC problems, against MSP as a baseline. ¢) transformer is a better option
than basic LSTM-based NMT when it comes to selective HT'C problems. We
also demonstrated the capabilities of our model in image classification, showing
the generalizability of our approach to other data modalities.

In terms of future work, CR is still a two steps method. From a feedback
control theory perspective, it is possible to integrate information concerning
the confidence of the model during the training and change the training loop
of the neural networks. In this contribution, we also did not put emphasis on
how to sample the data in the best way to train on the rejection approach.
As it is clear that part of the data will never be covered when it comes to
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selective classification problems, certain sampling strategies might lead to
further improving the results shown in this contribution.
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Chapter 6

A transfer learning approach to
predict shipment description quality

International shipments always have a harmonized system code
(HSCode) associated with them, to determine the tariff for the custom
declaration. The HSCode is derived from the shipment description
that the customer provides, which makes the quality of the description
important to assign the correct code. When the description is too
generic or incomplete, the logistic company will have to contact the
customer in order to find out the content of the shipment. Due
to the fact that there is no effective way to identify the quality of
description, we developed a description quality evaluation model,
based on deep learning combined with domain knowledge. By using a
2000 shipments data set with scores ranging from 0 to 4 provided by
experts, where 4 represents the best quality possible, the developed
model can classify 45.17% of the data correctly and 43.95% of the
data with 1 score difference (i.e predict label 1 as 2 or 0 ) from the
human annotated ground truth. This model can be used for historical
data analysis, and potentially giving customers on-site feedback when
they are providing a bad description for the shipment content.

This chapter is based on the following publication:

Xi Chen, Stefano Bromuri, and Marko Van Eekelen. 2022, DOI:
10.1145/3477314.3507339, A transfer learning approach to predict
shipment description quality, In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing (SAC ’22).
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6.1 — Introduction

6.1 Introduction

The shipment description is important information when someone ships an
international package, as it is used for determining the Harmonized System
Code(HSCode) and the tariff that shippers have to pay. Despite their impor-
tance, there currently are no effective ways to identify bad descriptions that
would cause the authority to react. To address this issue, we developed a
description quality evaluation algorithm.

We started from a definition of quality that revolves around how well the
description allows to classify the shipment description into a HSCode. Based
on the different amounts of information it carries, the description quality is
defined in five different categories: Really Bad (0), Bad (1), Average (2), Good
(3), and Really Good (4). We used the following features to define our quality
score associated with the shipment descriptions:

e Model Reliability: A transfer learning feature obtained from the output
of a neural network. The neural network is pre-trained with an HSCode
classification task.

e Domain Knowledge: A vector that records which functional properties of
the object are available in the description

e Linguistic Feature: Features that concern the linguistic structure of the
shipment description.

With the help of domain experts, we labelled 2000 items for training a
machine learning model and 500 items for testing. We trained an ordinal
regression model [Ped15] on top of the features described above. The model
can achieve accuracy at 45.17%, and 43.95% of the data with 1 score difference.

The contribution of the paper is to illustrate how the combination of
transfer learning and domain knowledge can be used to obtain a quality score
concerning a text description of a product in an automated text scoring(ATS)
problem. This approach can be easily transferred to other ATS problems like
determining the quality of the product review.

The structure of the paper is as follows: The related work will be discussed
in Section 6.2. In Section 6.3, we will explain the data that is used in this
experiment. The methodology will be introduced in Section 6.4. Section 6.5
and 6.6 are for the results and conclusion respectively.

6.2 Related work

Classifying the description quality into different score/categories is an ATS
problem. We can find three main categories of ATS problems related to our
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work, that are Text Readability, Machine Translation Quality, and Automated
Essay Scoring.

6.2.1 Text Readability

Readability is a common approach to assess the quality of written text. In-
formally, text readability is understood as the easiness at which a human can
comprehend a given text.

Numerous features and approaches exist towards predicting text readabil-
ity. Lexical syntax [DK82], discourse connectives [MPJ"04] and cohesive
features [HH14| are examples of hand-crafted features that have been used in
combination [PN08; FJH'10; CSD*17] to assess text readability.

Thanks to the fast development of deep learning, embedding-based solutions
have become the predominant paradigm to tackle the assessment of text
readability. Cha et al. [CGK17] and Deutsch et al. [DJS20] use the feature
that extracted from the embeddings. Additionally, some approaches apply
Recurrent neural network (RNN) [NO18; AP19] and Transformer[MPR21] on
top of the embeddings.

6.2.2 Machine Translation Quality

Another closely related domain is Machine Translation Quality Estimation.
From a technical perspective, it is very close to performing a readability
prediction. The features that are used in readability, such as coherence,
semantic features and other linguistic features, are also often used to evaluate
the machine translation quality [GAS05; LBT05; STCt09]. The idea of
embeddings and deep learning models are also dominating the current state of
the art in this task. Kim et al. [KL16] used a bidirectional RNN in addressing
this problem. Shah et al. [SBBT16] proposed to use hand-crafted features,
output from neural machine translation (NMT), and the average of word
embedding to predict the quality of a translation. Similar to Shah’s approach
that learns from the translation model, Kim et al. [KLN17] proposed a two-
steps approach: train the word prediction and the quality prediction with
stack propagation. Following Kim’s work, Li et al. [LXC"18] tried to combine
two stacked models into a single one. Instead of using a predictor-estimator
approach, Cui [CHL"21] pre-trained the evaluation model on generated data
that is close to the test data set.

6.2.3 Automated Text Scoring

Different the readability and machine translation quality evaluation problem,
essay scoring is in general a more complex problem, because it requires good
understanding on essay clarity, topic development, and persuasiveness [KN19].
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The neural network based solutions have been proposed by Taghipour
et al. [TN16] and Alikaniotis et al. [AYRI16] which output-performed the
hand-crafted solutions. Taghipour et al. used a Convolutional recurrent neural
network while Alikaniotis et al. used a Long Short term memory network
(LSTM). Both models are applied on the word level. In order to make the
model faster at learning, Dong et al. [DZY17] designed a hierarchical model
where first a convolution is applied on the sentence to retrieve the sentence
vector, and then each sentence vector is connected into a sequence to be put in
input to an LSTM.

Some researchers argued that deep learning networks are incapable of
capturing all the information due to the inefficiency of the structure. To deal
with the limits of coherently representing the global meaning of the essays, Tay
et al. [TPT'18] and Farag et al. [FYB18] included auxiliary neural coherence
features in their deep learning models.

End-to-end solution are becoming predominant in ATS problems. Our
problem can also be addressed by using an end-to-end model if a large dataset
can be provided. However, in general, obtaining a large dataset is difficult.
That is why we propose to use transfer learning. This enables us to train a
sufficiently accurate model with a small dataset.

6.3 Data

The quality target that we are going to predict is defined in five different
categories depending on the amount of information it carries in classifying
HSCode. The labels are: Really Bad (0), Bad (1), Average (2), Good (3), and
Really Good (4) respectively. The higher score indicates more information
contained in the description.

We randomly sampled 2000 historical shipment descriptions from historical
data that available at DHL as training data set and 500 descriptions as test
data set. Also, one million historical shipment descriptions and their related
HSCodes also got collected. The purpose of the one million descriptions is to
train a hierarchical classification model which can be used for extracting the
model reliability. The basic statistics concerning the length of the descriptions
can be found in Table 6.1. The data was being collected in early 2021.

In order to get the labeling data, four domain experts were asked to label
the quality of the description for the 2500 collected data items aforementioned.
Since it is a subjective score and it requires domain knowledge, we used the
majority vote to determine the final label. The description was removed if the
maximum difference in grade between the domain experts was larger than 2
quality grades. The label distribution is shown in Figure 6.1.
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Figure 6.1: Label distribution

Min length Max length Median Average

Train 1 28 3 4.28
Test 1 17 3 3.95
Historical Data 1 63 3 4.10

Table 6.1: The statistics of the dataset

6.4 Methodology

In order to create a generalized model with limited labeled data, we used
several hand-crafted features for classification instead of building an end-to-end
model. The features that are used are model reliability, domain knowledge,
and linguistic features. The architecture of the model is shown in Figure 6.2.

Model Reliability

Really Bad
Bad

Ordinal

Description Classification Average
2

Good

Really Good

Domain

D (nowledge D

A

Figure 6.2: Model architecture

6.4.1 Model Reliability

The first feature used to model our quality score is model reliability. This feature
is based on transfer learning knowledge obtained out of a NMT that translates
shipment descriptions in HSCode. The model reliability score indicates how
reliable the model’s prediction is. Intuitively, a bad quality description will
lead to a lower reliability score. It has been proven that the reliability score
can be used as an indicator for detecting outlier or mis-classification [HG16].
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Figure 6.3: Illustration of domain knowledge. The description will be converted
to a feature vector with binary value [1,0,1,0,0,0].

In our experiment, we use the maximum softmax output [GE17; HG16] to
represent the model reliability.

In order to obtain the reliability score we trained a classification model with
historical data {Description, HSCode}. The HSCode classification problem
can be considered a hierarchical text classification (HTC) problem. The NMT
model has proven its ability in tackling HSCode prediction problems [CBV21].
In this contribution, we applied two models to extract the model reliability score:
Hierarchical Logistic Regression(HLR) and Neural Machine Translation(NMT).

6.4.2 Domain Knowledge

The issue of model reliability is that it might get biased by the historical data.
In order to alleviate this problem, we introduce domain knowledge as a second
feature to predict the quality score.

With the assistance of domain experts, we extracted a group of common
words and grouped them based on their functionality in the description. For
the sake of generalization, we defined six different elements for the words. They
are: [object, material, property, contain, gender, functionality]. We used binary
values to represent whether the description contains the element or not. One
example of such a vector is shown in Figure 6.3.

6.4.3 Linguistic Features

In addition to the features mentioned above, we also looked into linguistic
features concerning the item description.

We tried Parts of speech(POS), and perplexity features extracted from
the GPT2 model [RWA'19]. However, after checking their performance,
neither feature was deemed useful. A potential explanation is that most of the
descriptions only have three or four words, and contain no grammar structure.

We therefore used the following shallow language features: the length of the
description, whether or not a certain word belongs to the English dictionary,
and the ratio of English words vs non-English words.

6.4.4 Ordinal Regression

As the target in our training data has an ordinal interpretation, we trained an
ordinal regression model for the prediction of the score. The basic idea of the
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ordinal regression model is to use multiple binary regression models to address
the ordinal issue.

Following this principle, a task that has n different classes, can be converted
to a binary vector {yo,y1,...,yn}. When converting the label Y = r to the
vector the following constraint holds:

yi = 1lif i <r 0otherwise (6.1)

For example, when the number of categories is 5, Y = 3 can be converted
to the binary vector [1,1,1,0,0]. For each binary value in the vector, we can
train a binary regression model.

In our experiments, we use the implementation available in the Mord
repository [PBG17]

6.5 Results and Discussion

We perform our evaluation by conducting two analyses. The first analysis aims
at evaluating the machine learning model developed by checking how well the
model can distinguish different labels. The second analysis consists of a model
performance evaluation.

In order to validate whether our proposed model can distinguish the labels or
not, we checked the statistical significance for the prediction value distribution
on each label. The distribution of prediction value versus the true label plot
can be seen in Figure 6.4. One-way ANOVA was used to perform a statistical
significance analysis. In our experiment, the p-value is 1.1e-37, which is far
less than the common significance level of 0.05. This proves that the predicted
values for each label belong to distinguishable levels, the second part of the
experiment is then meant to check if these levels are also close to the ground
truth provided by the experts.

As for the accuracy, we compared our solution with one of the commonly
used sentence embedding method: Universal sentence encoder [CYK™18]. The
approaches evaluated were: Our proposed feature, the USE sentence embedding
features and the concatenation of both. An ordinal regression model was trained
on top of these models. We also compared the distance between the true label
and predicted label since the label has an ordinal interpretation. The result is
shown in table 6.2.

The results show that our proposed approach has the best performance
among the tested feature types. Almost 90% of the data prediction are
within 1 label distance. Examining the model based on USE and the one
using concatenated feature, it is possible to notice that USE features actually
deteriorate the performance. Considering that the data set is relatively small,
the model might have difficulties in generalizing when using the USE features.
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Figure 6.4: Score distribution

Feature Acc Dis<1 Dis<2 Dis<3
Our proposal 45.17 89.12 99.18 100.0
USE 36.76 84.39 98.15 99.79

Concatenation  42.51 85.01 98.56 99.79
Note: The Distance is defined as: Dis = abs(True label - Predicted label)

Table 6.2: Results

6.6 Conclusion

In this paper, we presented a solution to evaluate the product description
quality with a ground truth of 2000 training items and 500 testing items.
Considering the small size of the dataset, the proposed model is hybrid and it
combines transfer learning, knowledge from a hierarchical classification task,
linguistic features, and domain knowledge.

The main result is that the proposed model can assess the quality of
a product description closely to human experts. In addition, the proposed
features can easily be applied to similar problems such as determining the
quality of the customer product review or identifying bots on social media
platforms. Potential future work could be to consider a feedback loop at the
side of the customer in order to understand if the customer would correct their
description of the product, if this is of bad quality. Additionally, different
representations of model reliability could be investigated. Last but not least,
it would be worth looking into additional linguistic features.

78



Chapter 7

Language Modeling in Logistics:
Customer Calling Prediction

Customer centers in logistics companies deal with many customer
calls and requests daily. One of the most common calls is related to
requesting an update on the shipment status. Proactively sending
message updates to customers can reduce the number of calls. If a
machine learning model could predict shipments leading to a customer
call based on its journey, it could be possible to proactively send
message updates only to customers likely to make a call. Therefore,
reducing the workload in the customer center while increasing
customer satisfaction. However, naively sending updates to everyone
can cause unnecessary anziety to people who do not want it, thus
leading to customer dissatisfaction or even more calls. Therefore,
we need to employ selective classification to only proactively update
customers when the model is confident. In this paper, we formulate
the shipment journey as a variant of a language model. Specifically,
we treat checkpoints (station, facility, time, event code) as tokens
and predict the next checkpoint(station, facility, time delta, event
code). Our core insight is that shipment checkpoints follow a set
of rules that dictate the possible sequence of checkpoints. This is
similar to how grammar rules dictate which words can follow another.
Despite remaining a difficult problem, our experiments show that
features learned by modeling shipment checkpoints as a language
model can improve customer calling prediction. Moreover, we also
show how to use uncertainty analysis on the samples to gain a better
understanding of the model performance.

This chapter is based on the following publication:

Xi Chen, Giacomo Anerdi, Daniel Stanley Tan, Stefano Bromuri.
ESANN 2023 proceedings, FEuropean Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, DOI:
10.14428 /esann/2023.ES2023-78, 2023, Language Modeling in
Logistics: Customer Calling Prediction.
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Figure 7.1: Data structure

7.1 Introduction

Customer centers of logistics companies are responsible for managing a diverse
range of requests from a multitude of customers on a daily basis. The most
frequent request is the demand for shipment progress updates. The customer
center receives over a million of those calls each month globally, representing a
significant workload. Logistic companies could regularly send shipment updates.
However, not everyone is keen on receiving them. In fact, unwanted notifications
have been shown to have adverse effects such as increased anxiety [ERAT21],
which leads to reduced customer satisfaction, and in some cases even more
calls. Hence, we need to use selective classification to reject the cases where
the model is not confident depends on the business requirements.

By leveraging machine learning algorithms to predict shipments that are
likely to prompt customer inquiries, we can proactively send message updates
only to customers that are likely to call, thereby reducing the number of calls
received. Every percentage of reduction in call volume can result in substantial
savings in workload and enhanced customer satisfaction.

From a machine-learning perspective, predicting customer calling based on a
shipment’s journey can be seen as a time-series classification task with a binary
target [TVNT22]. The shipment journey consists of a sequence of checkpoints
as Figure 7.1 shows. Each checkpoint contains a timestamp, location, and
event code that indicates what happened to a shipment.

Every logistics company has its own process rules that determine the
sequence of checkpoints that a shipment makes during its journey. This
shipment journey can be treated as a directional graph if the origin and
destination are known. The way checkpoints are generated during this journey
also follows a certain order.

For example, a shipment should always have an arrival event before a
departure event. However, the sequence of the checkpoints is not always
fixed; it also depends on the schedule and incidents such as missing flights,
transportation delays, etc.
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With these observations, we hypothesize that shipment journeys can be
formulated as a language modeling problem [WLS20], where checkpoint events
taking place concerning the shipment are represented following a set of “gram-
mar” rules dictated by the logistic process.

Moreover, for such a complex time series problem involving a series of
checkpoints, stations, and timestamps, understanding the data through a
common descriptive approach is challenging. Therefore, we use uncertainty
to gain insights into model performance, which indicates that customer call
timing exhibits random behavior.

In this paper, we show how to formulate the prediction of shipment journeys
by means of a variant of a language model. We demonstrate that customer
calling prediction from shipment journeys can benefit from pre-training on
a large unlabeled collection of data where the only supervision comes from
predicting the next checkpoint, similar to how large language models [TLIT23;
BMR*20] have demonstrated that pre-training models can significantly improve
downstream tasks [HLM19; PLH™23]. Moreover, we show how uncertainty can
be utilized to better understand the data and offer insights for improving model
performance. Our findings suggest that modeling shipment journeys as if they
were sentences in a language model has the potential to help with various tasks
in the logistics domain and that treating checkpoints and journeys as words
and sentences is appropriate from a modeling perspective, thus opening many
possibilities for future research.

The rest of this paper is structured as follows: Section 7.2 explains the
method used in this paper; Section 7.3 shows the details of the experiment;
The results and discussion are covered in Section 7.4; Section 7.5 contains the
conclusion and the future work.

7.2 Method

7.2.1 Shipment journey as a language model

Similarly to the case of a language model predicting the next word, we train
our model to predict the details of the next checkpoint in a shipment journey,
as shown in Figure 7.2. This language model based pre-training allows our
model to implicitly learn the logistic process and its rules.

We adopt a decoder-only architecture [BMR™20; DXS23] consisting of
six decoder layers. In our experiments, checkpoints are represented by their
station information, facility, event code, and time stamp, as shown in Figure
7.1. Station information, facility, and event code are categorical variables that
we encode using an embedding layer. For the timestamp, we encode month,
day, year, day of week, hours, and minutes using cyclical feature encoding.

Since the time information has a big variance, it is not clear whether it
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Figure 7.2: Pre-train target.

would be helpful to make it a prediction target. Therefore, we experimented on
two different pre-training targets. The first variant of our model only predicts
the station, event code, and the facility. This will help the model understand
the sequence of events. The second variant includes the transition time, which
is the time difference (or time delta) between the previous checkpoint and the
next checkpoint.

7.2.2 Customer calling prediction as downstream task

After the language model based pre-training, we fine-tune the model on the
target of predicting customer calls, given a shipment journey consisting of a
sequence of checkpoints. This is done by replacing the last output layer to
output a binary prediction target optimizing a binary cross-entropy loss.

Time duration of a particular checkpoint is crucial information for customer
calling predictions. As a matter of facts, if a shipment is stuck at the same
checkpoint for a long time, then it is highly likely that the customer will
complain. However, simply using the first &£ checkpoints as input does not
indicate how long the shipment has been on the k-th checkpoint. Therefore,
we append an end checkpoint at the k4 1 position with a synthetic time stamp
to indicate the duration of the k-th checkpoint and a special ‘end’ token for
facility, station, and event codes.

During training, we augment the negative samples by appending end
checkpoints in between two checkpoints where customers did not call. The
idea is that if the customer does not call between checkpoint k& and checkpoint
k + 1, then an artificial checkpoint k£ + 1 with an earlier time stamp will also
not trigger a call from the customer. For the positive samples, we generate
end checkpoints with the same time stamp as the beginning of the call from
the customer.

Due to the nature of the calls, the number of customers who call is signif-
icantly less than the number of customers who do not call. In our case, the
ratio between positive and negative samples is approximately 1 : 19. Thus, we
sample the negative ones in such a way that the number of positive and negative
samples is balanced. Specifically, we under-sample the negative samples in
each epoch training.
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7.3 Experiment

7.3.1 Data

The data that we used in this experiment comprises six months of shipments
toward one country. For each shipment, we have corresponding checkpoint
sequences as shown in Fig. 7.1.

Overall the data set contains a sample of 2.49 million shipments, where in
5.2% of the cases the customer called to obtain more information. In order to
give some insights into the difficulty of this problem, Table 7.1 below shows
the proportion of customer calls on a particular shipment event. The data
is not only highly imbalanced, but also contains various types of noise and
uncertainties. For example, some customers call at random times purely out of
concern. Moreover, even for the shipments that present the same status, some
customers call while others do not because of external factors, such as their
personal situations or urgency of receiving the shipment.

We use three-month data for training, and half a month for validation and
testing respectively. In order to evaluate statistical significance, we apply a
five-fold rolling cross-validation with a window size of half a month in this
experiment.

7.3.2 Implementation details

As for the transformer decoder, we use an Adam optimizer with a learning
rate of 1e — 5. The number of heads is 6, and the dimension of the model is
512, with 6 layers of the decoder.

7.4 Results & Discussion

In this experiment, we evaluated three different models. The first model is
a transformer model that is directly trained on the target. This acts as the
standard classification baseline wherein we do not perform any language model
based pre-training. The second and third models are the fine-tuned models
with language model based pre-training. Specifically, the second model is
pre-trained without a time delta, while the third model includes a time delta
as a pre-training target.
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Table 7.1: The proportions of the last
event before the customer called with
the non-call shipments for the same
event. We show only the top 4 events
related to customer calls.
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Figure 7.3: The precision-recall plot.

The results are shown in the Table 7.2. We report the average recall from
the five-fold cross-validation at different precision values. A complete precision-
recall curve is visualized in Figure 7.3. Based on the results, we can observe
that pre-training the transformer model on the shipment journey can improve
the performance of customer call prediction. The difference is statistically
significant when compared to the transformer without pre-training. We can also
observe that the performance of the fine-tuning with time delta is marginally
better than without. Time delta is important information when it comes to
understanding the shipment journey. Predicting the time delta can help the
model to understand the intrinsic shipping logic and the average duration
of each checkpoint, thus leading to better performance when fine-tuning the
downstream tasks.

The recall values are not particularly high on all models, which is reflective
of how difficult the task is. The highly imbalanced data coupled with the
randomness of customer call behavior makes it challenging to predict customer
calls accurately. However, we would like to note that the level of performance
of the models is already useful for industry usage. Depending on the business
needs, we can always trade off precision & recall by moving the threshold
(Figure 7.3). From a business perspective, based on 1 million calls per month, if
we use a precision threshold at 50% and send the customer an update message,
even if only half of the customers can be prevented from contacting the logistic
company, this can reduce 15% of the calls, which accounts for 150k calls per
month.

Due to the high complexity of the data, understanding it through common
descriptive analysis is rather challenging. We utilize the uncertainty method
described in Mukhoti et al. [MKvA™*23] to help better understand the model
performance. As Figure 7.4 shows, the distributions of epistemic uncertainty
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Precision Random Guess Transformer Fine-tune Fine-time (w/ time delta)
40 n.a 32.95 43.50 (2.9¢-3) 45.55 (3.6e-3)
50 5.2 14.05  29.29 (6.0e-3) 30.86 (9.3¢-4)
60 n.a 4.80 19.39 (1.7¢-3) 20.16 (2.5e-3)
70 n.a 1.58  12.04 (5.2¢-3) 13.14 (8.3¢-3)
80 n.a 0.76  6.60 (7.6e-3) 7.65 (9.6e-3)

Table 7.2: Recall under the different precision threshold. The number in the
bracket is the P-value from paired student T-test compared with Transformer.
A precision threshold can to set in order to decide which customers should be
updated.

for both correctly and incorrectly classified samples overlap significantly. This
overlap suggests that the model behaves poorly in these areas, and also indicates
that there might be randomness when a customer decides to call. Checking
those data with similar uncertainty levels reveals that shipments with the same
patterns vary in customer response; some receive customer calls while others
do not. It gives insight that integrate customer behavior information might
improve the performance further.

7.5 Conclusion & Future work

In this chapter, we showed that it is possible to formulate the shipment journey
as a variant of the language model. This opens the possibility of implementing a
large language model that can be used in the logistic domain. The downstream
task customer calling prediction can also be a benefit for the logistic company.
Future work concerning customer contact prediction could imply looking
into data cleansing and uncertainty measurement approaches [HU20; HFB19]
as there is certain randomness involved in the data. For the language model
itself, further analysis could be performed on fine-tuning it towards various
downstream tasks to validate its usage in other logistic case studies.
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Figure 7.4: A violin plot is used to visualize the distribution of epistemic
uncertainty in ” Correct Predictions” and ”Incorrect Predictions.” The width of
the violin at different levels of the vertical axis represents the density of the data,
with wider sections indicating a higher density of values at that range. In theory,
misclassified samples (right side) tend to have higher epistemic uncertainty
(e.g., outliers, novelty, etc.) compared to correctly classified samples (left side).
However, the distribution in the higher uncertainty region shows a similar
density for both categories. This suggests that the model struggles to make
decisions in those areas. Combined with sample checks, this indicates the
randomness in customer behavior when deciding whether to call customer
service or not.
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Chapter 8

Conclusions

This thesis is about selective classification and its usage in the logistic domain.
It sets forth the following objectives:

1. To demonstrate the usage of selective classification in the logistic domain.

2. To investigate improved confidence score that are effective for both public
datasets and HS Codes classification issues.

3. To explore how confidence score can be utilized to better understand
data quality.

This chapter summarizes the thesis, addresses each research question con-
cerning limitations and future work, and discusses the considerations of selective
classification in terms of deployment and its relation to Large Language Models
(LLMs) within the context of this thesis. Finally, it concludes by discussing
the social impact of our findings.

8.1 Research Question

This thesis aims to answer the following three research questions:

e What deep learning models are suitable for hierarchical text classification
(HTC)?

e How to use the error pattern to design a better confidence score?

e How to use the confidence score to analyze data quality (1. Whether the
data contains enough information for the category. 2. Model uncertainty
analysis to understand data label noise)?

Each question has been investigated in the thesis chapters and is further
discussed in this section.
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8.1.1 What deep learning models are suitable for hierarchical
text classification (HTC)?

To answer this question, we investigated existing HT'C architectures in Chap-
ters 3 and 5, and decided to focus on hierarchical global classification. The
Seq2seq model is a common choice for hierarchical global classification due
to its architecture and strong performance. We compared traditional logistic
regression, LSTM-based seq2seq, and transformer-based seq2seq models for
HTC. Our findings establish that the transformer-based seq2seq model is highly
effective for HT'C problems.

This finding is significant as it directs logistics companies towards adopting
this model for improved classification accuracy and efficiency in HSCode classi-
fication, leading to potential cost savings and enhanced operational workflows.

Limitation

The research is not guaranteed to find the best performance model on HTC
problem as we did not explore the variants of the transformer-based seq2seq
models. Additionally, we noticed that the lack of public datasets for the HTC
problem made it challenging to conduct a fair comparison.

Future work

One of the limitations of the seq2seq model is that it can generate invalid /non-
existing labels. Those invalid labels can be filtered out by checking against the
valid labels. So future work can extend the beam search so that the invalid
labels will get removed during the generating process. Moreover, considering
the strong knowledge of the existing LLMs, fine-tuning LLMs for HTC problems
might also be worth trying.

8.1.2 How to use the error pattern to design a better confidence
score?

The primary challenge for a better confidence score lies in 1) identifying a
target that enables sample ranking based on their likelihood of misclassification
or ease of classification, and 2) ensuring the model’s ability to generalize from
this target. Generalization poses a significant issue as there is no assurance of
the model’s capacity to generalize the target effectively. In this work, the error
pattern we are looking at is the error of the classifier, the error of rejection in
both True class probability (TCP) and Failure detection (FD).

Chapters 4 and 5 address this question. To evaluate the generalizability
TCP rejection methodology, we applied it to the HS Codes and importer
prediction problems. We found that the TCP and FD approach struggles to
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generalize misclassified samples in HTC problem. By analyzing the error where
the model and rejection happened, we introduced a new rejection criterion, the
“confidence range”, which leverages model failures and TCP. This proposal can
further enhance performance.

Limitation

Due to the nature of these confidence scores, it is difficult for us to determine
whether the model’s failure to generalize well is due to the inherent nature
of the data or a poorly designed confidence score. This makes post-analysis
of the results quite challenging. This could also be the future work: utilizing
uncertainty to better understand the confidence range and identify areas for
improvement.

Future work

Our contribution integrates model failure with TCP to introduce a ‘range
target’, enhancing the model’s generalization capabilities in predicting the con-
fidence score. Future work could involve incorporating regularization strategies
to prevent feature collapse, as suggested by [vASJT21]. Moreover, we could
leverage uncertainty as an additional feature to predict confidence scores.

8.1.3 How to use the confidence score to analyze data quality?

This research extends into evaluating data quality through confidence score
as described in Chapters 6 and 7. The confidence score is a good indicator of
whether the model can classify a sample correctly, and thus, a good indicator of
sample quality. We used confidence scores derived from different methodologies
to identify data quality issues.

In Chapter 6, we proposed using the confidence score as a transfer learning
feature, combined with other domain and linguistic features, to build an ordinal
classifier to identify data quality. This approach is rather useful especially
when it is unrealistic to get a large amount of the labeled data to apply an
end-to-end model.

Additionally, distinguishing whether errors originate from the data or the
model provides crucial insights into the limitations faced when dealing with
complex data problems. This distinction has practical implications for the
entire machine learning pipeline, as demonstrated in Chapter 7. Analyzing
the uncertainty of samples offers valuable indications of whether errors stem
from the data itself or the modeling process. Thus, provides the direction to
enhance the model performance.
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Limitation

Due to a lack of other domain data and knowledge, all the data quality-
related work detailed in this thesis was applied only to logistics domain-related
problems. Therefore, it would be better if those methodologies could be tested
in other domains to validate their generalizability.

Future work

Future work could focus on developing a framework that automatically performs
both classification and highlights data issues for industrial applications. Also, in
this work, we did not further develop uncertainty-based methodologies. Instead,
we applied the methodology from [MKvA™23] to gain a better understanding
of predictions from both data and model perspectives. Modeling uncertainty
itself is a challenging task. Quantifying uncertainty in classification tasks is
undoubtedly beneficial. The most obvious difference between aleatoric and
epistemic uncertainty is that one is reducible and the other is not. However,
separating these two types of uncertainty is difficult. There is a thin line
between them, and they can even be convertible depending on our modeling
choices [DD09; KG17]. Therefore, improving our ability to distinguish between
these two types of uncertainty will remain a challenging task.

Regarding rejection: Most current methodologies use either aleatoric or
epistemic uncertainty for rejection. Exploring a better combination of these
two types of uncertainty as rejection criteria, as suggested by Vazhentsev in
[VKT*23], could be one of the directions for future research.

8.2 Considerations about Industrial deployment

When selecting a rejection method for industry usage, its applicability must
be carefully considered. This is particularly important in scenarios where the
balance between model performance and scalability is delicate, as decisions must
weigh the cost of deployment against the benefits. Despite their theoretical
robustness, Bayesian-based methodologies have seen limited popularity in
certain industry applications due to their high computational cost.

Our early work in HSCode classification problem consciously bypassed
certain methodologies due to concerns over their applicability in a real-world
industry setting. Two critical factors need to be considered when choosing the
deployment of these methods in the industry: computational cost and transfer-
ability. Also, model performance monitoring is important after deployment.

Computational cost. In an industrial environment, where time and re-
sources are often limited, the computational cost becomes a significant barrier
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to the adoption of certain methodologies. Especially since nowadays every-
thing is cloud-based, computational power is directly associated with a cost.
Therefore, we always need to trade off between performance and usage of cloud
infrastructure.

Techniques that can save computational costs, such as caching and model
compression, are commonly used in industry. Caching helps by storing fre-
quently accessed data, thus reducing the need for repeated data retrieval
operations. Model compression can reduce the size and complexity of machine
learning models, making them more efficient to run while maintaining most of
their performance.

In the work of Chapter 4, instead of using a classifier to predict everything,
we used simple matching logic to predict the easy samples, saving time and
computational cost. Additionally, caching was applied to the HS Codes predic-
tion problem by storing high-frequency descriptions in a vector database. For
each new sample, we searched the vector database first before classifying it.

We also took this into account when choosing the rejection approach.
Rejection approaches with higher computational power (e.g., KNN; ensembles,
etc.) were generally not our first choice. Overall, a single-pass neural network
is more appealing to the industry.

Transferability. The ability to apply a method across different models with
minimal adjustment is another crucial consideration. A method that works
well in an academic setting may not be attractive to the industry if it requires
a lot of customization. This could be because the model used in the industry
is not easily adaptable to the solution or because there is a lack of capability
to make such changes to the model. Thus, the softmax baseline is still the first
choice for the industry as long as the performance is acceptable.

Recent developments in uncertainty-based methodologies have introduced
certain requirements for model adaptation, notably modifications to the model’s
architecture to incorporate hidden layers and specific normalization techniques.
These adjustments are essential to ensure that the hidden layers produce
meaningful outputs. Such modifications, however, complicate the transferability
of these approaches to other models due to the specialized nature of the changes
required. In contrast, ranking-based approaches offer a more adaptable solution
for industry applications, primarily due to their simpler integration process
and good performance. That is also why we decided to develop those methods
further.

Monitoring. Machine learning solutions generally require constant moni-
toring of performance to avoid data drift, a phenomenon where data patterns
change over time. This process is crucial for selective classifiers as well. In the
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context of a logistics company, such as DHL, this becomes even more critical
for the following reasons: 1. The package that the customer shipped has
seasonal and yearly shipping patterns. 2. The types of products being shipped
can change over time due to varying global activities. Therefore, continuous
performance monitoring is essential to mitigate risks and ensure the models
remain accurate and reliable.

8.3 Considerations about LLMs

In recent years, the advent of Large Language Models (LLMs) has marked
a transformative period in the machine learning community, demonstrating
successful applications across various domains [NMH*24; CAT*; HBL*23].

LLMs that have been trained on enormous datasets can evaluate data
quality through few-shot learning techniques, as detailed in [ESA123]. We
tried a quick exploration of LLM on the problem that was tackled in Chapter 6
and 3. ChatGPT-4 exhibited remarkable classification accuracy and reasoning
capabilities to determine the shipment description quality, as shown in Figure
8.1.

This leads us to also consider the potential integration of LLMs within the
framework of selective classification. Given their strong capability to understand
the quality of shipment descriptions and classify them into corresponding HS
codes. Fine-tuning the LLMs on the HS Code classification training dataset will
enable LLMs to simultaneously predict rejection options and the appropriate
class. Such an approach could revolutionize selective classification, leveraging
the inherent strengths of LLMs to enhance decision-making processes in machine
learning applications.

The broad usage of Large Language Models (LLMs) also poses some ethical
and social risks [WMR*21]. Even when LLMs are not performing classification
tasks, the capability to reject misuse requests is crucial [PPC*23]. Ensuring
that LLMs can effectively reject inappropriate inputs and/or outputs will
enhance their reliability and safety in industrial applications. This is an
interesting research direction [MLG23; YKG™24] for selective classification and
will become increasingly important as the power of LLMs grows.

8.4 Societal Impact

The thesis not only focuses on methodology but also demonstrates the capability
of selective classification in real-world use cases within the logistics domain.
Here, four aspects will be discussed: Economic Impact, Business understanding,
Process and Reliability, and Broader Societal Implications.
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ChatGPT
The description provided as "shirts" offers a very basic level of detail, which initially suggests a

classification at Quality Level 1. This is because:

. Broad Categorization Possible: The term "shirts" can broadly classify the item into a relevant
chapter within the HS Code system, likely Chapter 62, which covers "Articles of apparel and
clothing accessories, not knitted or crocheted". Specifically, it might fall under heading 62.05,
which pertains to "Men's or boys' shirts".

2. Lack of Specific Detail: The description does not provide sufficient detail to classify the product

beyond this broad category. Important details such as material composition (e.g., cotton,

polyester), type (e.g., formal, casual), whether it is knitted or not, and specific use (e.g., men's,
women's, children's) are missing.

To improve the description and achieve a higher quality level, consider including the following
information:

* Material Composition: Specify the fabric or material the shirts are made from, as different
materials can lead to different classifications (e.g., cotton, polyester, silk).

Type of Shirt: Indicate whether the shirts are formal, casual, sports, or another specific type.
* Knitted or Not: State whether the shirts are knitted or woven, as this affects classification
between Chapter 61 (knitted or crocheted) and Chapter 62 (not knitted or crocheted).

* Gender and Age Group: Specify whether the shirts are designed for men, women, boys, or girls.
The HS code classification can differ based on the intended wearer.

Additional Features: Include any special features such as with pockets, collars, cuffs, and
whether it is for occupational use.

With these additional details, the description could potentially reach Quality Level 3 or Quality
Level 4, allowing for classification down to a 6-digit subheading or even more detailed national
tariff lines, ensuring accurate duty assessment and statistical tracking.

Figure 8.1: Example of ChatGPT-4 in classifying description quality
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Economic Impact. This thesis showcases the application of selective classi-
fication in addressing HSCode classification, importer prediction, and customer
calling prediction problems within the logistics sector. The research provides
evidence that the application of selective classification can lead to multi-million
euro savings. By automating operational processes, logistics companies can
partially streamline their business operations and allocate resources more effi-
ciently, resulting in substantial cost reductions. This economic advantage not
only enhances the profitability of individual companies but also contributes to
the overall economy by improving the competitiveness of the logistics sector.

Selective classification offers a higher tolerance concerning data quality
since it has the capability of rejecting ‘not known or not confident’ cases. This
increases the likelihood of success compared to a fully automated solution that
requires better processes or setups.

Business understanding. Analyzing rejected samples from selective classi-
fication can enhance our business understanding and uncover hidden issues.
Business understanding is a crucial process in data science projects, as it pro-
vides the primary information source to validate whether the data accurately
reflects reality.

Generally, we assume that domain experts can address most business-related
questions. However, in this research, we observed that this is not always the
case in the logistics domain. Shipment data undergoes a lengthy process from
pickup to delivery. In each process, the data might be modified. Therefore, it
is challenging to find a single individual who comprehends the entire process.
Most domain experts are only familiar with the specific processes they work
on, making it difficult to obtain a complete picture of everything that has
happened to the data.

Throughout the research, we found that rejected samples are often associ-
ated with outliers, inconsistent data, or new products. Analyzing those samples
allows us to validate business processes and uncover hidden issues.

Process and Reliability. Data quality is always an issue in industry. Many
machine learning projects fail due to insufficient data quality [RA20]. A tradi-
tional classification solution suffers from “garbage in, garbage out” problems.
This might be caused by excessive noise in the data, flaws in the data collection
process, or system errors. To fully automate such a solution one would have to
fix data quality issues first.

Selective classification can still automate part of the classification processes
even with poor data quality, thus yielding benefits directly instead of convincing
businesses to improve the data quality first. This makes the selective classifica-
tion more appealing when it comes to industry usage, especially considering
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Figure 8.2: Pathway to impact

that improving the data quality takes a lot of time and effort.

The application of selective classification in logistics not only improves
efficiency and sustainability, but also enhances reliability of the processes.
Figure 8.2 illustrates how a selective solution can be sold to a company.

In logistics, particularly in clearance processes where errors can cause
multi-day delays, accurate classification and high data quality are crucial for
reducing risks, improving operations, and increasing customer satisfaction.
After deploying the selective classifier, samples where the model can achieve
the desired precision will be automated, streamlining the process. This will
lead to a smoother process. The remaining samples will be reviewed by the
agent. Analyzing the rejected samples will provide a better understanding
of the process, exposing issues and offering insights for improved rejection
methods. Since the benefit of each percentage of automation can be visualized,
it gives more motivation to fix the data quality issue and investigate a better
rejection methodology. Naturally, this leads to a virtuous cycle that constantly
improves processes, customer satisfaction, and creates buy-in for machine
learning solutions.

Broader Societal Implications. Beyond the direct impacts on the economy,
this research also has a broader impact on society, as all the work presented
is directly applied in industry setups. Chapters 3, 4, and 7 demonstrate how
selective classification can be adopted in industry settings. These examples
provide valuable insights for other sectors on implementing selective classifica-
tion in their domains. This is particularly relevant in fields like biomedicine,
where precise diagnostics are essential for patient care [GJH20], and in manu-
facturing, where automated quality control is vital for maintaining production
standards [ZDM20].

Additionally, our problem-solving approach can be replicated in other areas,
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which is particularly valuable for companies just beginning to explore machine-
learning solutions. This method provides a quicker way to demonstrate benefits
and naturally leads to higher success rates for projects.
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